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Abstract

High-level control systems have been utilized in the process industry for decades,
and also in cement production their use is well established. In comparison to manual
control their ability to increase production and quality of end product, while reducing
energy consumption and emission, is well recognized. Therefore, the payback time
may be less than one year. It is common however, that the systems are disabled only
a few months after commissioning because the process has changed in such a way
that it does no longer matching the systems’ tuning.

The cause of this can be raw materials changing, wear of machinery, and recon-
struction of the plant etc. Therefore, in order to keep a constant, high performance,
the high-level control system requires regular maintenance by means of expert per-
sonnel readjusting and modifying the algorithm, which is resource demanding.

The aim of this Ph.D. project is to minimize or eliminate the amount of resources
needed to keep a high performance.

Current high-level control algorithms are sophisticated and complex software. An
analysis of such algorithms shows that only 10% of the source code can be consi-
dered implementation of control theory. The remaining 90% handles other tasks but
nevertheless still require maintenance.

For the 10% of the algorithm that is control related, the maintenance issue is
to some extent addressed by research topics such as adaptive control, which aim
at retuning the parameters of the algorithm to match the changing process. In this
project however, it has been chosen to focus on the remaining 90% of the algorithm
which still require manual modifications to cope with a changed process. Although
this issue has gained limited attention from academia so far it is well recognized by
the industry.

In the process of maintaining an algorithm it has turned out that navigating the
source code, understanding the interaction of signals and tracking down the state-
ment in the code responsible for the problem is the issues which require expert know-
ledge and they are very time consuming. In contrast, it is relatively simple to conduct
the actual modification once the few statements to be modified have been found.

Current SCADA systems allow logging of signals while the control system is run-
ning which may be useful in the diagnostic process. However, each signal to be log-
ged must be explicitly specified, and typically only measurements, setpoints and key
performance indicators are therefore logged. Thus, critical algorithm-related informa-
tion is not available post-mortem.

A number of tools and methods has therefore been developed which aim firstly
at monitoring a running algorithm to raise an alarm in case the algorithm starts to
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behave abnormally. Secondly, a set of tools and methods are proposed to help the
human expert to diagnose and locate the part of the algorithm that is responsible for
the malfunction. These steps are based on information extracted from the algorithm
at runtime by means of a technique called program slicing.

Thus, instead of monitoring the process to detect changes, attention is focused
on the control algorithm itself. In addition to the signals already logged by the SCADA
system, enough data is collected at each execution of the control algorithm so an
exact replay of its execution can be performed later. The resolution of this replay is
down to single-stepping through the lines of source code, keeping track of variable
values from the execution of one statement to the other.

The method has been tested on a full scale control algorithm, showing that com-
putational cost at runtime is neglectable and that the amount of additional data to
be logged is compatible with the storage capacity of current computers. Preliminary
statistical analysis of the logged data shows that normal and abnormal behavior of a
real-world control algorithm can be distinguished so an alarm can be raised.

The method enables backtracking of signal dependencies in the algorithm which
can be used to semi-automatically guide the human expert to the responsible part of
the algorithm. This feature is demonstrated in a simple control algorithm.
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Dansk Resumé

Højniveau reguleringssystemer har været anvendt i processindustrien i årtier og ud-
gør et veletableret marked også i cement produktion. Tilføjelsen af et sådant regu-
leringssystem medfører øget produktivitet, nedsat energiforbrug og forbedret kvalitet
af slutproduktet så tilbagebetalingen typisk er under ét år. Desværre sker det ofte at
systemet bliver taget ud af brug, få måneder efter installation.

Årsagen hertil er mangeartet og skyldes grundlæggende at miljøet omkring sy-
stemet ændrer sig så processen som systemet er designet til at regulere ikke længere
er den samme. Det kan f.eks. være råmaterialer der ændrer sig, slidtage af maskiner
osv. For at opretholde konstant, høj ydelse er det derfor nødvendigt at systemt jævn-
ligt vedligeholdes og tilpasses de ændrede forhold hvilket er ressourcekrævende.

Formålet med nærværende PhD projekt er at minimere eller helt eliminere de
resourcer det kræver at opretholde høj ydelse.

Moderne højniveau regulerings-algoritmer er omfattende og kompliceret softwa-
re. Analyse af sådanne algoritmer viser at kun 10% af kildekoden kan betegnes som
implementeret reguleringsteknik - de resterende 90% er kode som varetager andre
opgaver men som dog stadig kræver vedligeholdelse.

Hvad angår de 10% af algoritmen som er reguleringsrelateret findes etablerede
forskningsområder så som adaptiv regulering som søger at tilpasse algoritmens pa-
rametre til ændringer i processen. I dette projekt er der derimod valgt at fokusere på
de resterende 90% af algoritmen som kræver manuel tilpasning til nye forhold - et
problem som er anerkendt i industrien.

I forbindelse med manuel tilpasning af en reguleringsalgoritme har det vist sig at
kræve ekspertindsigt og være meget tidskrævende at navigere rundt i kilde koden,
forstå sammenhænge mellem signaler og finde de få linier kode som skal ændres. At
udføre ændringen derimod er relativt simpelt.

Der er derfor udviklet en række koncepter og værktøjer med henblik på først at
overvåge algoritmen under kørsel og detektere og alarmere i tilfælde af at algorit-
men opfører sig unormalt. Dernæst hjælpes brugeren (vedligeholdelses-personale)
til at lokalisere de få, relevante linier kode som er skyld i problemet, uden at det er
nødvendigt at undersøge omkringliggende dele af algoritmen.

I stedet for at overvåge den regulerede proces rettes fokus således imod regule-
ringsalgoritmen selv.

Eksisterende SCADA systemer tillader i begrænset omfang logning af signaler
hvilket er til gavn i forbindelse med vedligehold. Dog skal det konfigureres eksplicit
hvilke signaler der skal logges, og interne variable i reguleringsalgoritmen er ikke
tilgængelige. Derfor er det typisk kun måling og set-punkter der logges. Informatio-
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ner om reguleringsalgoritmens opførsen er derfor ikke tilgængelig f.eks. når det skal
undersøges hvorfor algoritmen gjorde som den gjorde for en uge siden.

Med de foreslåede løsninger bliver der logget tilstrækkelig information til at algo-
ritmens nøjagtige eksekveringsforløb kan genskabes kode-linje for kode-linje ned til
værdien af hver enkelt variabel.
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Chapter 1

Introduction

It is Monday morning at Elbonia Cement Industries and plant manager John routinely
opens his email to check the weekly, auto-generated report from the SCADA- and
control system. Besides the usual graphs and tables showing production trends and
emission indexes etc., the system has this time included a new and emphasized sec-
tion which he has never seen before. It tells that the control system itself, and not just
the physical plant has somehow changed its behavior. A closer look at the tonnage
shows a slight drop since the previous week, and the key performance indicators to-
gether with the environmental section in the report are not as tidy as they use to be.
Overall there is nothing intimidating, like reduced availability of the machinery, but just
a minor indication that something is afoot.

John have chosen not to maintain any expert control system knowledge on site,
so he clicks a link in the report to request service from the manufacturer who com-
missioned the system last year. Less than half a cup of coffee later, Mrs. Jensen
from the manufacturer is on the phone, asking for permission to access the system
remotely...

At her desk in Copenhagen, Mrs. Jensen is confident that she can resolve the
issue, although she is not quite an expert in the kind of control algorithm running
at Elbonia Cement. A vague memory tells her that Mr. Nielsen who installed and
customized the system had to make some rather extensive last minute modifications
to the algorithm to make it cope with the special conditions on site. Unfortunately he
is on vacation and is unavailable.

The new tracing tool tells her that, while the system used to alter slowly between
a handful of states, it switched to a rapid cycle between 3 new states about a week

9



10 Chapter 1. Introduction

ago. A single mouse click leads her to the few lines of code to blame for the cycle.
Since it is only a few lines, she understands their purpose rather quickly. The remain-
ing thousands of lines of source code comprising the entire algorithm she does not
know, and she does not care. The tool has pin pointed the piece of code that needs
attention, and that is all she has to know for now.

Another mouse click brings up statistical information about the single signal re-
sponsible for this particular branching in the algorithm. It shows that the kiln temper-
ature is fluctuating a little more than usual, just enough to trigger some threshold that
causes the controller to switch to a different mode. It turns out that the latest ship-
ment of alternative fuel the plant got is more heterogeneous in terms of calorific value
and a brief chat with John ensures her that the increased fluctuation is acceptable
considering the attractive price tag of the new fuel. So, only a few thresholds need
adjustment to tolerate the new fuel characteristics.

Before noon the system is back at stable, high performance and John is happy.
The control system issue was identified and resolved before it ever evolved to become
a problem and he is now confident he will reached the targeted production and plant
availability which the management have set for him this quarter. He heads to the
control room to inform Joe, who just started his watch on the day shift, but hesitates...
In fact, there is no reason to disturb him at all.

1.1 The Situation Today

This short story highlights some of the improvements in the maintenance of industrial
control systems that have been the objective of the work in this project.

Our imaginary plant is able to detect abnormal behavior and raises a very early
warning of a control algorithm that can no longer cope with the changing environment.
Our control expert Mrs. Jensen is able to resolve the problem with an effort so limited
that it may be conducted remotely, before the issue develops into something serious.

To emphasize the envisioned benefits, we imagine the same story once again,
this time as it would typically develop with the current state of the art in industrial
control:

“Nine. That is the only number missing horizontally. But, no! Wait - it is already
present vertically? Bugger, there must have been an error somewhere.” It is Saturday
morning around 04 o’ clock at Elbonia Cement Industries and operator Joe is alone
in the control room. The room’s calm atmosphere, with classical background music
and the soft snore from the coffee machine in the small adjacent kitchen makes up
a sharp contrast to the inferno taking place outside the soundproof windows. Out
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there, powerful machinery is reducing an entire mountain into dust, heating it to tem-
peratures that will melt steel and crushing the whole thing to dust one more time.
Only to achieve what is properly one of the earliest chemical reactions man learned
to master. And doing so with 500t of mountain per hour.

But for Joe, this inferno is merely perceived by means of the hundreds of silent
little green numbers, symbols and figures on the large LCD panels in front of him. He
has almost completed his third Soduko that night when he is interrupted by the all too
well known repeating “ding!...ding!” from the SCADA system requesting his attention
for the 317th time tonight. Once again it is the automatic control system for the kiln
that has bailed out with some obscure error message. It started a couple of weeks
ago and has been more and more common. Slightly annoyed, Joe finally chooses to
switch it off and run on manual instead. He never really trusted that thing anyway...

At the staff meeting one month later, plant manager John is frustrated. They have
difficulties controlling quality, power consumption has increased 5% and production
has gone down, not to mention the unexpected stop they had to make last week
because some parts had worn out way faster than they use to. Joe had mentioned
something about problems with the control system, but that will have to wait - there is
no time to worry about his fancy computer toys when production is not even stable.

When John finally contacts the manufacturer, there is another problem: The only
expert control engineer available for the time being is Mrs. Jensen, and the culture
in Elbonia makes females on the plant unacceptable. Another 6 month passes by
before the young Mr. Petersen finally visits the plant. A task like this is complex and
time consuming and is not suitable to be done remotely. It is absolutely necessary to
be present on site to coordinate with people in the control room.

All in all, it takes Petersen 3 weeks to get the control algorithm up and running
again and fix a number of other smaller issues. The error message mentioned does
no longer show up and he is happy the day he can finally leave the hostile environment
of the Elbonian desert.

What he did not realize during his stay, was that a new feeding system has been
installed that gives twice the amount of material for the same control signal as the
algorithm was originally tuned for. So the performance of the control algorithm is still
poor after his stay and there are yet more chapters to be written about the control
system at Elbonia Cement.
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1.2 Background

Cement is produced by crushing and heating of limestone together with various ad-
ditives. Cement plants are typically very large and complex structures with high
throughput of materials and, consequently, high energy/fuel consumption and emis-
sion levels. In 2006, FLSmidth gained an order to build the world’s currently largest
cement production line with a capacity of 12,000 ton/day. In the minerals sector,
facilities are typically larger, with capacities one order of magnitude greater.

In this section we will briefly introduce the technology involved from a control
point of view, of what is considered a typical, modern cement plant (2008). However,
production techniques control strategies and machinery undergoes constant devel-
opment. On the other hand, the lifetime of some equipment often exceeds half a
century. Therefore, it is common that the technology at a single plant range from
state of the art to well beyond obsolete.

The number of IO’s, e.g. temperature measurements, solenoid valves, etc. may
exceed 100.000 for plants with multiple production lines. Hence, the utilization of
Distributed Control Systems (DCS) and Supervisory Control And Data Acquisition
(SCADA) systems is the norm. The SCADA system supplies a Human Machine In-
terface (HMI) through which the human operator can control actuators and monitor
measurements from a centralized control room. The same system handles logging
of selected process data for review and reporting to e.g. management and enterprise
level systems.

Thus, the control system is hierarchical, with the bottom level comprising discrete
sensors and actuators interfacing to Programmable Logic Controllers (PLC). Due to
technological development, discrete sensors are being replaced by intelligent coun-
terparts with embedded communication, calibration and diagnostic capabilities. The
PLC’s handle safety interlocks and sequential starts and shutdowns as well as stabi-
lizing control.

Examples of safety interlocking includes ensuring that the fuel pump to a burner
cannot be started if the pilot flame is out, or to automatically stop a feeder loading
material on a conveyor belt if the conveyor belt stops for whatever reason. Together
with the SCADA’s HMI system, multiple actuators can be grouped together so they
appear to the operator as only one, e.g. the starting of a burner may involve a se-
quence of opening valves and starting fans and pumps, but for the operator this will
appear as a single operation.

Fast and stabilizing control is performed by PID loops in the PLCs. For example
the power to a fan drawing air through some equipment is controlled to maintain a
certain differential pressure, measured across the equipment. In this context, "fast"
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control is denoting time constants in the range of milliseconds to seconds.

Via the SCADA system the human operator will then control the setpoint for the
differential pressure rather than the fan power directly. Communication between the
PLC- and SCADA layer is usually standard Ethernet with extensive use of fiber optic
cable for noise reduction.

For further reading [Wang and Liao 2004] presents a good walk-through of the
current state of the art in SCADA systems, and [Mahjoub and Dandachi 2007] gives
a case study of a current SCADA system commissioning.

The high-level control system is located on top of the SCADA system in the control
system hierarchy, taking over the role of the operator by reading measurements and
writing setpoints to the PLCs. Thus, the term “high” in “high-level control” refers to
its location in the hierarchy, above the low-level control performed by the PLCs. It is
important to note, that the high-level control is not necessarily more technologically
advanced or more important to the overall process control than the low-level. The
high-level control could in theory be simple a PID, while low-level controllers could
utilize the state of the art in fault tolerance and nonlinear neural networks.

