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Abstract

This thesis describes theoretical investigations of the conductance properties of some se-
lected nano-scale junctions. The studies are based on a numerical scheme where the atomic
and electronic structure of the junction is described within ground state density functional
theory (DFT). This in combination with the non-equilibrium Green’s function (NEGF)
formalism makes it possible to describe the electrical properties of atomic-sized junctions
realistically.

In the attempt to establish a general consensus concerning the correct result of a
NEGF-DFT calculation a set of benchmark calculations has been performed. The Kohn-
Sham elastic transmission function of five representative single-molecule junctions are
calculated using two different and independent, albeit similar, density functional theory
(DFT) methods: (i) An ultra soft pseudopotential plane wave code Dacapo [1, 2] in
combination with maximally localized Wannier functions [3]. (ii) The norm-conserving
pseudopotential code Siesta [4] which applies finite range pseudo atomic orbitals [5]. It
is found that for all reference systems the Siesta transmission function converges towards
the plane wave result as the Siesta basis is enlarged. Overall, an atomic basis with
double-zeta and polarization is sufficient (and in some cases even necessary) to ensure
quantitative agreement with the plane-wave calculation.

The electrical properties of single-molecule junctions are sensitive to the detailed
atomic structure of the contact. This, in turn, is for organic molecules largely deter-
mined by the anchoring group. With the aim of identifying and comparing the intrinsic
properties of two commonly used anchoring groups (thiol and amine) the atomic structure
and conductance traces of different Au-S-Au and Au-NH2-Au nanojunctions have been
calculated. It was found that the structural selectivity of the amine group leads to small
junction to junction fluctuations in the conductance traces of the Au-NH2-Au junctions.
On the other hand, the larger variability in sulphur-gold bonding geometries leads to
significantly different Au-S-Au conductance traces depending on the atomic structure of
the gold contacts. This indicates, in agreement with experiments [6], that the intrinsic
transport properties of the amine group are more well defined than those of the thiol.

The conductance histograms obtained when a Pt contact is broken in a hydrogen at-
mosphere show two strong peaks, one near 1 G0 and the other around 0.2 G0 on top of
a low-conductance tail [7, 8, 9]. In previous work substantial evidence have been given
that the atomic structure responsible for the pronounced 1 G0 peak consists of a hydrogen
molecule captured between platinum electrodes [10]. To further characterize this linear
bridge configuration first-principles calculations of the non-linear dI/dV curves are pre-
sented. The conductance is found to decrease by a few percentage at threshold voltages
corresponding to the excitation energy of longitudinal vibrations of the H2 molecule. The
transverse vibrations, on the other hand, induce an increase in conductance. The latter is
not in agreement with the experimental findings and seems, at first, to conflict with the
so-called one-channel model. On the basis of scattering theory it is shown that the increase
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is a result of the fact that the transverse vibrations can mediate transport through the
otherwise non-transmitting Pt d-channels. This explanation is consistent with the finding
that for a Au/H2 bridge the transverse modes do not affect the conductance.

A detailed study of platinum/hydrogen chains bridging Pt electrodes has been per-
formed. By comparison with the experimental evidence it is shown that the 0.2 G0 con-
ductance peak is likely due to a hydrogen decorated Pt chain in contact with the H2

molecular bridge. The chain formation process were investigated and it was found that
actual “wire pulling” is unlikely as the hydrogen molecule is only weakly bound to the
platinum electrodes.



Resumé

I denne Ph.D afhandling beskrives teoretiske undersøgelser af nogle udvalgte nanoskala
kontakters elektriske ledningsegenskaber. Systemernes konduktans er beregnet ved brug
af en numerisk fremgangsmåde, hvor den atomare og elektroniske struktur af kontak-
ten beskrives ved hjælp af tæthedsfunktionalteori (DFT). Dette i kombination med ikke-
ligevægts Green’s funktions (NEGF) formalismen gør det muligt at beskrive de elektriske
ledningsegenskaber for atomare kontakter realistisk.

I forsøget p̊a at opn̊a en general enighed om, hvad det korrekte resultat af en NEGF-
DFT beregning er, præsenteres en række benchmark beregninger. Kohn-Sham trans-
missionfunktionen for fem repræsentative nanoskala kontakter er beregnet ved brug af
to forskellige og uafhængige tæthedsfunktional (DFT) metoder: (i) En planbølge kode
Dacapo [1, 2] med ultrabløde pseudopotentialer kombineret med maksimalt lokaliserede
Wannier funktioner [3]. (ii) En normbevarende pseudopotential kode Siesta [4], som
anvender pseudo atomare orbitaler med endelig rækkevidde [5]. Det konstateres, at for
alle referencesystemerne konvergerer Siesta transmission funktionen mod planbølge re-
sultatet n̊ar Siesta basissættet udvides. Generelt er en atomar basis med dobbelt zeta og
polarisering tilstrækkeligt (og i visse tilfælde endda nødvendigt) for at sikre en kvantitative
overensstemmelse med planbølgeregningen.

De elektriske ledningsegenskaber af et enkelt molekyle, som er placeret imellem to
metalelektroder, er afhængig af den detaljerede atomare kontaktstruktur. For organiske
molekyler bestemmes kontaktstrukturen i høj grad af forbindelsesgruppen. For at identi-
ficere og sammenligne to almindelige forbindelsesgruppers (thiol og amine) karakteristiske
egenskaber er den atomare struktur og konduktanskurverne for forskellige Au-S-Au and
Au-NH2-Au nanoskala kontakter blevet beregnet. Det viser sig, at amine gruppens struk-
turelle selektivitet medfører, at der kun observeres sm̊a variationer i konduktansen n̊ar
den atomare struktur af guld-kontakten ændres. Derimod, medfører den større variation
i svovl-guld bindingsgeometrien, at der, afhængigt af kontaktstrukturen, kan observeres
markant forskellige Au-S-Au konduktanskurver. Denne forskel indikerer, i overensstem-
melse med nyere eksperimenter [6], at amine gruppen har mere veldefinerede ledningsegen-
skaber end thiol.

I konduktanshistogrammet, som fremkommer n̊ar en platintr̊ad brydes i en hydrogen
gas, observeres to tydelige toppe, den ene tæt ved 1 G0 og den anden omkring 0.2 G0

[7, 8, 9]. Tidligere undersøgelser tyder stærkt p̊a, at 1 G0 toppen kan forklares ved den
gentagne forekomst af en kontaktstruktur, hvor et hydrogenmolekyle er udspændt imellem
to platinelektroder [10]. For yderligere at karakterisere denne molekylære hydrogen ,,bro“
præsenteres ab initio beregninger af ikke-lineære dI/dV kurver. Det findes at, systemets
konduktans formindskes med et par procent, n̊ar eksitationsenergien for de longitudinale
vibrationer af H2 molekylet svarer til den p̊atrykte spænding. Eksitationen af de transverse
vibrationer medfører derimod en stigning i konduktansen. Sidstnævnte stemmer ikke
overens med de eksperimentelle resultater, og synes, i første omgang, at være i konflikt
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med den s̊akaldte ,,en-kanals“ model. Med udgangspunkt i spredningsteorien vises det, at
konduktansstigningerne kan forklares ved, at de transverse vibrationstilstande kan mediere
transport gennem de ellers ikke-transmitterende platin d-kanaler. Denne forklaring er i
overensstemmelse med, at de transverse vibrationstilstande ikke p̊avirker den elektriske
ledningsevne af en Au/H2 kontakt.

En detaljerede undersøgelse af platin/hydrogen kæder udspændt imellem platin kon-
takter er blevet udført. Ved sammenligning med eksperimentelle resultater vises det, at
konduktanstoppen ved 0.2 G0 sandsynligvis skyldes en atomar platinkæde dekoreret med
hydrogen atomer og i kontakt med den molekylære H2 ,,bro“. Undersøgelser af, hvorledes
denne atomare kæde dannes viste, at det er usandsynligt at den molekylære H2 ,,bro“
kan trække kæder, dette skyldes at hydrogen molekylet kun er svagt bundet til platinelek-
troderne.
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Chapter 1

Introduction

The topic of this thesis is theoretical modeling of the electronic properties of nano-scale
contacts. Here a nano-scale contact consists of two metal electrodes connected by a single
molecule or a chain of single atoms.

The downscaling of semiconductor devices is characterized by Moore’s law which states
that the number of transistors on an integrated circuit doubles approximately every two
years [11]. Ultimately the circuit components will reach the atomic limit and new device
structures must emerge [12]. Molecular electronics, where individual organic molecules
are tailored to act as different electronic components and atomic wires represents the
smallest interconnects, could resolve the problem. Due to this prospect of replacing the
conventional semiconductor devices by single-molecule junctions the study of nano-scale
contacts has acquired a lot of attention.

The theoretical concept of an organic molecule acting as a rectifier goes back to Avi-
ram and Ratner [13]. Experimental techniques for manipulating and contacting individual
molecules started to appear around 1990 [14]. One approach is based on the scanning tun-
neling microscope (STM), where the conducting tip can approach molecules on a surface
[15, 16]. Another tool for studying transport through single molecules is the mechanical
controllable break junction (MCBJ) [17, 18]. Experiments on single-molecule junctions
are far from trivial and the measured conductance often shows considerable junction to
junction variations. This variability probably originates from details beyond experimental
control such as the detailed atomic arrangement of the electrodes.

In general, experiments on nano-scale systems are quite indirect and must therefore
be supplemented by theoretical models. These models can provide insight into the atomic
structure and electrical properties of a single-molecule junction. For these models to
describe the properties of nano-scale junctions realistically they must not only describe
the quantum nature of the electrons but also give an atomistic description of the junc-
tion. Today the “standard” approach is to combine density functional theory (DFT) with
non-equilibrium Green’s function (NEGF) techniques [19, 20, 21, 22]. This first-principle
method for calculating the conductance of a nano-scale contact only takes the atomic num-
ber and positions as input. Although the method is not rigorously justified [23, 24, 25] it
has been successful for strongly coupled systems such as homogeneous metal point con-
tacts and mono-atomic wires [26, 27, 28]. However, the NEGF-DFT method systematically
overestimates the conductance of weakly coupled system like benzenedithiolate between
gold contacts [29, 30].

The electrical properties of single-molecule junctions are very sensitive to changes in
the scattering potential. Especially, small errors in the description of the coupling to the
leads can result in significant changes in the transmission function. In fact, there are
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2 Introduction

several examples in the literature where different groups have published different results
for the same or very similar systems [10, 31, 32]. Irrespective of the principal validity of the
NEGF-DFT approach it is important to remove such confusions and establish a common
reference for the method. For that reason a benchmark study, where two different and
independent implementations of NEGF-DFT is compared, have been performed.

In this thesis, the focus is on nano-scale junctions which contains a single atom or a
small molecule like H2. In light of the difficulties encountered when (both experimentally
and theoretically) studying larger organic molecules these simple contacts seems to provide
a natural starting point for the study of electron transport in single-molecule junctions.

Outline of the thesis

Chapter 2 gives an introduction to density functional theory (DFT) and some aspects
related to the numerical implementation.

Chapter 3 introduces a theoretical framework based on Green’s functions for
calculating the current through a general nano-scale contact. The effects of
electron-phonon interaction is discussed in detail.

Chapter 4 demonstrates how the general Green’s function transport scheme can be
combined with DFT to provide a first-principle description of the electrical properties of
nano-scale contacts.

Chapter 5 reviews a set of benchmark calculations for the transmission function
calculated using two different NEGF-DFT methods. This chapter is based on Paper II.

Chapter 6 presents a study of the intrinsic transport properties of two commonly used
anchoring groups (thiol and amine). This chapter summarizes Paper IV.

Chapter 7 presents work on H2 in Pt and Au nano-contacts and is based on Papers I
and V.



Chapter 2

Electronic structure calculations

Electronic structure theory describes the dynamics of electrons in atoms, molecules and
condensed phases. Ab initio electronic structure calculations have, due to the increase
in computer power, become a valuable tool for modeling a wide range of systems, i.e
nanocontacts and surfaces, realistically.

This chapter begins with a short introduction to the many-body Hamiltonian. Then a
short overview of density functional theory (DFT) is provided followed by a description of
the exchange-correlation functional and its approximations. In Sec. 2.3 some important
aspects of the numerical implementation of DFT are introduced. Finally the dynamics of
the ions are discussed. Atomic units will be assumed throughout this chapter, e = ~ =
me = 1.

2.1 The many-body problem

In principle, all properties of an atomic system consisting of interacting electrons and
nuclei can be found from the time-independent Schrödinger equation1

HΦn(r,R) = EnΦn(r,R), (2.1)

where H is the many-body Hamiltonian which, in the general case, consists of a sum of
kinetic energy terms, electrostatic Coulomb interactions and external potentials from e.g.
externally applied magnetic and electric fields. En is the total energy of the quantum
mechanical state Φn(r,R). The eigenstates depends on the spatial coordinates of both
the electrons r = {ri} and the nuclei R = {RI}.

By utilizing the Born-Oppenheimer (BO) approximation [33] the many-body Hamil-
tonian can be greatly simplified. The BO approximation states that due to the large
difference in mass between electrons and nuclei (me/MI ≈ 10−3 − 10−6), the nuclear and
electronic degrees of freedom may be decoupled. In other words, the electrons can be
considered as responding instantaneously to changes in the nuclear positions. Within the
BO approximation the eigenstates of the whole system can be written as products

Φn(r,R) = χn,k(R)Ψk(r;R),

where the motion of the nuclei are described by χn,k(R) and the electronic motion is
determined by the wave function Ψk(r;R) which depends parametrically on the nuclear
coordinates.

1In general, the properties of any system is governed by the time-dependent Schrödinger equation. But
as we only consider time-independent interatomic interactions in this chapter, the dynamics of the system
is described by the time-independent Schrödinger equation.
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4 Electronic structure calculations

The dynamics of the electrons, which move in the field of a fixed set of nuclei, is
determined by the Hamiltonian

He(R) = Te + Vext + Vee + Vnn. (2.2)

The first term (T e) is the kinetic energy of the electrons. The second term (Vext) is the
external potential acting on the electrons, which in the absence of an external fields reduces
to the attractive Coulomb interaction between the electrons and the static nuclei. The
final terms (Vee and Vnn) are the Coulomb repulsion between the electrons and nuclei,
respectively.

In the position representation the Hamiltonian in Eq. (2.2) takes the form

He(R) = −1
2

N∑
i=1

∇2
i +

N∑
i=1

vext(ri) +
∑
i<j

1
|ri − rj |

+
∑
I<J

ZIZJ

|RI −RJ |
,

and acts on an anti-symmetric N -electron wave function, Ψk(r;R).
Within the BO approximation the Hamiltonian for the nuclear system reduces to

Hn = Tn + E0(R), (2.3)

where Tn is the kinetic energy of the nuclei and E0(R) = 〈Ψ0|He(R)|Ψ0〉 is the ground
state energy of the system. That is, the nuclei moves in an effective potential given by the
ground state of the electrons.

Although the BO approximation simplifies the Schrödinger equation, the determination
of eigenstates and energies of a many-body system is a major task. Therefore, one of the
main problems in condensed matter physics and quantum chemistry is to find approximate
methods to solve Eq. (2.1). Today one of the most powerful and popular ways of finding
the ground state properties of an atomic-scale system is provided by density functional
theory (DFT). As the work presented in this thesis is based on DFT, the next sections are
devoted to a general introduction to the method.

2.2 Density functional theory

In this section the main concepts of density function theory is described. DFT provides
a method for calculating the ground state properties of an interacting electron system
described by the Hamiltonian in Eq. (2.2). More complete reviews of the theory are found
in Refs. [34, 35, 36].

In DFT the central quantity is the ground state electron density ρ0(r). By replacing the
full N -particle wave function with the electron density the number of degrees of freedom is
immediately reduced from 3N to 3. This replacement is formally justified by two theorems
proved Hohenberg and Kohn in a paper from 1964 [37].

The first Hohenberg-Kohn (HK) theorem states that there is a one-to-one correspon-
dence between the external potential (vext(r)) and the ground state electron density (ρ0(r))
of an interacting system. Since the external potential together with the number of electrons
completely defines the electronic Hamiltonian (2.2) all ground state properties becomes
functionals of the ground state electron density.

The second HK theorem provides a variational principle for the energy functional
E0 ≤ E [ρ̃], where ρ̃ is a trial density that corresponds to an external potential. To avoid
the v-representability problem (i.e. the mathematical difficulties in characterizing the



2.2 Density functional theory 5

set of trial densities) Levy and Lieb [38, 39] devised the more useful constrained search
formalism

E0[ρ] = min
ρ(r)→N

{
min

Ψ→ρ(r)
〈Ψ|T + Vee|Ψ〉+

∫
drρ(r)vext(r)

}
, (2.4)

where the larger class of N-representable2 electron densities are searched. The first term
F [ρ] = minΨ→ρ(r) 〈Ψ|T + Vee|Ψ〉 , is a universal functional in the sense that it does not
depend on the external potential. Since the HK theorems do not provide any prescriptions
on how to determine F [ρ], the constrained search formalism is not yet of any practical
use. In a subsequent paper Kohn and Sham [40] presented an indirect but formally exact
way of determining the energy functional E0[ρ].

2.2.1 The Kohn-Sham equations

Kohn and Sham realized that the many-body problem of a system of interacting electrons
moving in an external potential could be replaced by an auxiliary system of non-interacting
electrons moving in an effective potential. The effective potential of the non-interacting
system should be chosen such that the ground state density is the same as for the real
interacting system. The energy functional (2.4) can now be decomposed as

E0[ρ] = Ts[ρ] + J [ρ] + Exc[ρ] +
∫
drvext(r)ρ(r),

where Ts is the kinetic energy of a non-interacting electron gas, the Hartree term J [ρ] =
1
2

∫ ∫
drdr′ ρ(r)ρ(r′)

|r−r′| is the classical Coulomb repulsion between the electrons and the exchange-
correlation (xc) functional Exc[ρ] is defined as

Exc[ρ] = T [ρ]− Ts[ρ] + Vee[ρ]− J [ρ].

The (presumably small) xc term contains the correlation contribution to the kinetic energy
and the electron-electron interaction energy beyond the Hartree term. Thus, all quantum
many-body interactions are incorporated into this, generally unknown, xc functional.

The so-called Kohn-Sham equations are obtained through a variational search over
single-particle orbitals

HKSψi(r) =
[
−1

2
∇2 + veff(r)

]
ψi(r) = εiψi(r), (2.5)

veff(r) = vext(r) +
∫
dr′

ρ(r′)
|r− r′|

+
δExc[ρ]
δρ

, (2.6)

ρ(r) =
N∑

i=1

|ψi(r)|2. (2.7)

Here ψi(r) is the Kohn-Sham single-particle eigenstates describing non-interacting elec-
trons moving in the local effective potential veff(r). The ground state density is obtained
from the N lowest Kohn-Sham eigenstates. Since the ground state density must reproduce
the effective potential from which it was generated the Kohn-Sham equations needs to be
solved self-consistenly. The ground state energy of the full system can now be obtained
from the Kohn-Sham eigenvalues

E0(R) =
N∑

i=1

εi−
1
2

∫ ∫
drdr′

ρ(r)ρ(r′)
|r− r′|

+Exc[ρ]−
∫
dr
∂Exc[ρ]
∂ρ

ρ(r)+
∑
I<J

ZIZJ

|RI −RJ |
. (2.8)

2The N-representability condition demands that the electron densities are non-negative, integrates up
to N and have no divergence at the boundaries.
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2.2.2 The exchange-correlation functional

Physically, the exchange-correlation term (which generally lowers the energy) describes
the charge depletion observed in the vicinity of a single electron, i.e. it is associated with
the correlation between the positions of the electrons. Especially, the exchange part can
be associated with the Pauli exclusion principle [41].

In principle, the Kohn-Sham equations provides the exact ground state density, but
in practice, the exchange correlation functional (which defines the effective potential) is
unknown and must be approximated. It is noted that in order to avoid non-physical
behavior of the total energy it is important to ensure that an explicit approximation to
the true xc functional obeys a certain set of rules [42, 43].

In their original paper Kohn and Sham presented the so-called local density approxi-
mation (LDA) [40] for the xc functional. In LDA the exchange-correlation energy of the
real interacting system with the local density ρ(r) is, at every point in space, replaced by
the exchange-correlation energy of a homogeneous electron gas with the same density

ELDA
xc [ρ] =

∫
drρ(r)εhom

xc (ρ(r)).

Here εhom
xc (ρ(r)) is the exchange-correlation energy of a uniform electron gas with electron

density ρ(r). In practice, the exchange energy of a homogenous electron gas is given by
an explicit expression originally derived by Bloch and Dirac [44]. The correlation part,
on the other hand, is represented by an analytic function [45, 46, 47] fitted to accurate
quantum Monte-Carlo calculations [48]. In spite of the fact that LDA is only expected to
be valid for slowly varying densities, it works surprisingly well for real systems [49].

A natural improvement on the LDA is obtained by adding a density-gradient correction
term

EGGA
xc [ρ] =

∫
drf(ρ(r),∇ρ(r)),

where the function f is not uniquely defined and must be chosen with care. In particular
the general rules, which a xc functional derived from a physical system obeys, must be
imposed by hand. A number of different functionals exists [49, 50, 51, 1] each performing
well for specific systems. In this work we use the PW91 [49, 52] or the closely related PBE
[50].

2.3 Numerical implementations of DFT

This section deals with a number of important technical details related to the use of DFT
for numerical calculations. In particular, a number of approximations (in addition to the
inevitable approximation of the xc functional) have to be made. The size of the associated
numerical errors relies on a compromise between computational time and accuracy. The
inherent uncertainty of the employed xc functional is often used as an upper bound of the
numerical errors. In this work two different implementations of DFT have been used: (i)
Dacapo [1, 2] which uses plane waves and ultrasoft pseudopotentials [53]. (ii) Siesta
[4] which uses a basis of localized pseudoatomic orbitals (PAOs) [5] and norm-conserving
pseudopotentials [54]. Detailed reviews of the numerical implementation issues can be
found in [55, 56].

2.3.1 Boundary conditions

In order to solve the Kohn-Sham equations and, in general, differential equations one must
specify certain boundary conditions. In DFT calculations periodic or vanishing boundary
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conditions are the most common choices. The latter, which corresponds to a cluster
calculation, is well-suited for describing finite systems like molecules. Periodic boundary
conditions, which is used in the supercell approach [55], are convenient for treating infinite
systems such as bulk crystals. However, also non-periodic structures can be handled by
forming so-called supercells. That is, the system of interest is modeled within a finite
(super)cell which is repeated in all directions. Surfaces and molecules can now be modeled
by including appropriate vacuum regions in the supercell. In both Dacapo and Siesta
supercells and periodic boundary conditions are applied.

In the supercell approach one can make use of Bloch’s theorem for the electronic wave
function [57]

ψn,k(r) = eik·run,k(r), (2.9)

where k is a wave vector belonging to the first Brillouin zone (BZ) and un,k is a function
with the periodicity of the superlattice. Consequently the Hamiltonian is diagonal with
respect to the reciprocal lattice vector and one can separately obtain for each k-point the
eigenstates of the Hamiltonian. The expectation value of an observable (R) of the system
can now be evaluated as an integral over the first Brillouin zone

〈R〉 =
1
VBZ

∫
BZ
R(k)dk ≈

∑
k∈BZ

wkR(k),

where VBZ is the volume of the first BZ and R(k) =
∑

n∈occ〈ψn,k|R|ψn,k〉. In practice,
the integral is approximated by a weighted sum over k-points. Special k-point sets with
efficient sampling have developed [58, 59].

2.3.2 Basis sets

In order to solve the Kohn-Sham equations it is convenient to expand the wave function in
terms of a finite basis set. In electronic structure calculations basis functions which either
resembles the exact eigenstates of the system (e.g. pseudoatomic orbitals or gaussians) or
which are system-independent (e.g. plane waves or wavelets) are usually applied. In the
following we focus on plane waves and pseudoatomic orbitals as they are used in Dacapo
and Siesta, respectively.

Plane waves

Expanded in terms of plane waves the Kohn-Sham wave function (2.9) takes the form

ψn,k(r) =
∑
G

cn,k(G)|G + k〉, (2.10)

where |G + k〉 = 1√
V
ei(G+k)·r, V is the volume of the supercell and the sum is over

reciprocal lattice vectors. In order to truncate the plane wave basis one introduces a
cutoff energy (Ecut) for the kinetic energy. In this way only plane waves that satisfy the
condition 1

2 |G + k|2 ≤ Ecut are retained in the expansion (2.10).
The main advantages of using a plane waves basis set are the following: (i) The result

can be systematically converged by increasing the cutoff energy. (ii) No assumptions
about the actual shape of the wave function are made. The drawback is that the number
of planes waves needed to obtain convergence is very large.
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Wannier functions

In order to obtain a set of localized basis functions (which is needed for the transport
scheme introduced in chapter 3) the plane waves can be transformed into partly occupied
Wannier functions (WF) [3, 60]. These partly occupied Wannier functions are expanded
in terms of the M Kohn-Sham eigenstates lying below a selected cutoff energy E0 and L
extra degrees of freedom

wn =
M∑

m=1

Um,nψm +
L∑

l=1

UM+l,nφl, (2.11)

where the extra degrees of freedom are expanded in terms of the N −M eigenstates with
energies above E0

φl =
N−M∑
m=1

cm,lψM+m. (2.12)

The Wannier functions are thus constructed such that any eigenstate below the cutoff
energy can be exactly represented by a linear combination of WFs. In order to localize
the WFs the spread [61]

S =
∑

n

(〈wn|r2|wn〉 − 〈wn|r|wn〉2),

is minimized by varying U and c in (2.11) and (2.12) under the constraint that U is unitary
and the columns of c is orthonormal. A detailed account of this scheme for constructing
partly occupied Wannier functions are given in Refs. [3, 60].

Pseudoatomic orbitals

For each atom I positioned at RI a set of pseudoatomic orbitals are defined as the product
of a numerical radial function and a spherical harmonic [62, 5]

φI,lmn(ri) = rI,ln(ri)Ylm(ri). (2.13)

Here, ri = ri −Ri and the angular momentum is labeled l,m. A “multiple-ζ” basis set
consists of several orbitals (labeled n) with the same angular momentum, but different
radial dependence. In order to accurately describe the bonding between atoms the so-
called polarization functions are often added to the basis set. As the PAOs are required
to be zero at a certain radial cutoff they are strictly confined.

The PAOs are the excited orbitals of a free atom and as such the required number of
basis functions are much smaller than for a system-independent basis set. On the other
hand, there is, in general, no systematic way for increasing the number of basis functions
and thus the convergence cannot easily be controlled.

2.3.3 Pseudopotentials

In order to reduce the size of the basis set one often uses pseudopotentials to get rid
of the chemically inert core electrons. The idea is to freeze the core electrons in the
atomic core states and then replace the potential from the nuclei and core electrons with
a softer (pseudo)potential that provides the same description for the valence electrons.
In Dacapo and Siesta a parametrization of the ultra soft [53] and norm-conserving [54]
pseudopotential method, respectively, is applied
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2.4 Dynamics of the nuclei

In the previous sections it has been described, how the electronic ground state corre-
sponding to a given ionic configuration can be calculated. In order to find the equilibrium
geometry of a quantum mechanical system one also needs to consider the ionic system
described by Eq. (2.3). If the ions are treated as classical particles their motion is de-
termined by the forces, which are defined according to the Hellmann-Feynman theorem
as

FI = −∇RI
E0(RI),

that is the ground state energy E0 in Eq. (2.8) defines a potential energy surface (the
Born-Oppenheimer energy surface) for the ions. The equilibrium atomic configuration is
then determined from the minimum of this BO energy surface. The nuclear vibrations, in
turn, is obtained by diagonalizing the Hessian matrix defined as

∂2E0(RI)
∂uIα∂uJβ

∣∣∣
R=R0

,

where uIα is the displacement of atom I in the direction α multiplied by the mass factor√
MI .

2.4.1 Location of transition states

When considering the dynamics of a quantum mechanical system the reaction rates of
certain activated processes are often important. In an activated process the system has to
cross an energy barrier to get from the initial to the final state. The reaction rate is then
determined by the energy barrier. In this work the activation energy and transition state
for a particular reaction has been found using the nudged elastic band method (NEB)
[63, 64, 65]. In NEB the initial and final state (provided as input) are connected by a
number of images generated with linear interpolation. The images, which are coupled by
springs, are then relaxed in a controlled way and the minimum energy path is obtained.
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Chapter 3

Quantum Electron Transport

In this chapter we provide an introduction to the basic theoretical framework used for
describing electron transport in mesoscopic systems as well as in junctions containing a
single atom or molecule.

During the years a variety of numerical methods for describing phase-coherent trans-
port through atomic-sized junctions realistically have been developed. Most of these meth-
ods are based on either calculating the scattering wave functions of the system directly
[66, 67] or alternatively the single particle Green’s function of the central region [19, 20].
In the present work we use the latter method. It is possible to extend both the wave
function [68, 69] and the Green’s function [70, 71] techniques to include electron-phonon
interactions. One of the main advantages of the Green’s function approach is that interac-
tions can be included by a systematic expansion [72]. Scattering states on the other hand
provide a very useful tool for analyzing the transport properties of a junction. Recently it
has been shown that one may derive scattering states efficiently from central region single
particle Green’s functions [73], hereby combining the advantages of both approaches.

This chapter is organized as follows: First a rather general expression for the current
through a nano-scale contact is derived. Then the case of non-interacting electrons where
the current formula reduces to the well-known Landauer-Büttiker formula is addressed.
This special case is illustrated by a simple example of electron transport through a single
electronic level coupled to metallic leads. After considering the Hamiltonian of a system
describing interactions between the electronic and the vibrational degrees of freedom, we
introduce the electron-phonon interaction explicitly by using the 1BA for the self-energy
term. In order to obtain a simple explanation of the Green’s function result for inelastic
electron transport we then also describe the system in terms of scattering states. Finally
the single level system is extended to the case of an electronic level interacting with a
single phonon. Appendix A provides a short introduction of the NEGF formalism which
forms the mathematical basis of our work.

For clarity we limit the discussion of the general formalism to orthogonal basis sets,
while the general case of a non-orthogonal basis is postponed to the description of the
implementation using DFT in chapter 4. As we only consider spin-independent Hamilto-
nians we suppress the spin indices. Atomic units will be assumed throughout this chapter,
e = ~ = me = 1, unless stated otherwise.

3.1 General Current Formula

This section begins with an introduction to a general framework used for calculating the
quantum conductance of a nano-sized constriction. Following Meir and Wingreen [74]

11
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we therefore introduce the non-equilibrium Green’s functions (NEGF) technique, which
is briefly outlined in Appendix A, and a compact expression for the current formula is
derived.

In the following a central region of interacting electrons coupled to two metallic leads
is considered. For times t ≤ t0 the three regions in Fig. 3.1 are decoupled, each being
in local equilibrium. At t = t0 the respective systems are brought into contact and if
µL > µR electrons will start to flow from the left lead through the constriction into the
right lead. We are concerned with the steady state current the system achieves after a
transient period.

Left lead (L)
µL (C)

Central region Right lead (R)
µR

Right lead (R)
µR(C)

Central region

I

Left lead (L)
µL

Before coupling After coupling 

Figure 3.1: Schematics of the system setup used for transport calculations. A central region
is coupled to leads assumed to be in local equilibrium and characterized by the chemical
potentials µL/R.

