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Summary

In the light of the recent years' steep rise in the universe of products

o�ered by the Danish mortgage banks an advisory model for individual

homebuyers is introduced in this thesis. Taking the existing mortgage

products, homebuyers risk preferences, tax rules and transaction costs

into consideration, the model helps mortgage advisors �nd the optimal

choice of mortgage loan for an individual homebuyer. The model provides

the homebuyer with basis for a decision which is by far more tailored to

the individual's needs as compared to current practice.

The number of mortgage products available in the Danish market has

steeply increased during recent years. From a handful of products just

10 years ago, it was added up to no less than 60 according to Skovgaard

(2005). With the introduction of the new covered bond legislation (SDO



ii Summary

lovgivning) in July 2007, this number is expected to increase even fur-

ther in the future. It is therefore an ever more challenging task to advise

individual homebuyers on their choice of mortgage strategies. Mortgage

advisors should therefore have access to tools and analysis which in an

easily accessible way convey pros and cons of the decision of potential

homebuyers.

Today mortgage banks provide homebuyers with information on �rst year

payments only. With the introduction of the new covered bond legislation

the banks should instead provide the annual costs in percents. The prob-

lem with both of these key �gures is that they say nothing about future

risk and as such they are grossly misleading. Svend Jakobsen (2007) ar-

gues that politicians have not been su�ciently ambitious on homebuyers

behalf. He suggests a consequence analysis over a set of scenarios where

both increasing and decreasing interest rates are considered. In this thesis

we go a substantial step further towards �nding the best possible decision

under future uncertainty for a given homebuyer.

The thesis describes a model which solves the homebuyers optimal mort-

gage choice problem based on a number of optimality criteria. The model

involves modeling interest rate uncertainty, mortgage pricing, homebuy-

ers preferences for risk and return, limiting loss using the re�nancing
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optionality as well as transaction costs and tax rules.
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Resumé

Med udgangspunkt i de senere års kraftige stigning i realkredittens produkt�

palette i Danmark introduceres i denne afhandling en rådgivningsmodel,

der på baggrund af bl.a. de eksisterende realkreditprodukter, låntagers

præferencer, beskatning og transaktionsomkostninger skal hjælpe rådgiv-

eren til at optimere låntagers valg af realkreditlån. Modellen giver lån-

tageren et beslutningsgrundlag, som i langt højere grad end hidtil tager

højde for den enkelte låntagers behov.

Realkreditinstitutternes produktpalette er de seneste år vokset kraftigt.

For bare 10 år siden havde låntagerne kun en håndfuld forskellige produk-

ter at vælge i mellem. I mellemtiden er antallet af låneprodukter mange-

doblet. I en artikel af Skovgaard (2005) blev antallet af forskellige re-

alkreditprodukter i Danmark således opgjort til ikke færre end 60. Den
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nye SDO lovgivning, der trådte i kraft juli 2007, vil formentlig betyde en

yderligere udvidelse af produktpaletten. I en rådgivningssituation kan det

derfor både nu, og måske specielt fremover, være svært at �nde det helt

rigtige produkt til kunden. I det lys er det vigtigt, at rådgiverne har kend-

skab og adgang til værktøjer og analyser, der på en nem og overskuelig

måde kan anskueliggøre fordele og ulemper ved låntagerens valg.

Første års ydelse er det eneste nøgletal, som de �este realkreditinstitutter

oplyser i rådgivningssammenhænge i dag. I forbindelse med SDO lov-

givningen er der indført skærpede krav om lånerådgivning i form af en

revision af bekendtgørelsen om god skik for �nansielle virksomheder. Det

pålægger realkreditinstitutter at oplyse de årlige omkostninger i procent

(ÅOP). Problemet med begge disse nøgletal er, at der ikke bliver taget

højde for fremtidig risiko. Svend Jakobsen (2007) argumenterer for, at

lovgiverne ikke har været tilstrækkeligt ambitiøse på låntagernes vegne.

I artiklen foreslår Svend Jakobsen, at der skal tages udgangspunkt i en

konsekvensberegning. Vi går her et stort skridt videre i retning af at

stille det bedst mulige beslutningsgrundlag, under fremtidig usikkerhed,

for låntageren.

Denne afhandling beskriver en model, der ud fra en række kriterier løser

låntagerens problem omkring valget af det rigtige realkreditlån. Modellen
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inddrager alle relevante realkreditprodukter og disses markedspriser, lån-

tagers præferencer for risiko og gevinster, begrænsning af tab ved om-

lægninger samt omkostninger ved optagelse og omlægninger og beskat-

ningsregler.
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Preface

This thesis was prepared at IMM, DTU in partial ful�llment of the re-

quirements for acquiring the Ph.D. degree in engineering.

The thesis deals with di�erent aspects of mathematical modeling for �nd-

ing the optimal choice of mortgage for an individual homebuyer. The main

focus is on developing and testing a modeling framework to capture the

real�life complexity of the mortgage choice problem, but also specialized

interest rate modeling, appropriate choice of risk measure and the inter-

pretation of certain mortgage products as Gi�en goods are considered.

The thesis consists of a summary report and a collection of �ve research

papers written during the period 2004�2007. The �rst three of these pa-

pers are at this point already published in international journals within

the areas of �nance and operations research.
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Lyngby, November 2007

Kourosh Marjani Rasmussen
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Chapter 1

Introduction

This thesis consists of a summary report, chapters 1 � 8, and a collection

of �ve research papers in the appendices. The purpose of the summary

report can be summarized as follows:

1. Chapter 1 motivates the problem and gives an overall problem de-

scription.

2. Chapter 2 describes the Danish mortgage bond market.

3. Chapter 3 compares the traditional approach on mortgage advising

with our approach as suggested in this thesis.
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4. Chapter 4 introduces the methods used throughout this thesis.

5. Chapter 5 summarizes the papers and clearly states their interrela-

tion.

6. Chapter 6 points out the novel contributions achieved in this thesis.

7. Chapter 7 documents additional tests and results on model robust-

ness which have not been fully addressed in the papers.

8. Chapter 8 draws overall conclusion and shows directions for future

work.

1.1 Background and motivation

Homebuyers in most countries take up mortgages for their house �nancing

needs. In Denmark they may loan up to 80% of the value of the house.

This thesis deals with which loan or which combination of loans is optimal

for an individual homebuyer.

Until 1996 callable �xed rate mortgages (FRMs) were the only type of

mortgages available in the Danish market. So mortgage advisors were only

concerned with the timing for rebalancing an already existing mortgage.

Since then the number of mortgage products has steeply increased. The
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main innovations have included introduction of adjustable rate mortgages

(ARMs) in 1996, then interest�only (IO) versions of both FRMs and

ARMs were introduced in 2003. Finally in 2005 the capped rate mort-

gages (CRMs) entered the market.1 The number of mortgage products

was added up to no less than 60 according to Skovgaard (2005). With

the introduction of the new covered bond legislation (SDO lovgivning) in

July 2007, this number is expected to increase even further in the future.

It is therefore an ever more challenging task to advise individual home-

buyers on their choice of mortgage strategies. Mortgage advisors should

therefore have access to tools and analysis which in an easily accessible

way convey pros and cons of the homebuyers decision.

The total amount of outstanding mortgage loans in Denmark in 2006 was

250 billion EURO, corresponding to 120% of the GDP. The great volume

of the outstanding debt means that appropriate choices of mortgages are

not only of interest for the individual household but they also have great

macro economical importance. Risky choices of mortgages, combined with

a house price fall and increased unemployment would result in mass de-

1One of the Danish mortgage banks (Totalkredit) launched the �rst CRMs in Den-

mark (BoligX lån) already in 2000. The CRMs did not gain much popularity, however,

until another mortgage bank (Realkredit Danmark) introduced their �rst generation

of CRMs in 2004 followed by other variants of the CRMs introduced by all mortgage

banks in 2005.
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faults on the individual homeowner side which in turn may result in a

further devaluation of the housing market and may at the worst case

bring major �nancial institutions to bankruptcy, which again may result

in economical depression. The recent sub prime loans crisis is an example

of how irresponsible and speculative choice of mortgages for even a par-

tial segment of the US market has threatened �nancial and economical

stability in several parts of the world.

The liberalization of the mortgage markets should therefore be accompa-

nied by su�cient individual advice for homebuyers in order to suit the

individual's needs and preferences while at the same time reducing default

risk. The advice given today is by far not su�cient and it is certainly not

tailored to the needs of the individuals.

1.2 Problem statement

The central question to be answered in this thesis can be formulated as

follows:

Find the optimal choice of mortgage loan(s) and the consequent

rebalancings for an individual homebuyer.
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The problem statement above needs more clari�cation. What is the op-

timality criteria for a given homebuyer? What is an appropriate horizon

for optimization? How are future interest rate and mortgage price uncer-

tainties captured?

We need to answer these questions before any attempts for justifying why

we consider a mortgage strategy optimal. We believe that these questions

do not have a completely objective answer. There is no standard frame-

work for modeling interest rate and mortgage price uncertainty. Most

homebuyers have no clear idea of for how long they are going to keep the

property and the notion of optimality for a mortgage cash�ow given its

price is understood di�erently by di�erent groups of homebuyers. Never-

theless mortgage bank advisors should provide homebuyers with advice

on their mortgage choice.

In this thesis we de�ne what we understand by appropriate assumptions

on these essentially subjective questions. When the assumptions are set,

we will move on to introducing a modeling framework in which several

optimality criteria, several horizons, as well several models for interest

rate and mortgage price uncertainty may easily be implemented and their

results tested.
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Chapter 2

The Danish mortgage bond

market

The Danish mortgage bond market is Europe's second largest covered

bond market after the German market. Real property �nancing in Den-

mark is mainly based on mortgage loans raised through mortgage banks

whose lending is funded exclusively through the issuance of mortgage

bonds � covered bonds.

The purpose of this chapter is to introduce the reader to the rules of

the Danish mortgage bond market as well as the products o�ered. The
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complex nature and the risks involved in these products should convince

the reader that the research done in this thesis on advising homebuyers

on a proper choice of mortgage loan is well justi�ed.

2.1 The Danish mortgage �nance legislation

The main principles behind the Danish mortgage �nance system are:

• All loans are granted against mortgages on real property.

• The balance principle which implies that all lending is funded through

the issuance of bonds and that the repayments on the loans and the

payments to the bondholders must always be balanced. This balance

between funding and lending eliminates the interest rate, liquidity

and currency risks relating to the mortgage bank balance sheets.

• Mortgage banks have no in�uence on lending rates which are com-

pletely market�dependent.

The balance principle, the backbone of Danish mortgage �nance, has

basically not been changed since 1850. It eliminates the mortgage bank's

liquidity, interest rate and currency risk. The only risk remaining for

the mortgage banks is the default risk on the borrower side. Should the
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borrower default, however, the value of the property typically covers most

of the charges. Even though borrowers default from time to time, the

mortgage bondholders have not faced a single case of insolvency on the

mortgage bank side during the 200�year long history of Danish mortgage

bonds.

The Danish market is characterized by a high degree of concentration � at

present, four major issuers account for 95% of the bond debt outstanding.

The liquidity of the Danish mortgage bonds is further supported by the

fact that all mortgage banks issue bonds with almost identical character-

istics resulting in a unity�like market. In practice, bonds from di�erent

issuers are therefore traded on equal terms.

The liquidity of the Danish mortgage bonds, the balance principle and the

long history of the Danish mortgage banks (with no insolvency cases) has

resulted in an extremely e�cient market � it would not be an exaggeration

to consider it world's most e�cient market. This means that the investors

enjoy a high degree of security on their investments on Danish mortgage

bonds and that the borrowers experience extremely attractive rates on

their home �nancing. Danish homebuyers, due to the balance principle,

e�ectively issue mortgage bonds via the mortgage banks. The mortgage

banks receive a margin of approximately 0.5% for assuming the default
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risk on the borrower side as well as the administration costs. This margin

is the lowest on any mortgage market in the world.

It is noteworthy that on the �rst of July 2007 a new amendment, known

as the Danish covered bond legislation, was added to the Danish mortgage

�nance legislation. Among other things the new legislation allows separa-

tion of lending and funding within certain limits. The new law opens up

for designing new mortgage products which are not simply pass�throughs.

This means that mortgage banks should make a decision as to whether or

not they are willing to assume some degree of the interest rate, liquidity

and currency risks when issuing bonds to investors and lending money

to homebuyers. So far none of the Danish mortgage banks have utilized

this feature of the new law. But should they consider to make use of the

new possibilities, the work done in this thesis is of even more importance

not only for advising homebuyers on their mortgage choice but also for

optimal product design and risk management.

The mortgage products introduced in this chapter and analyzed through-

out the thesis all abide by the balance principle.
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2.2 Mortgage products

Fixed rate mortgage loans (FRMs) which are funded in long�term �xed

rate callable annuity bonds have traditionally dominated the Danish mort-

gage bond market. However, the introduction of �xed rate non�callable

bullet bonds and related adjustable rate mortgages (ARMs) in the second

half of the 1990's and, most recently in 2004, the successful introduction of

capped long�term �oating rate Cibor1�linked bonds and related �oating

rate mortgage loans with interest rate caps (CRMs) have diversi�ed the

Danish mortgage bond market, providing investors as well as borrowers

with far more investment opportunities. In the following we give a short

outline of the main features of these types of mortgages.

Fixed rate mortgages

Fixed rate mortgages (FRMs) are funded by �xed rate callable annuity

bonds with a strike price at par. That means that the borrower should

never pay more than the face value of the outstanding debt in case of

prepayment of the mortgage. FRMs come both with and without interest�

only options. Interest�only periods have a maximum period of 10 years.

Maturities available for FRMs are 10, 20 or 30 years.

1Copenhagen Interbank O�ered Rate.
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Fixed rate callable bond series have an opening period of typically three

years. That means that when a bond serie is created by the mortgage bank

it has a maturity which is 3 years longer than the maturities available for

FRMs. The serie remains open for lending to borrowers up to three years

unless the bond price goes above par due to interest rate decreases or if

the price falls way below par due to interest rate increases. This process

ensures a high volume of the outstanding debt in the individual bond

series and thereby reduce liquidity risk.

Adjustable rate mortgages

An adjustable rate mortgage (ARM) is funded by issuing one or more

underlying bullet bonds. A bullet bond is a non�callable coupon paying

bond with a single repayment of principal on the maturity date. The

Danish bullet bonds have maturities of 1 to 11 years, and the Danish

borrower may choose between ARMs with coupon �xing periods of 1 to

10 years (ARM1 to ARM10).

Since bullet bonds are per construction interest�only the Danish ARMs

can be o�ered with an interest�only option without incurring any extra

costs to the borrower (unlike the interest�only FRMs). ARM's are also

o�ered as annuities by synthetic constructions of the same underlying
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bullet bonds. The annuity ARM does not incur any extra costs to the

borrower either.

Capped rate mortgages

Capped rate mortgages (CRMs) are funded by �oating rate annuity bonds

(�oaters). The coupons are typically based on six�month Cibor plus a

�xed spread and they are subject to semi�annual coupon �xing. CRMs are

o�ered with or without interest�only options. The interest�only periods

have a maximum period of 10 years and they are slightly more expensive

compared to their annuity counterparts.

CRMs have maturities of 5, 10, 20 or 30 years, and the underlying bond

series have opening periods of typically three years, like the FRMs.

2.3 The delivery option

A distinct and very important feature of the Danish mortgage �nance

system is the delivery option also called the buyback option. It means

that the Danish borrowers may terminate their loans by buying back the

mortgage bonds in the bond market and delivering them to the mortgage
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bank. The buyback option applies to all mortgage bonds whether callable

or non�callable. The buyback option constitutes a signi�cant di�erence

between the US and the Danish mortgage �nance system. The US system

only allows mortgage loan prepayment at par (100). The buyback option

is an advantage to borrowers in situations with rising interest rates. As

bond prices fall, the market value of borrowers' debt is reduced along with

borrowers' exposure to increasing rates. This is particularly useful in case

of decreasing property prices or moving to another property being forced

to re�nance at the higher interest rate level. For borrowers with 30�year

�xed rate loans, such e�ect may be signi�cant.

2.4 Re�nancing and prepayment

Re�nancing refers to the process of changing one or more underlying

bonds behind a mortgage loan with some other bonds. For ARMs re�-

nancing usually means adjusting of the mortgage rate to the market rate

of the underlying bond. An ARM with yearly adjustments (ARM1) is

re�nanced once a year. In practice it means that the outstanding debt of

the maturing bullet bond is paid by issuing a new one�year bullet bond.

This type of re�nancing is done free of charge for the borrower. The bor-

rower can choose to change the �xing period at the re�nancing point.
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This incurs some re�nancing fees.

Re�nancing FRM's and CRM's refers to the process of paying back the

outstanding debt before horizon (prepayment) by issuing new bonds. The

borrower uses either the call option or the buyback option to prepay a

loan. Prepayment usually occurs as a consequence of the callability of

FRMs at par. In the case of decreasing interest rates the borrower prepays

the mortgage with a higher coupon by issuing a new mortgage with a lower

coupon. The new mortgage may be an FRM, an ARM or a CRM. Another

reason for prepayment is reduction of outstanding debt. When interest

rates increase the prices of FRMs and CRMs fall, so the underlying bonds

may be bought back at a cheap price. This transaction is funded by

either an ARM, FRM or CRM of a higher price and probably higher

rate. The result is an outstanding debt reduction which approximately

corresponds to the di�erence of the old and the new bonds. Prepayment

also occurs simply due to selling the property. Prepayment incurs extra

fees as compared to re�nancing of ARMs to di�erent �xing periods at

�xing times.
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Chapter 3

Our approach versus the

traditional mortgage advice

A valid question at this point would be �what is the value added by

introducing a new mortgage advising system?� This chapter answers this

question by comparing the mortgage advising practice today with the one

we suggest in this thesis.
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3.1 Traditional mortgage advice

Today mortgage banks are only required to provide homebuyers with

information on �rst year payments. With the introduction of the new

covered bond legislation the banks should also provide the annual costs

in percent. The problem with both of these key �gures is that they say

nothing about future risk and as such they are grossly misleading. Svend

Jakobsen (2007) argues that politicians have not been su�ciently ambi-

tious on homebuyers behalf. He suggests a consequence analysis over a

set of scenarios where both increasing and decreasing interest rates are

considered. Indeed some mortgage banks have taken up the idea and as

an extra advisory service they provide payment calculations under a few

interest rate scenarios for a given choice of mortgage loan. Even though

this approach provides more information to homebuyers than �rst year

payments and annual costs in percent, it has the following �aws:

1. The interest rate scenarios are generated on an ad hoc basis. Market

information is not used to capture the overall tendencies in the

dynamics of the term structure of interest rates.

2. It is not possible to calculate rebalancings before horizon. Most

mortgagors rebalance their mortgage as market movements warrant
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it along the way. Therefore a decision on the choice of mortgage loan

here and now should consider future rebalancing possibilities under

di�erent market conditions.

3. The analysis is done for one mortgage loan at a time. Even if one

allows for a combination of loans and perhaps some ad hoc rebal-

ancings along the way, the analysis will not reveal what the best

strategy is according to some criteria for example lowest average

payments, least variability, least maximum payments, etc.

3.2 Our approach

In this thesis we go a large step further from the existing methods towards

�nding the best possible decision under future uncertainty for a given

homebuyer.

Figure (3.1) gives an example of what we understand by an optimal loan

strategy.

For simplicity of this illustrative example we have made the following

assumptions:

1. We only consider two mortgage loans, an adjustable mortgage loan
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with yearly adjustments (ARM1) and a �xed rate mortgage with

4% coupon payments (FRM 4%).

2. We wish to compare the holding period costs over a �ve�year period.

3. We consider only issue and hold strategies, i.e. no rebalancings are

allowed.

4. We wish to �nd the combination of loans which results in the small-

est average holding period cost for the highest 10% of the holding

period cost scenarios.

Comparing the two frequency distributions for ARM1 and FRM 4% it is

obvious that the ARM1 distribution has a smaller right tail. Now given

that the homebuyer of our example wish to minimize the average of the

10% right tail, the question is whether a combination of the two loans will

result in a smaller right tail than that of ARM1. In the existing conse-

quence analysis systems one may simulate several combinations of these

two loans and compare the right tails obtained. We have tried this once

with a 50�50 combination of the two loans, which clearly does not result

in a smaller right tail than that of the ARM1 alone. We could continue

these calculations for several other combinations until some threshold for

possible improvement is reached. The problem with this approach is that

it is neither computationally e�cient, nor does not render a guarantee for
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�nding the optimal combination. Applying our optimization model we

can within a few seconds �nd the optimal combination which is an 81�19

combination of ARM1 and FRM 4%.

The overall theme of this thesis is to make such an example as realistic

as computational resources and the existing uncertainty embedded in the

nature of this problem allow us. Our model framework allows for several

mortgage products, future rebalancing possibilities under uncertainty as

well as several di�erent optimization criteria. In the next chapter we take

a step back and introdue the methods needed to achieve the objectives of

this thesis.
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Figure 3.1: Comparison of single loan strategies with loan portfolios. Top: An arbi-

trary combination of the two loans is compared with the two single loan strategies.

Down: The optimal combination of the two loans is compared with the two single loan

strategies. Here the optimization criteria is to minimize the average of the highest 10%

of the holding period costs.



Chapter 4

Fundamental elements and

methods for the mortgage

choice problem

This work can be characterized as an integration of di�erent models into a

system which provides mortgagors with individual advice. The integration

is illustrated in Figure 4.1.

In this chapter we will not show our way of applying these modeling

paradigms to the problem at hand � this is explained in chapters 5, 6
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Interest rate scenario generation

Stochastic programming

Mortgage bond pricing

Mortgage loan strategies

Interest rate modeling

Figure 4.1: The modeling paradigms and their interactions in this thesis.

and 7 as well as in the papers in the appendices. We will, however, brie�y

go through the basic terminology and the intuition behind the particular

methods which we build upon. A complete coverage of these methods and

theories is beyond the scope of this thesis.
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4.1 Interest rate modeling

The predominant risk a�ecting the cash�ow payments of a mortgagor

is the risk associated with changes in the general level of interest rates.