High-level control systems are generally not considered a replacement of the
human operator but merely a supporting system similar to the role of the autopilot in
commercial aircraft. In practice, the high-level control system(s) may be considered a
detail of the entire SCADA system especially if both are supplied by the same vendor;
in this case they may even share common hardware and other IT infrastructure.

High-level control systems are used extensively in the operation of cement and
mining plants in order to maximize production while minimizing fuel consumption and
emission as well as down-time of the plant. Due to the high complexity of the plant,
control systems can, when used correctly, perform this task much better than human
operators. A promotional brochure [ProcessExpert 2008] for a high-level control sys-
tem for a ball mill - a mill system used to produce cement powder - promise up to
6% increase in production, 5% reduction of power consumption, and 50% reduction
in quality variations compared to manual operation.

Nonetheless, plants with no automation at all still exist in some areas of the world.
This emphasizes that control, and especially high-level control systems, plays a role
of optional, performance increasing acquisitions for these particular kinds of process
facilities. Furthermore, it emphasize the fact that the main purpose of these con-
trol systems is disturbance rejection rather than stabilization and reference tracking
since cement production is a continuous process in which reference signal such as
production level and quality are mostly constant.

In the context of control theory, the time constants handled by the high-level con-
trol is ranging from a few minutes to several hours. Consequently, sample times
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are correspondingly long allowing the high-level control algorithms to be running on
standard PC hardware with computation time and the limited real time capabilities of
common operating systems (2008) not being an issue. Any hard real time control is
handled by dedicated hardware, i.e. PLCs, or even special safety-certified PLCs.

The control methodology behind high-level control systems have historically been
dominated by Fuzzy logic. Examples include [Sheridan and Skjoth 1984], [Holmblad
and Østergaard 1995] and [Yuan et al. 2008]. The tendency in the industry is that
this technology is gradually being replaced by Model Predictive Control (MPC) [Ma-
ciejowski 2002; Martin et al. 2000].

Figure 1.1: Promotional figure of the systems hierarchy with the location of the high-level control
system highlighted.

Figure 1.1 shows the location of the high-level control system in the hierarchy of
systems on top of the SCADA and PLC levels as discussed here. The higher levels
above the high-level control primarily consists of systems to supply plant- and en-
terprise level management with information about productivity, equipment availability
etc. and will not be discussed further.

1.2.1 Cement Production

The raw materials for cement production are lime and clay in the ratio 80% and 20%
respectively. To some extent sand, iron ore, shale and various industrial waste may
be added to compensate for chemical compounds lacking in the raw materials. Fig-
ure 1.2 shows the major steps in the production. The raw materials are crushed, then
mixed and ground to a powder about the fineness of common wheat flour in the raw
mill and stored in the raw meal silo.
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In this stage it is critical to maintain the desired chemical composition of the raw
meal despite variations in the raw material. Therefore several steps are taken in
homogenizing the materials according to chemical analysis of their composition.

The raw meal is fed to the top of the pre-heater tower which is essentially a large
counter-flow heat exchanger where the particles flow downwards and are heated to
approximately 900◦C in a series of cyclones by hot combustion gases flowing up-
wards. In the bottom chamber - the calciner - fuel is added and CO2 is expelled from
the lime by heat. The hot raw meal then enters the rotary kiln in which the main burner
increases the temperature to app. 1500◦C. This liquefies the metallic compounds of
the material that sinter together and forms pebble sized nuggets, known as cement
clinker. After the kiln, the clinker is flash cooled by cold air on moving grates in the
cooler and then stored in silos.

The hot air from the cooler is recycled for combustion in the kiln and pre-heater.
A single, large Induced Draft (ID)-fan draws air from the cooler, through the kiln, cal-
ciner and pre-heater cyclones and leaves the system as oxygen depleted combustion
gas at the top of the pre-heater tower. This ensures that the pressure at any point
inside the system is lower than the atmospheric pressure outside so there will be no
dangerous hot gas/dust leaving the system in case of small leaks.

The combustion gas is cooled and dust is reclaimed and returned into the pro-
duction. Depending on the chemistry of fuel and raw materials further treatment of
the combustion gas may be required for environmental reasons, e.g. scrubbing to
remove sulfur, before the gas is released to the atmosphere.

The cooled clinker is finally ground to the well known, grayish cement powder
in the cement mill where gypsum and fillers such as fly ash may be added and the
cement is ready for shipping.

Coal, heavy fuel oil and natural gas are common fuels for the kiln and calciner.
These fuels are homogeneous, controllable and predictable in terms of calorific value
and feeding. However, there is an increasing focus on alternative fuels ranging from
wood chips, bone meal, and dead animals, to tires and various liquid and solid waste
products. The very high temperature in the kiln makes cement production attractive
for waste incineration and it is common that alternative fuels are introduced not for
their calorific value but for the purpose of destruction. Any ash of such materials will
be embedded in the final product.
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Figure 1.2: Principles of cement production.

The inhomogeneity and oftentimes unknown composition of such materials is a
special challenge for the stabilization of the process and high-level control systems
for optimizing the use of alternative fuels is an upcoming market.

[Maranzana 2002] and [Prouty 2006] exemplifies recent installations of control
systems in the cement industry.

For a comprehensive introduction to cement production see [Duda 1977].

1.2.2 The Industry

The company engaged in this industrial Ph.D. is FLSmidth Automation which is a part
of FLSmidth & Co A/S, a supplier in the cement and minerals industries ranging from
complete, turn-key factories to equipment and services. Within the cement industry,
the company holds a world leading position with one third of the world’s cement being
produced using FLSmidth equipment. The minerals sector is a focus area where the
company is expanding aggressively.

The company employs about 9000 people worldwide and has a turnover of 2.5Be
(2007 estimate).

FLSmidth Automation (FLSA) supplies control systems and electrification for the
industries mentioned above. About 400 people are employed worldwide, responsible
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Figure 1.3: Top: operator in control room. Bottom: automated robot laboratory.

for a turnover of 100Me.
The R&D department in Valby, Copenhagen holds 40 employees and is essen-

tially doing software development. This Ph.D. project relates mainly to a single prod-
uct in the portfolio branded “Process Expert”; a high-level control system for the ce-
ment and mining industry. In case of high-level control, other suppliers include ABB1

and Pavilion2.
Information about 3. party high-level control systems is sparse, and largely anec-

dotal. Lacking such information and considering the company’s high market share,
the product offered by FLSmidth Automation is therefore assumed to be representa-
tive for the state of the art in high-level control at least in the context of cement and
mining.

The ability to supply high-level control systems not only with high performance,
but also a very low maintenance requirement, will increase the company’s potential,
compared to its international competitors.

1http://www.abb.com
2http://www.pavtech.com

http://www.abb.com
http://www.pavtech.com
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The global market size of advanced optimization solutions in the cement industry
counts for 25-30M$. Up until now, no specific solutions for the long-term perfor-
mance of these solutions has been presented in the market. The market is a quite
trend-oriented market where the great potential becomes a reality after some limited
number of successful installations.

1.3 The Maintenance Problem

Use of high-level control systems in cement plants is well established. It is acknowl-
edged that their use can improve performance by increasing production and reduce
the environmental impact of the plant.

In spite of this, many systems are taken out of use after a short period due to
physical changes in the plant, which are not handled by the control system. The
problem is that due to the changes, the control system needs readjustment and this
often requires skills that are not available on the plant. One reason for the adjustment
requirements is that the emphasis of design of current control systems is on opti-
mization of a given plant with little or no consideration of maintainability of the control
system.

Even though the digital computers and software running the high-level control
system may be considered time invariant, the environment surrounding the control
system is not. For example the characteristics of the plant or the raw materials may
slowly drift away from what the control system was adjusted for at install time.

This may be caused by general wear and tear but also poorly maintained instru-
ments causing the drift of signal levels. Currently these issues call for maintenance
of the system, such as retuning and reconfiguration of different modules. In addition
to these gradual changes, the plant characteristics may change abruptly caused by
process changes such as new recipes or rebuilding of the plant. All issues that may
one way or another reduce the performance of the control system.

Modern process control systems are large and complex bulks of software. The
development of process control systems have gradually moved from being a pure
control engineering discipline, possibly with aspects of electronic, mechanical or chem-
ical engineering to be enterprise-sized software development with a typical control
system implementation representing millions of lines of source code.

Thus, today’s successful control system manufacturer is a software house with
certain domain knowledge (control engineering) rather than an engineering company.
This introduces a number of new challenges caused by the complexity of such large
software system. Some challenges may be successfully addressed with methods
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already developed by the software industry, while others are unique to process control
systems due to their special properties and needs.

Traditionally, the performance of a control system is measured as the ability to,
(when optimally tuned) increase the production yield while meeting the environmental
requirements such as emission levels. However, this might be a poor indication of
the long-term advantage, if the system looses performance and reliability soon after
installation due to poor adaptation to the issues above. Other characteristics of the
system are important as well, for instance how “gentle” the system controls the plant
by reducing overall wear and tear and spending of wearing parts.

Ultimately, the human operator might choose to disable the system and run the
plant manually, which causes a significant performance loss. These issues are well
recognized within the industry but they have so far earned only limited attention from
academia.

The exact cost of disabling the high-level control may be difficult to estimate. How-
ever as a rough indication, the fuel consumption of a typical cement kiln is reduced by
4%3 when the high-level control is running. At a fuel consumption of e.g. 25t of coal
per hour at a price of 150USD/t the annual loss is 1.3MUSD in fuel cost. In addition
to this there is the loss associated with lost production and quality variance, for the
kiln alone.

1.3.1 Scope and Limitation

The motivation for this project is that a high-level control system should perform just
as well after a year of service as it did right after commissioning. The scope of this
project though is limited to maintenance of the high-level control algorithm which may
be defined at an arbitrary abstraction level by means of source-code, configuration
data and the like. If a high level control algorithm is not maintained at regular intervals,
its performance is expected to develop as depicted in Figure 1.4. If the performance
drops below a certain level determined by the users (dotted line), the system may
ultimately be switched off.

In this context, the aim of this project is therefore to attain a constant high perfor-
mance (dashed line) with no or significantly reduced maintenance needs.

Obviously, the high-level control and SCADA system are subject to maintenance
issues beyond this. At the bottom of the hierarchy sensors and actuators are subject
to wear and communication channels including cables and wireless links may break
and wear as well in the hostile environment. At the top of the hierarchy the entire

3Stated in FLSmidth advertising,
http://attachments.flsmidth.com/FLSA/Brochure/ProcessExpert_Kiln.pdf

http://attachments.flsmidth.com/FLSA/Brochure/ProcessExpert_Kiln.pdf
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Figure 1.4: Predicted performance of high level control system without proper maintenance.

SCADA computer platform may currently (2008) consist of tens of servers, clients,
network switches, storage, Uninterruptible Power Supply (UPS) etc. very similar to
the IT infrastructure found in any other medium sized office facility. Such an instal-
lation naturally requires proper maintenance to keep the high-level control system
runnable. However, these issues are considered beyond the scope of this project
so focus is narrowed to the control algorithm alone which is the application specific
software part in the context of control engineering.



Chapter 2

Analysis of the Maintenance
Problem

The detailed causes of malfunction for the high level control system (HCS) remain
largely undocumented. Only anecdotal evidence is available from personnel involved
in the commissioning and maintenance of control systems.

The SCADA system is logging all measurements and actuator setpoints and such
log files are available from a number of sites. For example from such a log file it
is possible to deduce when the HCS has been running the last year. If, in addi-
tion, a human-maintained log existed, reporting all events on site such as rebuilding,
changes in fuel type or raw material, unplanned downtime, and, moreover, a reason
was available for each time the operator chose to switch the HCS off, then it may be
possible to correlate the process data and the human log to determine the events
which affect HCS performance.

But since cement is a low-value bulk product and its production is not associated
with any significant danger it is not subject to particular regulations or audit that could
enforce careful logging of anomalies in the production. One should note that it might
not be obvious for the average customer that replacing e.g. a pump or valve with a
different model is likely to affect the control system, and that information about such
a modification is not logged in any way.

However, the control system as introduced in Section 1.2 consisting of DCS,
SCADA and HCS, is similar to those found in other continuous processes, e.g. power
plants, waste incineration and refineries. It has therefore been considered to obtain

21
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such a log from these industries. In particular nuclear power plants are known to keep
such logs due to the tight safety regulations but because of the sensitive nature of un-
planned downtime and equipment failure in such a facility, it has not been possible to
obtain such logs.

Available data is therefore limited to SCADA log files and sparse, oral accounts
from maintenance personnel. SCADA log files are generated with focus on process
analysis and generally contain all measurements and setpoints. Additionally, a few
calculated performance indicators such as average availability of machinery, etc. may
be included.

Signals generated by the control algorithm are only logged if explicitly specified.
Due to storage limitations, the resolution of the data is oftentimes reduced e.g. all
signals are logged every second the last week, every minute the last month, and
hourly average the last year.

Thus, if a particular incident is to be investigated for which the sequence of events
is of interest, these log files may be insufficient if signals are only available as hourly
or even daily average.

Initially, various initiatives have been considered briefly for producing log files
with a higher level of detail dedicated to identifying maintenance issues. However,
this would turn out to be particularly expensive and have a time frame of two or more
years for practical reasons, and have therefore been deemed unworkable.

2.1 Causes of Malfunction

The sources of reduced control system performance that have been identified are
based on oral accounts from maintenance personnel. A number of examples of such
accounts are cited here:

“The single blade damper in the tertiary air duct is worn down by clinker
dust so only the axle remains. That means this actuator is effectually
disabled and the HCS is no longer able to affect the air flow.”

“A damper has no position sensor. Rather, the torque (motor current) is
used to detect when the damper has reached an end point. The damper
gets jammed by accumulated material in an unknown position, fooling
the HCS to believe it is at an endpoint.”

“The burning zone temperature is controlled poorly because the fuel flow
can only be changed in steps of 0.2t/h (which is coarse). A closer look
reveals that this is not due to mechanical limitations but a dead band
that has mistakenly been added to the feeder setpoint signal.”
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Note: It remains unknown why this has not manifested itself immediately
after commissioning. It is apparently common though, that deadbands
are applied to setpoints in order to reduce actuator wear.

“Cement dust has entered the computer casing of the HCS server dam-
aging its hardware.”

It seem to be a general tendency that performance issues are related to the level
of abstraction associated with a hierarchical control system architecture: The HCS is
(as intended) unaware of the underlying implementation of actuators and any nested
control loops. For example in case of the jammed damper the HCS is unaware of
the particular realization of the damper’s open/closed status because the estimation
of this signal based on motor torque is done at the PLC level. This ensures that
the HCS can remain unchanged in case the damper is replaced by a different model
equipped with an absolute position sensor.