By introducing a orthonormal set of localized orbitals the Hilbert space may be de-
composed into three orthogonal subspaces associated with the central region (C), left (L)
and right (R) lead respectively. The Hamiltonian of the system can now be written as

H(t) =
{
HL +HR +HC , t < t0
HL +HR +HC + V , t ≥ t0,

where

Hα =
∑
iα,jα

Hiα,jαc
†
iα
cjα , α = L,R, (3.1a)

HC = HC

[
{cic , c

†
ic
}, {bq, b†q}

]
, (3.1b)

V =
∑
iα,jc

[
Viα,jcc

†
iα
cjc + V ∗

iα,jc
c†jc
ciα

]
. (3.1c)

Hα describes the electrons in the metallic lead α as non-interacting particles moving in a
mean-field potential. The Hamiltonian for the central region (HC) is written in a general
form, so that it can contain both electron-electron interactions as well as coupling to
external degrees of freedom such as atomic vibrations. V describes the coupling between
the central region and the leads. The coupling term is quadratic in the field operators
as we neglect interactions between electrons in the leads and the central region. This is
justified by the strong screening provided by the metallic leads. We also ignore the direct
coupling between leads L and R. Due to the highly localized nature of the basis functions
this latter approximation can always be met by increasing the size of the central region.
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The particle current (per spin) flowing into the central region from lead α is given by
the time derivative of the lead number operator

Iα(t) = −i
〈
[H,Nα](t)

〉
= i

∑
iα,jc

[
Viα,jc

〈
c†iα(t)cjc(t)

〉
− V ∗

iα,jc

〈
c†jc

(t)ciα(t)
〉]
,

where iα and jc refers to basis functions in lead α and the central region, respectively. The
expectation values are taken with respect to the state operator of the uncoupled system
while the time evolution is governed by the full Hamiltonian. We recognize the expectation
values as the equal time lesser Green’s functions, G<

iα,jc
(t, t) and G<

jc,iα
(t, t). One can

derive Dyson equations for the contour ordered counterparts by using the equation-of-
motion technique (see Appendix A). The Langreth rules [75] for analytic continuation
is then used to obtain expressions for the relevant real-time lesser GF’s. Under steady-
state conditions these Green’s functions only depend on the time difference t− t′ and by
performing a Fourier transform and using the relation Gr −Ga = G> −G<, we finally
arrive at a compact expression for the particle current originating from lead α

Iα =
2e
~

∫
dε

2π
Tr

[
Σ<

α (ε)G>
C(ε)−Σ>

α (ε)G<
C(ε)

]
. (3.2)

We note, that at this point units have been re-introduced and we have multiplied by a
factor 2 due to spin degeneracy. The trace is taken over basis functions belonging to the
central region, the bold face quantities indicate matrices and Σα denotes the self-energy
for the coupling to lead α. The full Green’s functions of the central region obey the Dyson
and Keldysh equations [76]

Gr
C(ε) = G0,r

C (ε) + G0,r
C (ε) [Σr

L(ε) + Σr
R(ε) + Σr

int(ε)]G
r
C(ε), (3.3a)

G≶
C(ε) = Gr

C(ε)
[
Σ≶

L (ε) + Σ≶
R(ε) + Σ≶

int(ε)
]
Ga

C(ε), (3.3b)

where G0,r
C (ε) denotes the retarded electronic single-particle Green’s function of the un-

coupled central region. The self-energy has hereby been divided into a term due to the
interactions and two terms describing the coupling to the leads. As a complete separa-
tion of the two perturbations is not possible Σint will also contain contributions from the
coupling between the central region and the leads.

The self-energy due to the lead coupling is related to the Green’s function of the
uncoupled lead as

[Σα(ε)]ic,jc
=

∑
mα,nα

Vic,mαg
0
mα,nα

(ε)V ∗
nα,jc

. (3.4)

By using the fluctuation-dissipation theorem the lead self-energies can be written as

Σ≶
α (ε) =

{
inF (ε− µα)Γα(ε)
i [nF (ε− µα)− 1]Γα(ε)

,

where nF (ε) is the Fermi distribution function and

Γα(ε) = i [Σr
α(ε)−Σa

α(ε)] = i
[
Σ>

α (ε)−Σ<
α (ε)

]
,

is the broadening of the electronic states located in the central region due to the coupling
to lead α.

The general current formula (3.2) can be interpreted as the net flow of electrons from
the lead α into the central region C: The lead self-energy Σ<

α (Σ>
α ) represents the rate of

electrons scattering into (out of) C. Further G>
C (G<

C) expresses the availability of empty
(occupied) states in C.
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3.2 Phase-coherent Transport

In this section we consider the case of phase-coherent transport where the general current
formula (3.2) reduces to the Landauer-Büttiker formula [77].

In the phase-coherent regime the electrons behave as weakly interacting quasi-particles
with a life time, which is much longer than the average time an electron spend in the
central region. The central region Hamiltonian, HC in (3.1b), is then approximated by
an effective single particle Hamiltonian. In the phase-coherent case the self-energy term
entering the Green’s functions of the central region (3.3) is only composed of the lead
contributions, i.e. Σ = ΣL + ΣR. Substituting the resulting expressions of the central
region GFs into the symmetrized current formula, I = (IL − IR)/2, leads to the following
compact expression

I =
2e
h

∫
[nF (ε− µL)− nF (ε− µR)]T (ε)dε, (3.5)

where the elastic transmission function is defined as

T (ε) = Tr
[
Gr

C(ε)ΓL(ε)Ga
C(ε)ΓR(ε)

]
. (3.6)

In the limit of small bias and low temperature, the conductance G = dI/dV becomes

G = G0T (εF ), (3.7)

where the quantum conductance unit is given by G0 = 2e2/h. The transmission coefficient
matrix, t(ε), as defined within Landauer-Büttiker theory, is related to the GFs by t(ε) =
[ΓR(ε)]1/2 Gr

S(ε) [ΓL(ε)]1/2, showing the equivalence of Eq. (3.7) to the Landauer-Büttiker
formula [78].

When studying the transport mechanism of a particular system, it is often very useful
to decompose the total conductance into contributions from the individual eigenchannels
[79, 80]. Eigenchannels are defined as separate non-mixing scattering states with well-
defined transmission probabilities, 0 ≤ Tn ≤ 1. That is, an electron in eigenchannel
ψLp(ε) is injected from the left lead in mode p and is transmitted (reflected) upon elastic
scattering in the central region with probability TLp(ε) (RLp(ε)). In terms of eigenchannels
the Landauer-Büttiker formula takes the form

G = G0

∑
p

TLp(εF ) = G0

∑
q

TRq(εF ). (3.8)

In the NEGF approach the eigenchannel transmissions are obtained directly as the non-
negligible eigenvalues of the transmission matrix (3.6). In Ref. [73] a straight forward
procedure for determining the eigenchannels within the NEGF formalism is presented,
which makes it possible to calculate the eigenchannels efficiently and directly from the
central region Green’s function.

A different strategy for investigating the conduction mechanism consists in directly
removing particular molecular orbitals from the basis set of the transmission Hamiltonian.
Hereby, when neglecting interference effects, the conduction contribution from individual
orbitals can be studied [19, 10].

3.2.1 Transport through a Single Level

To gain further insight into the NEGF formalism for calculating the stationary electron
transport from one reservoir through a quantum conductor and into a second reservoir, we
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consider the simplest case, namely a single level coupled to continuous bands. As outlined
in Refs. [10, 81] this model system is well-suited as a starting point for analysis of the
transport properties of more complicated molecular junctions.

For this purpose we consider the Newns-Anderson model [82] and introduce a single molec-
ular state |φc〉 located in the central region with energy εc coupled to left and right
semi-infinite leads via the matrix elements vnα = 〈φc|H|φnα〉, where |φnα〉 denotes an or-
thonormal basis for lead α. The retarded Green’s function for the central region reduces
to

Gr
c(ε) =

1
ε− εc − ΣL(ε)− ΣR(ε)

,

where Σα is the self-energy due to the lead α given in Eq. (3.4). By introducing the group
orbital a particular elegant solution to the problem is obtained [19]. The group orbital is
defined as the orthogonal projection of the state H|φc〉 onto the subspace spanned by the
lead states

|gα〉 =
1
Vα

∑
nα

vnα |φnα〉,

where Vα = (
∑

nα
|vnα |2)1/2 is a normalization constant. The group orbital is a linear

combination of basis functions located in lead α with the weights given by the correspond-
ing coupling strength. As a consequence the group orbital is expected to be localized
near the molecular state on the level-lead interface. Another property of |gα〉 is that the
molecular state only couples to the lead via the group orbital. Therefore the self-energy
takes the particular simple form Σα = |Vα|2g0,r

gα , with g0,r
gα being the Green’s function of

the group orbital in the uncoupled system. By using these properties in combination with
the general relation between a diagonal element of the retarded Green’s function and the
projected density of states (DOS), Im [Gn,n] = −πρn, it can be shown that in the case of
symmetric coupling the transmission function (3.6) becomes

T (ε) = 2π2|V |2ρc(ε)ρ0
g(ε). (3.9)

We notice that the transmission at a given energy depends on the coupling strength, the
density of states of the molecular level and the DOS of the group orbital in the uncoupled
lead. Consequently if an electron should move from the left lead through the molecular
orbital and into the right lead there should be states available in the lead which match
the energy ε of the level (or are within the level broadening) and the coupling should be
sufficiently strong.

3.3 Inelastic Transport

In the following we consider electron transport through a central region with electron-
phonon interactions. To this end we need the full Green’s functions (3.3) where the
electron-phonon interaction enters as a self-energy term. The methodology presented
below follows the same lines as Frederiksen et al. in Ref. [70].

The Hamiltonian of the system is given by

H = Hph +Hel +Hel-ph



16 Quantum Electron Transport

where

Hph =
∑

λ

~ωλ(b†λbλ +
1
2
), (3.10a)

Hel =
∑
i,j

Hijc
†
icj , (3.10b)

Hel-ph =
∑

λ

∑
i,j

Mλ
i,jc

†
icj(b

†
λ + bλ). (3.10c)

Here b†λ/bλ (c†i/ci) creates/destroys a phonon in mode λ (an electron in state i). H0 =
Hph +Hel naturally arises from the Born-Oppenheimer (BO) approximation, which states
that due to the large mass difference between electrons and ions the dynamics of the
system may be decoupled into an electronic and ionic part. This means that the electrons
are considered as responding instantaneously to changes in the ionic positions. The ions
will thus move in an effective potential given by the ground state of the electrons. Seen
from another perspective the electrons move in a self-consistent potential corresponding
to the static arrangement of ions. More rigorously the BO approximation expresses that
an electron remains in state i as the ions move, i.e. the electronic states do not couple.

By further assuming small ionic displacements, the harmonic approximation can be
used to describe the nuclear motion as a sum of independent oscillators (3.10a). For
systems without translational invariance this can be shown by expanding the ionic Hamil-
tonian to second order in the displacements and introducing the normal mode coordinates,
{Q,P}, together with the usual canonical quantizations of the position and momentum
operators.

Hel (3.10b) is a single-particle Hamiltonian describing non-interacting electrons moving
in the static equilibrium structure of the ions. The effective potential (Veff) felt by the
electrons includes a mean-field approximation for the electron-electron interaction as well
as interactions with the fixed ions.

To go beyond the BO approximation and study interactions between electrons and
moving ions we expand the effective potential (Veff) to first order in the ionic displacements.
The electron-phonon Hamiltonian (3.10c) is then obtained by the coordinate transforma-
tion described above. The electron-phonon coupling matrix (Mλ) entering Eq. (3.10c) is
given by

Mλ
i,j =

∑
I

√
~

2MIωλ
〈φi(r)|W λ

I |φj(r)〉, (3.11)

where the index I runs over all dynamic ions and the displacement potential, W λ
I =

∇Veff [{Ri}] (r) ·Qλ
I , is the derivative of the effective electronic potential in the direction

defined by the normal mode λ. It is noted that Mλ
i,j gives the probability amplitude for an

electron in state φj to be scattered into state φi accompanied by the emission (absorption)
of a phonon in mode λ.

3.3.1 The Born Approximation

When allowing for electron-phonon interactions in the central region the question naturally
arises whether to study the influence of the interaction on the electrons or on the phonons
first [83, 84, 85]. Again the large mass difference between electrons and ions provides a
straight-forward answer. First one must solve the problem for the bare electronic Green’s
functions taking the ions to be fixed at their equilibrium positions. Next the influence
of the bare electron states on the phonon Green’s functions should be incorporated and
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afterwards the effect of the renormalized phonon states on the electronic GF should be
calculated. In spite of that, we will in the following only study the influence of the
interaction on the electronic GFs, simply assuming phonons can be described by the non-
interacting phonon GFs (3.12) and take the parameters ωλ and Mλ to be the renormalized
ones. As we use a self-consistent density functional theory (DFT) calculation to determine
the vibrational frequency (ωλ) and the coupling matrix element (Mλ) both parameters will
include a renormalization due to electronic screening effects. It is noted that, by utilizing
this approximation for the phonon Green’s function we neglect an eventual reduction of
the phonon life time.

As we only study the interactions between electrons and atomic vibrations localized in the
central region we disregard the phonon self-energy term due to the coupling to the left
and right regions [70]. As a consequence, the vibrational degree of freedom is described
by free phonon Green’s functions

D0,r(λ, ω) =
1

ω − ωλ + iη
− 1
ω + ωλ + iη

, (3.12a)

D0,≶(λ, ω) = −2πi [〈nλ〉δ(ω ∓ ωλ) + (〈nλ〉+ 1)δ(ω ± ωλ)] , (3.12b)

where 〈nλ〉 is the expectation value of the occupation in phonon mode λ and ωλ is the
renormalized phonon frequency. For weak electron-phonon coupling the phonon occupa-
tion can be approximated by the steady-state solution to a rate equation describing the
heating of the central region [86]. From this two regimes can be identified; (i) the externally
damped limit and (ii) the externally undamped limit. In the following we consider the
externally damped limit where the vibrations are strongly damped by coupling to a heat
bath. The occupation is then simply given by the Bose-Einstein distribution. Throughout
this work we assume a zero-phonon temperature which corresponds to setting the number
of phonons to zero [27].

Writing up the perturbation expansion for the electronic Green’s function the lowest
order self-energy terms are the “Hartree” and “Fock” diagrams (both shown in Fig. 3.2).
In the first Born approximation (1BA) the electron self-energy term originating from the
electron-phonon interaction is approximated by these diagrams.

Figure 3.2: Diagrammatic representation of the lowest order terms in the perturbation
expansion for the electronic Green’s function in a coupled electron-phonon system. In the
first Born approximation the “Hartree” (a) and “Fock” (b) diagrams dress the unperturbed
electronic Green’s function (plain line). The renormalization of the phonons Green’s function
(wiggly line) due to the electron-phonon interaction is only taken into account on the level
of DFT.

In order to obtain the real time versions of the self-energies due to the electron-phonon
interaction we use the Feynman rules to evaluate the contour-ordered diagrams and after-
wards the Langreth rules for analytic continuation. In this way we find for the “Hartree”
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diagram

ΣH,≶
ph,λ(ε) = 0, (3.13a)

ΣH,r
ph,λ(ε) = i

∑
λ

1
πωλ

∫ ∞

−∞
MλTr

[
G0,<(ε′)Mλ

]
dε′, (3.13b)

where G0(ε) denotes an electronic Green’s function calculated without the electron-
phonon interaction but including the self-energy due to the coupling to the leads. As seen
from Eq. (3.13a) the lesser/greater part doesn’t contribute to the phonon self-energy. This
is due to energy conservation which implies that the wiggly line corresponds to a factor
d≶(λ, ε′ = 0) = 0. The retarded part (3.13b) gives an energy-independent contribution to
the phonon self-energy and thus no signal at the phonon threshold voltage. The term can
be understood as a static phonon-induced change in the mean-field electronic potential
originating from the polarization response of the vibrating atoms [87]. In order to properly
account for this static potential shift it must be included in the DFT self-consistency loop
for calculating the mean-field potential. In doing so we expect this small static contribution
to the potential to be at least partially screened. Consequently we will, as often done, omit
this term from the electron-phonon self-energy [70, 88]. It is noted that, when studying
phenomena for which the polaron shift of the levels are important it is essential to include
the retarded “Hartree” self-energy [89].

For the “Fock” term we find

ΣF,≶
ph,λ(ε) = MλG0,≶

C (ε± ωλ)Mλ, (3.14a)

ΣF,r
ph,λ(ε) =

1
2
[
Σ>

ph,λ(ε)−Σ<
ph,λ(ε)

]
− i

2π

∫ Σ>
ph,λ(ε′)−Σ<

ph,λ(ε′)

ε′ − ε
dε′, (3.14b)

where the last equation follows from the general identity Gr −Ga = G> −G< together
with the Kramers-Kronig relations between Re Σr and Im Σr. We notice that, as a
consequence of the assumption of 〈nλ〉 = 0 no phonons are present in the central region
and therefore electrons can only loose energy during a scattering event.

The self-consistent Born approximation (SCBA) is obtained by replacing the bare
electronic Green’s functions in the “Fock” self-energy diagram with the full ones. Hereby
a wider subclass of diagrams are included in the perturbation expansion. It is noted that
in contrast to the 1BA the SCBA is a current conserving approximation [90]. In spite of
this rather unphysical feature of the 1BA we will utilize this approximation when studying
the inelastic transport characteristics of atomic junctions. The level of approximation is
justified by tight-binding results indicating that for strongly coupled systems the difference
between SCBA and 1BA is nearly non-existent [91]. By using the 1BA we achieve a
reduction in the computational costs since a self-consistency loop can be omitted when
calculating the self-energies.

Another scheme for reducing the computational costs when exploring the consequences
of the electron-phonon interaction is the lowest order expansion (LOE). Here the Green’s
functions and coupling self-energies are assumed to be energy-independent [86, 92, 93].
In LOE the current expression consists of three terms: (i) the Landauer-Büttiker term,
Eq. (3.7), corresponding to phase-coherent transport of the electrons, (ii) a symmetric
term giving rise to steps in the conductance curve at the vibrational energies, (iii) an
asymmetric term which vanishes for geometrically symmetric contacts.
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3.3.2 Scattering Theory

In this section we use scattering theory to give a simplified description of how interactions
between the conduction electrons and the atomic vibrational degrees of freedom affects
the conductance. By using the first Born approximation, the scattering formalism offers
a simple and physically appealing explanation of the NEGF results. A comprehensive
introduction to scattering theory can be found in [94, 95].

Figure 3.3: The scattering operator S maps the in-asymptote U0(t)|ψin〉 onto the out-
asymptote U0(t)|ψout〉, thereby avoiding any reference to the actual (and for experiments
irrelevant) state vector, U(t)|ψ〉. Outside the approximate region of interaction the time
evolution of the scattering states are governed by the simple Hamiltonian H0.

The scattering of a free electron by some fixed atom or the mutual scattering of two free
particles are typical scenarios which are well described within scattering theory. In general
the Hamiltonian of the system is written in the form

H = H0 + V,

where H0 is translationally invariant and quadratic in the field operators and the localized
scattering event is described by V .

During a typical scattering event the time evolution of the state vector1, U(t)|ψ〉, can
be divided into three parts:

(1) The approach of the particle long before the actual collision occurs. Experimentally
the evolution of the state vector is indistinguishable from that of the so-called in-
asymptote. In general, the in-asymptote |ψin〉 is defined by the limit U(t)|ψ〉 →
U0(t)|ψin〉 for t→ −∞. That is, well before the collision occurs U(t)|ψ〉 behaves like
a free wave packet (the in-asymptote) localized far away from the scattering center.
In practice, the in-asymptote is often constructed from the stationary scattering
states which are improper eigenstates of the free Hamiltonian H0.

(2) The scattering event where the interaction causes the actual wave packet to diverge
from the in-asymptote.

1The time evolution of any state vector is, in general, determined by the time-dependent Schrödinger
equation i d

dt
|ψ(t)〉 = H|ψ(t)〉. Formally the solution can be expressed as |ψ(t)〉 = U(t)|ψ〉. For conservative

systems, where H is independent of time, the time evolution operator can be written as U(t) = e−iHt.
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(3) The departure of the particle. The full wave function is now approaching some other
free wave packet, the out-asymptote (defined as U(t)|ψ〉 → U0(t)|ψout〉 for t→ +∞).

As seen from their definition the in- (out-) asymptote is, in principle, only identical with
the full wave function when t → −∞ (t → ∞). In practice, however, the respective
asymptotes will be indistinguishable from the full wave function outside the approximate
region of interaction (see Fig. 3.3). Experimentally, only the asymptotes will be observed
because a typical collision time for quantum scattering is on the order of nano seconds.

For the interpretation of such experiments the asymptotes can, with no reference to
the actual state vector, be related through the scattering operator

|ψout〉 = S|ψin〉. (3.15)

Further the probability amplitude that, a particle entering the collision with in-asymptote
|ψin〉 will leave it with out-asymptote |ψout〉 is given as

〈ψout|S|ψin〉 = 〈ψout|ψin〉 − 2πiδ(Eout − Ein)〈ψout|T (Ein + i0+)|ψin〉, (3.16)

where T (z) = V + VG0(z)T (z) is the T operator. The first term in (3.16) represents the
probability that the particle leaves the region of interaction without being scattered. The
second term is the amplitude for the particle to become scattered, where the delta function
is added as the total energy must be conserved during the interaction. The expectation
value is easily generalized to cover the scattering of two particles, where the asymptotes
would then simply be interpreted as eigenstates of the two-particle system and the energies
as the total energies of the combined system.

For weak interactions one often applies the first Born approximation for the T operator,
where T is replaced by the interaction part of the Hamiltonian (V ).

Having set the general framework we now consider the scattering of a single electron by a
molecule in its vibrational ground state.

In the following Hel-ph (3.10c) is regarded as a perturbation to H0 = Hel +Hph. The
asymptotic states of the combined system are constructed as products of scattering states
of the electronic and phonon systems. For convenience we chose the scattering states of
Hel as the eigenchannels incident on the molecule from the left, |ψLp〉, or right, |ψRq〉
(see the discussion following Eq. (3.8)). The actual electronic asymptotic states are then
corresponding to a wave packet constructed from the states |ψαp〉 in a narrow interval
around the energy ε, initially located far from the molecule in lead α2. The state of the
molecule is specified by the number of phonons in each mode, |n〉. The asymptotes of the
full wave function is now written as |Ψ〉 = |ψαq;n〉.

We assume that eV = µL − µR > 0 and consider an asymptotic in state of the form,
|Ψin〉 = |ψLp;0〉. The state corresponds to an electron incident on the junction from the
left in channel p with energy µR < ε < µL and the molecule in its vibrational groundstate,
|0〉. In the first Born approximation (3.16) we now have the transition amplitudes

〈ψαq;n|S|ψLp;0〉 ≈ 〈ψαq;n|ψLp;0〉 − 2πiδ(Eout − Ein)〈ψαq;n|Ĥel-ph|ψLn;0〉. (3.17)

By using the completeness relation for the asymptotic out states and Eqs. (3.10c), (3.15)

2For future convenience and as Eq. (3.16) is fullfilled for the improper scattering states |ψαp〉 we will
just use those in the following expressions.
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and (3.17) the out state can be expressed as

|Ψout〉 =
∑
αq,n

|ψαq;n〉〈ψαq;n|S|ψLp;0〉

= Cp

[
|ψLp(ε);0〉+

∑
q,λ

′
cλpq|ψRq(ε− ωλ); 1λ〉

]
, (3.18)

where the expansion coefficients are

cλpq = DRq(ε− ωλ)〈ψRq(ε− ωλ)|W λ(r)|ψLp(ε)〉. (3.19)

Here DRq(ε) is the electronic density of states for channel Rq and W λ is the displacement
potential for mode λ. The normalization constant, Cp = (1 +

∑′
q,λ |cλpq|2)−1/2, has been

introduced because the first Born approximation is not a unitary approximation to S.
The prime in the sum in (3.18) means that only modes with ωλ < eV are included.

This and the fact that only states coming from the right electrode are included in the sum
in (3.18) is a simple consequence of the Pauli exclusion principle [41]. It is noted that
we have invoked the ansatz that the populations of the electronic scattering states can be
described by the equilibrium Fermi distributions. An alternative approach is to determine
the non-equilibrium electron distributions self-consistently imposing particle conservation
as a constraint [68, 96].

From the second term of Eq. (3.18), which gives the amplitude for scattering, it is seen
that ( at least in the first Born approximation), a scattering event leaves the molecule in
its first vibrational state whereas the electron is back-scattered with lowered energy.

In the elastic case the probability for an electronic wave packet constructed from the
state |ψLp〉 to make it into the right electrode and thereby contribute to the current is
TLp(εF ). In contrast an electronic wave packet constructed from the scattered state (3.18)
makes it to the right electrode only with probability

Pp = |Cp|2
[
TLp(εF ) +

∑
q,λ

′
|cλpq|2RRq(εF )

]
,

where it is assumed that T and R varies little on the scale of ω. From the Landauer-
Büttiker formula the total change in conductance due to the inelastic scattering is obtained

∆G = G0

∑
p

|Cp|2
∑
q,λ

′
|cλpq|2

[
RRq(εF )− TLp(εF )

]
. (3.20)

From this follows that the change in conductance due to the inelastic scattering with a
given mode λ involves all pairs of electronic channels for which the electron-phonon matrix
element, 〈ψLp|W λ(r)|ψRq〉, is non-zero. The physical argument underlying Eq. (3.20) is
illustrated in Fig. 3.4. We note that by using a generalized Landauer-Büttiker picture
Imry et al. [97] found a similar result for the linear conductance with inelastic scattering.

The formula for the total change in conductance was derived under the assumptions of
weak electron-phonon interaction and instantaneous cooling of the phonons, assumptions
which also underlies the NEGF results. Apart from these approximations we also invoked
the ansatz that the occupation of the scattering states can be described by the equilibrium
Fermi distributions.
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Figure 3.4: An electron incident on the central region from the left described by a wave
packet constructed from states ψLp will upon inelastic scattering end up in a state ψRq. This
follows from energy conservation and the Pauli principle. The probability for the electron
to enter the right electrode is consequently changed from TLp to RRq. The total change in
conductance (3.20) now follows by summing over all possible incoming and outgoing states.
The special case of a single scattering channel discussed in Sec. 3.3.3 simply follows by
restricting the summation to one channel.

3.3.3 Transport through a Single Level Revisited

In order to illustrate and develop a physical understanding of the general formalism for
including electron-phonon interaction in the current calculation, we consider a single level
coupled to a left and a right lead. This electronic level interacts with a localized vibration
with frequency, ω. As seen from Eq. (3.9) the junction supports a single scattering channel
at the Fermi energy with a transmission probability of T = |t(εF )|2. At low temperatures
the dynamical atoms sits in their vibrational ground state and the electron can only loose
the energy ω during a scattering event. Assuming a bias voltage eV = µL − µR > ω an
electron incident on the level from the left with an energy just below µL, must end up in
a left moving scattering state after interacting with a phonon. This follows from energy
conservation and the Pauli principle. Upon inelastic scattering, the probability for the
electron to enter the right electrode is thus changed from T to R = 1−T . Consequently,
the change in conductance due to the electron-phonon interaction should be proportional
to 1−2T , i.e. an increase (decrease) in the conductance is expected for T < 0.5 (T > 0.5).
The same conclusion has been reached using the LOE [86, 92, 93]. Recently the theoretical
conclusions have been supported by measurements on Pt-H2O junctions [98].

We notice that within the LOE the direction of the change in conductance for a single
level model depends on both the elastic transmission and the asymmetry factor (ΓR/ΓL)
[99]. In fact the transition is in general determined by all parameters [100]. From Eq.
(3.20) it is seen that our scattering result for the conductance change does not capture
this dependence on the asymmetry of the contact.



Chapter 4

NEGF-DFT formalism

Since the transport properties of molecular electronics devices are expected to be sensitive
to the details of the atomic structure, a combination of the general transport formal-
ism described in chapter 3 and a first principle description of the electronic structure is
necessary for making our results useful for a comparison with experiments. Therefore
we describe in this chapter how the NEGF approach can be combined with Kohn-Sham
density functional theory (DFT) to provide a model for electron transport.

The NEGF-DFT formalism offers a numerically efficient way of evaluating the current
due to electrons moving in the effective Kohn-Sham potential. Although the method is
not rigorously justified, it has been successful in describing qualitative features and trends
[31, 29]; however quantitative agreement with experiments has mainly been obtained for
strongly coupled system [10, 101, 26].

The chapter begins with some comments on the validity of DFT for transport calcula-
tions. In Sec. 4.2 the general setup for electron transport is described in a more technical
way and the implications of periodic boundary conditions are discussed. Finally, two dif-
ferent and independent, albeit similar implementations of NEGF-DFT are described and
compared.

4.1 DFT for transport

In principle the NEGF formalism presented in chapter 3 provides the exact current through
a central region containing interactions. In practice, though, when considering transport
through a molecular device an exact determination of the Green’s functions entering the
current formula (3.2) is not possible. Consequently, we approximate the exact Green’s
function with the ground state Kohn-Sham single-particle Green’s function.

It is generally accepted that although the Kohn-Sham Hamiltonian in principle pro-
vides the exact electron density of the ground state, there is no obvious reason to expect
that it also yields the true conductance. Indeed there is no rigorous justification for
approximating the real single particle states with the Kohn-Sham energies and orbitals
from a ground-state DFT calculation. Especially when the molecule is weakly coupled
to the leads the misplacement of the resonance peaks resulting from approximations of
the exchange-correlation potential is expected to affect the magnitude of the conductance
[23, 24, 25].

The true Green’s function, G, of the central region can be expressed in terms of the
Kohn-Sham Green’s function, Gs, through a Dyson equation

G = Gs +GsΣ̃G,

23
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where Σ̃ is the true irreducible self-energy with the local Hartree and xc-potential sub-
tracted

Σ̃(r, r′, ε) = Σ(r, r′, ε)− δ(r− r′)vH(r)− δ(r− r′)vxc(r).

That is, by replacing the real many-body Hamiltonian by the Kohn-Sham Hamiltonian
we replace the nonlocal, energy-dependent self-energy by the sum of the local Hartree and
exchange-correlation potentials.

We mention that more sophisticated methods for quantum transport based on config-
uration interaction [102], the GW method [103, 104], time-dependent DFT [105], and the
Kubo formula [106] have recently been proposed. However, these schemes are consider-
ably more demanding than NEGF-DFT and at present they cannot replace it for practical
applications. In the following we shall therefore make the assumption that the electrons
can be described as quasi-particles moving in the effective Kohn-Sham potential (see Eq.
(2.6)) and therefore replace the full GF by the KS GF.

Besides of this more fundamental question concerning the validity of DFT for describ-
ing electron transport, there is a number of numerical approximations involved in the
actual implementation. These include, as discussed in Chapter 2, the choice of exchange-
correlation functional, pseudopotentials, boundary conditions and basis functions.

4.2 General setup

In this section the general formalism for calculating the conductance of a molecular device
using a combination of the non-equilibrium Green’s function theory (NEGF) and a ground
state density functional theory (DFT) is presented.

Principal layers

... ...

Right lead (R)Left lead (L)

(S)
Scattering region

Lµ Rµ

Figure 4.1: Schematic of the system setup used to study electron transport through a
central device. Due to the finite support of the basis functions the system can be divided
into a central region coupled to a left and right lead. As the lead potential is assumed to
be periodic each lead can be build from a principal layer containing an integer number of
potential periods. Reproduced from Ref. [19].