When the interest rates increase the cash�ow payments of short term

�nancing increase as well. On the other hand the value of outstanding

debt for long term �xed rate �nancing decreases1. Interest rate models

are mathematical descriptions of interest rate dynamics. They describe

possible movements of the entire term structure of interest rates.

4.1.1 Term structure of interest rates

The term structure of interest rates, or the yield curve, is the set of

interest rates for di�erent investment periods or maturities. Yield curves

can display a wide variety of shape as seen in Figure 4.2. Mostly, a yield

curve slopes upwards, with longer term rates being higher. Such curves

are called normal. But several examples of historical inverse yield curves

have been observed too. One such example is shown in Figure 4.2 for the

Danish yield curve on the 30/08/2000.

1This is a special case in Denmark due to the buyback delivery option on the

underlying �xed rate bonds as explained in chapter 2.



28

Fundamental elements and methods for the mortgage choice

problem

Figure 4.2: Danish yield curves from 4 di�erent historical time points.

Principal component analysis of interest rates in several �xed income

markets have shown that changes in level, slope and curvature of the

yield curves can explain almost all variation. Looking at Figure 4.2 one

can see that parallel shifts of the yield curves are not the only way yield

curves move in the Danish market either. For more details on this subject

see paper E in the appendices.

4.1.2 Examples of interest rate models

Three elementary interest rate models with the short rate rt being the

underlying state variable are de�ned below:
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Figure 4.3: Historical data on Danish yield curves for the period 1995 to

2006.

• Extended Vasicek (time�varying mean, Hull & White (1993)),

drt = α(θ(t) − rt)dt+ σdzt;

• Extended CIR (time�varying mean, Cox, Ingersoll & Ross (1985)

and Jamshidian (1995)),

drt = α(θ(t) − rt)dt+ σr
1
2
t dzt;
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• CKLS (Chan, Karolyi, Longsta� & Sanders (1992)),

drt = α(µ− rt)dt+ σrγ
t dzt.

All models have a mean reversion level � the time�varying θ(t) in the

extended Vasicek and extended CIR models and the constant µ in CKLS.

The parameter α decides the height of the interest rate jumps at each

step. The models also have variance σ and a stochastic Wiener process

zt. The extended CIR model has a factor r
1
2
t in its volatility which can

ensure that rates do not become negative. The volatility function in the

CKLS model is slightly more �exible.

A large number of scienti�c papers have been written on interest rate

models. The models o�er numerous variations of the simple models men-

tioned above and they add each some special features to them. As some

of the most important enhancements to these models one could mention:

1. Adding the number of state variables (n�factor models) to better

capture the dynamics of the whole yield curve of the underlying

market.

2. Using alternative stochastic processes for di�erent monetary regimes,

for example allowing jumps in times of hyperin�ation and allowing
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only positive rates with high volatility in times of very low interest

rates.

We will not go any further on exploring these special features. Two ex-

cellent books on interest rate modeling are Brigo & Mercurio (2006) and

James & Webber (2000).

4.2 Interest rate scenario generation

The mortgage choice problem does not have closed�formed solutions in

continuous time and state. This is due to the fact that we have several

instruments with complex cash�ows in a dynamic setting and that market

frictions such as variable and �xed transaction costs and tax regulations

play an important role on the optimal portfolio choice. The uncertainty

space needs to be discretized both in time and state. We refer to the pro-

cess of generating discrete yield curve scenarios as interest rate scenario

generation.

In the following we introduce some scenario generation methods for use

in stochastic programming applications. These methods are general and

may be used for discretizing any underlying stochastic process. Kaut &

Wallace (2003) give a review of these methods. To the best of our knowl-
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edge, no comparative studies on the suitability of these methods for use

in stochastic programming have been published up to the time of this

writing.

4.2.1 Bootstrapping

Bootstrapping is the simplest approach for generating scenarios. It does

not involve using any underlying interest rate model. Instead it uses the

available historical data directly as future scenarios. For example yield

curves observed the last 120 months may be used to indicate possible

yield curve scenarios in a month, a year or in �ve years. The strength

of this approach, besides being simple, is that it preserves the observed

historical correlation. However, there are serious shortcomings:

1. It can only be used for one�period models, since there is no mech-

anism to capture the conditional moments in between the periods.

2. The information about the current level of the stochastic variable

is ignored.

3. The volatility of the historical data is only correctly captured if we

use disjunct observations of the same length as the period length

for the scenarios. For example the 120 monthly observations of yield
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curves may only be used for generating scenarios over the next

month.

4. The method never suggests a scenario not observed historically.

5. It does not necessarily generate consistent yield curve scenarios with

for example no existence of arbitrage.

4.2.2 Sampling

The most common method for generating scenarios in �nance is sampling

from an underlying stochastic process such as an interest rate model.

Sampling does not su�er from the shortcomings of the bootstrapping

method, since the underlying stochastic process may be quite advanced.

What is more, sampling is almost as easy as bootstrapping in that it is

essentially a question of generating random numbers from the distribution

of an underlying random variable.

The main problem with sampling is the curse of dimensionality. It is com-

mon that over 1000 scenarios are generated to match the statistical prop-

erties of a continuous one�factor stochastic process. The number grows

exponentially as the number of periods in the scenario tree increases.

A multi�factor stochastic process with non�perfectly correlated variables
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has a similar e�ect on the number of scenarios.

Due to this curse of dimensionality a number of variance reduction meth-

ods have been developed. Variance reduction is a procedure used to in-

crease the precision of the estimates that can be obtained for a given

number of iterations. Every randomly generated variable from the simu-

lation is associated with a variance which limits the precision of the sim-

ulation results. Variance reduction methods are then used to reduce this

variance. The main methods are: Common random numbers, antithetic

variates, control variates, importance sampling and strati�ed sampling.

4.2.3 Moment matching

Høyland & Wallace (2001) suggest a simple moment matching approach

to generate scenarios for stochastic programs. Unlike in sampling, moment

matching uses optimization to generate scenarios which match some sta-

tistical properties of an underlying stochastic process. Such properties

may include mean, covariance, skewness, kurtosis, percentiles, higher co�

moments and so on.

Given a set of statistical properties sl, their estimated values V ALsl
and

a weight wsl
attached to every statistical property the moment matching
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problem is formulated as the following optimization problem:

min
sL∑

sl=s1

wsl
(fsl

(xn, pn) − V ALsl
)2

wrt.∑
n

pn = 1

pn ≥ 0 for all n ∈ 1, · · · ,N.

Here, xn is the value of the stochastic variable found by the optimization

model at every scenario n, the function fsl
takes all such values with their

probability pn and returns the value for the statistical property in ques-

tion. Note that in this formulation both xn and the scenario probability

pn are de�ned as variables. In many cases the probabilities pn are �xed

beforehand to reduce the non�linearity of the problem.

A moment matching approach ensures statistical accuracy by de�nition

as it matches the statistical moments. In that respect the method is much

more e�cient than sampling � fewer scenarios are needed to match the

moments. However, the approach is too general for many applications.

Extra conditions need to be added to meet the particular correctness and

consistency criteria for individual applications. We give such an example
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in paper E.

4.2.4 Optimal discretization

P�ug (2001) and Hochreiter & P�ug (2002) introduce a number of op-

timization models for scenario tree generation using what they refer to

as �optimal discretization�. Optimal discretization is essentially di�erent

from all the other discretization methods, in that the focus is not on cap-

turing the characteristics of an underlying stochastic process as closely

as possible. Instead the method generates scenario trees such that the

discretization error in the objective function of the underlying stochastic

programming model is minimized. The discretization error of the objec-

tive function can, however, only be determined within some lower and

upper bounds, which are not necessarily tight, meaning that optimal dis-

cretization does not with guarantee overperform other methods such as

moment matching. More work is needed to investigate the e�ectiveness

of this method in practical applications.
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4.3 Mortgage bond pricing

This section reviews the pricing models applied to �xed rate callable mort-

gage bonds (the bonds behind FRMs) as well as Cibor linked �oating rate

callable mortgage bonds (the bonds behind CRMs). Conceptually, the

pricing of non callable bullet mortgage bonds (the bonds behind ARMs)

is straightforward. The payments of a bullet bond are discounted with for

example the swap curve plus a constant yield curve spread (which gen-

erally increases with the maturity of the bond). The pricing of �xed rate

callable mortgage bonds and Cibor linked �oating rate callable mortgage

bonds is, however, more complex due to the embedded options.

4.3.1 Pricing of �xed rate callable bonds

In principle, a �xed rate callable bond constitutes a portfolio of a non

callable bond and a short position in a Bermudan call option on that

bond (with a strike price of 100) re�ecting the embedded prepayment

option. However, for pricing purposes, the prepayment option cannot be

treated as a standard Bermudan call option since borrowers do not pursue

rational exercise strategies. There is no prepayment risk when a mortgage

bond trades below par (since the bond trades at market price), but for

bonds trading above par the prepayment option is in the money and
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therefore there is a substantial prepayment risk.

Empirical prepayment models based on historical data are needed to price

�xed rate callable mortgage bonds. Such models predict the prepayment

rate for a given payment date as a function of the yield curve and other

factors a�ecting the level of prepayments such as the size of the loans.

The most important factor a�ecting the prepayment rate is the gain from

re�nancing to a lower rate. The gain is de�ned as the percentage reduction

in the mortgage payments on the new loan, taking taxation and prepay-

ment costs into account. When prepaying a loan, borrowers face both �xed

and variable costs. The gain calculation is based on the total payment for

the next year or the present value of all remaining payments using the

after tax re�nancing rate on the new loan as the discount rate. On aver-

age, borrowers prepay large loans more actively than smaller loans. This

fact has to be taken into account by the prepayment model as well.

4.3.2 Pricing of capped �oaters

Capped �oaters carry a �oating rate, are callable and have an embedded

option in the form of an interest rate cap. The cap has a �xed strike

throughout the maturity of the bond, typically up to 30 years. The re-
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payment pro�le will be of the annuity type where amortization may be

deferred for the �rst 10 years. A characteristic of Danish capped �oaters

is that the annuity rate tracks the six�month Cibor. This means that

the repayment pro�le of the bonds is stochastic as the annuity rate is

�xed on the basis of the development in six�month Cibor. As the bonds

have embedded options, a stochastic yield curve model is required for the

pricing. This model must be calibrated to basis options (such as caps

and swaptions) matching the implied options embedded in the capped

�oaters.

With such a model at hand the pricing of capped �oaters is done in a

straight forward manner, i.e. without a need for a prepayment model. The

embedded call option in capped �oaters is insigni�cant and will theoret-

ically or practically never go above the strike price of 105.

4.4 Stochastic programming

Stochastic programming is a framework for modeling optimization prob-

lems that involve uncertainty. Whereas deterministic optimization prob-

lems are formulated with known parameters, real world problems almost

invariably include some unknown parameters. When the parameters are
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known only within certain bounds, one approach to tackling such prob-

lems is called robust optimization. Here the goal is to �nd a solution

which is feasible for all such data and optimal in some sense. Stochastic

programming models are similar in style but take advantage of the fact

that probability distributions governing the data are known or can be es-

timated. The goal here is to �nd a policy that is feasible for all (or almost

all) the possible data instances and maximizes the expectation of some

function of the decisions and the random variables. More generally, such

models are formulated, solved analytically or numerically, and analyzed

in order to provide useful information to a decision maker.2 Two classical

books on stochastic programming are Birge & Louveaux (1997) and Kall

& Wallace (1994).

4.4.1 Two�stage stochastic programs

The most widely applied and studied stochastic programming models are

two�stage linear programs. Here the decision maker takes some action in

the �rst stage, after which a random event occurs a�ecting the outcome

of the �rst-stage decision. A recourse decision can then be made in the

second stage that compensates for any bad e�ects that might have been

2This de�nition of stochastic programming is taken from the Stochastic Program-

ming Community homepage: http://www.stoprog.org/
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experienced as a result of the �rst�stage decision. The optimal policy from

such a model is a single �rst�stage policy and a collection of recourse

decisions (a decision rule) de�ning which second�stage action should be

taken in response to each random outcome.

Let (Ω, P ) be a probability space, ω ∈ Ω be the realization of the uncer-

tain data parameters and p(ω) the corresponding probability. Let A, b, c

be deterministic parameters and x the �rst stage deterministic decision

variable. We de�ne a two-stage stochastic program as:

minZ =cx+ EωQ(x, ω)

wrt.

Ax = b

x ≥ 0

where the recourse function Q(x, ω) is de�ned as follows:
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Q(x, ω) = min fy(ω)

wrt.

D(ω)y(ω) = d(ω) +B(ω)x

y(ω) ≥ 0

The parameters D(ω), d(ω) and B(ω) as well as the recourse variable y(ω)

are stochastic and de�ned over Ω. The two�stage stochastic program may

now be rewritten as:

minZ =cx+ Eω[fy(ω)]

wrt.

Ax = b

−B(ω)x+D(ω)y(ω) = d(ω)

x, y(ω) ≥ 0;
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4.4.2 The deterministic equivalent of the two�stage stochas-

tic program with recourse:

Once the uncertainty space is represented as a set of discrete scenarios

then the stochastic programs can be formulated as deterministic ones. For

the two�stage stochastic program the deterministic equivalent is formu-

lated as follows:

minZ =cx+ p1fy1 + p2fy2 + · · · + pkfyk

wrt.

Ax = b

−B1x+D1y1 = d1

−B2x+ D2y2 = d2

...
. . .

. . .

−Bkx+ Dkyk = dk

x, y1, y2, · · · , yk ≥ 0;

0 ≤ pω ≤ 1 and
∑
ω

pω = 1.0

Here, the set of scenarios ω are enumerated from 1, · · · , k. Note that in the
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second stage, we take some function f of the recourse variables y1, · · · , yk

�rst and then average the return values.

4.4.3 Multistage stochastic programs

Two�stage stochastic programs can be extended to several stages in the

following manner:

min
x1

=
{
c1x1 + Eω2

[
min
x2

c2x2+

Eω3|ω2

[
min
x3

c3x3 + · · · + EωT |ωT−1|···|ξ2 min
xT

cTxT

]]}
wrt.

A11x1 = b1

A21x1 +A22x2 = b2

A31x1 +A32x2 +A33x3 = b3

...
. . .

...

A31x1 +A32x2 +A33x3 + · · · +ATTxT = bT ,

where x1 is a deterministic �rst stage decision variable and x2 � xT are

stochastic recourse variables for periods 2 � T . ωt is the realization of

the uncertain data parameters for times t = 2, · · · , T . The uncertainty
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unfolds at a given time t conditioned on the states of the uncertainty

realized at time t− 1.

4.4.4 Two formulations of a stochastic program

Consider the scenario trees in Figure 4.4:

n=1

n=2

n=3

n=4

n=5

n=6

n=7

Year 1 Year 2 Year 3

s1

s2

s3

s4

Year 1 Year 2Year 1 Year 2 Year 3
Year 3

s1 s1 s1

s2 s2 s2

s3 s3 s3

s4 s4 s4

Figure 4.4: A scenario tree may be represented either by a number of nodes (top) or

by a number of scenarios and time points (down).

Stochastic programs can be formulated either by using nodes or by using

scenarios. In the node formulation the uncertainty variables are repre-
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sented in harmony with the way the uncertainty is unfolded. In the sce-

nario formulation (also called split�variable formulation) the number of

uncertainty variables at each time point is multiplied by the number of

scenarios. So in this formulation we need explicitly to make sure that not

more than one decision is made at any given node. This is done by adding

a number of constraints known as "non�anticipativity" constraints. For

the example shown in Figure 4.4 (down) and given a stochastic variable

xt,s de�ned over all times t and scenarios s we need to add the following

constraints:

xt1,s1 = xt1,s2 = xt1,s3 = xt1,s4

xt2,s1 = xt2,s2

xt2,s3 = xt2,s4



Chapter 5

Summary of the papers

The research e�orts in this work are within the domain of optimization in

�nance and applied mathematical �nance. The focus has been on realistic

problem solving. That involved developing and testing several mathemat-

ical models in the one hand and �nancial analysis and interpretation and

discussion of the �ndings in the other. Along the way the research has

also resulted in a theoretical proof. In this chapter we review the main

features of our work as presented in papers A through E and point out

how the papers are interrelated around the same central theme, namely

the mortgage choice problem.
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5.1 Interest rate modeling

Interest rate dynamics is a very well researched area. Thousands of re-

search papers and several books are written with the main focus on in-

terest rate modeling. These models are, however, developed mostly in

order to provide the underlying dynamics for pricing of interest rate sen-

sitive instruments here and now rather than ensuring that future interest

rate dynamics are captured in a realistic manner. Their success criteria is

resulting in realistic present values for interest rate sensitive instruments.

In our setting we not only need prices of mortgages here and now but

we also need approximative prices under di�erent market conditions for

rebalancing purposes in some future scenarios. Our contribution within

interest rate modeling is presented in paper E. Our model is to the best

of our knowledge the only one which uses the three factors level, slope

and curvature directly and thereby produces a real�life�like variation over

term structure predictions. The model is an specialization of a vector au-

toregressive model with lag 1 (VAR1). It is easy to calibrate to historic

time series with some time step, say weekly observations. The length of

the prediction steps does not need to be equal to the step length for the

historic observations. Interest rates can be predicted over varying time

steps (say annually or bi�annually) without having to simulate over steps
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of same length as in the calibration data. This means, besides computa-

tional e�ciency, that the scenario trees generated based on this model

are reproducible which is an important quality for testing.

5.2 Scenario generation

The scenario generation is a two�step process:

1. An event tree of the term structures of interest rates is built.

2. Mortgages are priced in every node of the scenario tree.

5.2.1 Interest rates

With an interest rate model at hand we need to generate a scenario tree

of interest rates. Our scenario generation approach is explained fully in

paper E. We de�ne a number of quality requirements for a scenario tree

of term structures. Our scenario generation approach is an extension of

the moment matching approach of Høyland & Wallace (2001).

We developed the new scenario generation approach in the later part of

the Ph.D. project which is why the method is not tried in the optimiza-
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tion models from the papers represented in this thesis. In paper A we use

the one factor model of Black, Derman & Toy (1990) and in papers C and

D we use a specialized version of the Vasicek model developed by Jensen

& Poulsen (2002). We have, however, compared the results of the opti-

mization models based on the new scenario generation approach with the

results from the above mentioned papers. These results are presented in

chapter 7 of this summary report under a discussion on model robustness.

5.2.2 Mortgage bond prices

Once a scenario tree of interest rates is built the universe of available

mortgage bonds need to be priced in the nodes of the tree. While this is

an straight forward calculation for bullet bonds which are the funding in-

struments behind ARMs, it becomes an extremely challenging task when

it comes to pricing callable �xed rate mortgage bonds which are long term

annuities with embedded Bermudan call options as well as buyback deliv-

ery options. Pricing such bonds asks for a proper prepayment (burn out)

model which predicts the exercise of the embedded options under di�er-

ent interest rate scenarios. Besides the models used for pricing such bonds

normally add a so called option adjusted spread (OAS) to the theoretical

prices found in order to match market prices of the product. Likewise,

capped �oaters � the funding instruments behind CRMs � involve path
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dependent option pricing.

We do not develop new pricing algorithms for the bonds behind FRMs and

CRMs, since we believe this would take us far from the central question

in this project. Instead we apply existing "state of the art" pricing models

to every path of the scenario tree. In paper A we use Nykredit's internal

mortgage bond pricing model (Nyklib), whereas in papers C and D we use

approximative pricing approaches similar to those suggested in Nielsen &

Poulsen (2004). Finally we have tried ScanRate's RIO pricing system

(see http://www.scanrate.dk) on our VAR1 interest rate trees and the

optimization results based on these scenarios are reported in chapter 7 of

this summary report.

5.3 Optimization framework

With a scenario tree of mortgage bond rates and prices at hand we want

to �nd optimal mortgage strategies for homebuyers with di�erent objec-

tives. We develop an optimization framework which is completely sepa-

rated from the scenario generation process. A given scenario tree is only

one possible input to the optimization model. In this way we obtain max-

imal �exibility with regards to personal preferences on the choice of an
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uncertainty model.

But why do we need optimization? After all one might argue that if we all

agree on a complete representation of the uncertainty which reproduces

market prices of mortgages, then all mortgages are equally attractive in

average. The answer is, that even under these unrealistic assumptions the

homebuyers personal risk preferences ask for an optimization model in

order to �nd the best mortgage choice. In section 3.2 we saw an example

of a homebuyer who was interested in �nding a mortgage portfolio which

yields the smallest average of the highest 10% of the holding period costs

over 5 years. Answering such questions is simply not possible without an

optimization model. But even if we do not consider personal risk prefer-

ences, it is by far a questionable assumption that all mortgages should be

equally attractive in average. We give the following reasons:

• The mortgage market is incomplete, i.e. there are more states of the

world than mortgages.

• Market frictions such as transaction costs and tax a�ects have an

impact on the mortgagors choice.

• The prepayment behavior for mortgages with embedded options is

suboptimal.
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Given this background, using optimization techniques for the mortgage

choice problem is indeed well justi�ed. Most of the work in the papers

A, C and D is concentrated around developing and testing optimization

models for the mortgage choice problem.

The work was inspired by a paper of Nielsen & Poulsen (2004). They

design a trinomial scenario tree using an underlying two�factor model of

interest rates for pricing existing and synthetic mortgage bonds. Further-

more they introduce a stochastic programming model to �nd the optimal

initial loan strategy among a number of ARMs and FRMs and to advise

the mortgagor on optimal readjustments along the way. Their optimiza-

tion model, however, does not include a risk measure and the e�ects of

�xed�mortgage origination costs were ignored. In paper A we extend the

model to include �xed�mortgage origination costs and budget constraints.

Di�erent objective functions are tried in this paper:

1. Minimizing average holding period costs.

2. Minimizing the highest holding period cost scenario. (Minmax)

3. Minimizing the average holding period cost with budget constraints.

4. Minimizing the average holding period cost with budget and out-

standing debt constraints.
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The conclusion is that a minmax mortgagor or a mortgagor with budget

constrains bene�ts from choosing an initial portfolio of an ARM and a

FRM, given that there are only these two types of products to choose

from. The budget constraints provide indirect means for risk control, but

no explicit risk measure is considered in this paper either. We incorporate

the scenario reduction algorithm of Heitsch & Römisch (2003) to reduce

the size of the tree. We observe, however, that the scenario reductions

introduces a high degree of arbitrage opportunities in the scenario tree

and even though arbitrage is not allowed to be exercised in our problem,

the optimal solutions found in the reduced trees become biased. We also

introduce a simple iterative algorithm for solving the LP�relaxed version

of the 0�1 stochastic program just using a few iterations.