Generally, process controller performance issues relate to one or more of the
following factor which are not limited to the cement and mining industries only:

• wear and tear of machinery

• blocking and material build up

• change in raw materials and fuel

• replaced machinery or wearing parts

• general drift of process parameters

• rebuilding or addition to plant

• soft- and hardware failure

In the following sections we consider methods of addressing each of these issues.

2.1.1 Raw Material Changes

In the cement and minerals industry, the chemical and mechanical properties of the
raw materials will vary over time due to local geological variations in the quarry. For
example changes in hardness will affect the working point of the raw mill and changed
chemistry will affect the kiln and therefore the control system. If the properties of the
raw material are known compensation can be performed, e.g. material with low lime
content from one end of the quarry can be mixed with high lime material from the
other end of the quarry to achieve a uniform chemistry.
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Methods for addressing such issues are well established. The composition of the
quarry can be mapped by drill samples, and/or by the combination of on stream anal-
ysis of each truckload of material with GPS tracking of the truck. Based on the on
stream analysis of the material, a data terminal in the truck can instruct the driver
where to obtain the next load of material in order to maintain a uniform mixture.
[Collins et al. 1995] shows an example of the gains associated with the installation of
an on stream analyzer.

After initial crushing the material is stacked (See Figure 2.1) in a manner that
further serves to increase homogenization.

Figure 2.1: Stackers and reclaimers in operation.

Throughout the production facility, materials are sampled automatically and send
by air tube to automated laboratories for analysis and the result is used in the HCS.

These steps to reduce raw material changes are extensive cf. the size of ma-
chinery (See Figure 2.1), and aim at controlling the raw material composition and
thus, quality variations disregarding the HCS’s used downstream in the production.
Any positive influence on HCS performance and maintenance is therefore merely a
side effect. Nonetheless, some potential of improvement remains for the HCS. The
sample frequency and sample delay are critical and may both be close to the time
constant of the process. Currently Kalman filters are used to estimate the value be-
tween samples and any improvement to the accuracy of these estimates will naturally
increase the tolerance to raw material changes.
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2.1.2 Fuel Changes

The rate of adding fuel to the burning process is an important control signal and
any changes in the fuel, such as calorific value therefore strongly affects the HCS
performance. Preferably, fuel should be homogeneous and possible to be dosed
accurately. Coal, Pet coke, fuel oil and gas tend to be homogeneous and easy to
dose, but calorific value may still vary from one batch to the other. More importantly
the increasing use of alternative fuels emphasize these issues [Kääntee et al. 2004;
Keefe and Shenk 2007; Zabaniotou and Theofilou 2008]. One popular fuel is scrap
tires that are often added whole. Since sizes of the tires may vary the use of whole
tires may impose both significant quantizations of the control signal and dosage prob-
lems. A solution to this is shredding the tires which however, require additional energy.

Other fuels may either be so inhomogeneous that the calorific value is unknown.
HCS dedicated to handling alternative fuels are upcoming [Recke 2006]. The user
can be forced to enter at least a qualified guess of the calorific value of the fuel. If
extra information such as monetary cost and content of contaminants such as sulphur
and chlorine are entered such a control system can supply added value like the abil-
ity to choose the cheapest fuel while maintaining product quality and environmental
restrictions.

2.1.3 Diagnosis and Fault Tolerance

Accumulating material may block sensors, limit the movement of actuators and/or
affect the dynamics of the process causing a mismatch between the controller’s tuning
and the process.

Intelligent or “smart” sensors/actuators [Song and Lee 2008; Eccles 2008] are
addressing some of these issues by implementing self-monitoring, calibration func-
tionality etc. The IEEE 1451 standard1 describes one architecture for such transduc-
ers.

A traditional sensor of e.g. temperature generates a voltage or 4-20mA signal
which is then to be converted to a temperature by a PLC. In contrast, a smart sen-
sor may perform signal validation, internal calibration and supply meaningful error
reporting rather than supplying a incorrect measurement in case of a fault.

This means that the control system, including the HCS, can be informed explicitly
about many kinds of in-transducer faults and be designed to act appropriately.

Diagnosis and fault tolerant control are well established topics in academia [Si-
mon et al. 2002; Blanke et al. 2003; Perrier and Kalwa 2005] which aim at designing

1http://ieee1451.nist.gov/

http://ieee1451.nist.gov/
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control systems that degrade gracefully in case of a fault. For example if a model of
the process during what is considered normal operation is available, process outputs
can be continuously compared to simulated outputs from this model. In the ideal case
the two signals should be nearly identical. Divergence between the real process and
the model outputs will indicate a change in the process - a fault. By means of the
known model the control system may handle the fault in a formal manner and con-
tinue operation with degraded performance and possibly even diagnose the problem.

A popular example of fault tolerant control is that of a commercial airliner loosing
the ability to move the rudder and thus control of the craft’s yaw rate. A fault tolerant
control system will detect the mismatch between the input (pilot’s movement of flight
controls) and output (measurements of aircraft’s state) according to a known model.
Using the methods of fault tolerant control, the controller will automatically reconfigure
so that the flight controls that would normally move the rudder will now apply different
power to the starboard and port thrusters to control yaw. Thus, maneuverability is
maintained although at reduced performance.

While smart transducers may be able to handle a number of known predictable
faults, fault tolerant control would address issues like wear, blocking, changes in raw
material etc. in a general, formalized framework. Furthermore, even limited diagnosis
capabilities would supply added value to a HCS product, e.g. simply the ability to state
that something physical in the process has caused the problem and not the HCS itself
could be beneficial.

Finally the use of observers [Hendricks et al. 2005] (Kalman filters) or “soft sen-
sors” can further increase the tolerance to failing sensors and even substitute physical
sensors.

2.1.4 Adaptive Control and Auto Tuning

The low level PID loops inherently hides the effect of some of the issues listed earlier
in this section minimizing their effect on HCS performance. However, a gain or a
major process time constant may eventually drift so far away from what the HCS was
tuned for, such that performance becomes unacceptable.

An especially “forgiving” tuning of the HCS could alleviate this issue. In practice,
close-to optimal tuning may very well be impossible why a forgiving tuning could in
fact result in a better performance at the bottom line as illustrated in Figure 2.2. Ro-
bust Control [Skogestad and Postlethwaite 2005] is formalizing this by defining an
envelope of process changes within which the controller is guaranteed to perform.

The meaning of the term performance is discussed further in Section 2.4. Adap-
tive control [Åström and Wittenmark 1994] is in a way an opposite approach. By
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Figure 2.2: Forgiving versus optimal tuning. An optimal controller (solid) only performs if the
controller/process mismatch is small (b). Therefore, a sluggish, forgiving controller (dashed)
may outperform the optimal controller in practice where controller/process mismatch may be
significant (a).

continuously identifying a model of the process by means of system identification
[Ljung 1986; Bishop 1995] and adjusting controller parameters accordingly, constant
closed loop behavior is maintained.

Alternatively, auto tuning may be performed only occasionally initiated either man-
ually or automatically when needed [Åström and Hägglund 1984]. However, some
changes remain that requires nonparametric modifications of the control algorithm
such as the addition of a suddenly needed feature to a running algorithm. More im-
portantly, changes in the process or operation may drive the control system into an
operational state or “behavior” different from the ones of concern during install time.

In turn, this could trigger a bug or a missing feature that, though having no in-
fluence on the controller performance at install time, could be fatal for the control
system’s operation. Furthermore, such a malfunction may very well be caused by a
part of the algorithm that is unrelated to the implemented control theory and conse-
quently further beyond the scope of these research topics.

2.2 The High-level Control System

Despite the control methodologies and design principles involved, the HCS algorithm
is eventually implemented by means of software and this software is executed on
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suitable hardware. The HCS may more or less share the hardware platform of the
SCADA system. Presently, this platform consists of off-the shelf servers with commer-
cial operating systems, network equipment etc. and represents maintenance issues
like any other “server room”. Technological advances in this area may lessen the need
for maintenance as well as decentralized, grid-based control system architecture may
add redundancy.

In case of excessive process changes or rebuilding of the plant the algorithm may
need adjustment to cope with the new control task. Since the time is not ripe for large
scale, self programming computers human redesign of the algorithm and possibly of
the hardware will eventually be needed. An example of such a scenario is shown in
the following Section.

Nonetheless, concepts such as Plug and Play Control [Bendtsen et al. 2008;
Michelsen et al. 2008] could alleviate this issue to some extent by allowing the addi-
tion and removal of transducers without human reconfiguration of the control system.

2.3 Maintenance Example

In 2005 a high-level fuzzy control was commissioned for a kiln. Less than one year
later, it is realized that the controller is abandoned. The question is what has caused
the operators to prefer manual operation and to discontinue the use of this controller?
The answer is found by investigating the SCADA log files from the period together with
the source code of the control algorithm. Figure 2.3 shows the log of some perfor-
mance indicators from the HCS which was installed or re-tuned by expert personnel
until about 10 month later.

The system is set up so that operators in the control room are allowed to switch on
the system once the process state and other conditions are within the design limita-
tions of the system. The algorithm will then control the process fully autonomously. If
suddenly the conditions needed are no longer satisfied, an alarm is sounded and the
control algorithm disables itself, allowing the operators to manually bring the process
back into a state from which the control algorithm can take over.

In any case, 2 hours must pass before the control algorithm is re-enabled and can
be switched back on by the operator. This timeout is roughly matching the largest time
constant of the process, allowing the process to return to a near-steady state before
the control algorithm is engaged.

The cause of such unintended behavior could be e.g. break-down of machinery,
failing actuators, excessive disturbance, or even the control algorithm itself e.g. by
means of a bug causing it to execute a fatal control action.
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Figure 2.3: Development of uptime for typical control algorithm after installation.

Figure 2.3 shows a moving average of the uptime of the control algorithm. The
light shaded area shows when the above mentioned conditions area satisfied, and
the dark shaded area when the operator have actually engaged the algorithm. The
black line shows the run factor being the ratio between the two, i.e. to what extent the
operator have chosen to engage the algorithm when having the opportunity to do so.

The relatively high uptime during the first months after commissioning indicates
not only the control algorithm’s ability to control the process, but also the operators’
motivation to switch on the control algorithm whenever possible. However, from ap-
proximately day 125 to 200 its uptime is decreasing gradually, indicating increasing
problems for the algorithm to control the process and/or the operator’s increasing dis-
satisfaction with the product. Eventually, after an extended downtime of the entire
plant around day 200-230, the control algorithm is no longer used. Note that the
development of the uptime in this example is very similar to the performance initially
predicted in Figure 1.4.

Whether the cause of the decreased uptime of the control algorithm is to be found
internally or externally is irrelevant. Fact is that the utilization factor of the advanced
control system have dropped to zero in just 200 days, and the system needs attention
from expert maintenance personnel in order to regain its initial performance.

By carefully inspecting the log files and control algorithm source code it turns out
that the latter contains the following statements of interest:
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1: if ID fan stops then
2: stop kiln drive
3: stop kiln feed
4: end if
5: if kiln feed and kiln motor have been running uninterrupted for 2 hours then
6: enable fuzzy control
7: else
8: disable fuzzy control
9: end if

Thus, if just one of the 3 signals ID fan, kiln feed or drive indicates a stop, the fuzzy
control stops immediately and switches to manual mode. A minimum of 2 hours must
pass before the operator is allowed to switch the controller back on.

The SCADA log files shows, that tiny glitches appeared increasingly frequent in
the kiln feed measurement at the time the uptime in Figure 2.3 started to drop. While
the duration of each glitch is only a single sample and therefore insignificant from a
process point of view, it is enough to disable the entire control algorithm. The cause
of the glitches was not investigated.

The fuzzy controller is designed to run the kiln system only in its near-steady
state and not the nonlinear transient mode that is experienced after a full stop. The
intention of this rule set is therefore to ensure that the controller is not switched on
during the first hours of a full startup where the process is in transient mode. However,
a drawback of this simple design is that the controller becomes sensitive to dropouts
that are too short to cause significant transient response. Furthermore, these short
dropouts might even be related to the sensors and signal processing rather than the
physical actuator.

A problem like this could have been avoided at design time, e.g. by following best
practices of never making a decision based on a single measurement/sample. Nev-
ertheless the design works well on other plants as well as this plant at commissioning
time. Only at this particular plant, due to changes in feed, wear or other, a problem
arises some time after installation. It must therefore be considered a maintenance
issue.

Currently, these issues are addressed by regular maintenance, and service con-
tracts. At regular intervals an expert will visit the plant and work on issues like this
according to customer needs.

The time needed to realize this particular problem was approximately two man
weeks predominantly used on understanding the complex algorithm. In contrast, the
effort needed to make the algorithm robust towards the mentioned glitches is relatively
small.
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2.4 Discussion

The term performance of a control system is traditionally denoting some kind of spe-
cific metric such as the mean squared error between two signals. In case of HCS
this could include the deviation from target end product quality, total daily production
and so forth. In the context of maintenance however, we will expand the term to in-
clude all written and unwritten requirements of the HCS including aspects such as
user experience for the operator and CPU load etc. That is to say, all aspects of the
control system’s behavior that could affect its acceptance and amount of added value
to the customer. For example as seen in Section 2.3, poor operator perception can
contribute to the HCS being permanently disabled.

Next, we can in this context define maintenance as:

Maintenance of high-level control systems: post-install modifications of the
system in order to keep a high performance.

and the aim of this project is to eliminate or reduce the amount of maintenance
needed by the HCS.

The low level control loops are predominantly of the PI type and are often poorly
tuned. In practice the control loops may only be given attention during commissioning
if their behavior prevents starting up the process. Thus, controllers may even be left
with default parameters. Once the process is running continuously, any reconfigura-
tion of these loops may be banned due to fear of causing a production stop which is
associated with great monetary loss.

Adaptive, robust and fault tolerant control as well as auto tuning as discussed ear-
lier in this chapter have all been demonstrated successfully on such loops of relatively
low complexity, especially if noise is low and the dynamics can be modeled in suffi-
ciently accurate way. It is therefore our belief that the introduction of these techniques
in the low level control loops could contribute significantly to the overall process per-
formance. Possibly even more than the gains achievable by the application of a HCS
as discussed in Section 1.2.

However, to our knowledge, there has not been any successful implementation of
these technologies in industrial high-level control where systems are generally of high
dimension and accurate models are not available. Most importantly, these techniques
themselves will represent additional software/algorithms and parameters within the
HCS that will require maintenance.
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These advanced control methods may also require that the controller is imple-
mented or specified in a dedicated framework or that the controlled process is mod-
eled in a special manner. This requires additional man-hours in the design phase
which can be acceptable if for instance the controller is to be designed only once and
then embedded in a mass produced product. [Sánchez 2003] is an example of such
an application in which a robust and fault tolerant controller is designed for a Compact
Disk player. Low level control loops in process control as mentioned above may also
fulfill these criteria.

Currently it is unattractive from a HCS point of view though, since the control
algorithm is customized significantly for each installation and any additional design
and tuning is costly.