The starting point for the NEGF-DFT approach is the formal partitioning of the system
into a central region coupled to periodic non-interacting leads (see Fig. 4.1). In a basis,
{φi}, consisting of functions localized in the transport direction (this could be Wannier
functions or pseudo atomic orbitals) the electronic Hamiltonian, Hij = 〈φi|H|φj〉, and
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overlap matrix1, Sij = 〈φi|φj〉, are then partitioned into

H =

 HL H†
CL 0

HCL HC HCR

0 H†
CR HR

 ,

S =

 SL S†CL 0
SCL SC SCR

0 S†CR SR

 ,

where the zeros reflect that due to the localized nature of the basis functions the direct
coupling and overlap between the leads are strictly zero.

The retarded electronic single-particle Green’s function of the entire system is defined
by [(ε+ i0+)S−H]Gr(ε) = I. From this it is possible to write its representation in the
central region as

Gr
C(ε) =

[
(ε+ i0+)SC −HC −Σr

L(ε)−Σr
R(ε)

]−1
, (4.1)

Σr
α(ε) =

[
(ε+ i0+)SCα −HCα

]
g0,r

α (ε)
[
(ε+ i0+)S†Cα −H†

Cα

]
, (4.2)

where Σr
α is the self energy due to the coupling to lead α and g0,r

α is the retarded Green’s
function of the uncoupled lead.

4.2.1 Coupling to leads

For obtaining the self-energy due to the coupling to lead α (4.2) one needs the Green’s
function of the uncoupled lead defined as

g0,r
α (ε) =

[
(ε+ i0+)Sα −Hα

]−1
.

In order to avoid handling infinite matrices we assume that the electrons move ballistically
in the leads. As a consequence the electronic potential in the metallic leads will have the
periodicity of the underlying bulk crystal. The leads may then be divided into principal
layers each containing an integer number of potential periods (see Fig. 4.1). Due to
the localization of the basis functions in the transport direction, one can always choose
a principal layer size such that only neighboring layers couple. In this case the lead
Hamiltonian can be written on a block-tridiagonal form

HL =


. . .

...
...

...
. . . h0 h1 0
. . . h†1 h0 h1

. . . 0 h†1 h0


where h0 is the Hamiltonian matrix of a single principal layer and h1 is the coupling
between neighboring layers. This form of the lead Hamiltonian implies that the central
region only interacts with the first principle layer. It then follows from Eq. (4.2) that only
the Green’s function of the first principle layer, the “surface” Green’s function, is needed
to calculate the lead self-energy. By utilizing the periodic nature of the leads the “surface”
Green’s function can be calculated using the efficient iterative decimation technique [107].

It is noted that, by enlarging the central region until all perturbations are screened, the
assumption of a periodic lead can (in principle) always be fulfilled. In practice the mobile

1The overlap matrix is introduced in order to deal with non-orthogonal basis sets.
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electrons in the metallic leads screen such perturbations effectively and the mean-field
potential converges to its bulk value after a few atomic layers.

When calculating the conductance a reduction in computational costs can be obtained
by further subdividing the central region into a left and right layer coupled to a reduced
central region. We write the central region Hamiltonian2 as

HC =

 hl h†cl 0
hcl hc hcr

0 h†cr hr

 ,

where the hopping between the left and right layer on each side of the reduced central
region is set to zero, hereby neglecting direct coupling. The electronic Green’s function
for the reduced central region can now be written as

Gr
c(ε) =

[
(ε+ i0+)sc − hc −Σ′r

l (ε)−Σ′r
r (ε)

]−1
, (4.3)

where Σ′r
α (ε) = [(ε+ i0+)scα − hcα]g′0,r

α (ε)
[
(ε+ i0+)s†cα − h†cα

]
is the self-energy due to

the coupling to the new lead α and the “surface” Green’s function of the left layer is

g′0,r
l (ε) =

[
(ε+ i0+)sl − hl −Σr

L(ε)
]−1

,

and similarly for the right layer “surface” Green’s function. Starting from some initial
“surface” Green’s function, this scheme can also be applied iteratively. The obtained
simple iterative scheme has the advantage of not being restricted to periodic leads.

4.2.2 Phase-coherent transport

In the case where non-interacting electrons move phase-coherently through a central con-
ductor connected to a left and right lead the conductance is simply given by the Landauer-
Büttiker formula

G = G0Tr [Gr
C(ε)ΓL(ε)Ga

C(ε)ΓR(ε)] .

As discussed in Refs. [108] and [21] this formula remains valid for non-orthogonal basis
sets provided that the retarded Green’s function of the system is defined as the inverse of
[(ε+ i0+)S−H].

4.2.3 Inelastic scattering

The starting point for studying electron transport through a central region with electron-
phonon interactions is the current formula (3.2). In order to utilize this equation we
need the lesser/greater Green’s functions (3.3b) evaluated in the presence of coupling to
the leads (discussed above) and the phonons. For the electron-phonon self-energy due to
mode λ we use the first Born approximation (3.14). Apart from the electronic Green’s
functions the self-energies also depend on the electron-phonon coupling matrix element,
Mλ

i,j ∝
∑

I〈φi(r)|W λ
I |φj(r)〉, where the displacement potential, Wλ is the derivative of the

effective Kohn-Sham potential in the direction defined by the eigenmode λ. In practice
W λ is obtained as a finite difference between equilibrium Hamiltonians describing the
electronic system when the vibrating atoms have been moved in the positive and the
negative normal mode direction

W λ
I ≈

∑
I

1
2δI

[H(δI)−H(−δI)] . (4.4)

2The overlap matrix is written in a similar form.
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In this work we evaluate the KS Hamiltonians of the displaced configurations using a fixed
basis set. As a consequence terms involving the change in the basis orbitals with displace-
ments are avoided [109]. We notice that, when calculating the displacement potential using
DFT the electronic screening effects due to the ionic displacements are included through
the effective potential in the self-consistent Kohn-Sham Hamiltonian. As shown by Thyge-
sen [110] the scheme for calculating the current through a region including electron-phonon
interactions remains valid in the non-orthogonal case.

Central region

Dynamic atoms

Inelastic region

BulkBulk

Figure 4.2: Schematic of the generic system setup used for inelastic calculations. The
system consists of a central region outside which the potential must be converged to bulk
values. To reduce computational costs we introduce an inelastic region which is a reduced
central region in which the field generated by the vibrating atoms is taken into account.
The dynamical atoms is the relevant subset of the central region atoms, which are allowed
to vibrate.

The generic system setup used for inelastic calculations is shown in Fig. 4.2. The
current through the inelastic region is calculated using the formalism discussed above
together with the Green’s functions of the reduced region (4.3).

4.2.4 Periodic boundary conditions

Throughout this work we use density functional theory (DFT) calculations performed with
supercells repeated in all directions to construct the system Hamiltonian. Fig. 4.3 shows
an example of a central region in the supercell description.

Figure 4.3: The supercell setup used to model a central region consisting of a single
molecule placed between metal surfaces. Reproduced from Ref. [19].

To obtain the generic transport setup, the central region should be extended by ap-
propriate semi-infinite leads (illustrated in Fig. 4.4). That is, the mean-field potential at
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the left and right end-planes of the supercell must be extended by the lead potential. In
practice, the central region Hamiltonian and lead Hamiltonians are constructed from sep-
arate supercell calculations. Two different methods for calculating the coupling between
the finite central region and infinite leads are discussed in Sec. 4.3. We require, in general,
that the electronic potential at the supercell end-planes has converged to the value in the
leads. As a consequence the central region C must always contain an appropriate portion
of the lead material on both sides of the nano-contact.

As the system remains periodic in the surface plane directions we are in fact considering
the conductance of a periodic array of junctions instead of a single junction. It is noted,
that whether this provides a good approximation depends on the degree of interference
between the repeated junctions. Because of the transverse periodicity we must instead of
the localized basis functions φn(r) (these could be Wannier functions or pseudo atomic
orbitals) consider the Bloch function

χnk⊥ =
1√
NR⊥

∑
R⊥

eik⊥·R⊥φn(r−R⊥),

where R⊥ runs over supercells in the surface plane and k⊥ is a wave-vector in the corre-
sponding two-dimensional Brillouin zone (BZ). Due to the periodicity of the system k⊥
are good quantum numbers and we can construct the Hamiltonian, H(k⊥) and overlap
matrix S(k⊥) for each k⊥-point separately. Consequently the conductance per junction is
given by an integral over the two-dimensional BZ

G =
∫

dk⊥
ABZ

G(k⊥),

where ABZ is the area of the first transverse BZ. However, in practice the integral is
approximated by a finite sum: G =

∑
k⊥
wk⊥G(k⊥), where wk⊥ are symmetry determined

weight factors which add up to 1. It is noted that a N ×N Monkhorst-Pack sampling of
the surface Brillouin zone corresponds to a Γ-point calculation for a supercell consisting of
the original supercell repeated N ×N in the surface plane [3, 60]. The repeated supercell
introduces a periodic array of molecules on the surface, which can give rise to interference
effects. However, as discussed in Ref. [111] for a supercell containing 3 × 3 atoms in
the surface plane the error introduced by the interference effects are insignificant when
compared to the error coming from an insufficient k⊥-point sampling.

Figure 4.4: The system setup used for calculating the electronic current is obtained by
extending the effective potential to the left and right of the supercell by the bulk potential.
It is noted that the system remains periodic in the perpendicular directions. Reproduced
from Ref. [19].
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4.3 Two methods

In this section we present the two different NEGF-DFT implementations used throughout
this work. Moreover the advantages and disadvantages of the two methods are compared
and discussed.

4.3.1 Method 1: Wannier functions from plane-wave DFT

In this method the Kohn-Sham Hamiltonian is obtained from an accurate plane-wave
pseudopotential DFT code [1, 2]. For the plane-wave expansion we use an energy cutoff of
25 Ry and replace the ion cores by ultrasoft pseudopotentials [53]. Exchange-correlation
effects are treated with the PW91 functional [49] except in Paper II where the PBE
functional [50] is used. Unless stated otherwise a 4×4 Monkhorst-Pack k⊥-point sampling
of the surface BZ were used. For all systems studied this sampling yields conductances
converged within a few percentage points.

To obtain a tight-binding like representation of the Hamiltonian we transform the
Kohn-Sham eigenstates into partly occupied Wannier functions (WFs) [3] (see Sec. 2.3.2).
To ensure that, the accuracy of the plane-wave calculation is carried over to the WF basis
for all energies relevant for transport we chose the cut-off energy E0 in the range of 2-4 eV
above the Fermi level. A set of WFs for each region is obtained by performing separate
DFT calculations for the (periodic) leads and the central region. As the WFs in the lead
will in general differ from those in the outermost lead unit cells of the central region, care
must be taken to evaluate the coupling and overlap matrices HCα and SCα. Also note
that although the WFs by construction are orthogonal within each region, WFs belonging
to different regions will in general be non-orthogonal. To ensure a smooth matching at
the interface between lead and central region we take the Fermi level of the bulk lead as
the common Fermi level of the combined system. This is done by shifting the levels in the
central region by a constant, i.e. adding to HC the matrix δSc, where δ = [HL]0,0− [HC ]0,0

and the (0, 0) element corresponds to the onsite energy of a basis function located near the
interface between L and C. In Ref. [19] a detailed description of the construction of the
WFs and the calculations of the Hamiltonian matrix for the combined L−C −R system
can be found.

For the inelastic conductance calculations we construct the displacement potential (4.4)
by using the WFs of the unperturbed system to obtain the Hamiltonians of the displaced
configurations.

The main advantages of the Wannier functions in relation to conductance calculations
are:

Accuracy: Below the cut-off energy, E0, the accuracy of the plane wave calculation
carries over to the WF basis set.

Size: The WFs basis set is truly minimal and often results in even fewer basis functions
than a single zeta basis.

Localization: The WFs are spatially localized.

Analysis: WFs provide insight into chemical properties and are thus well suited for
analysis.

The WFs basis set thus combines high accuracy with high efficiency. The drawbacks of
using the WFs basis set are:
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Construction: The actual construction of well localized WFs is not always
straightforward, and requires some user interaction, particularly for metallic systems.
Further, the risk of obtaining different WFs for two similar but non-identical systems
renders it less straightforward to patch regions together using Hamiltonians obtained
from separate calculations.

Localization: Although the WFs are well localized the rapidly decaying tails do not
vanish, i.e. the WFs do not have bounded support. Consequently the WFs must be
truncated in order to achieve a decoupling of the leads. In practice this truncation is
only expected to be problematic in the low tunneling regime.

Extension: There exists no systematic way of improving the obtained result by
expanding the basis set.

4.3.2 Method 2: PAO Siesta basis

In the second method the KS Hamiltonian is obtained from the DFT code Siesta [4] which
uses finite range PAOs [62, 5] as basis functions and replaces the ion cores by Troullier-
Martins norm-conserving pseudopotentials [54]. We restrict ourselves to the standard
PAOs for Siesta: single zeta (SZ), SZ polarized (SZP) and double ZP (DZP). Unless
otherwise stated we use 0.01 Ry for the confinement energy, which determines the range
of the PAOs, and 200 Ry for the mesh cutoff. Exchange-correlation effects are described
with the PBE functional [50] and a 1× 4× 4 Monkhorst-Pack grid is used for the k-point
sampling.

The Hamiltonians of the leads and the central region are obtained from separate cal-
culations. As the KS potential to the left and right of C, by definition has converged to
the value in the leads, we can take the coupling between central region and lead α, HCα,
from the pure lead calculation. This is in contrast to method 1, where the different shape
of the WFs in the periodic lead and the lead part of the central region makes it essential
to evaluate the coupling matrix directly. Note also that this approximation, i.e. the use
of the intra-lead coupling matrix elements (Hαα) in HCα, can be controlled by including a
larger portion of the lead in C. In practice we find that 3-4 atomic layers must be included
in C on both sides of the junction to ensure converged conductances.

We obtain a fixed basis set for the displacement potential by placing PAOs at the
coordinates of the dynamic atoms displaced in both the negative and positive normal
mode directions as well as at the equilibrium positions. A drawback of this approach is
that, to avoid linear dependence in the basis set the vibrating atoms must be moved quite
far away from their equilibrium positions.

Most of the disadvantages of the WF basis are resolved by the PAO basis:

Construction: By definition the PAOs are identical as long as the atomic species on
which they are located are the same. This makes it straightforward to patch together
Hamiltonians for separate subsystems as long as the KS potential can be smoothly
matched at the interfaces.

Localization: The PAOs have finite support.

Extension: It is straightforward to expand the basis set.

The main drawbacks of using the PAO basis for conductance calculations are:

Size: Longer computational times for transport calculations as compared to method 1 is
a result of the significantly larger number of basis functions needed to obtain the
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accuracy of the WF result.

Extension: There exists no consistent way to extend the basis and thereby converge the
result with respect to the basis size.
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Chapter 5

Benchmark calculations

First-principles calculations of electrical conductance in nano-scale contacts represents a
main challenge in computational nanophysics. The interest for this type of calculations
began in the mid-nineties where advances in experimental techniques made it possible to
contact individual molecules thereby making it possible to study the transport of elec-
trons through true nano-scale structures [14, 112]. Apart from the scientific interest, the
development of reliable simulation tools for nano-scale quantum transport is relevant in
relation to the continued miniaturization of conventional semi-conductor electronics, as
well as for the introduction of a new generation of molecule based electronics.

As described in chapter 4 it has by become standard to calculate conductance in nano-
scale contacts by employing a combination of non-equilibrium Green’s function theory
(NEGF) and ground state density functional theory (DFT). Irrespective of the validity
of the NEGF-DFT approach (see the discussion in Sec. 4.1) and the role played by the
approximate functionals, it remains important to establish a general consensus concerning
the exact result of a NEGF-DFT calculation for a given xc-functional and specified system
geometry: A benchmark. Although this might seem trivial, the present situation is in fact
rather unsatisfactory. A variety of different results have been published by different groups
for the same or very similar systems. A good example is provided by a benzenedithiolate
molecule trapped between gold contacts, where the calculated conductance varies by up
to two orders of magnitude for similar geometries [29, 30, 113, 114, 115, 116].

The relatively large variation of the results indicates that the conductance, or more
generally the elastic transmission function, is a highly sensitive quantity. Indeed, the im-
plementation of the open boundary conditions defining the scattering problem represents
some numerical challenges. Small errors in the description of the coupling between the fi-
nite central region and the infinite leads as well as improper k-point samplings in supercell
approaches, can introduce significant errors in the resulting transmission function.

The chapter is organized as follows: First the main result of the benchmark study is
presented. In the study the elastic transmission function of five representative systems is
calculated using two independent NEGF-DFT methods. Three of the reference systems,
namely Pt-H2-Pt, Au-BDT-Au and Au-BP-Au, will then be discussed in more details.
The two latter junctions contain organic molecules with different anchoring groups (the
characteristics of different anchoring groups is the subject of chapter 6). Besides that, the
study of the benzenedithiolate system illustrates the effect of the transverse dimensions of
the supercell in comparing to cluster based transport calculations. The platinum/hydrogen
junction is used to illustrate the importance of a sufficient k-point sampling (the system
is heavily studied in chapter 7).

This chapter provides a review of Paper IV.

33
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5.1 Reference systems

In this section we compare the transmission function of five representative nano-scale
contacts calculated using two different NEGF-DFT implementations (see Sec. 4.3).

The five reference systems chosen for this benchmark study are:

- A monatomic gold chain with a single CO molecule adsorbed.

- A 3-atom Pt chain suspended between Pt electrodes.

- A H2 molecule bridging two Pt electrodes.

- Benzenedithiolate (BDT) between Au electrodes.

- Bipyridine (BP) between Au electrodes.

The reference systems have been chosen according to the criterion that both experimental
data as well as previous NEGF-DFT calculations are available in the literature. Further-
more they are representative in the sense that they cover a broad class of systems; homo-
geneous and heterogeneous, computationally simple (one-dimensional) and more complex,
and strongly as well as weakly coupled.

The main results of the benchmark study is summarized in Fig. 5.1 where we show
the overall deviation

∆ =
1

E0 − E1

∫ εF +E0

εF +E1

|TWF(ε)− TPAO(ε)|dε, (5.1)

between the transmission functions calculated using the Wannier function (WF) and
pseudo atomic orbital (PAO) basis sets, respectively. The energy E1 is taken as the
lowest lying band edge in the lead while the cutoff energy E0 is taken to be the energy
above which the WFs are no longer able to reproduce the exact KS eigenstates of the
system which is typically ∼ 3 eV above the Fermi level.

For all reference systems the deviation (∆) decreases as the Siesta basis is enlarged
meaning that the Siesta transmission functions converge toward the WF result. This is
taken as evidence for the correctness of the WF results and as justification for the use of
the term benchmark calculation.

In general, we found that the double-zeta polarized (DZP) basis provides very good
agreement with the WF basis, whereas the single-zeta polarized (SZP) and, in particular,
the single-zeta (SZ) basis can produce substantially incorrect features in the transmission
function.

5.2 Pt-H2-Pt contact

In this section, conductance calculations for one of the simplest possible molecular junc-
tions, namely a single hydrogen molecule between metallic Pt contacts, is presented.

Experimentally, the Pt-H2-Pt junction shows stable and reproducible behavior in con-
ductance measurements. In particular, a very pronounced peak close to 1 G0 appears in
the conductance histogram obtained when a Pt contact is broken in a hydrogen atmo-
sphere [7]. Although reported conductance calculations show significant variations (see
below), substantial evidence has been given that the structure responsible for this peak
consists of a single hydrogen molecule bridging the Pt contacts [7, 8]. In chapter 7 the
main experimental and theoretical results for this junction are reviewed.
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Figure 5.1: Overall deviation between the WF and Siesta transmission functions for the
five reference systems studied. It is noted that in all cases the Siesta result converge toward
the WF result as the PAO basis is enlarged. From Paper II.
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Figure 5.2: (a) Supercell used to model the central region of a Pt-H2-Pt junction. (b) The
transmission function of a hydrogen molecule bridging platinum electrodes calculated using
method 1 (WF) and method 2 for three different basis sets. The conductance is indicated
in parentheses following the legends. From Paper II.

The supercell geometry of the Pt-H2-Pt contact is shown in Fig. 5.2(a). The hydrogen
molecule is placed in a bridge position between two four-atom pyramids attached to (111)
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surfaces containing 3× 3 atoms in the surface plane. In order to ensure that the effective
KS potential has converged to its bulk value at the end planes of the supercell we include
3-4 atomic layers (ABC-CABC stacking) on either side of the pyramids. To obtain a stable
junction structure we relaxed the Pt pyramids and the hydrogen atoms while keeping the
rest of the structure fixed in the bulk configuration. We used a lattice constant of 3.93
Å and a distance of 14.60 Å between the two (111) surfaces. With these constraints the
relevant bond lengths are dPt-H = 1.7 Å and dH-H = 1.0 Å.

In Fig. 5.2(b) we show the transmission function calculated using the WF basis set
(method 1) and three different PAO basis sets (method 2), respectively. The qualitative
agreement between the two methods is striking, especially in the important region around
the Fermi level. Quantitatively agreement is however, only provided by the SZP and DZP
basis sets. The SZ basis set although reproducing the qualitative features of the larger
basis sets also introduces a considerable down shift of the low-lying peaks.

The very good agreement between the two methods indicates that the transmission
function for this system is rather insensitive to the basis set. On the other hand, we find
that a proper k⊥-point sampling of the transmission function is crucial to obtain mean-
ingful results independently of the quality of the basis set. If we restrict the calculation to
the Γ point a transmission function with a (unphysical) peak at the Fermi level is found
(shown in Fig. 5.3 and Ref. [10]). Such unphysical features resulting from an insufficient
k⊥-point sampling are not properties of the molecular junction, but are rather due to van
Hove singularities in the quasi one-dimensional leads [111]. From Fig. 5.3 we conclude
that the transmission function has converged using 8 irreducible k-points, this conclusion
was more generally reached in Ref. [111] for systems containing 3×3 atoms in the surface
plane.
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Figure 5.3: The transmission function of the molecular hydrogen contact calculated for
three different k-point samplings of the surface BZ. All calculations are performed using
method 2 and a SZP basis set. Reproduced from [117].

Several groups have published NEGF-DFT calculations for the transmission function of
the Pt-H2-Pt system. Most find a conductance between 0.9 G0 and 1.0 G0 [10, 31, 7, 118].
However, also much lower values between 0.2 G0 and 0.5 G0 have also been reported in
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Ref. [32].
When comparing the transmission function in Fig. 5.2(b) to the results reported in

Ref. [118] which are based on Siesta DFT code we find very good agreement.
On the contrary the conductance obtained in one of the early theoretical calculations

[32] on the hydrogen molecular bridge are considerably lower than what we find. The
calculational method applied in Ref. [32] is, however, the same as applied in the study of
pure Pt contacts [119] which agrees well with our results (see Sec. IV in Paper II). We
speculate if the discrepancy may be related to the smaller size of the Pt cluster used to
model the electrodes in Ref. [32] as compared to the one in Ref. [119]. Another possible
explanation of the discrepancies is the use of the B3LYP xc-functional in Ref. [32] instead
of an LDA/GGA functional used in most other works on Pt-H2-Pt.

The transmission function reported by Cuevas et al. in Ref. [31] has a peak at the
Fermi level. We speculate if this is related to the fact that only the Γ point has been used.

5.3 1,4-Benzenedithiolate between gold surfaces

In this section a computational benchmark for the 1,4-Benzenedithiolate (BDT) molecule
suspended between gold electrodes is presented.

The Au-BDT system was among the first single-molecule junctions to be studied and
has become the standard reference for calculations of nano-scale conductance. Depending
on the experimental setup, measured conductances vary between 10−4 G0 and 10−1 G0

[17, 120, 121, 122, 123], while the calculated values typically lie in the range (0.05−0.4) G0

[23, 124, 29, 115, 30, 113, 116, 125].
In general, it has been found that the transmission function is strongly dependent on

the bonding site of the S atom [116, 124], while variations in the Au-S bond length only
weakly affects the transmission function [23]. However, as our objective is to establish
a computational benchmark for the Au-BDT system, we choose the simple junction ge-
ometry shown in Fig. 5.4(a). The S atoms are placed at the minimum energy positions
in the fcc hollow sites of the Au(111) surface and the molecule has been relaxed while
keeping the Au atoms fixed in the bulk crystal structure. We use a Au lattice constant of
4.18 Å, and a distance between the Au(111) surfaces of 9.68 Å. With these constraints,
the relevant bond lengths determining the structure are dAu-S=2.45 Å, dS-C=1.73 Å, and
dC-H=1.09 Å.

In Fig. 5.4(b) we show the transmission function calculated using method 1 and
method 2 (the SZ result has been omitted for clarity). We notice that the transmission
function is only plotted up to 2 eV above the Fermi level. This is because the WF result
at larger energies is sensitive to the parameters used in the construction of the basis set,
in particular, the cutoff energy. Thus we cannot be sure about the WF result above 2
eV+εF . The calculated transmission functions agree very well in the energy range from
2 eV below the Fermi level to 1 eV above the Fermi level, while only the DZP result agrees
quantitatively with the WF result in the entire energy range. We notice again the down
shift of the PAO transmission functions relative to the WF result.

In general, the presence of a broad transmission peak positioned ∼ 1 eV below the Fermi
level is in qualitative agreement with previous results [23, 124, 29, 115, 126, 127]. We notice
that, for more stretched configurations, i.e. for larger values of the S-C bond length, this
broad peak splits into two more narrow peaks [19].

The transmission function presented in Ref. [29] was calculated using a method very
similar to our method 2; however, the reported conductance of 0.4 G0 is almost twice as
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Figure 5.4: (a) Central region used to describe a BDT molecule placed between Au elec-
trodes in the case where the S atoms bind at the fcc hollow sites. (b) The transmission
function calculated using method 1 (WF) and method 2 (for clarity the SZ result has been
omitted). The conductance is indicated in parentheses following the legends. From Paper
II.

high as our DZP results of 0.24 G0. The large conductance arises because the transmission
peak closest to the Fermi level is considerably broader than what we find. If, however,
we restrict the calculation to the Γ-point we find the same broadening as in Ref. [29] and
a very similar conductance of 0.37 G0. Another feature of the transmission function in
Ref. [29] which is reproduced by a Γ-point calculation is the fact that the second peak
positioned at ∼ 3 eV below the Fermi level separates into a number of more narrow peaks.

In Ref. [115] the transmission function is calculated using the linear muffin-tin orbitals-
atomic sphere approximation (LMTO-ASA) method and averaged over 36 irreducible k⊥-
points. Both the width and the position of the two peaks in the transmission function
at 1 eV and 3 eV below the Fermi level, are in good agreement with our results. The
height of the former peak is, however, lower than in our calculation and this reduces
the conductance to a value of 0.07 G0. We suspect that this difference could be due to
differences in the adopted contact geometries.

When comparing transmission functions calculated using a supercell approach to a
cluster based calculation (as the one in Ref. [23]) it is essential that both calculations
have been converged. That is

(i) for the supercell calculation the number of k⊥-points and the supercell size must be
converged, and

(i) for the cluster based calculation the cluster size must be converged.

To prove that our supercell calculations are converged and thereby directly comparable
to fully converged single molecule cluster calculations we investigate the effect of enlarging
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Figure 5.5: The calculated transmission function for the Au-BDT system, where the
number of surface atoms is varied from 2 × 2 atoms to 5 × 5 atoms, as indicated in the
legends. All calculations apply the SZP basis and have been converged with respect to the
number of k⊥-points. The conductance is indicated in the parentheses. From Paper II.

the supercell size (see Fig. 5.5). Extrapolating our converged calculations for 3× 3 atoms
within the surface plane of the supercell and 4×4 k⊥-point to a Γ-point calculation gives a
supercell consisting of ∼ 1000 atoms. We speculate that clusters of similar sizes are needed
to reach the same level of convergence. Interference effects between the periodic array of
junctions could, however, blur the comparison to single molecule cluster calculations. To
quantify the inter-molecular interference effects, we show in Fig. 5.5 the SZP transmission
function for the Au(111)-BDT-Au(111) system, where the number of Au atoms in the
surface plane is varied from 2 × 2 atoms to 5 × 5 atoms. Each calculation has been
converged with respect to the number of k⊥-points by a 4× 4 Monkhorst-Pack sampling
for all the supercells, except the smallest supercell for which 8× 8 k⊥-points was needed.
From Fig. 5.5 it is evident that the transmission function is well converged with 3 × 3
atoms in the surface plane.

5.4 4,4-Bipyridine between gold surfaces

In this section, we consider a 4,4-Bipyridine (BP) molecule placed between two gold-
electrodes.

STM experiments on BP molecules in a toluene solution [15] show a quantization of
the conductance in multiples of 0.01 G0. This quantization effect was interpreted as the
formation of certain stable contacts containing one or more BP molecules.

Although the conductance through a BP molecule is expected to be sensitive to the
details of the Au-contact geometry [128], the junction structure of molecules linked by
nitrogen atoms via their lone electron pairs is, in general, found to be more well-defined
than thiol linked molecules [6, 129]. For the benchmark calculation we use a flat Au(111)
surface with bipyridine binding at an on-top site which is the minimum energy configu-
ration, as shown in Fig. 5.6(a). To obtain a stable junction we relax the molecule while
keeping the Au atoms fixed in the bulk crystal structure. We use a Au lattice constant
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of 4.18 Å, a distance between the Au surfaces of 11.53 Å and the Au(111)-N distance is
2.18 Å.
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Figure 5.6: (a) Supercell used to model the central region of the Au-BP-Au junction.
(b) Calculated transmission functions (the SZ result has been omitted for clarity). In the
inset we show the dependence of the LUMO position on the basis sets. The conductance is
indicated in the parentheses following the legends. From Paper II.

The transmission functions calculated using either PAOs (SZ has been omitted for
clarity) or WFs are shown in Fig. 5.6(b). Notice that, to make the differences in the low
transmision regime more visible we have used a logarithmic scale. Overall, the structures
of the different transmission functions are similar. As the narrow LUMO peak is close
to the Fermi level small changes in the position of this peak is expected to change the
conductance considerably [130]. In the inset of Fig. 5.6(b) we show the position of the
LUMO peak for the different basis sets. It is observed that εLUMO is underestimated for
the PAO basis sets but converges towards the WF result as the basis set is enlarged from
SZ to DZP. In spite of the fact, that the position of the LUMO peak differs for the DZP
basis and WF basis set the conductance is unchanged. This result is due to the different
tails observed in the high barrier tunneling regime of the transmission function for the
PAO and WF basis sets. The origin of this can be two-fold: (i) The density of states
of the Au-surface, which influence the DOS of the LUMO, could be different in the two
cases. (ii) The truncation of the WFs could introduce artificial features in the transmission
function in the low tunneling regime.

Several groups have investigated the transport properties of bipyridine-gold junctions, and
in general it has been found that the low bias conductance depends on the details of the
contact geometry [128, 131, 132]. As different groups have chosen different geometries and
models for the gold electrodes a direct comparison of the reported transmission functions
is difficult.
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Calculations by Wu et al. [132, 133] obtained using a Siesta-based transport code [20],
for bipyridine attached to the on-top site of a gold surface show overall good agreement
with our results (see Fig. 7(a) in paper [132]). The minor differences are probably related
to the fact that only the Γ-point has been used.