We add an explicit risk measure for this class of problems in paper C. Here

we develop a single�period stochastic programming model to trade o�

the present value of average holding period costs against the Conditional

Value at Risk (CVaR1) value. We introduce the notion of a Mean/CVaR

e�cient frontier for a mortgagor and show that diversi�ed mortgage loan

strategies outperform single mortgage loan strategies. Figure D.1 high-

lights our �ndings which speak strongly in favor of diversi�cation.

1For a review of CVaR as a coherent risk measure see Artzner et al. (1999), Rock-

afellar & Uryasev (2000) and Zenios (2007).
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Figure 5.1: For a mortgagor with a seven year horizon a mix of vari-

able and �xed�rate mortgages provide low payments and low risk, here

measured by the 10% CVaR value.
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Finally in paper D we develop a multi�stage version of our earlier model

and show that improved results can be obtained by introducing dynamic

trading into the model. It will be seen that the budget�constrained model

of paper A is subsumed by the bilinear Mean/CVaR minimizing model.

Furthermore, we consider Capped Rate Mortgages CRMs as part of our

universe of loans and suggest a simple approach to determine whether

the cap option comes at a fair price for a given mortgagor with a certain

risk appetite. Figure (5.2) compares a mean/CVaR e�cient frontier for a

single�period model with that of a multi�stage model.

Figure 5.2: As more decision stages are added to the problem the solution

quality is improved. The improvement is, however, marginal after adding

three extra decision stages.
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More optimization results are compared by using di�erent scenario gener-

ation approaches, several loans and many optimization models in chapter

7. These results have yet not been published in any paper.

5.4 Financial Gi�en goods

Paper B may at a �rst reading seem to be a deviation from the central

theme of this thesis. That is not the case. We show in this paper that �-

nancial Gi�en goods can not exist in a Markowitz mean variance setting.

We argue that it makes good �nancial sense to allow their existence in

optimal portfolio models and we show that such goods do exist in more

realistic models such as those developed in papers A, C and D. In other

words we provide additional evidence as to why we do not consider port-

folio variance but rather budget constraints or more generally Conditional

Value at Risk as our measure of risk.

A Gi�en good is one for which demand goes down if its price goes down.

At �rst, it is counter intuitive that such goods exist at all. But most in-

troductory text books in economics will tell you that they do; some with

stories about potatoes and famine in Ireland, some with �rst order con-

ditions for constrained optimization. In paper B we study similar e�ects
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� by which we mean a negative relation between expected return and

demand � in portfolio choice models. Surprising dependence on expected

rates of return is not uncommon in �nance. In complete models, option

prices do not depend on the stock's growth rate. And quite generally

call option prices increase with the interest rate; immediately you would

think that cash�ows are discounted harder, but in fact the replicating

strategy which entails a short position in the bank account becomes more

expensive, and hence the call option does too.

We �rst show that in the basic Markowitz mean/variance model, there are

no Gi�en goods; if a stock's expected rate of return goes up, its weight in

any e�cient portfolio goes up. This seems a text-book comparative statics

result. We have, however, only been able to �nd it indirectly stated, for

instance one could view it as a corollary or lemma related to the Harmony

Theorem from Luenberger (1998, Section 7.8). So we give a simple proof.

We then look at Merton's dynamic investment framework. In its basic

version demand for any asset depends positively on its expected rate of

return, but if a subsistence level is included, demand for the risk free asset

may fall with the interest rate.

Skeptics would say that Gi�en goods exist in and only in economic text

books. We end the paper by illustrating that it is not so. Our example
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uses a the multistage stochastic programming framework from papers A,

C and D and shows that some � completely rational � mortgagors react

to lower costs of long-term �nancing (re�ecting a smaller market price of

risk) by using more short term �nancing.

In the next chapter the main features and novelties of this thesis are

summarized.
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Chapter 6

Research contributions

The research e�orts in this work are within the domain of optimization in

�nance and applied mathematical �nance. The focus has been on realistic

problem solving. That involved developing and testing several mathemat-

ical models as well as �nancial analysis and interpretation and discussion

of the �ndings. Along the way the research has also resulted in a theoret-

ical proof on lack of Gi�en goods in a Markowitz mean variance setting.

We show then that such goods do exist in more realistic models such as

those developed in this thesis. In this chapter the main research contri-

butions are summarized:
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6.1 Optimization models

The optimization models developed in this project are novel. In particular:

• In paper A we develop a number of multistage stochastic programs

to represent the homebuyers mortgage choice problem. The em-

phasis of the modeling work is its realism, i.e variable �xed and

transaction costs, tax e�ects, mortgage rebalancings and early re-

payments are modeled. Likewise homebuyers budget constraints can

be added.

• In paper C we generalize the budget constraints by introducing an

explicit measure of risk (CVaR). The model is developed as a single

stage model in order to study the incremental e�ects of moving from

single loan issue and hold strategies to optimal portfolios of loans

though still in an issue and hold setting.

• In paper D we introduce the multistage version of the model from

paper C and show that initial diversi�cation and future rebalancings

improves the optimal payment/risk frontiers from the single stage

setting.

• In paper E we develop an extended moment matching model for

generating scenario trees of the term structure of interest rates. The
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model is an extension of Høyland & Wallace (2001) and it results

in realistic representations of interest rate uncertainty.

6.2 A theoretical result on �nancial Gi�en goods

In paper B we show �rst that in the basic Markowitz mean/variance

model, there are no Gi�en goods; if a stock's expected rate of return goes

up, its weight in any e�cient portfolio goes up. We then look at Merton's

dynamic investment framework. In its basic version demand for any asset

depends positively on its expected rate of return, but if a subsistence level

is included, demand for the risk�free asset may fall with the interest rate.

We end the paper by illustrating a generalized version of the multi�stage

stochastic programming framework from Rasmussen & Clausen (2007)

and show that some � completely rational � mortgagors react to lower

costs of long�term �nancing (re�ecting a smaller market price of risk) by

using more short�term �nancing.

6.3 A term structure scenario generation model

Our term structure scenario generation approach in paper E is novel.

We de�ne a number of quality requirements for a scenario tree of term
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structures and we extend the moment matching approach of Høyland &

Wallace (2001) in order to generate multiperiod scenario trees of term

structures which abide by these requirements.



Chapter 7

New results on model

robustness

One of the advantages of the mortgage advising system developed in this

project is its modularity. In particular the following parts of the model

can be replaced by the analyst's choice of models in order to suit the

particular needs or subjective expectations of the homebuyer:

1. Scenario trees of term structure of interest rate.

2. Mortgage pricing models.
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3. Objective functions of the optimization problem.

The high degree of �exibility necessitates a discussion of robustness of

the conclusions. In particular it is important to know how robust the

conclusions of an instance of the optimization problem are given di�erent

choices of interest rate models and mortgage pricing models.

In this chapter we discuss model robustness by showing some results which

have not been discussed in any of the papers presented in this thesis. The

background for this extra analysis is that we in paper E introduce a

new interest rate scenario generation model which we argue gives a more

realistic representation of interest rate uncertainty than the Vasicek model

used in papers C and D. Besides in the advisory system developed in

cooperation with Nykredit A/S we use ScanRate's RIO to price mortgages

instead of using the approximative approach of Nielsen & Poulsen (2004)

as is the case in papers C and D. We will now present the new results

and compare them with those reported in papers C and D.
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Figure 7.1: Comparison of single issue and hold strategies with optimal

passive and active strategies. The underlying interest rate model is a 1�

factor Vasicek model.

7.1 Comparison of two scenario generation ap-

proaches

Recall that one of the central conclusions in papers C and D was summa-

rized in Figure (7.1).

The corresponding initial solutions for the single period and the multi-

stage cases are shown in Figure (7.2).
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Figure 7.2: First stage solutions for di�erent degrees of risk aversion for a passive

(single period) and active (multiperiod) mortgagor.The underlying interest rate model

is a 1�factor Vasicek model.
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Figure 7.3: Comparison of single issue and hold strategies with optimal

passive and active strategies. The underlying interest rate model is our

3�factor VAR1 model.

In comparison when we use the VAR1 interest rate model of paper E

together with ScanRate's RIO mortgage pricing we get the e�cient fron-

tier given in Figure (7.3) and the corresponding initial solutions in Figure

(7.4).

The experiments are based on market data from February 2005. Similar

solution patterns are obtained for quarterly updates of data until August

2007.

We make the following observations on robustness:
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Figure 7.4: First stage solutions for di�erent degrees of risk aversion for a passive

(single period) and active (multiperiod) mortgagor.The underlying interest rate model

is our 3�factor VAR1 model.
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• Combinations of loans and rebalancings improve the results as com-

pared to single loan issue and hold strategies.

• Risk averse mortgagors start with an initial portfolio of loans rather

than a single loan regardless of the underlying uncertainty represen-

tation.

• Single period models are more robust than multistage models.

The following qualitative conclusions may then be made:

• It is safe (robust) to advise risk averse mortgagors to start with a

loan portfolio made of two mortgages rather than one.

• Multistage models add value but they include an element of specu-

lation on the underlying uncertainty representation.
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Chapter 8

Final remarks

8.1 Conclusions and Empirical �ndings

We have shown that research in the area of optimization in �nance an-

swers real world �nancial problems not touched in continuous mathemat-

ical �nance. Our models are similar to those from the well�known case

studies such as the Russel�Yasuda Kasai �nancial planning model (See

Cariño, Myers & Ziemba (1998)), the Towers Perrin�Tillinghast asset

and liability management system (See Mulvey, Gould & Morgan (2000)),

Gjensidig Nor's decision support model (See Høyland, Ranberg & Wal-
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lace (2003)) and Prometeia's model for managing insurance policies with

guarantee (Consiglio, Cocco & Zenios (2002)).

In the following we summarize the most important conclusions of our

work:

• Diversi�cation pays o� in particular for risk averse homebuyers or

homebuyers who do not actively rebalance their mortgage portfolio.

The intuition behind this is the strong negative correlation between

the holding period costs of short term and long term �nancing.

• Rebalancing is a good idea for both risk averse and risk neutral

homebuyers. Risk neutral homebuyers should start by a single mort-

gage and rebalance the whole outstanding debt when the embedded

options are deep in the money. Risk averse homebuyers should start

with a mix of �xed or capped and adjustable rate mortgages. They

should then partially rebalance one of the mortgages when some

pro�t can be locked in.

• Fixed transaction costs are important in deciding how many mort-

gages should be included in the homebuyers portfolio of loans. Two

mortgages are often seen in the portfolio of a risk averse homebuyer

even when the �xed transaction costs are present. The incremental

bene�ts of a third mortgage do not surpass the extra �xed transac-
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tion costs incurred for almost all homebuyers.

• Mortgage banks should consider tailored replications of CRMs by

using plain ARMs and FRMs and hedging some risk away in the

market. In this way they issue loans in few but more liquid bond se-

ries which are normally more fairly priced than the thin specialized

series for funding CRMs.

• Mortgage banks should have less focus on recommending one type

of mortgage for example FRMs with prices close to par to all home-

buyers as a collective group. Homebuyers often do as they are told

by their mortgage bank advisors and their collective preference for

one particular product a�ects the market price of that product to

homebuyers disadvantage. Instead the advisors should seek to �nd

combinations of products whose cash�ows are reasonably priced

and which at the same time o�er protection against adverse market

movements.

8.2 Future work

We consider the following three directions as the main pointers for future

work:
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1. Developing a scenario generation library for the personal investor.

Such a library may include:

(a) Several stochastic processes such as interest rate models, econo-

metric models, regression models, etc. to capture the underly-

ing uncertainties on interest rates, household income, real state

prices, stock index movements and so on.

(b) Several discretization schemes such as moment matching, prop-

erty matching, optimal discretization, Monte carlo samplings

and so on.

(c) Di�erent pricing models for options, mortgage backed securi-

ties, etc.

2. Developing an optimal mortgage design system. The general idea

here is that the mortgage banks should decide on a cash�ow which

is marketable and use the optimal mortgage design system to �nd

the cheapest funding for that cash�ow.

3. Developing a personal asset liability management system for the

Danish household. Such a system should help the individual house-

hold with an elaborate scheme on their decisions on the two most

important investments most household engage in, namely �nancing

a house and pension investments.



Financial glossary

An alphabetical list of common �nancial terms used throughout the thesis

are given in the following. The listing is not exhaustive. It is only meant

to ease the reading of the thesis for the reader who is not familiar with

�nance. Most of the de�nitions are taken from �nancial glossaries on the

world wide web. 1.

Annuity payments:

Annuity payments refer to any terminating stream of �xed payments over

a speci�ed period of time. Most mortgage loans have annuity payments.

The annuity payment is calculated using the following formula:

payment = ID
( r

1 − (1 + r)−n

)
.

1 http://www.wikipedia.org/ and http://www.investopedia.com/.
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Where:

ID = initial debt,

r = interest rate per period,

n = number of periods.

Example: You can get a $150,000 home mortgage at 7% annual interest

rate for 30 years. Payments are due at the end of each month and interest

is compounded monthly. The annuity payment is calculated as:

ID = 150,000, the loan amount,

r = 0.005833, interest per month (0.07 / 12),

n = 360 periods (12 payments per year for 30 years),

payment = 150, 000
( 0.005833
1 − 1.005833−360

)
= $997.95.

This means that you should pay $997.95 (the annuity) every month in 30

years in order to pay back the mortgage.

Bullet bonds:

A bullet bond is a regular coupon paying debt instrument with a single

repayment of principal on the maturity date.

Example: You invest $100, 000 in a �ve�year bullet bond with an annual

interest rate of 5%. Payments are due at the end of each year and interest
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is compounded yearly. You will get $5000 at the end of year 1 to 4 and

$100, 000 + $5000 = $105, 000 at the end of year 5.

Buyback delivery option:

Buyback delivery option refers to the borrowers right to terminate a loan

by buying back the mortgage bonds in the bond market and delivering

them to the mortgage bank. In case the market price of the mortgage

bond is below par (100) this option means a reduction in the size of

the outstanding debt in case of prepayment. Alternatively a price above

par means an increase in the size of the outstanding debt. Fixed rate

mortgage bonds normally have an embedded call option with strike at

par which means the mortgagor will never pay more than the value of the

outstanding debt in order to terminate the loan.

Bermudan option:

A Bermudan option is a call or put option which can be exercised on

prespeci�ed days during the life of the option. Bermudan options are a

hybrid of European options, which can only be exercised on the option

expiry date, and American options, which can be exercised at any time

during the option life time. As a consequence, under same conditions, the

value of a Bermudan option is greater than (or equal to) a European

option but less than (or equal to) an American option.
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Call option:

A call option is a �nancial contract between two parties, the buyer and the

seller of this type of option. Often it is simply labeled a �call�. The buyer

of the option has the right, but not the obligation to buy an agreed quan-

tity of a particular commodity or �nancial instrument (the underlying

instrument) from the seller of the option at a certain time (the expira-

tion date) for a certain price (the strike price). The seller (or �writer�) is

obligated to sell the commodity or �nancial instrument should the buyer

so decide. The buyer pays a fee (called a premium) for this right. A call

option is said to be in the money, when the option's strike price is below

the market price of the underlying asset. For a callable �xed rate covered

bond with strike at par (100), if the price of the underlying non�callable

covered bond is above par, then the call option is in the money. If the

price of the underlying non�callable covered bond is below par, then the

call option is out of the money. An option which is so far in the money

that it is unlikely to go out of the money prior to expiration is called

deep in the money.

Covered bonds:

Covered bonds are debt securities backed by cash�ows from mortgages or

public sector loans. Covered bonds have been very common in Germany

for many years where they are known as Pfandbrief and can be traced
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back to 1769. The Danish mortgage bonds are covered bonds backed by

mortgage cash�ows.

Currency risk:

Currency risk is a form of risk that arises from the change in price of one

currency against another. Whenever investors or companies have assets

or business operations across national borders, they face currency risk if

their positions are not hedged.

Default risk:

The risk that companies or individuals will be unable to pay the contrac-

tual interest or principal on their debt obligations. In other words, this is

the risk that the investor will not get paid.

Derivatives:

Derivatives are �nancial instruments whose value is derived from the value

of something else. They generally take the form of contracts under which

the parties agree to payments between them based upon the value of an

underlying asset or other data at a particular point in time. The main

types of derivatives are futures, forwards, options, and swaps.

Embedded option:

An embedded option is an inseparable part of another �nancial instrument
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in contrast to a normal (or bare) option, which trades separately from

the underlying security. A common embedded option is the call option in

many covered bonds.

Floaters:

A �oater is a bond or other type of debt whose coupon rate changes

with market conditions (short�term interest rates). It is also known as

��oating�rate debt�.

Holding period costs:

The total costs associated with taking a loan for a given holding period.

It includes both the cash�ow payments as well as the prepayment of the

outstanding debt at the horizon of the holding period.

Interest rate cap:

An interest rate cap is a derivative in which the buyer receives money at

the end of each period in which an interest rate exceeds the agreed strike

price. As an example a variable rate covered bond with an embedded

interest rate cap of 5% guarantees the borrower the interest rate payments

will never be more than 5% of the outstanding debt.

Interest rate risk:

Interest rate risk is the risk that the relative value of an interest�bearing
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asset, such as a loan or a bond, will worsen due to an interest rate increase.

In general, as rates rise, the price of a �xed rate bond will fall, and vice

versa.

Liquidity risk:

Liquidity risk arises from situations in which a party interested in trading

an asset cannot do it because nobody in the market wants to trade that

asset. Liquidity risk becomes particularly important to parties who are

about to hold or currently hold an asset, since it a�ects their ability

to trade. Manifestation of liquidity risk is very di�erent from a drop of

price to zero. In case of a drop of an asset's price to zero, the market

is saying that the asset is worthless. However, if one party cannot �nd

another party interested in trading the asset, this can potentially be only

a problem of the market participants with �nding each other. This is why

liquidity risk is usually found higher in emerging markets or low�volume

markets.

Mortgage:

A mortgage is a method of using property (real or personal) as security for

the payment of a debt. The term mortgage refers to the legal device used

for this purpose, but it is also commonly used to refer to the debt secured

by the mortgage, the mortgage loan. In most jurisdictions mortgages are
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strongly associated with loans secured on real estate rather than other

property (such as ships).

Mortgage backed security (MBS):

A mortgage backed security is a �nancial instrument whose cash�ows are

backed by the principal and interest payments of a set of mortgage loans.

Payments are typically made monthly or quarterly over the lifetime of

the underlying loans.

Mortgage loan:

A mortgage loan is a loan secured by real property through the use of

a mortgage. The word mortgage alone, in everyday usage, is most often

used to mean mortgage loan.

Mortgagor:

A mortgagor is an individual or company who borrows money to purchase

a piece of real property. For most homebuyers, becoming a mortgagor is

necessary for owning a home. Because the real property in question is

o�ered as security for the loan, the lender can claim its interest in the

property in the event the loan is not repaid. This decreased risk allows

homebuyers to borrow funds at much lower interest rates.

Swap curve:
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The swap curve identi�es the relationship between swap rates at varying

maturities. Swap curves are normally used as proxies for yield curves.

Swap rate:

An interest rate swap is a derivative in which one party exchanges a

stream of interest payments for another party's stream of cash �ows.

Usually a stream of variable rates is exchanged for a �xed rate also called

the swap rate.

Yield curve:

The yield curve is the relation between the interest rate (or cost of bor-

rowing) and the time to maturity of the debt for a given borrower in a

given currency.

Zero coupon bonds:

Zero coupon bonds are �nancial contracts that pay no periodic interest

payments, or so�called "coupons". Zero coupon bonds are purchased at

a discount from their value at maturity. The holder of a zero coupon

bond is entitled to receive a single payment, usually of a speci�ed sum

of money at a speci�ed time in the future. Investors earn interests via

the di�erence between the discounted price of the bond and its par (or

redemption) value, usually 100.
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Abstract

We consider the dynamics of the Danish mortgage loan system and pro-

pose several models to re�ect the choices of a mortgagor as well as his

attitude towards risk. The models are formulated as multi stage stochas-

tic integer programs, which are di�cult to solve for more than 10 stages.

Scenario reduction and LP relaxation are used to obtain near optimal

solutions for large problem instances. Our results show that the standard

Danish mortgagor should hold a more diversi�ed portfolio of mortgage

loans, and that he should rebalance the portfolio more frequently than

current practice.

A.1 Introduction

A.1.1 The Danish mortgage market

The Danish mortgage loan system is among the most complex of its kind

in the world. Purchase of most properties in Denmark is �nanced by

issuing �xed�rate callable mortgage bonds based on an annuity principle.

It is also possible to raise loans, which are �nanced through issuing non�
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callable short term bullet bonds. Such loans may be re�nanced at the

market rate on an ongoing basis. The proportion of loans �nanced by

short�term bullet bonds has been increasing since 1996. Furthermore it

is allowed to mix loans in a mortgage loan portfolio, but this choice has

not yet become popular.

Callable mortgage bonds have a �xed coupon throughout the full term of

the loan. The maturities are 10, 15, 20 or 30 years. There are two options

embedded in such bonds. The borrower has a Bermudan type call option,

i.e. he can redeem the mortgage loan at par at four predetermined dates

each year during the lifetime of the loan. When the interest rates are

low the call option can be used to obtain a new loan with less interest

payment in exchange for an increase in the amount of outstanding debt.

The borrower has also a delivery option. When the interest rates are high

this option can be used to reduce the amount of outstanding debt, in

exchange for paying higher interest rate payments. There are both �xed

and variable transaction costs associated with exercising any of these

options.

Non�callable short�term bullet bonds are used to �nance the adjustable�

rate loans. The bonds' maturities range from one to eleven years and the

adjustable�rate loans are o�ered as 10, 15, 20 or 30�year loans. Since 1996



92 Appendix A

the most popular adjustable�rate loan has been the loan �nanced by the

one�year bond. From 2001, however, there has been a new trend, where

demand for loans �nanced by bullet bonds with 3 and 5�year maturities

has risen substantially.