In this project we will therefore focus on, and alleviate the maintenance, of the
control algorithm which requires human interaction. Even if the techniques discussed
so far are successfully applied a subset of maintenance scenarios, such as plant
reconstruction, will remain which requires algorithm modifications.

2.5 Summary

The data available to document the extent of the maintenance issue is limited to
SCADA log files and anecdotal evidence. While downtime of controller and machinery
is registered in these logs, the root cause of the downtime is not. Oral accounts show
that downtime or malfunction of an unmaintained control algorithm is related to issues
such as wear and tear of machinery, changes in fuel and raw materials, material build-
up and reconstruction or replacement of machinery. In this way the characteristics of
the process to be controlled is changing from the requirements specification that the
control algorithm has originally been designed for.

A significant effort is already put on reducing raw material changes by means
of homogenization and control of chemical composition, and these steps are taken
disregarding any high level control systems (HCS) downstream on the production
line. Regarding fuel changes the increasing utilization of alternative fuels has given
rise to handle the use of multiple and possibly heterogeneous fuels.

Advanced control concepts, such as fault tolerant control and auto tuning, could
potentially address all of these issues but it is concluded that for the time being, the
greatest benefit from these methods will be in the low level control loops and not in
the HCS. It is therefore decided to focus the attention towards the remaining subset
of maintenance issues that will inevitably require human expertise to redesign and
adjust the control algorithm. Rather than attempting to eliminate the need of human
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interaction, the aim will be to reduce the amount of man hours when needed.
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Chapter 3

Tools and Algorithms

Anecdotal evidence suggest that issues related to operator’s perception and interac-
tion with the control system is sometimes wrongfully seen as reduced performance of
the control algorithm. Poor situational awareness may lead to interventions that are
incompatible with automatic control, or the algorithm’s control actions may be wrong-
fully perceived as harmful so the operator choose to disabled automatic control. For
example it has been observed that Fuzzy type controllers gain acceptance among
operators easily because they tend to alter one actuator at a time, similar to manual
operation. Modern MIMO type controllers though can be met with skepticism because
they tend to apply frequent, small adjustments which may be counter intuitive to the
operator.

Indeed, the human machine interface (HMI) of the control room may have poten-
tial of much improvement [Lau et al. 2008] that will enhance situational awareness,
as well as educating operators may reduce wrongful disabling of control algorithms.
However, these subjects are considered beyond the scope of this project.

Nonetheless, these observations have served as inspiration to investigate the
user interface (UI) involved in developing, implementing, and maintaining the control
algorithm. Once the performance of an algorithm has dropped so significantly that
maintenance is needed, this is the UI that expert personnel must use. So, if per-
formance degradation is unavoidable, perhaps there is at least a chance to improve
the available tools, which will ultimately reduce the number of man hours used for
maintenance and hence the overall downtime of the algorithm.

Moreover, such improvements may induce that the algorithm is designed in a
more consistent and verifiable manner from the beginning, and therefore easier to

35
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maintain in the future. It is not the aim of this project though, to consider general
usability aspects of the software.

3.1 The Algorithm Editor

The control algorithm is implemented by means of source code. Rather than us-
ing a standard development environment during implementation of each algorithm
FLSmidth have created an environment dedicated to high-level control and integrated
with the rest of the control (SCADA) system.

Within this environment an algorithm is constructed as a network of intercon-
nected objects as depicted in Figure 3.1. Measurements are read by input objects
to the left, and actuator setpoints are written by output objects to the right. Lines
indicate data flow which is always from left to right. Each object is encapsulated and
have defined inputs and outputs on which some sort of signal processing may be
conducted. Objects may be grouped together to further enhance encapsulation and
modularity. This means that some of the objects as seen in Figure 3.1 contains a
plurality of sub-objects which may again hold a number of sub-objects and so on.

Hard coded, configurable objects for which the source code cannot be modified
are available for common functionality such as a Kalman filter, simulation of a LTI
system, Fuzzy rule engine and the calculation of various performance indexes. But
most importantly, a general purpose utility object is available, in which its business
logic can be implemented by means of custom source code. Currently Visual Basic
and Matlab are the supported languages.

The editor for such an object is seen in Figure 3.2. The source code is edited to
the left whereas the table to the right contains internal variables, inputs and outputs.
These variables are persisted between executions, thus representing the algorithms
internal state.

When maintenance is performed on the algorithm, the work is done in these
objects.

3.1.1 Control Algorithm Framework

The editor projects a direct mapping of the underlaying network of interconnected
algorithm blocks so its description also covers this choice of architecture for control
algorithms to be implemented. This architecture is a hybrid between data flow pro-
gramming as known from products such as Simulink and Labview and traditional text
based functional and imperative programming.
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Figure 3.1: Algorithm editor viewing the structure of an algorithm controlling a vertical raw mill.

Figure 3.2: The utility object editor.
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Data flow programming is attractive for control theory implementation due to the
similarity with the block diagrams commonly used to depict signal processing in gen-
eral while the general purpose imperative programming adds flexibility. Whether a
control object is hard coded or not, is just a matter of allowing customization of that
particular object.

However, the data flow paradigm is only realized on a macroscopic level for di-
recting signals from one object to another. Apparently it has been considered too
complex for primitive operations on signals since this is exclusively handled by imper-
ative languages, hard coded or not.

Although the product is extensively used for editing common source code, it does
not include any of the supporting tools associated with modern software development
such as version control, code style enforcing and unit testing.

Information about other similar products within the industry is not available. It will
therefore be assumed that the product described above represents the state of the
art in the industry. However, the data flow and encapsulation specific for this partic-
ular editor and/or the algorithms implemented in it can be seen as merely a graphi-
cal presentation of the encapsulation and abstraction offered by traditional software
paradigms such as methods, classes, interfaces, network services etc. The findings
discussed in this chapter is therefore relevant for any control algorithm design involv-
ing multi-paradigm programming and encapsulation.

3.1.2 The Control Algorithms

A number of control algorithm implementations that have subjectively pointed out as
being representative, have been inspected in order to understand needs and identify
common operations and shortcomings. Immediate observations include that large
amounts of the source code performs operations which can hardly be expressed in
terms of classical control theory by means of transfer functions, LTI systems etc. It
has been found particularly challenging to track the way signals, carried as the value
of variables, are routed through the algorithm. To some extent, this is a trade-off
from the concept of encapsulation and abstraction. Wherever a signal crosses the
boundary of an encapsulation, the name of the carrying variable may change

Many common, but small operations are not standardized probably because it
is often non-obvious that two different implementations are conceptually performing
the same operation. For example validating a sample of a signal according to some
criteria and storing this value in a history (array) of samples, a history that must be
reset in certain situations, e.g. restart. Such functionality is implemented in multiple
different ways which makes an algorithm less readable and prone to bugs. An oper-



3.1. The Algorithm Editor 39

ation in the nominal case is typically accompanied with alternative operations to be
conducted in a plurality of non-nominal situations. One typical non-nominal situation
is the first execution of the algorithm after a reset in which various buffers, time spans
and integrators have to be reset. This induces a large number of, sometimes nested,
conditional branches in the code which is not handled in a standardized manner.

A considerable amount of the internal signals are boolean which lead to more
conditional branching. Loops are rare, and are mainly used for iterating through an
array of values, which is typically storing a short history of some signal.

Another common operation is the testing whether a signal is within a given inter-
val, or above or below some threshold. Although such operations are conceptually
simple their implementation turns out to be complex because each test may have
to be supplemented with some kind of filtering and hysteresis etc. This problem is
illustrated by Example 1:

Example 1

Consider the situation that, at design time it is decided that if the signal x is above
the threshold H then the algorithm must perform operation a and otherwise b. In
code, this is implemented by the simple lines

1: if x > H then
2: do a
3: else
4: do b
5: end if

but once the algorithm is to be commissioned on site, it turns out that x is
particularly noisy so a hysteresis must be introduced. Therefore the programmer
reformulates the problem to “if x have been greater than Hh for longer than Th
samples perform a or if x have been less than Hl for longer than Tl samples perform
b”. In code, one implementation of this could be

1: if x > Hh then
2: th ← th + Ts
3: if th < Th then
4: s← high

5: end if
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6: else
7: th ← 0
8: end if
9: if x < Hl then

10: tl ← tl + Ts
11: if tl < Tl then
12: s← low

13: end if
14: else
15: tl ← 0
16: end if
17: if s = high then
18: do a
19: else
20: do b
21: end if

The functionality is achieved by introducing 3 more variables (th, tl , s) and the
number of parameters are in creased from 1 (H) to 4 (Hh,Hl ,Th,Tl). Ts is the
sampling time.
The amount of code and its complexity has increased considerably but most
importantly the same functionality can be achieved in a variety of ways.

The fact that what is essentially the same but complex operation is implemented in a
variety of ways throughout the algorithm makes it prone to bugs and, in the context of
this project, difficult to understand and maintain.

The typical working method is that a template control algorithm is developed,
maintained for any new type of industrial process and tested against a simulation of
said process in-house. Whenever an algorithm is to be commissioned for a real life
process, the template is used as a starting point on which the needed customization
is applied - often on-site.

The carefulness that is necessary for such modifications may not be in concor-
dance with the large variations in on-site working conditions and testing opportunities
may be limited. Specifically, in one algorithm a trivial copy-paste error was found in
which variables had not been renamed as intended. Although this may be considered
a software bug, to be resolved accordingly, a bug may reside in a part of the algorithm
that, tested or not, does not executed during normal operation and then, years later
when operation conditions change, it surfaces as a maintenance issue.
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Count Example
Objects 117
Lines, total 11845
Executable code lines 8198
Executable lines, ex. equal objects 2399
Loops 183 for, while
Branching keywords 2444 if ... then, else, elseif, endif
Conditional branches 1510 if ... then, elseif ... then, case ...
Equations 819 a← b + c
Assignments, no equation 1804 a← b
Assignments to 0 or 1 383 a← 0

Table 3.1: Composition of a typical control algorthm.

Once detected, even a self deploying bug fix may not be appropriate, since a
workaround may have been established, either intended or unintended, which may
be disrupted by a bug fix. Furthermore, it may be unclear on which sites said bug has
been deployed.

In order to quantify some of the findings above, the source code of the algorithms
have been analyzed using regular expressions to find and count constructs of interest.
The result for a fuzzy kiln control algorithm is shown in Table 3.1. The analysis does
not include hard coded objects, such as the fuzzy rules and engine that execute these
control laws. In some sense, the algorithm analyzed can therefore be categorized as
validation plus pre- and post-processing of signals.

The algorithm at hand contains a total of 11845 lines. Some of the 117 objects
though contain code which is 100% identical. By counting these only once the number
of lines is reduced to 3544 of which 2399 are executable code, exluding comments,
whitespace etc. Of course this indicates that objects are reused to a large degree, but
multiple copies of the same code do not improve the maintainability of the algorithm.

The observations listed in Table 3.1 may to some degree be dependent on the
language used, in this case Visual Basic. However, it is evident that the amount of
branching is large. 1510 conditional branches is a significant part of the total 8198
lines. Moreover, if we assume classical control theory to be implemented by means
of equations, we see that only about 10% of the code is implemented equations. We
have defined an equation as an assignment statement that includes one or more of
the characters “+-*/” on the right hand side.

Additionally, the number of assignments to a value that does not involve an equa-
tion is significant. This includes simply assigning the value of one variable to another,



42 Chapter 3. Tools and Algorithms

effectively routing an untouched signal through the algorithm.
The analysis of other control algorithms shows results identical to those in Ta-

ble 3.1.

3.2 Control Algorithms as Software

High level control algorithms, regardless of the control paradigm and theory being
utilized, are implemented by means of source code. Eventually, this source code is to
be inspected and modified during a maintenance scenario. Although a HCS like the
one analyzed in the previous section is an enterprise sized application comprising in
the magnitude of millions of lines of source code depending on to what extend the
remaining SCADA system is included, the actual control algorithm that is customized
for the particular process is only 1000-10.000 lines of code.

This code may utilize large external resources such as a Kalman filter or the
solver for a Model Predictive Control problem, but such resources are considered
black boxes during a maintenance scenario. Eventually, workarounds may even be
added to the custom code in order to compensate for unintended behavior of such
resources.

From the number of source code lines and their complexity by means of condi-
tional branching and routing of signals, it is evident that a control algorithm repre-
sents a significant amount of software, which must be developed and maintained as
such. Consequently, much of the work produced in the area of software engineer-
ing concerning software maintainability is undoubtedly directly applicable. This could
range from concrete technical tools such as coding style enforcers and strict version
control, through engineering methods like extreme programming and unit testing to
management methods like agile development which all contributes to the develop-
ment of software with better maintainability. However it is not the aim of this project
to research software maintainability in general.

But since control algorithms contains no strings, no user interface, no web clients
or database queries etc. they make up only a limited subset of general software. It
might therefore be imagined, that some set of methodologies and tools can contribute
significantly to solving the maintenance issue with respect to control algorithms while
being inapplicable or inefficient for general software. Such contributions may there-
fore have gained only limited attention from the software society whereas they may
represent great potential for the area of control applications.
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3.2.1 The Maintenance Process

A typical maintenance scenario involves the following steps:

Listing 3.1: The four steps of control system maintenance.

1. Rea l i z ing t h a t a problem i s present
2 . I d e n t i f y i n g symptom ( s )
3 . Trac ing cause ( s ) o f each symptom
4. Resolv ing issue

Once the problem is realized, the remaining steps 2-4 are very similar to the pro-
cess of ordinary debugging. However, since the code is limited to handling signals,
the process always involves backtracking the dependency of some variable(s). In
case of the example in Section 2.3 this would include answering the following ques-
tions, once it has been identified that the enable fuzzy controller flag went false:

1. What piece(s) of code changed its value?

2. Which logic conditions was responsible for executing this piece of code?

3. Which signals/variables caused the change of these conditions?

4. Repeat from point 1. until the root cause is found.

This process is far the most difficult and time consuming of the whole process.
Resolving the issue once located is on the other hand often limited to adding or
modifying a few lines of code. The process of backtracking of signals is investigated
further in Chapter 4.

3.2.2 Maintenance vs. Debugging

The time varying behavior of the systems interfacing the control system might activate
a part of the algorithm which turns out to have an obvious poor behavior. The issue
with this particular part of the algorithm might even have been recognized on other
installations after the commissioning and resolved so that future implementations do
not include it - i.e. a “bug”.

It might be tempting to explain such maintenance issues as the result of insuffi-
ciently debugged software. However, if a bug is defined as failure to meet the soft-
ware’s requirements specification, the afore mentioned changing environment can be
seen as constantly changing requirements. Thus, the term “bug” is rendered ambigu-
ous.
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In the case of control algorithms that are customized for every installation, bugs
should not be patched straight away as might be the case with other kinds of soft-
ware. For example traditional office applications can be patched automatically since
all copies of the software are identical; hence the consequences of a patch are easily
predictable. In contrast, for control systems that are customized for every installation
a standard patch might lead to a new and potentially unintended behavior. A work
around might have been implemented at commissioning time, intentionally or not, or
simply the unique environment of the particular installation will cause new issues.