To the best of our knowledge, the first theoretical paper on the Au-BP-Au system is
by Tada et al. [134]. In their calculations, bipyridine is adsorbed on-top of an Au-atom
in a rather small Au cluster. The coupling to the infinite electrodes is then modeled by a
broadening parameter fitted to experimental data. The zero-voltage transmission function
contains some of the same peak structures as we observe.

Hou et al. [131, 135, 136] have published several papers on the gold-bipyridine junci-
tion. Like Tada et al. they include only a few gold atoms in the ab-initio calculation and
treat the coupling to electrodes through a model self-energy term. The peak structure
of the transmission function is quite different from ours. And while most other groups
observe tunneling through the LUMO tail [128, 130, 137], Hou et al. argue that the trans-
port is mainly taking place via the HOMO-2 state. We speculate if, the differences could
be due to the small size of the gold clusters used to mimick the electrodes.

5.5 Summary

A set of benchmark calculations for the Kohn-Sham(PBE) elastic transmission function
was established. We studied five representative single-molecule junctions using two differ-
ent methods based on independent DFT codes: (i) A plane wave DFT code in combination
with maximally localized Wannier functions. (ii) The Siesta program which applies finite
range pseudoatomic orbitals.

For all five systems it was found that the Siesta result converges towards the WF result
as the Siesta basis is enlarged from SZ to DZP with the latter yielding very good quanti-
tative agreement with the WF transmission. In the Siesta calculations the transmission
peaks relative to the peaks obtained with the plane-wave calculation are systematically
shifted toward lower energies. The problem can be overcome by enlarging the Siesta
basis, however, the convergence can be rather slow.
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Chapter 6

Characterization of anchoring
groups

A detailed, quantitative understanding of the electron transport properties of molecular
junctions composed of a single molecule between two metallic electrodes is an essential step
for the development of molecular electronics. Experiments on single-molecule junctions
often suffer from a large variability in the measured conductance, probably originating
from details beyond experimental control such as the atomistic details of the local contact
geometry. In the case of molecules linked to metal electrodes via a sulphur atom, that is,
through thiol linking groups, the conductance shows strong junction to junction variation
within the same experiment [138], as well as between different sets of experiments [17,
120, 121, 123]. On the other hand, more recent experimental and theoretical work suggest
that the use of amine (NH2) anchoring groups yields junctions with a more well defined
conductance [6]. These findings indicate that the electrical properties of a single organic
molecule captured between metallic electrodes are, at least partly, determined by the
anchoring group.

In this chapter, we identify and compare the intrinsic properties of two commonly used
anchoring groups, namely the thiol and amine groups, by performing DFT calculations for
both structure and conductance of different Au-S-Au and Au-NH2-Au nano-junctions. In
the case of sulphur we consider two different geometries: a top-top configuration where the
sulphur atom is bonded to a single gold atom on each side, and a top-hollow configuration
where sulphur is bonded to a single gold atom on one side and three gold atoms on the
other side. We simulate a break junction experiment by calculating the conductance as
the contact is pulled apart, and we find a strong dependence on the local atomic structure.
In contrast to sulphur, we find that the amine group always binds to a single Au atom
on each side of the junction. We consider two junction geometries: a symmetric top-
top configuration similar to the one found for S, and an asymmetric top-top configuration.
The pronounced structural selectivity of the amine group leads to very similar conductance
traces for the two configurations.

This chapter is a review of Paper IV.

6.1 Sulfur and amine in gold junctions

In this section we compare the transport properties of the thiol and amine anchoring
groups.

We concentrate on two different structures for the gold contacts:
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(i) Two opposing pyramids,

(ii) A pyramid opposing a pyramid with the tip atom removed,

with geometries as shown schematically in Figs. 6.1 and 6.3. In the supercell descrip-
tion the sulfur atom or amine group sandwiched between two four-atom Au-pyramids are
attached to Au(111) surfaces. In order to ensure that the KS potential has converged
to bulk values six Au atom layers each containing 3 × 3 atoms in the surface plane are
included. To obtain stable junction structures we use Dacapo [1, 2] to relax the position
of the anchoring group and the pyramids keeping the rest of the Au atoms fixed in the
bulk positions. When increasing the electrode distance, all atomic distances between them
have been proportionally increased and subsequently relaxed. The transmission functions
are calculated using method 1 described in Sec. 4.3.1.

Figure 6.1: Conductance (circles) and total energy (squares) for Au-S-Au nano-junctions
in (a) the symmetric top-top and (b) the top-hollow configuration as a function of distance
between the outermost Au(111)-surfaces. For the top-top configuration the conductance
increases as the contact is pulled apart due to the linearization of the contact geometry.
The breaking forces are approximately 1.8 and 1.0 eV/Å, respectively. The zero points of
the energy have been chosen arbitrarily. From Paper IV.

To gain insight into the possible structures of an Au-S/NH2-Au contact, we have made
successive relaxations of the system as the distances between the outermost surface layers
is varied, thereby simulating the contact formation in a break junction experiment. For
gold contact (i) both S and NH2 bind symmetrically to the tip atoms of the two pyramids.
These structures are referred to as (symmetric) top-top configurations. For gold contact
(ii), S adopts the site of the removed Au tip atom, thus forming a top-hollow configuration.
However, NH2 forms a bridge between the pyramid tip atom and one of the three gold
atoms forming the pyramid base (the asymmetric top-top configuration). It is noted
that the sulphur top-top and top-hollow configurations correspond to the configurations
proposed in [139]. Moreover molecular dynamics simulations of sulphur-contaminated gold
contacts frequently result in Au-S-Au contacts similar to the ones studied here [140].

We start by considering the sulphur top-top configuration, shown in Fig. 6.1(a). For
short distances between the Au(111)-surfaces, the S atom is situated at the side of the
contact bridging the two Au tip atoms. As the contact is pulled apart, the sulphur
atom moves into the contact resulting in a linear contact configuration. Interestingly, the
conductance increases from 0.3 G0 to 0.8 G0 as the contact is pulled apart, demonstrating
how small changes in the local atomic structure of the contact can lead to significant
changes in the conductance of the junction. In general, such behavior is characteristic of



6.1 Sulfur and amine in gold junctions 45

the phase-coherent transport regime and is a direct manifestation of the wave nature of
the charge carriers.

Figure 6.2: Total transmission (upper panels) and projected density of states (PDOS) for
the p-orbitals perpendicular to the contact axis (lower panels) for a contracted (left) and
stretched (right) Au-S-Au contact. The center of both the p-orbitals moves closer to the
Fermi level as the contact is elongated. The px-orbital (pointing towards the sulphur atom)
is completely quenched for the contracted contact due to the coupling to the gold s-band.
Both effects result in the observed increase in the conductance as the contact is stretched.
From Paper IV.

The observed increase in conductance as the contact is stretched is mainly due to the
gradual opening of a new eigenchannel originating from the sulphur px orbital (the x-axis
is vertical on all plots of the structure). To illustrate this effect, we compare in Fig. 6.2
the transmission function and the projected density of states (PDOS) for the px and py

orbitals at two different elongations of the contact. The peak in the transmission function
just below the Fermi level is clearly correlated to the PDOS of the px and py orbitals.
For the contracted configuration the PDOS of px is broadened and shifted downwards
by the coupling to the gold s-band which effectively closes the px channel. In the linear
configuration, this coupling is prohibited by symmetry and px and py are degenerate.
Consequently, the peak in the transmission function grows in intensity and is shifted closer
to εF as the contact is stretched. Besides the contribution from the px- and py-orbitals, the
total transmission also includes a background contribution from the pz-orbital pointing
in the transport direction. However, this background contribution stays almost constant
when the system is elongated. In more general terms, we conclude that a sharp peaks in
the transmission function very close to εF makes the conductance sensitive to changes in
the surrounding potential.

In the Au-S-Au top-hollow configuration, the sulphur atom occupies the site of the
removed tip atom of one of the two pyramids (illustrated in the schematics of Fig. 6.1(b)).
When the junction is pulled, no major rearrangements of the atoms occur and the con-
ductance stays rather constant around 0.8 G0 until the contact breaks. The conductance
trace of the top-hollow configuration is seen to be distinctly different from the trace of
the top-top configuration in Fig. 6.1(a). In particular, the conductance does not increase
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upon pulling but stays almost constant until the breaking point.

Figure 6.3: Conductance (circles) and total energy (squares) for Au-NH2-Au nanojunctions
in (a) the symmetric top-top and (b) the asymmetric top-top configurations as a function of
distance between the outermost Au(111)-surfaces. It is noted that, the amine group is found
to be structural selective and always bind to a single Au atom on each side of the junction.
The breaking forces are approximately 1.0 and 0.9 eV/Å, respectively. From Paper IV.

Next, we consider the symmetric NH2 top-top configuration shown in Fig. 6.3(a). The
structural change upon pulling is rather similar to the changes observed for the symmetric
sulphur junction. However, the conductance is somewhat lower and increases from about
0.2 G0 to 0.4 G0. It is observed that the drop in conductance when the contact breaks is
less abrupt than for the sulphur junction. This is a consequence of the weakness of the Au-
NH2 bond as compared to the Au-S bond, which implies that the gold pyramids retract less
when the NH2 junction breaks. More generally, the continuous drop in conductance upon
rupture is an artifact of the finite size of the supercell which prohibits a large retraction
of the contact when it breaks.

The transmission functions of the NH2 junction for two different elongations are shown
in Fig. 6.4. In comparison with the sulphur junction, the transmission functions of the
amine junction show only little variation around εF . Thus small changes in the nearby
electron potential due to changes in the gold contacts should only have little effect on the
conductance.
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Figure 6.4: Total transmission for a contracted (left) and stretched (right) Au-NH2-Au
contact. Notice that the transmission function varies little around the Fermi level as com-
pared to the transmission function of the Au-S-Au contact shown in Fig. 6.2. From Paper
IV.
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The calculated conductance trace of the asymmetric NH2 top-top configuration (the
same Au contact geometry as for the sulphur top-hollow) is shown in Fig. 6.3(b). The
conductance increases from 0.3 G0 to 0.4 G0 as the junction is pulled and is quite simi-
lar to the symmetric NH2 top-top configuration. The reason for the similarity with the
symmetric top-top configuration is that in both cases NH2 binds to a single gold atom on
each side of the contact. This structural selectivity is due to the fact that the hydrogen
atoms occupy two of the four available sp3 hybrid sites, which leaves only two unoccupied
orbitals for the gold bonds. Obviously this is in contrast to sulphur, which can form bonds
to four gold atoms as in the top-hollow configuration of Fig. 6.1(b).

6.2 Summary

The main result of this study is that the structural selectivity of the amine group leads
to small junction to junction fluctuations in the conductance traces of the Au-NH2-Au
junctions, whereas the larger variability in sulphur-gold bonding geometries leads to sig-
nificantly different Au-S-Au conductance traces depending on the atomic structure of the
gold contacts. We notice that this trend is further enhanced by the angular flexibility
of the preferred binding site of the amine group [141] and the fact that the strong Au-S
bond can complicate the junction structure. Overall we find that, the intrinsic transport
properties of the amine group are more well defined than those of the thiol. This supports
the experimental finding that amine bonded molecules are easier to characterize in terms
of conductivity than thiol bonded molecules.

We expect that, the similarity of the conductance traces of the Au-NH2-Au junctions
will lead to a peak around 0.4G0 in an experimental conductance histogram. On the other
hand, the structural sensitivity of Au-S-Au junctions may produce a histogram without
clear features. However, it should be possible to identify the sulphur top-top structure
from its characteristically rising conductance trace.
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Chapter 7

Hydrogen in metal junctions

In recent years it has become possible to measure the electrical properties of single
molecules captured between metallic electrodes [142, 143, 7]. Such experiments provide a
unique opportunity to develop our understanding of basic quantum mechanical phenomena
at the nanometer length scale. At the same time the single-molecule contacts constitute
the first steps towards molecular-based electronics [144], where a small functional molecule
represents the ultimate miniaturization of a transistor [13] and metallic mono-atomic wires
are the corresponding smallest possible electronic device interconnects.

As experiments on single-molecule junctions are quite involved and depend on many
factors they must be supplemented by theoretical calculations. Compared with experimen-
tal data, such as peaks in the conductance histogram and vibrational excitation energies,
these calculations provide insight into the atomic structure of the molecular junction.
Especially the interactions between the conduction electrons and the molecule’s vibra-
tional degrees of freedom can be used to characterize the atomic structure of molecular
junctions by exploiting the sensitiveness of the molecule’s vibrational frequencies and the
electron-phonon interaction on the junction geometry [145, 8, 27, 72, 146].

Experiments on molecular junctions are far from trivial. One of the main problems
arises from the difficulty in establishing a stable and reproducible contact to the metallic
electrodes. Perhaps the simplest molecular junction consists of a single hydrogen molecule
sandwiched between Pt electrodes. In view of the difficulties encountered for contacts
containing larger molecules (see the discussions in chapter 5 and 6) this junction seems to
provide a natural starting point for the study of electron transport in single molecules.

In the first experiments contacting hydrogen molecules by platinum leads it was found
that the presence of hydrogen changed the conductance from 1.5 G0 to 1.0 G0 [7, 8, 9].
The system was characterized in details by using point contact spectroscopy and shot noise
measurements. A close agreement between the experimental data and an atomistic model
calculation was obtained when the structure giving rise to the 1 G0 peak was identified
as the linear bridge configuration [10, 8, 118]. In spite of the apparent simplicity of this
contact structure it is highly unexpected from a chemical point of view that the linear
bridge configuration is stable. This is because Pt is well known as an excellent catalyst
for hydrogen dissociation. Besides the main peak at 1 G0 there is more structure in the
conductance histogram for the Pt/H2 system. In particular, a strong peak is found at
about 0.1-0.2 G0. More recently these low conductance features were attributed to the
formation of a hydrogen decorated Pt atomic chain that forms one of the leads contacting
the hydrogen molecule (see Paper I). After the first Pt/H2 experiment also other metal
wires (e.g. Au [147, 148], Pd [149], Al in the superconducting state [150]) have been broken
in a hydrogen environment.
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This chapter starts with a short overview of the main experimental and theoretical re-
sults for the Pt/H2 system. Among other we present a possible formation path that may
lead to the linear bridge configuration (the result on the dissociation barrier is unpub-
lished). The material presented on the low conductance features is a summary of Paper I.
In Sec. 7.2 we discuss the Au/H2 system. In particular, we compare the transport prop-
erties of a H2 molecule bridging Au and Pt electrodes, respectively. It is found that the
differences in the transmission function to a large extend can be explained by the change
in d-band position and work function when going from Au to Pt. Finally, we present
DFT calculations for the dI/dV curves of Pt/H2 and Au/H2 junction in the presence of
electron-phonon interactions (the results are summarized in Paper V).

7.1 The platinum/hydrogen junction

In this section we review the main experimental and theoretical results for the Pt/H2

system.

The measurements on the Pt/H2 contact were performed using the mechanically controlled
break-junction (MCBJ) technique. In Fig 7.1 the working principle of the MCBJ, which
were introduced by Moreland and Ekin [151] and further developed by Muller et al. [152],
is sketched.

Figure 7.1: A notched sample metal wire is glued on to a flexible substrate. By using
a piezo element to bend the substrate the wire will be stretched and eventually broken.
When afterwards releasing the bending strain, contact between the clean fractured surfaces
is regained. Reproduced from Ref. [152].

Initially a notched Pt wire is glued onto an insulating elastic substrate (the bending
beam). The substrate is then mounted in a three-point bending configuration between
the top of a piezo element and two fixed counter supports. The whole setup is placed in a
vacuum chamber and cooled to 4.2 K. By moving the piezo element forward the substrate
will bend causing the Pt wire to be stretched with subatomic precision until it eventually
breaks. A new atomic-sized contact can now be formed by relaxing the substrate, thereby
bringing the clean fracture surfaces back into contact.
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A conductance trace, like the ones in Fig. 7.2(a,b), is obtained by measuring the con-
ductance at a fixed time rate during a contact breaking and remaking cycle. The plateaus
in the conductance traces corresponds to elastic deformation of particular stable atomic
structures. While the abrupt jumps in between are caused by atomic reconfigurations
inside the contact in response to the applied stress. As these deformations and reconfig-
urations will depend on the detailed atomic structure of the contact, which even in the
last stage before rupture involves a large number of atoms, the form of the individual
conductance traces are nearly impossible to predict beforehand. In contrast, common
features shared by many independently prepared contacts can be revealed by analyzing
conductance histograms produced from a large number of traces.

Figure 7.2: Conductance traces for clean Pt (a) and for Pt when H2 has been admitted
(b). Conductance histograms for clean Pt (black curve) and Pt in a H2 atmosphere (grey
area) is shown in (c). From Paper I.

The black curve in Fig. 7.2(c) is a conductance histogram for a clean Pt wire The
large peak around 1.5 G0 indicates that just before rupture a clean Pt contact with a
conductance around 1.5 G0 are frequently formed. NEGF-DFT calculations have shown
that (zig-zag) monatomic Pt chains indeed have conductances close to this value [101, 26,
153].

When admitting a small amount of hydrogen gas into the chamber the average breaking
and remaking cycle, and thereby the conductance histogram, is drastically changed [7, 154].
The main peak at 1.5 G0 disappears and instead two strong peaks, one at 1 G0 and
the other near 0.2 G0 on top of a low-conductance tail, is observed (see Fig. 7.2(c)).
Looking at the individual traces the conductance in most cases decreases stepwise after
the appearance of a plateau around 1 G0. A sudden conductance drop into the tunneling
regime from 1 G0 is a rare event. This suggests that at the last stages of stretching there is
a strong tendency towards the formation of first a certain stable contact structure with a
conductance near 1 G0. And second by further stretching the formation of new structures
with lower conductance.

In the following sections the origin of these two peaks will be discussed separately.
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7.1.1 The plateau near 1 G0

In this section, a summary of the main experimental and theoretical findings for the
histogram peak close to 1 G0 is presented. The overall conclusion is that the most probable
atomic structure responsible of this peak consists of a single hydrogen molecule bridging
the platinum electrodes.

Conductance channels

In general (as described in Sec. 3.2) the phase-coherent conductance can be written as
G = G0

∑
n Tn, where Tn is the eigenvalues of the transmission matrix. Experimentally

information about the number of channels and individual eigenchannel transmissions can
be obtained by various methods. These include measurements of the reproducible con-
ductance fluctuations as a function of bias voltage [155, 156], shot noise measurements
[157, 158] and analysis of the superconducting subgap structure [159, 14]. In the following
we focus on the two former methods as both have been used to extract information about
the channel content of the platinum/hydrogen junction.

The conductance fluctuations originate from interference patterns in the electron wave
functions due to the repeated scattering of the contact and defects nearby. As the applied
bias is varied the wave length of the electron will change producing random variations in
the interference and thereby making the conductance fluctuate. When all Tn is either 0
or 1 the reflection at the contact vanishes and thus the fluctuations will be suppressed.

In their original paper on the Pt-H2-Pt junction Smit et al. reported that, for structures
with a conductance around 1 G0 the conductance fluctuation amplitude is suppressed [7].
This indicates that the atomic junction is characterized predominantly by a single almost
fully open channel.

Due to the discreteness of the electronic charge, the current through any system is observed
to fluctuate around the average value. For single molecular junctions these fluctuations
originates from the quantum mechanical probability for the electron to be either transmit-
ted or reflected. As the Fano factor depends on the sum

∑
n Tn(1−Tn)/

∑
n Tn information

about the number of conducting channels and their transmission can be obtained by mea-
suring the shot noise [14].

Later shot-noise measurements on the platinum/hydrogen system confirmed that the
electron transport through structures at the 1 G0 plateau is carried predominantly by a
single, nearly open channel with only very small contributions from additional channels
[9].

Point contact spectroscopy

In order to further characterize the atomic structure of the molecular contact giving rise
to the 1 G0 peak, the local vibrations were probed by point contact spectroscopy (PCS)
[7, 8]. In PCS [14] the differential conductance is measured as a function of the bias
voltages applied across the junction. At the point where eV exceeds the energy of a
vibrational mode (~ω) an inelastic scattering event involving the emission of a phonon
may take place. If the junction has a single fully transmitting channel the electrons can
only be backscattered and a drop in the dI/dV curves at voltages corresponding to ~ω
is observed (see Sec. 3.3.3). In the general case, the sign of the conductance correction
depends on the transmission and reflection coefficients of the involved channels (3.20). We
notice that, in some measurements peaks rather than steps are observed in the differential
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conductance curve, in this case the analysis outlined in Ref. [160] can be used to identify
the characteristic frequencies.

Figure 7.3: (a) dI/dV curves (top) and their numerical derivatives (bottom) for a Pt-
D2-Pt contact at two different stretching length. The complete evolution of the frequencies
of the two highest measurable vibrational modes is shown in the inset. (b) Histograms of
the vibrational mode frequencies measured for a Pt junction containing H2, HD and D2

respectively. The peak centers (marked by arrows) and widths (marked by error margins)
have been scaled by the expected isotope shift. Reproduced from Ref. [8]

In Fig. 7.3(a) differential conductance curves for a Pt-D2-Pt contact are shown. The
downward steps in the differential conductance can be interpreted as inelastic scattering
events. In general the observed frequencies are in the range 40-100 meV which is much
higher than the typical phonon frequencies of bulk Pt [161]. The associated vibrational
modes must therefore involve deuterium, and similarly hydrogen, in either its molecular
or atomic form.

A comparison between PCS measurements on junctions containing H2 and the isotopes
HD and D2 respectively (see Fig. 7.3(b)) reveals that the frequencies scales with the mass
factors

√
mHD/mH2 =

√
3/2 and

√
mD2/mH2 =

√
2. Strong evidence that the junction

contains molecular and not atomic hydrogen is provided by the fact that the vibrational
frequencies observed for HD is not simply a statistical mixture of the frequencies found
for H2 and D2.

For particular stable contacts it is possible after measuring a dI/dV curve to stretch
the contact further within the 1 G0 regime and measure a new differential conductance
curve. Hereby, the response of the vibrational modes to stretching is revealed (see inset
in Fig. 7.3(a)). In general, it is observed that the two lowest lying modes increase their
frequencies as the contact is stretched whereas the energy of the highest observable mode
(only accessible experimentally for D2) decreases.
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Theoretical analysis

In the following sections we present theoretical evidence that the idealized structure con-
sisting of a hydrogen molecule bridging the platinum electrodes represents a good model
for the real experimental junction. The majority of the material presented in this section
represents a literature study. However the estimation of the dissociation barrier of H2 are
new not yet published material.

In their original paper on the platinum/hydrogen junction Smit et al. proposed, on the
basis of their experimental results and a relatively sparse set of DFT calculations that
the plateau at 1 G0 is due to a stable structure where a single hydrogen molecule is
bridging the Pt electrodes (see inset of Fig. 7.7) [7]. Although later reported conductance
calculations have shown significant variation (see Sec. 5.2) there is substantial evidence
that the relevant structure is indeed the linear bridge configuration [8]. An alternative
configuration where the H2 molecule is dissociated in the contact has been proposed,
however, this junction yields a conductance larger than 1 G0 with contributions from three
channels [32]. In the remaining part of this section the focus will be on the theoretical
results by Thygesen et al. [10, 8, 162] as they form the starting point for the results
presented in Paper I and V.

Stability issues

The strong experimental evidence for the repeated formation of a stable Pt junction con-
taining molecular hydrogen seems to contradict with the well known fact that hydrogen
dissociation on Pt surfaces is non-activated [163]. Moreover, the activation barrier for
dissociation of hydrogen over stretched atomic gold wires is lowered by a factor 10 as
compared to flat gold surfaces. An enhancement of reactivity which is also expected to be
found in the case of platinum wires [164, 165]. A hypothesis which is supported by the fact
that low-coordinated Pt atoms found at steps, kinks and edges are even more chemical
active than surface atoms enhancing the dissociation rates at these sites [166, 167, 168].
We notice that, in the case of CO oxidation, this enhanced activity for low-coordinated
sites actually makes platinum a worse catalyst [169] as the reactants and products are
bound to strongly. This is an observation which might help explaining how the bridge
junction can be formed experimentally.

A possible formation path involves the immediate dissociation of all hydrogen molecules
at the platinum electrodes. As a consequence the surface will be covered with a monolayer
of strongly bound atomic hydrogen, which makes the surface inactive as a catalyst. When
the contact is broken the hydrogen atoms are expected to be to strongly bound to diffuse
into the contact neck. Instead a chemisorbed or free hydrogen molecule can sometimes be
incorporated into the hydrogen covered metal neck. We do not expect the elastic transport
properties of the contact to change significantly by hydrogen adsorption at the electrode
sides.

Next the question of whether the molecular hydrogen bridge is stable once the contact is
formed arises. DFT calculations1 presented by Thygesen in Ref. [162] (see Fig. 7.4) indi-
cates that for sufficiently low coordinated platinum contacts and electrode displacements
in the range 1.2-2.3 Å the linear bridge is stable and even energetically favorable.

In order to quantify the stability of a hydrogen molecule in a platinum junction we
employed the nudged elastic band method (see Sec. 2.4.1) to get a crude estimate of

1Total energies were found by relaxing at least the hydrogen molecule and platinum tip atoms using
the DFT code Dacapo [1, 2].
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Figure 7.4: (a) Binding energy of a linear H2 bridge (filled circles) placed between Pt
electrodes with varying coordination number, Nc, for the tip atom. For comparison the
binding energy of a single H atom - either being allowed to relax (squares) or constrained
to the on-top sites (circles) - adsorbed at the Pt tip atom is shown. (b) Total energies of
the dissociated configuration (filled circles) and the linear bridge configuration (circles) for
different electrode displacements and in the case where Nc = 3. For both (a) and (b) the
energy is measured relative to the gas phase H2 and two infinitely separated Pt electrodes.
Reproduced from Ref. [162].

the actual dissociation barrier. The initial structure was model by a hydrogen molecule
bridging platinum tip atoms with Nc = 3, and the final state was found by relaxing both
hydrogen atoms and the platinum pyramids in a dissociated structure (see inset of Fig.
7.5). In the supercell description the hydrogen atoms and pyramids are attached to Pt
(111) surfaces with 2 × 2 atoms in the surface plane. We used the total-energy code
Dacapo [1, 2] to relax both hydrogen molecule and platinum pyramids in order to obtain
stable junction structures.

Once the hydrogen molecule is captured between the two electrodes we find that the
barrier for the molecule to dissociate and escape the constriction is in the order of 0.35
eV (see Fig. 7.5). This indicates, that the linear bridge configuration is indeed stable in
the experiments performed by the group of Ruitenbeek where the temperature is around
4.2 K2. We notice that, if the experiments were performed at room temperature the
configuration is predicted to be highly unstable and the captured molecule would dissociate
immediately.

In passing we notice that Barnett et al. [170] find no barrier for incorporation of
a hydrogen molecule in an almost broken Au contact. This barrierless insertion of the
hydrogen molecule likewise indicates that the linear bridge configuration is energetically
stable.

Vibrational modes

In this section the vibrational frequencies of a molecular hydrogen bridge between plat-
inum electrodes are discussed and compared to the experimental values. As the inelastic
calculations presented in Sec. 7.3 relies heavily on these results we discuss them in more
detail.

2To obtain an estimate of the dissociation rate we have used the rate equation r = νe−ET S/kBT , where
ν is taken as the highest vibrational mode (M1) (see Sec. 7.1.1).
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Figure 7.5: Potential energy diagram for the dissociation of a hydrogen molecule bridg-
ing two platinum tip atoms. The initial and final state together with some representative
intermediate states are shown as insets.

The vibrational eigenmodes, {Qλ}, and corresponding frequencies, {ωλ}, of the H2 molecule
in the linear bridge configuration (see inset of Fig. 7.6) are obtained by diagonalizing the
dynamical matrix of the system which in turn is calculated from the DFT total energies 3

by finite differences. Thanks to the large difference in mass between the metal and hydro-
gen atoms, the dynamical matrix for the two H atoms can be calculated keeping all metal
atoms fixed. Following this procedure a longitudinal stretching mode (M1), a longitudinal
center-of-mass mode (M2), as well as two pairwise degenerate transverse modes referred
to as hindered rotations (M3) and hindered transverse center of mass modes (M4) are
obtained.

In Fig. 7.6 the stretching dependence of the six vibrational frequencies of the cap-
tured hydrogen molecule are shown [8]. For comparison with the experimentally observed
frequencies Djukic et al. [8] focused on electrode displacements in the range 1.7-2.0 Å
as the calculated conductance of these structures are found to be close to 1 G0. Taking
the experimental error bars into account the agreement between the mean values or peak
centers of the experimentally observed frequencies (see Fig. 7.3(b)) at 54, 72 and 126 meV
and the range of calculated frequencies at 30-42, 64-92 and 123-169 meV is satisfactory.

For moderate stretching length the two longitudinal modes, M1 and M2, are highest
in frequency. Up to an electrode displacement of around 1.9 Å the frequency of M1
decreases as the H-H bond becomes stretched. As the molecule starts to retract the
frequency increases approaching that of the free molecule. The M2 mode becomes softer
as the Pt-H bond is stretched and is thereby characterized by a decreasing frequency as the
contact is stretched. The lowest lying frequencies are the two doubly degenerate transverse
vibrations M3 and M4. Both types of modes are characterized by an increasing frequency

3The self-consistent DFT code Dacapo [1, 2] is employed to calculate the ground state energies.
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Figure 7.6: Stretching dependence of the calculated vibrational frequencies for a hydrogen
molecule in the linear bridge configuration. The symmetries of the oscillations are shown by
arrows in the inset. Reproduced from Ref. [8].

as the contact is stretched.
Experimentally the two lowest lying frequencies are observed to increase as the junc-

tion is stretched while the highest frequency (only observable for D2) decreases. Clearly,
this agrees qualitatively with the variations of the calculated frequencies. Quantitatively,
though, the calculated frequency shift is about an order of magnitude larger than the one
observed experimentally (see Fig. 7.6 and 7.3(a)). A possible explanation of this dis-
crepancy is built on the fact that experimentally the electrode displacement is controlled
far away from the molecular junction. Consequently the elastic response of the electrode
region has to be taken into account when directly comparing stretching lengths. In fact
simulation of atomic chain formation in gold during contact breaking reveals that most of
the deformation happens in the nearby contact-necks [171].

Conductance calculations

In this section we discuss the electrical properties of a hydrogen molecule bridging two
platinum electrodes.

In Ref. [10] Thygesen et al. present calculations of the transmission function of a plat-
inum/hydrogen junction. The supercell structure used in the calculations is shown in Fig.
7.16, where the electrode distance of 14.60 Å has been chosen to make the calculated vibra-
tional frequencies of the captured H2 molecule match the experimental values as close as
possible. The conductance calculations have been performed using method 1 as described
in Sec. 4.3.1.

