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Summary

As people rely on all kinds of software systems for almost every aspect of their
lives, how to ensure the reliability of software is becoming more and more im-
portant. Program analysis, therefore, becomes more and more important for
the software development process. Static program analysis helps developers to
build reliable software systems more quickly and with fewer bugs or security
defects. While designing and implementing a program analysis remains a hard
work, making it both scalable and precise is even more challenging. In this
dissertation, we show that with a general inclusion constraint solver using unifi-
cation we could make a program analysis easier to design and implement, much
more scalable, and still as precise as expected.

We present an inclusion constraint language with the explicit equality constructs
for specifying program analysis problems, and a parameterized framework for
tuning a constraint system. Implementing an analysis is simplified as generating
a set of constraints to be complied with. The equality constraints specifies
equivalent analysis variables and thereby could be taken advantage of by a
constraint solver to reduce a problem space and improve performance. We show
a good balance between performance and precision could be achieved with the
framework.

We also introduce off-line optimizations for a general constraint solver. The op-
timizations automatically efficiently detect (potential) equivalent classes. With
our case studies on a C pointer analysis, and two data flow analyses for C lan-
guage, we demonstrate a large amount of equivalences could be detected by
off-line analyses, and they could then be used by a constraint solver to signif-
icantly improve the scalability of an analysis without sacrificing any precision.
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Resumé

Efterh̊anden som samfundet i stigende grad bliver afhængigt af softwaresys-
temer, bliver det stadigt vigtigere at sikre deres p̊alidelighed. Som følge deraf
bliver programanalyse et stadigt vigtigere element i softwareudviklingsprocessen,
fordi det hjælper udviklere til at bygge p̊alidelige softwaresystemer hurtigere og
med færre fejl eller sikkerhedsdefekter. Det er en udfordring at designe og imple-
mentere nyttige programanalyser og ikke mindst, n̊ar de b̊ade skal være præcise
og skalerbare. I denne afhandling viser vi, hvorledes en generel løsningspakke
til programanalyser, dels kan udvikles og dels kan bruges til opn̊a de beskrevne
mål.

Vi præsenterer et metasprog til programanalyse, som b̊ade tillader inklusion af
information mellem analyse variable og egentlig unifikation af disse, samt en
parametriseret ramme for at tilpasse analysernes opførsel. Man kan derfor fore-
tage en programanalyse ved blot at generere et passende udtryk i metasproget,
der efterfølgende løses af vores løsningspakke, hvis konstruktion beskrives i de-
taljer. Brugen af unifikation muliggør en kraftig reduktion i løsningspakkens
pladsforbrug og dermed ogs̊a dens tidsforbrug. Vore studier viser at en god bal-
ance mellem præcision of effektivitet kan opn̊as ved at skrue p̊a disse parametre.

For yderligere at effektivesere programanalyserne præsenterer vi en række s̊akaldte
off-line optimeringer. De tager et udtryk i metasproget og ændrer mellem inklu-
sion og unifikation s̊aledes at god effektivitet opn̊as samtidig med en høj grad
af præcision. Vi bruger dem p̊a case studies som pointer analyse i C og to klas-
siske programanalyser for C og viser at de fungerer godt i praksis. Det peger
frem mod automatisk brug i løsningspakken for derigennem at forbedre dens
skalerbarhedsegenskaber yderligere.
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Chapter 1

Introduction

With the fast development of IT technology, all kinds of programs are running
almost everywhere in our society, from offices to homes, from schools to hos-
pitals, etc. While they improve the productivity of the whole society and save
a large amount of human resources in doing the same work, the demand of
improving the quality of software is increasing and even becomes critical. For
example, recent NASA mission failures, such as Mars Polar Lander and Mars
Orbiter, show the importance of having an efficient verification and validation
process for such systems. A minor error of programs on medical devices could
even be fatal to patients. To tackle the problem, much effort has been invested
in doing test manually in industry. It is tedious work and cannot guarantee the
completeness of test. This is not only because time and human resources are
limited but also because finding all the run-time errors or, more general, any
kind of violation of a specification is undecidable. Under most cases only part
of the execution scenarios can be covered in manually conducted test. That is
why automatic techniques become so attractive.

Static program analysis [NNH99] is the process of automatically analyzing the
behavior of computer programs and has been widely applied on the fields of
compilers and software engineering tools. It is often conducted in two stages.
First a theoretically well-founded analysis is designed and expressed using a
collection of constraints. Second the constraints are solved by some constraint
solver. This strategy separates analysis specification from implementation and
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also allows program analysis designers to share the insights and efforts in solver
technology: optimizations to the solver can be applied to all analyses using
it. Furthermore, compared to manually implemented analysis, fewer errors are
introduced by automatically deriving the implementation from the set of con-
straints generated.

Although much effort has been devoted to proving the correctness of analyses,
this is not sufficient for getting a useful analysis. To demonstrate utility, analy-
sis designers need to prototype, test their analysis ideas, and realistically judge
the cost/performance trade-offs of different design considerations. This disser-
tation describes a parameterized framework supporting both set inclusion and
unification over analysis variables. With the framework, users can implement
efficient or precise analyses, or even both. The intuition of using unification
is that analysis variables can be collapsed into one representative and thereby
reduces the problem space.

Substituting unification for set-inclusion is based on two insights. First, the
analysis result of unification is sound with respect to that of set-inclusion. Sec-
ond, unification can be solved in almost linear time and reduces memory con-
sumption. Given the knowledge from the client, the parameterized framework
in this thesis enables analysis designers to test their ideas and reach a good
balance between performance and precision.

In this dissertation the universe of the constraint solver consists of finite atomic
values as for Datalog solvers, e.g. the Succinct Solver [NSN02], XSB Prolog sys-
tem [SSW94]. Many program analyses use a declarative language, such as Dat-
alog. However implementations using general Datalog solvers are often slower
than traditional implementations and as a result do not scale to large programs.
Emphasizing the use of unification, and developing techniques of making use of
it, shows light on cracking the scalability bottleneck.

Precision and performance are often considered as a trade-off relation because
a more precise result often implies higher cost. For example, set inclusion is
more precise than unification because it maintains the direction of the flow
of information. In return it takes cubic time in worst case to solve when a
graph problem is concerned. In fact precise analyses often show unscalable
to large programs. Although using equality constraints may lead to a loss in
precision, a heuristic study of this thesis shows that often there is a partitioning
into equivalence classes of analysis variables and they can be unified without
losing precision. In order to make program analyses both precise and scalable,
this thesis explores two approaches for detecting equivalence between analysis
variables, in which case doing unification over these variables will not cause any
loss in precision. The first is to review analysis specifications and detect where
unification can replace set-inclusion without causing any extra false alarms. As
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shown in this thesis, the process of the detection could be quite tricky. However
the effort pays off in better understanding under which cases a false alarm may
be introduced by unification. As a result, analysis designers gain a good control
in the level of precision when they tune a system to reach a good balance between
precision and performance.

The second approach is to develop techniques for automatically detecting as
many equivalence classes of analysis variables as possible. Modifying analysis
specifications can be quite costly in terms of both the time taken and the level
of skills desired from the person who needs to perform it. To make the solver
a handy engine not only for analysis designers but for all users who want to
do precise as well as high performance analysis with the help of unification,
this thesis also provides an off-line technique to detect equivalence analysis vari-
ables automatically. The technique is called off-line since it is performed before
the execution of solver. The main idea of the technique is to study the depen-
dency relation between the data fields of analysis variables given by a constraint
program and identify (potential) equality relations. Since off-line analyses are
conducted on the constraints instead of program analyses, the use of the ex-
isting off-line analysis does not have to be restricted to a specific analysis and
could be reused on a collection of program analyses that share the same class
of constraints.

In summary, this dissertation makes a contribution in the area of inclusion
constraint solver technology for implementing high performance or(and) precise
program analyses. We shall mainly study how to take advantage of unification
to make high-utility program analyses.

1.1 Overview of the Dissertation

The present dissertation consists of seven chapters, of which this introductory
chapter is the first.

Chapter 2 presents the overall strategy for implementing program analyses using
inclusion constraint solver and explains the advantages of using such a strategy.
Some background knowledge about ordered theory and the Flow Logic[NN97,
NN98, NNH99, NN02] is introduced in anticipation of the development of the
following chapters.

Chapter 3 presents the basic inclusion constraint language and a parameterized
framework to tune a constraint program. In order to give the meaning of the
language, two versions of semantics are specified: the first is from the analy-
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sis designer’s point of view, the second is from the solver designer’s point of
view. The properties of the two semantics are studied and related each other.
Especially, based on the second semantics, a series of theoretical development
provides a foundation for the correctness of using unification over analysis vari-
ables (collapsing analysis variables) for program analyses.

Chapter 4 specifies the design of the solver algorithm and conducts an exper-
imental study on a Reaching Definitions Analysis. The important properties
of the algorithm, such as the correctness, termination property, and asymp-
totic complexity, are shown. For the experimental study, we conduct a heuristic
study on where to use unifications and the effect of using them. We measure
the performance in terms of time and space consumption before and after using
unification on a set of well-designed benchmarks. A comparison study between
our solver and the Succinct Solver is also performed.

Chapter 5 describes an extended inclusion constraint language for a C pointer
analysis. We presents the perspectives of pointer analyses, motivate the exten-
sion to the basic inclusion constraints, and finally describe in detail the formu-
lation of real C programs using inclusion constraints.

Chapter 6 introduces two off-line optimizations for the constraint solver and
the strategy of reusing the optimizations for more program analyses. We study
the effect of applying the optimizations on a C pointer analysis, a reaching
definitions analysis, and a live variable analysis.

Chapter 7 concludes our work by a discussion of related work and re-states our
major contribution in this dissertation.



Chapter 2

Setting the Scene

Software programs are typically written in general-purpose languages, e.g. the C
programming language, or sometimes in process calculi, e.g. CSP [Low95], CCS
[FG95], ambients [CG00, BCC01, ZN06], Klaim [BBN+03, NFP98, NFP00], etc,
and they are Turing complete language. Semantically analyzing certain property
of such a program is, in general, undecidable, i.e., not solvable with limited time
and(or) space, according to Rice’s Theorem [Ric53].

Despite the undecidable nature of the problem, several techniques have been
introduced in order to automate the analysis. Clarke et al. uses the model
checking of temporal logic formulae to exhaustively simulate the execution of
a program [CE81]. The approach is efficient for finding flaws in applications
whose state space is moderate size. However, it becomes intractable for large
state spaces and undecidable for infinite state spaces. As a result, the model
checking can not guarantee the termination of an analysis and the absence of
the flaw.

The basic theme of static analysis is that the analysis can remain computable
by providing a little larger answer than the exact one [NNH99]. That is, static
analysis approximates the behavior of a software by taking proper abstraction,
which shows respect to the semantics. The Figure 2.1 illustrates the principle.
Accordingly static analysis always terminates and guarantees the flawlessness
of a system if no violation is reported.
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Figure 2.1: Approximate the behavior of a program using static analysis.

Figure 2.2: Framework of implementing constraint-based program analysis.

Because the nature of static analysis, false positives may appear and have to be
manually identified by the users of an analysis tool. Improving the precision of
an analysis usually reduces performance. On the other hand, being decidable
does not imply being practical: the cubic time complexity of Andersen’s pointer
analysis [And94] is not scalable in analyzing real C programs. Therefore ob-
taining precise and high-performance analysis remains a challenge for analysis
designers.

The constraint solver technique introduced in this dissertation aims at achiev-
ing both precise and high-performance program analysis. The fact that many
program analyses can be expressed as a collection of constraints, the approach
is known as constraint based analysis, allows the development of general con-
straint solver technique. In return, a general constraint solver simplifies the
implementation of program analyses that generate a set of constraints. Figure
2.2 illustrates the whole process: an analysis specification is designed to gener-
ate constraints from program code, and these constraints are then solved by a
constraint solver; finally the solver outputs a solution for the constraints. This
process is demonstrated by all the implementations of the example analyses in
this dissertation. Although in Chapter 6 we shall extend the process a little bit,
the basic principle remains the same.
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2.1 Why constraints

The advantageous of using constraints to specify analyses can be summarized
as the following:

• First, the design of program analyses is separated from their implemen-
tations. Analysis designers can therefore focus on generating proper con-
straints. The implementation of an analysis becomes a separate activity
that often involves other formalisms and tools.

• Second, inclusion constraints is a natural approach for programmers to
specify program analysis. The meaning of the constraint constructs is of-
ten straightforward and intuitive, and thus understandable to the average
programmer.

• Third, the use of constraints allows analysis designers to choose formalisms
or tools for solving the constraints generated. They can choose to either
develop their own solver or select one of available solvers.

• Fourth, constraint-based approach also provides a common criteria for
comparing between constraint solvers. This is often quite important for
acquiring insights about how and why one solver is better than another.
Solver designers can accordingly enhance existing algorithms or develop
new techniques.

• Fifth, automatically deriving the implementation from an constraint spec-
ification minimizes the number of errors that may introduce in the imple-
mentation phase.

• Sixth, the optimization of an analysis can be conveniently conducted from
analysis designers’ side. From analysis designers’ side, a good balance
between performance and precision can be expected by manually tuning
the constraints generated. To improve performance, analysis designers
may consider to use fast-solved constraints, e.g. unification on equality
constraints, instead of expensive ones, e.g. set-inclusion constraints. As
a result, a loss in imprecision may happen by adopting fast-solved con-
straints. However, one should maintain precision as high as possible since
too many false positives often make an analysis tool hard to use in practice.
Concerning where to prioritize performance over precision or the opposite,
analysis designers often have a better view than solver designers.

The usability of an analysis is usually required for analyzing real software
systems and thus how to obtain a high-performance implementation plays
an important role in analysis design. In fact, performance has higher
priority than precision before an analysis becomes scalable to a software
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system. This is because no useful approximation is available at all if an
analysis is not scalable.

In this dissertation, the constraint language is designed to support a para-
meterized framework. Analysis designers can tune the analysis by simply
choosing the kinds of constraints to be generated in order to reach a good
balance between performance and precision. With the framework, analysis
designers can actively involve into the activity of making a better analysis
in terms of both performance and precision.

• Seventh, an optimization of an analysis can also be conducted from the
solver designers’ side. From solver designers’ point of view, algorithms
can be developed to automatically optimize the given constraints, e.g.
detecting equivalent analysis variables and collapsing them. As an extra
benefit, these algorithms is reusable in general because the optimization
is conducted on constraints, not on a specific analysis specification.

• Eighth, the use of constraints allows a natural way to express equality
relation over program analysis variables and thereby enables a constraint
solver to take advantage of unification technique to improve the usability
of a constraint solver.

2.2 Theoretical Preliminaries

Order and lattice theory are important in program analysis. In this subsection,
we briefly review the most important order and lattice notations in preparation
for the presentation of the following sections. For a more detailed treatment
refer to [NNH99], and for a comprehensive introduction refer to [DP02].

Definition 2.1 Partial Order A partial order on a set P is a binary relation
v on P such that v is

- reflexive i.e. ∀x ∈ P : x v x

- antisymmetric i.e. ∀x, y ∈ P : (x v y ∧ y v x) ⇒ x = y

- transitive i.e. ∀x, y, z ∈ P : (x v y ∧ y v z) ⇒ (x v z)

Notation 2.2 We shall write (P,v) for a set P equipped with a partial order
v.

Definition 2.3 Preorder A preorder on a set P is a binary relation ¹ on P
such that ¹ is
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- reflexive i.e. ∀x ∈ P : x ¹ x

- transitive i.e. ∀x, y, z ∈ P : (x ¹ y ∧ y ¹ z) ⇒ (x ¹ z)

(but not necessarily antisymmetric)

Notation 2.4 We write (P,¹) for a set P equipped with a partial order ¹.

Theorem 2.5 For a preorder ¹, x ≡ y
def= (x ¹ y) ∧ (y ¹ x) is a equivalence

relation, i.e. reflexive, transitive and symmetric.

Proof. See, e.g., [DP02]. ¤

If there is an element x ∈ P such that ∀y ∈ P : x v y, then the element x
is called the least element of P and is denoted ⊥. Analogously, the greatest
element of P is an element x ∈ P such that ∀y ∈ P : y v x and is denoted >.
Generalising this leads to the definition of upper bounds:

Definition 2.6 Upper Bound Let (P,v) be a partial order and let S ⊆ P .
The element u ∈ P is an upper bound of S iff

∀x ∈ S : x v u

Definition 2.7 Least Upper Bound Let (P,v) be a partial order and let
S ⊆ P . The element u is a least upper bound (lub) of S iff

• u is an upper bound of S, and

• for every upper bound u′ of S, u v u′

Notation 2.8 We denote a lub of S in P by
⊔

S whenever it exists. The binary
least upper bound of u, u′ ∈ P is written u t u′.

A lower bound and a greatest lower bound are analogously defined by:

Definition 2.9 Lower Bound Let (P,v) be a partial order and let S ⊆ P .
The element l ∈ P is an lower bound of S iff

∀x ∈ S : l v x
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Definition 2.10 Greatest Lower Bound Let (P,v) be a partial order and
let S ⊆ P . The element l is a greatest lower bound (glb) of S iff

• l is an lower bound of S, and

• for every lower bound l′ of S, l′ v l

Notation 2.11 We denote a glb of S in P by
d

S whenever it exists. The
binary greatest lower bound of l, l′ ∈ P is written l u l′.

Definition 2.12 Lattice Let (P,v) be a non-empty partially ordered set. If
x t y and x u y exist for all x, y ∈ P , then P is called a lattice.

Definition 2.13 Complete Lattice Let (P,v) be a non-empty partially or-
dered set. If

⊔
S and

d
S exist for all S ⊆ P , then P is called a complete lattice.

Note that for a complete lattice (P,v), ⊥ =
⊔ ∅ =

d
P and > =

d ∅ =
⊔

P .

Lemma 2.14 For a partially ordered set P = (P,v) the statements

(i) P is a complete lattice,

(ii) every subset of P has a least upper bound, and

(iii) every subset of P has a greatest lower bound

are equivalent.

Proof. See, e.g., [NNH99] ¤

Proposition 2.15 Function Space For a set S and a complete lattice (P,v),
the function space (S → P,vS→P ) is a complete lattice in which the pointwise
order is defined by

f1 v f2 iff ∀e ∈ S : f1(e) vS→P (e)

Proof. See, e.g., [NNH99]. ¤

Definition 2.16 Moore family For a complete lattice (P,v), a Moore family
is M ⊆ P , such that

∀M ′ ⊆ M :
l

M ′ ∈ M

i.e. the set M is closed under greatest lower bound.
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2.3 Flow Logic

Flow Logic is a specification oriented framework for constraint based static
analysis [NN97, NN98, NNH99, NN02]. In anticipation of the following sec-
tions, the most important principles and notions of the Flow Logic framework
is reviewed below.

The specification of an analysis in Flow Logic declares a set of constraints that
analysis estimation must satisfy in order to be an acceptable estimate of a
software program. Thus a Flow Logic specification focuses on not how the
analysis is computed but what the analysis does. Because of the constraint
based nature, a specification and its implementation give rise to be independent.
Analysis designers can therefore concentrate on specifying the analysis and not
worry about its implementation at the same time.

Traditionally, Flow Logic is only used for specifying an analysis. However,
once an analysis specification is available, analysis designers should also feel
free to adjust the constraints generated for achieving a good tradeoff between
performance and precision in the precondition of the correctness of an analysis.
This is one of benefits acquired from the use of constraint based approach as
discussed in the earlier section.

A Flow Logic specification consists of three ingredients as the following.

Analysis Domain. The domain of a Flow Logic specification is the universe of
discourse for analysis estimates. Usually the universe is given by a complete
lattice L.

Acceptability Judgement. An acceptability judgement relates analysis estimates
A ∈ L to programs P ∈ Prog. It has the form

A |= P

where the functionality of the relation ‘|=’ is

|=: (L×Prog) → {true, false}
Therefore, intuitively a judgement holds when A constitutes an acceptable
analysis estimate for program P .

Defining Clauses. A judgement is defined by a set of clauses which is typically
specified for each syntactic construct ϕ of a programming language and they
has the form

A |= ϕ iff (some logic formulas F and A |= ϕ′)



12 Setting the Scene

Here F states the constraints that analysis estimate A should follow. If ϕ′ is al-
ways a strict sub-programm of ϕ, then the Flow Logic specification is inductively
defined. This kind of specifications are called syntax directed or compositional
since the analysis of a process is only relevant to the analysis of its part. Oth-
erwise, a specification is called abstract.

In this dissertation, every example analysis specified in Flow Logic is syntax di-
rected. For more detailed information about abstract specification, see [NNH99].

2.4 Concluding Remarks

In this chapter we presented the overall strategy of using a constraint solver to
implement program analysis (which should be constraint-based). We discussed
the advantages of using a constraint formulation for implementing a program
analysis. In the later chapters, we shall demonstrate these advantages with the
techniques developed and all the working examples.

In preparation of the theoretic development in later chapters, we reviewed some
important definitions and theorems in the field of ordered theory. They not only
form a basement for the proof of some theorems, but also shows to be inspiring
in some our definitions presented later, e.g. the complete prelattice and Moore
family for complete prelattice.

Finally we introduced the Flow Logic framework that is widely used in spec-
ifying constraint-based program analyses. The use of this framework shall be
demonstrated in our case study. In fact, the satisfaction relation |= is also used
for specifying semantics of the inclusion constraint language and the semantics
of the ALFP logic.



Chapter 3

Basic Inclusion Constraint
Language

In this chapter we present an inclusion constraint language for implementing
program analysis problems. To conveniently specify equivalence relation, we
provide the explicit equality constraints besides set-inclusion constraints in the
language. Based on this special feature, we describe a parameterized framework,
which allows an analysis designer to make use of both equality constraints and
inclusion constraints in order to achieve a good tradeoff between performance
and precision.

Two versions of the semantics for the language are specified: the first addresses
the interest and the needs of analysis designers; the second addresses those of
solver designers. A thorough study on their theoretical properties are conducted
separately. Finally the relation between the two versions of the semantics is
presented.

The content of this chapter builds up a firm theoretic basis for the algorithm de-
sign (presented in Chapter 4) and major part of the presentation was previously
covered in [ZN08].
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ϕ ::= c ⊆ α | α ⊆ β | α = β | α ∩ β ⊆ γ |
α \ c ⊆ β | α \(D) ⊆ β | ϕ1 ∧ ϕ2

D ::= ? | ?, D | m | m,D

Table 3.1: Syntax of the Basic Constraint Language

3.1 Syntax of Basic Inclusion Constraint

We assume that a countable set of analysis variables is given and a tuple is a
sequence of atomic values from the universe U , whose members are left unspec-
ified. A constant is a set of tuples. Formally,

α, β ∈ AVar analysis variables
t ∈ Tupl = U∗ tuples
c ∈ Ĉonst = P(Tupl) constants

For the basic constraint language we use the following syntactic categories:

ϕ ∈ Clause clauses
D ∈ Template templates

The syntax of the inclusion constraint is specified as in Table 3.1. Besides the
normal set-inclusion relation between analysis variables, the constraint language
can express equivalences between analysis variables with the explicit equality
constraint. It is also possible to express the constraints α∪β ⊆ γ and α ⊆ β∩γ
in terms of more primitive operations. For example, α∪β ⊆ γ can be expressed
as α ⊆ γ ∧ β ⊆ γ. The union on the right hand side is dispensed with since
it would destroy the Moore family property of a set of satisfiable solutions
(presented in the next section). Two kinds of set minus operations are specified:
one is standard, another is extended. The extended one uses the template D to
represent a set of tuples: the values of some positions of these tuples are fixed
and the rest can be any atomic values (represented by ‘?’). The overloaded set
minus operation therefore removes all the tuples matching the template D from
a set S, formally

S \ (m1, · · · , mi1−1, ?, mi1+1, · · · , mik−1, ?, mik+1, · · · , mn) =

S \ {(m1, · · · , mi1−1, `1, mi1+1, · · · , mik−1, `k, mik+1, · · · , mn) | `1, · · · , `k ∈ U}

This syntax category is useful to make a concise implementation of program
analyses. It also improves the performance of the solver by reducing the number
of constraints that would otherwise be required to express the same logic using
the standard set minus constraint.
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1. ψ̂ |= c ⊆ α iff c ⊆ ψ̂(α)

2. ψ̂ |= α ⊆ β iff ψ̂(α) ⊆ ψ̂(β)

3. ψ̂ |= α = β iff ψ̂(α) = ψ̂(β)

4. ψ̂ |= α ∩ β ⊆ γ iff ψ̂(α) ∩ ψ̂(β) ⊆ ˆψ(γ)

5.1 ψ̂ |= α \ c ⊆ β iff ψ̂(α) \ c ⊆ ψ̂(β)

5.2 ψ̂ |= α \(D) ⊆ β iff ψ̂(α) \(D) ⊆ ψ̂(β)

6. ψ̂ |= ϕ1 ∧ ϕ2 iff ψ̂ |= ϕ1 and ψ̂ |= ϕ2

Table 3.2: Standard Semantics

3.2 Standard Interpretation

To specify the semantics of the constraint language, an analysis estimate ψ̂ is
used to associate constants with analysis variables:

ψ̂ ∈ Ênv = AVar → Ĉonst abstract environments

The semantics is defined by a satisfaction relation that has the form

ψ̂ |= ϕ

The judgement is true whenever ψ̂ is an acceptable solution of ϕ. The rules of the
semantics of the constraint language is specified in Table 3.2. For the constraint
c ⊆ α, the estimate ψ̂ is valid whenever the data of α, i.e. ψ̂(α), contains the
constant c. The second rule demands that any data of β must be included by
α. The rule for equality constraints declares that equivalent analysis variables
contain a same set of tuples. The rule for the constraint α ∩ β ⊆ γ says that γ
should contain the common data shared by α and β. For the constraint using
the standard set minus operator α \ c ⊆ β, the set acquired from the operation
ψ̂(α) \ c is included by β. The rule for the constraint using non-standard set
minus operator is very similar except that we remove all the tuples that match
the template D from α this time. Finally the sixth rule declares that in order
for an estimate ψ̂ to be acceptable, it must comply with both the two sub-terms.

Example 3.1 Consider a constraint program

{(a, b)} ⊆ α ∧ α ⊆ β ∧ {(c, d)} ⊆ β
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Two estimates are listed as below:

(a) ψ̂(α) = {(a, b)} (b) ψ̂(α) = {(a, b)}
ψ̂(β) = {(a, b), (c, d)} ψ̂(β) = {(a, b), (c, d), (e, f)}

Both of them are acceptable to the given constraint program although the so-
lution (b) is more imprecise than the solution (a). There could even be infinite
solutions when the universe is infinite. Therefore it is important to study the
properties of the abstract environments. ¤

3.2.1 Properties of Approximations

To better understand the relation between abstract environments, the following
partial order is defined.

Definition 3.2 (Relation v) For all ψ̂, ψ̂′ ∈ Ênv,

ψ̂ v ψ̂′ iff ∀α ∈ AVar : ψ̂(α) ⊆ ψ̂′(α)

where ⊆ is normal set inclusion operator.

Now consider Example 3.1 again, one can verify that the solution ψ̂ is a least
one: for any estimate ψ̂′ that satisfies the constraint program of Example 3.1
we have that ψ̂ v ψ̂′. Since in general we are interested in a least solution,
the below theorem then guarantees the existence of a unique least solution as
desired.

Theorem 3.3 For each ϕ ∈ Clause, the set {ψ̂| ψ̂ |= ϕ} is a Moore family.

Proof. First note that (P(Tupl),⊆,∩,∪, ∅,Tupl) is a complete lattice. So
is the function space Ênv according to Proposition 2.15. We prove the theorem
by a structural induction on ϕ.
Case c ⊆ α. Assume that

∀i ∈ I : ψ̂i |= c ⊆ α

for some set I, we show that uiψ̂i |= c ⊆ α. From rule 1 in Table 3.2 we have

∀i ∈ I : c ⊆ ψ̂i(α)
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where α ∈ dom(ψ̂i). Thus we have c ⊆ ∩{ψ̂i(α)| i ∈ I}, i.e. uiψ̂i |= c ⊆ α

(because of (uiψ̂i)(α) = ∩{ψ̂i(α)| i ∈ I}). This allows us to conclude that the
set {ψ̂| ψ̂ |= c ⊆ α} is a Moore family.