A.1.2 The mortgagor's problem

It is known on the investor side of the �nancial markets that investment

portfolios should consist of a variety of instruments in order to decrease

�nancial risks such as market, liquidity and currency risk while maintain-

ing a �xed level of return. The portfolio is also rebalanced regularly to

take best advantage of the moves in the market.

The portfolio diversi�cation principle and re�balancing is, however, not

common in the borrower side of the mortgage market. Most mortgagors

�nance their loans in one type of bond only. Besides they do not always

re�balance their loan when good opportunities for this have arisen.

There are two major reasons for the mortgagors reluctance to better tak-

ing advantage of their options (that they have fully paid for) through the

lifetime of the mortgage loan.

1. The complexity of the mortgage market makes it impossible for the
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average mortgagor to analyze all the alternatives and choose the

best.

2. The mortgage companies do not provide enough quantitative advice

to the individual mortgagor. They only provide general guidelines,

which are normally not enough to illuminate all di�erent options

and their consequences.

The complexity of the mortgage loan system makes it a non�trivial task

to decide on an initial choice of mortgage loan portfolio and on �nd-

ing a continuing plan to readjust the portfolio optimally. See e.g. Zenios

(1993), Nielsen & Zenios (1996a), Vassiadou-Zeniou & Zenios (1996),

Zenios, Holmer, McKendall & C. (1998), Zenios (1995) and Zenios &

Kang (1993).

We assume in the following that the reader is familiar with the dynamics

of a mortgage loan market such as the Danish one, as well as the basic

ideas behind the mathematical modeling concept of stochastic program-

ming.

The Danish mortgagor's problem has been introduced by Nielsen & Poulsen

(2004). They use a two factor term structure model for generating inter-

est rate scenarios. They have developed an approximative pricing scheme
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to price the mortgage instruments in all nodes of the scenario tree and

on top of it have built a multi�stage stochastic program to �nd optimal

loan strategies. The paper, however, does not describe the details neces-

sary to have a functional optimization model, and it does not di�erentiate

between di�erent types of risks in the mortgage market. The main con-

tribution of this article is to make Nielsen & Poulsen's model operational

by reformulating parts of their model and adding new features to it.

We reformulate the Nielsen & Poulsen model in section A.2. In section

A.3 we model di�erent options available to the Danish mortgagor, and in

section A.4 we model mortgagor's risk attitudes. Here we consider both

market risk and wealth risk.

In the basic model we incorporate �xed transaction costs using binary

variables. We use a non�combining binomial tree to generate scenarios in

an 11 stage problem. This results in 51175 binary variables, making some

versions of the problem extremely challenging to solve. Dupačová, Gröwe-

Kuska & Römisch (2003) and Heitsch & Römisch (2003) have modeled

the scenario reduction problem as a set covering problem and solved it

using several heuristic algorithms. We review these algorithms in sec-

tion A.5 and use them in our implementation to reduce the size of the

problem and hereby reduce the solution times. Another approach to get-
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ting shorter solution times is proposed in section A.6, where we solve

an LP�approximated version of the problem. In section A.7 we discuss

and comment on our numerical results and we conclude the article with

suggestions for further research in section A.8. We use GAMS (General

Algebraic Modeling System) to model the problem and CPLEX 9.0 as

the underlying MP and MIP solver. For scenario reduction we use the

GAMS/SCENREDmodule (see http://www.mathematik.hu-berlin.de/ nicole/scenred/gamsscenred.html).

The obtained results show that the average Danish mortgagor would ben-

e�t from choosing more than one loan in a mortgage loan portfolio. Like-

wise he should readjust the portfolio more often than is the case today.

The developed model and software can also be used to develop new loan

products. Such products will consider the individual customer inputs such

as budget constraints, risk pro�le, expected lifetime of the loan, etc.

Even though we consider the Danish mortgage loan market, the problem

is universal and the practitioners in any mortgage loan system should

be able to use the models developed in this paper, possibly with minor

modi�cations.



96 Appendix A

A.2 The basic model

In this section we develop a risk�neutral optimization model which �nds

a mortgage loan portfolio with the minimum expected total payment.

We consider a �nite probability space (Ω,F , P ) whose atoms are se-

quences of real�valued vectors (coupon rates and prices of mortgage backed

securities) over discrete time periods t = 0, · · · , T. We model this �nite

probability space by a scenario tree borrowing the notation from King

(2002).

Consider the scenario tree in Figure (A.1). The partition of the proba-

bility atoms ω ∈ Ω generated by matching path histories up to time t

corresponds one�to�one with nodes n ∈ Nt at depth t in the tree.

In the scenario tree, every node n ∈ N for 1 ≤ t ≤ T has a unique parent

denoted by a(n) ∈ Nt−1, and every node n ∈ Nt for 0 ≤ t ≤ T − 1 has a

non�empty set of child nodes C(n) ⊂ Nt+1. The probability distribution

P is modeled by attaching weights pn > 0 to each leaf node n ∈ NT so

that
∑

n∈NT
pn = 1. For each non�terminal node one has, recursively,

pn =
∑

m∈C(n)

pm ∀n ∈ Nt, t = T − 1, · · · , 0



A.2 The basic model 97

and so each node receives a probability mass equal to the combined mass

of the paths passing through it.

We assume that we have such a tree at hand with information on price

and coupon rate for all mortgage bonds available at each node as well as

the probability distribution P for the tree at hand.

n=2

n=4

n=5

t = 1t = 0     t = 2

n=3

n=1

n=6

n=7

t = 3

n=8

n=9

n=10

n=11

n=12

n=13

n=14

n=15

1:FRM31−05/96.8

1:FRM30−05/101.8

1:FRM30−05/92.35

1:FRM29−05/88.8
2:FRM32−06/95.3

1:FRM29−05/95.4

3:FRM32−06/98.7

1:FRM29−05/95.4
3:FRM32−06/98.7

1:FRM29−05/105.4
4:FRM32−04/98.3

1:FRM28−05/108.4
4:FRM31−04/101.4

4:FRM31−04/94.2
1:FRM28−05/96.9

3:FRM31−06/100.7
1:FRM28−05/96.9

3:FRM31−06/98.4
1:FRM28−05/93.7

3:FRM31−06/100.7
1:FRM28−05/96.9

3:FRM31−06/98.4
1:FRM28−05/93.7

1:FRM28−05/93.7

1:FRM28−05/84.4
2:FRM31−06/92.5

2:FRM31−06/98.4

Figure A.1: A binomial scenario tree, representing our expectation of future bond

prices and coupon rates. All bonds are callable �xed�rate bonds.

In the basic model we only consider �xed�rate loans, i.e. loans where the

interest rate does not change during the lifetime of the loan. For the sake

of demonstration we consider an example with 4 stages, t ∈ {0, 1, 2, 3},

and 15 decision nodes, n ∈ {1, · · · , 15}, with the probability pn for being
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at the node n.

We want the basic model to �nd an optimal portfolio of bonds from a �nite

number of �xed�rate bonds. Consider the 4 bonds shown in Figure (A.1).

Each bond is represented as (Index:Type�Coupon/Price), so (3:FRM32�

06/98.7) is a �xed�rate callable mortgage bond with maturity in 32 years,

a coupon rate of 6% and a price of 98.7.

To generate bonds information we can use term structure and bond pric-

ing theories. For an introduction to these topics see for example Hull

(2003), Luenberger (1998) and Björk (1998). It is also possible to use

expert knowledge to predict possible bond prices in the future. A com-

bination of theoretical pricing and expert information can also be used

to generate such scenario trees. Nielsen & Poulsen (2004) propose an ap-

proximative approach for pricing �xed rate bonds with embedded call

and delivery in a scenario tree. In this paper we use the BDT model

(see Black et al. (1990)) for generating an interest rate tree to represent

the underlying interest rate uncertainty and estimate the prices of the

mortgage backed bonds in all the nodes of the tree using the commercial

pricing module RIO 4.0 developed by Scanrate Financial Systems A/S

(see http://www.scanrate.dk ).

Given a scenario tree with T stages and its corresponding coupon rate
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and price information on a set of bonds i ∈ I we can now de�ne the basic

model.

Parameters:

pn: The probability of being at node n.

dt: Discount factor at time t.

IA: The initial amount of loan needed by the mortgagor.

rin: Coupon rate for bond i at node n.

kin: Price of bond i at node n.

Callkin: Price of a callable bond i at node n. We have Callkin = min{1, kin}

for callable bonds and Callkin = kin for non�callable bonds.

γ: Tax reduction rate from interest rate payment.

β: Tax reduction rate from administration fees.

b: Administration fee given as a percentage of outstanding debt.

η: Transaction fee rate for sale and purchase of bonds.

m: Fixed costs associated with re�balancing.

Next we de�ne the variables used in our model:

Btn: Total net payment at node n, time t.

Xitn: Outstanding debt of bond i at node n, time t.
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Sitn: Units sold of bond i at scenario n, time t.

Pitn: Units purchased of bond i at node n, time t.

Aitn: Principal payment of bond i at node n, time t.

Litn :




1 if there are any �xed costs associated with bond i, node n, time t.

0 otherwise.

The multi stage stochastic integer model can now be formulated as fol-

lows:
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min
T∑

t=0

∑
n∈Nt

pn · dt ·Btn (A.1)

∑
i∈I

ki1 · Si01 ≥ IA (A.2)

Xi01 = Si01 ∀i ∈ I

(A.3)

Xitn = Xi,t−1,a(n) −Aitn − Pitn + Sitn ∀i ∈ I, n ∈ Nt, t = 1, · · · , T

(A.4)

∑
i∈I

(kin · Sitn) =
∑
i∈I

(Callkin · Pitn) ∀n ∈ Nt, t = 1, · · · , T

(A.5)

Aitn = Xi,t−1,a(n)

[ ri,a(n)

1 − (1 + ri,a(n))−T+t−1
− ri,a(n)

]
∀i ∈ I, n ∈ Nt, t = 1, · · · , T

(A.6)

B01 =
∑
i∈I

(
η · Si01 +m · Li01

)
(A.7)

Btn =
∑
i∈I

(
Aitn + ri,a(n) · (1 − γ)Xi,t−1,a(n) + b · (1 − β)Xi,t−1,a(n)+

η · (Sitn + Pitn) +m · Litn

)
∀n ∈ Nt, t = 1, · · · , T

(A.8)

BigM · Litn − Sitn ≥ 0 ∀i ∈ I, n ∈ Nt, t = 0, · · · , T

(A.9)

Xitn , Sitn , Pitn ≥ 0 , Litn ∈ {0, 1} ∀i ∈ I, n ∈ Nt, t = 0, · · · , T

(A.10)

The objective is to minimize the weighted average payment throughout
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the mortgage period. The payment for all the nodes except the root is

de�ned in equation (D.7) as the sum of principal payments, tax reduced

interest payments, taxed reduced administration fees (Danish peculiar-

ity), transaction fees for sale and purchase of bonds and �nally �xed

costs for establishing new mortgage loans. The principal payment is de-

�ned in equation (D.6) as an annuity payment. The payment in the root

(equation A.7) is based on the transaction costs only.

The dynamics of the model are formulated in constraints (D.2) to (D.5).

Constraint (D.2) makes sure that we sell enough bonds to raise an initial

amount, IA, needed by the mortgagor. In equation (D.3) we initialize

the outstanding debt. Equation (D.4) is the balance equation, where the

outstanding debt at any child node for any bond equals the outstanding

debt at the parent node minus principal payment and possible prepay-

ment (purchased bonds), plus possible sold bonds to establish a new loan.

Equation (D.5) is a cash�ow equation which guarantees that the money

used to prepay comes from the sale of new bonds.

Finally constraint (D.9) adds the �xed costs to the node payment, if we

perform any readjustment of the mortgage portfolio. The BigM constant

might be set to a value slightly greater than the initial amount raised. If

a too large value is used, numerical problems may arise.
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A.3 Modeling mortgagor's options

The model described in section A.2 has three implicit assumptions which

limit its applicability:

1. We assume that a loan portfolio is held by the mortgagor until the

end of horizon.

2. We assume that all bonds are �xed�rate and callable, i.e. they can

be prepaid at any time at a price no higher than 100.

3. The mortgagor is assumed to be risk�neutral.

We will relax the �rst two assumptions in this section and the third in

the following section.

The �rst assumption can be easily relaxed by introducing a constant H

indicating mortgagors horizon, such that H ≤ T , where T is the maturity

time of the underlying mortgage portfolio. The decision nodes represent

only the �rst H stages, while the cash�ows (principal and interest rate

payments) are calculated based on a T year maturity.

These changes mean that the outstanding debt at stage t = H is a positive

amount which needs to be prepaid. We de�ne this prepayment amount
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(PPHn) as:

PPHn =
∑

i

(XiHn · Callkin) ∀n ∈ NH , (A.11)

We add this equation to the model and we update the object function as

follows:

min
H∑

t=0

∑
n∈Nt

pn · dt ·Btn +
∑

n∈NH

pn · dH · PPHn. (A.12)

The objective is now to minimize the weighted payments at all nodes plus

the weighted prepayments at time H.

The problem with the second assumption is more subtle. Consider the

scenario tree at Figure (D.5), where two adjustable�rate loans have been

added to our set of loans at time 0. Loan 5 (ARM1) is an adjustable�rate

loan with annual re�nancing and loan 6 (ARM2) is an adjustable�rate

loan with re�nancing every second year

For adjustable�rate loans (ARMm�loans) the underlying m�year bond

is completely re�nanced every m years by selling another m�year bond.

But unlike normal re�nancing this kind of re�nancing does not incur any

extra �xed or variable transaction costs since an ARMm�loan is issued as

a single loan rather than a series of bullet�bonds following each other. We

model an ARMm�loan by using the same loan index for an adjustable�

rate loan throughout the mortgage period. For example index 5 is used for
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n=2

n=4

n=5

t = 1t = 0     t = 2

n=3

n=1

n=6

n=7

t = 3

n=8

n=9

n=10

n=11

n=12

n=13

n=14

n=15

5:ARM1−04/99.1
6:ARM2−04/98.2

1:FRM31−05/96.8

1:FRM30−05/92.35
5:ARM1−06/101.2
6:ARM1−04/95.8

1:FRM30−05/101.8
5:ARM1−02/99.1
6:ARM1−04/104.7

6:ARM2−03/101.2
5:ARM1−01/99.2

4:FRM32−04/98.3
1:FRM29−05/105.4

    6:ARM2−05/100.1

5:ARM1−04/99.2
3:FRM32−06/98.7
1:FRM29−05/95.4

6:ARM2−05/100.1

5:ARM1−04/99.2
3:FRM32−06/98.7
1:FRM29−05/95.4

6:ARM2−08/100.6

5:ARM1−08/102
2:FRM32−06/95.3
1:FRM29−05/88.8 1:FRM28−05/84.4

2:FRM31−06/92.5        6:ARM1−08/97.8
        5:ARM1−10/101.5

    

1:FRM28−05/93.7
2:FRM31−06/98.4

1:FRM28−05/93.7
3:FRM31−06/98.4

1:FRM28−05/96.9
3:FRM31−06/100.7

1:FRM28−05/93.7
3:FRM31−06/98.4

1:FRM28−05/96.9
3:FRM31−06/100.7

1:FRM28−05/96.9
4:FRM31−04/94.2

1:FRM28−05/108.4
4:FRM31−04/101.4

       5:ARM1−01/102.4
       6:ARM1−03/108.4

     6:ARM1−03/98.6
     5:ARM1−03/99.9

     6:ARM1−05/105.4
     5:ARM1−03/99.9

     6:ARM1−05/102.9
     5:ARM1−07/99.6

    6:ARM1−05/105.4
    5:ARM1−03/99.9

      6:ARM1−05/102.9
      5:ARM1−07/99.6

       6:ARM1−08/103.2
       5:ARM1−07/99.6

Figure A.2: A binomial scenario tree where both �xed�rate and adjustable�rate loans

are considered.

the loan with annual re�nancing, even though the actual bonds behind

the loan change every year. Since we use the same index, the model does

not register any actual sale or purchase of bonds when re�nancing occurs.

We should, however, readjust the outstanding debt given that the bond

price is normally di�erent from par. To take this into account we introduce

the set I ′ ⊆ I of non�callable adjustable�rate loans. For these loans we

use the following balance equation instead of equation (D.4).

kin ·Xitn = Xi,t−1,a(n) −Aitn − Pitn + Sitn ∀i ∈ I ′, n ∈ Nt, t = 1, · · · , T.

(A.13)
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Note that variables Pitn and Sitn remain 0 as long we keep an adjustable�

rate loan i ∈ I ′ in our mortgage portfolio. The outstanding debt in the

child node is however rebalanced by multiplying the bond price.

When we consider the adjustable�rate loans we should remember that

these loans are non�callable, so for prepayment purposes we have:

Callkin = kin ∀i ∈ I ′, n ∈ Nt, t = 0, · · · , T.

Another issue to be dealt with is that if a bond is not available for estab-

lishing a loan at a given node, we have to set the corresponding value of

kin to 0 to make sure that the bond is not sold at that node in an optimal

solution. For example bond (6:ARM1�04/95.8) at node 2 is not open for

sale but only for prepayment.

A.4 Modeling risk

So far we have only considered a risk neutral mortgagor who is interested

in the minimum weighted average of total costs. Most mortgagors however

have an aversion towards risk. There are two kinds of risk which most

mortgagors are aware of:

1. Market risk: In the mortgage market this is the risk of extra in-
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terest rate payment for a mortgagor who holds an adjustable�rate

loan when interest rate increases, or the risk of extra prepayment

for a mortgagor with any kind of mortgage loan when the interest

rate decreases so the bond price increases.

2. Wealth risk: In the mortgage market this is a potential risk which

can be realized if the mortgagor needs to prepay the mortgage before

a planned date or if he needs to use the free value of the property

to take another loan. It can be measured as a deviation from an

average outstanding debt at any given time during the lifetime of

the loan.

We will in the following model both kinds of risk. To that end we use the

ideas behind minmax optimization and utility theory with use of budget

constraints.

A.4.1 The minmax criterion

An extremely risk averse mortgagor wants to pay least in the worst pos-

sible scenario. In other words if we de�ne the maximum payment as MP

then we have the following minmax criterion:
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min MP, (A.14)

MP ≥
T∑

t=0

∑
n∈NPts

Btn ∀s ∈ S, (A.15)

where NP ts is a set of nodes de�ning a unique path from the root of the

tree to one of the leaves. Each of these paths de�ne a scenario s ∈ S. For

the example given in Figure D.5 we have:

NP t,1 = {1, 2, 4, 8}

NP t,2 = {1, 2, 4, 9}

· · ·

NP t,8 = {1, 3, 7, 15}

A.4.2 Utility function

Instead of minimizing costs we can de�ne a utility function, which rep-

resents a saving and maximize it. Nielsen & Poulsen (2004) suggest a

concave utility function with the same form as in Figure (A.3).

The decreasing interest for bigger savings is based on the idea that bigger

savings are typically riskier than small savings. Nielsen and Poulsen use
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Utility

Saving

Figure A.3: A concave utility function. An increase of an already big saving is not

as interesting as an increase of a smaller saving.

a logarithmic object function, which can be formulated as follows:

max
T∑

t=0

∑
n∈Nt

pn · log(dt · (Bmax
tn −Btn)), (A.16)

where Bmax
tn is the maximum amount a mortgagor is willing to pay. Nielsen

and Poulsen �x Bmax
tn to a big value so that the actual payment will never

rise above this level.

Adding this non�linear objective function to our stochastic binary prob-

lem makes the problem extremely challenging to solve. There are no ef-

fective general purpose solvers for solving large mixed integer non�linear

programs (see Bussieck & Pruessner (2003)). There are three ways of

circumventing the problem: Either we use a linear utility function in con-

junction with budget constraints (mip) or relax the binary variables and
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solve the non�linear problem (nlp) or both (lp). We demonstrate the �rst

approach in the following and comment on the second and third approach

in section A.6.

Instead of maximizing the logarithm of the saving at each node we can

simply maximize the saving: Bmax
tn − Btn. If B

max
tn is so large that the

saving is always positive, then we are in e�ect minimizing the weighted

average costs similar to the risk neutral case presented in section A.2.

However if we allow the saving to be negative at times and add a penalty

to the objective function whenever we get a negative saving, we can intro-

duce risk aversion into the model. For this reason we need to have a good

estimate for Bmax
tn . The risk neutral model can be solved to give us these

estimates. Then we can use the following objective function and budget

constraints.

max
T∑

t=0

∑
n∈Nt

(
pn · dt

(
(Bmax

tn −Btn) − PRtn ·BOtn

))
(A.17)

Bmax
tn +BOtn −Btn ≥ 0 ∀n ∈ Nt, t = 0, · · · , T (A.18)

BOtn ≤ BOmax
tn ∀n ∈ Nt, t = 0, · · · , T. (A.19)

We allow crossing the budget limit in constraint (A.18) by introducing the

slack variable BOtn. This value will then be penalized by a given penalty
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rate (PRtn) in the objective function (A.17). The penalty rate can for

example be a high one time interest rate for taking a bank loan. The

budget over�ow (BOtn) is then controlled in constraint (A.19) where the

over�ow is not allowed to be greater than a maximum amount BOmax
tn .

A.4.3 Wealth risk aversion

So far we have only considered the market risk or the interest rate risk.

In the following we will model the other important risk factor in the

mortgage market, namely the wealth risk.

Wealth risk is the risk that the actual outstanding debt becomes bigger

than the expected outstanding debt at a given time during the lifetime

of the loan. For example selling a 30�year bond at a price of 80, we have

a big wealth risk given that a small fall in the interest rate can cause

a considerable increase in the bond price, which means a considerable

increase in the amount of the outstanding debt.

We consider the deviation from the average outstanding debt, which we

de�ne as DXtn:

DXtn = X t −
∑

i

Xitn, ∀n ∈ Nt, t = 0, · · · , T,
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where Xt is the average outstanding debt for a given time t:

Xt =
∑
i∈I

∑
n∈Nt

pn ·Xitn, ∀t = 0, · · · , T.