In agreement with the experimental results the conductance was found to be close
to 1 G0, where indeed the transmission function has a wide plateau with T ≈ 1 around
the Fermi energy (see Fig. 7.7). In order to gain insight into the conduction mechanism
of the platinum/hydrogen system, Thygesen et al. resolved the full transmission into
contributions from the H2 bonding and anti-bonding states. This revealed that for energies
above -3 eV the removal of the bonding state does not affect the transmission significantly
(see Fig. 7.7). From this observation the authors concluded that the conductance is mainly
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Figure 7.7: Transmission function (black curve) for the Pt-H2-Pt junction. The calculated
transmission when all coupling to the hydrogen bonding (anti-bonding) state has been cut
is shown in the red (blue) curve. Reproduced from [10].

due to transmission through the H2 anti-bonding state.
We find further support for this explanation of the conduction mechanism by visualiz-

ing in Fig. 7.8 the s symmetric eigenchannel which carries more than 95% of the current.
Clearly, the electron transport is mainly mediated by the H2 anti-bonding state. The
eigenchannels were determined using the calculational procedure described in Ref. [73] in
combination with method 2, Sec. 4.3.2, and a SZP basis set. As the transmission functions
calculated using the two implementations of NEGF-DFT are almost identical around the
Fermi level (see Sec. 5.2) we expect the respective eigenchannels to be very similar.

Figure 7.8: Isosurface of the almost fully open eigenchannel at the Fermi level for a
platinum/hydrogen contact. It is seen that the electron transport is mediated by the anti-
bonding H2 molecular orbital. The eigenchannel is found using the method of Paulsson et
al. [73] and method 2 with a SZP basis set.

The important factors in the conduction mechanism described above are the close
proximity of the H2 anti-bonding state to the Fermi level of the electrodes and its strong
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hybridization with platinum states. This is in good agreement with the traditional pic-
ture of hydrogen dissociation on metal surfaces [163]. When the hydrogen molecule is
approaching the surface the anti-bonding state is shifted downwards, and when crossing
the Fermi level it is partially filled, which weakens the H-H bond. This expected weaken-
ing of the H-H bond is in accordance with the observed increase of the H-H bond length
for the hydrogen molecule in the platinum junction.

7.1.2 The plateau at low conductances

In this section, we present experimental and theoretical evidence that the low conductance
peak in the platinum/hydrogen histogram is due to the formation of a hydrogen decorated
Pt chain. The material discussed in this section is a summary of Paper I.

For 92 % of the individual traces the conductance decreases by small steps after the
plateau around 1 G0. This indicates that atomic structures having conductance below 1
G0 are formed by stretching the original Pt/H2 linear bridge configuration beyond elastic
deformation. As can be seen from the conductance trace in Fig. 7.2(b) the structure can
be stretched over quite long lengths suggesting the formation of an atomic wire.

Figure 7.9: (a) Length histogram for clean Pt (black curve) and Pt when H2 has been
admitted (filled graph). The average return lengths as a function of chain length is shown
in the inset. (b) Average conductance as a function of chain length. (c) dI/dV curves (top)
and their numerical derivatives (bottom) for a Pt/H2 junction taken at a conductance of 0.1
G0. From Paper I.

In Fig. 7.9(a,b) we show, for platinum/hydrogen junctions, the length histogram
and the average conductance as a function of the chain length. The length histogram is
constructed by recording the distance a Pt/H2 contact may be pulled from the point where
the conductance drops below 1.3 G0 until it reaches 0.1 G0. A sequence of peaks with a
distance of 0.27 nm is observed indicating the repeated occurrence of certain stable chain
configurations. The average conductance (shown in Fig. 7.9(b)) of these characteristic
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structures denoted (A), (B) and (C) are 0.96, 0.56 and 0.28 G0, respectively.
Since the average conductance of structure (A) is close to 1 G0, it is identified as the

linear bridge configuration discussed in the previous section. Looking at the individual
traces, it is observed that in most cases the conductance decreases in small steps after
the appearance of a plateau near 1 G0. This suggests that the hydrogen molecule is still
bridging the contact after stretching it beyond the 1 G0 plateau. Further support for this
interpretation is found from PCS measurements taken at low conductances. In Fig. 7.9(c)
the differential conductance and its derivative is shown for a Pt/H2 junction having a
conductance of 0.1 G0. The upward steps in the dI/dV curve is interpreted as vibrational
excitations with a frequency of 51 meV. It is noted that, in most measurements peaks
are observed in the first derivative instead of the second derivative [160]. A vibrational
excitation energy of 57 ± 4 meV is commonly observed for Pt/H2 contacts taken at
conductances in the range 0.1-0.6 G0. This frequency agrees with the vibrational energy
of the hindered transverse CM modes (M4) of the hydrogen molecule in the linear bridge
configuration. The close agreement indicates that H2 is indeed still bridging the stretched
contact.

In the inset of Fig. 7.9(a) the average return length as a function of chain length is
shown. This is the average distance over which the two electrodes need to be moved back
after the junction breaks in order to reestablish contact. The approximately proportional
relation suggests that a fragile structure not able to support itself and with a length
corresponding to the last plateau is formed. This interpretation is further strengthened by
the results presented in Fig. 7.9(a,b). The peak distance observed for the Pt/H2 contact
is slightly larger than the distance between atoms in a clean Pt-wire (0.23 nm) [172]
indicating that the low conductance structure is probably not a clean Pt-wire. Further
support for this interpretation is found by the rapid decrease of the average conductance
observed as the chains are being pulled (see Fig. 7.9(b)). Although the conductance of
pure Pt chains decrease with length [173] it is always well above 1 G0.

We notice that, in the conductance histogram an additional peak is only observed at
0.2 G0 corresponding to structure (C). This observation can be explained by the fact that
the conductance varies more slowly with stretching for structure (C) than for structure
(B) in fact a stable level near 0.2-0.3 G0 is observed at 0.6-0.8 nm (see Fig. 7.9(b)).

Based on the experimental evidence presented above we arrive at the chain formation
model. First, a single hydrogen molecule is bridging the Pt contact. Further stretching
incorporates one and later two Pt atom into the chain. The larger distances in the length
histogram and the low conductance should then be attributed to additional hydrogen
decorating the Pt atomic chain.

Theoretical analysis

In this section, we present NEGF-DFT calculations which provides additional support
for the chain formation process used to explain the low conductance peak in the Pt/H2

histogram.

Based upon the experimental evidence presented above we came to consider the model
structures for the hydrogen decorated platinum wires illustrated by the insets in Fig.
7.10. Due to high computational costs the energy/conductance traces and the analysis
of the transport mechanism have been performed for an atomic wire system (see inset
in Fig. 7.11(b)). For structure (B) we have compared the transmission functions of the
atomic wire system with that of the more realistic contact. Qualitatively, the results
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are similar in terms of the main peak structures illustrating that the analysis is robust
with respect to the atomic arrangement. In a quantitative comparison, however, the
conductance of the wire system is approximately a factor of 2 lower. In order to ensure
that the KS potential is converged to bulk values we include 3-4 surface layers on each
side of the platinum pyramids and a chain of six platinum atoms on each side of the
hydrogen atoms, respectively. To obtain stable junction structures we used Dacapo [1, 2]
to relax the pyramids and the hydrogen decorated chain segment using a linear constraint
to avoid buckling of the wire. Hereby investigating the characteristics of a quite stretched
platinum/hydrogen contact. The conductance is calculated using method 1 as described
in Sec. 4.3.1 and each transmission function has been sampled by 8 irreducible k⊥ points.

structure (C)

structure (B)

Figure 7.10: Calculated transmission functions for the structures (B) [green line] and
(C) [black line] proposed to explain the low conductance features in the histogram. The
conductance of the structures is read-off at the zero-point of the x axis which is taken to be
the Fermi level. The explicit geometries of the structures are shown as insets. From Paper
I.

By performing total energy calculations for varying contact distances the optimal length of
a hydrogen decorated platinum wire segment was found to be 0.272 nm in good agreement
with the experimental results. In Fig. 7.10 the transmission functions for the optimized
structures (B) and (C) is shown. By comparing with Fig. 7.7 it is seen that the 1
G0 plateau found for structure (A) - the linear bridge configuration - is lowered when
additional hydrogen decorated platinum atoms is incorporated into the chain. The con-
ductances are found as 0.46 and 0.15 G0 for structures (B) and (C), respectively, which is
in reasonable agreement with the experimental values of ≈ 0.6 and ≈ 0.3 G0.

In principle, there are three possible explanations of the lowering of the 1 G0 plateau
observed when going from structure (A) to (C):

(i) An interference effect, where the orbitals of the additional hydrogen atoms would
play a direct role in the scattering at the Fermi level.

(ii) The hydrogen decoration modifies the conductance by changing the Pt-Pt distance.
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(iii) The additional hydrogen changes the conductance by modifying just the electronic
structure of the Pt atoms.

All three possible effects were investigated independently and the first two could be ruled
out. By resolving the full transmission of structure (A) into contributions from the s- and
d-orbitals at the neighboring Pt atoms, we show that the effect of hydrogen decoration
can be simulated by systematically removing different orbitals at the neighboring platinum
atom from the basis set. This technique is illustrated in Fig. 7.11(a) where the results
of calculations for a clean chain of single platinum atoms bridged by a H2 molecule is
shown. Removing the s-orbital for one and two subsequent platinum wire atoms accounts
for the successive reduction of the transmission for energies above 1 eV. For reduction
of the transmission at lower energies, and therefore the conductance, also part of the
platinum d-orbitals must be removed from the basis set. It is noted that, the removal of
the d-orbitals alone does not have a large effect on the conductance.

Figure 7.11: (a) Transmission function obtained for a hydrogen molecule bridging atomic
platinum wires [dashed black curve]. To illustrate the effect of hydrogen decoration on the
first neighboring platinum atom the s-orbitals [solid black curve], d-orbitals [dashed green
curve] and both s- and d-orbitals [solid green curve] have been removed from the basis set.
In the inset the relevant s- and d-orbitals are shown superimposed on the atomic position.
(b) Simulated conductance traces [solid curves] and DFT binding energies [dashed curves]
as a function of electrode displacement (dz) for structures (B) and (C). As shown in the
inset the three dimensional electrodes have been replaced by Pt atomic wires. From Paper
I.

Our analysis shows that the conductance reduction is due to the additional hydrogen
atoms saturating the s- and part of the d-orbitals between the platinum atoms they are
attached to, thereby making them unavailable for transport. We point out that this
explanation of the conductance reduction is not in contradiction with the one given by
Barnett et al. [170] for Au-H2-Au system but just offers a different perspective.

The stretching dependence of the conductance for structure (B) and (C) in the atomic
wire system is shown in Fig. 7.11(b). Although there is a the short plateau in the
conductance for structure (B) when stretched beyond the optimal bonding distance, for
structure (C) the overall decrease with length seems to be slower up to a stretching length
of 0.1 nm. This trend was also found in the experimental histograms.

Formation path

To gain some insight into the formation path that may lead to the structures (B) and (C)
we investigated whether the hydrogen bridge is strong enough to pull out a Pt wire. The
chain formation process were simulated by changing the electrode distance gradually by
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hand and relaxing the atomic structures at each step. Within this scheme we could pull
a wire for the pure platinum contact but when placing the hydrogen bridge in the middle
of the contact, the contact always broke in such a fashion that the molecule was split into
its atomic compounds. In Fig. 7.12 the approach is illustrated for a geometry designed to
help the wire pulling as much as possible by uplifting the Pt tip atom.

Figure 7.12: (a) The unrelaxed configuration. By uplifting the Pt tip atom (which is
supposed to be pulled) away from the surface by hand wire pulling was favored as much as
possible. (b) The relaxed configuration. Even for this favorable geometry the Pt tip atom
relaxed backwards and wire pulling was prevented.

The simulations indicate that, since the bridging H2 molecule is very weakly bond to
the Pt electrodes, “wire pulling” seems unlikely. Instead we imagine structure (B) and
(C) to be formed by a concerted process. A possible scenario involves the displacement of
platinum atoms at the surface due to phonons and the formation of intermediate structures
with the additional hydrogen adsorbed on the electrodes. The configurational space for
covering all possibilities for atomic movements in such a process is though too large to be
explored by our calculations in detail.

7.1.3 Summary

Conductance histograms for a platinum junction in a hydrogen atmosphere show peaks at 1
G0 and 0.2 G0, respectively. By reviewing experimental and theoretical results for the 1 G0

plateau it was found that a complete agreement between the number of vibrational modes,
the sign of their stretching dependence, the conductance and the number of conductance
channels exist if the experiments are interpreted in terms of a configuration where a single
hydrogen molecule is bridging the platinum electrodes.

Furthermore experimental evidence that stretching of the linear bridge configuration
can form an atomic wire giving rise to the peak at 0.2 G0 was presented. An interpreta-
tion of this result in terms of the formation of an atomic platinum chain decorated with
hydrogen was compared to DFT calculations. The numbers for the bond distances and
conductances was found to be in fair agreement with experiments. The pathway that
brings new atoms into the atomic chain structure remains problematic though.

7.2 The gold/hydrogen junction

In this section, we provide a short overview of the main experimental and theoretical
results on a gold/hydrogen junction. Moreover, the calculated transmission function of a
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hydrogen molecule bridging gold electrodes is presented and compared to the transmission
of a platinum/hydrogen junction.

Csonka et al. [147] used the mechanically controlled break junction technique to measure
conductance traces for gold wires broken in a hydrogen environment at T = 20 K. In the
resulting conductance histograms they observed a clear peak around 0.5 G0. This half-
conductance quantum was interpreted as the onset of a dimerization within the atomic
gold wire in the last stage of breakage. The formation of gold dimers was thought to be
accompanied by a stabilization effect due to the adsorbed molecular hydrogen. More recent
calculations by Jelinek et al. [164] show that the histogram peak at 0.5 G0 can also be due
to hydrogen atoms chemisorbed to the atomic gold chain. In MCBJ experiments reported
by Thijssen et al. [148] it is found that the fractional conductance peak disappears when
the temperature is lowered from 20 to 5 K. This observation might be due to the fact that
at higher temperatures hydrogen is more easily dissociated.

Conductance histograms for the Au/H2 junction recorded at T = 5 K shows a clear
peak around 1 G0 as well as a large background with no clear features at lower conduc-
tances [148]. In all individual conductance traces a stable plateau around 1 G0 is observed,
indicating that a contact consisting of a single gold atom is reached [174]. Upon further
stretching the conductance drops considerably and varies between 0 and 1 G0 until the
contact finally breaks. To further characterize the Au/H2 junction Thijssen et al. investi-
gated the vibrational properties of the junction by performing point contact spectroscopy
measurements. For Au/H2 junctions with conductances below 1 G0, conductance fluctu-
ations often mask the regular vibrational mode signal. Instead, the vibrationally induced
two-level fluctuation model can be used to identify the frequencies from the symmetric
features (peaks/dips) observed in the dI/dV curves [160]. By comparing the combined
measurement of the stretching dependence of the vibrational modes and the zero-bias con-
ductance to calculations reported in the literature [175, 164, 170] substantial evidence was
found that hydrogen is mostly incorporated in the gold junction in molecular form at T
= 5 K.

7.2.1 Conductance calculations

In this section we address the electron transport properties of a gold contact with a
hydrogen molecule at the linear bridge site. Based on the first principle calculations of
the transmission function we find that as compared to the platinum/hydrogen system
the plateau determining the conductance is lowered and the overall peak structure is
downshifted. The conductance mechanism of the Au/H2 junction is complicated by the
delocalized gold s-states which lead to a direct coupling across the hydrogen molecule.

The supercell geometry (shown in Fig. 7.13(a)) represents a model structure of a single
Au/H2 junction taken at a specific stretching length. The corresponding distance between
the Au electrodes were chosen by total energy minimization. We used Dacapo [1, 2] to
relax the hydrogen molecule and the pyramids keeping the rest of the Au atoms fixed in
the bulk positions. The transmission function is calculated using method 1 as described in
Sec. 4.3.1 and averaged over 8 irreducible k⊥ points. The eigenchannels are found by the
technique described in detail in Ref. [73] and method 2 (see Sec. 4.3.2) with a SZP basis
set. In Fig. 7.13(b), we show the transmission functions calculated using method 1 and
2. As qualitatively the results are similar we expect the symmetry of the eigenchannels
found using method 1 or 2 to be identical.

In Fig. 7.14(black) we show the calculated transmission function. Notice that the
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Figure 7.13: (a) Supercell used to model the central region of the Au-H2-Au junction. (b)
The calculated transmission function for the Au/H2 contact using method 1 and 2. The
conductance is indicated in the parenthesis following the legends.

transmission is only plotted up to 2 eV above the Fermi level. This is because at higher
energies the result is sensitive to the parameters used to construct the Wannier functions.

In the following, we compare the transmission functions of a Pt/H2 (see Fig. 7.7) and
a Au/H2 junction. Qualitatively, the peak structure of the two junctions are very similar.
Quantitatively, we observe a downshift of the peaks and a lowering of the 1 G0 plateau
when replacing Pt with Au. The latter effect is a consequence of the fact that Au have no
d-states at the Fermi level. This is because removing part of the platinum d-orbitals from
the basis set accounts for a lowering of the 1 G0 plateau as illustrated in Fig. 7.11(a).
The observed downshift is of the order of 1 eV which is consistent with the fact that the
work function of Pt(111) is 0.6 eV lower than that of Pt(111) [176].

To further analyze the reduced plateau crossing the Fermi level we resolve the full
transmission into contributions from the bonding and anti-bonding H2 states. As seen
in Fig. 7.14 for energies above -4 eV the removal of the bonding state has no significant
effect on the transmission. Unlike what is found for the Pt/H2 junction a significant con-
ductance is still observed when the anti-bonding state is removed from the basis set. This
transmission is due to the delocalized Au s-states which lead to a direct coupling across
the hydrogen molecule. We thus conclude that the plateau determining the conductance
is due to transmission through a state located at the hydrogen molecule and formed as a
linear combination of the H2 anti-bonding state and the s-states at the Au tip atoms.

We test this interpretation by plotting in Fig. 7.15 the right-going eigenchannel which
carries almost 100% of the current. As compared to the Pt/H2 eigenchannel (see 7.8),
which clearly has anti-bonding character at the hydrogen molecule, the Au/H2 is seen to
have a more complicated conduction mechanism. This could well be explained by the the
fact that the s-states of Au is more delocalized than for Pt. We notice that the asymmetry
of the eigenchannel reflects that a substantial amount of electrons are back-scattered at
the interface.

Note that the calculated conductance agrees well with the results of Ref. [175], but
differs significantly from Ref. [170] that ascribes less than 0.25 G0 to a Au/H2 junction.
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Figure 7.14: Calculated transmission (black curve) for the gold/hydrogen contact as shown
in Fig. 7.13(a). The transmission when all coupling to the hydrogen bonding (anti-bonding)
state has been cut is shown in the red (blue) curve.

Figure 7.15: Isosurface of the left eigenchannel which conduct almost 100% of the current
through a gold/hydrogen contact. It is seen that the electron transport is mediated by a
combination of the anti-bonding H2 molecular orbital and the delocalized s-states from the
neighboring Au atoms.

7.3 Inelastic scattering in metal-H2-metal junctions

In this section we present first-principle calculations of the dI/dV characteristics of a H2

molecule bridging Pt and Au electrodes in the presence of electron-phonon interactions.
The fact, that the hydrogen junction supports a single, almost fully open conductance
eigenchannel suggests that the inelastic-scattering processes should be particular simple
to understand (see Sec. 3.3.3). As expected the conductance is found to decrease at
threshold voltages corresponding to the excitation energy of the longitudenal vibrational
modes of the H2 molecule. Surprisingly, in the case of Pt electrodes the transverse modes
lead to an increase in the differential conductance, while for gold electrodes they have no
effect on the transport. Scattering theory is used to show that this feature is a result of a
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coupling between the nontransmitting d-channels and the transmitting s-channel mediated
by the transverse vibrational modes.

The supercell geometry of the considered hydrogen contact is shown in Fig. 7.16. The
distance between the two electrodes, or equivalently the length of the supercell, has for the
case of Pt been chosen to make the calculated vibrational frequencies of the H2 molecule
match the experimental values as close as possible (see Sec. 7.1.1). For the case of Au
where the experimental data is less conclusive, we have chosen the distance by minimizing
the energy. The vibrational modes of the junctions are sketched in the inset of Fig. 7.17
and the corresponding frequencies are given in the caption. Using Dacapo [1, 2] we have
relaxed the pyramids and hydrogen molecule to obtain stable junction geometries. The
conductance is calculated using method 1 as described in Sec. 4.3.1 and each differential
conductance curve has been sampled by 8 irreducible k⊥ points.

Figure 7.16: The supercell used to model the metal/hydrogen junction. Only the hydrogen
atoms are allowed to vibrate (the ”dynamic” atoms). This is a good approximation due to the
large mass difference between the Au/Pt and H atoms. The effect of the potential generated
by the vibrating hydrogen molecule is included inside the indicated inelastic region. The
central region is coupled to bulk electrodes and periodic boundary conditions are imposed
perpendicular to the contact axis. From Paper V.

In Fig. 7.17 we show the differential conductance calculated from (3.2) including
scattering on different vibrational modes separately. To extract the features due to the
inelastic scattering from those due to elastic scattering we have subtracted the elastic
signal, i.e. we plot G(V ) = Gfull(V )−Gel(V )+Gel(V = 0), see Ref. [70] for a discussion of
this procedure. It is noted that the differences in the zero-bias conductances are due to the
tails of the electron-phonon self-energies, which although centered around the vibrational
frequencies also have weight at other energies.

The conductance curves of Fig. 7.17 present several interesting features: For both Pt
and Au the longitudinal modes lead to a decrease in the conductance as expected from
the one-channel model. It is noticed that the internal stretching mode has a much larger
impact on the electrons than the CM mode. For Au, the transverse modes have no effect on
the transport, while for Pt they lead to an increase in the conductance. Since the junction
has one fully open channel this seems to conflict with the one-channel model which would
predict an increase only for junctions with conductance < 0.5G0. It is noted that, we
have obtained similar quantitative features in the dI/dV curves by using method 2 (see
Sec. 4.3.2) and LOE for including the electron-phonon interaction. Moreover, Magnus
Paulsson, by using their inelastic transport code (described in detail in Ref. [70]), likewise
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Figure 7.17: Differential conductance of a hydrogen molecule bridging platinum (full) and
gold (dashed) electrodes when scattering on a single vibrational mode is included. The
vibrational modes together with the symmetry of the corresponding displacement potential
Wλ(r) is shown in the inset. Frequencies (in meV) of the captured hydrogen molecule for
Pt: ωM1 = 190, ωM2 = 171, ωM3 = 64, ωM4 = 30 and for Au: ωM1 = 249, ωM2 = 141,
ωM3 = 84, ωM4 = 37. From Paper V.

found that the transverse modes lead to increases in the dI/dV curves. This indicates
that the observed trends are rather insensitive to the basis set.
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We point out that our dI/dV curves of the Pt-H2-Pt contact are not in contradiction
with the ones reported by the group of Sanvito in Refs. [87, 96] as they only consider the
longitudenal modes. Chen in Ref. [177] find that the transverse modes have insignificant
inelastic effects, we speculate if this could be due to the jellium model used for the Pt
electrodes. For the Au-H2-Au junction Frederiksen et al. in Ref. [175] conclude in com-
pliance with our results that due to the symmetry of the states around the Fermi energy
only the longitudinal modes contributes significantly to the inelastic signal.

In order to gain more insight into the nature of the observed steps in the dI/dV curves
we make use of the simplified description of the scattering process presented in Sec. 3.3.2.
From Eq. (3.20) it follows that the change in conductance due to the inelastic scat-
tering with some mode λ involves all pairs of channels for which the matrix element
〈ψLp|W λ(r)|ψRq〉 is non-zero. Since W λ(r) extends to the metal atoms binding to H2, any
scattering state at the Fermi level – transmitting or not – with weight on these atoms will
contribute in Eq. (3.20).

In the case of Pt, we find at the Fermi level two types of eigenchannels with sufficient
weight on hydrogen atoms and the contacting Pt atoms so that the coupling matrix element
will be significant. One eigenchannel is the almost fully open s-channel (see inset of Fig.
7.18(a)) and the others have d-character and very low transmission around εF . Since the
Au d-states have almost no weight at the Fermi level (see Fig. 7.18(b)) only the s-channel
makes a contribution in Eq. (3.20).

For the longitudinal modes (M1 and M2) the symmetry of W λ implies that s-s transi-
tions are possible, but not s-d transitions (d-d transitions are not excluded by symmetry,
but because of the vanishing overlap between ψLd and ψRd). Since Rs−Ts ≈ −1 we should
expect a drop in conductance in agreement with the NEGF-DFT calculations. At the hy-
drogen molecule, the s channel has mainly the character of the H2 anti-bonding orbital
(see the insets in Fig. 7.18). This implies that the product ψLs(r)∗ψRs(r) is unchanged
upon reflection in the plane cutting through the H-H bond perpendicular to the molecular
axis. On the other hand the potential WM2(r) changes sign upon this reflection, and this
explains the weak signal observed for M2 as compared to M1.

Figure 7.18: (a) The density of states projected onto the five d-orbitals for one of the
platinum tip atoms. The almost fully conducting scattering channel is shown in the inset.
(b) The d-DOS for one of the gold tip atoms. In the inset we show the s-symmetric scattering
channel which carries almost 100% of the current.

The spatial shape of the d-states implies that coupling to the s-channel is possible
only via the transverse modes M3 and M4 (see the symmetry of W λ in the insets of Fig.
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7.17). Limiting the sums in Eq. (3.20) to these two relevant states we see that ∆G becomes
proportional toRd−Ts. The increase in conductance found for the transverse modes in the
Pt contact can thus be explained by a higher reflection probability of the low-transmitting
d-channel as compared to the transmission probability of the high-transmitting s-channel.
We stress that small changes in the transmission probabilities for the s- or d-channels
could change the sign of ∆G. The symmetry of the displacement potential (W λ) for the
transverse modes prevents coupling between two states with s-symmetry, which explains
why the transverse modes do not affect the conductance of the Au junction.

We notice that the calculated increase in conductance due to the transverse modes is not
in agreement with the experimental data from inelastic point contact spectroscopy for Pt-
H2-Pt junctions which show a conductance decrease. Some of the possible explanations
for this disagreement are:

(i) According to Eq. (3.20), the size (and the sign) of ∆G is determined by the relative
magnitude of the s- and d-channel transmissions which are sensitive to the electronic
density of states. Even very small changes here, e.g. from hydrogen atoms strongly
bound to the platinum electrodes, could easily change the sign of ∆G. In this
sense, the fact that we obtain an increase in the conductance while experimentally
a decrease is observed, should be viewed as a quantitative rather than qualitative
difference.

(ii) In principle the 1BA applies in the limit of weak electron-phonon interactions while
we obtain electron-phonon matrix elements (3.11) on the order of electron volts. On
the other hand the inelastic features in the dI/dV are a few percentage of G0 indicat-
ing that only a few percentage out of a hundred electrons are scattered. Moreover,
previous studies applying the 1BA to gold chains agrees nicely with experiments
[27], indicating that the 1BA provides an accurate description of electron-phonon
interactions in strongly coupled metal-molecule-metal junctions.

(iii) The highly symmetric geometry of the metal-H2-metal junction used in this study is
an idealized but oversimplified model of the real structure. However, we have con-
sidered other less symmetric configurations none of which gave rise to a conductance
decrease for the transverse modes.

(iv) Inclusion of a finite phonon temperature could affect the calculated properties. How-
ever, as can be seen from Eq. (14) of Ref. [178] to lowest order in the electron-phonon
strength the sign of ∆G cannot change by including heating.

Despite of the differences between the experimental and theoretical findings for the phonon-
induced features in the dI/dV , we hesitate to conclude that the linear bridge configuration
is not the structure observed in the experiments. The reason is the strong evidence men-
tioned in the previous sections which favors the linear bridge combined with the small size
and high sensitivity of the inelastic features. We speculate if atomic hydrogen adsorbed
at the platinum electrodes, although not expected to change the elastic behavior substan-
tially, could change the inelastic signal from an increase to the experimentally observed
decrease.

7.3.1 Summary

For both metals, the longitudinal vibrations of the H2 leads to a decrease of the conduc-
tance at bias voltage corresponding to the frequency of the vibration, eV = ~ω. In the case
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of Pt electrodes, the transverse vibrations induce an increase in conductance. This might
seem surprising since the hydrogen junction supports a single almost fully open transport
channel and thus, according to the one-channel model, inelastic scattering should always
lower the conductance. On the basis of scattering theory we showed that the increase is a
result of non-transmitting d-channels which couple to the transmitting s-channel via the
transverse modes. This is consistent with the finding that transverse modes do not affect
the conductance in the case of Au electrodes.
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Appendix A

Non-Equilibrium Green Functions

In this appendix a short introduction to the Non-Equilibrium Green Functions (NEGF)
formalism [179] is provided. NEGF is a technique which proves very powerful in describing
non-equilibrium phenomena perturbatively. By introducing the contour-ordered Green’s
function (GF), which is the non-equilibrium analog to the casual GF in equilibrium theory,
a perturbation expansion based on Wicks theorem can be deduced. The physical relevant
real-time Green’s functions, which is contained within the contour-ordered GF, can then
be subtracted. From the real-time GFs properties of the many-particle system, such as
the particle current in quantum transport, can be evaluated. A comprehensive review of
the theory can be found in Refs. [76, 83, 180].

The non-equillibrium Hamiltonian is in its most general form given as,

H(t) = H0 +H i +H ′(t),

where H0 is the non-interacting (quadratic) Hamiltonian, H i contains possible particle
interactions and H ′(t) represents a disturbance to the system which vanishes at t < t0.
In quantum transport H ′(t) describes the coupling between subsystems having different
chemical potentials and the electron-phonon interactions are contained within H i in the
special case of inelastic transport.

t0t0

t’

t

t’

t

0t −iβ

(a) (b)

Figure A.1: (a) The contour C runs along the real axis and consist of an upper, C1, and
lower branch, C2. (b) The contour Cv. Cv coincides with C in the steady state limit which
is considered throughout this work.

The contour-ordered single-particle Green’s function is defined as

Gij(τ, τ ′) = −i〈TC [ci(τ)c
†
j(τ

′)]〉, (A.1)

where TC is the contour-ordering operator for the contour C depicted in Fig. A.1 and
ci, c

†
j are field operators in the Heisenberg picture. The expectation value is taken with

respect to the equilibrium state operator describing the system for times t < t0

ρeq =
e−β(H0+Hi−µN)

Tr[e−β(H0+Hi−µN)]
,
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where N is the number operator, µ is the chemical potential and β = kBT
−1. This choice

of state operator builds on the assumption that the thermodynamic degrees of freedom
in the equilibrium system do not follow instantaneously the rapid variations contained in
the time-dependent disturbance [76].

In quantum transport theory (see chapter 3) the state operator of the uncoupled system
is a product of the respective equilibrium state operators of the three subsystems each
characterized by their chemical potential

ρeq =
1
Z0
e−β(HL−µLNL)e−β(HR−µRNR)e−β(HC−µCNC) ⊗ Ŵext

where Ŵext denotes the state of possible external degrees of freedom such as phonons and
Z0 is the partition function.

In the interaction picture with respect to H0 the contour-ordered Green’s function in
Eq. (A.1) takes the form

Gi,j(τ, τ ′) = −i
〈TC

[
S′CSi

Cv
ψ̂i(τ)ψ̂

†
j(τ

′)
]
〉0

〈TC

[
S′CSi

Cv

]
〉0

, (A.2)

where

S′C = exp
[
− i

∫
C

dτĤ ′(τ)
]
. (A.3)

Si
Cv

= exp
[
− i

∫
Cv

dτĤi(τ)
]
. (A.4)

In these expressions “hat” refers to time-evolution with respect to the quadratic part
of the Hamiltonian and 〈· · · 〉0 to the fact that the expectation value is to be evaluated
with respect to the non-interacting state operator. If particle interactions are turned on
adiabatically the contours C and Cv (shown in Fig. A.1) will coincide when the system
reaches steady state.