Case α = β. Assume that

∀i ∈ I : ψ̂i |= α = β

for some set I. From rule 3 in Table 3.2 we have

∀i ∈ I : ψ̂i(β) ⊆ ψ̂i(α) ∧ ψ̂i(α) ⊆ ψ̂i(β)

where α, β ∈ dom(ψ̂i). From the first component of the conjunction, we have
that ∩{ψ̂i(β)|i ∈ I} ⊆ ψ̂j(α) for all j ∈ I whence ∩{ψ̂i(β)|i ∈ I} ⊆ ∩{ψ̂j(α)|j ∈
I}. Together with (uiψ̂i)(β) = ∩{ψ̂i(β)|i ∈ I} and (uiψ̂i)(α) = ∩{ψ̂i(α)|i ∈ I},
we have that uiψ̂i(β) ⊆ uiψ̂i(α). Similarly from the second component of the
conjunction, we have that uiψ̂i(α) ⊆ uiψ̂i(β). Then rule 3 in Table 3.2 ensures
that uiψ̂i |= α = β.

Case α ⊆ β. Assume that

∀i ∈ I : ψ̂i |= α ⊆ β

for some set I. From rule 2 in Table 3.2 we have

∀i ∈ I : ψ̂i(α) ⊆ ψ̂i(β)

where α, β ∈ dom(ψ̂i). We then have that ∩{ψ̂i(α)| i ∈ I} ⊆ ψ̂j(β)for all
j ∈ I whence ∩{ψ̂i(α)| i ∈ I} ⊆ ∩{ψ̂j(β)| j ∈ I}. Together with (uiψ̂i)(α) =
∩{ψ̂i(α)| i ∈ I} and (uiψ̂i)(β) = ∩{ψ̂i(β)| i ∈ I}, we have that uiψ̂i(α) ⊆
uiψ̂i(β). Then rule 2 in Table 3.2 ensures that uiψ̂i |= α ⊆ β.

Case α ∩ β ⊆ γ. Assume that

∀i ∈ I : ψ̂i |= α ∩ β ⊆ γ

for some set I. From rule 4 in Table 3.2 we have

∀i ∈ I : ψ̂i(α) ∩ ψ̂i(β) ⊆ ψ̂i(γ)

We then have that (∩{ψ̂i(α)| i ∈ I})∩ (∩{ψ̂i(β)| i ∈ I}) = ∩{ψ̂i(α)∩ ψ̂i(β)| i ∈
I} ⊆ ∩{ψ̂i(γ)| i ∈ I} and thus (uψ̂i(α) ∩ uψ̂i(β) ⊆ uψ̂i(γ). By rule 4 uiψ̂

i |=
α ∩ β ⊆ γ.

Case α \ c ⊆ β. Assume that

∀i ∈ I : ψ̂i |= α \ c ⊆ β
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for some set I. From rule 5.1 in Table 3.2 we have

∀i ∈ I : ψ̂i(α) \ c ⊆ ψ̂i(β)

We show that (uiψ
i)(α) \ c ⊆ (uiψ

i)(β). First observe (∩{ψi(α)| i ∈ I}) \ c =
∩{ψi(α) \ c| i ∈ I} ⊆ ∩{ψi(β)| i ∈ I} and therefore (uiψ

i)(α) \ c ⊆ (uiψ
i)(β).

By rule 5.1 in Table 3.2, uiψ̂
i |= α \ c ⊆ β.

Case α \ D ⊆ β. Similar to the standard set minus above. Note that D
represents a constant.

Case ϕ1 ∧ ϕ2. Assume that

∀i ∈ I : ψ̂i |= ϕ1 ∧ ϕ2

for some set I. From rule 6 in Table 3.2, we immediately get that

∀i ∈ I : ψ̂i |= ϕ1 and ∀i ∈ I : ψ̂i |= ϕ2

The induction hypothesis then gives that

uiψ̂i |= ϕ1 and ui ψ̂i |= ϕ2

By rule 6 again, we conclude that uiψ̂i |= ϕ1 ∧ ϕ2. This completes the proof.
¤

3.2.2 Parameterized Framework

The inclusion constraint language of Section 3.1 provides both set-inclusion con-
straints and equality constraints. The equality constraint does not increase the
expressiveness of the constraint language but functions as a syntactic shortcut
for specifying equivalence relation, with which analysis designers can tune a
system by syntactically switching between the two kinds of constraints. This is
based on the two observations: set-inclusion constraints are quite precise in for-
mulating analyses but takes cubic time to solve; in contrast, equality constraints
are, in general, not as precise as set-inclusion constraints but can be solved in
almost linear time [Tar83].

Intuitively, using equality constraints instead of set-inclusion constraints is safe
because equality relation is more strict than set-inclusion relation. In order to
formalize this observation, we define a relation ≤ over clauses:

Definition 3.4 (Relation ≤) For all ϕ1, ϕ2 ∈ Clause, ϕ1 ≤ ϕ2 if and only
if ϕ2 can be obtained by substituting the equality constraints for some or all
set-inclusion constraints (over analysis variables) of ϕ1.
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It is straightforward to show that ≤ is indeed a partial order. We shall say that
ϕ1 can be lifted to ϕ2 if and only if ϕ1 ≤ ϕ2. Now we are ready to present
the following two propositions, which state that any acceptable solution to the
lifted constraint program is also valid to the original one, and so is the least
solution respectively.

Proposition 3.5 For all ϕ1, ϕ2 ∈ Clause, if ψ̂ |= ϕ2 and ϕ1 ≤ ϕ2, then
ψ̂ |= ϕ1.

Proof. The proof is conducted by an induction on ϕ1.

Case c ⊆ α. The case is trivial true since ϕ1 = ϕ2 by Definition 3.4.

Cases α = β, α \ c ⊆ β, α \D ⊆ β, and α ∩ β ⊆ γ. Similarly.

Case α ⊆ β. From Definition 3.4 ϕ2 could be either α ⊆ β or α = β. The case
holds trivially if α ⊆ β. For α = β, assume

ψ̂ |= α = β

i.e. ψ̂(β) = ψ̂(α) from rule 3 of Table 3.2. We immediately have

ψ̂ |= α ⊆ β

by the fact ψ̂(β) = ψ̂(α) =⇒ ψ̂(β) ⊆ ψ̂(α) and rule 2 of Table 3.2.

Case ϕ1 ∧ ϕ2. According to Definition 3.4 ϕ2 must have form ϕ′1 ∧ ϕ′2 where
ϕ1 ≤ ϕ′1 and ϕ2 ≤ ϕ′2. Assume that

ψ̂ |= ϕ′1 ∧ ϕ′2

By rule 4 in Table 3.2 we have

ψ̂ |= ϕ′1 and ψ̂ |= ϕ′2

Then apply induction hypothesis on ϕ1 and ϕ2 and get

ψ̂ |= ϕ1 and ψ̂ |= ϕ2

Finally rule 4 in Table 3.2 allows us to conclude

ψ̂ |= ϕ1 ∧ ϕ2

and this completes the whole proof. ¤

Proposition 3.6 For all ϕ1, ϕ2 ∈ Clause, if ϕ1 ≤ ϕ2, then u{ψ̂ | ψ̂ |= ϕ1} v
u{ψ̂ | ψ̂ |= ϕ2}.
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Proof. According to Proposition 3.5 we have

ψ̂ |= ϕ2 =⇒ ψ̂ |= ϕ1

Hence by the properties of greatest lower bound

ψ̂ |= ϕ2 =⇒ u{ψ̂ | ψ̂ |= ϕ1} v ψ̂

and thus
u{ψ̂ | ψ̂ |= ϕ1} v u{ψ̂ | ψ̂ |= ϕ2}

¤

Lifting Strategy. As we shall show in our algorithm for constraint solving
in the next chapter, general constraints can be solved in cubic time while unifi-
cation on equality constraints is nearly linear. Under the framework we present,
a general strategy of tuning systems is to try set-inclusion first because analysis
designers would always prefer a precise solution if performance is acceptable. If
the efficiency of the analysis is unsatisfactory, analysis designers can syntacti-
cally adjust the constraint program by lifting some set-inclusion and repeat the
process until they achieve a good tradeoff between performance and precision.

The level of precision may be sacrificed by substituting equality for set-inclusion.
But the designer of an analysis should be able to know where it may happen
and thus has a good control on the loss of precision. For instance, a designer
can choose not to use any equality constraints for the analysis of some part
of a software system where high precision is desired, while he can use equality
constraints more often at the rest part.

On the other hand, equality constraints do not necessarily lead to a loss in
precision. Consider the following constraint program for example.

Example 3.7 Consider a constraint program

{a, b, c} ⊆ α ∧ {a, b} ⊆ β ∧ α ⊆† β ∧ β \ {b, c} ⊆ γ ∧ {a, c} ⊆ η ∧ α ⊆† η

A least solution of the program is

ψ̂(α) = {a, b, c}
ψ̂(β) = {a, b, c}
ψ̂(γ) = {a}
ψ̂(η) = {a, b, c}

As the above solution shows, in a least model α has the same data as β and η,
and thus substituting equality relations for the set-inclusions (marked with †)
would maintain the level of precision. ¤
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1. (ψ̂1, ψ̂2) |=T c ⊆ α iff c ⊆ ψ̂2(ψ̂1(α))

2. (ψ̂1, ψ̂2) |=T α ⊆ β iff ψ̂2(ψ̂1(α)) ⊆ ψ̂2(ψ̂1(β))

3. (ψ̂1, ψ̂2) |=T α = β iff ψ̂1(α) = ψ̂1(β)

4. (ψ̂1, ψ̂2) |=T α ∩ β ⊆ γ iff ψ̂2(ψ̂1(α)) ∩ ψ̂2(ψ̂1(β)) ⊆ ψ̂2(ψ̂1(γ))

5.1 (ψ̂1, ψ̂2) |=T α \ c ⊆ β iff ψ̂2(ψ̂1(α)) \ c ⊆ ψ̂2(ψ̂1(β))

5.2 (ψ̂1, ψ̂2) |=T α \(D) ⊆ β iff ψ̂2(ψ̂1(α)) \(D) ⊆ ψ̂2(ψ̂1(β))

6. (ψ̂1, ψ̂2) |=T ϕ1 ∧ ϕ2 iff (ψ̂1, ψ̂2) |=T ϕ1 and (ψ̂1, ψ̂2) |=T ϕ2

Table 3.3: Semantics Using Type Variables

3.3 Interpretation Using Type Variables

The standard semantics is user-friendly but unclear in specifying how unification
benefits our computation. In this section we make it explicit in the semantic
specification so that the interesting properties of the new interpretation can be
addressed separately from the algorithm of constraint solver. The presentation
of this section therefore provides a theoretic foundation for the implementation
of the constraint solver.

Specifically we specify a double-layer interpretation using a new category, type
variables i ∈ TV, and enforce that equivalent analysis variables map onto the
same type variable explicitly in semantics and hence the corresponding constants
are collapsed into one constant. A type-variable solution therefore has two
components:

ψ̂1 ∈ EnvT = AVar → TV type environment
ψ̂2 ∈ ÊnvTB = TV → Ĉonst type-binding environment

The acceptable relation now has the form

(ψ̂1, ψ̂2) |=T ϕ

and the rules are given in Table 3.3. Let ψ̂ = ψ̂2 ◦ ψ̂1 then the rules are the same
as those in Table 3.2 except for the third one, which enforces that two equivalent
analysis variables must be unified onto a same type variable, i.e. ψ̂1(β) = ψ̂1(α).
To further illustrate the difference, consider the below example.

Example 3.8

{(a, b), (c, d)} ⊆ α ∧ {(c, d)} ⊆ β ∧ α = β ∧ β \ {(a, b)} ⊆ γ
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Two estimates are accordingly specified as the following.

(a) ψ̂1(α) = 1 ψ̂2(1) = {(a, b), (c, d)} (b) ψ̂1(α) = 1 ψ̂2(1) = {(a, b), (c, d)}
ψ̂1(β) = 1 ψ̂1(β) = 2 ψ̂2(2) = {(a, b), (c, d)}
ψ̂1(γ) = 2 ψ̂2(2) = {(c, d)} ψ̂1(γ) = 3 ψ̂2(3) = {(c, d)}

Intuitively they have the same data for each analysis variable. In the sense of
the first semantics, both of them are acceptable (suppose ψ̂ = ψ̂2◦ψ̂1). However,
only (a) is valid with respect to the second semantics because ψ̂1(α) 6= ψ̂1(β).
Notice also that the unification coalesces the analysis variables onto one type
variable and hence avoids storing redundant information in the environment
ÊnvTB. Therefore the use of unification not only reduces the problem space
but also saves the space of storing the data fields of each type variable. ¤

One challenge of adopting the type-variable solution is that the least solution
is not unique and may even potentially be infinite. For example, another solu-
tion could be acquired for the program in Example 3.8 by reordering the type
variables used in (a). In the rest of this section, we study the relation be-
tween these least solutions and present the principle of designated solution to
remove the non-determinism of the choice of type variables. We show further
the correctness of the second semantics with respect to the first. Therefore it is
sufficient for analysis designers to understand the first semantics and the strat-
egy of tuning systems, and leave the technical details of solving constraints to
solver designers.

We start our development with a definition of an ordering relation:

Definition 3.9 (Relation ¹) For (ψ̂1, ψ̂2), (ψ̂′1, ψ̂
′
2) ∈ EnvT× ÊnvTB, define

(ψ̂1, ψ̂2) ¹ (ψ̂′1, ψ̂
′
2) ⇐⇒ ∃π : TV → TV : ψ̂′1 = π ◦ ψ̂1 ∧ ψ̂2 v ψ̂′2 ◦ π

where π is a total function and ψ̂2 v ψ̂′2 ◦π ⇔ ∀ i ∈ rang(ψ1) : ψ̂2(i) ⊆ ψ̂′2(π(i)).

Note that it does not matter for the type variables out of the range of ψ1 in the
context of this dissertation. It is straightforward to verify that the relation ¹
is a pre-order, but not a partial order. This definition is not constructive since
the definition of the total function π remains unspecified. In preparation for
showing the relation between the least solutions of a constraint program, two
lemmata, Lemma 3.10 and 3.11 are specified and proved first as follows: the
first lemma provides a more constructive way of verifying the relation ¹ than
Def. 3.9; the second further generalizes the result onto an equivalence relation
≡.
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Lemma 3.10 (ψ̂1, ψ̂2) ¹ (ψ̂′1, ψ̂
′
2) if and only if

∀α, β ∈ AVar : ψ̂1(α) = ψ̂1(β) ⇒ ψ̂′1(α) = ψ̂′1(β) ∧ (i)

∀γ ∈ AVar : ψ̂2(ψ̂1(γ)) ⊆ ψ̂′2(ψ̂
′
1(γ)) (ii)

Proof. Following from the Definition 3.9 the lemma is proved by the obser-
vation that every equivalence analysis variable should bind to the same type
variable and the functional compositions of the two pairs have the relation
ψ̂2 ◦ ψ̂1 ⊆ ψ̂2

′ ◦ ψ̂1
′
. Formally,

(Only-if.) Suppose (ψ̂1, ψ̂2) ¹ (ψ̂′1, ψ̂
′
2), then from Definition 3.9 we are sure

that

∃π : ψ̂′1 = π ◦ ψ̂1 ∧ (iii)

ψ̂2 v ψ̂′2 ◦ π (iv)

We then have that

ψ̂1(α) = ψ̂1(β) =⇒ (π ◦ ψ̂1)(α) = (π ◦ ψ̂1)(β)

for some π such that ψ̂′1 = π ◦ ψ̂1 from the definition of function composition.
This allows us to conclude that

ψ̂1(α) = ψ̂1(β) =⇒ ψ̂′1(α) = ψ̂′1(β)

Since ψ̂2 v ψ̂′2 ◦ π and ψ̂1(α) = ψ̂1(α), we get

ψ̂2(ψ̂1(α)) ⊆ (ψ̂′2 ◦ π)(ψ̂1(α)) (v)

Also from the condition (iv) and associativity of function composition, we have

ψ̂′2(ψ̂
′
1(α))

= ψ̂′2(π ◦ ψ̂1(α))

= ψ̂′2 ◦ (π ◦ ψ̂1)(α)

= ψ̂′2 ◦ π ◦ ψ̂1(α)

= (ψ̂′2 ◦ π)(ψ̂1(α))

Together with the condition (v), we conclude that ∀α ∈ AVar : ψ̂2(ψ̂1(α)) ⊆
ψ̂′2(ψ̂

′
1(α)).

(If.) We define function π by

∀x ∈ AVar : π(ψ̂1(α)) = ψ̂′1(α) ∧
∀t ∈ TV : t /∈ range(ψ̂1) : π(t) = t
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The function is well-defined by the condition (i) and it is straightforward to
show the function is a total function and ψ̂′1 = π ◦ ψ̂1 ∧ ψ̂2 v ψ̂′2 ◦ π by (ii)
and therefore (ψ̂1, ψ̂2) ¹ (ψ̂′1, ψ̂

′
2). ¤

The formula (i) demonstrates an important property of the relation ¹ when the
Moore family property is considered later: if a least solution, say (ψ̂l

1, ψ̂
l
2), exists

for a constraint program ϕ, then for two analysis variables of ϕ, say α and β, we
have that ψ̂l

1(α) = ψ̂l
1(β) if and only if α = β is specified in ϕ or can be implied

by two or more equality constraints by the transitivity of equivalence relation,
e.g. α = γ ∧ γ = β. We further define the relation ≡ by

(ψ̂1, ψ̂2) ≡ (ψ̂′1, ψ̂
′
2)

def= ((ψ̂1, ψ̂2) ¹ (ψ̂′1, ψ̂
′
2)) ∧ ((ψ̂′1, ψ̂

′
2) ¹ (ψ̂1, ψ̂2))

for ψ̂1, ψ̂
′
1 ∈ EnvT ψ̂2, ψ̂

′
2 ∈ ÊnvTB. It is straightforward to verify that the

relation ≡ is an equivalence relation, i.e. it is reflexive, transitive and symmetric.

Lemma 3.11 (ψ̂1, ψ̂2) ≡ (ψ̂′1, ψ̂
′
2) iff

∀α, β ∈ AVar : ψ̂1(α) = ψ̂1(β) ⇔ ψ̂′1(α) = ψ̂′1(β) ∧ (vi)

∀γ ∈ AVar : ψ̂2(ψ̂1(γ)) = ψ̂′2(ψ̂
′
1(γ)) (vii)

Proof. The result follows directly from the definition of equivalence relation
≡ and Lemma 3.10. ¤

Lemma 3.11 shows that the equivalence of two pairs amounts to checking the
conjuncts (vi) and (vii). We are now ready for specifying the following propo-
sition which states that given a constraint program, if a pair is acceptable then
so are all its equivalences.

Proposition 3.12 If (ψ̂1, ψ̂2) |=T ϕ ∧ (ψ̂1, ψ̂2) ≡ (ψ̂′1, ψ̂
′
2), then (ψ̂′1, ψ̂

′
2) |=T ϕ.

Proof. The proof is conducted by induction on ϕ.

Case c ⊆ x. Assume that

(ψ̂1, ψ̂2) |=T c ⊆ α ∧ (ψ̂1, ψ̂2) ≡ (ψ̂′1, ψ̂
′
2)

From rule 1 in Table 3.3 we have c ⊆ ψ̂2(ψ̂1(α)). We show that c ⊆ ψ̂′2(ψ̂
′
1(α)).

By Lemma 3.11 we have ψ̂2(ψ̂1(α)) = ψ̂′2(ψ̂
′
1(α)) whence c ⊆ ψ̂′2(ψ̂

′
1(α)) because

of the transitivity of inclusion relation. Finally the first rule in Table 3.3 allows
us to conclude that (ψ̂′1, ψ̂

′
2) |=T c ⊆ α as desired.
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Case α ⊆ β. Assume that

(ψ̂1, ψ̂2) |=T α ⊆ β ∧ (ψ̂1, ψ̂2) ≡ (ψ̂′1, ψ̂
′
2)

By the second rule in Table 3.3 we get ψ̂2(ψ̂1(α)) ⊆ ψ̂2(ψ̂1(β)). The Lemma 3.11
gives ∀α ∈ AVar : ψ̂2(ψ̂1(α)) = ψ̂′2(ψ̂

′
1(α)) and thus ψ̂′2(ψ̂

′
1(α)) ⊆ ψ̂′2(ψ̂

′
1(β)).

By rule 2 in Table 3.3 we conclude that (ψ̂′1, ψ̂
′
2) |=T α ⊆ β.

Case α = β. Suppose that

(ψ̂1, ψ̂2) |=T α = β ∧ (ψ̂1, ψ̂2) ≡ (ψ̂′1, ψ̂
′
2)

From the third rule in Table 3.3 we have ψ̂1(α) = ψ̂1(β). From Lemma 3.11,
we immediately get ψ̂′1(α) = ψ̂′1(β). Finally rule 3 in Table 3.3 allows us to
conclude that (ψ̂′1, ψ̂

′
2) |=T α = β.

Case α \ c ⊆ β, α \ (D) ⊆ β, and α ∩ β ⊆ γ. Similarly.

Case ϕ1 ∧ ϕ2. Assume that

(ψ̂1, ψ̂2) |=T ϕ1 ∧ ϕ2

The sixth rule gives that

(ψ̂1, ψ̂2) |=T ϕ1 ∧ (ψ̂1, ψ̂2) |=T ϕ2

The induction hypothesis are applied to two subcomponents and gives that

(ψ̂′1, ψ̂
′
2) |=T ϕ1 ∧ (ψ̂′1, ψ̂

′
2) |=T ϕ2

Then rule 6 in Table 3.3 then allows us to conclude that

(ψ̂′1, ψ̂
′
2) |=T ϕ1 ∧ ϕ2

This completes the whole proof. ¤

Even in the setting of pre-ordered sets, a least solution is still our interest.
Therefore it is necessary to build up a theoretic result that is similar to the
Moore family property. This leads to a series of definitions and theoretical
development as the following.

At first, the definitions of the least upper bound and the greatest lower bound
for a pre-ordered set are given and they are quite similar to those for a partially
ordered set.

Definition 3.13 (Least Upper Bound & Greatest Lower Bound) A
least upper bound (lub) of a subset S of a pre-ordered set (P,¹) is an upper
bound u of S such that whenever u′ is an upper bound of S we have u ¹ u′. A
greatest lower bound (glb) of a subset S of a pre-ordered set (P,¹) is a lower
bound ` of S such that whenever `′ is an lower bound of S we have `′ ¹ `.
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Fact 3.14 If x and y are two least upper bounds (greatest lower bounds) of a
set S ⊆ P then x ≡ y.

Proof. By Definition 3.13, we have

(x ¹ y) ∧ (y ¹ x)

and thus x ≡ y from the definition of equivalence ≡. ¤

Although Fact 3.14 clarifies the relation between least solutions, there is no
guarantee that a unique least solution exists. To deal with such a problem there
are at least two ways : one way is to introduce the concepts of the designated
greatest lower bound and the designated least upper bound of a subset S of a
pre-ordered set P denoted by ûS and t̂S respectively. Suppose there is a choice
function which given a set of elements returns a designated one. Another way
is to group all equivalent elements into one class such that the relation between
groups is a partial order again; then we need to work out how to represent the
equivalence class. We take the first approach since it more directly applies to
the setting in this dissertation. But clearly the two approaches are connected
to each other.

In order to prove the existence of least solution(s) the concepts of the designated
greatest lower bound (least upper bound) of a subset S of a pre-ordered set P
are introduced and denoted by ûS (t̂S). We assume that there is a choice
function that given a set of elements, returns a designated one. The following
lemma specifies an important property hold for a greatest lower bound of a
pre-ordered set.

Lemma 3.15 For some set I and a family (ψi
1, ψ

i
2)(i∈I) ∈ EnvT × ÊnvTB, let

(ψû1 , ψû2 ) = ûi∈I(ψi
1, ψ

i
2), then for all α, β, γ ∈ AVar:

ψ̂û1 (α) = ψ̂û1 (β) ⇔ ∀i ∈ I : ψi
1(α) = ψi

1(β) ∧
ψû2 (ψû1 (γ)) = ∩iψ̂

i
2(ψ

i
1(γ))

Proof. Since (ψû1 , ψû2 ) is a lower bound, we have

ψ̂û1 (α) = ψ̂û1 (β) ⇒ ∀i ∈ I : ψi
1(α) = ψi

1(β) ∧
ψû2 (ψû1 (γ)) ⊆ ∩iψ̂

i
2(ψ

i
1(γ))

by Lemma 3.10. Suppose a lower bound (ψ̂`
1, ψ̂

`
2) such that

∀i ∈ I : ψi
1(α) = ψi

1(β) ⇒ ψ̂`
1(α) = ψ̂`

1(β) ∧
ψ`

2(ψ
`
1(γ)) = ∩iψ̂

i
2(ψ

i
1(γ))
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for all α, β, γ ∈ AVar. It is easy to verify that such a lower bound does exist by
Lemma 3.10. Considering (ψû1 , ψû2 ) is a greatest lower bound, we immediately
have

ψ̂`
1(α) = ψ̂`

1(β) ⇒ ψ̂û1 (α) = ψ̂û1 (β) ∧
ψ`

2(ψ
`
1(γ)) ⊆ ψû2 (ψû1 (γ))

for all α, β, γ ∈ AVar. This allows us to conclude that

ψ̂û1 (α) = ψ̂û1 (β) ⇔ ∀i ∈ I : ψi
1(α) = ψi

1(β) ∧
ψû2 (ψû1 (γ)) = ∩iψ̂

i
2(ψ

i
1(γ))

as desired. ¤

With the help of designated function, we define the concepts complete prelattice
and Moore family in complete prelattice. Based on these definitions we show
that the least models exist for any satisfiable constraint programs.

Definition 3.16 (Complete Prelattice) A complete prelattice P = (P,¹
, t̂, û, ⊥̂, >̂) is a preordered set such that all its subsets have least upper bounds
(with t̂S a designated least upper bound for S) and greatest lower bounds (with
ûS a designated greatest lower bound for S). Furthermore, ⊥̂ = t̂ ∅ = ûP is a
designated least element and >̂ = û ∅ = t̂P is a designated greatest element.

Lemma 3.17 For a preordered set (P,¹) the following statements are equiva-
lent:
(1) (P,¹) can be extended to a complete prelattice (P,¹, t̂, û, ⊥̂, >̂);
(2) Every subset of P has a least upper bound;
(3) Every subset of P has a greatest lower bound.

Proof. Clearly (1) implies (2) and (3). For the proof that (2) implies (1),
let S ⊆ P and define

ûS = t̂ {` ∈ P | ∀`′ ∈ S : ` ¹ `′}
We show ûS defines a greatest lower bound. First, any element of S ⊆ P is an
upper bound of {` ∈ P |∀`′ ∈ S : ` ¹ `′}. From (2) we are sure that ûS exists
and is a lower bound of S.

Second, for any lower bound z of S, we have ∀` ∈ S : z ¹ ` whence z ∈ {` ∈
P |∀`′ ∈ S : ` ¹ `′}. From the definition of least upper bound we get z ¹ uS
proving that ûS is a greatest lower bound of S.
To show that (3) implies (1) we define

t̂S = t̂ {` ∈ P | `′ ∈ S : `′ ¹ `}
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and show this defines a least upper bound. The argument is similar to that
above. ¤

In preparation for proving that (EnvT× ÊnvTB,¹) is a complete prelattice we
give a definition for representing a specific greatest lower bound.

Definition 3.18 (Operator ûT ) For some set I = {1, 2, · · · , n} and a family
(ψi

1, ψ
i
2)(i∈I) ∈ EnvT× ÊnvTB, let (ψû1 , ψû2 ) = ûTi∈I

(ψi
1, ψ

i
2) which is given by:

∀α ∈ AVar : ψû1 (x) = τ1(τ2,··· ,τn)

where ∀i ∈ I : τi = ψi
1(α) and

ψû2 (ι1(ι2,··· ,ιn)) = ∩iψ
i
2(ιi)

where ι1(ι2,··· ,ιn) ∈ dom(ψû1 ).