A positive value of DXtn means that we have a saving and a negative

value means a loss as compared to the average outstanding debt X t. We

introduce a surplus variable XStn to represent the amount of saving and

a slack variable XLtn to represent the amount of loss:

(
Xt −

∑
i

Xitn

)
−XStn +XLtn = 0 ∀n ∈ Nt, t = 0, · · · , T, (A.20)

To make the model both market risk and wealth risk averse we update

the objective function with weighted values of XStn and XLtn as follows:

max
∑

n∈Nt

T∑
t=0

pn · dt

(
(Bmax

tn −Btn) − PRtn ·BOtn + PWn ·XStn −NWn ·XLtn

)
,

(A.21)

where PWn is a parameter which can be used to encourage savings and

NWn is a parameter to penalize a loss as compared to the average out-

standing debt. If we set PWn = NWn, it means that the model is indif-

ferent towards wealth risk. On the other hand PWn < NWn, means that

the model is wealth risk averse, since it penalizes a potential loss harder

than it encourages a potential saving.
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A.5 Scenario reduction

Since the number of scenarios grows exponentially as a function of time

steps the stochastic binary model is no longer tractable when we have

more than 10 time steps. For an 11�stage model we have the scenario

tree in Figure (A.4).
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Figure A.4: A binomial scenario tree with 11 stages.

As of today there are no general purpose solvers which can solve stochas-

tic integer problems of this size in a reasonable amount of time. Notice

however that a great number of nodes in the last 3-4 time steps have such

a close distance that a reduction of nodes for these time steps might not

e�ect the �rst�stage results. We are in other words interested in �nding a
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way to optimally reduce the number of scenarios. If we get the same �rst

stage result for a reduced and a non�reduced problem, it su�ces to solve

the reduced problem, and then at each step resolve the problem until

horizon. In that case the �nal result of solving any of the two problems

will be the same. The reason for this is that we initially only implement

the �rst stage solution. As the time passes by and we get more informa-

tion we have to solve the new problem and implement the new �rst stage

solution each time.

Dupačová et al. (2003) and Heitsch & Römisch (2003) have de�ned the

scenario reduction problem (SRP) as a special set covering problem and

have solved it using heuristic algorithms.

The authors behind the SCENRED articles have in cooperation with

�GAMS Software GmbH� and �GAMS Development Corporation�, devel-

oped a number of C++ routines, SCENRED, for optimal scenario re-

duction in a given scenario tree. Likewise they have developed a link,

GAMS/SCENRED, which connects the GAMS program to the SCENRED

module. The scenario tree in Figure A.5 is obtained after using the fast

backward algorithm of the GAMS SCENRED module for a 50% relative

reduction, where the relative reduction is measured as an average of node

reductions for all time step. If we for example remove half of the nodes at
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the last time step, we get a 50% reduction for that time step only. Then

we measure the reduction percentages for all other time steps in the same

way. The average of these percentages corresponds to the relative reduc-

tion (see Dupačová et al. (2003) and Heitsch & Römisch (2003)). In our

example the number of scenarios is reduced from 1024 to 12.
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Figure A.5: A binomial scenario tree with 11 stages after a 50% scenario reduction

using the fast backward algorithm of the SCENRED module in GAMS.

We use GAMS/SCENRED and SCENRED modules for scenario reduc-

tion, and compare the results with those found by solving the LP�relaxed

non�reduced problem.
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A.6 LP relaxation

Whenever we re�nance the mortgage portfolio we need to pay a variable

and a �xed transaction cost. The variable cost is 100·η percent of the sum

of the sold and purchased amount of bonds and the �xed cost is simply

DKK m (see constraint D.7 and D.9). The binary variables in the problem

(A.1 to D.12) are due to incorporation of �xed costsm. The numeric value

of these �xed costs is about DKK 2500 whereas η = 0.15%. While the

value of the variable transaction costs decreases as the time passes by, the

�xed costs remain the same. Besides �xed costs are incurred per loan and

not per loan portfolio which is why we cannot simply approximate the

�xed costs by adding a small percentage to the variable transaction costs,

even if we let this percentage increase as a function of time to adjust for

the decreasing outstanding debt of the total loan portfolio. We therefore

suggest an iterative updating scheme for the variable transaction costs, so

that we can approximate the �xed costs without using binary variables.

We do that by iteratively solving the LP problem k times as follows.

We de�ne a ratio ψk
itn and initialize it to ψ0

itn = 0. The ratio ψk
itn can then

be used in the de�nition of a node payment (D.7) in the k+ 1st iteration

as follows:
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Btn =
∑

i

(
Aitn + rin · (1 − γ)Xitn+

b · (1 − β)Xitn + η · (Sitn + Pitn) + ψk+1
itn · Sitn

)
∀n ∈ Nt, t = 0, · · · , T

(A.22)

Solving the LP problem at each iteration k we get S∗k
itn as the optimal

value of the sold bonds at the kth iteration. Before each iteration k > 0,

the ratio ψk
itn is then updated according to the following rule:

ψk
itn =




m
S∗k

itn

∀i, n ∈ Nt, t = 0, · · · , T if S∗k
itn > 0,

ψk−1
itn otherwise.

(A.23)

This brings us to our approximation scheme for an LP relaxation of the

problem:

1. Drop the �xed costs and solve the LP relaxed problem.

2. Find the ratios ψitn according to (A.23).

3. Incorporate the ratios in the model so that DKK m is added to the

objective function for each purchased bond, given the same solution

as the one in the last iteration is obtained. Solve the problem again.



118 Appendix A

4. Stop if the solution in iteration k+ 1 has not changed more than α

percent as compared to the solution in iteration k. Otherwise go to

step 5.

5. Update ψitn according to (A.23).

6. Repeat from step 3.

Our experimental results show that for α ' 2% we �nd near optimal solu-

tions which have similar characteristics to the solutions from the original

problem with the �xed costs.

A.7 Numerical results

We consider an 11 stage problem, starting with 3 callable bonds and 1

1�year bullet bond at the �rst stage. We then introduce 7 new bonds

every 3 years. An initial portfolio of loans has to be chosen at year 0 and

it may be rebalanced once a year the next 10 years. We assume that the

loan is a 30�year loan and that it is prepaid fully at year 11.

The 24 callable bonds used in our test problem are seen in Table A.1. The

table only presents the average coupon rates and prices for these bonds

at their dates of issue. Note that only the �rst three bonds have already
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been issued, so the start prices for these three bonds are market prices on

20/02/2004, which is the date for the �rst stage in the stochastic program.

The next 21 bonds are not issued yet, and we �nd their estimated prices

at their future dates of issue. Since there are several states representing

the uncertainty in the future we have several of these estimated start

prices. In Table A.1, however, we only give an average of these prices.

Besides these 24 callable bonds we use a 1�year non�callable bullet bond,

bond 25. The e�ective interest rate on this bond is about 2% to start

with. Using a BDT tree (see Black et al. (1990) Bjerksund & Stensland

(1996)) with the input term structure given in Table A.2 and annual steps

the e�ective rate can increase to 21% or decrease to slightly under 1% at

the 10th year. The term structure of Table A.2 is from 20/02/2004 and

is provided by the Danish mortgage bank Nykredit Realkredit A/S. The

BDT tree has also been used for estimating the prices and rates of the 24

callable bonds during the lifetime of the mortgage loan using the bond

pricing system Rio 4.0 (see http://www.scanrate.dk).

A practical problem arises when writing the GAMS tables containing the

stochastic data. The optimization problem is a path dependent problem,

whereas the BDT tree is path independent. GAMS is not well suited for

such programming tasks as mapping the data from a combining binomial

tree (a lattice) to a non�combining binomial tree. A general purpose pro-
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gramming language is better suited for this task. We have used VBA to

generate the input data to the GAMS model, and we have run the GAMS

models on a Sun Solaris 9 machine with a 1200 Mhz CPU, 16 GB of RAM

and 4 GB of MPS.

The purpose of our tests can be summarized as the following:

1. Comparing the results of the 4 versions of our model with simple

sell and hold strategies.

2. Observing the e�ects of using the GAMS/SCENRED module.

3. Trying our LP approximation on the problem.

For each of these objectives we consider all four versions of the model and

compare the results.

A.7.1 The original stochastic MIP problem

Figure A.6 shows the solutions found for the �rst three stages of the prob-

lem for all four instances of our model, namely the risk neutral model,

the minmax model, the model with interest rate risk aversion with budget

constraints and �nally the model with interest rate and wealth risk aver-

sion with budget constraints. Notice, however, that no feasible solution
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could be found for the model with interest rate and wealth risk aversion

with budget constraints within a time limit of 10 hours.
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Figure A.6: Presentation of the solutions for the �rst 3 stages of the problem. Variable

s is for sale and p for purchase and the units are given in 1000 DKK, so s3 = 1128

means that the mortgagor should sell approximately 1.128.000 DKK at the given node.

The short rates from the BDT tree are indicated using the letter r.

A full prescription of the solution with all 11 stages will not contribute

to a better understanding of the dynamics of the solution, which is why
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we present the solution to the �rst three stages of the problem only. It is

though enough to give us an indication of the behaviour of each solution.

In the risk neutral case we start by taking a 1�year adjustable�rate loan. If

the interest rate increases after a year, the adjustable�rate loan is prepaid

by taking a �xed�rate loan. Even if it means an increase in the amount of

the outstanding debt, it proves to be a pro�table strategy since if the rates

increase again in the next stage we can reduce the amount of outstanding

debt greatly by re�nancing the loan to another �xed�rate loan with a

higher price. The minmax strategy chooses a �xed�rate loan with a price

close to par to start with. This loan is not re�nanced until the 9th stage

of the problem.

The risk neutral and the minmax model represent the two extreme mort-

gagors as far as the risk attitude is concerned. The third model re�ects

a mortgagor with a risk attitude between the �rst two mortgagors. The

solution to this model guarantees that the mortgagor will not pay more

than what his budget allows at any given node. Table A.3 indicates the

di�erence in the characteristics of the solutions for the three di�erent

models.

The risk neutral model gives the lowest average total cost. The standard

deviation from this average cost is, however, rather high. The minmax
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model has a much smaller standard deviation. This higher level of security

against variation has though an average cost of about 72000 DKK. The

third model has reduced the risk considerably without having increased

the total average cost with more than about 7000 DKK.

We see also that these results outperform the simple sell and hold strate-

gies (strategies 5 and 6). A traditional market risk�neutral mortgagor

who chooses an ARM1 loan and keep it until horizon (year 11) is better

o� following either strategy 1 or 3 and a traditional market risk�averse

mortgagor who chooses a �xed�rate loan and keeps it until horizon is

better o� following either strategy 2 or 3.

Regarding the budget constraints in model 3 and 4 we use the constants in

Table A.4. Note that we are reporting these budget constraints on an ag-

gregate level. Furthermore we de�ne the constants PPmax
Hn and PPOmax

Hn

as the target prepayment amount and maximum deviation allowed from

this target respectively.

These constants are chosen after considering the average payments and

the standard deviations from these in the risk neutral model.

The major problem with these solutions is the computing time taken to

�nd near optimal solutions by CPLEX 9.0. Except for the �rst strategy,
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we cannot �nd solutions within 1% of a lower bound after 10 hours of

CPU time. For the fourth strategy no feasible solution is found at all.

Strategies 5 and 6 take a few seconds to calculate, however we do not

need the optimization model for these calculations.

A.7.2 The reduced stochastic MIP problem

After reducing the number of scenarios from 1024 to 12 we get the solu-

tions given in Figure A.7 and Table A.6.

Regarding the budget constraints in model 3 and 4 we use the constants

in Table A.5.

We can see in Table A.6 that the behaviour of the solutions for the dif-

ferent models is similar to that of the original problem. Notice also that

we get a feasible solution here for the fourth model with interest rate and

wealth risk aversion.

The numeric values of the total costs for the �rst four strategies have

however decreased considerably. Except for the risk neutral model we

do not obtain the same �rst stage solutions as we saw for the original

problem. It seems that the reduced problem gives a more optimistic view

of the future as compared to the original problem. By testing the scenario
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Figure A.7: Presentation of the solutions for the �rst 3 stages of the reduced problem.

Units are given in 1000 DKK.

reduction algorithms for di�erent levels of reduction on our problem we

notice that even much less aggressive scenario reductions do not guarantee

that the same initial solutions as found for the original problem are found.

One explanation for this more optimistic view of the future is that since

scenario reduction destroys the binomial structure of the original tree,

signi�cant arbitrage opportunities arise in parts of the new tree structure.
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Another explanation is that for all levels of reduction which we have

performed the reduced problem has an overweight of scenarios with lower

interest rates.

We therefore need a method which 1) optimally reduces the number of

scenarios while the tree remains balanced and 2) modi�es bond prices in

the reduced tree so that the arbitrage opportunities which are introduced

as a result of scenario reduction are removed.

The question here is whether points 1 and 2 play an equally important

role in getting similar �rst stage solutions for the original and the reduced

problem. Comparing strategies 5 and 6 in Tables A.3 and A.6 indicates

that performing point two might remove most of the di�erence between

the solutions in the reduced problem as compared to the original prob-

lem. Apparently the average total costs for the ARM1 loan are slightly

decreased in the reduced tree whereas the average total costs for the

�xed�rate loan are slightly increased. This slight change in opposite di-

rections can only be explained by the observation that the reduced tree

has an overweight of scenarios with lower interest rates, since no trading

is allowed for these two strategies and therefore the arbitrage opportuni-

ties cannot be used. We are currently working on better ways of reducing

scenario trees taking into accounts points 1 and 2.
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A.7.3 The reduced and LP�approximated problem

When we use our LP�approximation algorithm on this problem we get

the solution as presented in Table A.7 and Figure A.8.
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Figure A.8: Presentation of the solutions for the �rst 3 stages of the LP approximated

reduced problem. Units are given in 1000 DKK.

The algorithm uses 10�18 runs for the di�erent problems to �nd solutions

which are over all less than 2% di�erent from the solutions found in the
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last iteration.

It is important to point out that simply dropping the �xed costs results

in solutions which deviate considerably from the problems with the �xed

costs, whereas approximating the �xed costs using our algorithm gives

very similar results as found by the MIP model.

A.7.4 Comments on results

The results presented in this section are in agreement with the �nancial

arguments used in the Danish mortgage market. Even though the original

problem is hard to solve we have shown that useful results can be found

by solving the reduced problems. The reduced scenario trees represented

a more optimistic prediction of the future, but the results found are still

quite useful. In practice the mortgage portfolio manager should try several

scenario trees with di�erent risk representations as an input to the model.

This way the optimization model can be used as an analytical tool for

performing �what�if� analyses on a high abstraction level.
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A.8 Conclusions

We have developed a functional optimization model that can be used as

the basis for a quantitative analysis of the mortgagors decision options.

This model in conjunction with di�erent term structures or market expert

opinions on the development of bond prices can assist market analysts in

the following ways:

Decision support: Instead of calculating the consequences of the single

loan portfolios for single interest rate scenarios, the optimization model

allows for performing �what if� analysis on a higher level of abstraction.

The analyst can provide the system with di�erent sets of information

such as the presumed lifetime of the loan, budget constraints and risk

attitudes. The system then �nds the optimal loan portfolio for each set

of input information.

Product development: Traditionally, loan products are based on single

bonds or bonds with embedded options. In some mortgage markets such

as the Danish one it is allowed to mix bonds in a mortgage portfolio

and there are even some standard products which are based on mixing

bonds. The product P33 is for example a loan portfolio where 33% of the

loan is �nanced in 3�year non�callable bonds and the rest in �xed�rate
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callable bonds. These mixed products are currently not popular since

the rationale behind exactly this kind of mix is not well argued. The

optimization model gives the possibility to tailor mixed products that,

given a set of requirements, can be argued to be optimal for a certain

mortgagor.

The greatest challenge in solving the presented models is on decreasing

the computing times. We have experimented with scenario reduction (see

Dupačová et al. (2003) and Heitsch & Römisch (2003)) and we have sug-

gested an LP approximation method to reduce the solution times while

maintaining solution quality. It is, however, an open problem to develop

tailored exact algorithms such as decomposition algorithms (see Birge

(1985) and Birge & Louveaux (1997)) to solve the mortgagors problem.

Another approach for getting real time solutions is to investigate di�erent

heuristic algorithms or make use of parallel programming (see Nielsen &

Zenios (1996b) and Ruszczynski (1993)) to solve the problem.

Integration of the two disciplines of mathematical �nance and stochastic

programming combined with use of the state of the art software has a

great potential, which has not yet been realized in all �nancial markets

in general and in mortgage companies in particular. There is a need for

more detailed and operational models and high performing easy to use
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accompanying software to promote use of the mathematical models with

special focus on stochastic programming.
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Bond nr. rate Average start price Date of issue Date of maturity

1 6% 103.06 3/10-02 3/10-35

2 5% 98.5 3/10-02 3/10-35

3 4% 89.4 3/10-02 3/10-35

4 9% 107.33 3/10-05 3/10-38

5 8% 103.16 3/10-05 3/10-38

6 7% 103.09 3/10-05 3/10-38

7 6% 100.51 3/10-05 3/10-38

8 5% 94.01 3/10-05 3/10-38

9 4% 84.55 3/10-05 3/10-38

10 3% 74.46 3/10-05 3/10-38

11 9% 105.4 3/10-08 3/10-41

12 8% 101.98 3/10-08 3/10-41

13 7% 100.3 3/10-08 3/10-41

14 6% 96.19 3/10-08 3/10-41

15 5% 89.5 3/10-08 3/10-41

16 4% 80.74 3/10-08 3/10-41

17 3% 71.32 3/10-08 3/10-41

18 9% 104.41 3/10-11 3/10-44

19 8% 100.9 3/10-11 3/10-44

20 7% 98.51 3/10-11 3/10-44

21 6% 94.07 3/10-11 3/10-44

22 5% 87.49 3/10-11 3/10-44

23 4% 79.25 3/10-11 3/10-44

24 3% 70.26 3/10-11 3/10-44
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Maturity Yield Yield Volatility Maturity Yield Yield Volatility

(Year) (%) (%) (Year) (%) (%)

1 2.23% � 16 4.87% 17.25%

2 2.35% 32.20% 17 4.93% 17.00%

3 2.73% 32.10% 18 4.99% 16.85%

4 3.08% 29.50% 19 5.05% 16.75%

5 3.41% 27.00% 20 5.11% 16.70%

6 3.68% 25.00% 21 5.16% 16.65%

7 3.92% 23.00% 22 5.21% 16.60%

8 4.12% 22.00% 23 5.25% 16.56%

9 4.30% 20.90% 24 5.29% 16.52%

10 4.44% 20.10% 25 5.34% 16.48%

11 4.56% 19.40% 26 5.37% 16.45%

12 4.62% 18.80% 27 5.40% 16.42%

13 4.68% 18.30% 28 5.43% 16.39%

14 4.74% 17.90% 29 5.46% 16.36%

15 4.80% 17.55% 30 5.49% 16.34%

Table A.2: The input term structure to the BDT model.
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Loan strategy Total costs Std. dev. max min time

1 - Risk neutral 1.281.857 92.289 1.502.042 1.004.583 276 s

2 - Minmax 1.353.713 19.729 1.374.183 1.117.084 10 h

3 - Int. rate risk averse 1.288.405 66.019 1.431.857 1.005.412 10 h

4 - Int./Wealth risk averse No solution found within 10 h.

5 - Loan25 (ARM1) 1.310.495 115.085 1.821.388 1.120.053 < 10 s

6 - Loan2 (Fixed�rate 5%) 1.353.438 72.582 1.410.190 993.056 < 10 s

Table A.3: Comparison of the four strategies for the original problem.

Constant De�nition Value

BMAX
∑H−1

t=0

∑
n∈Nt

pn ·Bmax
tn 570842

PPMAX
∑

n∈NH
pn · PPmax

Hn 711015

BOMAX
∑H−1

t=0

∑
n∈Nt

pn ·BOmax
tn 50000

PPOMAX
∑

n∈NH
pn · PPOmax

Hn 100000

Table A.4: Budget limits used in model 3 and 4 for the original data.

Constant De�nition Value

BMAX
∑H−1

t=0

∑
n∈Nt

pn ·Bmax
tn 565915

PPMAX
∑

n∈NH
pn · PPmax

Hn 601983

BOMAX
∑H−1

t=0

∑
n∈Nt

pn ·BOmax
tn 50000

PPOMAX
∑

n∈NH
pn · PPOmax

Hn 35000

Table A.5: Budget limits used in model 3 and 4 for the reduced data.
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Model type Total costs Std. dev. max min time

1 - Risk neutral 1.169.173 49.765 1.274.079 1.064.525 12 s

2 - Minmax 1.187.938 0.00 1.187.938 1.187.938 52.2 s

3 - Int. rate risk averse 1.171.926 24.270 1.229.897 1.136.655 300 s

4 - Int./Wealth risk averse 1.172.479 25.610 1.229.742 1.128.412 300 s

5 - Loan25 (ARM1) 1.301.237 120.958 1.560.244 1.129.983 < 1 s

6 - Loan2 (Fixed�rate 5%) 1.356.228 59.356 1.410.190 1.249.483 < 1 s

Table A.6: Comparison of the four strategies for the reduced problem.

Model type Total costs Std. dev. max min time

1 - Risk neutral 1.169.147 49.775 1.274.078 1.064.524 25 s

2 - Minmax 1.179.654 11.150 1.185.795 1.154.602 22 s

3 - Int. rate risk averse 1.172.364 26.436 1.239.168 1.130.196 28 s

4 - Int./Wealth risk averse 1.174.038 29.128 1.249.520 1.131.185 44 s

5 - Loan25 (ARM1) 1.301.237 120.958 1.560.244 1.129.983 �

6 - Loan2 (Fixed�rate 5%) 1.356.228 59.356 1.410.190 1.249.483 �

Table A.7: Comparison of the four strategies for the reduced problem with LP ap-

proximation.
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Abstract

In the basic Markowitz and Merton models, a stock's weight in e�cient

portfolios goes up if its expected rate of return goes up. Put di�erently,

there are no �nancial Gi�en goods. By an example from mortgage choice

we illustrate that for more complicated portfolio problems Gi�en e�ects

do occur.