Thus, the task of performing maintenance remains the same, disregarding whether
the issue it originates from can be considered a bug or not.

It is not the intention to question that well designed, well tested, robust software
is important in the strive toward reducing maintenance, but it is important to note
that once a maintenance issue have arisen in a control system, it does not affect the
resolving of the issue whether the cause may be considered a bug or not.

3.3 Improved Tools and Framework

Summarizing, the following shortcomings have been identified for typical control al-
gorithms and the framework in which they are developed:

• Lack of standardized operations;

• Every code block designated to some nominal behavior is accompanied by
blocks to handle one or more non-nominal cases;

• Consequently, conditional branching is extensive;

• The mental process of tracing signals is challenging.

It seems that control algorithms have reached a level of complexity that give rise
to problems which are well known in the area of software engineering. Some solutions
developed in this area may therefore be directly applicable.

Concerning the complex branching and the pattern that a nominal behavior is
usually paired with some fall back strategy some solutions have been investigated
in order to ease the mental process of tracing dependencies and execution flow. To
clarify the branching some sort of graphical presentation of the source code seems
reasonable, however, the flexibility of the general purpose programming language
must not be obstructed.

Therefore a merge of graphical flowchart-like and text based programming have
been suggested. This principle is not fundamentally new though and is offered to
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some extent by e.g. the product Microsoft Windows Workflow Foundation1. Keeping
in mind the identified shortcomings, the following concept have been suggested for
improvement of the editor at the coding level exemplified by Figure 3.3 which shows
an implementation of a simple PID controller. The algorithm is imagined to control the
variable temperature by adjusting the output fuelFlow if the fuelEnabled flag is
set. Additionally, a performance indicator is calculated by means of the mean squared
error during the latest hour.

Disregarding the way of implementation, any variable in a control algorithm can
be classified as belonging to one of these 5 categories:

• input which is read and cached prior to execution

• output which is made publicly available to other systems

• internal state which is persisted between executions

• parameter which is read-only and may be modified from the outside only

• field which is instantiated and reset to a default value prior to execution

With the suggested concept, a variable’s category is stated explicitly. Outputs
are persisted and thus represent internal state, the only difference being the public
accessibility. Input, output, and internal state variable declarations are not included in
Figure 3.3 but are imagined to be similar to Figure 3.2. Field variables are declared
in the green box at the top of Figure 3.3.

Programmatically, input, output, parameter and state variables are organized in
namespaces so e.g. the state variable sum can be accessed as state.sum. Execu-
tion starts at the top-most code block and flows downwards following the thick blue
lines. Each code block features a condition (If) that must be satisfied for the block to
be executed, Else the alternative, right-most block is executed.

Variables declared within a code block are local, i.e. only field variables are
shared between code blocks. If an input variable is used in a particular code block,
this is indicated graphically by a line drawn from the input to the block and likewise if
the input is used in a conditional statement. If a state or output variable is assigned
within a block, this is indicated graphically by horizontal outriggers below the block.
Input and outputs are color coded according to their type, e.g. boolean, scalar float,
matrix etc. Loops of various kinds are presented by a frame around the blocks within
the loop. Common post-processing such as slew-rate limiting can be added directly
as properties on outputs as illustrated on fuelFlow.

During development the programmer must position blocks and connect the lines
directing execution flow manually, but lines connecting inputs and outputs and the out-

1http://msdn.microsoft.com/en-us/library/ms734631.aspx

http://msdn.microsoft.com/en-us/library/ms734631.aspx
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Else

out.fuelFlow = 0;

Else

Signal error = par.tempSetpoint – in.temperature;
state.sum += par.Ki * error;
state.sum.limit(par.maxSum);

IFtemperature.IsValid

fuelEnabled

fuelFlow

temperature

Signal error = par.temperatureSetpoint – in.temperature;
Signal slope = error.Slope(Time.Seconds(20));
out.fuelFlow = par.Kp * error + par.Ki*state.sum + par.Kd 
* slope;

IF fuelEnabled

fuelFlow

performanceSum  += (par.temperatureSetpoint – t)^2  *  
global.sampleTime;
numberOfGoodValues++;

IF t.isValid

numberOfBadValues++;
Else

For All Signal t in temperature.History(Time.Now, Time.Now-Time.Minutes(60))

out.performance = performanceSum / 
numberOfGoodValues

IF numGoodValues > 0

out.performance = Signal.Undefined
Else

performance

performance

Field Variables

numberOfBadValues 
numberOfGoodValues 
performanceSum 

Name

Int
Int

Signal
Type

0
0
0

Init Value Comment

Exit

sum

Figure 3.3: Concept for improved algorithm editor.
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riggers indicating state variable assignments are generated automatically by source
code analysis.

The framework is extendable, given that specialized blocks can be introduced
as needed. For example a suggestion to a block that would solve the problem in
Example 1 is shown in Figure 3.5.

A (scalar) input signal is wired to its left side, through an optional, configurable
prefilter. At every execution, the execution flow is directed to one of the 3 possibilities
(right) depending on the signal being above, within or below specified interval which
in this case is a temperature.

Excepted is the case that the signal is either entering or leaving the interval, in
which case the execution flow is directed to the corresponding outlet (bottom). This
means that bottom outlets are fired only once at the single execution the signal is
passing the threshold, while the leftmost outlets are fired continuously at every exe-
cution. All parameters, as stated in Example 1, are configured through an appropriate
UI.

A feature limited prototype including only a basic condition free block and the
if-else block have been created (See Figure 3.4) and successfully demonstrated
to company-internal algorithm experts and commissioning personnel. The prototype
allows code blocks to be created and interconnected, proves the resulting code can
be compiled and executed, and internal state and output variables persisted between
executions.

3.4 Summary

Current frameworks for algorithm implementation are based on a combination of
dataflow programming, which is well suited for the signal flow oriented nature of con-
trol theory, and more traditional text based multi-paradigm programming which adds
the needed flexibility of a general purpose programming language.

Analysis of existing algorithms show that no more than 10% of the source code
can be considered implementation of traditional control theory, which could in theory
benefit from concepts like robust control and adaptive control to reduce maintenance.
The remaining 90% however also needs maintenance. Execution wise, the algorithms
use conditional branching extensively. For instance, any operation on a signal is
usually associated with one or more conditions to be satisfied for the operations to be
executed, and a set of alternative operations if the conditions are not satisfied.

Subalgorithms are encapsulated at several levels in order to abstract from their
implementation similar to declarative programming. A negative side effect of this is
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Figure 3.4: Proof of concept for the suggested algorithm implementation environment.
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1600oC

1400oC

Figure 3.5: Standardized, configurable block for handling interval check of a scalar signal.

that every time a signal crosses the boundary to such an encapsulation the variable
carrying its value is likely to have different names on each side of the boundary.

Altogether this means, that for a maintenance expert, it is very difficult to back-
track dependencies between variables/signals since signal identifiers often change,
and every operation introduces not only new dependencies but also a conditional de-
pendency that must be tracked down. The backtracking of signals in order to answer
questions like “what caused output x to change?” has therefore been identified as
the most challenging and time consuming mental act during a maintenance task.

Different implementations of the same common operations have been identified
in existing algorithms which has a negative influence on maintainability. Although
the enforcing of well established best practices for software development could mini-
mize such maintainability issues, control algorithms pose special characteristics that
require specialized tools.

A conceptual algorithm implementation environment has therefore been designed
to address these findings. This should enable development of algorithms of increased
consistency and maintainability but also reduce the man hours involved when main-
tenance of the algorithm is eventually needed. A hybrid flow chart style of coding,
standardized blocks and limited visualization of signal flow and execution flow will
reduce the time needed for the mental process of understanding the algorithm and
tracing down the code that need modification. The ubiquitous conditional branching
pairing standard operations with alternative operations are handled in a consistent
manner.

The concept so far mainly emphasizes the execution flow and the ability to track
it. Independent of the execution flow is the signal flow, for which the exact order of
operations being performed and the source code performing each operation is unin-
teresting. For example the concept cannot answer a question like “which variables
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affect output x?”. However, it shows implicitly that only the source code in blocks
upstream of block number two can be responsible, since this is where the variable is
last assigned. This issue will be covered in Chapter 4.



Chapter 4

Assisted Monitoring and
Maintenance

In Section 3.3 steps were taken to improve the development environment in which the
control algorithms are implemented. It emphasizes the execution flow of the algorithm
and it enforces common operations to be handled in a standardized manner.

However, it draws only superficial attention to signal flow, which has been iden-
tified to cause the most challenging mental act during a maintenance task. This
tracking of signal flow is the main topic of this chapter.

Generally, control algorithms are signal processing systems. Measurements are
fed as inputs, their values are filtered and validated along with status information, and
control actions are decided and written to the output.

An algorithm may be hierarchically structured by well-defined subsystems with
explicit inputs and outputs and containing lower level subsystems within higher level
systems as illustrated in Figure 4.1. In practice, depending on the programming lan-
guage, subsystems may be realized by classes, methods or other means of encap-
sulation.

For the sake of modularity each subsystem has its own name space in order to
hide internal variables and only expose inputs and outputs. This means that a single
signal, when it is routed through an input of a subsystem into a new name space, or
through an output to another name space, will alter its identifier.

This has shown to cause a major challenge for maintenance personnel when
backtracking signals trough the system for the purpose of finding the inputs that affect

51
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a
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d
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x
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x
b
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Figure 4.1: Example of signal flow through a control algorithm, with inputs a,b,c and outputs
x,y,z. It consists of subsystems B and C. C is further comprising two lower level subsystems.

a certain signal e.g., locating the part of the algorithm that modifies a signal, or simply
understanding the implementation of an unfamiliar algorithm.

Figure 4.2 shows a simplified example. Consider the output identified by x of
the entire control system defining the name space A in Figure 4.1. Backtracking the
signal leads to the output y and input f in B to input b back in name space A as
illustrated in Figure 4.2. That is to say the process of realizing that x is merely an
untouched copy of the input b is a complex mental act.

xAyBfBbA

Figure 4.2: Backtracking output x in Figure 4.1.

The example given here is over-simplified. In case of a real control algorithm a
signal may pass through ten or more name spaces, signal processing is performed
on the way and generates new signals. Forks may lead a signal in multiple directions
and frequently the value of a signal determines executional branches in the algorithm,
choosing which sub-algorithms to execute.

The mental process of back- and forward tracking such dependencies may be
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similar to the one performed during general debugging of software, but it is particularly
complex in the case of control algorithms due to their special structure.

4.1 Dependency Graphs

Tracking of a signal, including the operations performed on the signal, can be for-
malized by means of a dependency graph. Consider Algorithm 1. After execution, c
will be depending on a and b via the operator “+” which in turn is depending on the
constants 1 and 2. This can be presented by a graph as shown in Figure 4.3.

Conditional branches in the algorithm affect the dependency graph since state-
ments executed in one branch may produce graphs different from those produced in
another branch. Hence, a statement is control-dependent on the condition responsi-
ble for its execution. Observing variable y in Algorithm 2 and executing the algorithm
with den 6= 0 yields the dependency graph in Figure 4.4. The assignment of x in line
2 is control-dependent on the condition in line 1.

Algorithm 1

1: a← 1
2: b← 2
3: c← a + b

+

c

a b

1 2

Figure 4.3: Dependency graph for variable c after execution of Algorithm 1.

A change in the branching i.e. den = 0, yields a different dependency graph for
y. Formally, for any variable y, there exist a finite set of possible dependency graphs



54 Chapter 4. Assisted Monitoring and Maintenance

Algorithm 2

1: if den 6= 0 then
2: x ← num

den
3: else
4: x ← 0
5: end if
6: y← x + 1

1

x
+ y

num

den
/

0
≠

den

den ≠ 0 is true

den ≠ 0

Figure 4.4: Dependency graph for variable y in Algorithm 2 for den 6= 0. Shaded area denotes
control-dependency on the condition den 6= 0.

limited by the number of branching combinations implicitly affecting y by control-
dependency.

4.1.1 Dynamic vs. Static Dependency Graphs

Executing the algorithm multiple times with different input and/or internal state, e.g.
in a sampled system, may produce different dependency graphs from the fixed set
of possible graphs, only representing the active dependencies during the particular
execution. Thus, the dependencies are denoted dynamic.

Vice versa, a graph including all dependencies that may possibly affect a variable
via all possible branching combinations in the algorithm is denoted static and equals
the sum of the set of possible dynamic dependency graphs.

Dynamic dependency graphs tend to be smaller than the static counterpart and
can serve to minimize the amount of data. Additionally, by containing information
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about the particular execution, such as variable values, dynamic graphs can be used
for comparison of executions.

4.1.2 Program Slicing

Program Slicing is a technique that can extract dependency graphs from source code.
Static program slicing was introduced by [Weiser 1982; Weiser 1984] in order to iden-
tify all possible sources that may affect a variable. [Korel and Laski 1988] introduced
dynamic program slicing to produce dependency information only relevant for the ac-
tual execution of the algorithm.

Applying this technique to Algorithm 2 we obtain Algorithm 3 which shows the
execution path produced from Algorithm 2 when executed with den 6= 0. It contains
each executed statement together with the line number of its location in Algorithm 2.

Algorithm 3

1: den 6= 0
2: x ← num

den
6: y← x + 1

4.1.3 Motivation for Program Slicing

Program slicing has been studied since the early 1980’s. However, it seems that the
number of publications has peaked, and that the technique has not gained widespread
application despite its potentials in software maintenance.

Some general purpose development environments, such as the Microsoft Visual
Studio series1, offer debugging and refactoring features which seem to make use
of static program slicing. However, commercial applications of program slicing and
especially dynamic program slicing are obviously absent and as already mentioned,
the publication activity in the field seems to have decreased.

This could indicate that the prospects of any benefit is depleted, which may or
may not be true in the case of software in general. Development and maintenance
of general software faces a wide spectrum of challenges for which program slicing is
of no use, or there may be patterns and practices [Gamma et al. 1995] that break
the concept of program slicing. For example, technologies such as late binding, Ser-
vice Oriented Architecture (SOA) and others which cause much of the code to be

1http://msdn.microsoft.com/en-us/vstudio/default.aspx

http://msdn.microsoft.com/en-us/vstudio/default.aspx
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unknown until runtime will to some extent violate the concept of static program slic-
ing. Furthermore, the tracking of signals and the execution path may be irrelevant for
most maintenance tasks.

But control algorithms are, from a software point of view, relatively simple as
seen in Chapter 3. While any software patterns may principally be utilized in a control
algorithm this does not seem to be the norm. There is no such thing as late binding
and SOA, and no strings, parallel execution, user interface, etc.