We then show it is indeed a greatest lower bound by Lemma A.2 and A.3 below.

Lemma 3.19 For some set I = {1, 2, · · · , n} and a family (ψi
1, ψ

i
2)(i∈I) ∈

EnvT × ÊnvTB, let (ψû1 , ψû2 ) = ûTi∈I (ψ
i
1, ψ

i
2), then for all α, β, γ ∈ AVar

and i ∈ I:

ψ̂û1 (α) = ψ̂û1 (β) ⇔ ψi
1(γ) = ψi

1(β) ∧
ψû2 (ψû1 (γ)) = ∩iψ̂

i
2(ψ

i
1(γ))

Proof. It is straightforward to prove the above formulas according to De-
finition A.1. The proof relies on the fact that for any analysis variable x:
ψ̂û1 (α) = ψ̂1

1(α)ψ̂2
1(α),··· ,ψ̂n

1 (α). ¤

Lemma 3.20 Let E = {(ψ̂i
1, ψ̂

i
2)| i ∈ I ∧ (ψ̂i

1, ψ̂
i
2) ∈ EnvT ×EnvTB} for some

set I, and (ψ̂û1 , ψ̂û2 ) = ûT E. Then (ψ̂û1 , ψ̂û2 ) is a greatest lower bound of the set
E.

Proof. It is straightforward to show (ψ̂û1 , ψ̂û2 ) is a lower bound by Lemmata
3.10 and A.2. We prove it is a greatest one. For any lower bound of E, e.g.
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(ψ̂`
1, ψ̂

`
2), we have for all i ∈ I and α, β, γ ∈ AVar

ψ̂`
1(α) = ψ̂`

1(β) ⇒ ψ̂i
1(α) = ψ̂i

1(β) ∧
ψ̂`

1(ψ̂
`
1(γ)) ⊆ ψ̂i

1(ψ̂
i
1(γ))

from Lemma 3.10 and therefore

ψ̂`
1(α) = ψ̂`

1(β) ⇒ ψ̂û1 (α) = ψ̂û1 (β)

ψ̂`
1(ψ̂

`
1(γ)) ⊆ ψ̂û1 (ψ̂û1 (γ))

by Lemma A.2. Now the preorder definition of ¹ allows us to conclude that
(ψ̂`

1, ψ̂
`
2) ¹ (ψ̂û1 , ψ̂û2 ) for any lower bound (ψ̂`

1, ψ̂
`
2) of E. ¤

Following from the above definition and lemma, we have

Fact 3.21 The pre-ordered set (EnvT× ÊnvTB,¹) is a complete prelattice.

Proof. First note that ¹ is a preorder. To show the existence of a greatest
lower bound, we refer to the definition of the operator ûT and the result from
Lemma A.3: for any subset O of E ∈ EnvT × ÊnvTB, a greatest lower bound
of O is given by ûT O. Finally Lemma 3.17 ensures that the least upper bounds
of O also exist and thus (EnvT × ÊnvTB,¹) is a complete prelattice. ¤

The formalisms above are quite similar to their counterparts in the world of
partially ordered sets. This is because the designated bounds enable us to work
around the randomness of choosing type variables. However, sticking to the
designated solutions may lose some generality in defining a Moore family for
complete prelattices. For example, consider a subset S of a pre-ordered set
R. A straightforward definition of Moore family using the designated bounds
could be: ∀S′ ⊆ S : ûS′ ∈ S, i.e. S is closed under the designated greatest
lower bound. However since the Moore family property is in fact concerned
with the existence of the greatest lower bound, we would like to give a more
generic definition that retains the original meaning of Moore family: Instead of
enforcing ûS′ ∈ S we want to express that ∃u : u ≡ ûS′ ∧ u ∈ S. This idea
is further formalized by a compositional operator ≡∈ (read as ”is represented
in”).

Definition 3.22 (Relation ≡∈) For an element e and a set P , we say that
e ≡∈ P if and only if there exists an element e′ such that e ≡ e′ and e′ ∈ P .
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Definition 3.23 (Moore Family for a Complete Prelattice) A Moore
family for a complete prelattice is a subset M of a complete prelattice P = (P,¹)
such that it is closed under greatest lower bounds, formally ∀M ′ ⊆ M : ûM ′ ≡∈
M . Similar to Moore families for partially ordered sets, a Moore family for a
complete prelattice always contains at least one least element and one greatest
element, formally û∅ ≡∈ M and ûM ≡∈ M . Thus it is never empty.

Applying the above definition, we have that the least solution is guaranteed for
the set of pairs (ψ̂1, ψ̂2) such that (ψ̂1, ψ̂2) |=T ϕ, formally:

Theorem 3.24 A set of solutions given by {(ψ̂1, ψ̂2)| (ψ̂1, ψ̂2) |=T ϕ} is a Moore
family for a complete prelattice.

Proof. Note that (EnvT × ÊnvTB,¹) is a complete prelattice. We then
prove the theorem by structural induction on ϕ.
Case c ⊆ x. Assume that

∀i ∈ I : (ψ̂i
1, ψ̂

i
2) |=T c ⊆ x

for some set I and let (ψ̂û1 , ψ̂û2 ) = ûi(ψ̂i
1, ψ̂

i
2). We show that (ψ̂û1 , ψ̂û2 ) |=T c ⊆ x.

From rule 1 in Table 3.3 we have

∀i ∈ I : c ⊆ ψ̂i
2(ψ̂

i
1(x))

Thus we have c ⊆ ∩iψ̂
i
2(ψ̂

i
1(x)) and thus c ⊆ ψ̂û2 (ψ̂û1 (x)) by Lemma 3.15. Finally

the fist rule of Table 3.3 allows us to conclude that (ψ̂û1 , ψ̂û2 ) |=T c ⊆ x.

Case α ⊆ β. Assume that

∀i ∈ I : (ψ̂i
1, ψ̂

i
2) |=T α ⊆ β

for some set I. From rule 2 in Table 3.3 we have

∀i ∈ I : ψ̂i
2(ψ̂

i
1(α)) ⊆ ψ̂i

2(ψ̂
i
1(β))

We then have that ∩iψ̂
i
2(ψ̂

i
1(α)) ⊆ ψ̂j

2(ψ̂
j
1(β)) for all j ∈ I whence ∩iψ̂

i
2(ψ̂

i
1(α)) ⊆

∩jψ̂
j
2(ψ̂

j
1(β)). Together with ψ̂û2 (ψ̂û1 (β)) = ∩iψ̂

i
2(ψ̂

i
1(β)) for any analysis variable

β, we have that ψ̂û2 (ψ̂û1 (α)) ⊆ ψ̂û2 (ψ̂û1 (β)). Then rule 2 in Table 3.3 ensures that
(ψ̂û1 , ψ̂û2 ) |=T α ⊆ β.

Case α \ c ⊆ β, α \ (D) ⊆ β, and α ∩ β ⊆ γ are similar.

Case α = β. Assume that

∀i ∈ I : (ψ̂i
1, ψ̂

i
2) |=T α = β
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for some set I. From rule 3 in Table 3.3 we have

∀i ∈ I : ψ̂i
1(α) = ψ̂i

1(β)

From Lemma 3.15 we have ψ̂û1 (α) = ψ̂û1 (β). Then rule 3 in Table 3.3 allows
that (ψ̂û1 , ψ̂û2 ) |=T α = β.

Case ϕ1 ∧ ϕ2. Assume that

∀i ∈ I : (ψ̂i
1, ψ̂

i
2) |=T ϕ1 ∧ ϕ2

for some set I. From rule 6 in Table 3.3, we immediately get that

∀i ∈ I : (ψ̂i
1, ψ̂

i
2) |=T ϕ1 and ∀i ∈ I : (ψ̂i

1, ψ̂
i
2) |=T ϕ2

The induction hypothesis then gives that

(ψ̂û1 , ψ̂û2 ) |=T ϕ1 and (ψ̂û1 , ψ̂û2 ) |=T ϕ2

By rule 6 again, we conclude that (ψ̂û1 , ψ̂û2 ) |=T ϕ1 ∧ ϕ2. This completes the
proof. ¤

Finally we relate the results of the type variable interpretation back to those
of the standard one by showing (1) the second semantics complies with the
lifting strategy (in Proposition 3.25), (2) a solution (ψ1, ψ2) w.r.t. the type
variable interpretation implies a solution w.r.t. the standard interpretation (in
Proposition 3.26), and (3) the least solution using type variable is as precise as
that of the standard one (in Proposition 3.27).

Proposition 3.25 If ϕ1 ≤ ϕ2 and (ψ̂1, ψ̂2) |=T ϕ2 then (ψ̂1, ψ̂2) |=T ϕ1.

Proof. The proof is a straightforward induction on the clause ϕ1. ¤

Proposition 3.26 If (ψ̂1, ψ̂2) |=T ϕ, then ψ̂2 ◦ ψ̂1 |= ϕ.

Proof. The proof is an induction on ϕ.
Case c ⊆ x. Assume that (ψ̂1, ψ̂2) |=T c ⊆ x, we have that c ⊆ ψ̂2(ψ̂1(α)) by
rule 1 in Table 3.3 and thus c ⊆ ψ̂2 ◦ ψ̂1(α). From rule 1 in Table 3.2 we have
ψ̂2 ◦ ψ̂1 |= c ⊆ α.

Case α ⊆ β. Assume that (ψ̂1, ψ̂2) |=T α ⊆ β. From rule 2 in Table 3.3 we have
ψ̂2(ψ̂1(α)) ⊆ ψ̂2(ψ̂1(β)). Then rule 2 in Table 3.2 ensures that ψ̂2 ◦ ψ̂1 |= α ⊆ β.
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Case α \ c ⊆ β, α \ (D) ⊆ β, and α ∩ β ⊆ γ are similar.

Case α = β. Assume that (ψ̂1, ψ̂2) |=T α = β. From rule 3 in Table 3.3 we
have ψ̂1(α) = ψ̂1(β) and thus ψ̂2(ψ̂1(α)) = ψ̂2(ψ̂1(β)). Then rule 3 in Table 3.2
allows that ψ̂2 ◦ ψ̂1 |= α = β.

Case ϕ1 ∧ ϕ2. Assume that (ψ̂1, ψ̂2) |=T ϕ1 ∧ ϕ2. From rule 6 in Table 3.3,
we immediately get that (ψ̂1, ψ̂2) |=T ϕ1 and (ψ̂1, ψ̂2) |=T ϕ2. The induction
hypothesis then gives that ψ̂2 ◦ ψ̂1 |= ϕ1 and ψ̂2 ◦ ψ̂1 |= ϕ2. By rule 6 in Table
3.2, we conclude that ψ̂2 ◦ ψ̂1 |= ϕ1 ∧ ϕ2. ¤

Intuitively the following proposition says that if a least model is concerned the
map from analysis variable to data fields for two semantics is exactly the same:
the use of type variables have no side effect on it.

Proposition 3.27 Let (ψ̂û1 , ψ̂û2 ) = û {(ψ̂1, ψ̂2)| (ψ̂1, ψ̂2) |=T ϕ} for some ϕ ∈
Clause, and ψ̂u = u{ψ̂| ψ̂ |= ϕ}, then ψ̂û2 ◦ ψ̂û1 = ψ̂u.

Proof. First, by Proposition 3.26 and Theorem 3.24 we have that ψ̂û2 ◦ ψ̂û1 w
ψ̂u.

Second, to prove ψ̂û2 ◦ ψ̂û1 v ψ̂u, we first let AVar = {αi | i ≥ 0} and TV =
{i | i ≥ 0}. Then we define the pair (ψ̂′1, ψ̂

′
2) from ψ̂u by

(1) ∀i : ψ̂′1(αi) = min(j | ψ̂u(αi) = ψ̂u(αj)), where the function min returns a
least number given a set of integers.

(2) ∀i : ψ̂′2(i) = ψ̂u(αi).

The function ψ̂′2 is well-defined following from the condition (1). It is straight-
forward to verify that ψ̂′2 ◦ ψ̂′1 = ψ̂u. We then have the following lemma.

Lemma 3.28 For ψ̂u = u{ψ̂| ψ̂ |= ϕ}, there is (ψ̂′1, ψ̂
′
2) |=T ϕ where (ψ̂′1, ψ̂

′
2)

is given as the above definition.

Proof. The proof is a straightforward induction on ϕ. ¤

By Lemma 3.28 and the definition of (ψ̂û1 , ψ̂û2 ) we have that (ψ̂û1 , ψ̂û2 ) ¹ (ψ̂′1, ψ̂
′
2).

From Lemma 3.10, we conclude that ψ̂û2 ◦ ψ̂û1 v ψ̂′2 ◦ ψ̂′1 v ψ̂u as desired. ¤
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3.4 Concluding Remarks

This chapter has presented a basic inclusion constraint language. Similar to
many other Datalog Solvers [NSN02, SSW94, WACL05], the universe of our
constraint language consists of atomic values. In terms of set constraints, an
atomic value is a term of arity 0, i.e. ground term. The choice of the constructs
of the language guarantees the Moore family property that is normally required
by static program analysis.

Based on our constraint language, we have also described a parameterized frame-
work with which analysis designers can tune a system depending on his specific
needs on performance and precision. As a result, this framework allows analysis
designers to actively participate in the process of optimizing their analyses.

Finally our development based on the double-layer interpretation shows that
the Moore family approach carries over to the description of more advanced
internal representation using type variables. This forms a firm foundation for
the solution calculated by the algorithm (specified in the next chapter).
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Chapter 4

Constraint Solving

This chapter specifies an algorithm for the constraint solving of the inclusion
constraint language presented in Chapter 3. The double-layer semantics in the
previous chapter functions as a specification for the algorithm design in the cur-
rent chapter. The complexity and correctness of the algorithm is subsequently
studied.

As a running example we apply the parameterized framework on an intraproce-
dural reaching definitions analysis for a simple imperative language. We demon-
strate the effect of applying unification on the analysis by tuning the constraint
program and using our lifting strategy. A thorough study on how imprecision
may arise is conducted and therefore in all of our benchmarks we show a good
control on the level of precision. A comparative study between the Succinct
Solver [NSN02] and our solver is also conducted. Part of the work was previ-
ously presented in [ZN08].

4.1 Design of Algorithm

The aim of our constraint solver is to calculate a least solution for a set of
constraints. A worklist algorithm is described for computing the least solution of
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Figure 4.1: Graph representation of data flow: (a) for constraints of α ⊆ β, α \
c ⊆ β, and α \ (D) ⊆ β; (b) for constraint α ∩ β ⊆ γ.

a constraint program. Referring to the example of constraint solving in [NNH99],
we translate a constraint program into a collection of labeled nodes, which is
called labeled cluster. Each node represents a type variable, and each label is
decorated with the constraint that gives rise to it. Corresponding to the double-
layer semantics presented in Chapter 3, the two data structures D1 and D2 is
designed to associate nodes with analysis variables and constants with nodes
respectively. For the reason of simplicity, the algorithm uses a set of natural
numbers as type variables. Initially D1 maps each analysis variable to a unique
number and D2 is initialized by the constraints of the form c ⊆ α.

In order to build up a labeled cluster, we use a data structure E to record the
list of labels (constructs) attached on each type variable. To be concrete, the
constraints β ⊆ α, α \ c ⊆ β and α \ (D) ⊆ β give rise to labels attached on the
node D1[α]; similarly, the constraint α ∩ β ⊆ γ gives rise to two labels attached
on the nodes D1[α] and D1[β] respectively. These labels provide information to
track the data flow from one node to another: whenever the data field of a node
is enlarged, the algorithm retrieves the attached labels of the node to check
if this change should be updated onto any relevant nodes. For instance, the
label decorated by constraint α ⊆ β reflects the data flow from D1[α] to D1[β].
This is visualized as the graph (a) in Figure 4.1. The data flow of constraints
α \ c ⊆ β, α \ (D) ⊆ β and α∩β ⊆ γ is also described in the figure following the
same idea.

An equality constraint, however, never yields any label. This is because when-
ever two analysis variables are coalesced onto one type variable, they will always
share the same data field and thus a label for equality constraint is not needed.
As a result, when lifting is applied fewer labels are generated and the result-
ing labeled cluster becomes smaller. Furthermore, equality constraints helps to
simplify a labeled cluster. For instance, suppose α = γ, then it is possible to
remove the labels corresponding to the constraints α ⊆ γ, γ ⊆ α, α \ c ⊆ γ and
α ∩ β ⊆ γ.
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Figure 4.2: Graph representation of data flow: Example 3.7.

Example 4.1 Consider the constraint program of Example 3.7 again.

{a, b, c} ⊆ α ∧ {a, b} ⊆ β ∧ α ⊆† β ∧ β \ {b, c} ⊆ γ ∧ {a, c} ⊆ η ∧ α ⊆† η

The data flow between nodes are visualized as the left graph of Figure 4.2. Now
suppose we change the set-inclusion (marked with †) to equality, the resulting
data flow graph is presented as the right graph of Figure 4.2 As the figure shows,
the labels decorated by constraints α ⊆ β, and α ⊆ η can be dispensed with in
the lifted version of the constraint program and thereby simplifies the labeled
cluster. ¤

Alternatively, a graph can be used to formulate a constraint program, i.e. a label
could be considered as an edge which represents the data flow between nodes
directly. The formulation of a labeled cluster is preferred here because it can
be naturally implemented by the algorithm. More important, this formulation
is more general when the pointer analysis is considered in Chapter 5 in which
the basic constraint language is extended.

To be more specific consider the algorithm of Table 4.1 and 4.2. It operates on
the following data structures.

• Two sets U,N ⊆ Ĉonstr in which U contains all equality constraints and
N contains all the others;

• A data array D1 : AVar → TV that for each analysis variable returns a
node;
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• A data array D2 : TV → Ĉonst that for each node returns a set of tuples;

• An edge array E : TV → Constr list that for each analysis variable
returns a list of constraints from which the algorithm can detect a set of
nodes to be updated and thereafter update the worklist W.

• A worklist W ⊆ AVar list, i.e. a list of analysis variables. The attached
labels of the corresponding nodes of these analysis variables will be re-
trieved. By storing analysis variables instead of nodes, we keep the design
of the algorithm as general as possible: we can safely dispense with the
effect of unification on the elements of the worklist W by always looking up
D1 for the up-to-date information. Maintaining this generality becomes
quite necessary whenever unification may happen during the iteration of
the worklist algorithm, and that will be the case in Chapter 5.

The algorithm takes as input a pair of constraint lists (U, N), in which U contains
all equality constraints and N all the others. Given a conjunction of constraints
it is straightforward to generate the pair. The output of the algorithm is the
pair (D1, D2). We restrict ourselves to entities occurring in the constraints of
interest: Let AVar? ⊆ AVar and TV? ⊆ TV be the finite sets of interest
respectively.

Step 1 initializes the data structures used through the algorithm. Each analysis
variable is assigned a unique type variable; the data field and the list of labels
of each type variable are empty at the beginning. Step 2 implements a fast
union-find data structure [Tar83] to coalesce equivalent analysis variables onto
the designated type variables according to the given equality constraints. It
first initializes three arrays needed only by unification. A set of type variables
are unified and represented by a tree, which is implemented by the array A: for
each node i, A[i] points to its parent if there is one or otherwise itself. The data
structure H, which records the rank of each tree, is to balance a tree when two
trees are merged into one.

The two important heuristics of the fast union/find data structure, which result
in the almost linear-time boundary of the algorithm, are union-by-rank and
path compression. The first one keeps the trees shallow as demonstrated in (a)
of Figure 4.3: the tree with low rank is always merged into the high one. The
second heuristic is to change the structure of a tree during a find operation
by moving nodes closer to the root as demonstrated in Figure 4.4. This is
implemented by three procedures: (1) the procedure unify combines trees and
keeps the resulting tree’s rank as small as possible; (2) the procedure find returns
the root of a tree with the help of the procedure getRoot which conducts path-
compression at the same time. The last loop of Step 2 updates D1 according to
the unification result.
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Figure 4.3: Tree with lower rank is always merged into that with higher rank.
If two trees have same rank, the rank of new tree increases by one.

Figure 4.4: Path Compression: performing path-compression from node 1 to
the root of the tree denoted as (1) results in the tree denoted as (2). Triangles
represents subtrees.

The third step constructs a labeled cluster according to the given constraint or
executes the initial assignments to D2. For the constraint of the form c ⊆ α, we
use the procedure add(α, c) to incorporates c into D2[D1[α]] and add α to the
worklist W if constant c was not contained in D2[D1[α]]. For other non-equality
constraints, we make use of the result of unification to simplify the cluster by
testing if two analysis variables are unified already. If that is the case, no label
is added. Otherwise the label(s) are added as described before.

The fourth step keeps propagating data changes with respect to the labels at-
tached to each analysis variable from the worklist W until it becomes empty.
Note that for the current development, there is no unification during the itera-
tion. Therefore, we can use D1 directly instead of invoking find in Step 4.
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INPUT :(U,N)
OUTPUT :(D1,D2)

Step 1 : Initializing Data Structures
W := nil;
for αi in AVar? do

D1[αi] := i;
D2[i] = ∅;
E[i] = nil;

Step 2 : Implementing fast union/find data structure
for i in TV? do

A[i] := i;
H[i] := 0;

for α ⊆ β in U do unify(find(α), find(β));
for α ∈ AVar? do find(α);

Step 3 : Constructing the labeled cluster
for cc in N do

case cc of
c ⊆ α : add(α, c);
α ⊆ β : if D1(α) 6= D1(β) then E[D1(α)] := {cc} ∪ E[D1(α)]);
α\c ⊆ β : if D1(α) 6= D1(β) then E[D1(α)] := {cc} ∪ E[D1(α)]);
α\(D) ⊆ β : if D1(α) 6= D1(β) then E[D1(α)] := {cc} ∪ E[D1(α)]);
α ∩ β ⊆ γ : if D1(α) 6= D1(γ) then E[D1(α)] := {cc} ∪ E[D1(α)]);

if D1(β) 6= D1(γ) then E[D1(β)] := {cc} ∪ E[D1(β)]);

Step 4 : Iteration
While W 6= nil do

γ := SELECT-FROM(W);
te := E[D1(γ)];
for cc in te do

case cc of
α ⊆ β : add(β, D2[D1(α)]);
(* standard set minus *)
α\c ⊆ β : add(β, D2[D1(α)]\c);
(* overloaded set minus *)
α\(D) ⊆ β : add(β, D2[D1(α)]\(D));
α ∩ β ⊆ γ : add(γ, D2[D1(α)] ∩ D2[D1(β)]);

Table 4.1: Worklist Algorithm
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procedure add(α, c) is
i := find(α);
if ¬(c ⊆ D2[i]) then D2[i] := D2[i] ∪ c;

W := {α} ∪W;

procedure find(α) is
r = getRoot(α);
D1[α] = r;
return r

procedure unify(m,n) is
if H[m] >= H[n] then A[n] := m

if H[m] = H[n]
then H[m] := H[m] + 1

else A[m] := n

procedure getRoot(m) is
p := A[m];
if p = m then return m

else A[m] := getRoot(p)
A[m]

Table 4.2: Worklist Algorithm: Auxiliary Functions

We study the properties of the algorithm and have the following two theorems.

Theorem 4.2 Given a clause ϕ the algorithm of Table 4.1 terminates and the
result (D1,D2) produced by the algorithm satisfies

(D1,D2) = û{(ψ′1, ψ′2)|(ψ′1, ψ′2) |=T ϕ}

Proof. We first prove that the algorithm always terminates. It is immediate
that the steps 1, 2, and 3 terminate considering that the sets AVar?,TV?,U
and N are finite. For Step 4, observe that for each type variable i the data D2[i]
never decreases and it can increase a finite number of times at most. For each
analysis variable placed on the worklist a finite amount of calculation needs to
be executed in order to remove the node from the worklist. This completes the
first part of the proof.

To show the result calculated by the algorithm is a least solution, let (ψ′1, ψ
′
2)
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be an estimate, such that (ψ′1, ψ
′
2) |=T ϕ. We then have the following invariant

∀α, β ∈ AVar : D1[α] = D1[β] ⇒ ψ′1(α) = ψ′1(β) ∧
∀γ ∈ AVar : D2[D1[γ]] ⊆ ψ′2(ψ

′
1(γ))

maintained everywhere in Step 4. It follows that (D1, D2) ¹ (ψ′1, ψ
′
2) upon the

completion of the algorithm by Lemma 3.10.

Next we show by contradiction that (D1, D2) is indeed a solution for constraint
program ϕ. Suppose there exists cc ∈ U ∪ N such that (ψ1, ψ2) |=T cc does not
hold.

If cc is the form c ⊆ α then the first case in the loop of Step 3 ensures that
c ⊆ D2[D1[α]] and this is maintained throughout the algorithm; hence cc can
not have this form.

If cc is the form α ⊆ β, it must be the case that the final value of D2[D1[α]] 6= ∅
since otherwise (D1,D2) |=T α ⊆ β would hold. Now consider the last time
D2[D1(α)] was modified and note that α was placed on the worklist at that time
(by procedure add); since the final worklist is empty we must have considered
the constraint α ⊆ β (which is in E[D1(α)]) and updated D2[D1[β]] accordingly;
hence cc can not have this form either.

If cc is the form α = β then after the execution of Step 2, we can be sure that
D1[α] = D1[β] and this is maintained throughout the algorithm; hence cc can
not have this form.

If cc is the form α \ c ⊆ β then similar to the case of α ⊆ β, D2[D1[α]] 6= ∅
since otherwise (D1, D2) |=T α \ c ⊆ β would hold. Now consider the last time
D2[D1[α]] was modified and note that α was placed on the worklist at that time
(by procedure add); since the final worklist is empty we must have considered
the constraint α\c ⊆ β (which is in E[D1[α]]) and updated D2[D1[β]] eventually;
hence cc can not have this form.

Similarly, we can show that cc can not have the form of α\(D) ⊆ β or α∩β ⊆ γ.
This completes the proof. ¤

Theorem 4.3 The time complexity of the algorithm in Table 4.1 and 4.2 is
O(n3) where n is the size of a constraint program.

Proof. First note that the number of analysis variables, type variables,
and constraints are bound to O(n). It is straightforward to show that the time
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complexity of Step 1 and 3 are both linearity. The complexity of Step 2 is directly
from the result of Tarjan’s study in [Tar83]. It is almost linear because the
inverse Ackermann’s function α grows very slow and for all practical purposes
α(2n, n) is a constant not larger than four.

To analyze the complexity of Step 4, it is important to make it clear that what
the complexity of the operations upon set of tuples (constant) actually is. In
the actual implementation, each tuple is represented as a bit in a bit-vector.
Since the number of tuples is bound to O(n), the length of the bit-vector is also
bound to O(n); thus the set operations, e.g. set union and set intersection, are
over bit-vectors of the length O(n) and have linear time complexity.

Next observe that there are O(n) labels generated from a constraint program of
size O(n) and each label can be retrieved at most O(n) times as there are O(n)
nodes. Therefore let ni be the number of labels bound to the node i, we have
that the time complexity of iteration is O(Σi∈TV?(n ·ni ·n)) = O(n3) where the
first n is the upper bound of traversals on each edge and the second is the time
of set operations. ¤

Although the worst case complexity of the algorithm is cubic, the use of unifi-
cation on equality constraints over analysis variables reduces the problem space
and thus is expected to speed up the constraint solving. The rest of this chapter
will demonstrate the use of the parameterized framework and study the effects
of applying unification on performance and precision with a working example,
reaching definitions analysis.

Note that the algorithm does not specify any worklist strategy to be used. In
the implementation of the solver algorithm, different strategies could be tried
on the analyses of interest. We shall discuss the effect of worklist strategy on
the performance of our solver during our study on working examples.

4.2 Case Study: Reaching Definitions Analysis

In this section we present a simple C-like imperative language and specify a
reaching definitions analysis for the language.

Definition 4.4 (Reaching Definitions Analysis) For each program point,
which assignments may have been made on the target program variable without
an intervening assignment during the execution of the program.
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With the framework we have described, we apply the lifting strategy and study
how the imprecision can be controlled and how much improvement on perfor-
mance can be achieved from using unification. The analysis is specified both in
our constraint language and in the alternation-free fragment of Least Fixpoint
Logic (ALFP) and thereby is implemented by our constraint solver and the
Succinct Solver respectively. The results are then evaluated from the aspects of
time, space and precision. The fact that both of the two solvers are implemented
in New Jersey SML makes the comparison more reliable.