Keywords: Finance, portfolio choice, Gi�en good, mortgage planning.

JEL code: G11 Subject category: IE13

B.1 Introduction

A Gi�en good is one for which demand goes down if its price goes down.

At �rst, it is counter-intuitive that such goods exist at all. But most in-

troductory text-books in economics will tell you that they do; some with

stories about potatoes and famine in Ireland, some with �rst order con-

ditions for constrained optimization. In this note we study similar e�ects
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� by which we mean a negative relation between expected return and

demand � in portfolio choice models. Surprising dependence on expected

rates of return is not uncommon in �nance. In complete models, option

prices do not depend on the stock's growth rate. And quite generally

call-option prices increase with the interest rate; immediately you would

think that cash-�ows are discounted harder, but in fact the replicating

strategy which entails a short position in the bank-account becomes more

expensive, and hence the call-option does too.

We �rst show that in the basic Markowitz mean/variance model, there are

no Gi�en goods; if a stock's expected rate of return goes up, its weight in

any e�cient portfolio goes up. This seems a text-book comparative statics

result. We have, however, only been able to �nd it indirectly stated, for

instance one could view it as a corollary or lemma related to the Harmony

Theorem from Luenberger (1998, Section 7.8). So we give a simple proof.

We then look at Merton's dynamic investment framework. In its basic

version demand for any asset depends positively on its expected rate of

return, but if a subsistence level is included, demand for the risk-free asset

may fall with the interest rate.

Skeptics would say that Gi�en goods exist in and only in economic text-

books. We end the paper by illustrating that it is not so. Our exam-
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ple uses a generalized version of the multi-stage stochastic programming

framework from Rasmussen & Clausen (2007) and shows that some �

completely rational � mortgagors react to lower costs of long-term �nanc-

ing (re�ecting a smaller market price of risk) by using more short-term

�nancing.

B.2 The Markowitz Model

Consider a model with n risky assets with expected rate of return vec-

tor µ and invertible covariance matrix Σ, and put 1> = (1, . . . , 1). The

mean/variance e�cient portfolios are found by solving

maxww
>µ− 1

2
γw>Σw st w>1 = 1,

for di�erent values of risk-aversion γ. This is a slight but convenient

reparametrization of traditional formulations (e.g. Huang & Litzenberger

(1988, Chapter 3)). The optimal portfolios are

ŵ = γ−1Σ−1 (µ− η(γ;µ,Σ)1)

where η(γ;µ,Σ) = (1>Σ−1µ− γ)/1>Σ−11 can be interpreted as the ex-

pected rate of return on ŵ's zero-beta portfolio.

A sensible de�nition of a Gi�en good is an asset, say the i'th, for which

∂ŵi/∂µi < 0 for some γ, this meaning that when the asset's expected rate
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of return goes up, its weight in some optimal portfolio goes down. Let us

show that there are no such assets. To do this we look at the problem

with the modi�ed expected return vector µ+ αei, where α ∈ R and ei is

the i'th unit vector. The optimal portfolio in this case we can write as

ŵ(α) = ŵ + αh,

where h = γ−1(Σ−1ei− e>i Σ−11

1>Σ−11
Σ−11). Showing that ∂ŵi/∂µi > 0 amounts

to proving positivity of the i'th coordinate of h, which we can write as

e>i h = γ−1

(
e>i Σ−1ei −

(e>i Σ−11)2

1>Σ−11

)
.

Because Σ−1 is strictly positive de�nite and symmetric, x>Σ−1y de�nes

an inner product, and strict positivity of the term in parenthesis on

the right hand side of the equation above follows immediately from the

Cauchy-Schwartz inequality.

The inclusion of a risk-free asset is handled in the same way with η re-

placed by the risk-free rate of return because the risk-free asset is any

portfolio's zero-beta portfolio.

With this result we can easily prove the Harmony Theorem from Luen-

berger (1998, Section 7.8) � or equivalently answer the question posed in

the title of Zhang (2004) � that says that a newly introduced (n+ 1)'st

asset (or �project�) will be in positive demand (or: �attractive�) precisely
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if there is strict inequality in the CAPM-like expression

µn+1 − r >
cov(rn+1, rM )

var(rM )
(µM − r), (B.1)

whereM denotes the market (or tangent) portfolio, and rs with subscripts

are (stochastic) rates of returns. It is well-known, see Constantinides &

Malliaris (1995, Theorem 4) but it dates back to Roll (1977), that a

portfolio w is mean/variance e�cient precisely if for any individual asset

i we have

µi − r =
cov(ri, rw)
var(rw)

(µw − r).

For the portfolio (w>
M , 0)> the n �rst necessary equations hold because

the market portfolio is e�cient in the old economy, and we see that the

new asset is in 0-demand if equality holds in (B.1). Now the absence of

Gi�en tells us that if there is strict inequality as stated, the (n + 1)'st

asset has strictly positive weight in the new market portfolio.

B.3 The Merton Model

Another classic portfolio model is Merton's dynamic investment frame-

work, see Merton (1990, Chapter 5). In its simplest case, an agent invests

his wealth,W , in either a risk-free asset with rate of return r or a risky as-

set whose price follows a Geometric Brownian motion. Suppose the agent
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maximizing expected utility cares only about terminal wealth,W (T ), and

has a utility function with constant relative risk aversion,

U(W (T )) =
W (T )1−γ

1 − γ
.

It is optimal for this agent to invest a �xed fraction,

π =
µ− r

γσ2
,

of wealth in the risky asset, So if the expected rate of return of an asset (be

that risky or risk-free) goes up, that asset gets higher weight in any agent's

portfolio. Further, by combining 2-fund separation with the Markowitz

analysis from the previous section, the same conclusion is reached in a

model with n rather than just one risky asset.

An extension (that was actually considered in Merton's original paper;

see Merton (1990, Section 5.6)) is a utility function of the form

Ũ(W (T )) =
(W (T ) − W̄ )1−γ

1 − γ
,

where W̄ is some minimal required wealth; a subsistence level. Assuming

initial wealth is greater than e−rT W̄ (otherwise the problem is ill-posed),

the optimal strategy is to buy e−rT W̄ units of the risk-free asset and

invest the rest of the wealth according to the Merton-rule from above.

Thus the optimal fraction invested at time t in the risky asset is

π̃(t) =
W (t) − e−r(T−t)W̄

W (t)
µ− r

γσ2
,
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so that

∂π̃(0)
∂r

=
1
γσ2

(
e−rT W̄

W (0)
(T (µ− r) + 1) − 1

)
.

From this we see that we can have ∂π̃(0)/∂r > 0 (for instance if e−rT W̄/W (0)

= 1/2, T = 30 and µ− r = 0.05), so the percentage of initial wealth in-

vested in the risky asset goes up, and hence the investment in the risk-free

asset goes down when the risk-free rate of return goes up. The intuition

behind is that if the return of the risk-free asset goes up, you need less

of it to ensure survival, and you have more money to do what you like,

rather than what you have to.

B.4 A Mortgage Choice Model

A way to quantify mortgage planning � for many people the largest

�nancial decisions, they ever make � as a portfolio optimization problem

suitable for modern OR techniques is to study

minimizeφ (1 − γ) ×E(X(φ)) + γ ×ESβ(X(φ)),

where:

� X(φ) is the (cumulative discounted) payments from the mortgagor's

dynamic portfolio strategy, φ, and ESβ(X) = E(X|X ≥ qβ) denotes
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expected shortfall (also called tail or conditional value-at-risk) based

on the β-quantile qβ.

� The minimization is done subject to

� a stochastic interest rate model discretized by paths through

trees, each node having a universe of securities.

� portfolio and cash-�ow constraints, transaction and mortgage

origination costs as well as re-balancing constraints.

This multi-stage stochastic programming problem is an extension of the

models considered in Rasmussen & Clausen (2007), and it has some ap-

pealing features of both intuitive and technical natures:

� It takes into account both reward (low expected payments) and risk

(large, extreme payments), it does so based on the coherent risk-

measure (as de�ned by Artzner et al. (1999)) expected shortfall, and

it allows us to explicitly control the trade-o� between risk and re-

ward (varying γ gives an e�cient frontier, just like in the Markowitz

model).

� As shown by Rockafeller & Uryasev (2000), expected shortfall gives

rise to a piece-wise linear objective function. This means even large

instances of the problem can be solved e�ciently using standard
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software such as GAMS and CPLEX.

For all technical details and analysis of this generalized model see Ras-

mussen & Zenios (2007).

To model the stochastic behaviour of interest rates, we use a Vasicek

model

dr(t) = κ(θ − r(t))dt+ σdZ(t),

where Z is a Brownian motion. To specify the full yield curve dynamics, a

market price of risk is needed. We parameterize this by λ, that technically

shifts the stationary mean of r to θ + λ under the risk-neutral measure,

but more tellingly, determines the typical di�erence between long and

short rates. This represents the fundamental trade-o� in the mortgagor's

problem: Short rates are typically lower than long rates, but with short-

term �nancing, he doesn't know how much he will have to pay.

Table B.1 shows the composition of the initial optimal portfolios for two

di�erent values of the market price of risk. These two values correspond to

calibration to observed Danish yield curves in October 2004 and February

2005, as depicted in Figure B.1.
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Optimal initial loan portfolio compositions

October 2004 February 2005

Mortgagor risk Fixed rate Full yearly Fixed rate Full yearly

aversion (γ) callable re�nancing callable re�nancing

0 0% 100% 0% 100%

1/4 20% 80% 15% 85%

1/2 36% 64% 37% 63%

3/4 46% 54% 49% 51%

1 68% 32% 74% 26%

Table B.1: Optimal initial loan portfolio compositions for various mort-

gagors facing the yield curves shown in Figure B.1. (We used the 90%-

quantile for expected shortfall, 2% discounting, 1.5% transactions costs,

a 7-year horizon and 6 stages.)

We �rst note that only the 1-year adjustable-rate bond and the 30-year

callable, �xed-rate bond are used in the optimal portfolios, although the

numerical algorithm allowed for a larger universe of mortgage products

(about 10 at each node). Row-wise comparisons in Table B.1 give no sur-

prises. The risk-neutral mortgagor uses full short-term �nancing and as

risk-aversion rises more long-term �nancing is used. Note, however, that

because short rates were historically low and the yield curve quite steep,

even very risk-averse mortgagors use a signi�cant amount (one-third to
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one quarter) of short-term �nancing. Comparing the columns tells us

what a lowering of the market price of risk parameter can do to optimal

portfolios. The very risk-averse mortgagor uses a larger proportion (74%

compared to 68%) of long-term �nancing, and the risk-neutral mortgagor

does not care. But for a moderately risk-averse mortgagor (γ = 1/4), the

lowered market price of risk, which makes short-term �nancing relatively

less attractive, causes him to use more short-term �nancing (up to 85%

compared to 80% before). Although a more complicated model, the intu-

ition is again that this mortgagor uses long-term �nancing initially not

because he wants to, but because he has to, and lower long rates � still

higher than typical short rates � make the necessity cheaper; like the

Irish potatoes.

B.5 Conclusion

In this note we �rst analyzed sensitivity to expected returns in two text-

book models for optimal portfolio choice (Markowitz and Merton) and

showed that the relation is as one would think; (for any asset) higher ex-

pected return raises demand (from any investor). We then demonstrated

by examples � the most interesting being from mortgage planning �

that this is not a general result. Let us end by a couple of remarks on
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extensions and future research.

While we think our de�nition of a Gi�en good is quite sensible, it very

much takes a �comparative statics� view-point, that is: Di�erentiate the

optimal solution wrt. to a speci�c expected return parameter. One can

investigate other parameter derivatives and may �nd surprises. But we

think there is a limit to how far this analysis can be taken before run-

ning into the Lucas critique: Sensitives from a static model may tell you

nothing about e�ects in a truly dynamic model. If you want to know how

people react to a change, you must build a model where they take such

changes into their optimization considerations.

We see the use of stochastic programming techniques in �nancial engi-

neering as very promising. The framework can be used as we did here to

analyze individual mortgagors' problems, but it can also be �reversed� to

put together structured products that are optimal (in a precise quantita-

tive sense) for investors or mortgagors. Huang, Kai, Fabozzi & Fukushima

(2007) look at such a case and with the liberalization of capital markets

enforced by new rules from the European Union much more work is needed

in that direction.
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Figure B.1: Danish yield curves from October 2004 and February 2005; full

curves are calibrated model curves, dotted lines are observations. The estimated

Vasicek model parameters (θ, κ, σ) = (0.042, 0.2, 0.01) are held �xed and only

the calibrated market price of risk, λ, di�ers from October 2004 (0.017) to

February 2005 (0.004). In October the di�erence between the 30-year and the

1-year rate is 2.8%; in February it is 1.8%.
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Abstract

Individual homeowners are o�ered today a wide range of mortgage op-

tions for �nancing the purchase of a house. Usually, homeowners are also

granted an option to repay the mortgage loan, and in some countries�

such as Denmark�it is particularly e�cient to do so as market conditions

change or the homeowner's situation warrants it. And while, tradition-

ally, a single mortgage loan would serve borrower needs, today it appears

that a portfolio of loans may satisfy much better the mortgage needs of

the individual and his or her appetite for risk. In this paper we develop a

model for the diversi�cation of mortgage loans of a homeowner and apply

it to data from the Danish market. Even in the presence of mortgage orig-

ination costs it is shown that most risk averse homeowners will do well

to consider a diversi�ed portfolio of both �xed (FRM) and adjustable

(ARM) rate mortgages. This is particularly so if one takes, unavoidably,

a long term perspective in �nancing the purchase of a home through a

mortgage loan.
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C.1 Introduction

What is in a name? Everything is in the name, the marketing guru

will tell us, and the names used to pitch the hottest subset of the old-

fashioned mortgages tell a lot: Interest-Only (I-O), OptionARM and Pick-

a-Payment have been added to the traditional shopping list of �xed

(FRM) or adjustable (ARM) rate mortgages.

In essence all these mortgage products aim at satisfying the same under-

lying need of borrowers: o�ering them a loan to achieve the immediate

home purchasing goals, with payment terms that can be adapted as the

family earnings change�usually with an upward adjustment especially for

young home buyers�while o�ering some protection from market changes

to both borrowers and lenders. The issue, especially for �rst time buyers,

has been one of trading o� the lower rate and payment on an ARM with

the interest rate risk of the ARM, or going for the higher initial payments

of a FRM and lower risk when the FRM is kept to maturity. With an I-O

the initial payments can be reduced substantially, but future payments

will increase signi�cantly when the interest-only clause expires and prin-

cipal payments must be made, especially if there have been signi�cant

changes in interest rates since the loan was issued.
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According to some surveys (Real Estate Center at the Wharton School,

University of Pennsylvania, �Could risky mortgage lending practices prick

the housing bubble?�, Web newsletter, 2002) innovative mortgage prod-

ucts account for half of the new mortgages written in the USA, up from

less than 10% in 2001. The innovations in the Danish market have not

been as exotic as their US counterparts, but they have been particularly

simple and e�cient to promote. The seven specialized mortgage banks

that operate in Denmark fund the loans by issuing bonds in the capital

markets. The terms of the bonds are identical to the mortgage loan they

fund, with the mortgage bank adding a markup on the market yield of

bonds with maturity comparable to the loan. Given the readily available

information of market yields all banks o�er the same markup rate, and

this mechanism is equivalent to the borrower issuing his or her own bonds.

Furthermore, all borrowers pay the same rate on the same type of loan

issued on a given date. (This is possible, even accounting for di�erences

in credit worthiness of the borrowers, as most loans require a 20% down

payment which adequately covers a wide range of credit risky borrowers.

However, borrowers with very poor credit or without initial endowment

are not served in this market.)

Given the simplicity with which market rates are transformed into mort-

gage loans, on any given day a borrower can be o�ered a range of �xed-rate
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mortgages with 15, 20 or 30 year maturity, and adjustable rate mortgages

with adjustment periods ranging from one to ten years, and these products

reach a wide market segment. The total amount of mortgage loans issued

in Denmark�this includes origination of new loans plus the re�nancing

of old loans�in 2005 totals almost 100 billion EURO. This represents a

record increase of 25% from the year before, and corresponds to half of

the Danish gross domestic product. Fixed and adjustable rate mortgages

account for 50% of the mortgage market each. Innovative products such

as I-O and ARM with a cap are quite popular. About 30% of the to-

tal ARMs in the market come with a cap, while about 30% of the total

amount of mortgage loans in the private and summer house market are

I-O.

The re�nancing activity in this market is also noteworthy. About one third

of all outstanding loans, for a total of 70 billion EURO, were re�nanced

in 2005. The issue of new loans reached 20 billion EURO, corresponding

to a growth of 10% to the total amount of mortgage loans in the Danish

market which sets a new record.

Some form of protection from either market changes or changes in family

conditions�job loss, births, deaths or divorce�comes in the form of an

early prepayment option. Additional protection from interest rate risk



156 Appendix C

is o�ered through caps on the rate adjustment of ARMs or with the

purchase of �xed rate mortgages. But then one has to deal with the higher

rates associated with a FRM and accept the risk that rates will decline

while payments on the loan remain locked. Furthermore, in the Danish

market, early termination of a FRM requires prepayment of the mortgage

at prevailing market prices which represents signi�cant interest rate risk

for homeowners with issued loans with prices below par, except those few

who keep the mortgage to maturity.

C.2 Are there diversi�cation bene�ts from port-

folios of mortgage loans?

In the context introduced above it is somewhat surprising that the ques-

tion of diversi�cation of homeowner mortgage loan has not received to

date any attention. This is primarily due to the transaction costs involved

in obtaining more than one mortgage loans�mortgage origination fees in

Denmark stand currently at 300 EUR. But still, in the e�cient Danish

market there has been an interest in selling more than one product to

each homeowner. Indeed, it can be easily observed that a combination

of mortgage loans could provide lower average total payments during the

life of a mortgage, and with less variability as interest rates change. Fig-
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ure C.1 illustrates the changes in total payment for FRMs and an ARM

with increasing interest rates. It is seen from this �gure that the sensitiv-

ity of FRMs and ARMs to interest rate changes have opposite signs, and

hence a properly balanced portfolio of both types of loans could provide

better protection than either mortgage alone.
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Figure C.1: The total expected payment of 30-year �xed (3% and 4%

FRM) and adjustable (ARM(1) with annually adjusted rates) rate mort-

gages have opposite sensitivities to changing interest rates. (Top �gure

shows all simulated data for a six year planning horizon; bottom �gure
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The same conclusion is further highlighted from the analysis of the his-

torical performance of mortgage loans in the Danish market during the

period 1995�2005. Figure C.2 shows the mean payment and the risk of

the payment for various typical mortgages during this period. Risk is

measured by the Conditional Value-at-Risk (CVaR) at the 90% con�-

dence level, see, e.g., Rockafellar and Uryasev (2000) or Jobst and Zenios

(2001). The di�erences in mean payments and CVaR, coupled with the

negative correlation of the FRM and ARM payments suggest that interest

rate risk can be diversi�ed by holding portfolios of mortgages.

The structuring of diversi�ed portfolios is the topic of this paper. But

�rst some more explanations are in order for the operations of the Danish

mortgage market.

C.3 Some explanations on Danish mortgages

The Danish mortgage banks are highly specialized institutions whose line

of business is, �rst, to collect the investments from the investors of mort-

gage backed securities, and, second, to pool the investments together

and issue mortgage loans to house buyers. The great volume of hous-

ing trade�the outstanding mortgage debt corresponds to one half of the
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Figure C.2: Expected payment and risk of payments (measured by Con-

ditional Value-at-Risk, CVaR) for Fixed (FRM) and Adjustable (ARM)

Rate Mortgages in the Danish mortgage market during the period 1995�

2005.
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gross domestic product of the country�the e�ciency of the one-stop-shop

process of mortgage origination by specialized banks, together with a 200-

year history of no default from the mortgage banks1 result in cheap loans

for prospective house buyers. As investors are not exposed to default risk

the Danish mortgage backed securities are rated AAA, and banks simply

add to the market bond yields a markup rate which currently stands at

0.55%.

A unique feature to the Danish mortgage market is the �balance princi-

ple� prescribing that the payments made by the mortgagor are exactly the

payments received by the investor. In e�ect, Danish mortgagors are trad-

ing directly mortgage bonds and may exercise all the options. A Danish

FRM has a call option typically with strike price at 100 and a buy�back

delivery option embedded on the underlying bonds. This has in particular

an impact on loans with long maturities, as small movements in interest

rates result in big movements in the prices of FRMs and, hence, have a

direct impact on the amount of outstanding debt for the Danish mort-

gagor.

Until 1995 FRMs were the only kind of mortgage backed securities which

were traded in the Danish market. Since then the mortgage market has

1House owners may fail to pay their liabilities, but there has yet not been an incident

of default when it comes to payments to investors via the mortgage banks.
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been growing fast and a number of new products have been introduced.

The two most popular products have been the adjustable rate mortgage

loans with varying adjustment intervals, and capped ARM loans where

the interest rate cannot grow higher than a predetermined level.

All these loans can be issued with Interest-Only payments for a grace

period of up to 10 years, although after 10 years it is possible to re�-

nance the loan with another 10 years of I-O payments and as a result the

outstanding debt is not being reduced during this period.2

The features of either FRM or ARM, together with the �exibility for re�-

nancing the loans, imply that the total payments on the mortgage during

the life of the loan is highly uncertain. While a mortgage owner will �nance

a loan in ways that are consistent with his or her short term �nancial ca-

pabilities, in the long run the payments made and the outstanding debt

will be determined by the changing interest rates. A simulation model

can be used to project the total payments, including the value of the

outstanding debt if the loan is re�nanced before maturity; see Mulvey

and Zenios (1994) on the use of simulation models for capturing corre-

lations of �xed income securities. Payment projections are made based

2This practice has been challenged in the article by the Real Estate Center men-

tioned above, who questions whether rolling over debt over long horizons could be a

ticking time bomb for the mortgage markets.
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on an underlying interest rate process�we use a variation of the Vasicek

model in our work; see Appendix C.7�for all types of loans. The same

process is also used to estimate the mortgage security market price for

the outstanding debt and to determine the exercise of any options. The

result is a distribution of net payments for di�erent types of loans that

can then be used to combine loans and obtain an optimized, diversi�ed,

portfolio. The simulation results for FRM and ARM given next further

highlight the potential diversi�cation e�ects of optimized portfolios.