Rather, the source code consists of only calculations, branching, and method
calls and the data types used are mainly scalar and to some extent matrices. Thus,
control algorithms comprise only a small subset of general software as depicted in
Figure 4.5. This small subset is almost, if not completely, in turn a subset of software

General software
Control algorithms

Benefit from dynamic 
program slicing

Figure 4.5: Control algorithms utilize only a small subset of patterns in general software, most
of which are covered by program slicing.

suitable for program slicing. Moreover, control algorithms have the unique character-
istic of being executed periodically as part of a sampled system.

Therefore, while program slicing may provide limited benefit in the maintenance
of software in general it is believed to have great potential for the very limited and
specialized subset of software that control algorithms represent.
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4.2 Assisted Maintenance

It is the intent that the introduction of dependency graphs in the maintenance of pro-
cess control algorithms should help personnel to locate the failing part of the algorithm
and eventually semi-automate the maintenance task.

4.2.1 Monitoring and Detection

Any algorithm will have a limited although potentially large set of possible execution
paths. Now let us assume that the algorithm is to be executed periodically and let us
then consider each execution path, i.e. branching combination producing a unique
sequence of executed line numbers, to be a state in a state machine. During nor-
mal operation with high performance the algorithm will stay in a single state or cycle
through a limited subset of states as illustrated in Figure 4.6 by the states n1...i. In
case of an unintended situation the algorithm will likely diverge from this behavior,
e.g. move to rarely used states f1−2.

n1

n2

ni

n

f1

f2

Figure 4.6: State machine representation of execution paths for algorithm during normal opera-
tion n1...i, and abnormal situation f1−2.

Thus, normal behavior can be identified statistically by means of sequences of
states, time used in each state, etc. An alarm can be raised in case of deviation from
normal behavior of the algorithm by continuously monitoring the state machine and
comparing the behavior to the identified normal behavior.

In the following maintenance scenario, the single conditional branch in the al-
gorithm responsible for producing the abnormal execution path is a natural point of
interest, and it is easily located by comparing the execution path to the ones classified
as normal. Once located, the dependency graph for the condition can be generated.

The root cause and/or the single statement in the algorithm causing said con-
ditional branch to change will be present within this dependency graph. Finally, a
comparison of this graph and one obtained during normal operation will pinpoint a
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single or few specific statements in the algorithm to be of interest for the maintenance
crew.

Thus, the entire process from monitoring, detection and identification of the rel-
evant conditional branch to locating the statements of interest is automated leaving
the maintenance crew only the task of verifying the found location of the problem and
conducting the proper modifications to the algorithm.

4.2.2 Dependency Graphs and General Assistance

The presented dynamic dependency graph represents a new way of exploring and
visualizing existing control algorithms. The dependency graph in Figure 4.2, if gen-
erated automatically, may be used to highlight the corresponding signal path in Fig-
ure 4.1 instantly visualizing the signal flow after a particular execution.

The raw dependency graph may be utilized with any level of detail, e.g. the graph
of Figure 4.4 may be reduced to show only that y depends on the inputs num and
den. Being able to instantly identify inputs that affect a variable is particularly useful
with control systems having tens or hundreds of inputs. Having recognized a variable
behaving unintended, only the affecting inputs/measurements have to be suspected
and investigated.

Similarly, entire subsystems may be considered black boxes and incorporated in
the dependency graph as such.

If the subsystems of an algorithm are classified according to their purpose, e.g.
“normal operation”, “initialization”, “upset recovery” etc. various long term statistics
on dependency together with execution paths will yield useful information about the
health of the algorithm. For example, if output y is predominantly affected by sub-
systems classified as “upset recovery” and rarely by “normal operation” subsystems,
this will indicate improper tuning of the algorithm and serve as an early warning of
reduced performance.

Statistics on dependency graphs for all outputs of a system will yield other useful
information such as the most active signal paths and rarely used signals and inputs,
indicating dead code.

4.2.3 Comparing Dependency Graphs

Comparing dependency graphs from two or more executions may help to pinpoint
statements in the algorithm being responsible for certain actions. Suppose that a
discontinuity in the history of an output value m has caught attention during a rou-
tine inspection of the trend plots produced during the last two weeks by a running
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algorithm, as shown in Figure 4.7. The cause of such an event can be investigated
by inspecting and comparing the dependency graphs for m at the two executions at
sample k− 1 and k before and after the event. In this example, m is intended to be
the mean of 3 input signals.

Suppose the comparison yields the graphs illustrated in Figure 4.8. It is evident
that while m is calculated on the basis of a,b and c at sample k− 1, only c is used at
sample k.

From the two dependency graphs the associated snippet of the algorithm re-
sponsible for producing the graphs can be located and is shown in Algorithm 4. For
instance the difference between the two graphs, being the statements executed at
k− 1 but not k, can be highlighted. It is now clear that the discontinuity in Figure 4.7
was caused by input a and b becoming invalid, changing m from being a mean of 3
inputs to a direct copy of input c.

k — 1

k

Time

V
al

ue
 o

f m

Figure 4.7: Discontinuity in the output m between two executions of the algorithm at sample
k− 1 and k.

The sequence of tasks from recognizing an interesting feature in the history of
a signal in Figure 4.7, through generating the dependency graph comparison in Fig-
ure 4.8 to displaying the algorithm snippet with highlights or other information like
Algorithm 4, can be automated.

Although this example is artificial, the ability to browse dynamic dependency
graphs for any variable and to compare graphs recorded during previous executions
presents a new way of navigating control algorithms and quickly locate the source
code responsible for chosen control actions.

Thus, investigation of cause-effect relations, which was otherwise to be per-
formed manually, can now be semi-automated.



60 Chapter 4. Assisted Monitoring and Maintenance

s0

c is 
valid

s
a s

b s
c m

n
1

n
1

n
1

n0

b is 
valid

a is 
valid

n ≠ 0

m
s0

n0

s
c

n
1

k — 1
k

Execution

Figure 4.8: Comparison of dependency graphs of m for executions k− 1 and k. Operators are
omitted for the sake of readability.

4.2.4 Limitations

The concept proposed so far of using program slicing to assist maintenance is based
on the approach that control algorithms are recognized as software systems.

As discussed in Chapter 2 many control system related issues may be addressed
by dedicated solutions. For instance, consider an algorithm containing a P-controller:
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Algorithm 4 Algorithm-snippet associated with the dependency graphs in
Figure 4.8. Difference between k− 1 and k is highlighted.

1: s← 0
2: n← 0
3: if a is valid then
4: s← a
5: n← 1
6: end if
7: if b is valid then
8: s← s + b
9: n← n + 1

10: end if
11: if c is valid then
12: s← s + c
13: n← n + 1
14: end if
15: if n 6= 0 then
16: m← s/n
17: else
18: m← m
19: end if
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1: . . .
2: u← Kp · (r− y)
3: . . .

with reference r, gain Kp, control signal u and controlled variable y. Under certain
circumstances the maintenance issue of tuning Kp can be resolved by the addition
of an adaptive tuning algorithm ensuring that Kp is always within an interval of ac-
ceptable controller performance. In comparison, the assisted maintenance concept
proposed so far would merely lead the attention to line 2 in the above algorithm and
leave the control expert to manually adjust the parameter after Kp has left the ac-
ceptable interval.

However, the source code of the adaptive control algorithm itself may be subject
to maintenance too, in which case assisted maintenance will supply the same help
in locating the responsible code lines. Thus, the proposed assisted maintenance
concept is disregarding the kind of control theory implemented.

The benefit is expected to be high when the challenge in performing mainte-
nance is related to signal flow tracking, which is the case when the control algorithm
source code is within the set depicted in Figure 4.5. As the source code of the con-
trol algorithm at hand is leaving this set, the benefit must be expected to decrease.
Furthermore program slicing is addressing the maintenance issue at the source code
level. If the maintenance problem does not originate within this domain the proposed
concept will be less useful.

4.3 Proof of Concept

The existing HCS has been extended to generate dynamic dependency graphs for
variables in existing algorithms based on program slicing. Dynamic program slicing
is implemented in order to explore the possibilities of comparing dependency graphs
as suggested in Section 4.2.2.

In addition to a dependency graph for all variables at every execution, the execu-
tion path, i.e. the sequence of statements executed, is recorded. While a real control
algorithm is controlling a simulated process, data generated by the program slicing is
stored for later analysis in order to investigate the proposed maintenance tools.

Continuously improving slicing algorithms have been developed, e.g. [Korel and
Laski 1988; Agrawal and Horgan 1990; Mund et al. 2002; Mohapatra et al. 2006;
Korel and Rilling 1998; Binkley et al. 2006]. Generally, algorithms may have different
computational complexity in terms of CPU load and memory consumption both at
runtime while the program is executing and slicing data is collected, and at extracting
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dependency graphs from this collected data.
In the case of applying program slicing to existing control algorithms the computa-

tional complexity must be least affected at runtime since an increased computational
delay will affect the closed loop performance. The cost of later, possibly offline, anal-
ysis of the slicing data is less important. The memory consumption at runtime is also
of little concern. What particular slicing algorithm to apply will depend on the pro-
gramming language used for implementing the control algorithm and possibly other
practical factors. For example [Mohapatra et al. 2005] propose an algorithm to handle
concurrent, object oriented programs; [Mohapatra et al. 2006] an algorithm dedicated
to Java2 and [Pócza et al. 2006] a method for the Microsoft .NET framework3.

4.3.1 Implementation

Theoretically, the runtime collection of variable values etc. can be implemented as
a part of the engine executing the source code, which may require compilation or
not; otherwise the output of the compiler may be modified to collect these data as
demonstrated by [Pócza et al. 2005].

However, in case of the control algorithms and HCS at hand this is impractical.
Instead, the source code of the control algorithm is modified in a manner that probes
but does not affect the behavior of the original algorithm. At selected locations in the
source code, statements are inserted to store the value of selected variables at that
particular step in execution. For a detailed example see Section 5.1.

Figure 4.9 shows a simplified layout of the extension. The control algorithms at
hand are implemented in a Visual Basic like language (VB) being executed by a third
party proprietary engine. During initialization of the HCS the various object in an
algorithm (See Figure 3.1) are loaded from storage, compiled and kept in memory for
execution at every sample.

Under normal circumstances the loaded source code is passed on to the com-
piler. This is bypassed by the extension which inserts additional statements in the
code before passing it on to the compiler. When the modified code is executed the in-
serted statements will send slicing relevant data for the particular execution at sample
i to storage.

If the extension is not present or if the code modification should somehow fail, the
original code is compiled as usual. Thus, the extension is applied in a transparent
and minimally invasive manner and only the loader module is aware of its existence.

2http://www.java.com
3http://www.microsoft.com/NET/

http://www.java.com
http://www.microsoft.com/NET/
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Figure 4.9: Simplified structure of the proof of concept extension to the HCS.
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A parser for the used language is needed to locate statements in the source code.
Surprisingly, no off-the-shelf parser was available for VB despite its widespread use.
Therefore a custom parser has been made. Beside the usual parse tree, the parser
creates a code map including a graph of the static inter-variable dependencies of the
source code. Since the source code may principally be modified and re-compiled
between executions it must be possible to later associate an execution log with its
matching code map.

From the stored code maps and execution logs dependency graphs can be ex-
tracted by a tracking algorithm by supplying the variable name in question v, the
location (step in the execution path) in the algorithm L as well as the sample num-
ber i. This information may be supplied either by the maintenance expert through a
proper user interface (See Chapter 5) or by external software for further analysis.

The application extension has been named DynaTrace and is written in .NET C#
and comprises approximately 26,000 lines of source code.

4.3.2 Usage

This proof of concept demonstrates the possibility of logging sufficient slicing infor-
mation in order to generate a dynamic dependency graph for every variable at every
execution of the control algorithm within the logging horizon. With the extension such
logs can be generated while real, full scale control algorithms are running and the
logs made available for further analysis. A positive side effect of this is the ability
to replay the exact execution of the algorithm since enough information is stored to
recreate the value of all variables at any step in the execution path.

Two conceptual uses of the logs have been investigated. First, a simple user
interface enables visualization of dependency graphs in a variety of ways which is
shown in Chapter 5. These visualizations are intended to demonstrate the use of
dependency graphs as an assisting tool during maintenance as presented in Sec-
tion 4.2.2.

Secondly, the possibility of online monitoring and detection, as proposed in Sec-
tion 4.2.1, can be investigated further which is discussed in Chapter 6.

Ultimately this is addressing the identified issues of control algorithm mainte-
nance by enabling early warning and detection of a fault and then assisted main-
tenance by means of guidance to locate the source code lines responsible for the
fault.



66 Chapter 4. Assisted Monitoring and Maintenance

4.4 Replay of Execution Without Program Slic-
ing

The above presented implementation of program slicing can be relatively complex.
However, the ability to replay the execution of the algorithm can be achieved in a
much simpler manner. In order to use this method the algorithm must fulfill two re-
quirements: it must be deterministic and time-invariant. If so, the output of the al-
gorithm will depend on only 3 quantities: Inputs, parameters, and internal state as
illustrated in Figure 4.10.

inputs outputs

Log

State

Parameters (fixed)

(free) (free)

Deterministic, Time-invariant 
algorithm

Figure 4.10: The output of a deterministic and time invariant algorithm will depend only on its
input, parameters and internal state.

Thus, if these quantities are logged at each sample after execution of the algo-
rithm, later replay is possible for investigating a previous event or even post mortem
after a catastrophic failure. This method does not enable single stepping replay ex-
plicitly however, such functionality may be supplied by third party development envi-
ronments depending on the programming language used.
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The Inputs to the control algorithm should already be logged by the SCADA sys-
tem and therefore they come at little or no cost. Likewise, the outputs (setpoints)
are logged as depicted in Figure 4.10 and enables verification of the replay in that it
should produce the same output values as the original execution. The parameters of
the algorithms are fixed per definition so no logging is needed. Therefore, only the in-
ternal state remains. An example of internal state could be the value of the integrator
in a PID controller.

Since it is desirable that such a value is persisted during a restart of the algorithm
or the computer, it may already be the case that the internal state is, if not logged, then
at least persisted in storage after each execution. Depending on the control system
framework at hand the additional cost of enabling this kind of replay will therefore be
minimal. There is no computational cost at runtime and only little or no extra data
must be stored after execution.

Practical violations of the requirements of determinism and time invariance in-
clude any use of the computer’s internal clock and the use of pseudo random number
generators [Knuth 1997] (e.g. for dither generation) unless its seed is considered
to be e.g. a parameter or an input which is logged. This also implies that e.g. a
successive optimization sub-algorithm must not be made to bail out after a certain
timeout. Rather, a maximum number of iterations or other means that are not de-
pending on processor speed or load must be used. Any sound control algorithm
should fulfill these requirements though since it is desirable in many other aspects
that an algorithm behaves consistently and independent of hardware and for instance
is executable in non-real time.