We assume some countable set of program variables, x, y ∈ ProgVar, rational
numbers, r ∈ R, and labels, ` ∈ Lab. The statement S ∈ Stmt of the C-like
language is specified as the abstract syntax in Table 4.3.

a ::= x | r | a1 + a2 | a1 − a2 | a1 ∗ a2 | a1/a2

b ::= true | false | neg b | b1 and b2 | b1 or b2 |
a1 < a2 | a1 > a2 | a1 = a2 | a1 6= a2

exp ::= a | b

S ::= [x := a]` | [skip]` | [exp]` | S1; S2 | if [b]` then S1 else S2 |
while [b]` do S

Table 4.3: A Simple Imperative Language.

There are three kinds of elementary statements, i.e. assignments, skips and ex-
pressions, and three kinds of complex statements, i.e. compositional statements,
if-branches and while-loop. We assume each elementary statement is assigned
a unique label in order to avoid unnecessary imprecision of an analysis. If it is
clear in context, we may call a statement by its label directly for the reason of
simplicity.

4.2.1 Initial Label and Final Labels

Data flow analyses usually use some operations on programs. These operations
are designed to extract basic information of a program to be analyzed. Before
specifying our analysis, we introduce two such operations: the first is init :
Stmt → Lab, which given a statement returns the initial label of it; the second
operation is final : Stmt → P(Lab), which given a statement returns the set
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of final labels in a statement. The definition of the two operations are listed in
Table 4.4 and 4.5 as below.

init([x := a]`) = `

init([skip]`) = `

init([exp]`) = `

init(S1;S2) = init(S1)

init(if [b]` then S1 else S2) = `

init(while [b]` do S) = `

Table 4.4: Initial Function.

final([x := a]`) = {`}
final([skip]`) = {`}
final([exp]`) = {`}
final(S1; S2) = final(S2)

final(if [b]` then S1 else S2) = final(S1) ∪ final(S2)

final(while [b]` do S) = {`}

Table 4.5: Final Function.

Note that for the while-loop the initial label is ` and the set of final labels is
{`}, i.e. the entry point and exit point of while loop are same. This is because
the while-loop terminates immediately after the test has evaluated to false.

4.2.2 Analysis Using Inclusion Constraints

We specify a reaching definitions analysis in our inclusion constraint language.
Two caches are used for recording the analysis results of each program point:

RD◦, RD• : Lab → P(ProgVar× Lab)

where ◦ and • denote the entry and exit point of a elementary statement respec-
tively. Following the tradition of the Flow Logic specification, the judgement of
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[ass] (RD◦, RD•) |= [x := e]` iff {(x, `)} ⊆ RD•(`) ∧
RD◦(`) \ (x, ?) ⊆ RD•(`)

[skip] (RD◦, RD•) |= [skip]` iff RD◦(`) ⊆ RD•(`) (i)

[exp] (RD◦, RD•) |= [exp]` iff RD◦(`) ⊆ RD•(`) (ii)

[comp] (RD◦, RD•) |= S1; S2 iff (RD◦, RD•) |= S1 ∧
(RD◦, RD•) |= S2 ∧
∧∀`∈final(S1)RD•(`) ⊆ RD◦(init(S2)) (iii)

[if] (RD◦, RD•) |= if [b]` then S1 else S2

iff (RD◦, RD•) |= S1 ∧
(RD◦, RD•) |= S2 ∧
(RD◦, RD•) |= b ∧
RD•(`) ⊆ RD◦(init(S1)) ∧ (iv)

RD•(`) ⊆ RD◦(init(S2)) (v)

[wh] (RD◦, RD•) |= while [b]` do S

iff (RD◦, RD•) |= S ∧
(RD◦, RD•) |= b ∧
RD•(`) ⊆ RD◦(init(S)) ∧ (vi)

∧∀`′∈final(S)RD•(`′) ⊆ RD◦(`) (vii)

Table 4.6: Reaching Definitions Analysis: Inclusion Constraint Language.

the analysis has the form

(RD◦, RD•) |= S iff ϕ

The judgement is true if and only if an analysis result (RD◦, RD•) correctly de-
scribes S. It associates a program S with the constraint program ϕ. The imple-
mentation is, therefore, to calculate a least solution for the constraint program
ϕ generated for a given program S with respect to the analysis specification.

The analysis specification using our constraint language is presented in Table
4.6 and the liftable constraints are numbered.
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In the constraints for assignment [x := e]l, all the assignments on the program
variable x are removed using the non-standard set minus operation and the new
assignment then adds to the cache of the exit of the statement. For the state-
ments of skip and expression, we simply copy the reaching definition information
from the entry of the statement to the exit of the statement since there is no
side effect occurring between the entry and exit of each of the two statements.

Remark 4.5 This example shows that a careful choice of the constraints used
in an analysis could have significant effect on performance. Note that the use of
the non-standard set minus operation generates constraints of constant size. It
not only gives a succinct specification, but decreases the asymptotic complexity
of the analysis: if a standard set minus operation were used, the constraints
generated could be linear, i.e. ∧∀`′∈LabRD◦(`) \ (x, `′) ⊆ RD•(`); and once
these constraints are generated, it is difficult for a solver to do any optimization.
Therefore, it could be a good practice for analysis designers to be clear what is
the complexity of their analysis and how this happens. Thereby they may have
better chance to make a good use of features provided by a solver and improve
the usability of their analysis.

Remark 4.6 Correctness of the analysis. Once an analysis is specified, it
is necessary to show that the analysis result is correct for the programs to be
analyzed. For example, the correctness result for the reaching definitions analy-
sis should express that the sets of reaching definition information computed by
the analysis are correct throughout the computation. To give formal proof, one
would need some formal semantics for the imperative language and reason the
correctness of the analysis holds for each statement. A small step semantics,
e.g. Structural Operational Semantics, is preferred because this kind of seman-
tics allows to reason about intermediate stages in a program execution and to
handle non-terminating programs, i.e. some endless loop in a program. In this
dissertation, we focus on the implementation of program analyses instead of the
discussion of the correctness of program analyses. Considering the language
studied is standard, we have alternatively conducted an inspection on each spec-
ification in order to ensure the correctness of the analysis with respect to the
meaning of each statement. For an extensive introduction on the formal proof
of the correctness of program analyses, see [NNH99].

4.2.2.1 Heuristics about Tuning Constraints

In the rest of this section, we conduct a heuristic study on when and how
imprecision may be incurred by the use of unification. Knowing these heuristics
is useful for analysis designers who want to achieve a good balance between
performance and precision.
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Figure 4.5: Graph Representation of Data Flow for [wh], [if] and [comp].

First observe that the constraints of (i) and (ii) can be changed to equality con-
straints without causing any imprecision because each label is unique and there
is no data updated between the entry and exit of [skip] and [exp] statements.
The cases of [comp], [if], and [wh] are more complex and we analyze the case
[wh] first because it helps to understand some tricky situation of [if] and [comp].
To be illustrative, we simulate the flow of data by the graphs in Figure 4.5 where
◦ and • denote the entry and exit point(s) respectively, the square represents
statement(s), and the arrowed lines denote the direction of data flow.

At the beginning suppose only set-inclusion constraints are used and ignore the
dashed lines in (a). The remaining part basically denotes that the information
goes through the test [b]l, then flows through S where the information may
be updated, and finally goes back to the entry of the test. Consider lifting
the constraint (vi) which is represented by adding the dashed line labeled 1.
Checking if the change preserves precision then amounts to verifying if the
entry of S has no more data than the exit of [b]l. This is the case if the first
elementary statement, say St, of S is not a while-loop because no more reaching
definition could be updated under such a situation. Otherwise as shown by the
dashed line labeled 2, some updated reaching definition information, which may
happen inside St, would flow back to the entry of S from the exit of St, denoted
by a dotted circle on the side of a square. Last the new reaching definition
information reaches the exit and entry of [b]l (assuming lifting is applied on
(vi)).

Now there are two possibilities: (1) This information is not further updated by
any assignment in the rest of S. Using equality at (vi), as a result, would give
no more data to the exit of [b]l than before considering the circle of the data
formed by while-loop, i.e. no imprecision occurs. (2) Otherwise some analysis
variable assigned in St must have been re-assigned later in S and instead of
removing the former assignment information both of them are kept at the entry
and exit of [b]l and hence imprecision happens.
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Solution (before lifting) Solution (after lifting)
RD◦(`1) {(x, ∗)} {(x, ∗)}
RD•(`1) {(x, `1)} {(x, `1)}
RD◦(`2) {(x, `1), (x, `3)} {(x, `1), (x, `3)}
RD•(`2) {(x, `1), (x, `3)} {(x, `1), (x, `3)}
RD◦(`3) {(x, `1), (x, `3)} {(x, `1), (x, `3)}
RD•(`3) {(x, `3)} {(x, `1)†, (x, `3)}

Table 4.7: Solutions for the constraints.

Finally changing constraint (vii) to equality is represented as adding a dashed
line 3. It means that any reaching definition information available at the entry of
test should also be available at the exit of S. Intuitively, the reaching definition
information at the entry of test may be updated inside S whereas using equality
at (vii) may introduce extra false positives.

Similarly lifting the constraint (iv) and (v) of [if] maintains precision if S1 does
not begin with a while-loop and otherwise may decrease precision at the exit
RD•(l). For the case [comp] first observe that S1 may have multiple exits and
thus lifting all constraints of (iii) results in unifying the data of these exits and
hence decreases precision. On the other hand, if S2 starts with a loop, we may
also have more false positives as argued in the cases [if] and [wh].

Notation 4.7 We distinguish between the exit point of the first atomic state-
ment St and that of the whole statement S in order to convenient the explanation
but still notice that they could be the same.

As discussed above, the tricky case is the while-loop statement which is the main
cause of extra false positives. To better understand how imprecision occurs in
the case [wh], we therefore consider the following example programs written in
our imperative language.

Example 4.8 The first example program is

[x := 0]`1 ; while [x = 0]`2 do [x := x + 1]`3

The constraints and the data flow are described as Figure 4.6.

We here only consider to change the set-inclusion generated for the while-loop
and mark them with †. The solutions before and after lifting the constraints are
summarized in Table 4.7, in which “*” is used for uninitialized variables.
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Figure 4.6: Constraints and Graph Representation: Example 4.8.

One extra false positive occurs as marked with †. This is introduced by the lifted
constraint RD•(`3) = RD•(`2): the unification adds the pair (x, `1) to the exit
of the statement `3, which would be removed for set-inclusion, as denoted by
the dashed line 3 in Figure 4.6. This shows that lifting constraint (vii) of Table
4.6 causes extra false positive as long as there is any assignment in the loop.
However, lifting the constraint RD•(`2) ⊆ RD◦(`3) causes no loss in precision
for the program considered. ¤

Example 4.9 Consider the program:

while [x 6= 0]`1 do (while [x = 1]`2 do x := x + 1; x:=0)

The constraints and the data flow are shown as Figure 4.7. In this example, we
consider to lift constraints (vi) of Table 4.6, which are marked with † in Figure
4.7. As argued in Example 4.8, lifting constraints (vii) of Table 4.6 will cause
extra false positives because of the assignments in the while-loops.

As demonstrated in Table 4.8, changing constraint RD•(`1) ⊆ RD◦(`2) to an
equality constraint would add the assignment of the inner loop to the exit of `1 as
denoted by the dashed line 1 and thereby cause an extra false positive. However
lifting constraint RD•(`2) ⊆ RD◦(`3) keeps the level of precision because there
is no new assignment between the two program points. ¤

To summarize the discussion of current subsection, we would initially try lifting
all the constraints from (i) to (vi), and keep the flexibility of changing back to
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Figure 4.7: Constraints and Graph Representation: Example 4.9.

Solution (before lifting) Solution (after lifting)
RD◦(`1) {(x, ∗), (x, `4)} {(x, ∗), (x, `4)}
RD•(`1) {(x, ∗), (x, `4)} {(x, ∗), (x, `3)†, (x, `4)}
RD◦(`2) {(x, ∗), (x, `3), (x, `4)} {(x, ∗), (x, `3), (x, `4)}
RD•(`2) {(x, ∗), (x, `3), (x, `4)} {(x, ∗), (x, `3), (x, `4)}
RD◦(`3) {(x, ∗), (x, `3), (x, `4)} {(x, ∗), (x, `3), (x, `4)}
RD•(`3) {(x, `3)} {(x, `3)}
RD◦(`4) {(x, ∗), (x, `3), (x, `4)} {(x, ∗), (x, `3), (x, `4)}
RD•(`4) {(x, `4)} {(x, `4)}

Table 4.8: Solutions for the constraints.

set-inclusion for the constraints of last five cases when necessary. According
to our study, lifting the constraint (vii), however, is very likely to decrease
precision: whether or not to change it depends on the specific consideration
on the tradeoff between performance and precision; if the performance of some
benchmarks is improved significantly and the precision is just acceptable, one



52 Constraint Solving

t ::= a | u | f(t1, · · · , tk)

p ::= R(t1, · · · , tk) | ¬R(t1, · · · , tk) |
t1 = t2 | t1 6= t2 |
p1 ∧ p2 | p1 ∨ p2 | ∃u : p | ∀u : p

cl ::= R(t1, · · · , tk) | 1 | cl1 ∧ cl2 | p ⇒ cl | ∀u : cl

Table 4.9: Syntax of the Alternation-free Least Fixed Point logic

may still choose to lift the constraint (vii).

4.2.3 Analysis Using ALFP Logic

In this subsection, we give a brief introduction to the Alternation-free Least
Fixed Point logic (ALFP) and the Succinct Solver. An reaching definitions
analysis is then specified and its asymptotic complexity is studied accordingly.

4.2.3.1 ALFP Logic and the Succinct Solver

The ALFP logic is a fragment of first order predicate logic. The grammar of
an ALFP formula cl is defined in Table 4.9, in which a term t consists of a
finite set of constant symbols a, a fixed countable set of variables u, a finite set
of function name f . We also write R for a finite ranked alphabet of predicate
symbols, and p for pre-conditions of ALFP formulae.

Given a non-empty and countable universe U over the ground terms, the seman-
tics is defined in terms of two satisfaction relations:

(ρ, σ) |= p and (ρ, σ) |= cl

where ρ is an interpretation of predicate symbols and σ is an interpretation of
terms. These satisfaction relations are defined in the standard way and the rules
of the semantics are summarized in Table 4.10.

Whenever a clause cl is closed, i.e. each free variable in cl is fixed by a given
interpretation σ0, the set of interpretations {ρ|(ρ, σ0) |= cl} satisfies the Moore
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Rules for pre-conditions:

(ρ, σ) |= R(u1, · · · , uk) iff (σ(u1), · · · , σ(uk)) ∈ ρ(R)
(ρ, σ) |= ¬R(u1, · · · , uk) iff (σ(u1), · · · , σ(uk)) /∈ ρ(R)
(ρ, σ) |= p1 ∧ p2 iff (ρ, σ) |= p1 and (ρ, σ) |= p2

(ρ, σ) |= p1 ∨ p2 iff (ρ, σ) |= p1 or (ρ, σ) |= p2

(ρ, σ) |= ∃u : p iff (ρ, σ[u 7→ a]) |= p for some a ∈ U
(ρ, σ) |= ∀u : p iff (ρ, σ[u 7→ a]) |= p for all a ∈ U

Rules for clauses:

(ρ, σ) |= R(u1, · · · , uk) iff (σ(u1), · · · , σ(uk)) ∈ ρ(R)
(ρ, σ) |= 1 iff always
(ρ, σ) |= cl1 ∧ cl2 iff (ρ, σ) |= cl1 and (ρ, σ) |= cl2
(ρ, σ) |= p ⇒ cl iff (ρ, σ) |= cl whenever (ρ, σ) |= p
(ρ, σ) |= ∀u : cl iff (ρ, σ[u 7→ a]) |= cl for all a ∈ U

Table 4.10: Semantics of the Alternation-free Least Fixed Point logic

family property [NSN02].

The Succinct Solver, which uses the (ALFP) logic as the specification logic,
adopts former insights of solver technologies [CH92, FS99, FS98a], including
the use of recursion, continuations, prefix tree and memorization. The solver
achieves the best known theoretical bounds for Datalog solvers [NSN02]. Be-
cause of the expressiveness of ALFP logic, the solver has been used for the
implementation of a variety of analyses [NNB02, ZN06, BBD+05].

Upon to the asymptotic complexity, the solver computes a least solution of a
ALFP formula cl (with respect to an interpretation σ0 of the constant symbols)
in the time of

O(#ρ + Nτ · n)

where #ρ is the sum of cardinalities of predicates ρ(R), N is the size of the
universe, n is the size of cl, and τ is the maximal nesting depth of quantifiers in
cl [NSN02].

The notion of stratification is used by the Succinct Solver when negations present
in pre-conditions in order to ensure the solvability of clauses. This is, however,
not relevant in the context of this dissertation. For further information about
the Succinct Solver, see [NSN02].
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4.2.3.2 Reaching Definitions Analysis in ALFP Logic

To compare the performance of our solver with that of the Succinct Solver, we
also specify a reaching definitions analysis for our imperative language in ALFP
logic. The two components of the estimate are redefined as:

RD◦, RD• ⊆ Lab → Lab

A predicate RD◦(`1, `2) or RD•(`1, `2) estimates that some variable defined at
`1 reaches `2 through some path. In order to get the complete reaching definition
information, i.e. which variable is defined at `1, one may need a table that maps
each label to either a program variable x defined at `1 or NULL. Looking up
the table takes constant time and building up the table takes linear time (by
scanning a program to be analyzed).

The judgement of the analysis has the form

(RD◦, RD•) |= S iff cl

that is quite similar as before except that the judgement now associates each
program with a ALFP formulae cl. The implementation of the analysis is then
to input the clause cl (generated according to the analysis specification) into the
Succinct Solver. The analysis specification in ALFP logic is specified in Table
4.11.

For each program variable x, we introduce the auxiliary predicate DEFx to
record where x is (re)defined. When the reaching definition information is copied
from entry to exit in the analysis for assignment statement, i.e. ∀u : RD◦(u, l)∧
¬DEFx(u) ⇒ RD•(u, l), the predicate is used as a precondition to remove any
pairs that can not reach the exit of the assignment. Intuitively, this has the
exact same meaning as the corresponding inclusion constraint in Table 4.6, i.e.
RD◦(`) \ (x, ?) ⊆ RD•(`).

The analysis implemented by the Succinct Solver has the complexity O(n2)
because the maximum depth of the universal quantification is only 1. This
achieves the best theoretical worst case complexity using the Succinct Solver as
far as we know.
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(RD◦, RD•) |= [x := e]l iff RD•(l, l) ∧DEFx(l)∧
∀u : RD◦(u, l) ∧ ¬DEFx(u) ⇒ RD•(u, l)

(RD◦, RD•) |= [skip]l iff ∀u : RD◦(u, l) ⇒ RD•(u, l)

(RD◦, RD•) |= [e]l iff ∀u : RD◦(u, l) ⇒ RD•(u, l)

(RD◦, RD•) |= S1; Sl
2 iff (RD◦, RD•) |= S1∧

(RD◦, RD•) |= S2∧
∧∀l∈final(S1)∀u : RD•(u, l) ⇒ RD◦(u, init(S2))

(RD◦, RD•) |= if [b]l then S1 else S2

iff (RD◦, RD•) |= S1∧
(RD◦, RD•) |= S2∧
(RD◦, RD•) |= b∧
∀u : RD•(u, l) ⇒ RD◦(u, init(S1)) ∧
∀u : RD•(u, l) ⇒ RD◦(u, init(S2))

(RD◦, RD•) |= while [b]l do S
iff (RD◦, RD•) |= S∧

(RD◦, RD•) |= b∧
∀u : RD•(u, l) ⇒ RD◦(u, init(S)) ∧
∧∀l′∈final(S)∀u : RD•(u, l′) ⇒ RD◦(u, l)

Table 4.11: Reaching Definitions Analysis in ALFP.

4.3 Experimental Study

4.3.1 Methodology

We design two groups of benchmarks: one group is called representative pro-
grams, which implement 8 mathematical algorithms and one application; an-
other group is called scalable program, which can be as large as we want so that
the scalability of our solver and the Succinct Solver can be evaluated. The reach-
ing definitions analysis is accordingly conducted on these benchmarks. We apply
the parameterized framework on the inclusion constraints generated. The com-
parison is made between the result before and after lifting inclusion constraints
for our solver, and between the Succinct Solver and our inclusion solver. The
fact that both of the two solvers are implemented in New Jersey SML makes
the comparison more reliable.

All the benchmarks are run on a 2.0 GHz processor with 1.5 GB of memory
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under Windows XP SP2. Each experiment is repeated three times and the
average time and minimum memory consumption are reported. The reason of
choosing the minimum memory consumption is based on the observation that
the mechanism of the garbage collection of New Jersey SML compiler consumes
larger memory than what is actually needed, and thus the minimum memory
consumption we report are the ones closest to the actual values.

Regarding to the worklist strategy, our solver adopts the last-in-fist-out (LIFO)
to prioritize the member of the worklist. New strategy will be introduced when
more applications are considered in the following chapters.

4.3.2 Benchmarks: Representative Programs

Eight representative programs are used to evaluate the effect of using unification
on our constraint solver: fibonacci is an algorithm calculating fibonacci numbers;
isPrime verifies if a given number is a prime number or not; lcm returns the least
common multiplier given two natural numbers; ext gcd calculates two natural
numbers’ greatest common dividend; newtonIter is an algorithm for comput-
ing the square root of a number via the recurrence equation; wlfIter is simply
another algorithm for computing the square root of a number; sum computes
the sum of two natural numbers; log conducts the logarithm operation given a
base and a number; calculator is an application which given proper arguments
conducts all kinds of mathematical calculations.

All the time performance are measured in milliseconds (ms.). The improvement
of time, represented as 4T is in percent %. Besides evaluating the constraint
programs using only set-inclusion constraints (called set-inclusion version), we
tune the programs by lifting the constraints generated at (i) through (vi) (called
equality version) as suggested in Subsection 4.3.2. Because we have done a
thorough study in Subsection on where and how imprecision may occur, we
furthermore make a fine-tuned constraint program for each benchmark (called
enhanced equality version), in which we change back to set-inclusion constraints
for the equality constraints causing any loss of precision. The information of
the representative programs is summarized in Table 4.12.

As Table 4.12 shows, both the equality version and enhanced equality version
give many equality constraints which helps to reduce the problem space indi-
cated by the number of analysis variables (in the last column of the table). The
experimental data in Table 4.13 report the execution time of the three versions
of the constraint programs and calculate the performance improvement using
unification. The last line reports the overall improvement on time performance,
in which the length of each benchmark is proportionated.
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Name LOC Constraint Equality EqualityEN Variable
fibonacci 15 41 19 15 28
isPrime 18 39 22 18 28
lcm 23 51 17 16 34
ext gcd 22 48 16 15 32
nwtIter 14 30 12 9 20
wlfIter 20 56 24 21 38
sum 16 33 13 11 22
log 71 145 62 50 98
calculator 258 604 268 237 418

Table 4.12: Benchmarks: Representative Programs.

Name TS TE TE′ 4T1 4T2

fibonacci 0.24 0.11 0.12 53% 52%
isPrime 0.24 0.13 0.15 48% 39%
lcm 0.25 0.20 0.21 21% 18%
ext gcd 0.23 0.16 0.16 32% 32%
nwtIter 0.16 0.07 0.09 56% 43%
wlfIter 0.38 0.20 0.21 48% 46%
sum 0.17 0.13 0.13 25% 25%
log 0.70 0.48 0.53 31% 25%
calculator 6.04 4.30 4.45 29% 26%
Improvement on Average 32% 29%

where:
4T1 = (TS − TE)/TS

4T2 = (TS − TE′)/TS

Table 4.13: Time Performance of the Inclusion Constraint Solver.

For each benchmark, the columns TS, TE and TE′ give the time of performing
the analysis on set-inclusion version, equality version, and enhanced equality
version, respectively. Using unification results in a significant reduction in ex-
ecution time - on average 32% (4T1) for equality version and 29% (4T2) for
enhance equality version. The enhanced equality version is a little slower than
equality version. In order to measure the level of precision, Table 4.14 reports
the size of the solutions of the three versions where each pair (x, `) is counted as
one. As the table shows, the enhanced version is as precise as the pure inclusion
one.

For the program fibonacci and isPrime, using unification in the equality version
results in many extra false positives while as it seems quite fine with the rest
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Name SS = SE′ SE 4S1

fibonacci 207 346 67%
isPrime 153 234 53%
lcm 427 435 1.9%
ext gcd 396 404 2.0%
nwtIter 134 150 12%
wlfIter 396 444 12%
sum 127 133 4.7%
log 1460 1579 8.1%
calculator 17532 17986 2.6%

Loss in Prec. on Average 8.3%

where:
4S1 = (SE − SS)/SS

Table 4.14: Precision of the Inclusion Constraint Solver using unification (eval-
uated by the size of the solutions).

of benchmarks. The overall loss in precision is 8.3% and seems OK. However,
the size of solutions itself may be not enough to judge the effect of extra false
positives although it is a direct indication of the precision of an analysis. For
some analyses, e.g. reaching definitions analysis and pointer analysis, the effect
of reduced precision of these analyses may affect their client analysis. Therefore,
the precision of client analyses may also need to be considered. How to choose a
proper metric to measure the precision of an analysis is out of the range of this
dissertation. For further information, see [Hin01] (in which several metrics of
pointer analysis are described and their strengths and weaknesses are discussed.)

In fact, the enhanced version achieves a quite good performance. The only
weakness is that one has to manually tune the constraints and for large pro-
grams this approach is not practical. However from the enhanced version, we
demonstrate that many equivalent classes of analysis variables do exist in the
analysis and can be used to speed up the calculation significantly.

Table 4.15 compares the results of our solver and the Succinct Solver in terms
of time performance. The column TA reports the performance of the analysis
implemented in ALFP logic. We observe that our solver is considerably faster -
on average 81% faster for set-inclusion version, 87% faster for equality version,
and 86% faster for enhanced equality version1. This may be explained by the
fact that our solver employs much simpler data structure than the Succinct
Solver and thus has lower space usage.

The number of Table 4.15 calculates the percentage of the improvement of our

1Note that the solution of set-inclusion version or enhanced equality version is as precise
as that computed by the Succinct Solver.
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Name TA 4T3 4T4 4T5

fibonacci 1.47 84% 92% 92%
isPrime 1.20 80% 90% 88%
lcm 3.80 93% 95% 95%
ext gcd 2.54 91% 94% 94%
nwtIter 1.09 85% 93% 91%
wlfIter 1.87 80% 89% 89%
sum 1.15 85% 89% 89%
log 7.12 90% 93% 93%
calculator 25.36 76% 83% 82%
Improvement on Average 81% 87% 86%

where:
4T3 = (TA− TS)/TA

4T4 = (TA− TE)/TA

4T5 = (TA− TE′)/TA

Table 4.15: Inclusion Constraint Solver v.s. the Succinct Solver: TS, TE and
TE′ represent the time performance of set-inclusion version, equality version,
and enhanced equality version respectively.

Figure 4.8: Performance comparison of individual benchmarks, where the per-
formance of set-inclusion version TS, enhanced equality version TE′, and the
Succinct Solver TA is normalized against the equality version TE.

solver compared to the Succinct Solver. To make it clear how fast our solver
using unification is, Figure 4.8 visualizes the comparison of the performance of
the three versions between our solver and the Succinct Solver by normalizing
the performance of the set-inclusion version, the enhanced equality version, and
the ALFP logic version against that of the equality version. Our solver is clearly
faster than the Succinct Solver, being 6.2 times faster for set-inclusion version,
8.9 times faster for enhanced equality version, and 9.3 times faster for equality
version. If only our solver is concerned, the enhanced equality version achieves
a good performance, which is only 1.1 times slower than that of the equality
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version. Both of the equality version and the enhanced equality version are
around 1.5 times faster than the set-inclusion version.