The contour-ordered Green’s function contains four different real time GFs as special
cases. For evaluation of physical quantities it is convenient to work with the lesser/greater
and retarded/advanced GFs

G>
i,j(t, t

′) = −i〈ψi(t)ψ
†
j(t

′)〉,

G<
i,j(t, t

′) = ±i〈ψ†j(t
′)ψi(t)〉,

Gr
i,j(t, t

′) = −iθ(t− t′)〈
[
ψi(t), ψ

†
j(t

′)
]
±
〉,

Ga
i,j(t, t

′) = iθ(t′ − t)〈
[
ψi(t), ψ

†
j(t

′)
]
±
〉,

where the upper (lower) sign applies to fermions (bosons) and [· · · ]± denotes a anti-
commutator (commutator). From the universal relation Gr − Ga = G> − G< it follows
that the four real time GFs are not independent. In steady state situations yet another
relation between the GFs exists, Gr = [Ga]†. Consequently, in steady state one only need
to consider two linearly independent Green’s functions.

From Eq. (A.2) we notice that the only difference between equilibrium and non-
equilibrium GF theory is the replacement of real-time integrals by contour integrals. As a
consequence the contour-ordered Green’s function obeys the same Dyson equation as the
equilibrium counterpart

Gi,j(τ, τ ′) = G0
i,j(τ, τ

′) +
∑
k,l

∫
G0

i,k(τ, τ1)Σk,l(τ1, τ2)Gl,j(τ2, τ ′)dτ1dτ2, (A.5)
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where G0 denotes the unperturbed Green’s function and the irreducible self-energy Σ
contains diagrams due to both Ĥi(t) and Ĥ ′(t).

Once the contour-ordered Green’s functions are defined, e.g. using diagrammatic tech-
niques, the real-time versions can be found using the conversion rules formulated by Lan-
greth [75, 76]. By applying the Langreth rules to the contour-ordered Dyson equation and
making some rearrangements we obtain the real time Dyson and Keldysh equations

Gr
i,j(ε) = G0,r

i,j (ε) +
∑
k,l

G0,r
i,k (ε)Σr

k,lG
r
k,j(ε) (A.6)

G
≶
i,j(ε) =

∑
k,l

Gr
i,k(ε)Σ

≶
k,lG

a
l,j(ε). (A.7)
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Stable, single-molecule conducting-bridge configurations are typically identified from peak structures
in a conductance histogram. In previous work on Pt with H2 at cryogenic temperatures it has been shown
that a peak near 1G0 identifies a single-molecule Pt-H2-Pt bridge. The histogram shows an additional
structure with lower conductance that has not been identified. Here, we show that it is likely due to a
hydrogen decorated Pt chain in contact with the H2 molecular bridge.

DOI: 10.1103/PhysRevLett.98.146802 PACS numbers: 73.63.Rt, 63.22.+m, 73.23.�b, 85.65.+h

The interest in chains of single metal atoms bridging
between two electrodes is largely due to their unique
properties as ideal one-dimensional systems [1]. For clean
metals, only Au, Pt, and Ir form atomic chains [2,3].
However, atomic or molecular adsorption on metal sur-
faces can widen this scope. Recently, 2 nm long Ag atomic
chains have been created in the presence of oxygen at
ultralow temperature, while clean Ag only forms short
chains [4]. Atomic chains have been imaged by transmis-
sion electron microscope for the noble metals Cu, Ag, and
Au [5–8].

In the first experiments contacting molecules by Pt
atomic leads it was shown that a single hydrogen molecule
H2 can be contacted and there appeared to be no indication
for atomic chain formation [9,10]. By use of point contact
spectroscopy and shot noise measurements, the system was
characterized in detail and close agreement with atomistic
model calculations was obtained [9,10]. The Pt-H2-Pt
junction was first identified by its conductance. It shows
up as a recurring plateau in the conductance when control-
lably breaking a contact, and in a histogram of conductance
values collected for many such breakings it gives rise to a
sharp peak near 1G0, where 1G0 � 2e2=h is the conduc-
tance quantum. This main peak at 1G0 for the Pt=H2

system is therefore well understood. However, there is
more structure in the conductance histogram for the
Pt=H2 junctions, which has not been explained. In particu-
lar, a strong peak is found at about 0:1–0:2G0, suggesting
that other configurations of hydrogen between Pt leads may
be formed. In the present study we focus on those struc-
tures, having a conductance below 1G0, and we present
evidence that they can be attributed to the formation of a
hydrogen decorated Pt atomic chain that forms one of the
leads contacting a hydrogen molecule.

The measurements have been performed using the me-
chanically controllable break junction technique (see
Ref. [11] for a detailed description). Once under vacuum
and cooled to 4.2 K a fine Pt wire was broken. Atomic-
sized contacts between the wire ends can be formed using a

piezoelement for fine adjustment. H2 was admitted via a
capillary. dc two-point voltage-biased conductance mea-
surements were performed by applying a voltage in the
range from 10 to 150 mV. Every statistical data set was
built from a large number (over 3000) of individual digi-
tized conductance traces. ac voltage bias conductance
measurements were performed using a standard lock-in
technique. The conductance was recorded for fixed contact
configuration using an ac modulation of 1 mV amplitude
and a frequency of 7.777 kHz, while slowly ramping the dc
bias between �100 and �100 mV.

Figures 1(a) and 1(b) show typical conductance traces
for clean Pt and for Pt after admitting H2. After admitting
H2, plateau near 1G0 are frequently observed and the
corresponding histogram [Fig. 1(c)] shows a sharp feature
near 1G0. The plateau near 1G0 and the corresponding
peak in the histogram originate from single-molecule
Pt-H2-Pt contacts, as shown by previous studies [9,10]. In
addition to the 1G0 feature, the histogram shows a peak
near 0:2G0 on top of a low-conductance tail. Looking at the
individual traces, the conductance decreases by small steps
after the appearance of a plateau near 1G0 (0:8–1:2G0) for
92% of the traces, and the conductance decreases below

 

FIG. 1. Breaking and return traces for clean Pt (a), and for Pt in
a H2 atmosphere (b). Many of such curves are collected into
conductance histograms as shown in (c) for clean Pt (black
curve) and Pt in H2 (filled graph).
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1G0 without appearance of a plateau near 1G0 for 8% of
the traces. The sudden drop of the conductance from 1G0

to 0G0 is a rare event (below 1%). This suggests that a
structure having a conductance below 1G0 is formed by
further stretching the original single-molecule Pt-H2-Pt
contact with a conductance of 1G0. The conductance trace
in Fig. 1(b) shows that the structure can be stretched to
quite long lengths [>0:5 nm in Fig. 1(b)], which suggests
the formation of an atomic chain.

In order to investigate the chain formation, we measure
the length histogram of the last plateau and the return
length distribution. Figure 2(a) shows the length histogram
for the final conductance plateau for the Pt=H2 contacts
(filled gray distribution), and this is compared to a length
histogram for clean Pt. The length for Pt=H2 is taken here
as the distance between the points at which the conduc-
tance drops below 1.3 and 0:1G0, respectively, while for
clean Pt the boundaries are 2.5 and 1:0G0. The former
boundaries are set such as to capture the length of the
1G0 plateau plus the subsequent structures that give rise
to the peak around 0:2G0 in the conductance histogram. It
is striking that the Pt=H2 contact can be stretched as long as
0.8 nm. A sequence of peaks is observed in the Pt=H2

length histogram of Fig. 2(a), indicating the repeated oc-
currence of certain stable chain configurations that we
identify as (A), (B), and (C). The distance between the
peaks is 0:27� 0:01 nm, which is slightly larger than the
Pt-Pt distance of a clean Pt atomic chain (0.23 nm) [3].

The inset of Fig. 2(a) shows the average return lengths as
a function of chain length. This is the distance over which
the two electrodes need to be moved back after the junction
breaks in order to reestablish contact, averaged over many
break cycles. Apart from an offset of 0.3 nm due to the
elastic response of the banks [3], the relation is approxi-
mately proportional, suggesting that a fragile structure is
formed with a length corresponding to that of the last

plateau, which is unable to support itself when it breaks
and collapses onto the banks on either side.

We further test this interpretation by analyzing the
stretch length dependence of the conductance and by point
contact spectroscopy. Figure 2(b) shows the average con-
ductance for Pt=H2 junctions as a function of the chain
length. The curve is obtained by adding all measured
conductance traces from the start value (1:3G0) onward,
and dividing at each length by the number of traces in-
cluded at that point. The mean conductance decreases
rapidly as the chain becomes longer. Although the con-
ductance for a pure Pt chain also decreases with length
[12], its conductance stays well above 1G0. This fact,
combined with the larger peak distance in the length
histogram, indicates that the structure with lower conduc-
tance is probably not a clean Pt atomic chain, and may be
due to a hydrogen decorated atomic chain. The average
conductances of structures (A), (B), and (C) are 0.96, 0.56,
and 0:28G0, respectively. Since the conductance of
structure (A) is close to 1G0, we identify it with the
single-molecule Pt-H2-Pt contacts that have been studied
previously [9,10]. We discuss the new structures (B) and
(C) that arise by further stretching of the Pt-H2-Pt junction
in the following. Note that a stable level near 0:2–0:3G0 is
observed at 0.6–0.8 nm in length in Fig. 2(b). The slow
length dependence gives rise to a high number of counts in
a conductance histogram, which explains the peak at 0:2G0

in Fig. 1(c). Apart from this stable structure that we have
labeled (C) the length histogram points at an intermediate
structure (B), for which the conductance varies more
strongly with stretching.

Figure 2(c) shows an example of the differential con-
ductance and its derivative for a Pt=H2 contact taken at a
conductance of 0:1G0. Clear symmetric peaks are observed
at 51 meV in the second derivative, d2I=dV2. The peaks are
commonly observed near �57� 4 meV for contacts hav-
ing conductances in the range 0:6–0:1G0. The energy of
57 meVagrees with the energy of the transverse translation
mode of the molecule in the Pt-H-H-Pt configuration [10].
This close agreement suggests that a hydrogen molecule is
still bridging the junction after stretching it beyond the 1G0

plateau. Note that, in most measurements peaks are ob-
served in the first derivative instead of the second deriva-
tive, where the analysis outlined in Ref. [13] was used to
identify characteristic frequencies.

Based on the experiments presented above we arrive at
the following chain formation model for Pt atomic contacts
with H2. First, a single hydrogen molecule is adsorbed
between Pt electrodes [structure (A)]. Further stretching
induces the incorporation of the first Pt atom from the stem
part of the electrode into the chain [structure (B)]. Then,
the second Pt-atom is incorporated into the chain [struc-
ture (C)], and the atomic chain is formed with a single
hydrogen molecule bridging. The larger distances in the
length histogram and the low conductance should then be
attributed to additional hydrogen decorating the Pt atomic
chain. Further support for this chain formation process is

 

FIG. 2. (a) Length histogram for clean Pt (black curve) and Pt
in H2 (filled graph). The start and stop values between which the
lengths were measured were taken as �2:5; 1:0� for Pt and
�1:3; 0:1� for Pt=H2, in units of G0. Inset: Average return lengths
as a function of chain length. (b) Average conductance as a
function of chain length for Pt=H2. (c) Differential conductance
(top) and its derivative (bottom) for a Pt=H2 contact taken at a
conductance of 0:1G0.
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obtained from density functional theory (DFT)
calculations.

Electronic structure calculations were performed using a
plane wave implementation of DFT [14] with an energy
cutoff of 340 eV, where we used ultrasoft pseudopotentials
[15], and a PW91 parametrization for the exchange and
correlation functional [16]. The transmission functions of
the molecular junctions were calculated using a general
nonequilibrium Green function formalism for phase-
coherent electron transport [17], where both the Green
function of the scattering region and the self-energies
describing the coupling to the semi-infinite electrodes
were evaluated in terms of a basis consisting of maximally
localized Wannier functions [18]. In our calculations the
supercells for the scattering region are defined by 3� 3
atoms in the surface plane and contain three to four surface
layers on each side of the molecule. We used a 4� 4 grid
for the k-point integration in order to obtain well converged
results for the conductance [19].

Based upon the distances and conductances found in the
experiment presented above, we came to consider the
model structures for (B) and (C) illustrated by the insets
in Fig. 3. The figure shows calculated transmission func-
tions for structures (B) and (C) as a function of energy. The
transmission function for structure (A), a hydrogen bridge
with no additional hydrogen having a conductance of 1G0

[20], is lowered when going from (A) to (C). The conduc-
tances are found as 0.46 and 0:15G0 for structures (B) and
(C), respectively, which is in reasonable agreement with
the experimental values of �0:6 and �0:3G0. The theo-
retical values have been obtained after optimizing the
distance between the contacts by total energy minimization
and the optimal length of a Pt wire segment decorated with
additional hydrogen was found to be 0.272 nm which
agrees with the experimental results.

Our analysis shows that this reduction is due to the
additional hydrogen atoms saturating the s orbital and
part of the d orbitals between the Pt atoms they are attached
to, thereby making them unavailable for electron transport.
This is illustrated in Fig. 4(a) that shows the results of
calculations for the H2 bridge structure without additional
hydrogen. We have simulated the effect hydrogen addition
might have by cutting out Pt Wannier functions from the
scattering Hamiltonian. The removal of the Pt s orbital for
one and two subsequent wire atoms [shown only for the
first case in Fig. 4(a)] accounts for the successive reduction
of the transmission at around 1 eV and higher above the
Fermi level. For the reduction of the transmission directly
at EF, and therefore the conductance, also a blocking of
some of the d orbitals is needed, which is also shown in
Fig. 4(a). Although a cutting of the d-Wannier functions of
the first Pt atom alone does not have a large effect on the
conductance and seems to even enhance it, the conduc-

 

FIG. 3 (color online). Transmission functions for the proposed
structures (B) solid gray (green) lines and (C) black lines,
respectively, as calculated from DFT for a setup with bulk
electrodes and a (111) surface with a pyramid of Pt atoms on
top. The zero point of the x axis is the Fermi energy. The explicit
geometries of the structures are shown as insets.

 

FIG. 4 (color online). (a) Transmission functions obtained
from calculations of a single H2 bridge between wires of Pt
atoms with the s orbital (solid black line), the d orbitals [dashed
gray (green) line], both the s and d orbitals [solid gray (green)
line], and no atomic orbitals (dashed black line) removed from
the Hamiltonian. The removed orbitals are also shown super-
imposed with the atomic positions in the insets. (b) Conductance
(solid curves) and binding energy (dashed curves) for the mole-
cule inside the junction for structures similar to (B) [gray
(green)] and (C) (black) assumed to have linear atomic wire
arrangements as shown in the insets.
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tance is drastically reduced if both the s and d orbitals of
the same Pt atom are blocked. We point out that our
explanation of the conductance reduction is not in contra-
diction with the one given by Barnett et al. [21] for the
Au-H2-Au system [22] but just offers a different perspec-
tive. For structure (B) we also compared the transmission
functions of the atomic wire system with that of the more
realistic surface calculation in Fig. 3. Qualitatively, the
results are similar in terms of the main peak structure
illustrating that the analysis is robust with respect to details
of the atomic arrangement. In a quantitative comparison,
however, the conductance from the surface calculation is
higher than for the wire system by approximately a factor
of 2.0.

In Fig. 4(b) we show the dependence of the conductance
with increasing the distance between the wire electrodes.
In these calculations the positions of all hydrogen atoms
and four Pt atoms on each side have been fully relaxed. The
corresponding binding energy of the H2 bridge molecule to
the wires is also shown for comparison. Although there is a
short plateau in the conductance for structure (B) when
stretched beyond the optimal bonding distance, for
structure (C) the overall decrease with the length seems
to be slower up to a stretching length of 0.1 nm. This trend
was also found in the experimental histogram. The shift in
optimal distance between (B) and (C) just reflects the
increase of the total cell length due to the expansion of a
second wire segment.

Let us comment on the path that may lead to the struc-
tures discussed above. Since the bridging H2 molecule is
very weakly bound to the Pt electrodes, ‘‘wire pulling’’
seems to be unlikely. Structures (B) and (C) can only be
formed by a concerted process. Such a process may involve
the displacement of Pt atoms at the surface due to phonons
and the formation of intermediate structures with the addi-
tional hydrogen adsorbed on the electrodes. The configu-
ration space for covering all possibilities for atomic
movements in such a process is too large to be explored
by our calculations in detail.

In conclusion, the experimental evidence shows that a
Pt-H2-Pt single-molecule junction can be stretched further
into forming an atomic wire. We propose a likely structure
for this wire in terms of a Pt atomic chain decorated with
hydrogen. This interpretation is supported by DFT calcu-
lations. While the pathway that brings new atoms into the
atomic chain structure remains problematic, we obtain fair
agreement in the numbers for the bond distances and the
conductances.
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We present a set of benchmark calculations for the Kohn-Sham elastic transmission function of five
representative single-molecule junctions. The transmission functions are calculated using two
different density functional theory methods, namely an ultrasoft pseudopotential plane-wave code in
combination with maximally localized Wannier functions and the norm-conserving pseudopotential
code SIESTA which applies an atomic orbital basis set. All calculations have been converged with
respect to the supercell size and the number of k� points in the surface plane. For all systems we find
that the SIESTA transmission functions converge toward the plane-wave result as the SIESTA basis is
enlarged. Overall, we find that an atomic basis with double zeta and polarization is sufficient �and
in some cases, even necessary� to ensure quantitative agreement with the plane-wave calculation.
We observe a systematic downshift of the SIESTA transmission functions relative to the plane-wave
results. The effect diminishes as the atomic orbital basis is enlarged; however, the convergence can
be rather slow. © 2008 American Institute of Physics. �DOI: 10.1063/1.2839275�

I. INTRODUCTION

First-principles calculations of electrical conductance in
nanoscale contacts represent a main challenge in computa-
tional nanophysics. The interest for this type of calculations
began in the mid-1990s, where advances in experimental
techniques made it possible to contact individual molecules,
thereby making it possible to study the transport of electrons
through true nanoscale structures.1,2 Apart from the scientific
interest, the development of reliable simulation tools for
nanoscale quantum transport is relevant not only in relation
to the continued miniaturization of conventional semicon-
ductor electronics but also for the introduction of a new gen-
eration of molecule based electronics.

It has by now become standard to calculate conductance
in nanoscale contacts by employing a combination of non-
equilibrium Green’s function theory �NEGF� and ground
state density functional theory �DFT�. The resulting NEGF-
DFT formalism provides a numerically efficient way of
evaluating the Landauer-Büttiker conductance due to elec-
trons moving in the effective Kohn-Sham �KS� potential
without having to calculate the scattering states explicitly. It
has been applied extensively to a number of different sys-
tems ranging from pure metallic contacts, over organic mol-
ecules, to carbon nanotubes suspended between metallic
electrodes. Overall, the approach has been successful in de-
scribing qualitative features and trends;3,4 however, quantita-
tive agreement with experiments has mainly been obtained
for strongly coupled systems such as metallic point contacts,
monatomic chains, as well as junctions containing small
chemisorbed molecules.5–7

It is generally accepted that the NEGF-DFT method only
provides an approximation to the true conductance—even if

the exact exchange-correlation �xc-�functional could be used,
and the quality of the result is expected to be strongly system
dependent. Moreover, it is not easy to estimate the effect of
using approximate xc functionals such as the local-density
approximation �LDA� or generalized gradient approximation
�GGA�. We mention here that more sophisticated methods
for quantum transport based on configuration interaction, the
GW method, time-dependent DFT, and the Kubo formula
have recently been proposed.8–12 However, these schemes
are considerably more demanding than the NEGF-DFT and
at present, they cannot replace NEGF-DFT in practical
applications.

Irrespective of the validity of the NEGF-DFT approach
and the role played by the approximate functionals, it re-
mains important to establish a general consensus concerning
the exact result of a NEGF-DFT calculation for a given xc
functional and specified system geometry, i.e., a benchmark.
Although this might seem trivial, the present situation is
rather unsatisfactory as different results have been published
by different groups for the same or very similar systems
�several examples will be given in the text�. Perhaps, the best
example is provided by benzene dithiolate between gold con-
tacts where the calculated conductance varies with up to two
orders of magnitude for similar geometries.3,13–18

The relatively large variation of the results indicates that
the conductance, or more generally, the elastic transmission
function, is a highly sensitive quantity. Indeed, the imple-
mentation of the open boundary conditions defining the scat-
tering problem represents some numerical challenges. Small
errors in the description of the coupling between the finite
scattering region and the infinite leads as well as improper
k-point samplings in supercell approaches can introduce sig-
nificant errors in the resulting transmission function.a�Electronic mail: strange@fysik.dtu.dk.
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In this paper, we take a first step toward establishing a
common reference for NEGF-DFT calculations by perform-
ing benchmark calculations for a set of five representative
nanoscale contacts. The benchmarking is achieved by com-
paring the transmission function obtained using two different
and independent, albeit similar, NEGF-DFT methods: In one
case, the Hamiltonian is obtained from the SIESTA DFT pro-
gram which uses a basis of localized pseudoatomic orbitals
�PAOs� together with norm-conserving pseudopotentials.
The second method applies a basis of maximally localized
Wannier functions �WFs� obtained from the DACAPO DFT
code which uses plane waves and ultrasoft pseudopotentials.
In both cases, we use periodic boundary conditions in the
directions perpendicular to the transport direction and we
apply the PBE xc functional.19

The five reference systems we have chosen for our
benchmark study are �i� a monoatomic gold chain with a
single CO molecule adsorbed, �ii� a three-atom Pt chain sus-
pended between Pt electrodes, �iii� an H2 molecule bridging
two Pt electrodes, �iv� benzene-dithiolate �BDT� between Au
electrodes, and �v� bipyridine between Au electrodes. The
systems have been chosen according to the criterion that both
experimental data as well as previous NEGF-DFT calcula-
tions are available in the literature. Furthermore, they are
representative in the sense that they cover a broad class of
systems: Homogeneous and heterogeneous, computationally
simple �one dimensional� and more complex, and strongly as
well as weakly coupled.

A main result of our work is summarized in Fig. 1 where
we show the overall deviation,

� =
1

E0 − E1
�

�F+E1

�F+E0

�TWF��� − TPAO����d�, �1�

between the transmission functions calculated using the WF
and PAO basis sets, respectively. The energy E1 is taken as
the lowest lying band edge in the lead, while the cutoff en-
ergy E0 is taken to be the energy above which the WFs are
no longer able to reproduce the exact KS eigenstates of the
system which is typically �3 eV above the Fermi level. For
all the systems, we find that the deviation � decreases as the
SIESTA basis is enlarged, meaning that the SIESTA transmis-
sion functions converge toward the WF result. We take this
as evidence for the correctness of the WF results and the

justification for the use of the term benchmark calculation.
In general, we find that the double-zeta polarized �DZP�

basis provides very good agreement with the WF basis,
whereas the single-ZP �SZP� and, in particular, the SZ basis
can produce substantially incorrect features in the transmis-
sion function.

The paper is organized as follows. In Sec. II, we briefly
review the NEGF-DFT formalism and introduce the two spe-
cific implementations used in the present study. In Secs.
III–VI, we present the benchmark calculations for the five
reference systems, and in Sec. VIII, we give our conclusions.

II. METHOD

In this section, we first outline the NEGF-DFT method
which has become standard for nanoscale conductance cal-
culations. The two specific NEGF-DFT implementations ap-
plied in the present work are then introduced and their key
parameters are discussed. We then consider the important
issue, common to both methods, of how to treat periodic
boundary conditions in the plane perpendicular to the trans-
port direction. We end the section with a discussion of the
advantages and disadvantages of the two methods.

A. NEGF-DFT

The zero temperature, linear response conductance due
to noninteracting electrons scattering off a central region �C�
connected to thermal reservoirs via two ballistic leads �L and
R� can be written as

G = G0T��F� , �2�

where T��� is the elastic transmission function and G0

=2e2 /h is the quantum unit of conductance. Using the NEGF
formalism, Meir and Wingreen have derived a very useful
formula which expresses the transmission function in terms
of the Green’s function of the central region,20

T��� = Tr�Gr����L���Ga����R���� . �3�

In this expression, the trace runs over the central region basis
functions and �L/R is obtained from the lead self-energies
�defined in Eq. �5� below� as �L/R= i��L/R−�L/R

† �.
In the NEGF DFT method, both the leads and central

region are modeled by the effective KS Hamiltonian, ĥKS

= 1
2�2+�eff�r�. The self-consistent effective potential consists

of the well-known parts �eff=�ext+�H+�xc. Introducing a ba-
sis of localized orbitals, 	�i
, we define the Hamiltonian and

overlap matrices by Hij = ��i�ĥKS�� j� and Sij = ��i �� j�, respec-
tively. In the original derivation by Meir and Wingreen, the
basis was assumed to be orthogonal, but the generalization to
nonorthogonal basis sets shows that Eq. �3� still holds when
the Green’s function is defined as21

G�z� = �zSC − HC − �L�z� − �R�z��−1. �4�

Here, the matrices HC and SC are the blocks of H and S
corresponding to the central region basis functions. The re-
tarded Green’s function Gr��� is obtained for z=�+ i0+, and
the advanced Green’s function is obtained for z=�− i0+ or
Ga= �Gr�†.

The self-energy of lead � is given by

FIG. 1. �Color online� Deviation between the WF and SIESTA transmission
functions for the five reference systems studied. The dashed line indicates
zero deviation from the WF transmission. Notice that the SIESTA results
converge toward the WF result as the PAO basis is enlarged.
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���z� = �zSC� − HC��g�
0�z��zS�C − H�C� , �5�

where HC� and SC� are the coupling and overlap matrices
between basis functions in the central region and lead �,
respectively. g�

0 is the surface Green’s function describing the
isolated semi-infinite lead, g�

0�z�= �zS�−H��−1, which can be
calculated recursively using the decimation technique.22 We
have used a finite value for the positive infinitesimal 0+ in
the leads and in the central region of 10−1 and 10−3 eV, re-
spectively. By using a relatively large infinitesimal in the
lead, we obtain a considerably speedup due to faster conver-
gence of the recursive calculation of the surface Green’s
function. We checked that a smaller value does not change
our results.

B. Method 1: Wannier functions from plane-wave DFT

In method 1, the Kohn-Sham Hamiltonian is obtained
from an accurate plane-wave pseudopotential DFT code.23

The ion cores are replaced by ultrasoft pseudopotentials,24

and we use an energy cutoff of 25 Ry for the plane-wave
expansion. The Kohn-Sham eigenstates are transformed into
partly occupied WFs,25 which are used to obtain a tight-
binding-like representation of the Hamiltonian. The WFs are
constructed such that any eigenstate below a selected energy
E0 can be exactly represented by a linear combination of
WFs. In the applications, we have chosen E0 in the range of
2–4 eV above the Fermi level. In this way, the accuracy of
the plane-wave calculation is carried over to the WF basis for
all energies relevant for transport.

By performing separate DFT calculations for the �peri-
odic� leads and C, we obtain a set of WFs for each region.
Note that C always contains a few buffer layers of the lead
material on both sides of the nanocontact to ensure that the
KS potential at the end planes of C has converged to its
value in the leads. Since the WFs in the lead, in general, will
differ from those in the outermost lead unit cells of the cen-
tral region, care must be taken to evaluate the coupling and
overlap matrices HC� and SC�. Notice also that although the
WFs by construction are orthogonal within each region, WFs
belonging to different regions will, in general, be nonor-
thogonal. For more details on the construction of the WFs
and the calculations of the Hamiltonian matrix for the com-
bined L-C-R system, we refer to Ref. 26. We shall refer to
the results obtained from method 1 as the WF results.

C. Method 2: PAO SIESTA basis

Method 2, is based on the DFT code SIESTA,27 which
uses finite range PAOs �Ref. 28� as basis functions and
Troullier-Martins norm-conserving pseudopotentials.29 As in
method 1, the Hamiltonians for the leads and the central
region are obtained from separate calculations. Because the
KS potentials to the left and right of C, by definition have
converged to the value in the leads, we can take the coupling
between central region and lead �, HC�, from the pure lead
calculation. Note that this is in contrast to method 1, where
the different shapes of the WFs in the periodic lead and the
lead part of the central region make it essential to evaluate
the coupling matrix directly. Note also that this approxima-

tion, i.e. the use of the intralead coupling matrix elements
�H��� in HC�, can be controlled by including a larger portion
of the lead in C. In practice, we find that three to four atomic
layers must be included in C on both sides of the junction to
obtain converged conductances.

In the present study, we restrict ourself to the standard
PAOs for SIESTA: SZ, SZP, and DZP. For the confinement
energy, determining the range of PAOs, we use 0.01 Ry, and
for the mesh cutoff, we use 200 Ry.

D. Common ingredients

In both methods 1 and 2, we treat exchange and corre-
lation effects with the PBE energy functional.19 Furthermore,
we impose periodic boundary conditions in the surface plane
directions. This means that we are, in fact, considering the
conductance of a periodic array of junctions instead of just a
single junction. Instead of the localized basis function �n�r�
�this could be a WF or a PAO�, we thus consider the Bloch
function

�nk�
= 


R�

eik�·R��n�r − R�� , �6�

where R� runs over supercells in the surface plane and k� is a
wave vector in the corresponding two-dimensional Brillouin
zone �BZ�. Since k� is a good quantum number, we can con-
struct the Hamiltonian, H�k��, for each k point separately.
This, in turn, implies that the conductance per junction is
given by the average

G = 

k�

w�k��G�k�� , �7�

where w�k�� are symmetry determined weight factors. Unless
stated otherwise, we have used a 4	4 Monkhorst-Pack
k�-point sampling of the surface BZ, which for all the sys-
tems studied yields conductances converged to within a few
percent.26,30 We take the Fermi level of the bulk lead as the
common Fermi level of the combined system by shifting the
levels in the central region by a constant. This is done by
adding to HC the matrix 
Sc, where 
= �HL�0,0− �HC�0,0 and
the �0,0� element corresponds to the on-site energy of a basis
function located near the interface between L and C.

The main advantages of method 1 are the following: �i�
The accuracy of the plane-wave calculation carries over to
the WF basis set. �ii� The WF basis set is truly minimal and
often results in even fewer basis functions than a SZ basis.
The WF basis, thus, combines high accuracy with high effi-
ciency. The price that one has to pay is that the actual con-
struction of well localized WFs is not always straightforward
and requires some user interaction, in particular, for metallic
systems. Also, the lack of finite support of the WFs is un-
wanted in the context of transport; although in practice, it is
not a serious problem since the WFs are well localized. Fi-
nally, as already explained above, the risk of obtaining dif-
ferent WFs for two similar but nonidentical systems renders
it less straightforward to patch the parts together using the
Hamiltonians obtained for the separate calculations.

Most of the disadvantages of the WF basis are resolved
by the PAO basis set: By construction, they have finite sup-
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port and are identical as long as the atomic species on which
they are located are the same. This renders it straightforward
to patch together Hamiltonians for separate subsystems as
long as the KS potential can be smoothly matched at the
interfaces. On the other hand, to obtain an accuracy matching
the WFs, one needs to use a significantly larger number of
orbitals and, thus, longer computation times as compared to
the WF method.