Ultimately, static program slicing could be utilized to identify variables that are
members of the state automatically and verify the determinism and time invariance
requirements. Since the algorithm output depends only on input, parameters and
state, the leafs of the static dependency graph for each algorithm output will belong to
one of these groups. By enumerating all leafs and excluding inputs and parameters,
only two possibilities remain: either state variable or a violation of the determinism
and time invariance requirements.

In contrast to the program slicing based replay, this method is conceptually dif-
ferent since it reproduces an execution of the algorithm while the former records
and replays the actual execution. Moreover it does not enable the generation of de-
pendency graphs or execution path although these could in theory be produced by
applying dynamic program slicing offline during replay.
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This method may therefore be an option in case the runtime, computational cost
of dynamic program slicing is unacceptable. Since the aim is to study the use of
dynamic dependency graphs and execution paths, this method has not been investi-
gated further.

4.5 Summary

The process of backtracking a signal and its dependencies through an algorithm is
very challenging and time consuming. This chapter has shown that the information
sought in this process can be formalized and presented as a so-called dependency
graph.

Furthermore, such a graph can be extracted automatically by using a method
known as dynamic program slicing. Thus, a question like “what inputs affected vari-
able x during this execution of the algorithm?” can be answered automatically.

Dependency graphs can be used in the process of locating the source code re-
sponsible for unintended behavior of the algorithm during a maintenance task and
this functionality can be integrated in the algorithm development environment. Fur-
thermore, a method of monitoring the algorithm during runtime is proposed, which
analyses the collected dependency graphs to raise an alarm once the algorithm be-
haves abnormally.

The use of program slicing poses no additional requirements to the control algo-
rithm or the control engineer during development and installation which makes the
solution attractive for industrial applications.

An implementation of the program slicing technique has been integrated with a
commercial high level control system in order to extract dependency graphs from full-
scale, running, high level control algorithms. This allows further study of the proposed
usage of dependency graphs on real-world control algorithms.
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Assisted Maintenance
Demonstrated

When conducting algorithm maintenance, experience shows that performing the ac-
tual modifications of the algorithm or identifying the parameter that needs retuning
is a simple task, while recognizing the problem, understanding the root cause of the
malfunction, and locating the responsible part of the algorithm is time consuming and
is what requires all of the expert knowledge.

In this chapter we present a novel concept for alleviating the human expert in
performing this task. Despite the kind of control theory being applied in any given
control algorithm, it will be implemented by means of source code. Possibly multiple
different programming languages are used, and the source code may by organized
in special logical structures based on signal flow, execution order etc. dedicated to
solve the control problem at hand.

Inevitably, maintenance personnel must navigate within this source code during
the process of identifying the problem, which turns out to be challenging for a number
of reasons. Foremost, control algorithms tend to be particularly complex by means
of signal flow. For example, answering a question like “which variables affect the
value of this output?” is a time consuming task of backtracking assignments of said
variables through the source code.

The algorithm may be heavily customized for a single process facility, by person-
nel who are not available for the current maintenance task, and even though docu-
mentation of the performed customization exists, it will only cover the intended be-

69
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havior of the algorithm and will therefore be of little help in investigating the current
malfunction.

The concept demonstrated here enables maintenance personnel to quickly diag-
nose abnormal behavior of a running control algorithm, to explore only the relevant
parts of an unfamiliar algorithm and to locate the responsible part of the algorithm
that needs modification. The early concept was presented in [Hansen et al. 2008],
introducing the term “assisted maintenance” addressing the large segment of main-
tenance related issues that requires human interaction. Dynamic Program Slicing
[Weiser 1982; Korel and Laski 1988], a method known from computer science, is
the core of the concept used to record details about the execution of a given algo-
rithm. The recorded data is then processed and presented to the user (maintenance
personnel).

The control algorithm is not required to be designed within a dedicated language,
it is not needed to model the plant or the algorithm, and nor does the concept need
parameters to be tuned. This makes the concept attractive for industrial applications
since existing design- and implementation procedures are not affected. The solution
can even be applied to existing, implemented algorithms without modifications to their
source code.

Thus, the overall aim is to let the human expert do what she or he is good at,
being to conduct the actual modifications to the algorithm and tune parameters, and
leave everything else to the computer.

5.1 Dynamic Variable Tracking

A special technique have been developed to automatically track dependencies be-
tween variables, and record every aspect of the execution of an algorithm, e.g. which
code lines that are executed, the value of all variables at the execution of this partic-
ular code line, etc.

In the following, we will only consider ordinary, sequential algorithms consisting of
statements, equations, conditional branches, loops and methods etc., i.e. algorithms
that are implementable in a C-like programming language. We also assume the al-
gorithm to be executed at fixed intervals as part of a sampled system. The technique
involves the following steps:

1. Pre-compile analysis of the source code;

2. Automatic insertion of data collecting routines into the source code based on
this analysis;
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3. Compilation/interpretation of the modified code;

4. Execution of the modified code. Inserted routines record data;

5. Post processing of recorded data.

The initial analysis generates a code map which is a data structure representation
of the code, by identifying keywords, statements, method calls, equations, etc., and is
similar to the initial steps performed by a compiler. Having located all equations and
identified the variables used in each equation, routines are inserted in the original
code to record the value of these variables. Two routines are inserted, one to record
the variables on the right hand side of an equation before it is executed, and one to
record the resulting left hand side.

Consider the code snippet listed in Algorithm 5. Algorithm 6 then shows the
same code with the recording routines inserted. The location in the original code,
in this case the line number is stored as a reference together with the values of the
respective variables. Note that the behavior of the algorithm is not affected.

Algorithm 5 Original code.

1: c← a + b
2: if a < b then
3: d← c · (a + 1)
4: else
5: d← c · (e− 1)
6: end if

If the algorithm is executed with the initial condition a = 1 and b = 2 the following
record will be produced:

R =
{1, (1, 2)}
{1, (3)}
{2, (1, 2)}
{3, (3, 1, 1)}
{3, (6)}

with each entry keeping the line number and the values of the now evaluated vari-
ables.

In combination with the code map, the record is arranged into a compact table
of the lines executed and the recorded variable values as listed in Table 5.1. Since



72 Chapter 5. Assisted Maintenance Demonstrated

Algorithm 6 Code with recording routines inserted.

1: R⇐ {1, (a, b)}
2: c← a + b
3: R⇐ {1, (c)}
4: R⇐ {2, (a, b)}
5: if a < b then
6: R⇐ {3, (c, a, 1)}
7: d← c · (a + 1)
8: R⇐ {3, (d)}
9: else

10: R⇐ {5, (c, e, 1)}
11: d← c · (e− 1)
12: R⇐ {5, (d)}
13: end if

the code snippet in Algorithm 5 does not contain loops or method calls, no line is
executed more than once.

The code map derived from Algorithm 5 is seen in Table 5.2. For each variable
is mapped the line number of equations modifying it, all variables on the right hand
side of such an equation, and the list of conditions to be satisfied for the line to be
executed.

The combined information of the code map in Table 5.2 and the execution record
in Table 5.1 is sufficient to generate a dependency graph for any variable during
the particular execution. For example, consider the variable d after executing the
algorithm: The last assignment to d was on line 3, which, according to the code map
depends on c,a and the constant 1. In addition, this line is execution wise depending
on line 2 which in turn depends on a and b and so forth. The resulting dependency
graph for d is shown in Figure 5.1.

Although not shown in the figure, values of all variables are also available. From
the graph it can be concluded that at this execution, e.g. d only depends on the inputs
a, b and the constant 1. Executing the algorithm with different initial conditions may
render a different dependency graph.
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Table 5.1: Execution record for Algorithm 6 with a = 1 and b = 2.

line dependencies result
1 a = 1,b = 2 c = 3
2 a = 1,b = 2
3 c = 3,a = 1,1 = 1 d = 6

Table 5.2: Code map of Algorithm 5.

variable line dependencies condition
c 1 a, b root
a < b 2 a, b root

d
3 c, a, 1 root, line 2 is true
5 c, e, 1 root, line 2 is false

c
d

< a<b

1
+

a
+

b

Figure 5.1: Dependency graph for variable d. Dashed line indicates execution wise dependency.

5.1.1 Performance

The presented solution is designed to have a low computational cost at runtime, in or-
der to reduce the effect on the control system. The initial analysis of the source code
needs to be done only once at compile time, and its cost is therefore less important.
Also the post processing of the record R, in order to generate dependency graphs, is
of no concern.

Considering an algorithm with N lines and M variables, the inserted recording
statements adds a worst case cost of O(NM) in execution time as well as memory
consumed for storage of the record.

The current method of recording the value of any variable x on the right hand side
of an equation is redundant, since the value will be available at the latest assignment
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to x or as the initial value of x. However, the method serves as a consistency check.
If the value of a variable recorded just before it is used on the right hand side of an
equation is not matching the value last assigned to the same variable earlier during
the execution of the algorithm, there must have been a malfunction in the dynamic
variable tracking. If this consistency check is omitted, runtime cost of both execution
time and memory is reduced to O(N) indicating that the solution is well scalable.

5.1.2 Proof of Concept

The solution has been implemented using the .NET framework and integrated with a
commercial platform for high-level control system implementation on which the control
algorithms are written in a Visual Basic like language. This has been chosen only
because a large number of existing algorithms are available for future testing. In
order to work with different languages, a parser capable of generating the initial code
map must be implemented for each particular language.

The solution is non-invasive in the sense that existing algorithms needs no modi-
fications. The source code analysis and modification is done automatically as a part
of the compilation/interpretation process and it is therefore invisible for the control
system developer as well as the rest of the control system. Only the execution time is
affected as described above, which should be of less concern as long as it is well be-
low the execution frequency of the control algorithm. The increase in computational
delay seen in practice has been insignificant.

5.2 Visualizing Recorded Data

This section demonstrates some of the features of the current proof of concept. The
recorded information can be utilized to supply debugging features that are dedicated
to control algorithms and are beyond what is available in today’s software develop-
ment environments.

Figure 5.2 shows an example of a small algorithm controlling a SISO system
with the control signal WriteOut and output from the SISO system ReadIn which is
controlled to follow the reference r. The SISO system is non-linear, so two different
gains k1 and k2 are used (lines 4-8). Finally, the control signal u is limited to ±umax
on lines 10-15. The algorithm is executed periodically in a sampled system.

In Figure 5.2 some of the recorded data after a particular execution is visualized.
Source code not considered by the mechanism is faded out, while actually executed
code is highlighted in light gray. If a line contains an assignment of a value to a
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variable, its new value is shown to the left. Note the use of decadic prefixes to ensure
a fixed-length notation.

This information is helpful e.g. when tracking the sequence of calculations leading
to the value of a variable of interest. Similarly, the values of variables and parameters
appearing on the right hand side of equations could be displayed. Code statements
being executed multiple times e.g. within a loop or in the body of a method called mul-
tiple times, may have information about each execution displayed in a similar manner.

If a particular code statement is of interest (yellow line 5 in Figure 5.2) the se-
quence of statements (blue) affecting its execution can be highlighted. This sequence
also have a graphical representation as shown in Figure 5.3: u depends on the pa-
rameter k1 and the variable e which in turn depend on r and y and so forth. The ex-
ecution order is linear from left to right and execution wise dependencies are shown
as alternating shaded areas in the background. e.g. the assignment of u is execution
wise depending on the value of the statement y > 7.

If for instance the value of u have been found to be incorrect, it is easy to real-
ize that only the input signals r, ReadIn and the parameter k1 is to be investigated
further.

Figure 5.2 and 5.3 show data at a particular execution of the algorithm. Since
the data are recorded at every execution, this log enables both online and offline
inspection. Such a log offers an exact replay of the algorithm, and can e.g. easily
be send overseas to be analyzed by experts. Trends are available for every variable,
as shown in Figure 5.4. The red vertical line represents “now”, corresponding to the
particular execution shown in Figure 5.2. Note that in an off line situation future values
may be available and are plotted as well.
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Figure 5.2: Tracking data shown as highlighting of source code.
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Figure 5.3: Dependency graph for variable u.

Figure 5.4: Example of trend plot available for any variable.

Naturally, the log can be searched and replayed forwards and backwards, faster
than real time or a single step at a time (See Figure 5.5).

While replaying, the code highlighting with variable values in Figure 5.2, and all
trends as in Figure 5.4, updates accordingly.

The tools incorporated in the proof of concept are presented here to demonstrate
some of the opportunities that are enabled by adding dynamic variable tracking to the
control system. It is important to distinguish these tools from those offered by many
software development environments such as the ability to “watch” variable values
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Figure 5.5: Panel for controlling playback of recorded data.

while single stepping through the code. The data recorded here enables an exact
replay of every detail of the algorithm, including “watching” all variables, after it has
been executed at real time in its natural environment, controlling the physical system.
Hence, the system automatically decides what data to record.

Furthermore, the dependency graphs and trend plots for any variable etc. and
the ability to go back in time and investigate an anomaly that happened a week ago,
are dedicated to the special challenges related to maintenance of control algorithms
as described earlier.

The length of the history of recorded data is only limited by the storage capacity
available.

5.3 Assisted Maintenance

The one-to-one relation between a point in a trend plot, a node (variable) in a depen-
dency graph, and the source code that produced them provides a powerful tool for
locating the code that needs maintenance.

The following example demonstrates some of this potential. Consider the algo-
rithm in Figure 5.2 controlling the throughput of an industrial process, causing the
problem shown in Figure 5.6. During installation, the algorithm have been designed,
tuned and tested to operate the system output y in the interval 6-10. After some time,
this must be changed down to the interval 5-8 e.g. due to changed market demands.
It is evident from Figure 5.6 that the performance of the algorithm in this new interval
is unacceptable, since it causes the system to oscillate and not reach the set point
r= 5.

Knowing that the algorithm uses gain scheduling by means of two different gains
k1 and k2 depending on the value of y, it is obvious to suspect that one of the gains
is unfit for operating the system in the new interval. However, using dynamic variable
tracking, the true responsible part of the algorithm can be located.

Inspecting the trend plot of the control signal in Figure 5.7 around the time frame
of the unintended behavior shows a switching pattern. It is therefore interesting to
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compare the dependency graph for the signal at a sample of intuitively “correct” be-
havior with one of “incorrect” marked m and n respectively in Figure 5.7. The graphs
are shown in Figure 5.8. The difference between the two graphs is evident. The
single end node of the graph in the malfunctioning case links directly to line 14 in
the algorithm (Figure 5.2) where closer inspection reveals a classic copy-paste error:
the line should contain “u=-umax” rather than “u=umax”. With this error corrected, the
algorithm now performs as intended, as shown in Figure 5.9.