C.3.1 Fixed rate mortgages

A FRM pays a �xed annual rate for the duration of the loan�normally 15,

20 or 30 years. In addition to the �xed rate there is also a price associated

with a FRM, which is based on the amount paid by the investor to the

mortgage bank upon loan origination. In particular, the interest rate and

principal payment calculations are not based on the amount paid by the

investor, but on the face value of the FRM. For example if the price of a

FRM is 96.8 then for every 96.8 EUR that the mortgagor receives he will

owe the investor 100 EUR.

As a result, although the interest rate payments on a FRM are �xed the

overall payment is not constant due to the fact that the price of a FRM
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changes with the general level of interest rates change and the Danish

mortgagor has a buy back delivery option on the FRM, which means that

the mortgage can be prepaid at any time at the prevailing market price.

Hence, unless the loan is kept until maturity�an unlikely situation�

the borrower does not know with certainty the overall payments. This

situation is illustrated using simulations in Figure C.3 (top), for a 30-

year 3% FRM, which is prepaid after six years.

It is worth pointing out that, to our knowledge, no mortgage banks out-

side Denmark o�er this buy back delivery option. In all other cases we

are aware of, should the mortgagor wish to prepay the mortgage loan

then payment is due of the original loan, or any remaining part thereof.

Most mortgage banks across the world of course o�er a call option, so the

mortgagor may prepay the mortgage at a predetermined price, usually

par. The buy back delivery (call) option of the Danish mortgages intro-

duces an asymmetry in the payment distribution which is illustrated in

Figure C.3 (bottom) for a 30-year 4% FRM with a price close to strike,

when it is also prepaid after six years under di�erent interest rate scenar-

ios.

Comparing the payments of the two FRMs we observe that the FRM with

the price closest to par has a smaller volatility of payments but a higher
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Figure C.3: Distribution of total payments, including interest payments

and principal prepayment after six years, of 30-year �xed rate mortgages

with di�erent rates: 3% (top) and 4% (bottom).
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mean. Increased volatility is the price to pay for the upper bound on the

payment. Some mortgagors are willing to pay higher mean payments in

order not to worry about very high payments that might occur if the initial

price of the FRM is below par and interest rates drop. Others may prefer

the low original payment today to get into a new home, in expectation

of higher income in the future. As a rule of thumb house buyers are not

advised to issue FRM with prices below 95.

C.3.2 Adjustable rate mortgages

Adjustable rate mortgages have both a varying rate and a varying price

and the distribution of Figure C.4 illustrates the net payments of an

annually adjusted 30-year ARM(1) over a holding period of six years.

For an ARM(1) with annually adjustable rate the price is almost constant

and close to par, but as the re-adjustment period increases�in Denmark

up to 10 years for ARM(10)�the price may vary considerably as the

general level of interest rates changes similarly to a FRM with maturity

of 10 years. In contradistinction to FRMs, however, most ARMs have no

embedded call options and their price might increase to such extremes

which makes it impossible for the mortgagor to prepay the loan, should

he decide to quit the loan before the horizon of the �xed rate term in
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Figure C.4: Distribution of total payments, including interest payments

and principal prepayment after six years, of a 30-year adjustable rate

mortgage ARM(1) with annual adjustments.
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question.

The interaction between rates and prices, and the uncertainty surrounding

the timing for selling the house�due to changing family conditions�

makes it di�cult to choose an ARM for a particular mortgagor. Nielsen

and Poulsen (2004) and Rasmussen and Clausen (2006) proposed models

for structuring mortgage loans for homeowners. However, these models

focus on a single product and do not explicitly introduce a risk measure

that bring to the surface the diversi�cation issues. A comparison of the

distribution of payments for a 30-year ARM(1) with annual adjustments

and a 30-year 4% FRM shown in Figure C.5, together with the negative

correlations of FRM and ARM shown earlier, further highlights the fact

that a combination of both types of mortgages should reduce both the

average payment and the volatility of payments, and in addition impose

a limit on the upside potential for high payments in the future.

A model for diversifying mortgage loans is introduced next.

C.4 A diversi�cation model

The optimization model speci�es portfolios that trade o� the net present

value of the total mortgage payment against a risk measure of these pay-
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Figure C.5: Comparing the distribution of total payments, including in-

terest payments and principal prepayment after six years, of a 30-year

adjustable rate mortgage with annual adjustments and a 30-year �xed

rate mortgage
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ments. The risk measure we adopt in this paper is that of Conditional

Value-at-Risk (CVaR) that has both the theoretical properties of �co-

herence� (Artzner et al., 1999) ? and is also well suited for diversifying

portfolios of assets with skewed distributions (Jobst and Zenios, 2001).

We are given a set of scenarios l ∈ Ω obtained from the simulation model

(see Appendix C.7) and a set of mortgage loans i ∈ U , and the following

parameters generated by the simulation model for each scenario:

pl, the probability associated with scenario l,

dl, discount factor under scenario l,

K l
i , the call price of loan i under scenario l,

rl
i, coupon rate for loan i under scenario l.

CF l
i , the net present value of payments from one unit of loan i under

scenario l, including interest and principal payments as well as any

fees,

PP l
i , the net present value of prepayments from one unit of loan i under

scenario l including any retirement of the debt at prevailing market

prices.
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The following are given input data, relating to features of the problem:

IA, the initial amount to be borrowed in order to �nance the house pur-

chase,

Pi, price of loan i at origination time,

c, variable transaction costs (in percentage),

cf , �xed costs associated with mortgage origination or re�nancing.

Finally, we de�ne the model variables:

yi, units sold of loan i,

ζ, Value-at-Risk (VaR) at the 100α% con�dence level,

CVaR(y;α), conditional Value-at-Risk of a portfolio with loans y = (yi)i∈U

at the 100α% con�dence level,

yl
+, amount of payment under scenario l exceeding the VaR level ζ,

Zi =




1 if any amount of loan i is originated.

0 otherwise.

The optimization model can now be formulated as follows using the linear

programming formulation of Rockafellar and Uryasev (2000), where we
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use λ to denote the degree of risk aversion, ranging from 1 for high risk

aversion and 0 for no risk aversion (see also Zenios, 2006):

Minimize (1 − λ)
[∑

i∈U

∑
l∈Ω

pl(CF l
i + PP l

i )yi

]
+ λCVaR(y;α) (C.1)

subject to
∑
i∈U

Piyi≥IA+
∑
i∈U

(
cyi + cfZi

)
(C.2)

MZi − yi≥0 forall i ∈ U (C.3)

yl
+≥

[∑
i∈U

(CF l
i + PP l

i )yi

]
− ζ forall l ∈ Ω (C.4)

CVaR(y;α)=ζ +
∑

l∈Ω p
lyl

+

1 − α
(C.5)

yi, ζ, y
l
+≥0, Zi ∈ {0, 1} forall i ∈ U, l ∈ Ω (C.6)

The objective function (C.1) trades o� the net present value of total

payments (including prepayments) against the risk measure as given by

CVaR. Constraint (C.2) makes sure that we originate enough loans to

buy the house at a cost IA and pay any transaction costs and the �xed

mortgage origination costs. Constraint (C.3) sets the binary variable Zi

to 1 indicating that �xed mortgage origination costs need to be incurred,

if any amount of loan i is chosen in the portfolio of loans, where M is a

large constant to account for the maximum allowable loan.

Constraints (C.4) and (C.5) together de�ne the CVaR of the portfolio at
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the 100α% con�dence level, see Rockafellar and Uryasev (2000) or Zenios

(2006). Finally we have the non-negativity constraints (C.6).

We applied this model to build diversi�ed portfolios of mortgages. First,

simulations are employed to develop scenarios of cash�ow payments and

outstanding principal for both FRM and ARM and then the optimization

model is run on the set Ω, and for di�erent values of the risk aversion

parameter λ. The results are shown in Figure C.6, together with the

performance of the individual mortgage loans available to our investor;

the bene�ts from the diversi�ed portfolio become apparent. We observe

that the ARM(1) appears as the sole mortgage on the portfolio of only

the least risk averse investors, but as risk aversion increases the portfolios

diversify into ARM(5) and FRMs as well.

We go a step further, however, and show on the same �gure the per-

formance of the loan of a homeowner who follows a dynamic strategy

of rebalancing his or her single FRM as market conditions change. This

is clearly a better strategy than issuing and holding a single mortgage

throughout and it is, indeed, the strategy pursued by most homeowners

who chose FRMs. But even so, we observe from the results of this �gure

that the dynamic policy reduces the expected payments, but it does so by

assuming higher risks, and it is dominated by the diversi�ed portfolios.
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Figure C.6: The e�cient frontier of diversi�ed portfolios of mortgage

loans is shown together with performance of individual mortgages in the

mean/CVaR space, and the performance of dynamic strategies for rebal-

ancing a single mortgage loan.
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Here, we may rest our case, having demonstrated the validity of the di-

versi�cation approach for portfolios of mortgage loans. However, an in-

teresting question has been raised that prompts us to further modelling

investigations: If a dynamic strategy of rebalancing a single mortgage loan

has some advantages over the issue-and-hold strategy, could it be the case

that a dynamic portfolio optimization model would do even better than

the model of this section that is de�ned over a single period, with allow-

ing the possibility of dynamic rebalancing at some future intermediate

stages? The answer is a�rmative as we see in the next section.

C.5 Taking a long term perspective

The long time horizon of the mortgage decision, and the ability of the

mortgage owner to rebalance the loan as market (or family) conditions

warrant it, begs for the application of dynamic multi-period portfolio

optimization strategies using multi-stage stochastic programming. Such

programs have a long history in the optimization literature (see, e.g.,

Birge and Louveaux (1997) or Censor and Zenios (1997)) and have been

gaining prominence in the risk management literature since the eighties

(Ziemba (2003), Zenios and Ziemba (2006)). The extension of the model

above into a multi-stage setting is developed in Rasmussen and Zenios
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Figure C.7: Signi�cant improvements in the performance of diversi�ed

portfolios of mortgage loans are realized with the use of a multi-stage

model over the single-period model.

(2006), where a �ve-period, four-stage model is developed allowing for

re�nancing the loan at years one, two, three and �ve, and maturity at

year seven.

The application of the multi-stage model for optimizing diversi�ed port-

folios leads to signi�cant improvements in performance as witnessed from

the results of Figure D.6, leading to the simultaneous reduction of both

the expected net payments and the risk of the payments as measured by

CVaR
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The structure of the diversi�ed portfolios obtained with both the single-

period and the multi-stage model are shown in Figure C.8. We observe

that for investors with low risk aversion, ARMs is the predominant class

of mortgage loans no matter which optimization model is used. However,

as risk aversion increases we observe a gradual shift towards the class of

FRMs and while this trend is common with both models there is sig-

ni�cantly more reliance on FRMs for the investor using the multi-stage

model. This is so, since with the multi-stage model we can rebalance the

portfolio of FRMs at the appropriate time for each scenario. The optimal

strategy recommended by the multi-stage model is essentially equivalent

to synthesizing an ARM with optimal timing for rate re-adjustment at

intermediate stages, at one, two, three or �ve years, depending on the sce-

nario of interest rates. This �nding points out that it is worth designing

more complex ARM structures that will lock in a rate for pre-speci�ed

periods that may depend on the prevailing rates. To do so, however, a

legal construct is required so that the synthesized ARM will be presented

as a single loan.
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Figure C.8: The composition of the diversi�ed portfolio in the aggregate

categories of �xed and adjustable mortgages when using both the single-

period and the multi-stage models.
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C.6 Two interesting observations

Finally we use the model to o�er answers to two questions that are often

raised in the context of mortgage management.

C.6.1 The e�ect of mortgage origination costs

First, we consider the e�ect of �xed transaction costs for loan origination

and the adverse e�ect this has in rebalancing mortgage loans. Indeed,

the arguments against portfolios of loans of mortgages is based on the

assumption that the origination costs will be prohibitively high. Mortgage

origination costs, in Denmark, include a fee of 1.5% on the required loan

paid to the bank upfront for all and any mortgage loans obtained from

the bank, a 0.5% penalty for re�nancing a loan with a di�erent mortgage

and a 300 EUR administration fee for originating every new mortgage.

The largest of these fees (1.5% on the loan amount) is a sunk cost, and

does not a�ect our decision to re�nance a mortgage, assuming we stay

with the same bank. The rebalancing proportional cost of 0.5% is akin

to the transaction costs for any asset management problem and it has

been included in all our previous runs. What is left unexamined is the

cost for originating new mortgages over and above the original loan. We

run the portfolio optimization model with and without the 300 EUR
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Figure C.9: E�cient frontiers of diversi�ed portfolios of loans with and

without the mortgage origination costs.

mortgage origination costs. The results are shown in Figure C.9. While

we note that the performance of the diversi�ed portfolio deteriorates when

origination costs are included, it is still the case that they do much better

in mean/CVaR space than any of the individual mortgages, and they also

outperform the dynamic strategy of rebalancing a single FRM. Hence,

loan diversi�cation pays even when accounting for the higher costs of

originating multiple loans.
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C.6.2 Designing new mortgage products

Armed with the portfolio diversi�cation models we can analyze the e�ect

of new mortgage products on the homeowners' portfolios. This has clear

implications for the introduction of new products in the market.

Naturally, as we add more products in the market the diversi�ed portfolios

will improve in performance. Or, at least, they will not perform worse as

the optimization model will simply ignore any new products that do not

contribute to the diversi�cation. Indeed, Figure C.10 clearly shows the

improvements in e�cient frontier as new instruments are added in the

universe of mortgage backed securities, although the improvements are

diminishing when adding more than three new securities.

What happens, however, if a bank wishes to issue only one type of ARM(t)

with some to-be-determined period t for rate readjustment, to comple-

ment a diversi�ed portfolio of FRM and ARM(1)? We run the model by

introducing�one at a time�ARM(2), ARM(5) and ARM(7). The results

are shown in Figure D.9, where we observe signi�cant improvements in

the performance of the diversi�ed portfolios when we add an ARM(2) or

ARM(5) to a portfolio with FRM and ARM(1), but things would deteri-

orate for almost all levels of risk aversion if an ARM(7) were introduced

instead. This analysis provides guidance as to the best mortgage prod-
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Figure C.10: Expanding the universe of mortgage loans available to home-

owners improves the performance of diversi�ed portfolios, although the

improvements come at diminishing rate when adding more than three

securities.
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Figure C.11: Designing new mortgage loans: Adding new products to the

existing portfolio has the optimum positive impact for an ARM(2) and

ARM(5) but the diversi�cation e�ects are diminished for ARM(7).

ucts to be introduced, to maximize the diversi�cation bene�ts for the

homeowners.

C.7 Conclusions

We have shown that well diversi�ed portfolios of mortgage loans can bet-

ter serve the needs of homeowners, in both �nancing the purchase of a

home and staying within acceptable risk pro�les. This conclusion is ro-
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bust in the sense that it holds true even in the presence of transaction

costs and for short and long horizons alike. From the models developed

we have seen that the multi-stage stochastic programming approach is

particularly well suited for this type of problems. However, even a single-

period model such as the mean/CVaR optimization that has been gaining

widespread acceptance in risk management serves well the needs of this

problem. The models also shed some insights on the introduction of new

mortgages in the market.

Finally a word on potential extensions that are possible with the mod-

elling setup we introduced. In this paper we only considered the interest

rate risk. However, the scenario tree can be extended to represent house

price and income dynamics in order to capture the wealth risk of the

home owner as well.

Appendix 1: The simulation model

We use a variation of the Vasicek interest rate model (Jensen and Poulsen,

2002) as the underlying stochastic process to generate estimates of future

short rates
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dr(t) = κ(θP − r(t))dt+ σdWp(t),

where r(t) is the short rate, W is a Brownian motion and κ, θ and σ

are model parameters controlling the height of the interest rate jumps,

the long run mean level of interest rates and the volatility of the interest

rates. The model is given under real�world probability measure P . This

can be shifted to the risk free measure Q using the transformation

θQ = θP + π, π ∈ R

where π is the risk premium, so the Vasicek model under the risk free

probability measure Q becomes

dr(t) = κ(θQ − r(t))dt+ σdWQ(t).

The expected short rates are then found from

EQ[r(t)] = r0 · exp(−κt) + θQ(1 − exp(−κt)).

We discretize this short rate process and estimate future rates and prices
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for mortgage backed securities using the pricing method of Nielsen and

Poulsen (2004).



Appendix D

Optimal Mortgage Loan

Diversi�cation

Working paper availabe at http://www2.imm.dtu.dk/ kmr/.
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Abstract

Homebuyers in several countries may �nance the purchase of their prop-

erties using di�erent variants of either adjustable�rate mortgages (ARMs)

or �xed�rate mortgages (FRMs). The variety and complexity of these loan

products poses a risk management task for mortgage bank advisors to rec-

ommend the right mortgage loan strategy for the individual mortgagor;

almost all mortgage banks advise their customers to take a single loan

product. This argument is often justi�ed by the fact that trade frictions

make it unattractive to hold a portfolio of loans as a private home owner.

Even with transaction costs, however, we show in this paper that most

mortgagors with some degree of risk aversion bene�t from holding a mort-

gage portfolio. To do so we develop a multistage Mean�Conditional Value

at Risk (MCVaR) model to consider the risk of the mortgage payment

frequency function explicitly using a coherent risk measure. In addition to

the diversi�cation bene�ts we also show that the multistage model pro-

duces superior results as compared to single period models and that the

solutions are robust with regards to changes in uncertainty parameters
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in particular for risk averse mortgagors. Finally, we show how the model

can be used to calculate fair premia for adjustable rate mortgages with

interest rate guarantees (caps) which are becoming increasingly popular

as a hybrid product between the existing ARM and FRM mortgages.

Keywords: Mortgage loans products, CVaR modeling, stochastic pro-

gramming.

D.1 Introduction

Most homebuyers across the world �nance the purchase of their houses by

taking a mortgage loan. Mortgage banks in several countries o�er several

mortgage products with di�erent payment schemes and risk pro�les. This

complicates the job of the mortgage advisor who has to account for the

credit worthiness of the mortgagor and its e�ect on the amount and type

of mortgage loan that should be granted. This paper deals with modeling

the mortgage choice problem to account for some of the most signi�cant

uncertainties of this problem.

Even though the model in this paper can be applied to any mortgage

market (perhaps with some modi�cations) the cases considered are based

on the Danish mortgage market. The Danish mortgage banks are highly
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specialized institutions whose main focus is, on the one hand, to collect in-

vestments from investors in mortgage�backed securities, and on the other

hand, to pool the investments together and issue mortgage loans to home

buyers. The Danish mortgage�backed security legislation requires equal

payments on the investor and the mortgagor side � �the balance principle�.

This law in e�ect limits the �nancial risks assumed by the mortgage banks

to credit�default risk on the mortgagor side and mortgage�bond�liquidity

risk on the investor side.

A feature unique to the Danish mortgage market is that mortgagors, via

the mortgage banks, are virtually trading mortgage bonds and may exer-

cise all the embedded options in the underlying bonds. For a �xed�rate

mortgage (FRM) this includes a call option of Bermudan type with a

strike price of 100 and a buy�back delivery option which gives the mort-

gagor the right to redeem the mortgage at the actual market price of

the underlying bond. These two features provide security on the mort-

gagor side. In the case of falling interest rates the mortgagor can exercise

the call option and re�nance the existing FRM, with a new FRM with

lower coupon payments. Furthermore for rising interest rates the mort-

gagor can reduce the outstanding debt by prepaying the mortgage at a

market price lower than the original issuance price. This has an impact

on FRMs with large durations. Small movements in interest rates result
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in big movements in prices of FRMs and this has an important impact on

the debt�free value of the property. The buy�back may be re�nanced ei-

ther by selling the house or by taking a new loan with an underlying FRM

with higher coupon payments, or an adjustable�rate mortgage (ARM).

The exercise of the buy�back delivery option is useful in case the mort-

gagor needs to move or in case he or she believes the interest rates will

fall again in the near future. These features of the FRM, and the security

they o�er, however come at a price; the e�ective interest rate payments

are often considerably higher than those of adjustable�rate mortgages.

Since the mid 1990's the Danish mortgage market has been growing

rapidly and a number of new mortgage products have been introduced

in addition to FRMs. The two most popular products have been ARM

with varying adjustment intervals, and the capped rate mortgages (CRM)

where the interest rate cannot grow higher than a predetermined level

(cap). All these loans may be issued with or without principal payments

(interest payments only) for a period of up to 10 years. The interest�only

period is renewable after the initial 10 years.

ARMs are �nanced by issuing underlying bullet bonds with maturities of

1 to 10 years. For example an ARM1 is a mortgage with annual inter-

est rate adjustments, whereas the rate of an ARM2 is readjusted every
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other year, etc. Since there are no embedded options available with an

ARM, the average payments of an ARM are lower than an FRM but

payment volatility is considerably greater for very long horizons. CRMs

are �nanced by a variable rate security with an embedded cap. The in-

terest rate follows a 6�month CIBOR (Copenhagen Inter Bank O�ered

Rate) plus a premium. Should the CIBOR plus premium increase to a

level higher than the interest rate guarantee level, the rate will be �xed

at the guarantee level. Should the CIBOR plus premium fall below the

guarantee level again, the CRM's rate will follow accordingly.

The extra features of the CRM come at a price, i.e. higher interest rate

payments than alternative �oating rate products such as an ARM1. For

more details on the workings of the Danish mortgage market see Svenstrup

& Willemann (2005). For a review of recent innovations in the mortgage�

backed security market see Piskorski & Tchistyi (2006).