III. GOLD CHAIN WITH CO

In this section, we calculate the conductance of an infi-
nite gold chain with a single CO molecule adsorbed. Scan-
ning tunneling microscope �STM� experiments suggest that
CO strongly depresses the transport of electrons through
gold wires.31 This has been supported by NEGF-DFT
calculations32 which show that the transmission function in-
deed drops to zero at the Fermi level. The use of infinite gold
chains as leads is clearly an oversimplification of the real
situation; however, the model seems to capture the essential
physics, i.e., the suppression of the conductance, and further-
more, is well suited as a benchmark system due to its sim-
plicity.

The geometry of the system is shown in Fig. 2�a�. We
use a supercell with transverse dimensions of 12	12 Å2 and
take all bond lengths from Ref. 32: dAu–Au=2.9 Å, dAu–C

=1.96 Å, and dC–O=1.15 Å. The Au atom holding the CO is
shifted toward CO by 0.2 Å. In method 1, we obtain six WFs
per Au atom and seven WFs for the CO molecular states.
Due to the elongated bond length of the Au wire, we found it
necessary in method 2 to increase the range of the Au PAOs
in order to converge the band structure of the Au wire. The
confinement energy was, therefore, in this case set to
10−4 Ry.

In Fig. 2�b�, we show the calculated transmission func-
tion using three different PAO basis sets and the WF basis
set. Overall, the PAO result approaches the WF result as the
basis set is enlarged. For the largest PAO basis �DZP�, the
agreement is, in fact, very satisfactory given the differences
in the underlying DFT methods, e.g., ultrasoft versus norm-

conserving pseudopotentials. The remaining difference can
be further reduced by a rigid shift of the DZP transmission
by about 0.15 eV.

All transmission functions feature an antiresonance near
the Fermi level. However, upon enlarging the PAO basis, the
position of the antiresonance shifts as follows: −0.27 �SZ�,
−0.16 �SZP�, −0.06 �DZP�, and 0.12 eV �WF�. Note that the
position of the antiresonance obtained with the WFs is ap-
proached as the PAO basis set is increased. Also, the curva-
ture of the antiresonance is improved as the PAO basis set is
enlarged. The improvements in these features are, however,
not directly reflected in the conductances indicated in the
parentheses following the legends in Fig. 2�b�. The reason
for this apparent disagreement is the rigid shift between the
PAO and WF transmission functions.

We observe that our results differ from the calculation in
Ref. 32: While the latter finds two peaks in the energy range
of 0–2 eV, our converged transmission function shows a
single broad peak. In general, both our PAO and WF based
transmission functions present less structure than the trans-
mission function reported in Ref. 32. We suspect that these
differences are related to the way the coupling H�C is calcu-
lated in Ref. 32.

IV. Pt CONTACT

Atomic point contacts formed from late transition metals
such as Au, Pt, and Pd show very stable and reproducible
features in conductance measurements.1 This, together with
the simplicity implied by their homogeneity, makes them
ideal as benchmark systems for transport calculations. Here,
we consider the conductance of a pure Pt contact for which
both experimental conductance data33–36 as well as theoreti-
cal calculations5,7,37 are available.

Conductance histograms obtained from mechanically
controlled break junction experiments on pure Pt samples
show a peak near 1.5G0, indicating that as a Pt contact is
pulled, structures with a conductance at around 1.5G0 are
frequently formed. NEGF-DFT calculations have shown that
�zigzag� monatomic Pt chains indeed have a conductance
close to this value.5,7,36 Moreover, the calculations predict an
increasing conductance as the Pt chain is stretched and
evolves from a zigzag to a linear configuration. This effect
has also been observed experimentally.35

In Fig. 3�a�, we show the supercell used to model the
scattering region of the Pt contact. The Pt contact is modeled
by two four-atom pyramids attached to �111� surfaces con-
taining 3	3 atoms in the surface plane. In order to ensure
that the effective KS potential has converged to its bulk
value at the end planes of the supercell, we include three to
four atomic layers �ABC-CABC stacking� on either side of
the pyramids. The chain is formed by inserting a single Pt
atom between the apex atoms of the two pyramids. We have
relaxed the contact region �pyramids+chain� while keeping
the rest of the structure fixed in the bulk configuration with
lattice constant of 3.93 Å and a distance of 14.60 Å between
the �111� surfaces. The cutoff energy used in the construction
of WFs was set to �F+4.0 eV ensuring that the KS eigen-
states below this value are exactly reproducible in terms of

FIG. 2. �Color online� �a� Central region used to describe a single CO
molecule adsorbed on a monatomic Au wire. �b� Transmission functions for
the Au wire CO system calculated using method 1 �WF� and method 2 for
three different PAO basis sets. The transmission function at the Fermi level
is indicated in the parentheses following the legends.
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the WFs. The transmission function was converged by a
4	4 k�-point sampling as stated in Sec. II D.

In Fig. 3�b�, we show the calculated transmission func-
tions using methods 1 and 2. The qualitative agreement be-
tween the two methods is striking; however, only the SZP
and DZP basis sets provide quantitative agreement with the
WF result. The SZ basis set results in a downshift of the peak
at −6 eV and an incorrect description of the features in the
important region near the Fermi level. Here, the converged
transmission function shows two peaks positioned at �F

−0.8 eV and just below the Fermi level, respectively. The
main peak astride the Fermi level, in fact, consists of three
smaller peaks, as seen more clearly in the inset for the DZP
and WF basis sets. These particular features in the transmis-
sion function were also observed in Ref. 37 for a similar Pt
contact, employing a method based on quantum chemistry
software and a description of the bulk electrodes by a semi-
empirical tight-binding Hamiltonian on a Bethe lattice.38

Also, the calculated conductance of 2.3G0 is in agreement
with our results, considering the structural differences.

In Fig. 4, we show the calculated conductance of the Pt
contact for three electrode displacements. The three configu-
rations correspond to an unstrained Pt chain, the chain just
before it snaps, and the broken chain, respectively. The
surface-surface distances are 13.62, 14.60, and 14.75 Å in
the three cases.

All basis sets, except for the SZ, are able to reproduce
the trend of increasing conductance prior to rupture. The SZ
basis set underestimates the absolute conductance by nearly
0.5G0 in the strained and broken configurations as compared
to the WF result. The conductance calculated with the SZP
and DZP basis sets is almost identical and shows
results more consistent with the WF basis for all three
configurations.

V. Pt–H2–Pt CONTACT

In this section, we consider the simplest possible mo-
lecular junctions, namely, a single hydrogen molecule be-
tween metallic Pt contacts. Similar to the metallic point con-
tacts, the Pt–H2–Pt junction shows stable and reproducible
behavior in conductance measurements. In particular, a very
pronounced peak close to 1G0 appears in the conductance
histogram obtained when a Pt contact is broken in a hydro-
gen atmosphere.33 Although reported conductance calcula-
tions show significant variation �see below�, there have been
given substantial evidence that the structure responsible for
the peak consists of a single hydrogen molecule bridging the
Pt contacts.33,39

Several groups have published NEGF-DFT calculations
for the transmission function of the Pt–H2–Pt system. Most
find a conductance of �0.9–1.0�G0,4,6,33,41 but also much
lower values of �0.2–0.5�G0 have been reported in Ref. 40.

For the benchmark calculations, we use the same setup
as in Sec. IV with the central Pt atom replaced by a hydrogen
molecule �see Fig. 5�a��. The relevant bond lengths determin-
ing the structure after relaxation of the Pt pyramids and the
hydrogen atoms are dPt–H=1.7 Å and dH–H=1.0 Å.

In Fig. 5�b�, we show the calculated transmission func-
tions. Similar to the case of the Pt contact, the agreement
between the different calculations is striking, especially in
the important region around the Fermi level. The SZ basis set
reproduces the qualitative features of the larger basis sets but
introduces a considerable downshift of the low-lying peaks.

The very good agreement between the two methods in-
dicates that the transmission function for this system is rather
insensitive to the basis set. We stress, however, that a proper
k�-point sampling of the transmission function is crucial to

FIG. 3. �Color online� �a� Supercell used for the DFT calculation of a short
linear Pt chain between Pt�111� surfaces. �b� The calculated transmission
function using methods 1 and 2. The transmission at the Fermi level is
indicated in the parentheses following the legends. In the inset, we show the
transmission function in the important region near the Fermi level for the
DZP basis set and the WF basis set.

FIG. 4. �Color online� Conductance for three different configurations during
the stretching of a small Pt chain. Configurations 1, 2, and 3 correspond to
the unstrained chain, maximally strained chain, and a broken chain, respec-
tively. The contact atoms are shown in the insets.

FIG. 5. �Color online� �a� Supercell used to model the central region of the
Pt–H2–Pt junction. �b� Transmission function for the Pt-hydrogen bridge.
The transmission function at the Fermi level is indicated in the parentheses
following the legends.
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obtain meaningful results independently of the quality of the
basis set. Restricting the calculation to the � point yields a
transmission function with a �unphysical� peak at the Fermi
level.6 We note in passing that such a peak is present in the
transmission function reported in Ref. 4. Such unphysical
features resulting from an insufficient k�-point sampling are
not properties of the molecular junction but are rather due to
van Hove singularities in the quasi-one-dimensional leads.30

The results reported in Ref. 41 are based on SIESTA DFT
code and show good agreement with our results. The con-
ductance obtained in one of the early theoretical
calculations40 on the hydrogen molecular bridge is consider-
ably lower than our and most other results. The calculational
method applied in Ref. 40 is, however, the same as applied in
the study of pure Pt contacts,37 which agrees well with our
results as discussed in Sec. IV. We speculate if this could be
related to the smaller size of the Pt cluster used to model the
electrodes in Ref. 40 as compared to the one used in Ref. 37.
Another possibility for the discrepancies is the use of the
B3LYP energy functional in Ref. 40 instead of a LDA/GGA
functional used in most other works.

VI. BENZENE-1,4-DITHIOL BETWEEN Au„111…
SURFACES

The BDT molecule suspended between gold electrodes
was among the first single-molecule junctions to be studied
and has become the standard reference for calculations of
nanoscale conductance. Depending on the experimental
setup, measured conductances vary between 10−4G0 and
10−1G0,42–46 while the calculated values typically lie in the
range of �0.05–0.4�G0.3,13,16–18,47–49 In general, it has been
found that the transmission function is strongly dependent on
the bonding site of the S atom,18,48 while variations in the
Au–S bond length only affects the transmission function
weakly.47

As our objective is to establish a computational bench-
mark for the Au-BDT system, we choose the simple junction
geometry, shown in Fig. 6�a�. The S atoms are placed at the
minimum energy positions in the fcc hollow sites of the

Au�111� surface and the molecule has been relaxed while
keeping the Au atoms fixed in the bulk crystal structure. We
use a Au lattice constant of 4.18 Å and a distance between
the Au�111� surfaces of 9.68 Å. With these constrains the
relevant bond lengths are dAu–S=2.45 Å, dS–C=1.73 Å, and
dC–H=1.09 Å.

In Fig. 6�b�, we show the calculated transmission func-
tions �the SZ result has been omitted for clarity�. Notice that
we plot the transmission function only up to 2 eV above the
Fermi level. This is because the WF transmission at larger
energies is sensitive to the parameters used in the construc-
tion of the WFs, in particular, the cutoff energy E0, and thus,
we cannot be sure about the WF result above 2 eV+�F.

The three transmission functions agree very well in the
energy range from 2 eV below the Fermi level to 1 eV above
the Fermi level, while only the DZP result agrees quantita-
tively with the WF result in the entire energy range. We
again notice the downshift of the PAO transmission functions
relative to the WF result.

The presence of a broad transmission peak positioned at
�1 eV below the Fermi level is in qualitative agreement
with previous results.3,16,47,48,50,51 For more stretched con-
figurations, i.e., for larger values of the S–C bond length,
than the one used in the present study, the broad peak splits
into two more narrow peaks.26

The transmission function presented in Ref. 3 was ob-
tained using a method very similar to our method 2; how-
ever, the reported conductance of 0.4G0 is almost twice as
high as our DZP results of 0.24G0. The large conductance
arises because the transmission peak closest to the Fermi
level is considerably broader than what we find. If, however,
we restrict the k� to the � point, we find the same broadening
as in Ref. 3 and a very similar conductance of 0.37G0. An-
other feature of the �-point only transmission function is that
the second peak positioned at �3 eV below the Fermi level
separates into a number of more narrow peaks.

In Ref. 16, the transmission function is calculated from
the linear combination of muffin-tin orbitals–atomic sphere
approximation method and averaged over 36 irreducible k�

points. Both the width and the position of the two peaks in
the transmission function at 1 and 3 eV below the Fermi
level are in good agreement with our results. The height of
the former peak is, however, lower than in our calculation
and this reduces the conductance to a value of 0.07G0. We
suspect that this difference could be due to differences in the
adopted contact geometries.

When comparing a supercell approach to quantum trans-
port with a cluster based calculation as the one in Ref. 47, it
is essential that �i� the cluster size is converged and �ii� the
number of k� points and supercell size are converged. In the
supercell approach, a N	N Monkhorst-Pack sampling of the
surface Brillouin zone corresponds to a �-point calculation
for a supercell consisting of the original supercell repeated
N	N in the surface plane.25

Extrapolating our converged calculations for 3	3 atoms
within the surface plane of the supercell and 4	4 k� point to
a �-point calculation gives a supercell consisting of �1000
atoms. We speculate that clusters of similar sizes are needed
to reach the same level of convergence. However, the re-

FIG. 6. �Color online� �a� Supercell used to model the central region of the
Au�111�–BDT–Au�111� system with S at the fcc hollow site. �b� The calcu-
lated transmission functions. Note, that the SZ transmission function has
been omitted for clarity. The transmission function at the Fermi level is
indicated in the parentheses following the legends.

114714-6 Strange et al. J. Chem. Phys. 128, 114714 �2008�

Downloaded 02 Apr 2009 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



peated supercell introduces a periodic array of molecules on
the surface, which could give rise to interference effects blur-
ring the comparison to single-molecule cluster calculations.
To quantify this intermolecule interference effect, we show
in Fig. 7 the SZP transmission function for the Au�111�–
BDT–Au�111� system, where the number of Au atoms in the
surface plane is varied from 2	2 to 5	5 atoms. Each cal-
culation has been converged with respect to the number of k�

points by a 4	4 Monkhorst-Pack sampling for all the super-
cells, except the smallest supercell for which 8	8 k� points
was needed.

It is evident that the transmission function is well con-
verged with 3	3 atoms in the surface plane. This shows that
our calculations should be directly comparable to fully con-
verged single-molecule cluster calculations.

VII. BIPYRIDINE BETWEEN Au„111… SURFACES

As the last reference system, we consider a bipyridine
molecule attached between two gold electrodes. STM experi-
ments on bipyridine molecules in a toluene solution52 show
that the conductance of Au-bipyridine junctions is quantized
in multiples of 0.01G0 which was interpreted as the forma-
tion of stable contacts containing one or more molecules.
The conductance is expected to be sensitive to the details of
the contact geometry;53 however, for the benchmark calcula-
tion, we use a flat Au�111� surface with bipyridine binding at
an on-top site which is the minimum energy configuration, as
shown in Fig. 8�a�. The Au electrodes are the same as used
for the BDT molecule in Sec. VI. The Au�111�–N distance is
2.180 Å, while the distance between the Au�111� surfaces is
11.53 Å.

The transmission functions calculated using either PAOs
or WFs are shown in Fig. 8�b�. At first, it is noted that the
overall structures of the transmission functions are similar.
We have used a logarithmic scale to make the differences in
the low transmission regime more visible. In the SIESTA cal-
culations, the position of the narrow lowest unoccupied mo-
lecular orbital �LUMO� peak which governs the transport is
underestimated but converges toward the WF result as the
PAO basis set is enlarged �see the inset of Fig. 8�b��. The
alignment of the LUMO energy level with respect to the

Fermi level and its relation to charge transfer were studied in
Ref. 54. The LUMO peak is close to the Fermi level and in
this regime, it is expected that small changes in the position
of the LUMO peak should change the conductance consid-
erably. However, this is not the case when comparing the
DZP basis set to the WF basis set since the conductance is, in
fact, unchanged even though the position of the LUMO peak
differs. The reason is that the WF transmission function has a
different tail in the high barrier tunneling regime. The origin
of this difference can be twofold: �i� The density of states of
the Au�111� surface which influence the LUMO’s density of
states could be different in the two cases. �ii� Although the
WFs have rapidly decaying tails, they do not vanish and,
therefore, they must be truncated. This truncation could in-
troduce artificial features in the transmission function in the
low tunneling regime.

Several groups have investigated the transport properties
of bipyridine-gold junctions, and there is general agreement
that the low bias conductance depends crucially on the de-
tails of the contact geometry. As different groups have cho-
sen different geometries and models for the gold electrodes,
a direct comparison of the reported transmission functions is
difficult.

To the best of our knowledge, the first theoretical paper
on the bipyridine system is by Tada et al.55 In their calcula-
tions, bipyridine is adsorbed on top of a Au atom of a rather
small Au cluster, and the coupling to the infinite electrodes is
modeled by a broadening parameter fitted to experimental
data. The zero-voltage transmission function contains some
of the same peak structures as we observe. Hou et al.56 have
published several papers on the gold-bipyridine junction.
Similar to Tada et al., they include only a few gold atoms in
the ab initio calculation and treat the coupling to electrodes
through a model self-energy term. The peak structure of the
transmission function is quite different from ours. This could
be due to the small size of the gold clusters used to mimic
the electrodes. While most other groups observe tunneling
through the LUMO tail,53,54,57 Hou et al. argue that the trans-
port is mainly taking place via the highest occupied MO–2
state. Calculations by Wu and co-workers58,59 obtained using

FIG. 7. �Color online� The transmission function of Au�111�–BDT–Au�111�
for supercells containing a single BDT molecule and with the number of
Au�111� surface atoms varying from 2	2 to 5	5 atoms, as indicated in the
legends. All the calculations apply the SZP basis set and have been con-
verged with respect to the number of k� points. The transmission function at
the Fermi level is indicated in the parentheses following the legends.

FIG. 8. �Color online� �a� Supercell used to describe the central region of
the bipyridine-Au�111� junction. �b� Calculated transmission functions �the
SZ result has been omitted for clarity�. The inset shows the dependence of
the LUMO position on the basis sets. The transmission function at the Fermi
level is indicated in the parentheses following the legends.
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a SIESTA-based transport code,60 for bipyridine attached to
the on-top site of a gold surface show overall good agree-
ment with our results �see Fig. 7�a� in Ref. 58�. The minor
differences are probably related to the fact that only the �
point has been used in the latter paper.

VIII. CONCLUSIONS

We have established a set of benchmark calculations for
the Kohn-Sham �PBE� elastic transmission function of five
representative single-molecule junctions using two different
methods based on independent DFT codes: �i� A plane-wave
DFT code in combination with maximally localized Wannier
functions. �ii� The SIESTA program which applies finite range
pseudoatomic orbitals.

For all five systems, we find that the SIESTA result con-
verges toward the WF result as the SIESTA basis is enlarged
from SZ to DZP with the latter yielding very good quantita-
tive agreement with the WF transmission. In the SIESTA cal-
culations, the transmission peaks relative to the peaks ob-
tained with the plane-wave calculation are systematically
shifted toward lower energies. The problem can be overcome
by enlarging the SIESTA basis; however, the convergence can
be rather slow.
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Although extended gold surfaces are generally considered
chemically inert[1,2] nanosized (< 5 nm) gold particles can be
very effective catalysts for a number of oxidation reac-
tions.[3–17] There are reports of similar size effects for silver
catalysts.[18,19] The origin of the nanoeffects in the catalytic
properties of these metals is widely debated,[15] and no
consensus has been reached. Based on a set of density
functional theory calculations of the full reaction pathway for
CO oxidation over extended surfaces as well as over small
nanoparticles of a number of metals, we show that although
platinum and palladium are the most active catalysts for
extended surfaces at high temperatures, gold is the most
active for very small particles at low temperature. The
calculations capture the special catalytic properties of nano-
sized particles observed experimentally, which allows the
origin of the effect to be analyzed.

Herein, we focus on intrinsic metal effects; that is, we do
not include additional possible effects that involve the
support. It is not that such effects may not be important,[5,20,21]

but it is useful to first establish the intrinsic metal effects,[15] in
particular as it has been shown experimentally that nano-
structured gold with no support is also catalytically active.[22,23]

The key feature of our analysis is that we compare catalytic
activities of different transition and noble metals for one
specific reaction, the CO oxidation.

The CO oxidation reaction on close-packed fcc(111)
surfaces was considered initially, which will give a dominant
contribution to the total catalytic rate over large metal
particles. We consider the following elementary reactions:

CO þ * Ð CO* ðR1Þ

O2 þ * Ð O2* ðR2Þ

O2* þ * Ð 2O* ðR3Þ

O* þ CO* Ð CO2 þ 2* ðR4Þ

For the metals we consider herein, Reactions (R1) and
(R2) are unactivated and fast, and we assume that these two
reactions are in equilibrium. This means that we are limited to
temperatures high enough that desorption is also fast. The
possible formation of an oxide layer on the more reactive
metals is neglected.

The forward and reverse rate constants of the Reactions
(R3) and (R4) are given by ki= niexp[%DGai/kT]
= ni exp[%(Eai%TDSai)/kT], where ni is a prefactor, Eai is the
activation energy, k is the Boltzmann constant, and T is the
absolute temperature. The activation energies are Ea=
max(ETS%EIS, 0) where EIS is the initial state energy and ETS

is the transition-state energy. DSai is the entropy difference
between the transition state and the initial state. The entropy
of adsorbed species are assumed to be zero, and the gas-phase
entropies are taken fromRef. [24]. The adsorption energies of
the different species ECO, EO2

, and EO and the transition state
energies are given with respect to the gas-phase molecules.

Assuming the prefactors and adsorption entropies are
independent of the metal, there are five metal-dependent
parameters determining the kinetics: ECO, EO2

, EO, ETS3, and
ETS4. The transition-state energies are, however, found to
scale linearly with the adsorption energies, as shown for ETS3

and ETS4 in Figure 1a and b. Such Brønsted–Evans–Polanyi
(BEP) relations are found quite generally for surface
reactions.[25] Furthermore, the O2 adsorption energy scales
with the O adsorption energy (Figure 1c). This means that the
adsorption energies ECO and EO can be viewed, to a first
approximation, as the only independent variables character-
izing the metal in the microkinetic model. Owing to the low
number of elementary reactions, it is possible to find an
analytical solution for this microkinetic model. Herein, we use
instead the more general method of a so-called Sabatier
analysis to find an upper bound to the overall reaction rate.[26]

The Sabatier rate[26] is the rate the reaction will have if all
coverages are optimum for each elementary reaction step.
Such conditions may not be obtainable in reality, but the
Sabatier rate still provides an exact upper bound to the
steady-state rate under any reaction conditions. The Sabatier
rate is also an upper bound on the rate when islanding is
included, as that will decrease the number of possible reaction
centers to the length of the boundary between different
phases.[27] The Sabatier rate thus forms a good measure of the
intrinsic ability of a given metal surface to catalyze the
reaction in question. The metal with the highest Sabatier rate
is taken herein as being the best catalyst.
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The rate of reaction for (R3) and (R4) are maximized if
the reverse reactions are neglected. The Sabatier rate is
therefore calculated from the forward rates:

rþ3 ¼ qO2
q* k

þ
3 ¼ qO2

q* n3 exp½%ðEa3%T DSa3Þ=kT( ð1Þ

rþ4 ¼ qOqCO kþ
4 ¼ qOqCO n4 exp½%ðEa4%T DSa4Þ=kT( ð2Þ

where qO2
is the coverage of adsorbed oxygen molecules,

qO is the coverage of adsorbed atomic oxygen, qCO is the
coverage of adsorbed CO molecules, and q* is the coverage of
free sites of the surface. The coverages will depend on the

reaction conditions, temperature, reactant pressures, and
conversion.

For the present case, the optimum coverages are found by
first neglecting the coverage of atomic oxygen. Still assuming
that (R1) and (R2) are in equilibrium, this gives:

qmax
* ¼ 1

1þK1 pðCOÞ þK2 pðO2Þ
ð3Þ

where K1 and K2 are the equilibrium constants for (R1)
and (R2), and p(CO) and p(O2) are the partial pressures of
CO and O2. The optimum coverages of CO and O2 have
similar expressions, namely qmax

CO =K1p(CO)q* and qmax
O2

=
K2p(O2)q*.

The Sabatier rates of each of the Reactions (R3) and (R4)
are found by using the forward rates from (1) and (2) with the
coverages of qmax, qmax

CO and qmax
O2

from (3), and the coverage of
qmax
O set to one.

rSmax
3 ¼ kþ

3 q
max
O2

qmax

*
ð4Þ

rSmax
4 ¼ kþ

4 q
max
CO q

max
O ¼ kþ

4 q
max
CO ð5Þ

The Sabatier rate of forming CO2 is determined by the
lowest of the Sabatier rates of Reaction (R3) and (R4):

rS ¼ minf2 rSmax
3 , rSmax

4 g ð6Þ

where the factor of 2 stems from the stoichiometric
number for (R3).

Figure 2 shows a contour plot of the Sabatier activity over
close-packed surfaces. The Sabatier rate is calculated at T=
600 K, PO2

= 0.33 bar and PCO= 0.67 bar, corresponding to
high-temperature CO oxidation conditions. The two-dimen-
sional volcano plots show that, of the elemental metals,
platinum and palladium are closest to the top. This agrees well
with experimental evidence.[30] Platinum and palladium areFigure 1. The BEP and scaling relations for different close-packed

fcc(111)-surfaces. a) Calculated transition-state energies for O2 disso-
ciation (R3) as a function of oxygen adsorption energy.
ETS3=1.39EO+1.56 eV. b) Calculated transition-state energies for
adsorbed CO reacting with adsorbed O (R4) as a function of the sum
of the O and CO adsorption energies. ETS4=0.70(EO+ECO)+0.02 eV.
c) The scaling of the O2 adsorption energy with the oxygen adsorption
energy EO2

=0.89EO+0.17 eV. For Pt(111,) the calculated reaction
barrier Ea=ETS%(ECO+EO) for CO*+O*QCO2+2* is 0.85 eV, in good
agreement with calculations.[28,29]

Figure 2. Contour plot of the Sabatier activity AS= kT ln[rS/n] over
close-packed surfaces as a function of ECO and EO (n is set to kT/h)
under high-temperature conditions (T=600 K, PO2

=0.33 bar, and
PCO=0.67 bar). The values for different elemental metals can be taken
from their indicated positions.
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excellent CO oxidation catalysts, used for example in car
exhaust after-treatment. This result is completely in line with
DFT calculations and kinetic modeling by Grabow et al.[31]

showing that at low temperatures, platinum without strain has
a higher activity than either compressed (weaker bond
energies) or expanded (stronger bond energies) platinum
surfaces.

The reactivity of nanoparticles was then investigated. One
important feature of nanoparticles is that the relative fraction
of low-coordinate corner atoms to surface atoms is very
large.[15,32] We concentrate herein on the reactivity of corner
atoms, and model these by carrying out calculations for metal
clusters containing twelve atoms, in the structure shown as
inserts in Figure 3. All the twelve atoms in the cluster are held
fixed with a lattice constant corresponding to the bulk value
to mimic a geometrically constrained corner of a larger
cluster, such as those in the range 2–5 nm studied exper-
imentally. The calculations are thus more intended to model a
general corner site on nanoparticles than specifically a twelve-
atom cluster, as such small clusters will have much larger
structural flexibility.[33]

It turns out that adsorption is considerably more exother-
mic on the twelve-atom clusters than on the close-packed
surfaces. This makes it important to include another elemen-
tary reaction, as the coverage of molecular O2 may be large
enough such that an associative mechanism[34] may be
important:

O2* þ CO* Ð CO2 þ O* þ * ðR5Þ

For the (111) surfaces, the weak bonding of O2 combined
with the reaction barrier for the process makes it unimportant
for platinum[27] and less reactive metals.[35]

As for the fcc(111) surface, correlations between the
transition state energies, ETS3, ETS4, and ETS5, and the binding
energies,EO andECO, are found for the twelve-atom cluster. A
scaling between EO2

and EO is also found. These relations are
shown in Figure 3. The linear relations are similar to those of
the close-packed surfaces (Figure 1), except that the adsorp-
tion energy axis has shifted. The adsorption energy of both
CO and O are substantially more negative (exothermic
adsorption) on the corner sites than on the close packed
surfaces; compare for example, the adsorption energy of O on
the (111) surfaces to those on the twelve-atom cluster: on the
latter the bond is stronger by of the order 0.5 eV. The same
trend is seen for molecular CO adsorption.

The expressions for the optimum coverages and the
Sabatier rate for (R3) and (R4) are the same as for the
fcc(111) surface. For (R5), the Sabatier rate is:

rSmax
5 ¼ kþ

5 q
max
CO q

max
O2

ð7Þ

Both Reaction (R3) and (R5) dissociate O2, and can be
followed by Reaction (R4) creating CO2. The Sabatier
activity is therefore given by:

rS ¼ maxf2minfrSmax
5 , rSmax

4 g, minf2 rSmax
3 , rSmax

4 gg ð8Þ

Figure 4 shows the contour plot of the Sabatier activity,

AS=kT ln[rS/n] . In this case, gold is closest to the top,
followed by palladium and silver.

The results in Figure 2 and Figure 4 are in good agreement
with available experimental observations.[3,32] It shows that
the relative activities of different metals can be theoretically
estimated, and it provides a clear picture of the catalyst
properties determining the best catalysts in terms of the
adsorption energies of the intermediates. The volcano plots of
Figure 2 and Figure 4 can be viewed as an illustration of the
Sabatier principle, with the important new feature that we
know which adsorption energy that provides the optimum

Figure 3. The BEP relations and scaling relation for different twelve-
atom clusters. a) Calculated transition-state energies for O2 dissocia-
tion (R3) as a function of oxygen adsorption energy.
ETS3=1.87EO+2.04 eV. b) Calculated transition-state energies for
adsorbed CO reacting with adsorbed O (R4) and O2 (R5) as a function
of the sum of the O and CO adsorption energies. ETS4=0.78-
(EO+ECO)+0.09 eV and ET3S5=0.70(EO+ECO)%0.44 eV. c) The scaling of
the O2 adsorption energy with the O adsorption energy
EO2

=1.18EO+0.03 eV. Transition states for the reactions on the Au12

cluster are shown as inserts.
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catalyst. The position of the maximum in terms of adsorption
energies depends slightly on the structure, which is related to
the fact that the relationship between adsorption energy and
activation energy is somewhat structure dependent. More
importantly, it can be seen that the metals corresponding to a
particular adsorption energy shift substantially depending on
the coordination number of the metal atom. This is true for all
the metals considered, and it is the dominant reason for gold
becoming the best elemental catalyst for the low-coordinate
sites. The shift is of the same order of magnitude as the
difference between neighboring metals in the periodic table,
explaining why it appears as if the top of the volcano has
shifted by a little less than one place to the right in the
periodic table from Figure 2 to Figure 4.

Comparing the volcanoes in Figure 2 and Figure 4, it is
clear that for gold, the corner atoms will dominate over the
close-packed surfaces for even quite large particles, as the
value of rS is many orders of magnitude larger in this case. For
platinum, on the other hand, the difference is only about an
order of magnitude. It should be noted that even for platinum,
small particles could still be more active than larger ones, but
only because the surface area per mass of catalyst is larger
(scaling as d%1).