Thus, the malfunction was not related to the gain scheduling as would be a nat-
ural assumption to investigate initially. Rather, the maintenance system guides the
investigation in the right direction.

Note that this means of computer assisted maintenance did not identify the cause
of the problem itself, being a missing sign. It merely suggested where in the algo-
rithm to look, which could be deeply within the earlier mentioned 1000-10,000 lines
of source code. In practice, it means that the maintenance personnel can be led di-
rectly to the root cause of the problem by a few mouse clicks in the trend plot of a
signal.

Essentially, the example demonstrates the ideal allocation of tasks between hu-
man and machine: The human selects the samples m,n using qualities that are dif-
ficult if not impossible to automate, such as intuition, heuristics, or common sense.
In our case, sample m seems “correct” since the signal around it is continuous, and
sample n seems “incorrect” because it comes after a discontinuity in a period where
the signal seems to be in saturation (See Figure 5.7). From here, a machine performs
the complex but systematic task of tracking the selected samples back to the source
code and leaves the human to realize and fix any errors in the found code.

5.4 Summary

Maintenance personnel must explore and navigate within a possibly unfamiliar control
algorithm implementation in order to locate the parameter or piece of source code
responsible for the reduced performance. This has shown to be a difficult and time
consuming challenge, while readjusting the parameter or modifying the source code
once the problem is identified is relatively simple.

A novel concept has been proposed and demonstrated in this chapter to supply
computer assisted maintenance. The solution helps by semi-automatically locating
the root cause of a malfunction and it supplies a set of tools for enhanced exploration
and understanding of the algorithm. This is done by automatically recording all data
needed to replay any historical execution of the control algorithm.
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Figure 5.6: Trends of reference r (top) vs. process output y (bottom).

The only cost of the solution is a slightly increased execution time, and the storage
space needed for the record of past executions. The solution is tuning-free, e.g. no
model of the process or of the algorithm itself is needed, it does not require the control
algorithm to be implemented in a dedicated framework or using special tools and it
can be applied to existing algorithms without modification. The solution is therefore
well suited for industrial applications.
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m

n

Figure 5.7: Trend of control signal WriteOut.

Figure 5.8: Dependency graphs for control signal. Top: correct, sample m. Bottom: incorrect,
sample n representing lines 13-16 in Figure 5.2.
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Figure 5.9: Trend of y after correction of algorithm. The system can now be operated in the full
interval of y= [5; 10].



Chapter 6

Supervision of Running
Algorithm

As proposed in Section 4.2.1 the execution path of the control algorithm can be inter-
preted as a state in a finite although large state machine. Hypothetically, the behavior
of the algorithm in this state space could hold information about its performance and
therefore be used for supervision and diagnostic purposes.

A series of experiments have been conducted to investigate the potential of such
measurements.

6.1 Test Setup

FLSmidth has a simulator in its portfolio that is capable of simulating all processes in
a cement plant, including process dynamics and logic.

This simulator is utilized in developing new control algorithms, so that every al-
gorithm is first made to run against the standard simulator. Customized algorithms
for real world plants are then derived from this basic algorithm. Therefore, control
algorithms that fit the simulator exist for all major applications.

A combination of full scale control algorithm and this simulator is therefore the
scenario closest possible to the real-life application of an algorithm on a physical
facility. DynaTrace have therefore been integrated with the process control framework
of FLSmidth in order to collect data from such simulations. Due to practical limitations
a simulation cannot run faster than real time, so in order to achieve results quickly, a

83



84 Chapter 6. Supervision of Running Algorithm

Figure 6.1: Material flow in a vertical raw mill.

vertical raw-mill have been selected, as test subject since this is the system with the
fastest time constants available of all processes.

See Figure 6.1. Ground material is air-sweeped from the mill through a separator
that returns coarse material back into the mill and allows fine particles to pass. In
average, the material is therefore recycled multiple times through the mill before the
particle size/mass is low enough to defeat the separator.

Inputs to the system are fresh feed, separator speed and fan power. Observ-
able outputs are differential pressure, power consumption, fineness of end product,
magnitude of vibrations, elevator current consumption, a measure of mass flow, and
thickness of the layer of material on the grinding table.

The process is controlled by the MPC-algorithm in Figure 3.1 at a sample rate
of 0.1Hz. Implementation details of the algorithm are per definition not relevant for
analysis of the execution path. However, we note that the algorithm includes the block
“Performance” which is dedicated to generating performance reports, i.e. contains a
large amount of source code not related to control or affecting any of the code related
to control. Yet, this code is still included in the recorded execution path and may add
undesirable noise to the analysis.
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6.2 Testing Procedure

The system is started up and allowed to stabilize and left in steady state for an ex-
tended period of time. The resulting data record is then considered to represent
normal operation. Various disturbances are then applied to the system, forcing it
into modes that are deviations from normal operation and cf. the hypothesis in Sec-
tion 4.2.1, these should somehow be detectable by analyzing records of the execution
path.

The disturbances are:

1. Fan speed reduced to 90% for 2min every 4min.

2. Fan speed at 98% constant. This anomaly is considered insignificant and
should not differ from normal behavior.

3. Fan speed reduced to 80% for 5min every 10min.

4. Fan speed reduced to 80% for 5min every 10min and measurement of sepa-
rator speed set to zero for 200s every 10min to simulate glitches in signal from
sensor.

Each simulation is run overnight or at least several hours.

6.3 Post Processing

The raw data from DynaTrace is stored to disk and accumulates to approximately
0.7Gb for an overnight simulation. Some post processing is applied in order to re-
duce the amount of data. The algorithm has 79 objects containing source code, and
DynaTrace record the execution path by means of the sequence of line numbers exe-
cuted. Each unique sequence represents one possible state for that particular object.
A hash is calculated for each recorded execution path using a standard hashing algo-
rithm and is then considered a unique ID for that execution path, so if e.g. two hashes
are identical the corresponding execution paths are also assumed to be identical.

Finally the hash from all objects in a single execution is combined into a hash
for the whole worksheet, that is to say a hash of the execution path for the entire
algorithm. Thus, at each execution of the algorithm every 10s, we have a hash for
each object, and one hash for the whole worksheet. As an example, there are 6438
samples comprising 270 unique hashes (states) for the worksheet in case of the
steady state simulation.
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Figure 6.2: Sorted and normalized histograms of observed states. Blue: steady state, red:
disturbance no. 1.

6.4 Results

The steady state simulation is compared to disturbance no. 1 in the previous listing
and a sorted histogram calculated for the observed states in each simulation:

Total samples Common
Steady state 6438 270
Disturbance 1 5374 604

From the observed states listed in the above table it seems like the algorithm stays
within a limited set of states when in steady state while more states are covered when
disturbance force the system into transient mode.

It turns out that the two simulations have no states in common. This is surprising
and should be investigated further.

The sorted histograms from the two simulations are compared in Figure 6.2. The
histograms are normalized to denote states in the interval [0; 1] and the area under
the curve is 1. The only significant difference in the shape of the histograms is that
the algorithm seems to spend more time in a single or few states when disturbed.
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Figure 6.3: All transitions from one state to another. Blue: steady state, red: disturbance no. 1.

6.5 Transitions

As discussed in Section 4.2.1 a possibility is to investigate not only the absolute states
but also the transitions between them. The scatter plot of Figure 6.3 shows all ob-
served transitions, where the size of each dot indicate the number of observations.
Like in Figure 6.2, the axes show the popularity of the two states involved in the tran-
sition, not the popularity of the transition itself. The plot indicates that in both cases,
the algorithm tends to go from one popular state to another popular state, while tran-
sitions from an unpopular state to another are less frequent. The disturbed system
however, seems to cause a slight increase in transitions from popular to unpopular
and back.

This tendency is more visible in Figure 6.4, interpolating the number of observa-
tions. Note the steep edges of the surface in the disturbed (rightmost) case.

The analysis presented so far has been applied to the other disturbance sce-
narios with roughly similar results. It seems that the algorithm is indeed behaving
differently from steady state in this “state space” when forced into abnormal behavior.
However, it is unclear how this should be quantified and measured. We will there-
fore analyze the execution path behavior on a more detailed level by observing the
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Figure 6.4: Interpolation of observations. The percentage of transitions for which both states
are below 0.9 (dashed line in Figure 6.3) is shown. Left: steady state, right: disturbance no. 1.

execution path of each individual object.

Figure 6.5 shows an example for a particular object during the steady state test.
It is seen that the object covers 13 different execution paths with different popularity.
Here they are sorted and given an integer identifier according to popularity. In this
way, the state of the object can be presented by a single integer, the larger the number
the more abnormal is the state. By doing so for all objects the state of the whole
algorithm can be geometrically presented as a point in the 79 dimensional space
Z79.

The immediate question is then how to arrange these dimensions, one for each
object, consistently. It must be assumed, that the state of some objects is dependent,
e.g. if the same conditional branch exists in multiple objects or if a branch in one
object effectively controls the branching of another. Therefore, we chose to perform a
singular value decomposition of the steady state data in Z79 to create an eigenspace.
We will then map the data from the disturbed simulations into this eigenspace. The
hypothesis is then, that the space close to origin can be considered normal operation
so that abnormal behavior will be indicated by clusters far away from the origin.

The simulation data is shown in Figure 6.6, projected onto the two most significant
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Figure 6.5: Sorted histogram of states for a single object during steady state.

dimensions of eigenspace. It is evident, that the two very abnormal situations caused
by 20% disturbance produce states in clusters far from steady state (blue) while the
minor, 2% disturbance lies close. It should be noted that Euclidean distance makes
no sense in this space. Rather, the abnormality of a state should be measured as the
sum of all coordinates - the Manhattan norm.

Figure 6.7 shows this Manhattan norm, or total abnormality for each simulation.
Steady state is lowest, as per definition, follwed by 2% constant and 10% altering
disturbance as expected. It is not explainable however, why 20% and glitches is
closer to normal than the 20% disturbance alone.

Finally, the mean contribution to the Manhattan norm over time is depicted in
Figure 6.8 for each dimension in eigenspace. Interestingly, it shows that only 15
independent variables are needed to represent the state of the whole algorithm during
steady state, including performance reporting. Despite the high number of conditional
branches in the algorithm, only 15 of the objects seem to control the execution paths
of the others.

Conveniently, the disturbed simulations distinguish themselves from steady state
by linearly independent activity of the remaining objects. However, the 2% offset
case which is considered very close to normal operation, is surprisingly different from
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steady state.

6.6 Summary

There are indications that detecting abnormal behavior of the control algorithm by
monitoring and analyzing the behavior of its execution path may indeed be possible.
The early results presented in this Chapter suggest that statistical difference exist
between steady state and situations in which heavy disturbance drives the controlled
system and thus the algorithm into abnormal behavior. However, it remains an open
question how exactly this can be detected, and how severe the abnormality must be
to be detectable in this manner.

Further investigation with data from preferably real world plants is needed to de-
velop an effective detection mechanism.
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Chapter 7

Future Work

Dependency graphs extracted from full scale control algorithms can be very large and
unsuitable for manual inspection. Nevertheless, they represent information that could
be useful for computerized analysis. The initiatives to design a monitoring system for
the control algorithm presented in Section 4.2.1 and Chapter 6 utilize only information
about the execution path of the algorithm. Proper statistical analysis of not only the
execution path but also slicing data, such as the dependency graphs, could possibly
improve the ability to raise an early warning in case of abnormal operation. This
would be reasonable to investigate further.

The created proof of concept application is matured to be capable of slicing full
scale control algorithms running night-over and the next step would be to apply the
system on a real world process rather than a simulator in order to produce more real-
istic data. Such data could be the foundation for further investigation of the mentioned
statistical monitoring.

Additionally, the concept of assisted maintenance is to be verified and investi-
gated further with real-world maintenance problems and slicing data.

Continuous logging of execution paths generates potentially large amounts of
data, and dynamic program slicing increases the execution time and memory con-
sumption of the control algorithm. Currently no steps have been taken to reduce the
amount of logged data.

Finally, the actual benefit by means of reduced man hours used for maintenance
is to be confirmed.
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Chapter 8

Conclusion

It has been realized that process control algorithms have developed to become com-
plex software systems that need regular maintenance as such. Despite the kind of
control paradigm being implemented this software is at some abstraction level defined
by source code and this source code is being modified during maintenance.

Analysis of present industrial control algorithms have shown that 90% of the body
of these algorithms cannot be classified as classical control theory. While methods
exist for reducing or, in theory completely avoiding, the need of maintenance for clas-
sical controllers this will only apply to the remaining 10% of the algorithm which can
be considered control theory. Furthermore, maintenance scenarios remain for which
human interaction is inevitable, such as rebuilding of the plant.

To perform the actual modification of the algorithm is usually simple, whereas un-
derstanding the algorithm, realizing the problem, tracking inter-variable dependencies
and the flow of signals through the algorithm, and locating the interesting statements
which have to be modified are far the most time consuming and demanding tasks.

In this project, attention has been drawn to the issue of maintaining also these
90% of the algorithm, and the kind of maintenance tasks that involve expert mainte-
nance personnel modifying the algorithm. Thus, aim is to reduce the number of man
hours used to keep an algorithm running at high performance.

The major contribution of this project is considered to be the introduction of dy-
namic dependency graphs as a basis for further analysis of control algorithms. A
proof of concept has been created to demonstrate the extraction of these data from
running, full scale control algorithms by means of program slicing. It has shown that
these data can be logged for extended periods of time without consuming extensive
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amounts of storage, and that it is possible to replay the exact execution of the algo-
rithm including all variable values.

This means that any event of interest in the past, within the logging horizon can be
investigated down to the sequence of statements in the source code being executed.
At the execution of each line of source code, the value of all variables is available. In
contrast, current SCADA systems only offer logging capabilities for selected signals
so that important information may be lost. The demonstrated solution on the other
hand, guarantees that enough information is stored to perform an exact replay without
modifications to the source code. This means that the solution is applicable to existing
algorithms and needs no design, configuration, or tuning which is very attractive from
an industrial point of view.

Two potential uses of the extracted dependency graphs have been proposed
and investigated experimentally. An approach for computer-assisted maintenance
by automating the locating of the statements to be modified, the expert is left only
to perform the actual modification. Additionally, a concept of monitoring the control
algorithm during runtime has been proposed. Aim is to raise an alarm in case of ab-
normal behavior and to make the system supply an automatic, qualified guess about
the location of the responsible part of the algorithm.

Experimental results shows that it is indeed possible to distinguish an (abnor-
mal) heavy disturbance situation from normal operation by analyzing the data ex-
tracted from the running algorithm, while the use of dependency graphs in localizing
the statements in an algorithm responsible for a fault has been demonstrated on a
smaller, artificial example.

Finally, a number of visualizations of dependency graphs have been demon-
strated for the purpose of improving navigation and exploration of running algorithms
as an additional step to reduce the man hours needed for maintenance.
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