As demonstrated by the double-layer semantics in Chapter 3, using unification
would reduce the memory consumption of our solver. But this reduction is
not quite observable for the representative programs of interest considering the
size of the constraints generated for these programs is relatively small. When
scalable programs are considered in the next sub-section, an apparent decrease
in memory consumption shall be observed as expected.

4.3.3 Benchmarks: Scalable Programs

The representative programs allow us to measure the effect of using equality con-
straints on time performance and precision. These programs, however, cannot
easily be extended to any size desired. In order to evaluate the scalability of the
solvers we designed eight series of scalable programs with the desired size poten-
tial: each series of scalable programs consists of many individual programs and
some part of them could be enlarged as many times as desired. Especially with
well-designed scalable programs we are able to measure asymptotic complexity
of the constraint solving for each series of benchmarks, and further analyze the
impact of using unification on complexity. Finally, scalable programs allow us
to measure the differences of the memory consumption between set-inclusion
version and equality version, and between our constraint solver and the Suc-
cinct Solver. Upon precision, because of the simple structure of the scalable
programs, one can simply use the heuristics presented in Subsection 4.3.2 to
point out any (potential) loss in precision for the equality version and therefore
the level of precision can be well-controlled. We, in this subsection, focus on
analyzing the effect of using unification on performance.

Two families of scalable programs are selected for detailed presentation as in
Table 4.16. Appendix B specifies a complete version of the eight series of scalable
programs. For two series of scalable programs, the first number of the subscript
denotes the nesting depth of loops or conditions, and the second yields the
number of all assignments (at the deepest level). According to the analysis
specification, the number constraints generated for Wh(1,n) and If(n,1) are both
of O(n). Given the method used for constructing the graph in the algorithm,
both of the clusters constructed for the constraints have O(n) labels.

As explained in Section 4.1, adopting unification will simplify the labeled clus-
ter and further reduce the number of iterations. We show that the results of
this simplification differ for the two examples: for the first one, it decreases the
number of labels by a constant factor; in contrast, for the second there is only a
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Wh(1,n) : while x0 < 2 do (x1 := x2;
...

xn−1 := xn;
xn := 1)

If (n,1) : if x1 < 0 then skip

else
...

if xn < 0 then skip
else x0 := 1

Table 4.16: Scalable Programs: Wh(1, n) and If(n, 1)

constant number of labels left. This is because the constraints generated for n
assignments of Wh(1,n) remain O(n) by the rule [ass]. But applying unification
to If(n,1) means we only keep set-inclusion in the constraints for one assign-
ment(s) and thus the resulting graph has only a constant number of labels. The
experimental results of the family Wh(1,n) are presented in Figure 4.9 and 4.10.

The first diagram shows that the execution time is improved 25% by using
unification and the computation using set-inclusion is at least 70 times and
sometimes even 200 times faster than the Succinct Solver. Compared to the
Succinct Solver we postulate this is because of the two reasons: (1) a simpler
data structure adopted by our solver that is more efficient to operate, and (2)
a lower level of memory consumption of our solver (as discussed later). Notice
that both of the solvers suffer a sharp performance-decline for large values of n:
n ≥ 750 in the case of the Succinct Solver, and n ≥ 9000 and n ≥ 11000 in the
case of our solver. As a result, the use of unification enables our solver to scale
to larger programs. For our solver especially, the computation time is so small
when n is less than 250 that the initialization time becomes a major constant
factor impacting the asymptotic complexity. To get the asymptotic growth rate
of the solvers, we therefore select the data before performance deterioration
happens and after the constant factor is no longer dominating. By a least
square fit technique on the model t = c1 ·mc + c0, we estimate that the time
complexity of the Succinct Solver, and our solver without and with unification
are O(n2.21), O(n2.02) and O(n2.01) respectively. As expected, unification only
helps to reduce the exponent value a bit.

The second diagram shows that unification saves up to 40% space compared to
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Figure 4.9: Time Performance of Wh(1,n).

set-inclusion. Within the scalability of the Succinct Solver, we observe that our
solver consumes much less memory than the Succinct Solver. Relating to the
time performance presented in Figure 4.9, we postulate that the level of memory
consumption of the two solvers is a key factor affecting their time performance
when the program size is quite large: large memory consumption requires much
extra effort in memory management and thus slow down the speed of a solver.

For the program family If(1,n), a significant improvement is observed and its
experimental results are presented as Fig. 4.11 and 4.12. This time our
solver remains 30 times faster than the Succinct Solver and consumes much less
memory when using unification. Again, we consider this is achieved by the high-
efficient data structure and low memory consumption. Since no performance-
deterioration is observed, the estimated complexities are printed out directly.
As Figure 4.11 shows, unification results in almost linear time complexity while
set-inclusion takes more than quadratic time and the Succinct Solver takes time
O(n1.3). The use of unification speeds up the constraint solving significantly,
i.e. 28 times faster at least.
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Figure 4.10: Memory Consumption of Wh(1,n).

For space consumption we have a very similar result as presented in Figure 4.12.
Relating the two figures, we can see a clear relation between time performance
and space consumption: the less space consumed, the faster the constraint solv-
ing is.

Other series of scalable programs have been tested and in general the results are
similar to either Wh1,n or Ifn,1. We conclude that the performance improvement
is proportional to the percentage of equality constraints in a constraint program.

4.4 Concluding Remarks

We have presented a worklist algorithm for the inclusion constraint solving. The
termination and the correctness of the algorithm are proved. The complexity of
the algorithm is O(n3) in a worst case study. With the use of unification, the
asymptotic complexity could be reduced to almost linearity.
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Figure 4.11: Time Performance of If(n,1).

To demonstrate the use of the framework and unification, two groups of bench-
marks are designed: representative programs and scalable programs. A state-
of-the-art solver, the Succinct Solver, is selected to make a comparison study.
The experimental results show that our constraint solver is a large constant
factor faster than the Succinct Solver for all the benchmarks. For some scalable
programs, using unification may lower the asymptotic complexity even down to
almost linear time. At the same time, unification helps to reduce the memory
consumption which, in return, saves effort in memory-related operations and
thus speeds up the constraint solving.

Unification need not give rise to imprecision: the enhanced equality version of
the analysis for the representative programs shows the existence of many equiv-
alent analysis variables in the reaching definitions analysis. Our experimental
results demonstrate that these equivalences can be taken advantage of by our
unification technique to improve the solver performance considerably.

When tuning a constraint program, analysis designers also need a good control
on the performance and precision tradeoff. Our heuristic study on the example
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Figure 4.12: Memory Consumption of If(n,1).

imperative language shows that a careful study on the conditions where impre-
cision may or may not occur pays off in gaining the expected level of precision.
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Chapter 5

Extended Inclusion Constraint
Language for Pointer Analysis

In this chapter, we extend our inclusion constraint language in order to im-
plement pointer analysis. The analysis is especially interesting to us because
analyzing very large programs written in languages with pointers, such as C
or Java, requires the information of pointer behavior. When a pointer derefer-
ence is encountered, an analysis without good pointer information is either quite
imprecise or unsound. Thus pointer analysis is a prerequisite of many other pro-
gram analyses. Another motivation of studying pointer analysis is that with all
kinds of unification techniques the previous research on pointer analysis demon-
strates many interesting tradeoffs between the efficiency of the analysis and
the precision of the computed solution [Ste96, Das00, SH97b, RC00, PKH04,
HL07a, HL07b]. However, designing a pointer analysis, which is both scalable
and precise, remains a challenge to researchers.

In the following sections, we first give an introduction of pointer analysis to
motivate the development of this chapter. Then we specify the syntax and se-
mantics of the extended language. The theories presented before are adjusted
in order to rebuild the theoretical foundation. Next the algorithm of the con-
straint solver is redefined and its properties of interest are analyzed. Finally we
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present the implementation of the C pointer analysis, i.e. how we model the
pointer behavior of the C programming language, e.g. aggregations, multiple
dereferences, functional pointers, etc. In the next chapter, we further describe
the technique of how to detect equivalent analysis variables and improve the ef-
ficiency of the analysis with the help of the extended language constructs. Part
of the work was previously presented in [ZAN08].

5.1 Introduction to Pointer Analysis

A pointer analysis approximates that for each variable of pointer type what
storage locations it can point to. The analysis is a prerequisite for a variety
of analyses relating to compiler optimization, e.g. reaching definitions analysis,
live variable analysis, constant propogation, etc. It is also a key technique for
error detection, e.g., NULL pointer dereferencing, and program understanding.
Unfortunately, exact pointer analysis is undecidable [Cha03, Ram94] and even
flow-insensitive pointer analysis is NP-hard [LR91, Hor97]. Therefore there has
to be some trade-off between precision and performance for pointer analyses.

Several dimensions could affect the performance and precision trade-offs of in-
terprocedural pointer analysis1. The way that a pointer analysis deals with each
of these dimensions is then used to classify the analysis. Two major dimensions
are

Flow-sensitivity: If an analysis uses control-flow information of a procedure
during the analysis, the analysis is flow-sensitive, otherwise it is flow-insensitive.
A flow-sensitive analysis computes a solution for each program point, whereas
a flow-insensitive analysis computes one solution for either the whole program,
such as [And94, Ste96, ZRL96, HL07a], or for each function or method, such as
[BCCH94, HBCC99, LH99]. Therefore a flow-sensitive analysis is more precise
but much more expensive to compute than a flow-insensitive one. Despite a great
deal of work on flow-sensitive analyses [CBC93, HBCC99, TGL06], scalability
remains a challenge to them.

Context-sensitivity: If an analysis shows respect to the semantics of func-
tion calls, i.e. the calling context is considered when analyzing a function, the
analysis is context-sensitive. In contrast, a context-insensitive analysis discards
the calling context of a function. A context-sensitive analysis is equivalent to
fully inline each function before performing the analysis, which turns to be ex-
ponential in program size. Thus, this approach is impractical for large programs

1Since arguments of functions are often pointer type in the C programming language, only
interprocedural pointer analysis is considered in this dissertation.
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Analysis Variable
Program Variable Field-insensitive Field-based Field-sensitive

aggr1.f aggr1 aggr1 f
aggr2.f aggr2 f

aggr2 f
aggr1.f f aggr1 f
aggr1.g

aggr1
g aggr1 g

Table 5.1: Aggregate Modeling.

[EGH94, NKmWH04, WL04, WL95, ZC04]. A context-insensitive analysis gen-
eralizes a function’s calling context into one and thereby is faster but more
imprecise than a context-sensitive analysis.

There are also several minor dimensions, including

Aggregate modeling: The manner in which aggregates (arrays and structs)
are modeled. There are three approaches: field-insensitive in which the whole
array or struct is modeled as one memory block; field-based in which one analysis
variable models all instances of a field of an aggregate; field-sensitive in which
a unique analysis variable models each field of an aggregate. Table 5.1 clarifies
the differences between these approaches.

As the table illustrates, the field-insensitive and field-based approaches are im-
precise in different ways. The first combines the solution of different fields in
an aggregation and thereby sacrifices some precision. The second combines all
the solutions for each instance of a given field into one and thus loses some
precision as well. Field-sensitive analysis is more precise but also more difficult
to implement. And for arrays its precision is compromised because of pointer
operations conducted on arrays. Note that field-based analysis is unsound for
C programs. Consider the below example.

Example 5.1 For the program code

typedef struct { int f ; } aggr;
aggr h, ∗p;
int a = 0;
p = &h;
∗p = &a;

The last assignment ∗p = &a assigns the address of a to field aggr.f , i.e. it is se-
mantically equivalent to (∗p).f = &a in C program according to the ISO/ANSI
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standard [ISO00]. But field-based analysis will report that f may not point to
a. ¤

Heap modeling: The manner in which the heap is modeled. A straightforward
approach models memory locations by named objects. The names can be either
variable names or synthetic names introduced by an analysis to represent a set of
memory locations, such as parts of the heap. A sophisticated approach performs
shape analysis to get more precise analysis about heap behavior.

Whole program: Many pointer analyses require the whole program to be
analyzed, while as some remain sound by analyzing only part of a program.

Because of the scalability problem of flow- and context-sensitivity, we consider,
in this dissertation, flow- and context-insensitive analysis. Flow- and context-
insensitive analyses are further classified into two major classes: unification-
based [Ste96, ZRL96], which treat assignments as a bidirectional data-flow,
and inclusion-based [And94, BCCH94, HBCC99, HL07a], which treat an as-
signment as unidirectional data-flow. Because of the bidirectional nature of the
unification-based analysis, it gains high efficiency by sacrificing a lot of preci-
sion. On the other hand, inclusion-based analyses are much more precise but
its worst-case complexity is O(n3) and has difficulty to scale to large programs.
The following example is composed with the attempt to give an intuitive expla-
nation to the two approaches. For further information about the two analysis,
see [Ste96, And94].

Example 5.2 Consider the following program:

p1 = &i;
p2 = &j;
q = &p1;
q = &p2;

The pointer graph for this program using the Andersen’s analysis and the Steens-
gaard analysis are represented as Figure 5.1.

Compared to Andersen’s graph, the points-to sets p1 → j and p2 → i are false
positives in Steensgaard’s graph. However, since Steensgaard’s analysis unifies
the two pairs of analysis variables, (p1, p2) and (i, j), its problem space is much
smaller than that of Andersen’s analysis, thereby is quite efficient. ¤
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Andersen’s pointer graph

q

p1 i

p2 j

* -

j -

Steensgaard’s pointer graph

q p1, p2 i, j- -

Figure 5.1: Andersen’s vs Steensgaard’s analysis

pre ::= c ⊆ α | [α1, · · · , αn]

ϕ ::= c ⊆ α | α ⊆ β | α = β | α ∩ β ⊆ γ |
α \ c ⊆ β | α \(D) ⊆ β | ϕ1 ∧ ϕ2 |
[[α]] ⊆ β | α ⊆ [[β]] | [[α]] = β | pre ⇒ ϕ

D ::= ? | ?, D | m | m,D

Table 5.2: Syntax of the Extended Constraint Language

In the rest of this chapter, we shall extend our inclusion constraint language
for implementing Andersen’s analysis. We are especially interested in exploring
equivalent analysis variables in order to reduce the problem space and thus
improve the performance of Andersen’s analysis.

5.2 Extended Inclusion Constraint

The syntax of the extended constraint language is specified in Table 5.2.

The universe considered is the same as before. A new syntax category pre is
the antecedent (precondition) of a conditional constraint pre ⇒ ϕ in which ϕ
is a postfix, which must hold only when the antecedent pre holds. Two con-
structs are in the category: the first tests the membership of an analysis variable;
the second checks if all of the analysis variables α1, · · · , αn are nonempty. Be-
sides the normal equality constraint, we introduce a dynamic equality constraint



72 Extended Inclusion Constraint Language for Pointer Analysis

Rules for pre:

(ψ̂1, ψ̂2) |=T c ⊆ α iff c ⊆ ψ̂2(ψ̂1(α))

(ψ̂1, ψ̂2) |=T [α1, · · · , αn] iff ψ̂2(ψ̂1(α)) 6= {} for all α ∈ {α1, · · · , αn}

Rules for ϕ:

1. (ψ̂1, ψ̂2) |=T c ⊆ α iff c ⊆ ψ̂2(ψ̂1(α))

2. (ψ̂1, ψ̂2) |=T β ⊆ α iff ψ̂2(ψ̂1(β)) ⊆ ψ̂2(ψ̂1(α))

3. (ψ̂1, ψ̂2) |=T β = α iff ψ̂1(β) = ψ̂1(α)

4. (ψ̂1, ψ̂2) |=T α ∩ β ⊆ γ iff ψ̂2(ψ̂1(α)) ∩ ψ̂2(ψ̂1(β)) ⊆ ψ̂2(ψ̂1(γ))

5.1 (ψ̂1, ψ̂2) |=T α \ c ⊆ β iff ψ̂2(ψ̂1(α)) \ c ⊆ ψ̂2(ψ̂1(β))

5.2 (ψ̂1, ψ̂2) |=T α \(D) ⊆ β iff ψ̂2(ψ̂1(α)) \(D) ⊆ ψ̂2(ψ̂1(β))

6. (ψ̂1, ψ̂2) |=T ϕ1 ∧ ϕ2 iff (ψ̂1, ψ̂2) |=T ϕ1 and (ψ̂1, ψ̂2) |=T ϕ2

7. (ψ̂1, ψ̂2) |=T [[α]] ⊆ β iff ∀v ∈ ψ̂2(ψ̂1(α)) : ψ̂2(ψ̂1(bvc) ⊆ ψ̂2(ψ̂1(β))

8. (ψ̂1, ψ̂2) |=T α ⊆ [[β]] iff ∀v ∈ ψ̂2(ψ̂1(β)) : ψ̂2(ψ̂1(α)) ⊆ ψ̂2(ψ̂1(bvc))
9. (ψ̂1, ψ̂2) |=T [[α]] = β iff ∀v ∈ ψ̂2(ψ̂1(α)) : ψ̂1(bvc) = ψ̂1(β)

10. (ψ̂1, ψ̂2) |=T pre ⇒ ϕ iff (ψ̂1, ψ̂2) |=T ϕ whenever ψ̂ |=T pre

Table 5.3: Semantics of Extended Constraint Language Using Type Variables

[[α]] = β, which together with another two dynamic constraints [[α]] ⊆ β and
α ⊆ [[β]], is used for formulating dynamic transitive closure problems, e.g., An-
dersen’s analysis. These constraints are dynamic in the sense that they may yield
new equality constraints or set-inclusion constraints during constraint solving.
The conditional constraints are also dynamic since the equality or set-inclusion
relation is enforced in the consequence of a conditional constraint only when its
antecedent becomes true.

The semantics using the type variables in Table 3.3 is extended and presented
in Table 5.3. We adopt the double-layer semantics here since it is the one
implemented by the algorithm. It should also be straightforward to specify
a standard version of the semantics. The two components ψ̂1 ∈ EnvT and
ψ̂2 ∈ ÊnvTB are defined in the same way as before. An anonymous function b·c
maps each tuple v to an analysis variable bvc. For instance, let bvc = κv where
κ is a reserved analysis variable name.
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Program code Meaning w.r.t. Pointer Analysis Constraint
x = &y loc(y) ∈ pts(x) {y} ⊆ κx

x = y pts(y) ⊆ pts(x) κy ⊆ κx

x = ∗y ∀p ∈ pts(y) : pts(p) ⊆ pts(x) [[κy]] ⊆ κx

∗x = y ∀p ∈ pts(x) : pts(y) ⊆ pts(p) κy ⊆ [[κx]]

Table 5.4: Constraints for Andersen’s Pointer Analysis.

The rule for constraint [[α]] ⊆ β declares that for each tuple v ∈ ψ̂2(ψ̂1(α)) a
new subset inclusion is generated, i.e. ψ̂2(ψ̂1(bvc) ⊆ ψ̂2(ψ̂1(β)) in which bvc
maps the tuple v to its corresponding analysis variable. The rule for constraint
α ⊆ [[β]] is similar except that the tuples are from β this time. For rule 9, the
constraint [[α]] = β, called dynamic equality constraint, yields new equivalences,
i.e. bvc = β for each tuple v ∈ ψ̂2(ψ̂1(α)).

The following examples motivate the introduce of these new constraints.

Example 5.3 Andersen’s pointer analysis [And94] is an analysis calculating
dynamic transitive closure. A well-designed C-frontend can simplify the assign-
ments of interest into four forms during a linear scan through the C source
code [HT01] and four kinds of constraints are generated accordingly. Table 5.4
summarizes the four kinds of program code, the meaning of them, and the con-
straints used to model them respectively. Here pts(p) represents the points-to
set of p and loc(p) represents the memory location named by p. ¤

Example 5.4 Given a program code

x = ∗y;
∗y = x;

we have the constraints

[[κy]] ⊆ κx ∧ κx ⊆ [[κy]]

The semantics of the constraint language then allows us to conclude that [[κy]] =
κx, which declares that any analysis variable described by κy is equivalent to
κx. ¤
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κx κy

κj

-

À

]

Figure 5.2: Cycles formed by the constraints of Example 5.5. The arrowed line
→ represents set-inclusion ⊆.

Example 5.5 Given a program code

x = &i;
z = &j;
y = x;
∗z = y;
x = ∗z;

we have the constraints

{i} ⊆ κx ∧ {j} ⊆ κz ∧ κx ⊆ κy ∧ κy ⊆ [[κz]] ∧ [[κz]] ⊆ κx

Intuitively, for the least solution of interest we have that ψ̂2(ψ̂1(κx)) = ψ̂2(ψ̂1(κy)) =
ψ̂2(ψ̂1(κj)) = {i} and ψ̂2(ψ̂1(κz)) = {j}. If we instantiate [[κz]] to be κj , we can
see a loop formed by inclusion relation as visualized in the graph of Figure 5.2.
Notice that κx = κy only when the data of γ is non-empty. ¤

Example 5.6 Given a program code

x = &p;
y = &i;
y = ∗x;
∗z = y;
m = ∗z;
∗x = m;

we have the constraints

{p} ⊆ κx ∧ {i} ⊆ κy ∧ [[κx]] ⊆ κy ∧ κy ⊆ [[κz]] ∧ [[κz]] ⊆ κm ∧ κm ⊆ [[κx]]
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[[κx]] κy

[[κz]]κm

-

?¾

6

Figure 5.3: Cycles formed by the constraints of Example 5.6. The arrowed line
→ represents set-inclusion ⊆.

This time a least solution gives that ψ̂2(ψ̂1(κx)) = {p}, ψ̂2(ψ̂1(κy)) = {i} and
ψ̂2(ψ̂1(κz)) = ψ̂2(ψ̂1(κm)) = ψ̂2(ψ̂1(κp)) = {}. Intuitively, a circle is formed as
shown in Figure 5.3 by the constraints [[κx]] ⊆ κy, κy ⊆ [[κz]], [[κz]] ⊆ κm, and
κm ⊆ [[κx]]. However, the circle is not completed by [[κx]] and [[κz]] but rather
by any analysis variables described by [[α]] and [[γ]]. Thus the analysis variables
κy and κm are not equivalent because the points-to set of κz is empty.

However, the loop still provides some insight about where equivalences may
happen. For the above example program, for instance, we may use a conditional
constraint

[κx, κz] ⇒ (κy = [[κx]] ∧ κy = [[κz]] ∧ κy = κm)

i.e. whenever neither of α and β are empty, (dynamic) equivalences are proposed
by the consequent. ¤

As demonstrated by the above examples, from the inclusion constraints, new
equivalences may be discovered and modeled by our (dynamic) equality con-
straints. In the next chapter, we shall present technique to explore how to
identify them automatically.

5.3 Theoretical Properties of the Language

In this section, we show some properties discussed in Chapter 3 is well main-
tained by the extended constraint language. The definitions of the relation ¹
and ≡ remain the same as before. We first prove Proposition 3.12 for the ex-
tended language which state that for a constraint program ϕ if an estimate is
acceptable then so are all its equivalences.
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Proposition 5.7 If (ψ̂1, ψ̂2) |=T ϕ ∧ (ψ̂1, ψ̂2) ≡ (ψ̂′1, ψ̂
′
2), then (ψ̂′1, ψ̂

′
2) |=T ϕ.

Proof. The proof is an induction on ϕ. For cases proved in Proposition 3.12,
the argument remains the same. We continue with the new extended constructs.

Case [[α]] ⊆ β. Assume that

(ψ̂1, ψ̂2) |=T [[α]] ⊆ β ∧ (ψ̂1, ψ̂2) ≡ (ψ̂′1, ψ̂
′
2)

From rule 7 in Table 5.3 we have

∀v ∈ ψ̂2(ψ̂1(α)) : ψ̂2(ψ̂1(bvc)) ⊆ ψ̂2(ψ̂1(β))

By Lemma 3.11 we have

∀α ∈ AVar : ψ̂2(ψ̂1(α)) = ψ̂′2(ψ̂
′
1(α))

and thus
∀v ∈ ψ̂′2(ψ̂

′
1(α)) : ψ̂′2(ψ̂

′
1(bvc)) ⊆ ψ̂′2(ψ̂

′
1(β))

by the transitivity of inclusion relation. From rule 7 in Table 5.3 again we
conclude that (ψ̂′1, ψ̂

′
2) |=T [[α]] ⊆ β.

Case α ⊆ [[β]]. Assume that

(ψ̂1, ψ̂2) |=T α ⊆ [[β]] ∧ (ψ̂1, ψ̂2) ≡ (ψ̂′1, ψ̂
′
2)

From rule 8 in Table 5.3 we have

∀v ∈ ψ̂2(ψ̂1(β)) : ψ̂2(ψ̂1(α)) ⊆ ψ̂2(ψ̂1(bvc))

By Lemma 3.11 we have

∀α ∈ AVar : ψ̂2(ψ̂1(α)) = ψ̂′2(ψ̂
′
1(α))

and thus
∀v ∈ ψ̂′2(ψ̂

′
1(β)) : ψ̂′2(ψ̂

′
1(α)) ⊆ ψ̂′2(ψ̂

′
1(bvc))

by the transitivity of inclusion relation. Finally by rule 8 in Table 5.3 we con-
clude that (ψ̂′1, ψ̂

′
2) |=T α ⊆ [[β]].

Case [[α]] = β. Assume that

(ψ̂1, ψ̂2) |=T [[α]] = β ∧ (ψ̂1, ψ̂2) ≡ (ψ̂′1, ψ̂
′
2)

From rule 9 in Table 5.3 we have

∀v ∈ ψ̂2(ψ̂1(α)) : ψ̂2(ψ̂1(bvc)) = ψ̂2(ψ̂1(β))
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By Lemma 3.11 we have

∀α ∈ AVar : ψ̂1(α) = ψ̂′1(α)

and thus
∀v ∈ ψ̂′2(ψ̂

′
1(α)) : ψ̂′2(ψ̂

′
1(bvc)) = ψ̂′2(ψ̂

′
1(β))

by the transitivity of inclusion relation. From rule 9 in Table 5.3 again we
conclude that (ψ̂′1, ψ̂

′
2) |=T [[α]] = β.

Case pre ⇒ ϕ. There are two sub-cases for the antecedent pre.

Sub-case 1: pre has the form c ⊆ α. Assume that

(ψ̂1, ψ̂2) |=T c ⊆ α ⇒ ϕ ∧ (ψ̂1, ψ̂2) ≡ (ψ̂′1, ψ̂
′
2)

By Lemma 3.11 we have

∀α ∈ AVar : ψ̂2(ψ̂1(α)) = ψ̂′2(ψ̂
′
1(α))

and thus if c * ψ̂2(ψ̂1(α)), i.e. c * ψ̂′2(ψ̂
′
1(α)), (ψ̂′1, ψ̂

′
2) |=T c ⊆ α ⇒ ϕ holds

trivially. Otherwise we have

c ⊆ ψ̂2(ψ̂1(α)) ⇒ c ⊆ ψ̂′2(ψ̂
′
1(α))

From the induction hypothesis we then have that

c ⊆ ψ̂′2(ψ̂
′
1(α)) ⇒ (ψ̂′1, ψ̂

′
2) |=T ϕ

holds. Finally by rule 10 in Table 5.3 we conclude that (ψ̂′1, ψ̂
′
2) |=T c ⊆ α ⇒ ϕ.

Sub-case 2: pre has the form [α1, · · · , αn]. Similarly. ¤

Next, we show that for the extended language the Moore family property for
the complete prelattice (EnvT× ÊnvTB,¹) is maintained for a set of solutions.

Theorem 5.8 A set of solutions given by {(ψ̂1, ψ̂2)| (ψ̂1, ψ̂2) |=T ϕ} is a Moore
family for a complete prelattice.