The present analysis suggests that the more noble metals
move to the maximum in the reactivity volcano when lower-
coordinated metal atoms serve as active sites for the reaction.
It suggests that similar results could be found for other
reactions. For oxidation reactions, the best extended surface
catalysts are already quite noble: platinum and palladium,
and gold is the next, less reactive metal. For reactions
involving less reactive molecules, such as N2, we would expect
that the best nanoparticle catalysts would not be gold but
metals just to the right in the periodic table of the most active
metals (ruthenium, iron) for this reaction, for example, cobalt
or nickel. It is therefore possible that pronounced nanoeffects
in catalysis is not restricted to gold.

In summary, we have modeled the special catalytic
properties of nanosized particles observed experimentally,
and analyzed the origin of the effect. The ability of the metal
atoms to activate reactants change substantially as the
coordination number of the active metal site is reduced at
corners of metal particles. This model supports the hypothesis
that part of the observed reactivity of gold nanoparticles is
independent of the substrate.
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Abstract
The electrical properties of single-molecule junctions, consisting of an organic molecule
coupled to metal electrodes, are sensitive to the detailed atomic structure of the molecule–metal
contact. This, in turn, is determined by the anchoring group linking the molecule to the metal.
With the aim of identifying and comparing the intrinsic properties of two commonly used
anchoring groups, namely thiol and amine groups, we have calculated the atomic structure and
conductance traces of different Au–S–Au and Au–NH2–Au nanojunctions using density
functional theory (DFT). Whereas NH2 shows a strong structural selectivity towards atop-gold
configurations, S shows large variability in its bonding geometries. As a result, the conductance
of the Au–NH2–Au junction is less sensitive to the structure of the gold contacts than the
Au–S–Au junction. These findings support recent experiments which show that amine-bonded
molecules exhibit more well-defined conductance properties than do thiol-bonded molecules.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A detailed, quantitative understanding of the electron transport
properties of molecular junctions composed of a single
molecule between two metallic electrodes is an essential step
for the development of molecular electronics. Experiments on
single-molecule junctions often suffer from a large variability
in the measured conductance, probably originating from details
beyond experimental control. In the case of molecules linked to
metal electrodes via a sulfur atom, that is, through thiol linking
groups, the conductance shows a strong junction to junction
variation within the same experiment [1], as well as between
different sets of experiments [2–5]. More recent experimental
and theoretical works suggest that the use of amine (NH2)
anchoring groups yields junctions with a more well-defined
conductance [6].

Knowledge about the atomistic contact geometry must be
obtained through detailed comparisons between experimental
and theoretical results. For certain types of systems,
calculations based on density functional theory (DFT) agree

well with experiments and yield valuable insights. Such
systems include atomic wires [7, 8] and metal contacts with
small chemisorbed molecules [9, 10]. Even though these types
of systems are not directly relevant for molecular electronics,
they are important for developing our understanding of electron
transport at the nanoscale, and as such they can be considered
as simple benchmark systems. For larger and more complex
molecular junctions, such as benzene-dithiolate, rather large
disagreements have been observed, both between individual
experimental results and in comparison with theory [6, 11, 12].

In this paper, we compare the transport properties of
the thiol and amine anchoring groups by performing DFT
calculations for both structure and conductance of Au–S–Au
and Au–NH2–Au nanojunctions. In the case of sulfur we
consider two different geometries: a top–top configuration
where the sulfur atom is bonded to a single gold atom on each
side, and a top–hollow configuration where sulfur is bonded
to a single gold atom on one side and three gold atoms on
the other side. We simulate a break junction experiment by
calculating the conductance as the contact is pulled apart, and

0953-8984/08/374101+04$30.00 © 2008 IOP Publishing Ltd Printed in the UK1
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we find a strong dependence on the local atomic structure. In
contrast to sulfur, we find that the amine group always binds
to a single Au atom on each side of the junction. We consider
two junction geometries: a symmetric top–top configuration
similar to the one found for S, and an asymmetric top–top
configuration. The pronounced structural selectivity of the
amine group leads to very similar conductance traces for the
two configurations.

2. Method

The DFT calculations have been performed using the plane-
wave-based pseudopotential code DACAPO [13]1. The molecular
contacts are described in a supercell containing the sulfur
atom or amine group sandwiched between two four-atom
Au pyramids attached to Au(111) surfaces. We include
six Au atomic layers each containing 3 × 3 atoms in the
surface plane. Periodic boundary conditions are imposed in
all directions. We use a 4 × 4 Monkhorst–Pack grid to
sample the Brillouin zone in the surface plane both for the
total energy and the transport calculations. The structures are
optimized by relaxing the position of the anchoring group and
the pyramids while keeping the rest of the Au atoms fixed in the
bulk positions. Before calculating the transmission function,
the DFT eigenstates are transformed into a set of localized
Wannier-like basis functions [14]. This transformation makes
it possible to partition the system into a central region
(containing the contact region of the junction) and a left and
right lead (bulk gold). In this way, the Landauer–Bütikker
conductance, G, can be calculated from the Green’s function
of the central region, GC, according to the formula [15, 16]

G = G0 Tr[GC�LG†
C�R]|ε=εF , (1)

where the trace runs over all localized basis functions in the
central region and G0 = 2e2/h is the conductance quantum.
The central region Green’s function is calculated from

GC(ε) = ((ε + i0+)SC − H KS
C − �L(ε) − �R(ε))−1, (2)

where SC and H KS
C are the overlap matrix and Kohn–Sham

Hamiltonian matrix of the central region in the localized basis,
and �L/R are lead self-energies. The coupling strengths are
given by �L/R = i(�L/R −�

†
L/R). More details on the Wannier

transport scheme may be found in [17].

3. Results

To gain insight into the possible structures of an Au–S/NH2–Au
contact, we have made successive relaxations of the system
as the distances between the outermost surface layers is var-
ied, thereby simulating the contact formation in a break junc-
tion experiment. When increasing the distance between the
two Au(111) surfaces, all atomic distances between them have
been proportionally increased and subsequently relaxed. In the

1 The exchange and correlation part is treated using a PW91 energy
functional [20]. The Kohn–Sham (KS) eigenstates are expanded in plane
waves with a kinetic energy less than 25 Ryd.

Figure 1. Conductance (circles) and total energy (squares) for
(a) Au–S–Au and (b) Au–NH2–Au nanojunctions in the symmetric
top–top configuration as a function of distance between the
outermost Au(111) surfaces. The breaking forces are approximately
1.8 and 1.0 eV Å

−1
, respectively. The zero points of the energy have

been chosen arbitrarily. Notice that for both systems the conductance
increases as the contact is pulled apart due to the linearization of the
contact geometry.

following we concentrate on two different structures for the
gold contacts: (i) two opposing pyramids and (ii) a pyramid
opposing a pyramid with the tip atom removed, with geome-
tries as shown schematically in figures 1 and 4, respectively.
For contact (i) both S and NH2 bind symmetrically to the tip
atoms of the two pyramids. We refer to these as (symmetric)
top–top configurations. For contact (ii), S adopts the site of
the removed Au tip atom, thus forming a top–hollow config-
uration. However, NH2 forms a bridge between the pyramid
tip atom and one of the three gold atoms forming the pyramid
base (the asymmetric top–top configuration). We note that the
sulfur top–top and top–hollow configurations correspond to the
configurations proposed in [18]. We also mention that molecu-
lar dynamics simulations of sulfur-contaminated gold contacts
frequently result in Au–S–Au contacts similar to the ones stud-
ied here [19].

Consider first the sulfur top–top structure, shown in
figure 1(a). For short distances between the Au(111) surfaces,
the S atom is situated at the side of the contact bridging the
two Au tip atoms. As the contact is pulled apart, the sulfur
atom moves into the contact, resulting in a linear contact
configuration. Interestingly, the conductance increases from
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Figure 2. Total transmission (upper panels) and projected density of
states (PDOS) for the p-orbitals perpendicular to the contact axis
(lower panels) for a contracted (left) and stretched (right) Au–S–Au
contact. The center of both the p-orbitals moves closer to the Fermi
level as the contact is elongated. The px -orbital (pointing towards the
sulfur atom) is completely quenched for the contracted contact due to
the coupling to the gold s-band. Both effects result in the observed
increase in the conductance as the contact is stretched.

Figure 3. Total transmission for a contracted (left) and stretched
(right) Au–NH2–Au contact. Notice that the transmission function
varies little around the Fermi level as compared to the transmission
function of the Au–S–Au contact shown in figure 2.

0.3G0 to 0.8G0 as the contact is pulled apart, demonstrating
how small changes in the local atomic structure of the contact
can lead to significant changes in the conductance of the
junction. In general, such behavior is characteristic of the
phase-coherent transport regime and is a direct manifestation
of the wave nature of the charge carriers.

The observed increase in conductance as the contact is
stretched is mainly due to the sulfur px -orbital (the x axis is
vertical on all plots of the structure). To show this, we compare
in figure 2 the transmission function and the projected density
of states (PDOS) for the px -and py-orbitals at two different
elongations of the contact. The peak in the transmission
function just below the Fermi level is clearly correlated to the
PDOS of the px -and py-orbitals. As the contact is stretched,
the peak grows in intensity by a factor of two and is shifted
closer to EF. The increase in intensity is due to the opening of
the px channel. For the contracted configuration the PDOS
of px is broadened and shifted downwards by the coupling
to the gold s-band. In the linear configuration, this coupling
is prohibited by symmetry and px and py are degenerate.

Figure 4. Conductance (circles) and total energy (squares) for
(a) Au–S–Au and (b) Au–NH2–Au nanojunctions in the top–hollow
and asymmetric top–top configurations, respectively, as a function of
distance between the outermost Au(111) surfaces. The breaking
forces are approximately 1.0 and 0.9 eV Å

−1
, respectively.

Besides the contribution from the px - and py-orbitals, the total
transmission also includes a background contribution from
the pz-orbital pointing in the transport direction. However,
this background contribution stays almost constant when the
system is elongated. More generally, the sharp peaks in the
transmission function very close to EF makes the conductance
sensitive to changes in the surrounding potential.

Next, we consider the symmetric NH2 top–top structure
shown in figure 1(b). The structural change upon pulling is
rather similar to the sulfur junction. However, the conductance
is somewhat lower and increases from about 0.2G0 to 0.4G0.
We note that the drop in conductance when the contact breaks
is less abrupt than for the sulfur junction. This is due to
the weakness of the Au–NH2 bond as compared to the Au–
S bond, which implies that the gold pyramids retract less
when the NH2 junction breaks. More generally, the continuous
drop in conductance upon rupture is an artifact of the finite
size of the supercell which prohibits a large retraction of the
contact when it breaks. The transmission functions of the NH2

junction for two different elongations are shown in figure 3.
In comparison with the sulfur junction, the transmission
functions of the amine junction show little variation around
EF. Thus small changes in the nearby electron potential due

3
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to changes in the gold contacts should have little effect on the
conductance.

In the Au–S–Au top–hollow configuration, the sulfur atom
occupies the site of the removed tip atom of one of the two
pyramids, as shown in the schematics of figure 4(a). When the
junction is pulled, no major rearrangements of the atoms occur
and the conductance stays rather constant around 0.8G0 until
the contact breaks. We notice that the conductance trace of the
top–hollow configuration is distinctly different from the trace
of the top–top configuration in figure 1(a). In particular, the
conductance does not increase upon pulling but stays almost
constant until the breaking point.

The calculated conductance trace of the asymmetric NH2

top–top configuration (the same Au contact geometry as for the
sulfur top–hollow) is shown in figure 4(b). The conductance
increases from 0.3G0 to 0.4G0 as the junction is pulled and is
quite similar to the symmetric NH2 top–top configuration of
figure 1(b). The reason for the similarity with the symmetric
top–top configuration is that in both cases NH2 binds to a single
gold atom on each side of the contact. This is due to the
fact that the hydrogen atoms occupy two of the four available
sp3 hybrid sites, which leaves only two unoccupied orbitals
for the gold bonds. Obviously this is in contrast to sulfur,
which can form bonds to four gold atoms as in the top–hollow
configuration of figure 4(a).

4. Summary

With the aim of identifying and comparing the intrinsic
properties of thiol and amine anchoring groups in relation to
molecular electronics, we have presented DFT calculations
of the structure and conductance of Au–S–Au and Au–NH2–
Au nanojunctions. The main result is that the structural
selectivity of the amine group leads to small junction to
junction fluctuations in the conductance traces of the Au–
NH2–Au junctions, whereas the larger variability in sulphur–
gold bonding geometries leads to significantly different Au–
S–Au conductance traces depending on the atomic structure
of the gold contacts. Thus, the intrinsic transport properties
of the amine group are more well defined than those of the
thiol. This supports the experimental finding that amine-
bonded molecules are easier to characterize in terms of
conductivity than thiol-bonded molecules. The similarity of
the conductance traces of the Au–NH2–Au junctions should
lead to a peak around 0.4G0 in a conductance histogram. On
the other hand, the structural sensitivity of Au–S–Au junctions
may produce a histogram without clear features. However, it

should be possible to identify the sulfur top–top structure from
its characteristically rising conductance trace.
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We present first-principles calculations of the dI /dV characteristics of an H2 molecule sandwiched between
Au and Pt electrodes in the presence of electron-phonon interactions. The conductance is found to decrease by
a few percentages at threshold voltages corresponding to the excitation energy of longitudinal vibrations of the
H2 molecule. In the case of Pt electrodes, the transverse vibrations can mediate transport through otherwise
nontransmitting Pt d channels leading to an increase in the differential conductance even though the hydrogen
junction is characterized predominately by a single almost fully open transport channel. In the case of Au, the
transverse modes do not affect the dI /dV because the Au d states are too far below the Fermi level. A simple
explanation of the first-principles results is given using scattering theory. Finally, we compare and discuss our
results in relation to experimental data.
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In recent years it has become possible to measure the
electrical properties of single molecules captured between
metallic electrodes.1–3 Such experiments provide a unique
opportunity to develop our understanding of basic quantum-
mechanical phenomena at the nanometer length scale and at
the same time constitute the first steps toward molecule-
based electronics.4

Interactions between the conduction electrons and the
molecule’s vibrational degrees of freedom is of particular
interest for the performance of molecular electronics devices
as they determine the local temperature and stability of the
device when subject to an external bias voltage.5 Moreover,
inelastic scattering can be used to identify the atomic struc-
ture of molecular junctions by exploiting the sensitiveness of
the molecule’s vibrational frequencies and the electron-
phonon interaction to the junction geometry.6–12

Perhaps the simplest molecular junction consists of a
single hydrogen molecule sandwiched between metal elec-
trodes; see Fig. 1.3,13 Shot noise measurements on Pt-D2 con-
tacts show that the conductance is carried predominantly by
a single almost fully transparent channel,14 and density-
functional theory �DFT� calculations have shown that this is
consistent with a linear bridge configuration.3,15–17 An alter-
native configuration where the H2 molecule is dissociated in
the contact has also been proposed, however, this junction
yields a conductance larger than 1G0 �G0=2e2 /h is the con-
ductance quantum� with contributions from three channels.18

Inelastic point-contact spectroscopy provides information
about the hydrogen molecule’s vibrational frequencies and
their variation upon stretching. The data obtained from such
measurements have also been found to be consistent with the
linear bridge configuration.7

The fact that the hydrogen junction supports a single, al-
most fully open conductance eigenchannel suggests that the
inelastic-scattering processes should be particularly simple to
understand. Indeed, consider a junction supporting a single-
scattering channel at the Fermi energy with a transmission
probability of T= �t��F��2. At low temperatures the molecule
sits in its vibrational ground state and the electron looses the
energy �� to the molecule during a scattering event. Assum-

ing a bias voltage eV=�L−�R��� an electron incident on
the molecule from the left with an energy just below �L,
must end up in a left moving scattering state after interacting
with the molecule. This follows from energy conservation
and the Pauli principle. Upon inelastic scattering, the prob-
ability for the electron to enter the right electrode is thus
changed from T to R=1−T. Consequently, the change in
conductance due to the electron-phonon interaction should
be proportional to 2T−1, i.e., an increase �decrease� in the
conductance is expected for T�0.5 �T�0.5�. The same con-
clusion has been reached using more rigorous arguments19–21

and has recently been supported by measurements on Pt-H2O
junctions.22

In this paper we present DFT calculations for the dI /dV
curves of Pt-H2-Pt and Au-H2-Au junctions in the presence
of electron-phonon interactions. For both Pt and Au elec-
trodes, scattering on the longitudinal modes lowers the con-
ductance by a few percentage of G0 in accordance with the
simple one-channel model discussed above. In the case of Pt,
the transverse modes can mediate tunneling through the oth-

FIG. 1. The supercell use to model the metal-H2-metal junction.
Only the hydrogen atoms are allowed to vibrate �the “dynamic”
atoms�. This is a good approximation due to the large difference in
mass between Au/Pt and H. The effect of the field generated by the
vibrating H atoms is taken into account inside the indicated inelastic
region. The central region, C, is coupled to semi-infinite bulk elec-
trodes and periodic boundary conditions are imposed in the direc-
tions perpendicular to the contact axis.
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erwise closed d-channels leading to an increase in the con-
ductance of up to 5% of G0, demonstrating that the
metal-H2-metal junction cannot be viewed as a simple one-
channel system. For Au, the transverse modes have no effect
on the conductance because only s states are present at the
Fermi level and these do not couple via the transverse vibra-
tions.

The Hamiltonian of the system is given by

Ĥ = Ĥel + Ĥph + Ĥel-ph, �1�

where Ĥel is the Hamiltonian of electrons moving in the

static equilibrium structure, Ĥph describes the vibrations of

the H2 molecule, and Ĥel-ph is the interaction between the

electrons and the vibrating hydrogen atoms. For Ĥel we use
the Kohn-Sham Hamiltonian.

Within the harmonic approximation the molecular vibra-

tions are described by the Hamiltonian Ĥph=������b�
†b�

+ 1
2 � where b�

† �b�� creates �destroys� a phonon in mode �.
The electron-phonon interaction takes the form

Ĥel-ph = �
n,m�C

�
�

Mnm
� cn

†cm�b�
† + b�� , �2�

where the first sum runs over Wannier functions located in
the inelastic region, see Fig. 1, and the second sum runs over
vibrational modes. The electron-phonon coupling matrix,
M�, is given by Mnm

� = �	n�r��W��r��	m�r��, where the dis-
placement potential, W��r�=�vs��Rn	
�r� ·Q�, is the deriva-
tive of the effective KS potential in the direction defined by
eigenmode �. In practice W� is obtained as a finite difference
between equilibrium Hamiltonians describing the electronic
system when the hydrogen molecule has been moved in the
positive and the negative normal direction.

The current flowing into the molecule �central region C�
from lead 
=L ,R is calculated from the formula23,24

I
 =
e

h
� Tr��


����GC
���� − �


����GC
����
d� , �3�

where GC
�,� is the lesser and greater Green’s functions of the

central region evaluated in the presence of coupling to leads
and the phonons.25

The lesser and greater Green’s functions are given by

G���� = Gr�����L
���� + �R

���� + �ph
� ���
Ga��� , �4�

where Gr���= ��+ i
− �Hel
C−�L
r −�R

r −�ph
r 
−1 and Gr���

= �Ga���
†.
The self-energy originating from the coupling to the leads

are calculated using standard techniques.26 For the self-
energy due to the electron-phonon coupling from mode � we
use the first Born approximation,

�ph,�
� ��� = M�G0

��� � ����M� �5�

�ph,�
r ��� =

1

2
��ph,�

� ��� − �ph,�
� ���


−
i

2
� �ph,�

� ���� − �ph,�
� ����

� − ��
d��, �6�

where the last equation follows from the general identity
Gr−Ga=G�−G� together with the Kramer’s Kronig relation
between Im �r and Re �r. We assume zero-phonon tempera-
ture corresponding to infinite cooling of the vibrations, and
thus the number of phonons has been set to zero. Conse-
quently electrons never interact with an excited molecule and
therefore can only lose energy to the molecule during a scat-
tering event.

As done often we have omitted the Hartree term in the
electron-phonon self-energy.27,28 The corresponding energy-
independent contribution to the retarded self-energy can be
understood as a static phonon-induced change in the mean-
field electronic potential. It is expected that this small static
potential would be, at least partially, screened if included in
the DFT self-consistency loop.

The supercell geometry of the considered hydrogen con-
tact is shown in Fig. 1. The distance between the two elec-
trodes, or equivalently the length of the supercell, has for the
case of Pt been chosen to make the calculated vibrational
frequencies of the H2 molecule match the experimental val-
ues as close as possible.7 For the case of Au where less
detailed experimental data is available, we have chosen the
distance by minimizing the total energy. Using the plane-
wave pseudopotential code Dacapo29 we have relaxed the
surface layers, the pyramids and the hydrogen molecule to
obtain stable junction structures. We used an energy cutoff of
25 Ry for the plane-wave expansion, described the ion cores
by ultrasoft pseudopotentials,30 and used a 1�4�4 Monck-
horst pack grid for the k-point sampling. Exchange and cor-
relation effects were described with the PW91 functional.31

As a basis for the electronic states we use partially occupied
maximally localized Wannier functions32 which allows for an
efficient and accurate calculation of transport properties as
described in Ref. 26.

The vibrational eigenmodes, �Q�	, and corresponding fre-
quencies, ���	, of the H2 molecule are obtained by diagonal-
izing the dynamical matrix of the system which in turn is
calculated from the DFT total energies by finite differences.
Thanks to the large difference in mass between the metal and
hydrogen atoms, we can calculate the dynamical matrix for
the two H atoms keeping all metal atoms fixed. Following
this procedure we obtain a longitudinal stretching mode
�M1�, a longitudinal center-of-mass mode �M2�, as well as
two pairwise degenerate transverse modes which we refer to
as hindered rotations �M3� and hindered transverse center of
mass modes �M4�. The modes are sketched in the insets of
Fig. 2 and the corresponding frequencies are given in the
caption.

In Fig. 2 we show the differential conductance calculated
from Eq. �3� including scattering on the different vibrational
modes separately. To extract the features due to the inelastic
scattering from those due to elastic scattering we have sub-
tracted the elastic signal, i.e., we plot G�V�=Gfull�V�
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−Gel�V�+Gel�V=0�, see Ref. 27 for a discussion of this pro-
cedure.

The conductance curves of Fig. 2 present several interest-
ing features: for both Pt and Au the longitudinal modes lead
to a decrease in the conductance as expected from the one-
channel model. It is noticed that the internal stretching mode
has a much larger impact on the electrons than the CM mode.
For Au, the transverse modes have no effect on the transport,
while for Pt they lead to an increase in the conductance.
Since the junction has one fully open channel this seems to

conflict with the one-channel model which would predict an
increase only for junctions with conductance �0.5G0. It is
noted that the differences in the zero-bias conductances are
due to the tails of the electron-phonon self-energy, which
although centered around the vibrational frequencies also
have weight at other energies. Before discussing the origin of
the above mentioned features it is useful to consider a sim-
plified description of the scattering process.

In the following we regard Ĥel-ph as a perturbation to Ĥ0

= Ĥel+ Ĥph and consider the scattering of a single electron off
a molecule in its vibrational ground state. For simplicity we
disregard the effect of all the other electrons �but we do take

the Pauli principle into account�. The scattering states of Ĥ0
are conveniently chosen as the eigenchannels incident on the
molecule from the left, �Lp���, or right, �Rq���.33,34 The
probability that an electron of energy � injected from the left
lead in mode p, is transmitted �reflected� upon scattering
elastically on the central region is denoted by TLp���
= �tLp����2 �RLp���= �rLp����2�. Due to the nonmixing property
of the eigenchannels we have T
p+R
p=1 for all channels p
and 
=L ,R. In terms of the eigenchannels the Landauer for-
mula for conductance takes the form Gel=G0�pTLp��F�
=G0�qTRq��F�. The state of the molecule is specified by the
number of phonons in each mode, �n�. We use the symbol �
to denote a state of the combined electron-molecule system.

Assume that eV=�L−�R�0 and consider an electron in-
cident on the junction from the left in the state �in=�Lp���
with �R����L and the molecule in its vibrational ground
state, �0�. According to scattering theory, the system ends up

in the asymptotic out state, �out= Ŝ�Lp ;0�, where Ŝ is the

scattering operator incorporating the effect of Ĥel-ph. In the
first Born approximation we have the transition amplitudes

�
q;n�Ŝ�Lp;0� � �
q;n�Lp;0� − 2�i��Ein − Eout�

��
q;n�Ĥel-ph�Lp;0� , �7�

where Ein and Eout are the total energies of the combined
electron phonon system in the in- and out-going states. This
allows us to express the out state as

�out = Cp
�Lp��� � �0� + �
q,�

�cpq
� �Rq�� − ���� � �1��� ,

�8�

where the prime in the sum means that only modes with
����eV are included. The expansion coefficients are

cpq
� = DRq�� − ������Rq�� − �����W��r���Lp���� , �9�

where DRq��� is the electronic density of states for channel
Rq. The normalization constant, Cp= �1+�q,�� �cpq

� �2�−1/2, has
been introduced because the first Born approximation is not a

unitary approximation to Ŝ. The fact that only states coming
from the right electrode are included in the sum of Eq. �8� is
a simple consequence of the Pauli principle.
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FIG. 2. �Color online� Differential conductance of the Pt-H2-Pt
�full� and Au-H2-Au �dashed� junctions when scattering on a single
vibrational mode is included. The insets illustrate the vibrational
modes together with the symmetry of the corresponding displace-
ment potential W��r�. Frequencies of the H2 vibrational modes �in
meV� for Pt:��M1=190, ��M2=171, ��M3=64, and ��M4=30
and for Au:��M1=249, ��M2=141, ��M3=84, and ��M4=37.
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In the elastic case, an electronic wave-packet constructed
from the states �Lp in a narrow interval around the energy �,
initially located far from the molecule in the left lead, will
make it to the right lead with probability TLp���. In contrast
the scattered state �8� describes a situation where the initial
wave packet makes it to the right electrode with probability

Pp = �Cp�2
TLp��F� + �
q,�

��cpq
� �2RRq��F�� , �10�

where we have assumed that T and R varies little on the
scale of ��. The total change in conductance due to the
inelastic scattering can then be obtained from Landauer’s
formula

�G = G0�
p

�Cp�2�
q,�

��cpq
� �2�RRq��F� − TLp��F�
 . �11�

Apart from the assumptions of instantaneous cooling of
the phonons and weak electron-phonon interaction, which
also underlie the first-principles results, Eq. �11� was derived
in the absence of a Fermi sea. However, as we show below,
Eq. �11� provides a simple and physically appealing expla-
nation of the first-principles results of Fig. 2.

It follows from Eq. �11� that the change in conductance
involves all pairs of channels for which the matrix element
��Lp�W��r���Rq� is nonzero for some mode �. Since W��r�
extends to the metal atoms binding to H2, any scattering
state—transmitting or not—with weight on these atoms will
also contribute in Eq. �11�.

In the case of Pt, we find at the Fermi level two types of
eigenchannels with sufficient weight on the hydrogen atoms
and the contacting Pt atoms that the coupling matrix element
will be significant. One eigenchannel is the almost fully open
s channel and the others have d character and very low trans-
mission at �F. Since Au has no d states at the Fermi level,
only the s channel makes a contribution in Eq. �11�.

For the longitudinal modes, M1 and M2, the symmetry of
W� implies that s-s transitions are possible, but not s-d tran-
sitions �d-d transitions are not excluded by symmetry, but
because of the vanishing overlap between �Ld and �Rd�.
Since Rs−Ts�−1 we should expect a drop in conductance
in agreement with the first-principles calculations. On the
hydrogen molecule, the s channel has mainly character of the
H2 antibonding orbital. This implies that the product
�Ls�r���Rs�r� is unchanged upon reflection in the plane cut-
ting through the H-H bond perpendicular to the molecular
axis. On the other hand the potential WM2�r� changes sign
upon this reflection. Consequently, the matrix element
��Rs�WM2��Ls� will be almost zero, and this explains the
weak signal observed for M2 as compared to M1.

The spatial shape of the d states implies that coupling to
the s channel is possible only via the transverse modes M3
and M4, see the symmetry of W� in the insets of Fig. 2.
Limiting the sums in Eq. �11� to these two relevant states we
see that �G becomes proportional to Rd−Ts. The increase in
conductance found for the transverse modes in the Pt contact
can thus be explained by a higher reflection probability of
the low-transmitting d channel as compared to the transmis-

sion probability of the high-transmitting s channel. We stress
that small changes in the transmission probabilities for the s
or d channels could change the sign of �G. The symmetry of
the displacement potential, W�, for the transverse modes pre-
vents coupling between two states with s symmetry, which
explains why the transverse modes do not affect the conduc-
tance of the Au junction.

We notice that the calculated increase in conductance due
to the transverse modes is not in agreement with the experi-
mental data from inelastic point-contact spectroscopy for
Pt-H2-Pt junctions which show a conductance decrease.
Some of the possible explanations for this disagreement are:

�i� According to Eq. �11�, the size �and the sign� of �G is
determined by the relative magnitude of the s- and d-channel
transmissions. Even small changes here could change the
sign of �G. In this sense, the fact that we obtain an increase
in conductance while experimentally a decrease is observed,
should be viewed as a quantitative rather than a qualitative
difference.

�ii� In principle the 1BA applies in the limit of weak
electron-phonon interactions while we obtain electron-
phonon matrix elements �M in Eq. �2�
 on the order of elec-
tron volts. On the other hand the inelastic features in the
dI /dV are a few percentage of G0 indicating that only a few
out of a hundred electrons are scattered. Moreover, previous
studies applying the 1BA to gold chains agree nicely with
experiments,8 indicating that the 1BA provides an accurate
description of electron-phonon interactions in strongly
coupled metal-molecule-metal junctions.

�iii� The highly symmetric geometry of the
metal-H2-metal junction used in this study is an idealized but
oversimplified model of the real structure. However, we have
considered other less symmetric configurations none of
which gave rise to a conductance decrease for the transverse
modes.

�iv� Inclusion of a finite phonon temperature could affect
the calculated properties. However, as can be seen from Eq.
�14� of Ref. 35, to lowest order in the electron-phonon inter-
action strength the sign of �G cannot change by including
heating.

Despite the differences between the experimental and the-
oretical findings for the phonon-induced features in the
dI /dV, we hesitate to conclude that the linear bridge configu-
ration is not the structure observed in the experiments. The
reason is the strong evidence mentioned in the introduction
which favors the linear bridge combined with the small size
and high sensitivity of the inelastic features.

In conclusion, we have performed first-principles calcula-
tions for the nonlinear dI /dV curves of Pt-H2-Pt and
Au-H2-Au molecular junctions in the presence of electron-
phonon interactions. For both metals, the longitudinal vibra-
tions of the H2 leads to a decrease in the conductance at bias
voltage corresponding to the frequency of the vibration, eV
=��. In the case of Pt electrodes, the transverse vibrations
induce an increase in conductance. This might seem surpris-
ing since the hydrogen junction supports a single almost
fully open transport channel and thus, according to the
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one-channel model, inelastic scattering should always lower
the conductance. On the basis of scattering theory we
showed that the increase is a result of nontransmitting d
channels which couple to the transmitting s channel via the
transverse modes. This is consistent with the finding that

transverse modes do not affect the conductance in the case of
Au electrodes.
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