Proof. From Fact 3.21, the pre-ordered set (EnvT×ÊnvTB,¹) is a complete
prelattice. The proof is an induction on ϕ and the argument of the cases is the
same as those in Theorem 3.24. We show the theorem remains valid for the new
introduced constructs.
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Case [[α]] ⊆ β. Assume

∀i ∈ I : (ψ̂i
1, ψ̂

i
2) |=T [[α]] ⊆ β

for some set I and let (ψ̂û1 , ψ̂û2 ) = ûi(ψ̂i
1, ψ̂

i
2). From rule 7 in Table 5.3 we have

∀i ∈ I : ∀v ∈ ψ̂i
2(ψ̂

i
1(α)) : ψ̂i

2(ψ̂
i
1(bvc)) ⊆ ψ̂i

2(ψ̂
i
1(β))

We then have that

∀v ∈ ∩iψ̂
i
2(ψ̂

i
1(α)) : ∩iψ̂

i
2(ψ̂

i
1(bvc)) ⊆ ∩iψ̂

i
2(ψ̂

i
1(β))

By Lemma 3.15 we get ψ̂û2 (ψ̂û1 (γ)) = ∩iψ̂
i
2(ψ̂

i
1(γ)) for any analysis variable γ.

This allows us to conclude that (ψ̂û1 , ψ̂û2 ) |=T [[α]] ⊆ β.

Case α ⊆ [[β]]. Assume

∀i ∈ I : (ψ̂i
1, ψ̂

i
2) |=T α ⊆ [[β]]

for some set I and let (ψ̂û1 , ψ̂û2 ) = ûi(ψ̂i
1, ψ̂

i
2). From rule 8 in Table 5.3 we have

∀i ∈ I : ∀v ∈ ψ̂i
2(ψ̂

i
1(β)) : ψ̂i

2(ψ̂
i
1(α)) ⊆ ψ̂i

2(ψ̂
i
1(bvc))

We then have that

∀v ∈ ∩iψ̂
i
2(ψ̂

i
1(β)) : ∩iψ̂

i
2(ψ̂

i
1(α)) ⊆ ∩iψ̂

i
2(ψ̂

i
1(bvc))

By Lemma 3.15 we get ψ̂û2 (ψ̂û1 (γ)) = ∩iψ̂
i
2(ψ̂

i
1(γ)) for any analysis variable γ.

This allows us to conclude that (ψ̂û1 , ψ̂û2 ) |=T α ⊆ [[β]].

Case [[α]] = β. Assume

∀i ∈ I : (ψ̂i
1, ψ̂

i
2) |=T [[α]] = β

for some set I and let (ψ̂û1 , ψ̂û2 ) = ûi(ψ̂i
1, ψ̂

i
2). From rule 9 in Table 5.3 we have

∀i ∈ I : ∀v ∈ ψ̂i
2(ψ̂

i
1(α)) : ψ̂i

1(bvc) = ψ̂i
1(β)

By Lemma 3.15 we get

∀v ∈ ψ̂û2 (ψ̂û1 (α)) : ψ̂û1 (bvc) = ψ̂û1 (β)

This allows us to conclude that (ψ̂û1 , ψ̂û2 ) |=T [[α]] = β.

Case pre ⇒ ϕ. Assume

∀i ∈ I : (ψ̂i
1, ψ̂

i
2) |=T pre ⇒ ϕ

for some set I. We prove by the two cases of pre.
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Sub-Case 1: pre has the form c ⊆ α. If ∃i ∈ I : c * ψ̂i
2(ψ̂

i
1(α)), then we know

that c * ψ̂û2 (ψ̂û1 (α)) since ψ̂û2 (ψ̂û1 (α)) = ∩iψ̂
i
2(ψ̂

i
1(α)) by Lemma 3.15. Thus

the judgement (ψ̂û1 , ψ̂û2 ) |=T c ⊆ α = ϕ is trivially true. Otherwise we have
c ⊆ ψ̂û2 (ψ̂û1 (α)) holds. Together with the induction hypothesis on the postfix ϕ,
we have that

c ⊆ ψ̂û2 (ψ̂û1 (α)) ⇒ (ψ̂û1 , ψ̂û2 ) |=T ϕ

holds. From rule 10 in Table 5.3, we conclude that (ψ̂û1 , ψ̂û2 ) |=T c ⊆ α ⇒ ϕ.

Sub-Case 2: pre has the form [α1, · · · , αn]. Similarly. ¤

Finally, Proposition 5.9 shows that the extended constraint language and se-
mantics are compliant with the lifting strategy.

Proposition 5.9 If ϕ1 ≤ ϕ2 and (ψ̂1, ψ̂2) |=T ϕ2 then (ψ̂1, ψ̂2) |=T ϕ1.

Proof. The proof is a straightforward induction on the clause ϕ1. ¤

5.4 Constraint Solving

We continue using labeled cluster for translating the new introduced constraints.
Different from the constraints presented before, however, the constraints [[α]] ⊆
[[β]], α ⊆ [[β]], [[α]] = β, and pre ⇒ ϕ are special in that labels corresponding
to these constraints do not reflect the information transfer from one node to
another directly but may cause the update of a labeled cluster by generating
new labels. Thus, for the labels given by these four kinds of constraints we
check whether the labeled cluster needs to be updated instead of propagating
data changes.

For instance, the constraint [[α]] ⊆ β yields a label associated with a node (type
variable) corresponding to α; the constraint α ⊆ [[β]] yields a label associated
with a node corresponding to β; [[α]] = β yields a label associated with node
corresponding to α. For a conditional constraint, we identify all the nodes whose
change may cause an update to a labeled cluster and attach a label decorated
by the conditional constraint to each of these nodes.

Besides equality constraints, the dynamic equality can also be used to simplify
a labeled cluster: The label for constraint [[α]] ⊆ β or β ⊆ [[α]] is dispensed with
whenever [[α]] = β.
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INPUT : (U, N)
OUTPUT : (D1, D2)

Step 1 : Initializing data structures
W := nil;
for αi in AVar? do

D1[αi] := i;
D2[i] = ∅;
E[i] = nil;

Step 2 : Implementing fast union/find data structure
for i in TV? do

A[i] := i;
H[i] := 0;

for α ⊆ β in U do unify(find(α), find(β));
for α ∈ AVar? do find(α);

Step 3 : Constructing the labeled cluster
for cc in N do addEdge(cc, cc)

Step 4 : Iteration
While W 6= nil do

γ := SELECT-FROM(W);
te := E[find(γ)];
for cc in te do solve(cc)

Step 5 : Recording the result
for αi in AVar? do D1[αi] := find(i);

Table 5.5: Worklist Algorithm (Modified)

5.4.1 Algorithm

Table 5.5 presents a modified worklist algorithm that calculates the least solution
for a constraint program. Besides the functions defined in Table 4.2, three new
auxiliary functions are specified in Table 5.6. The data structures D1, D2, E and
W are defined in the exact same way as before. The algorithm takes as input a
pair of constraint lists (U,N) and takes as output a solution (D1, D2), where U
contains all equality constraints and N contains all the rest.

The first two steps of the worklist algorithm are same as before and are pre-
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procedure addEdge(cc′, cc) is
case cc′ of

c ⊆ α : if cc′ = cc then add(α, c);
α ⊆ β or α \ c ⊆ β or α \D ⊆ β or [[α]] ⊆ β or β ⊆ [[α]] or [[α]] = β :

E[D1[α]] := {cc} ∪ E[D1[α]];
α ∩ β ⊆ γ : E[D1[α]] := {cc} ∪ E[D1[α]];

E[D1[β]] := {cc} ∪ E[D1[β]];
c ⊆ α ⇒ cc′′ : E[D1[α]] := {cc} ∪ E[D1[α]];

addEdge(cc′′, cc);
¬[`] ⇒ cc′′ : for α in ` do E[D1[α]] := {cc} ∪ E[D1[α]];

procedure solve(cc) is
case cc of

c ⊆ α : add(α, c);
α ⊆ β : add(β, D2[find(α)]);
α = β : unify2(α, β);
α \ c ⊆ β : add(β, D2[find(α)] \ c);
α \D ⊆ β : add(β, D2[find(α)] \D);
α ∩ β ⊆ γ : add(γ, D2[find(α)] ∩ D2[find(β)]);
[[α]] ⊆ β : for µ in D2[D1[α]] do

E[D1[bµc]] := {bµc ⊆ β} ∪ E[D1[bµc]];
W := {bµc} ∪W

α ⊆ [[β]] : for µ in D2[D1[β]] do
E[D1[α]] := {α ⊆ bµc} ∪ E[D1[α]];
W := {α} ∪W

[[α]] = β : for µ in D2[D1[α]] do
unify2(bµc, β)

c ⊆ α ⇒ cc′ : if c ⊆ D2[find(α)] then solve(cc′);
¬[`] ⇒ cc′ : if IS-NON-EMPTY(`) then solve(cc′);

procedure unify2(α, β) is
t1 := find(α);
t2 := find(β);
r := unify(t1, t2);
td := D2[t1] ∪ D2[t2];
E[r] := E[t1] ∪ E[t2];
if D2[t1] 6= D2[t2] then D2[r] := td;

W := {α} ∪W;

Table 5.6: Worklist Algorithm (Modified): Auxiliary Functions
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sented here for the reason of completeness. Step 3 builds up the labeled cluster
and initializes the data of D2 by invoking the recursive function addEdge. The
recursion is needed for the conditional constraint which contains postfixes. For
the same reason, the recursive function solve is invoked at Step 4 to propagate
data changes or update the labeled cluster with respect to the labels attached
to each analysis variable from the worklist W. Note that instead of the map
D1 the function find is used in the iteration to acquire the type variable for
each analysis variable. This is because new equivalences may appear during the
calculation by the use of dynamic equality constraints and thus the map from
analysis variables to type variables is not static any more but may be dynam-
ically updated. Finally, the last step records the final value of D1(α) for each
analysis variable α.

To simplify the presentation, the pseudo-code ignores some obvious optimiza-
tions. For the same reason, we suppose all the conjunction operators in the
consequent have been moved to the top level for the input (U,N), e.g. c0 ⊆ α ⇒
(ϕ1 ∧ ϕ2) is transferred to (c0 ⊆ α ⇒ ϕ1) ∧ (c0 ⊆ α ⇒ ϕ2), by the following
fact.

Fact 5.10 (ψ̂1, ψ̂2) |=T pre ⇒ (φ1 ∧ φ2) if and only if (ψ̂1, ψ̂2) |=T pre ⇒ φ1

and (ψ̂1, ψ̂2) |=T pre ⇒ φ2.

5.4.2 Properties of the Algorithm

In order to show that the modified algorithm still guarantees termination prop-
erty and computes a least solution for a given clause, we state that

Theorem 5.11 Given a clause ϕ the algorithm of Table 5.5 terminates and the
result (D1, D2) produced by the algorithm satisfies

(D1, D2) = û{(ψ′1, ψ′2)|(ψ′1, ψ′2) |=T ϕ}

Proof. We first prove that the algorithm always terminates. It is immediate
that the steps 1, 2, and 3 terminate considering that the sets AVar?,TV?, U
and N are finite. For Step 4, observe that for each type variable i the data D2[i]
never decreases and it can increase a finite number of times at most. Observe
that a node α may be added to the worklist although D2[D1[α]] may not have
increased. However this only happens a finite number of times (specifically the
number of nodes at most) because it may occur only when (1) two nodes need
to unify into one or (2) the labeled cluster is updated by dynamic constraints.
For each analysis variable placed on the worklist a finite amount of calculation
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needs to be executed in order to remove the node from the worklist and thus
guarantees termination. This completes the first part of the proof.

To show the result calculated by the algorithm is a least solution, assume
(ψ′1, ψ

′
2) be an estimate, such that (ψ′1, ψ

′
2) |=T ϕ. It is straightforward to

verify that the following invariant

∀α, β ∈ AVar : D1[α] = D1[β] ⇒ ψ′1(α) = ψ′1(β) ∧
∀γ ∈ AVar : D2[D1[γ]] ⊆ ψ′2(ψ

′
1(γ))

is maintained everywhere in Step 4 and Step 5. It follows that (D1,D2) ¹
(ψ′1, ψ

′
2) upon the completion of the algorithm by Lemma 3.10.

Next we show by contradiction that (D1, D2) is indeed a solution for constraint
program ϕ. Suppose there exists cc ∈ U ∪ N such that (ψ1, ψ2) |=T cc does not
hold.

If cc is the form c ⊆ α then the first case of the function addEdge invoked at Step
2 ensures that c ⊆ D2[D1[α]] and this is maintained throughout the algorithm;
hence cc can not have this form. Note that D1[α] may have different value at
Step 4 and Step 5. However, this does not change the fact that the constant c
is inside the set D2[D1[α]].

If cc is the form α ⊆ β, it must be the case that the final value of D2[D1[α]] 6= ∅
since otherwise (D1, D2) |=T α ⊆ β would hold. Now consider the last time
D2[find(α)] was modified and note that α was placed on the worklist at that time
(by procedure add); since the final worklist is empty we must have considered
the constraint α ⊆ β (which is in E[find(α)]) and updated D2[find[β]] accordingly.
By Step 5, we finally have that D2[D1[α]] ⊆ D2[D1[β]]; hence cc can not have
this form either.

If cc is the form α = β then after the execution of Step 2, we can be sure that
find[α] = find[β] and this is maintained throughout the algorithm. At the last
step, we have that D1[α] = D1[β]; hence cc can not have this form.

If cc is the form α \ c ⊆ β then similar to the case of α ⊆ β, D2[D1[α]] 6= ∅
since otherwise (D1, D2) |=T α \ c ⊆ β would hold. Now consider the last time
D2[find(α)] was modified and note that α was placed on the worklist at that time
(by procedure add); since the final worklist is empty we must have considered the
constraint α \ c ⊆ β (which is in E[find(α)]) and updated D2[find[β]] eventually.
This ensures that D2[D1[α]] \ c ⊆ D2[D1[β]]; hence cc can not have this form.

Similarly, we can show that cc can not have the form of α\(D) ⊆ β or α∩β ⊆ γ.
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If cc is the form [[α]] ⊆ β, then D2[D1[α]] 6= ∅ since otherwise (D1, D2) |=T [[α]] ⊆
β would hold. Consider the last time D2[find(α)] was modified and note that
α was placed on the worklist at that time (by procedure add); since the final
worklist is empty we must have considered the constraint [[α]] ⊆ β (which is
in E[find(α)]), i.e. for each µ ∈ D2[find[α]] we have D2[find[bµc]] ⊆ D2[find[β]]
eventually. This ensures that D2[D1[α]]\ c ⊆ D2[D1[β]] at Step 5 after we record
the final result; hence cc can not have this form.

Similarly, we can show that cc can not have the form of α ⊆ [[β]] or [[α]] = β.

If cc is the form c ⊆ α ⇒ cc′ or ¬[`] ⇒ cc′, then all the antecedents (including
those inside cc′) hold otherwise the statement is true trivially. For the conse-
quence, it must be one of the form which has been considered above. Consider
the last time the conditional constraint is retrieved (because one of its associ-
ated analysis variable is on the worklist) and all the antecedents are true, then
Step 4 ensures that the consequence hold as shown above. This completes the
whole proof. ¤

Upon the complexity of the new algorithm, we have the following theorem.

Theorem 5.12 The asymptotic complexity of the algorithm presented in Table
5.5 and 5.6 is

O((n + m) · n3)

where n is the size of constraint programs and m is the number of equality
constraints that can specify new equivalences between analysis variables.

Proof. Note that the number of analysis variables, type variables, and con-
straints are bound to O(n).

The highest complexity is dominated by the fourth step. First note that there
could be up to O(n2) labels which is given by a program of the size O(n)
because of the dynamic constraints. And each label (no matter exists originally
or generated during computation) could be retrieved O(n + m) times. The
extra m times are because an analysis variable may be put on the list even
when they are not enlarged by doing unification over equality constraints. The
number O(m) is bound to O(n) because for O(n) analysis variables at most O(n)
equality constraints are needed to specify any fresh equivalences. Considering
each set-union operation takes O(n) (as we explained in previous chapter), we
get (n + m) · n2 · n.

Next note there could be O(n2) equality constraints for O(n) nodes whereas
only O(n) of them could specify new equivalences. Thus m is bound to O(n).
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The redundant equalities can be handled in time O(nα(n2 −m,n).

Finally consider there could be some conditional constraints that have a length
O(n) and handling each of such constraints may take O(n) set-union operations.
But then the number of such constraints must be constant and each of them
can be retrieved up to O(n + m) times. ¤

5.4.3 Highlights of the Implementation

According to the above theorem, the complexity of the new algorithm is O(n4).
However, in implementation many techniques could be introduced in order to
improve the efficiency of the solver. Some of highlights of the implementation
are summarized as below:

• The result of unification from (dynamic) equality constraints is taken ad-
vantage of to simplify a labeled cluster in constraint solving. For instance,
the labels for constraints α ⊆ β, α \ c ⊆ β and α ∩ γ ⊆ β (this label is
attached to both α and γ) are removed, if α and β are detected to be
equivalent. Similarly the labels for constraints [[α]] ⊆ β and β ⊆ [[α]] are
dispensed with whenever [[α]] = β.

• In the iteration, we prioritize the constraint solving of dynamic equality
constraints in order to maximize the benefit acquired from the new found
equivalences.

• For the constraints of the forms [[α]] ⊆ β, β ⊆ [[α]], and [[α]] = β, we
adopt a difference propagation technique to reduce repetitive operations:
in each iteration, if α is enlarged with a set of tuples, say δ, we consider
the elements of δ only instead of the whole data of α. This technique,
which is considered as an instance of the general framework proposed by
Fecht and Seidl [FS98b], was used by Pearce et al. [PKH04] for pointer
analysis, and also by Nielson et al. [NSN02] for the Succinct Solver.

• As a worklist algorithm, our constraint solver provides support for two
strategies to prioritize the worklist, last-in-first-out (LIFO) and Least Re-
cent Fired (LRF). LIFO has been introduced before and LRF was initially
proposed by Kanamori et al. [KW94], and applied by Pearce et al. to
pointer analysis [PKH04]. Intuitively when there are a lot of cycles of
data transfer among analysis variables, the stack strategy may reduce the
times of iteration by attempting to reach fixed point within the elements
of a cycle first before going on the calculation of any other elements. On
the other hand, the LRF strategy is to favorite the analysis variable which
has largest change by picking up the least recently fired one. This is based
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on the fact that the several changes on data field are propagated in one
set operation.

Another mechanism adopted for worklist management is that the work-
list can be divided into two lists, called current and next, as described
by Nielson et al. [NNH99]. We shall further discuss the effect of using
these mechanisms on different analyses in our experimental study in next
chapter.

5.5 C Pointer Analysis

As illustrated by Example 5.3, our aim is to yield four kinds of constraints in
a linear scan of the C program. But the types of program code considered is
rather restrictive in the example and the real C program has more features,
which need to be carefully handled in order to maintain the correctness of the
analysis. In this section, we describe how the features of a real C program are
treated in our analysis.

Nested Pointer Dereference. Multiple pointer dereferences are a normal
phenomena in C programming. We summarize them into four classes and discuss
how to reduce the level of dereferences in assignments case by case. For the
reason of simplicity, we assume that none of address-taking operations happens
together with any dereferences, i.e. ∗ ∗& ∗ a is represented as ∗ ∗ a directly.

(a) For the assignment of the form ∗(n)p = q2, we transform it into standard
forms by introducing temporary variables. Specifically

t1 = ∗p
t2 = ∗t1

...
tn−1 = ∗tn−2

∗tn−1 = q

For example, the assignment ∗ ∗ ∗p = q is transformed into three assign-
ments, t1 = ∗p; t2 = ∗t1; ∗t2 = q. One can verify the correctness of this
transformation following the meaning of the program.

2We use ∗(n) to denote the n depth of dereferences where n ≥ 2.
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(b) For the assignment of the form p = ∗(n)q, we can similarly transform it
into

t1 = ∗q
t2 = ∗t1

...
tn−1 = ∗tn−2

p = ∗tn−1

Here the idea is still to reduce the depth of nested dereferences by intro-
ducing extra program variables and assignments.

(c) For the assignment of the form ∗(n)p = ∗(m)q, we simply use the technique
described as the cases (a) and (b) to reduce the level of nested dereferences
on the both sides of the assignment, specifically,

l1 = ∗p
l2 = ∗l1

...
ln−1 = ∗ln−2

r1 = ∗q
r2 = ∗r1

...
rn = ∗rn−1

∗ln−1 = rn

(d) For the assignment of the form ∗(n)p = &q, we need to be a little more
careful. A straightforward transformation could be

t1 = ∗p
t2 = ∗t1

...
tn = ∗tn−1

∗tn = &q

But this does not show respect to the original assignment. To be illus-
trative, consider the assignment, ∗ ∗ p = &q, for example. Following the
above transformation, we have that t1 = ∗p; t2 = ∗t1; t2 = &q. Suppose
the existing points-to relation is p → p1 → p2 → p3, we visualize the
points-to graph of the transformed program as the left part of Figure 5.4.
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Figure 5.4: Pointer Graphs

As it shows, q is not in the points-to set of p3 as desired and as a result the
transformation does not guarantee correctness of the analysis. The reason
is that the points-to set of t2, which contains q, is not pointed by p3. To
solve the problem, we simply exchange the left hand side and the right
hand side of the second last assignment. The resulting points-to graph
of our example is shown at the right part of Figure 5.4 that shows the
point-to relation of the resulting assignments are correct with respect to
the original one. Finally we generalize the transformation by

t1 = ∗p
t2 = ∗t1

...
∗tn−1 = tn

∗tn = &q

Heap and Aggregations. We use a distinct analysis variable to model every
heap object allocated at a particular program point. Aggregations, such as
arrays and structs, are collapsed into one object and considered as a whole.
This approach also simplifies the treatment of binary mathematical expressions
in which the address of some individual member of the aggregation is accessed
after mathematical calculations.

Indirect Function Calls. Functional pointers provide extra convenience for
C programming whileas they also raise challenge for modeling and the pointer
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(ψ̂1, ψ̂2) |=T [[α]] + d ⊆ β iff ∀v ∈ ψ̂2(ψ̂1(α)) : ψ̂2(ψ̂1(bvc+ d) ⊆ ψ̂2(ψ̂1(β))

(ψ̂1, ψ̂2) |=T α ⊆ [[β]] + d iff ∀v ∈ ψ̂2(ψ̂1(β)) : ψ̂2(ψ̂1(α)) ⊆ ψ̂2(ψ̂1(bvc+ d))

Table 5.7: Adjusted Constraints for Indirect Function Calls

analysis. In our implementation, indirect function calls are treated in the way
described by Pearce et al. [PKH07]: program variables are encoded as numbers,
and function arguments are numbered continuously after their corresponding
function variable. Therefore they can be accessed as the offset to that function
variable in the case of indirect function calls. For instance, consider the program
and the meaning with respect to the pointer analysis:

(1) int f(int ∗ p){return p;} pts(p) ⊆ pts(f + 1)
(2) int(∗y)(int ∗) = &f ; {f} ⊆ pts(y)

for each v ∈ pts(y) : pts(z) ⊆ pts(v + 2)
(3) x = * y(z); for each v ∈ pts(y) : pts(v + 1) ⊆ pts(x)

where suppose all the variables have been encoded as integers. In the first
line, we use the number right after f to hold the return value, i.e. pts(p) ⊆
pts(f + 1), and thus the number(s) of the arguments of the function start(s)
with the number f + 2. For the last statement, we need to calculate the actual
argument according to the possible functions invoked. Last, pts(x) acquires the
possible return values.

The new requirement can be met by extending the two constraints [[α]] ⊆ β, α ⊆
[[β]] with the plus operation, such as [[α]] + d ⊆ β, α ⊆ [[β]] + d. Their semantics
are summarized in Table 5.7 in which we suppose the anonymous function b·c
returns integers.

For deferences on pointers other than functional pointers, we simply set d to be
0. Although the inclusion constraint language is a little modified, it is straight-
forward to verify that the Moore family result and other theoretical properties
of the language are preserved. Upon the constraint solving, the extra mathe-
matical operations introduced by the adjusted constraints clearly do not affect
the termination property and the complexity of the algorithm.

Library Function Calls. The source code of external library functions are not
available to analyze. These library function calls are handled by hand-crafted
function stubs: we read into the source code of each external library function
to check if there is any side effect that may affect the pointer behavior of the
programs of interest; if that is the case, we manually add the constraints for the
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library function.

5.6 Concluding Remarks

In this chapter, we have extended our constraint language in order to be able to
deal with Andersen’s pointer analysis [And94]. To motivate the development,
we have given a brief introduction to pointer analysis and especially to the
unification-based pointer analysis [Ste96] and inclusion-based pointer analysis
[And94]. The redefined algorithm for solving the extended constraint language
has also been specified, and its termination property and complexity have been
studied accordingly. As the real C program is rich in the kinds of language
features, we have made a detailed description of the way of treating the features
interesting to our pointer analysis.



Chapter 6

Off-line Optimization
Technique

for the Inclusion Constraint
Solver

In the previous chapters, we presented an inclusion constraint language. As
demonstrated in Chapter 4, analysis designers can deliberate on which kinds of
constraints to use in order to achieve a good balance between performance and
precision. On the other hand, from the solver designers’ point of view, auto-
matic techniques could be introduced to analyze the inclusion constraints and
identify potential equivalences (expressed in (dynamic) equality constraints).
In particular, this approach can be conveniently applied to analyze very large
systems, for example, hundred thousand lines of C programs.

In this chapter, we describe a strategy that given a set of constraints first per-
forms off-line optimizations, which is conducted before the execution of the
constraint solver. These off-line optimizations enable a constraint solver to find
(potential) equivalences between analysis variables so as to reduce the problem
space and thus improve performance both in time and space. As a matter of
fact, different analyses use different subsets of constraints. Therefore, a specific
property may hold for the subsets and a specific optimization can be performed



92
Off-line Optimization Technique

for the Inclusion Constraint Solver

on the constraints given by an analysis. Finally, since the off-line optimizations
are conducted on constraints instead of analysis specifications, we can gener-
alize the technique by detecting all the applicable optimizations for the given
constraints in order to reuse the existing optimizations.

As an automatic technique, all the optimizations preserve the level of preci-
sion because analysis designers have no control on the optimization process and
otherwise it is hard to track where the extra false positives actually occur.

We apply the strategy to our case studies, such as Andersen’s pointer analy-
sis, reaching definitions analysis, and live variable analysis for C programming
language. The experimental result demonstrates that the off-line algorithms
dramatically reduce the effort of solving the constraints, by identifying equiv-
alent analysis variables. Part of the contents of this chapter was previously
presented in [ZAN08].

6.1 Off-line Optimization Algorithms

In this section, we describe three off-line optimization algorithms. The aim of
off-line optimization is to identify more equivalence relations between analy-
sis variables in order to reduce the problem space. Specifically, the optimiza-
tion generates more (dynamic) equality constraints, as well as more conditional
equality constraints, i.e. conditional constraints having some (dynamic) equality
constraints in their consequent. As the effort of the off-line optimization would
be counted in the overall performance of constraint solving, we would like to
keep the complexity of the off-line optimization algorithms as low as possible.

6.1.1 Optimization 1

Our first off-line optimization is motivated by pointer analysis. It builds an
off-line version of the constraint graph for the constraints of interest, and ac-
cordingly detects the potential equivalent analysis variables by certain proper-
ties hold by the constructed graph, e.g. variables being on the same strongly
connected components (SCCs). Five kinds of constraints are of interest, i.e.
α ⊆ β, α = β, [[α]] ⊆ β, α ⊆ [[β]], and [[α]] = β, because they are useful to
generate the (dynamic) equality constraints desired. The (dynamic) equality
constraints are helpful to form larger equivalent classes.

Similar to the technique of Hybrid Cycle Detection (HCD) described by Hard-
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Figure 6.1: Building Off-line Constraint Graph: subcase 1.

ekopf and Lin [HL07a], an off-line version of the constraint graph is built from
the five types of constraints: (1) the constraint of the form α ⊆ β gives two
normal nodes α and β, and a directed edge from α to β; (2) The constraint
of the form α = β gives two normal nodes α and β, and two directed edges
between α and β; (3) the constraint of the form [[α]] ⊆ β gives one special node
[[α]], one normal node β, and a directed edge from [[α]] to β; (4) the constraint of
the form α ⊆ [[β]] gives one normal node α, one special node [[β]], and a directed
edge from α to [[β]]; (5) the constraint of the form [[α]] = β gives one special node
[[α]], one normal node β, and two directed edges between [[α]] and β. Note that
we consider α and [[α]] as two different nodes: the node [[α]] is considered as a
node in its own right.

The algorithm then identifies any SCCs, which consists of more than two nodes,
in the constraint graph using Tarjan’s linear-time algorithm [Tar72]. For the
SCCs containing only normal nodes, the algorithm selects one node from these
nodes and let all others be equivalent to it using equality constraints. For any
SCCs containing not only normal nodes, it must at least have one special node
and one normal node because there is no constraint of the form [[α]] ⊆ [[β]]. We
classify the situation into two subcases: only one normal node in the SCC, and
otherwise. For the first subcase, each special node, say [[α]], must form a sub-
SCC together with the unique normal node, say β, and has no more edges from
or to any other special nodes of the SCC. The constraint graph of such a SCC
is illustrated as Figure 6.1, where we use a double circle to represent a special
node. We therefore generate the dynamic equality constraint [[α]] = β for each
of such pairs.

For the second subcase, the algorithm yields a conditional constraint: its precon-
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dition tests the emptiness of each special nodes of the SCC, and its consequent
chooses one of the normal nodes from the SCC and lets all other nodes be (dy-
namically) equivalent to it. If there is any sub-SCCs in the SCC considered,
the precondition may be too strict. For example, consider a off-line constraint
graph as

where two sub-SCCs exist in a parent SCC. As a result, the (dynamic) con-
straints, [[α]] = θ, [[γ]] = β, and θ = β can be yielded directly without testing
the emptiness of the analysis variables α and γ. Under such a situation, a more
complex analysis than the one we present might remove some unnecessary check.
The reason why we choose not to detect these sub-SCCs is because we want to
keep the algorithm as efficient as possible and a little too strict precondition
might miss some equivalences but do not cause any loss in precision.

Consider the constraint program of Example 5.6, Figure 6.2 illustrates its off-
line version of the constraint graph. The algorithm described as above will
yield a conditional constraint [κx, κz] ⇒ ([[κx]] = κy ∧ [[κz]] = κy ∧ κm = κy).
Here the dynamic equality constraints, i.e. the conditional constraint and its
postcondition, provide hints on where a SCC may complete and be collapsed
during the computation of the solver. Therefore the test of emptiness on the
special nodes [[κx]] and [[κz]] guarantees the existence of the SCC.

Comparison to HCD. The major difference between HCD and our off-line op-
timization is the way of treating SCCs which have two or more normal nodes
and at least one special node. HCD selects one normal node α and for each
special node [[β]], stores the pair (α, [[β]]) in a list that serves the same purpose
as dynamic equality constraints. Our off-line optimization refines the technique
by (1) making more complete use of the SCC result by also doing unification
between all normal nodes and (2) using conditional constraints to ensure that
the level of precision will not be impacted by the use of unification. For the
first refinement, notice that the equivalences omitted by HCD could be de-
tected in isolation by other on-line cycle detection algorithms, such as Heintze
and Tardieu’s algorithm [HT01], which could run together with HCD. However,
since these equivalences can be easily detected by our off-line analysis with very
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Figure 6.2: Off-line Constraint Graph of Example 5.6

low cost, we save the effort of finding them again by an on-line cycle detection
algorithm. Take for instance the constraint of Example 5.6, where HCD does
not consider the possibility of unifying κy and κm, but rather generates the
pairs (κy, [[κx]]) and (κy, [[κz]]) so that κx’s points-to set will be unified with κy.
However, when κz’s points-to set is empty, the SCC expected does not com-
plete and unifying any variables on the component may yield a loss of precision,
e.g. κp → {i} is a false positive introduced by unifying κp and κy. In the C
language, a run-time error is normally reported for a dereference over a non-
initialized pointer variable. However no error pops up if the dereference occurs
at any unreachable code. These unreachable codes are often caused by either
deprecated functions, that is functions that are suppressed by new ones but still
remain in the current version of a software, or by conditionals or loops where
the test is always true or always false. The use of conditional constraints can
therefore preserve the level of precision in analyzing real programs.

Complexity. For the optimization 1, detecting SCCs takes linear time and so
does generating new constraints. Therefore the overall complexity of the opti-
mization 1 is linear. Note that the size of new generated constraints is linear to
the constraint program size.

6.1.2 Optimization 2

The second off-line optimization analyzes the direct dependency of data flow
between analysis variables in order to determine which set-inclusion constraint
α ⊆ β can be changed to equality constraint α = β without sacrificing precision.
This is illustrated by the following example.
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Example 6.1 Consider the constraint program

{a, b} ⊆ κp ∧ {c} ⊆ κr ∧ κp ⊆ κq ∧ κq \ {b} ⊆ κr

The least solution of the example program is that ψ̂2(ψ̂1(κp)) = ψ̂2(ψ̂1(κq)) =
{a, b} and ψ̂2(ψ̂1(κr)) = {a, c}. The analysis variable κq shares the same data
with the analysis variable κp because it gets all its values from κp only. ¤

Example 6.2 Consider the constraint program

{a, b} ⊆ κp ∧ {c} ⊆ κr ∧ κp ⊆ κq ∧ κr ⊆ [[κs]] ∧ {q} ⊆ κs

The least solution of the example program is that ψ̂2(ψ̂1(κp)) = {a, b}, ψ̂2(ψ̂1(κq))
= {a, b, c}, ψ̂2(ψ̂1(κr)) = {c}, and ψ̂2(ψ̂1(κs)) = {q}. This time the analysis
variables κp and κq do not have the same data because [[κs]] of the constraint
κr ⊆ [[κs]] can be instantiated to κq that yields the set-inclusion constraint
κr ⊆ κq. ¤

As demonstrated by the second example, it is in general not sound to replace
κp ⊆ κq with κp = κq in case that there is any dynamic constraint.

Our second optimization therefore aims at the constraint programs without dy-
namic constraints: It first scans the program and changes any constraint of the
form α ⊆ β to α = β if β only appears once at the right hand side of this
particular inclusion constraint and never shows up at either side of any equal-
ity constraints. Note that we also need to look into the postcondition of any
conditional constraint to make sure none of postfixes violates the condition.

Complexity. The second algorithm scans a constraint program twice. In the
first round, the algorithm counts the number of appearances of each program
variable in inclusion and equality constraints. In the second round, it changes
some set-inclusion constraints to equality according to the result from the first
round. The operations of each round is linear in the size of the constraint
program and thus the overall complexity of the whole algorithm is linear.

6.1.3 Optimization 3

Optimization 3 could be considered as a variant of optimization 2 and the idea is
motivated from pointer analysis. We change the constraint κp ⊆ κq to κp = κq

when each of the following three conditions is satisfied:
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(1) κq only appears once at the right hand side of this particular inclusion
constraint and never shows up at either side of any (dynamic) equality
constraints. As the Optimization 2 we also need to look into the postcon-
dition of any conditional constraint to make sure none of postfixes violates
the condition.

(2) q is not pointed to by any other pointers at all, i.e. the operation [[·]] can
not give the analysis variable κq with respect to a least solution of a given
program.

(3) when functional pointers are concerned, the analysis may generate the
constraint of the form α ⊆ [[β]]+k. The off-line analysis needs furthermore
to ensure that κq may not be acquired from the mathematic calculation
[[β]] + k.

To check the condition (2), we simply collect all the tuples a given by the
constraint {a} ⊆ κs which may appear as an individual constraint or as a postfix
of a conditional constraint. The set of analysis variables S, which correspond
to these tuples respectively, are those that may be pointed to (with respect to
a least approximation).

Based on the above result, we first chose the maximum kmax from all the con-
straints of the form α ⊆ [[β]] + k, then for each analysis variable γ ∈ S (en-
coded as an integer) we calculate the possible value of [[β]] + k by γ + i where
i ∈ [1, .., kmax]. This allows us to check the third condition.

Complexity. The third algorithm scans a constraint program two times. In the
first round, the algorithm counts the number of appearances of each program
variable in inclusion and equality constraints; at the same time it collects the in-
formation about the analysis variables that may be pointed to and the maximum
kmax form all constraints of the form α ⊆ [[β]]+k. Accordingly we calculate the
set of analysis variables that may be yielded by [[β]] + k. In the second round,
the algorithm changes some set-inclusion constraints to equality by checking
the above three conditions according to the results from the first round. The
operations of each round is linear in the size of the constraint program and thus
the overall complexity of the whole algorithm is still linear.

6.1.4 General Strategy of Using Off-line Optimization

The optimizations described above is independent of any specific analysis. Thus
we can generalize the strategy as the following steps:
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Figure 6.3: Extended framework of implementing program analyses using con-
straint solver and off-line optimization.

(1) Collect the subset of constraints in a given program;

(2) Determine the proper optimization(s) to apply;

(3) Perform off-line optimization(s);

(4) Solve the resulting constraint program with the inclusion constraint solver.

With this generalization, we would like to encourage the reuse of an existing
optimization algorithm (that is in general motivated by a specific analysis) on
more program analyses. The process is linear in the size of constraint programs:
the first step makes a linear scan on a constraint program, and the second
step needs constant operations to make the choice. We therefore extend the
framework of implementing program analyses by introducing a step of off-line
optimization as demonstrated in Figure 6.3.

As presented in later sections, some off-line analyses may not improve the per-
formance of the solver. However, if the off-line optimizations maintain the com-
plexity of linearity, running all applicable optimizations should be non-noticable
for large benchmarks. For small programs, off-line analyses can be dispensed
with since the original constraints can be easily solved by the solver itself.

When there are two or more optimizations applicable, the order of applying
them may be interesting to consider. In the experimental study presented in
the next section, we shall try the different orders and give further discussion
based on the experimental results.
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6.2 Experimental Study

To evaluate the effects of the off-line technique, we implemented the algorithm
of the three off-line optimizations in SML New Jersey. We evaluate the effect of
using these optimizations on three analysis for the C programming language: an
interprocedural flow-insensitive and context-insensitive pointer analysis, origi-
nally due to Lars Ole Andersen [And94], and two intraprocedural data flow
analyses, a reaching definitions analysis and a live variable analysis.

To be concrete, we yield inclusion constraints from C programs using the C
Intermediate Language (CIL) tool [NMRW02]. Our implementation supports
all features of the C language except for variable arguments.

As in Chapter 4, all the benchmarks are run on a 2.0 GHz processor with 1.5
GB of memory under Windows XP SP2. Each experiment is repeated three
times and the average time and minimum memory consumption are reported.

6.2.1 Case Study: Andersen’s Pointer Analysis

Andersen’s analysis [And94] is an inclusion-based pointer analysis that is a pre-
requisite for many program analyses. In Chapter 5 we have discussed the major
implementation considerations for the analysis.

Upon to the worklist strategy, we shall first use the least recent fire (LRF) to
prioritize the worklist elements (refer back to Subsection 5.4.3 for the introduc-
tion of LRF). To be comparative, we shall also conduct experiment using the
last-in-first-out (LIFO) with a clear mark.

6.2.1.1 Evaluation

By inspecting the types of constraints used in Andersen’s pointer analysis, we
can apply the first and third off-line optimizations, but not the second as ex-
plained in Section 6.1.2. The benchmarks for Andersen’s pointer analysis are
presented in Table 6.1. ‘grep’ is a text editor; ‘make’ is a building tool; ‘gawk’
is a string manipulation tool; ‘cvs’ is a version control software; ‘bash’ is a sh-
compatible shell. As the table shows, the amount of constraints does not imply
the length of solving time, e.g. ‘cvs’ yields 15,644 constraints that is more than
that of ‘gawk’ but can be solved much faster than gawk. This is because new
constraints could generate during the calculation over dynamic constraints.
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Program LOC Constraint TLRF(ms.) MLRF(MB)
grep2.5.3 21, 827 4, 880 171 6.5
make3.81 26, 872 7, 224 7610 89.2
gawk3.1.5 35, 231 14, 742 20797 214.7
cvs1.11.21 82, 317 15, 644 3625 54.7

bash3.2 98, 603 20, 988 32500 166.2

Table 6.1: Benchmarks for Andersen’s pointer analysis: for each benchmark the
table shows the number of lines of code (with all comment lines removed), the
number of constraints generated using CIL, the time and memory performance
of solving the original constraint program.

Program Eq(off1) Dyn. Eq. Cond. Eq. Toff1(ms.) Eq(off3) Toff3(ms.)
grep2.5.3 38 28 27 18 489 5
make3.81 73 25 25 22 542 21
gawk3.1.5 89 60 75 52 1260 32
cvs1.11.21 98 38 27 52 1086 71

bash3.2 457 113 85 151 3314 58

Table 6.2: The results of applying the optimization 1 or 3: for each bench-
mark we present the number of three kinds of constraints generated by the
optimization 1 individually, the equality constraints given by the optimization
3 individually, and the time of performing the two optimizations individually.

We then perform the optimization 1 and the optimization 3 individually and
summarize the results in Table 6.2. As the table shows, for the optimization 1
more equality constraints are yielded than dynamic equality constraints. The
amount of conditional constraints generated is quite close to that of dynamic
equality constraints. For the case of ‘gawk’, there are even more conditional
constraints than dynamic equality constraints. The optimization 3 generates
quite a number of equality constraints for each benchmark. For each bench-
mark the time of executing both of the two off-line optimizations is very short
compared to that of the constraint solving.

Table 6.3 and 6.4 report the effect of using the two off-line optimizations re-
spectively in terms of time and space consumption. For the optimization 1, we
observe that the performance significantly improves for each benchmark both
in terms of time and memory consumption. The data for the optimization 3
is quite surprising: even though the problem space is reduced and the labeled
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Program Topt1(ms.) ∆Topt1 Mopt1(MB) ∆Mopt1

grep2.5.3 125 27% 4.9 25%
make3.81 4, 625 39% 65 27%
gawk3.1.5 13, 766 34% 143.2 33%
cvs1.11.21 3, 047 16% 49.3 9.9%

bash3.2 17, 610 46% 141.7 15%
Average − 33% − 18%

where:
∆Topt1 = 1− Topt1/TLRF

∆Mopt1 = 1−Mopt1/MLRF

Table 6.3: Performance evaluation using the optimization 1: for each benchmark
we present the time and memory consumption after applying the first off-line
optimization. The average of the improvement is summarized at the last line.

Program Topt3(ms.) ∆Topt3 Mopt3(MB) ∆Mopt3

grep2.5.3 114 33% 3.5 46%
make3.81 7, 766 −2% 58.4 35%
gawk3.1.5 18, 812 10% 187.8 13%
cvs1.11.21 4, 172 −15% 53.8 2%

bash3.2 24, 021 26% 156.8 6%
Average − 12% − 18%

where:
∆Topt3 = 1− Topt3/TLRF

∆Mopt3 = 1−Mopt3/MLRF

Table 6.4: Performance evaluation using the optimization 3: for each benchmark
we present the time and memory consumption after applying the third off-line
optimization. The average of the improvement is summarized at the last line.

cluster is simplified by the use of unification detected by the optimization 3,
the performance of two benchmarks, ‘make’ and ‘cvs’, is slowed down. Why is
that? Observing that a lot of extra calls to the add procedure happen on the
two benchmarks, we postulate that the changes to the constraint program also
affect the order of solving the constraints and cause performance deterioration.
This phenomenon reminds us that the size of problem space is just one ma-
jor parameter which can affect the performance of a solver. Different worklist
strategies can also have considerable impact on a solver’s performance. To ver-
ify our postulation, we evaluate the time performance on the solver using LIFO
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Program TLIFO(ms.) T′opt1(ms.) ∆T′opt1 T′opt3(ms.) ∆T′opt3

grep2.5.3 141 99 30% 110 22%
make3.81 9, 875 9, 063 8% 9, 156 7%
gawk3.1.5 19, 567 19, 333 1% 19, 375 1%
cvs1.11.21 3, 656 3, 860 −6% 3, 938 −8%

bash3.2 25, 312 25, 750 −2% 26, 297 −4%
Average − − 1% − −1%

where:
∆T ′opt1 = 1− T ′opt1/TLIFO

∆T ′opt3 = 1− T ′opt3/TLIFO

Table 6.5: Performance evaluation for the solver using LIFO worklist strategy:
for each benchmark we present the time performance before and after applying
the first off-line optimization or the third off-line optimization. The average of
the improvement is summarized at the last line.

worklist strategy (presented in Table 6.5). The space performance is omitted
for the reason of simplicity. The solver’s source code is reused maximally to
provide a fair comparison.

The second column of Table 6.5 presents the running time before using any
off-line optimization. When the optimization 1 is applied, the performance of
‘cvs’ and ‘bash’ has performance deterioration this time while as their perfor-
mance is significantly improved using the same optimization in the case of LRF.
When the optimization 3 is concerned, the performance of ‘make’ is improved
in contrast to what is observed in the case of LRF. The performance of ‘cvs’ is
still slowed down after using the optimization but it is not that significant as
before. However, ‘bash’ experiences a performance deterioration this time. As
a result, we conclude that a worklist strategy can significantly affect the effect
of the off-line optimization for Andersen’s pointer analysis.

Next we consider to execute both of the optimization 1 and the optimization 3,
and see its effect on the performance. Table 6.6 and 6.7 present the performance
for the two possible orders of executing the optimizations when LRF is used.

As Table 6.6 shows, a significant improvement is achieved for each of the bench-
marks. Performing the optimization 1 and then 3 is faster than performing any
one of them individually. This means the equivalent classes detected by off-line
optimization can be made good use of by the solver with LRF. When the or-
der of running the optimizations is reversed, the performance improvement, as
presented in Table 6.7, is not as large as before although it still improves a lot.
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Program Topt1,3(ms.) ∆Topt1,3 Mopt1,3(MB) ∆Mopt1,3

grep2.5.3 104 39% 2.9 55%
make3.81 4, 906 36% 58.6 34%
gawk3.1.5 13, 375 36% 141 34%
cvs1.11.21 2, 969 18% 51.9 5%

bash3.2 15, 625 52% 147.8 11%
Average − 37% − 18%

where:
∆Topt1,3 = 1− Topt1,3/TLRF

∆Mopt1,3 = 1−Mopt1,3/MLRF

Table 6.6: Performance evaluation using both the optimization 1 and the op-
timization 3: for each benchmark we present the time after applying the two
off-line optimizations with two different orders. The subscript opt1,3 represents
that the optimization 1 is first performed. The average of the improvement is
summarized at the last line.

Program Topt3,1(ms.) ∆Topt3,1 Mopt3,1(MB) ∆Mopt3,1

grep2.5.3 99 42% 3.1 52%
make3.81 4, 910 35% 54.4 39%
gawk3.1.5 13, 734 34% 144.8 33%
cvs1.11.21 2, 985 18% 56.8 4%

bash3.2 22, 391 31% 157.9 5%
Average − 29% − 13%

where:
∆Topt3,1 = 1− Topt3,1/TLRF

∆Mopt3,1 = 1−Mopt3,1/MLRF

Table 6.7: Performance evaluation using both the optimization 1 and the op-
timization 3: for each benchmark we present the time after applying the two
off-line optimizations with two different orders. The subscript opt3,1 represents
that the optimization 3 is first performed. The average of the improvement is
summarized at the last line.

Overall speaking, the improvement of running both of the two optimizations is
smaller than running only the optimization 1. Comparing the data in these two
tables, we conclude that the order of performing the two off-line optimizations
has noticeable effect on the performance of the solver. For the solver using LRF,
performing the optimization 1 first and then the optimization 3 is better than
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Program T′opt1,3(ms.) ∆T′opt1,3 T′opt3,1(ms.) ∆T′opt3,1

grep2.5.3 109 23% 100 29%
make3.81 4, 469 55% 4, 453 55%
gawk3.1.5 14, 839 24% 14, 203 27%
cvs1.11.21 2, 927 20% 2, 969 19%

bash3.2 27, 016 −7% 18, 735 26%
Average − 14% − 27%

where:
∆T ′opt1,3 = 1− T ′opt1,3/TLIFO

∆Mopt1,3 = 1− T ′opt3,1/TLIFO

Table 6.8: Performance evaluation for the solver using LIFO worklist strategy:
for each benchmark we present the time performance before and after applying
the first off-line optimization or the third off-line optimization. The average of
the improvement is summarized at the last line.

the other way round.

For the solver using LIFO worklist strategy, we observe an opposite result. As
shown in Table 6.8, performing the optimization 3 and then the optimization 1
is much faster than the opposite order. And this time no matter which order is
chosen, executing both of the optimizations is faster than only executing one of
the two optimizations. Therefore, we conclude that the best order of performing
optimizations may vary according to the specific worklist strategy, i.e. the order
itself can not guarantee a best result.

Finally we compare the fastest solver performance of using LRF and LIFO
individually, i.e. the values of Topt1,3 and T ′opt3,1, by normalizing the value of
T ′opt3,1 against that of Topt1,3 for each benchmark. The result is presented as in
Figure 6.4. On average, using LRF is 1.27 times faster than using LIFO.

To conclude, we have studied the effect of using off-line optimizations on An-
dersen’s pointer analysis using our constraint solver. The experimental results
demonstrated that beside the use of unification, a worklist strategy can also sig-
nificantly affect the efficiency of a solver. Thus in order to take fully advantage
of the result of off-line analyses, it is worthwhile to spend time on selecting a
proper worklist strategy.
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Figure 6.4: Performance comparison of the solver using LRF and LIFO indi-
vidually: for each benchmarks the time of Topt1,3 is normalized against that of
T ′opt3,1, where Topt1,3 is acquired by adopting the worklist strategy LRF and
T ′opt3,1 is acquired by adopting the worklist strategy LIFO.

6.2.2 Case Study: Reaching Definitions Analysis

In this section, we present an intraprocedural reaching definitions analysis for
the C language. As stated in Chapter 4, for each program point the analysis
estimates which assignments may have been made and not overwritten by other
assignments along some execution path. Each elementary block is assigned
a unique label l ∈ Lab, and ◦ and • denote entry and exit of a elementary
statement respectively. The two functions initial and final are standard and can
be defined by a straightforward extension to the definitions in Table 4.4 and
4.5. As before, we use the pair (x, l) ∈ ProgVar × Lab to denote that the
program variable x may be defined at the assignment labeled as l. Instead
of giving an analysis specification (which is quite straightforward), we present
the implementation of the analysis directly by specifying a generation function
G as presented in Table 6.9, which takes program code as input and returns
constraint programs as output.

For reasons of simplicity, we assume that the level of the dereference operation
has been reduced to one on the left-hand side of each assignment. The function
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G([x = e]l) = l◦ \ {(x, ?) ⊆ l• ∧
{(x, l)} ⊆ l•

G([∗x = e]l) = ∧∀v∈pts(x){(v, l)} ⊆ l•

l◦ ⊆ l•

G([e]l) = l◦ ⊆ l•

G(S1;S2) = Let l′ = init(S2)

in G(S1) ∧ G(S2) ∧
∧∀l∈final(S1)l• ⊆ l′◦

G(while [e]l do S) = Let l′ = init(S)

in G([e]l) ∧ G(S) ∧
l• ⊆ l′◦ ∧
∧∀l′′∈final(S)l

′′
• ⊆ l◦

G(if [e]l then S1 else S2) =

Let l′ = init(S1)

l′′ = init(S2)

in G([e]l) ∧ G(S1) ∧ G(S2) ∧
l• ⊆ l′◦ ∧ l• ⊆ l′′◦

Table 6.9: Generation Function for Reaching Definitions Analysis

pts uses the result of Andersen’s pointer analysis to estimate the points-to set
of each program variable. Several representative statements are selected to
illustrate the process and the rest can be handled in the same manner or very
similarly. With the use of CIL, the cases we need to consider are much simplified:
side-effects of expressions are turned into explicit assignments, e.g. the statement
x = i + + is transformed into the three statements tmp = i; i + +; x = tmp;
the conditional operator ‘exp1?exp2:exp3’ is compiled into explicit conditionals,
etc.

Observing that there is no dynamic constraint generated for the analysis, we
apply the optimization 1 and 2. Especially, for the first optimization, all SCCs
contain only normal nodes this time.
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Program LOC Constraints TRD(ms.) MRD(MB)
phonebook1.0 968 1, 505 9 3.7

make3.81: main 2, 370 2, 731 62 5.4
wdiff0.5 2, 627 2, 132 26 4.3

gnuchess 9, 668 19, 641 1, 875 23.1
grep2.5.3 21, 827 25, 755 2, 890 53.0

Table 6.10: Benchmarks: For each benchmark the table shows the number
of lines of code (with all comment lines removed), the number of constraints
generated using CIL, the time and memory performance of solving the original
constraint program.

Program EqRD(off2) TRD
off2(ms.)

phonebook1.0 831 1
make3.81:main 769 2

wdiff0.5 1, 123 2
gnuchess 10, 122 22
grep2.5.3 12, 782 34

Table 6.11: The results of applying the optimization 2: for each benchmark we
present the number of the equality constraints yielded by the optimization 2,
and the time of performing the optimization.

6.2.2.1 Evaluation

For evaluating our approach on reaching definitions analysis we have to choose a
set of medium-sized programs: phonebook is an application; main is the largest
function of make; wdiff compares two files; gnuchess is a game software; grep
is as before. The reason why we can not handle large benchmarks is that they
usually generate too many constraints to be handled by our solver; this is due to
the flow-sensitive nature of the analysis and its imprecision inherited from the
pointer analysis. For example, the number of constraints generated from make is
1,978,605. But since reaching definitions analysis is an intraprocedural analysis,
it suffices to analyze each function individually and then simply combine the
results to get the whole analysis information 1. The benchmarks used here are
up to 21,827 LOC which is large enough for scaling to most functions.

1No set union is needed for each analysis variable if each label is unique.
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Program TRD
opt2(ms.) ∆TRD

opt2 MRD
opt2(MB) ∆MRD

opt2

phonebook1.0 7 29% 3.6 3%
make3.81: main 47 24% 5.3 2%

wdiff 16 38% 3.8 12%
gnuchess 1, 312 30% 18.6 19%
grep2.5.3 2, 890 44% 45.8 14%
Average − 38% − 14%

where:
∆TRD

opt2 = 1− TRD
opt2/TRD

∆M ′ = 1−MRD
opt2/M

RD

Table 6.12: Performance evaluation: for each benchmark we present the the
time and memory consumption before and after applying the second off-line
optimization only. The average of improvement is summarized in the last line.

Table 6.10 describes the benchmarks and presents the performance of our solver
on original constraint programs. Table 6.11 reports the number of equality
constraints generated by the second off-line optimization and the execution time
of running the optimization. The optimization 1 finds very few equivalences,
up to 15 equalities – the lack of cycles could be explained by the fact that it is
very rare that in a real C program no assignment happens in a while-loop. We
therefore report the performance improvement of using the second optimization
only, and the results are summarized in Table 6.12.

Note that we adopt the LIFO worklist strategy this time: it is simple, but up
to 10% more efficient than a priority queue. The time of performing the op-
timization on each benchmark is very short compared to the overall execution
time. We observe that the more unification the optimization identifies, the bet-
ter performance the solver achieves. The overall performance is improved by
38% on time and by 14% on memory consumption without any loss of preci-
sion. The number of equality constraints generated by the off-line optimization
demonstrates that many equivalent analysis variables do exist in the analysis.
Since identifying these equivalences is linear time, we conclude that the off-line
optimization can be used to speed up the constraint solving for the reaching
definitions analysis significantly.
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U(n) = {}
U(x) = {x}
U(∗x) = {x} ∪ pts(x)

U(opbin(e1, e2)) = U(e1) ∪ U(e2)

U(opun(e)) = U(e)

Table 6.13: Definition of function U.

6.2.3 Case Study: Live Variable Analysis

In Subsection 6.1.4, we discussed the possibility that the insights of the opti-
mizations can be shared by different analyses. In fact, the strategy of off-line
optimization encourages to apply an off-line optimization (which is motivated
by a specific analysis) on other analyses. To be illustrative, in this subsection
we present an implementation of a live variable analysis for the C programming
language. The possibility of reusing off-line optimization(s) on the analysis is
discussed accordingly.

A live variable analysis estimates for each program point, which variable could
still be used later. The implementation is similar to that for reaching definitions
analysis. A new function U (in Table 6.13) is introduced to acquire a set of
program variables from a given expression. As shown in the table, the function
needs to use the result of a pointer analysis to calculate the possible live variables
used in an expression.

The generation function for the live variable analysis is defined in Table 6.14.
For the case ∗x = e, the constraint l• ⊆ l◦ copies the whole information from
the exit to the entry without removing any element from l◦. This is because
pointer analysis is a may-analysis and ∗x could even be NULL in the case of
un-reachable code. Therefore we do not know which variable is redefined at the
assignment and have to assume all are active to ensure the correctness of the
analysis.

6.2.3.1 Evaluation

We choose the same set of benchmarks used in the reaching definitions analy-
sis for evaluation. The LIFO worklist strategy is adopted considering the live
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G([x = e]l) = ∧y∈U(e){ y} ⊆ l◦ ∧
l•\ {x}⊆ l◦

G([∗x = e]l) = ∧y∈U(e){ y} ⊆ l◦ ∧
{x} ⊆ l◦ ∧
l• ⊆ l◦

G([e]l) = ∧x∈U(e){x} ⊆ l◦ ∧
l• ⊆ l◦

G(S1;S2) = Let l′ = init(S2)

in G(S1) ∧ G(S2) ∧
∧∀l′′∈final(S1)l

′
◦ ⊆ l′′•

G(while [e]l do S) = Let l′ = init(S)

in G([e]l) ∧ G(S) ∧
l′◦ ⊆ l• ∧
∧∀l′′∈final(S)l◦ ⊆ l′′•

G(if [e]l then S1 else S2) =

Let l′ = init(S1)

l′′ = init(S2)

in G([e]l) ∧ G(S1) ∧ G(S2) ∧
l′◦ ⊆ l• ∧ l′′◦ ⊆ l•

Table 6.14: Generation Function for Live Variable Analysis

variable analysis uses the same subset of constraints as the reaching definitions
analysis and they belong to the same class of program analyses. Table 6.15
presents the number of constraints generated for each benchmark, and the per-
formance of the solver on the original constraint programs in terms of time and
space consumption.

We then execute the off-line optimizations. For the first off-line optimization,
it detects quite few equivalences, e.g. it yields 82 equality constraints out of
32,607 constraints for grep. This is because live variable information is updated
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Program Constraints TLV(ms.) MLV(MB)
phonebook1.0 2, 420 79 4.7

make3.81: main 3, 202 688 4.1
wdiff0.5 2, 487 94 4.3

gnuchess 26, 271 3, 157 22.7
grep2.5.3 32, 607 4, 704 28.6

Table 6.15: Benchmarks: For each benchmark the table shows the number of
constraints generated using CIL, the time and memory performance of solving
the original constraint program.

Program EqLV(off2) TLV
off2(ms.)

phonebook1.0 589 2
make3.81: main 534 2

wdiff0.5 712 3
gnuchess 6, 810 31
grep2.5.3 8, 579 39

Table 6.16: The results of applying the optimization 2: for each benchmark we
present the number of the equality constraints given by the optimization 2, and
the time of performing the optimization.

very frequently, almost everywhere, and a circle of the same data has a very
low chance to form. We, therefore, focus on the second optimization. Table
6.16 summarizes the number of equalities yielded and the execution time of the
optimization for each benchmark. As the table shows, the second optimization
efficiently detects a lot of equivalences.

Last, the solver’s performance is measured on the optimized version of the con-
straints and compared with that of the original version for each benchmark in
Table 6.17. On average, the time performance is improved by 36% and the
memory consumption is saved by 4%. Similar to what we observed in reaching
definitions analysis, the performance improvement is positively proportional to
the amount of equivalences identified.
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Program TLV
opt2(ms.) ∆TLV

opt2 MLV
opt2(MB) ∆MLV

opt2

phonebook1.0 55 30% 4 15%
make3.81: main 437 36% 4.1 0%

wdiff 62 34% 3.8 12%
gnuchess 2, 063 34% 22.8 0%
grep2.5.3 2, 953 37% 27.1 5%
Average − 36% − 4%

where:
∆T ′ = 1− TLV

opt2/TLV

∆M ′ = 1−MLV
opt2/M

LV

Table 6.17: Performance evaluation: for each benchmark we present the the
time and memory consumption after applying the second off-line optimization
only. The average of improvement is summarized in the last line.

6.3 Concluding Remarks

In this section, we described three off-line optimizations and a strategy in order
to generalize the use of off-line optimizations on our constraint solver. We
demonstrate the use of the technique by implementing three program analyses:
Andersen’s pointer analysis, a reaching definitions analysis, and a live variable
analysis. We evaluate the performance of the solver with two parameters: the
number of equivalences detected and the kind of worklist strategy.

For Andersen’s analysis, we observe that the equivalences yielded by the opti-
mization improves the performance of the solver in general. The order of the
optimization together with the kind of worklist strategy has considerably im-
pact on the efficiency of constraint solving. When a high-efficiency combination
is chosen, performance improves significantly.

For the two data flow analyses, we observe that the more equivalences are iden-
tified, the higher performance is achieved. And the experimental results show
that a large amount of equivalences exist and can be detected by our off-line
optimization algorithm. As the experiment demonstrates, these equivalences
can be taken advantage of by our constraint solver to achieve much better per-
formance than that not using the off-line technique.

As an automatic technique, the off-line optimization only conservatively specifies
equivalences, i.e. the level of precision is always preserved. Principally the off-
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line technique is transparent to the analysis designer and is used by a solver
internally. This is different from the lifting strategy (introduced in Chapter 3),
which allows some loss in precision and the analysis designer can have a complete
control on the use of equality constraints. The different considerations reflect
our understanding of solver technology for program analyses: in order to gain a
better control over the precision of an analysis (which is often quite important for
the utility of program analysis), an analysis designer should be noticed whenever
a mechanism may introduce any extra loss in precision compared to the original
analysis; otherwise, an optimization technique is better to maintain the level
of precision during the constraint solving. In Chapter 4 we have conducted a
heuristic study on our case study and achieved a good control on precision. The
insights provided by the heuristics enable analysis designers to be aware of any
possible loss in precision by the use of unification.
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Chapter 7

Conclusion

To conclude our work, in this chapter we shall first compare and contrast the
contents presented in this dissertation with related work in Section 7.1. Our
research work does not happen in a vacuum. Related work challenges and
inspires our work. Many of the ideas in this dissertation were inspired by related
work by other researchers.

Next we recapitulate the main thesis of this dissertation and make a review
of research contributions of this dissertation in Section 7.2. This leads to a
discussion of a further development of the thesis in Section 7.3.

7.1 Related Work

There are several aspects from which our work could be compared and con-
trasted with other researcher’s. We, therefore, organize the comparison into the
following three subsections.
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7.1.1 Flat Term v.s. Structured Term

In the field of solver technology for solving program analysis problems, all kinds
of solvers can be classified into two classes with respect to the types of terms
used: one class of solvers considers flat terms (unstructured terms) and thereby
can compute a complete solution, which is finite; another class of solvers uses
a more general form of terms, complex terms (structured terms), and thus a
least model could become infinite no matter a universe is finite or infinite. As
a result, the second class of solvers solves constraints by calculating a finite
representative (also known as normalization) for an infinite number of solutions.
In this dissertation the solver we designed and implemented belongs to the first
class, and so is the Succinct Solver, and other Datalog solvers. Although our
solver uses inclusion constraints whileas the Succinct Solver and Datalog Solvers
use some declarative logics as their specification language, all of them output a
finite and complete solution. For the second class, a specification language could
be classical set constraints [HJ90, CP97, PP97, Aik99], or be some restricted
form of Horn clauses [NNS02]. We shall focus on the comparison between our
solver and the solvers of the first class and shall also discuss some common
interest by both of the two classes, e.g. Moore family property.

Datalog is a logic programming language originally introduced for deductive
database [Ull90]. It is also found to be convenient for specifying program analy-
ses [DRW96, Rep93, LS03]. The solvers of Datalog and their variations have
been used for the implementation of many program analyses [NSN02, SSW94,
WACL05, ZN08]. Concerning the expressiveness, our constraint language is a
subset of Datalog and the ALFP logic further extends the classical Datalog by
including explicit quantification, disjunctions in pre-conditions and conditional
clauses. All of them guarantee the existence of a least model.

Upon set constraints, Heintze and Jaffar [HJ90] investigate definite set con-
straints and show that all satisfiable constraints in the class have a least model.
Charatonik and Podelski [CP02] further showed that solving definite set con-
straints has DEXPTIME complexity. Although the set minus operation, which
contains negative set expression, i.e. α \ c ≡ α ∩ ¬c, makes our constraints fall
out of the scope of definite set constraints, we show that the Moore family result
still holds for the constraints of interest. Melski and Reps [MR97] proved a sub-
class of definite set constraints can be solved in cubic time by studying a simple
data-flow reachability problem. While their constraints use only projection and
terms, our basic inclusion constraint language includes the operations set minus
and intersection on a flat universe and it is shown that the constraint solving has
the same complexity. With unification, however, the complexity can be reduced
to almost linear time. Due to unification having the property of dual-direction
information flow, unifying inequivalent elements may cause a loss in precision.
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The question is what is the tradeoff from doing this.

7.1.2 Parameterized Framework

The use of a general solver simplifies the implementation of program analyses.
How to enhance the usability of program analyses, though, remains a challenge.
To achieve high usability, analysis designers would hope to have an both efficient
and precise analysis. However, as presented in previous chapters, there is often
a trade-off between efficiency and precision. While too many false alarms make
an analysis impractical, some level of imprecision should be allowed in order
to ensure termination and even scalability. Thus a parameterized framework
described in Chapter 3 and 4 gives an analysis designer flexibility in tuning a
system to achieve a good balance between performance and precision. With set
constraints, Fähndrich et al. [FA97] present a parameterized framework for a
type system that allows expression of set-constraint-based analyses in varying
levels of efficiency and precision using mixed-terms. A performance evaluation
of using the framework to tune a system is, however, missing. We demonstrate
in this dissertation the effect of tuning a reaching definitions analysis in terms of
time, space performance, and the level of precision. By conducting a heuristic
study on where and how imprecision may occur by the use of unification in the
analysis specification, we show the analysis designer can gain a good control on
the level of precision.

7.1.3 Optimization Techniques

7.1.3.1 Reordering Clauses

Besides tuning program analyses from a user’s point of view, a large amount
of effort has been devoted to improving solver performance. One approach is
to optimize the order of constraints or clauses to be solved. The experimental
results of [BNN02] demonstrate that reordering clauses can improve performance
of the Succinct Solver considerably. A comparsion study in [Pil03] shows that
the performance of the Succinct Solver is at most a small constant factor worse
than XSB Prolog [SSW94, SSW+02] but in optimum cases the Succinct Solver
outperforms XSB Prolog significantly. This has the similar flavor of to choose
proper worklist strategy in our iteration algorithm. From our experimental
result in Subsection 6.2.1, we observed that the order of analysis variables on
the worklist can significantly affect the efficiency of our solver. In order to
generate efficiently solvable constraints for the Succinct Solver, however, one
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needs to understand how clauses are solved by the solver, and that restricts the
use of the optimization heuristics. We use the technique of off-line optimizations
in Chapter 5 that is fully automatic, cheap to execute, and more important
minimizes the amount of knowledge about the solver required for its users.

7.1.3.2 Unification Techniques for Reducing the Problem Space

Another approach is to reduce the problem space by the use of unification.
Since Robert Tarjan shows that unification can be performed in almost linear
time, using unification to improve performance has been extensively studied
in the literature of pointer analysis [Ste96, Das00, FFSA98, HL07a, PKH04],
control flow analysis [HM97a], data flow analyses [LH02, ZN08], type inference
system [Mil78], and program analysis in general [Hen92]. In the field of flow-
and context-insensitive pointer analysis, the use of unification has been demon-
strated to be crucial in cracking the scalability bottleneck. Steensgaard proposes
a unification-based pointer analysis in [Ste96] to improve performance. Com-
pared to Andersen’s inclusion-based pointer analysis, it is much more efficient
but also has much greater imprecision. Another version of unification-based
pointer analysis, known as One-level Flow analysis [Das00] improves the preci-
sion of Steensgaard’s analysis by restricting the use of unification. As a result,
both the precision and performance of his analysis are between Steensgaard’s
analysis and Andersen’s analysis. Sharpiro et al. [SH97b] further present a
“tunable” algorithm so that its performance and precision range from those of
Steensgaard’s analysis and Andersen’s analysis. All of these three versions of
pointer analyses may reduce the level of precision when unification is applied
because they do not guarantee that unification happens only within the elements
of each equivalent class.

As demonstrated in [SH97a], the imprecision of a pointer analysis is inherited
by a subsequent analysis and may have significant impact on the efficiency of
the subsequent analysis. Therefore, a lot of effort has be spent on improving
the scalability of Andersen’s pointer analysis. By the nature of the problem of
Andersen’s pointer analysis, it is a dynamic transitive closure problem. Such a
problem has been showed to be in the class of two way nondeterministic push
down automata (2NPDA) and is 2NPDA-hard [HM97b]. Thus it is considered
inherently cubic as no sub-cubic algorithm for any 2NPDA problem is known
so far.

However, unification can be used to reduce a problem space, as well as simplify
the calculation significantly. The key issue is how to identify equivalence classes
in an efficient manner. Depending on the time of performing the detection, the
optimization algorithms are classified as online technique and offline technique,
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i.e. during the constraint solving and before the constraint solving. Using the
phrase online and offline to classify equivalence detection algorithms reflects the
fact that online algorithms need to be performed many times whileas offline
algorithms run only once. Therefore a linear time online equivalence-detection
algorithm itself does not guarantee high efficiency of a program analysis. In
order to avoid a too high overhead (compared to the benefit acquired), some
mechanisms are needed to artificially restrict the times of executing the algo-
rithm.

Fähndrich et al. [FFSA98] use set constraints to specify the analysis and rep-
resent the constraints using a graph. Cycles in the graph are detected by a
depth-first search of the graph upon each edge insertion, and all analysis vari-
ables of a detected cycle are collapsed. They demonstrate that online cycle
detection is very important for scalability. But the search of cycles is artificially
restricted because the overhead of the search may be too high to pay off the
efficiency acquired.

Later Pearce et al. improves the technique by introducing two algorithms of
online cycle detection for Andersen’s pointer analysis [PKH04, PKH07]. The
first is a more efficient algorithm than that used by Fähndrich et al. and the
second detects cycles periodically instead of at every edge insertion in order to
minimize the effort of the detection. Heintze and Tardieu [HT01] present a field-
based pointer analysis that embeds cycle detection technique. Their analysis can
analyze a C program with 1.3M LOC in less than a second. But a field-based
analysis is not sound for C.

Recently Hardekopf and Lin [HL07a] introduce an online cycle detection algo-
rithm that they call Lazy Cycle Detection (LCD). Observing that equivalent
analysis variables must have the same data, they invoke cycle detections only
when the source and destination share the same points-to sets. Together with
HCD, they analyze C programs up to 2.17 M LOC. The internal data structure
of our constraint solver allows us to smoothly integrate an on-line technique,
such as LCD, and thereby apply the optimization to more analyses.

Off-line optimization were used by Rountev et. al. [RC00] and then by Hard-
ekopf and Lin [HL07a, HL07b] to reduce the cost of pointer analysis. These
techniques have been reported to improve the performance of the analysis con-
siderably. The first optimization algorithm described in Chapter 6 is directly
motivated by the technique HCD presented in [HL07a]. By taking an inclusion
constraint approach we record the off-line optimization results with explicit uni-
fication constraints: all off-line analyses are conducted on the constraints and
can potentially be reused by more analyses. The reason that off-line optimiza-
tions are so attractive is because they are very efficient and can still identify a
large amount of equivalent classes.
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From a constraint solver’s point of view, techniques using unification can nat-
urally be classified by another dimension: analysis variable domain and the
tuple-space domain. Recall that the essence of using unification is to reduce
a problem space. Beside collapsing analysis variables, collapsing elements in
the tuple-space can also reduce a problem space and thus improve efficiency
of a solver. Steensgaard’s analysis is a typical analysis that does unification
over both of the two domains. So are its variants, such as Das’ One-level Flow
analysis, and the algorithms described in [SH97b].

The techniques using the online cycle detection [FFSA98, PKH04, PKH07,
HT01, HL07a], and using the offline processing [RC00, HL07a] fall into the class
that only do unification within the analysis variable domain. The constraint
language studied in this dissertation also considers only doing unification over
analysis variables.

Liang and Harroid make use of location equivalence to optimize dataflow analy-
ses [LH02]. Hardekopf and Lin introduce an off-line algorithm to identify loca-
tion equivalence for Andersen’s pointer analysis. The so-called location equiva-
lence has the same flavor as doing unification over the tuple-space domain.

Classifying techniques with the two domains makes it clear that which domain
is actually reduced by the use of unification. It also demonstrates the two
basic places where analysis designers and solver designers may consider to apply
unification technique. Finally the phrase, unification over analysis variables
and over tuple-space, seems general enough to be used in that it can cover all
kinds of names for equivalences, such as pointer-equivalent variables, location
equivalence, equivalent program variables, etc.

7.1.3.3 Efficient Data Representations

The third approach considers to improve solver performance by using data struc-
tures that can be efficiently operated. In the work presented in this dissertation,
for example, we encode each tuple as a bit and each constant is represented as
a bit vector. We have observed that a solver using bit vectors is much more
efficient than that using a data structure, such as lists, binary trees.

Recently, researchers try to use Binary Decision Diagrams (BDDs) [Bry86] to
implement program analyses. BDDs were traditionally applied for hardware
verification and model checking. Berndl et al. [BLQ+03] use it to represent both
the constraint graph and points-to solution for a field-sensitive inclusion-based
pointer analysis. Later Zhu et al. [Zhu02, ZC04], and Whaley et al. [WL04]
showed that BDDs could be used to solve context-sensitive pointer analysis
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more efficiently than other known efficient algorithms in literature. Whaley et
al. also introduced a Datalog solver using BDDs for implementing program
analyses [WACL05]. The time of a BDD operation is not proportional to the
number of tuples in a relation, but to the size of the data structure. This
leads to a fast execution time for their Datalog Solver. The purpose of the
techniques described in this dissertation is to reduce a problem space with the
use of unification. As long as the algorithm and the data structure of a solver
can take advantage of this result, we believe these techniques can be used on
these solvers and improve their performance.

7.2 Review of Research Contributions

In this dissertation, we have investigated the constraint solver technology with
unification for program analysis problems. Our main thesis was that

A constraint solver with well-designed techniques
using unification can significantly improve the usabil-
ity of a program analysis.

In order to support this thesis, we have conducted a series of theoretical and ex-
perimental studies in the previous chapters of this dissertation. In the remainder
of this section, we summarize the main research contributions:

• We have specified an inclusion constraint language in Chapter 3 and then
extended the language in Chapter 5. The well-designed constraint lan-
guage, especially the use of explicit (dynamic) equality constraints, and
the conditional constraints, enables a constraint solver to take good ad-
vantage of unification for improving its efficiency.

• We have presented a parameterized framework for tuning the constraint
program. With the framework, analysis designers can try testing various
levels of performance and precision trade-off, and accordingly achieve a
satisfiable balance between these two factors.

• We have demonstrated the use of the parameterized framework by a heuris-
tic study with an intraprocedural reaching definitions analysis for a C-like
imperative language. The study shows that a careful study of the condi-
tions where imprecision may or may not be incurred pays off in gaining
the expected level of precision.
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• We have designed constraint-solving algorithms for constraint programs
specified in the basic and extended inclusion constraint language respec-
tively. The important properties of the algorithms, such as termination
and worst-cast asymptotic complexity, have been studied. Based on the
presentation of the algorithm design, we have explained further how uni-
fication enables a solver more efficient.

• We have used the off-line optimization as a general strategy for improv-
ing the performance of a constraint solver. Three off-line optimizations
have been described: all of them are linear time complexity and preserve
precision. By detecting the subset of constraints, the optimizations can
be chosen automatically and the insights of existing off-line optimizations
could be easily shared among different analyses.

• We have demonstrated the effect of using unification-based technique on
performance by many experimental studies on several program analyses,
including intraprocedural reaching definitions analyses for a simple im-
perative language and for C language individually, Andersen’s pointer
analysis for C language, and a live variable analysis for C language. A
comparison study on the reaching definitions analysis conducted between
our constraint solver and the Succinct Solver has shown that using unifica-
tion may lower the asymptotic complexity of constraint-solving even down
to almost linear time for some benchmarks. In general, we have observed
that with the techniques described in this dissertation the performance of
program analyses could be improved significantly even without sacrificing
any precision.

7.3 Future Work

We firmly believe that automatically generating high-efficiency implementation
for program analysis is a very important direction of the research on static pro-
gram analysis. Solver technology is the core engine of the approach. The use of
general constraint solvers significantly simplifies the implementation of program
analysis, and provides a platform to test and compare all kinds of ideas for au-
tomatically generating high-efficiency implementation, and thereby encourages
the generalization of the insights of various of optimizations motivated by dif-
ferent analyses. However, there are still many improvements that could further
enhance our constraint solver to get better results.
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7.3.1 Unification over the Tuple Space

As we explained in the section of related work, our constraint solver considers
only the unification over analysis variables. To provide a constraint solver that
can make fully use of unification techniques, our constraint language should
introduce new constructs to formulate the equivalence relation between tuples.
This extension should allow us to implement more unification-based analyses
and introduce more off-line optimizations using the new equality constructs.

7.3.2 Flow- and Context-sensitive Pointer Analysis

We have observed that a large amount of equivalences exist in flow sensitive
analyses, such as reaching definitions analysis and live variable analysis. We
postulate, therefore, unification technique can be applied to flow- or context-
sensitive pointer analysis or even both to improve the scalability of the analyses.

7.3.3 Other Data Representations

We have used bit-vector data structure to represent constants in the algorithm
of our constraint solver. It works well for the analyses we have studied. But to
improve the expressiveness of our constraint language, we may need to consider
more possible data representations, such as BDDs, balanced binary trees, etc.
For instance, when cartesian product or projection is concerned, new tuples may
yield during the constraint solving and therefore using bit-vector may become
not flexible and convenient, and thus a binary tree may be a better choice under
such a situation. As we discussed in the section of related work, BDDs have
been used for implementing pointer analysis. But they are not successful as well
in data flow analyses. As a general constraint solver, our solver should support
more data representations and thereby support a further evaluation on what
and how each of these data representations is good at in constraint solving.



124 Conclusion



Appendix A

Constructive Definition of
Designated Greatest Lower

Bound

Definition A.1 (Operator ûT ) For some set I = {1, 2, · · · , n} and a family
(ψi

1, ψ
i
2)(i∈I) ∈ EnvT× ÊnvTB, let (ψû1 , ψû2 ) = ûTi∈I

(ψi
1, ψ

i
2) which is given by:

∀x ∈ AVar : ψû1 (x) = α1(α2,··· ,αn)

where ∀i ∈ I : αi = ψi
1(x) and

ψû2 (β1(β2,··· ,βn)) = ∩iψ
i
2(βi)

where β1(β2,··· ,βn) ∈ dom(ψû1 ).

We then show it is indeed a greatest lower bound by Lemma A.2 and A.3 below.

Lemma A.2 For some set I = {1, 2, · · · , n} and a family (ψi
1, ψ

i
2)(i∈I) ∈ EnvT×

ÊnvTB, let (ψû1 , ψû2 ) = ûTi∈I
(ψi

1, ψ
i
2), then for all x, y, z ∈ AVar and i ∈ I:

ψ̂û1 (x) = ψ̂û1 (y) ⇔ ψi
1(x) = ψi

1(y) ∧ (A.1)

ψû2 (ψû1 (z)) = ∩iψ̂
i
2(ψ

i
1(z)) (A.2)



126 Constructive Definition of Designated Greatest Lower Bound

Proof. It is straightforward to prove (4) and (5) according to Definition
A.1. The proof relies on the fact that for any analysis variable x: ψ̂û1 (x) =
ψ̂1

1(x)ψ̂2
1(x),··· ,ψ̂n

1 (x). ¤

Lemma A.3 Let E = {(ψ̂i
1, ψ̂

i
2)| i ∈ I ∧ (ψ̂i

1, ψ̂
i
2) ∈ EnvT × EnvTB} for some

set I, and (ψ̂û1 , ψ̂û2 ) = ûT E. Then (ψ̂û1 , ψ̂û2 ) is a greatest lower bound of the set
E.

Proof. It is straightforward to show (ψ̂û1 , ψ̂û2 ) is a lower bound by Lemmata
3.10 and A.2. We prove it is a greatest one. For any lower bound of E, e.g.
(ψ̂`

1, ψ̂
`
2), we have for all i ∈ I and x, y, z ∈ AVar

ψ̂`
1(x) = ψ̂`

1(y) ⇒ ψ̂i
1(x) = ψ̂i

1(y) ∧
ψ̂`

1(ψ̂
`
1(z)) ⊆ ψ̂i

1(ψ̂
i
1(z))

from Lemma 3.10 and therefore

ψ̂`
1(x) = ψ̂`

1(y) ⇒ ψ̂û1 (x) = ψ̂û1 (y)

ψ̂`
1(ψ̂

`
1(z)) ⊆ ψ̂û1 (ψ̂û1 (z))

by Lemma A.2. Now the preorder definition of ¹ allows us to conclude that
(ψ̂`

1, ψ̂
`
2) ¹ (ψ̂û1 , ψ̂û2 ) for any lower bound (ψ̂`

1, ψ̂
`
2) of E. ¤
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Scalable Programs

We organize the scalable programs into three groups.

1. Three series of scalable programs using while loop.

Wh(n,1) : while x0 < 2 do
(x1 := x2; · · ·xn−1 := xn;xn := 1)

Wh(1,n) : while x1 < 2 do
while x2 < 2 do

...
while xn < 2 do x0 := 1

Wh(n,n) : while e1 do
while e2 do

...
while en do

(x1 := x2; · · ·xn−1 := xn; xn := 1)
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2. Three series of scalable programs using if-branch.

If(n,1) : if x1 < 0 then skip
else if x2 < 0 then skip

else
...
if xn < 0 then skip

else x0 := 1

If(n,n) : if x1 < 0 then skip
else if x2 < 0 then skip

else
...
if xn < 0 then skip

else (x1 := x2; · · ·xn−1 := xn; xn := 1)

If(1,n) : if x0 < 0 then skip
else (x1 := x2; · · ·xn−1 := xn; xn := 1)

3. Two series of scalable programs use both if-branch and while loop.

If-wh(n,1,1) : if x1 < 0 then skip
else if x2 < 0 then skip

else
...
if xn < 0 then skip

else (while xn > 2 do xn := 1)

Wh-if(n,1,1) : while x1 < 2 do
while x2 < 2 do

...
while xn < 2 do

if x = 0 then skip
else x := 1



Appendix C

Experimental Results of
Scalable Programs:

Asymptotic Complexity of
Time Performance

We summarize as the following diagrams the experimental results for the six
series of the scalable programs that was not included in the main text, i.e.
Wh(1,n), Wh(n,n), If(n,n), If(1,n), If-wh(n,1,1), and Wh-if(n,1,1).
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Time Performance
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Figure C.1: Asymptotic Complexity of Time Performance: Wh(n,1).
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Figure C.2: Asymptotic Complexity of Time Performance: Wh(n,n).
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if(1,n,e)    O(n1.98)
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Figure C.3: Asymptotic Complexity of Time Performance: If(1,n).
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Figure C.4: Asymptotic Complexity of Time Performance: If(n,n).
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Figure C.5: Asymptotic Complexity of Time Performance: If(n,n).
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Figure C.6: Asymptotic Complexity of Time Performance: If-wh(n,1,1).



136
Experimental Results of Scalable Programs: Asymptotic Complexity of

Time Performance

10
3

10
4

10
5

10
1

10
2

10
3

10
4

Time performance of whif

log(n)

lo
g 

of
 s

ol
ve

 ti
m

e 
in

 s
ec

on
ds

 e
xc

l. 
ga

rb
ag

e 
co

lle
ct

io
n 

−
 lo

g(
T

/m
s)

 

 

whif(n,1,1,s)   O(n2.17)

whif(n,1,1,e)    O(n1.38)

whif(n,1,1,ALFP) O(n2.08)

Figure C.7: Asymptotic Complexity of Time Performance: Wh-if(n,1,1).
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