It must be evident by now that it is a non�trivial task to advise a mort-

gagor on choices of mortgage loan. Indeed wrong advice together with

unfavorable market behavior might result in �nancial ruin for a large pool

of mortgagors and this in turn will have unprecedented macro�economic

e�ects such as a devaluation of the housing market. The research interest

in this problem is well justi�ed.
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Nielsen & Poulsen (2004) design a trinomial scenario tree using an under-

lying two�factor model of interest rates for pricing existing and synthetic

mortgage bonds. Furthermore they introduce a stochastic programming

model to �nd the optimal initial loan strategy and to advise the mortgagor

on optimal readjustments along the way. Their optimization model, how-

ever, does not include a risk measure and the e�ects of �xed�mortgage

origination costs were ignored. ? further develop this model to include

�xed�mortgage origination costs and budget constraints. Their conclu-

sion is that a mortgagor with budget constrains bene�ts from choosing

an initial portfolio of an ARM and a FRM, given that there are only these

two types of products to choose from. The budget constraints provide in-

direct means for risk control, but no explicit risk measure is considered

in this paper either.

An explicit risk measure for this class of problems was introduced by ?

who develop a single period stochastic programming model to trade o�

the present value of average mortgage payments against the Conditional

Value at Risk (CVaR1) value. They use a Mean/CVaR e�cient frontier to

show that diversi�ed mortgage loan strategies outperform single mortgage

loan strategies; Figure D.1 highlights their �ndings which speak strongly

1For a review of CVaR as a coherent risk measure see ?, Rockafellar & Uryasev

(2000) and Zenios (2007).
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Figure D.1: For a mortgagor with a seven year horizon a mix of vari-

able and �xed�rate mortgages provide low payments and low risk, here

measured by the 10% CVaR value.

in favor of diversi�cation.

In this paper we develop a multistage version of our earlier model and

show that improved results can be obtained by introducing dynamic trad-

ing into the model. It will be seen that the budget�constrained model of ?

is subsumed by the bilinear Mean/CVaR minimizing model. Furthermore,

we consider CRMs as part of our universe of loans and suggest a simple

approach to determine whether the cap option comes at a fair price for a

given mortgagor with a certain risk appetite.
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D.2 Single mortgage strategies

Today the advisors in the Danish mortgage market recommend home-

buyers to take single mortgage loans only. Until 2005 this included only

ARMs or FRMs. Since 2005 CRMs have been among the favorites of the

Danish advisors as well. When comparing the cash�ows of these loans

only the �rst year payments are quanti�ed. This leaves out important

information on the uncertain cash�ows from year 1 on. In this section we

suggest a scenario analysis approach which gives a quantitative compari-

son of di�erent loans across a number of representative scenarios.

We generate an event tree with a seven�year horizon, using the one fac-

tor Vasicek model; see Appendix D.6 for details of the interest rate model

and Nielsen & Poulsen (2004) for its discrete implementation. Price cal-

culations are performed using the RIO application which is a specialized

commercial system for pricing Danish mortgage�backed securities, (see

www.scanrate.dk).

D.2.1 FRMs and ARMs

Even though the interest rate payments on an FRM are �xed, the overall

payment distribution is not. This is due to the fact that the price of
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an FRM changes as the general level of interest rates changes and the

(Danish) mortgagor has a buy�back delivery option, meaning that the

mortgagor can prepay the mortgage at any time at the market price. So,

unless the mortgagor keeps the FRM until maturity, the overall payments

remain uncertain. Figure D.2 shows the density functions for the total

payments of two 30�year FRMs, given that the mortgages are repaid

after seven years.

It is noteworthy that at present no mortgage banks outside Denmark o�er

this buy�back delivery option to an FRM mortgagor. Should the FRM

mortgagor repay the mortgage loan early, it occurs at par. Most mortgage

banks across the world, however, o�er a call option, so the mortgagor

may repay the mortgage early at most at a predetermined price (usually

par). The call option introduces an asymmetry in the payment density

functions of FRMs with prices close to par as seen in Figure D.2. The

density function of the 4% FRM has a longer left tail than the right tail

due to the call option at par.

Comparing the payments of two FRMs with di�erent rates and prices

it is easily seen that the FRM 4% has a smaller volatility but a higher

average payment that compensates for the upper bound on the payments

due to the embedded call option. Most mortgagors are willing to make



D.2 Single mortgage strategies 197

higher payments on average in order to avoid the very high payments that

might occur if the initial price of the FRM is signi�cantly below par and

interest rates fall.

Figure D.2: The density of total payments with early repayment at year 7, of two

30�year FRMs with di�erent coupon rates.

Adjustable�rate mortgages (ARMs) have both a varying rate and a vary-

ing price, resulting in uncertain payments. Figure D.3 (top) shows that

ARM1 has not only a lower average payment than the FRM 4% but it also

o�ers a lower risk (shorter right tail). Comparing the payments of ARM1

and FRM 4% for each scenario, however, you will notice a very strong

negative correlation, see Figure D.3 (bottom), and this has implication if

the mortgage must be prepaid.
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Figure D.3: Comparison of payment densities (top) and scenario payments (bottom)

for an ARM1 and an FRM4%. In the bottom �gure the scenarios are ranked according

to the geometric average of the short rates on the scenario paths.
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The high payment scenarios for an FRM occur when interest rates are

decreasing, so that the mortgagor is both paying high interest rates and a

high repayment. These same low interest rate scenarios are obviously low

payment scenarios for an ARM. The scenarios in which the interest rates

increase, however, are low payment scenarios for FRMs, due to low repay-

ments, whereas they are high payment scenarios for ARMs due to upward

adjustment of interest rates. There is, in other words, a negative corre-

lation between the payment of FRMs and ARMs making it potentially

attractive to hold a diversi�ed portfolio of mortgages. The interesting

question now raised is how big the amount of the loan should be before

the diversi�cation can pay o�, considering transaction and mortgage�

origination costs, and what is a good mix for a mortgagor with a certain

risk attitude or limited budget. We will answer these questions in the rest

of this paper.

D.2.2 CRMs

In 2005 one of the leading Danish mortgage banks released a new mort-

gage product under the commercial name "garantilån", where the loan

starts as a �oating rate loan with an agreed cap level (the guarantee level).

If interest rates increase so that the �oating rate reaches the guarantee

level, then the loan is transferred into a �xed�rate loan with the guaran-
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tee rate as the coupon for the rest of the loan's lifetime. The mortgagor

pays a premium on top of the underlying �oating level for the optionality

embedded in this mortgage construction. Other Danish banks responded

by introducing similar products and in particular a competing bank in-

troduced a product where an additional feature was built into the loan so

that if the interest rates fall below cap again then the mortgagor's coupon

payments will decrease accordingly. This type of loan has the commercial

name "RenteMax" and its popularity inspired other mortgage banks to

provide similar constructions. The main feature of these products is that

they o�er the best of the two worlds to customers; they are a hybrid of

an ARM and FRM. But the extra optionality comes at a cost and this

cost might be too high for a mortgagor with a short horizon. In Figure

D.4 (top) we compare payment densities for an ARM1, an FRM4% and

CRM5%.2

The payment density of the CRM5% is shifted to the right as compared

to that of an ARM1 with the exception of the right tail. This indicates

that the mortgagor pays an extra premium without getting anything in

exchange for most scenarios but that for extreme scenarios the cap is ex-

ercised and very large payments can be avoided. In Figure D.4 (bottom)

2CRM5% is a Capped Rate Mortgage with a 5% cap. In this paper we only consider

CRMs of type �RenteMax�.
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Figure D.4: Comparison of payment densities (top) and scenario payments (bottom)

for an ARM1, FRM4% and a CRM5%.

it can further be seen that CRMs are in part negatively correlated with

ARMs and in part with FRMs. Hence there is a potential that a combi-
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nation of the three mortgage types may o�er more diversi�cation than a

combination of two.

Our preliminary studies, however, indicate that the cap option of the

CRM5% as released in February 2005 is not very bene�cial for a mort-

gagor with a horizon of up to 7 years, i.e. if the mortgagor is willing to

assume that interest rates will stay within the range estimated by the Va-

sicek model. Even for a mortgagor with a longer horizon (20 to 30 years),

it is a good idea to consider the alternative of making a tailored replica-

tion of a CRM product using plain ARMs and FRMs, where the bond

series are more liquid and therefore more fairly priced than the CRM.

D.3 The mortgage choice model

In this section we will �rst introduce the event tree notation and then

develop the mortgage choice model. See Zenios for event trees, and Nielsen

& Poulsen for event tree scenarios for mortgage products.
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D.3.1 Presentation of mortgage rate and price scenarios

To present the mortgage rates and price scenarios we use the notion of an

event tree. An event tree is a directed graph G = (Σ, E) where nodes Σ

denote time and state, and links E indicate possible transitions between

states as time evolves. At each time t we have one or more states, s ∈ Σt,

representing the underlying stochastic variables. There is a unique path

of states, s ∈ E l
t , from the root to any one of the leaf states, where l ∈ Στ

denotes a scenario.

An example of such an event tree is seen in Figure D.5. Any node of the

tree is populated with a number of loans, each with a set of speci�c data

(LoanID:LoanName�Rate/Price) connected to them.

Note that throughout this paper we operate with two time horizons,

namely the mortgage maturity and the mortgage early repayment hori-

zons. Set T includes all the time periods up to the maturity of the loans

T = {0, . . . , τ, . . . , T}.

T is, in other words, the length of the loans considered in the model and it

is needed to determine the cash�ows of the loans in question. Most loans

are, however, repaid early at sometime, τ ≤ T which is why we only need

to estimate a scenario tree of length τ .
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n=2

n=4

n=5

t = 1t = 0     t = 2

n=3

n=1

n=6

n=7

t = 3

n=8

n=9

n=10

n=11

n=12

n=13

n=14

n=15

5:ARM1−04/99.1
6:ARM2−04/98.2

1:FRM31−05/96.8

1:FRM30−05/92.35
5:ARM1−06/101.2
6:ARM1−04/95.8

1:FRM30−05/101.8
5:ARM1−02/99.1
6:ARM1−04/104.7

6:ARM2−03/101.2
5:ARM1−01/99.2

4:FRM32−04/98.3
1:FRM29−05/105.4

    6:ARM2−05/100.1

5:ARM1−04/99.2
3:FRM32−06/98.7
1:FRM29−05/95.4

6:ARM2−05/100.1

5:ARM1−04/99.2
3:FRM32−06/98.7
1:FRM29−05/95.4

6:ARM2−08/100.6

5:ARM1−08/102
2:FRM32−06/95.3
1:FRM29−05/88.8 1:FRM28−05/84.4

2:FRM31−06/92.5        6:ARM1−08/97.8
        5:ARM1−10/101.5

    

1:FRM28−05/93.7
2:FRM31−06/98.4

1:FRM28−05/93.7
3:FRM31−06/98.4

1:FRM28−05/96.9
3:FRM31−06/100.7

1:FRM28−05/93.7
3:FRM31−06/98.4

1:FRM28−05/96.9
3:FRM31−06/100.7

1:FRM28−05/96.9
4:FRM31−04/94.2

1:FRM28−05/108.4
4:FRM31−04/101.4

       5:ARM1−01/102.4
       6:ARM1−03/108.4

     6:ARM1−03/98.6
     5:ARM1−03/99.9

     6:ARM1−05/105.4
     5:ARM1−03/99.9

     6:ARM1−05/102.9
     5:ARM1−07/99.6

    6:ARM1−05/105.4
    5:ARM1−03/99.9

      6:ARM1−05/102.9
      5:ARM1−07/99.6

       6:ARM1−08/103.2
       5:ARM1−07/99.6

Figure D.5: A binomial event tree, representing the uncertainty on bond prices and

coupon rates.

In the event tree, every state s ∈ Σt, for 1 ≤ t ≤ τ , has a unique parent

denoted by s− ∈ Σt−1, and every state s ∈ Σt for 0 ≤ t ≤ τ − 1 has

a non�empty set s+ ∈ Σt+1 of child states. The probability distribution

P is modeled by attaching weights ps
t > 0 to each leaf node Στ so that∑

s∈Στ
ps

t = 1. For each non�terminal node one has, recursively,

ps
t =

∑
s+∈Σt+1

ps+

t+1, for all s ∈ Σt, t = τ − 1, · · · , 0,

and so each node receives a probability mass equal to the combined mass

of the paths passing through it.
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At every node of this tree we need estimates of interest rates and prices

associated with any mortgage loan in the considered market. In order to

obtain these estimates we need a stochastic process to represent the un-

certainties on the dynamics of interest rates and we need pricing methods

to determine mortgage loan prices consistently with the estimated term

structures of interest rates.

We use a one�factor Vasicek model as the underlying stochastic process for

the interest rates (see Appendix D.6). The model is discretized in a trino-

mial fashion as described in Nielsen & Poulsen (2004). Mortgage�backed

securities are then priced using pricing system RIO; See www.scanrate.dk.

D.3.2 A dynamic stochastic mortgage choice model

The model in this section �nds an e�cient portfolio of loans that trades

o� the expected net present value (NPV) of total payments against the

Conditional Value at Risk (CVaR) of the payments.

Given an event tree with τ stages and its corresponding mortgage loan

rate and price information on a set of loans i ∈ I we de�ne the following

parameters:

ps
t , probability at state s, time t,
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ds
t , discount factor at state s, time t,

P0, current price of loan raised initially by the mortgagor,

rs
ti, coupon rate for loan i at state s, time t,

P s
ti, price of loan i at state s, time t,

Ks
ti, call price of loan i at state s, time t. We have Ks

ti = min{1, P s
ti} for

callable loans and Ks
ti = P s

ti for non�callable loans,

γ, tax reduction rate from interest rate and administration fee payments,

ca, administration costs (in percent),

c, variable transaction costs (in percent),

cf , �xed costs associated with mortgage origination and re�balancing,

λ, degree of risk aversion; 1 for very high, and 0 for no risk aversion,

α, con�dence level for the Value at Risk (VaR),

M , a big constant.
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Next we de�ne the variables used in our model:

zs
ti, outstanding debt of loan i at state s, time t,

ys
ti, units sold (originated) of loan i at state s, time t,

xs
ti, units bought back of loan i at state s, time t,

Zs
ti =




1, if loan i is originated at state s, time t,

0 otherwise,

As
ti, principal payment of loan i at state s, time t,

CF s
t , total net payment at state s, time t,

ζ, Value�at�Risk (VaR) at the 100α% con�dence level,

CVaR(y;α), Conditional Value�at�Risk of a portfolio with loans y =

(yi)i∈U at the 100α% con�dence level,

yl
+, amount of payment under scenario l exceeding the VaR level ζ.

We are now ready to formulate the multistage stochastic model for the

mortgage choice problem. The objective is to trade o� the total expected
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present value of payments (repayment included) against the Conditional

Value�at�Risk (CVaR) of the payments as weighted by λ:

min (1 − λ)
[ τ∑

t=1

∑
s∈Σt

ps
td

s
tCF

s
t +

∑
s∈Στ

ps
τd

s
τPP

s
τ

]
+ λCVaR(y;α)

(D.1)

We also need to make sure that we sell enough bonds to raise an initial

amount, P0, to buy the house and pay the mortgage�origination costs as

follows:

∑
i∈U

P 0
0iy

0
0i ≥ P0 +

∑
i∈U

(
cy0

0i + cfZ
0
0i

)
, (D.2)

In eqn. (D.3) we initialize the outstanding debt:

z0
0i = y0

0i, for all i ∈ U. (D.3)

Eqn. (D.4) is the balance equation, where the outstanding debt at any

child node for any bond equals the outstanding debt at the parent node

minus principal payment and possible repayment (buying back), plus pos-

sible origination of new bonds to establish a new loan.

zs
ti = zs−

t−1,i −As
ti − xs

ti + ys
ti, for all i ∈ U, s ∈ Σt, t = 1, . . . , τ. (D.4)



D.3 The mortgage choice model 209

Eqn. (D.5) is a cash�ow equation which guarantees that the money used to

repay existing mortgages (in case of re�adjustments), plus the transaction

fees for sale and purchase of bonds, and �xed costs for establishing new

mortgage loans come from the sale of new bonds:

∑
i∈U

(P s
tiy

s
ti) =

∑
i∈U

(
Ks

tix
s
ti + c(ys

ti + xs
ti) + cfZ

s
ti

)
, for all s ∈ Σt, t = 1, . . . , τ.

(D.5)

The principal payment is de�ned in eqn. (D.6) as an annuity payment.

As
ti = zs−

t−1,i

[rs−
t−1,i(1 + rs−

t−1,i)
−T+t−1

1 − (1 + rs−
t−1,i)−T+t−1

]
, for all i ∈ U, s ∈ Σt, t = 1, . . . , τ.

(D.6)

The total net payment at each node, CF s
t , is de�ned as the sum of prin-

cipal payments, interest payments net of tax and administration fees in

eqn. (D.7), whereas the total net prepayment amount for each leaf node

is de�ned in eqn. (D.8).
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CF s
t =

∑
i∈U

(
As

ti + (1 − γ)(rs−
t−1,i + ca)zs

t−1,i

)
, for all s ∈ Σt, t = 1, . . . , τ,

(D.7)

PP s
τ =

∑
i∈U

(zs
τiK

s
τi), for all s ∈ Στ .

(D.8)

The next constraint uses the binary variables Zs
ti to ensure that the �xed

cost indicator is set to 1 in case of re��nancing along the way.3

MZs
ti − ys

ti ≥ 0, for all i ∈ U, s ∈ Σt, t = 0, . . . , τ.

(D.9)

Constraints (D.10) and (D.11) together de�ne the VaR and CVaR at the

100α% con�dence level using the standard linear programming formula-

tion (See Rockafellar & Uryasev and Zenios).

yl
+ ≥

[( τ∑
t=0

∑
s∈El

t

ds
tCF

s
t

)
+ dl

τPP
l
τ

]
− ζ, for all l ∈ Στ ,

(D.10)

CVaR(y;α) = ζ +

∑
l∈Στ

pl
τyl

+

1 − α
. (D.11)

3The constant M might be set to a value slightly greater than the initial amount

raised; If a too large value is used, numerical problems may arise.
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Finally non�negativity and binary constraints are introduced:

zs
ti, y

s
ti, x

s
ti, y

l
+, ζ ≥ 0 , Zs

ti ∈ {0, 1} for all i ∈ U, l ∈ Στ , s ∈ Σt, t = 0, . . . , τ.

(D.12)

D.3.3 Generalization of the Rasmussen and Clausen mod-

els

? introduce a family of models which together cover risk preferences

among mortgagors. Their risk�neutral model (minimizing average pay-

ments across scenarios) and the minmax model (minimizing the maxi-

mum payment) represent the two poles of risk preferences considered in

their paper. Their budget�constrained models are then used to �nd mort-

gage strategies resulting in cash�ows between the two poles. One of the

main contributions of our paper is to consider an explicit risk measure

(CVaR) and thereby generalize the models of ? within a common model

framework.

The two parameters (λ and α) can be used to generate any solution found

in ?. By setting λ = 0 in the objective function eqn. (D.1), the model

turns into a risk�neutral model. For λ = 1 and α = 1 the model turns

into a minmax model. The budget�constrained model takes as input a
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prede�ned maximum budget level that the mortgagor does not wish to

violate either for any given single scenario or for several scenarios. The

model has a hard and a soft constraint which ensure that the mortgagor's

wishes are respected. The soft budget constraint may be violated but if

this occurs a penalty is incurred, whereas the hard budget constraint may

by no means be violated. In our model the con�dence level α implicitly

decides the Value at Risk (VaR) level ζ which may be interpreted as a

budget constraint. The level of λ corresponds to the penalty level.

The main advantages of using our Mean/CVaR model as compared to

the budget�constrained model are the following:

1. Reasonable budget constraint levels are often hard to �nd. An in-

appropriate choice of budget levels may result in either infeasible

problems or leave out interesting regions of the solution domain.

2. CVaR is a widely acceptable risk measure and its use is becoming

increasingly popular, while it has the property of being coherent.

3. The Mean/CVaR models are easier to solve since they do not use

hard constraints which usually add to the non�convexity of the

problem.
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D.4 Model testing and validity

Stochastic Programming models are discretizations of the uncertain world,

hence in testing such models we should be concerned about convergence of

solutions for di�erent discretizations. Likewise we should test for robust-

ness with respect to errors in the parameters representing uncertainty.

D.4.1 Convergence of solutions

Mortgagors pay4 for having the right to re�balance their mortgage portfo-

lios, so it is crucial that the model facilitates this option. Ideally we would

like to have as many stages in the model as in real life, for instance in

a quarterly or yearly basis. However given our trinomial discretization of

the interest�rate model and the path�dependent nature of the problem we

need to limit the number of stages to less than 6, i.e. 729 scenarios or 1093

nodes. Bigger problems are not computationally tractable on a standard

personal computer within reasonable time. A relevant question to inves-

tigate is the necessary number of stages and decision nodes in order to

obtain best possible solutions given the underlying model of uncertainty.

4 Options embedded in the mortgage backed securities have a price. The price is not

paid upfront but it is either recalculated as an extra premium on top of interest rate

payments or as a higher initial outstanding debt resulting on higher future payments
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Figure D.6: As more decision stages are added to the problem the solution

quality is improved. The improvement is, however, marginal after adding

three extra decision stages.
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Figure D.6 compares the mean/CVaR e�cient frontiers found by one to

�ve period models for our example with a seven�year horizon. As seen

in Figure D.6 the e�cient frontiers tend to converge for four to �ve re�

balancing stages with period lengths of one to two years. Likewise, as seen

in Figure D.7 the �rst stage solutions converge after only two to three

stages. This behavior is expected since only some of the improvement in

the e�cient frontier is due to the structure of the �rst stage solutions

and the rest of the improvement comes from extra re�balancing activities

resulting from adding extra decision stages.

D.4.2 Stability

The solutions found by the stochastic program are dependent on the

parameters of the stochastic process used to generate the scenario tree.

So we need to study to what extent changes in the parameters depicting

uncertainty have an in�uence on the solutions found. The stochasticity

in the model comes from the underlying interest�rate model, so we are

interested in observing changes in the solution structure as a result of

changes in the interest�rate model parameters. The three parameters of

the Vasicek model include: (i) The long�run mean value of the interest

rate θ; (ii) the volatility of the interest rate σ; (iii) the dispersion of

interest rates at each step κ.
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Figure D.7: First stage solutions for di�erent degrees of risk aversion and increasing

number of decision stages.
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We perturb the two most signi�cant parameters, namely the long�run

mean θ and the volatility σ; the calibrated parameters based on histori-

cal time series were 0.042 and 0.010 respectively. We generate 100 di�er-

ent scenario trees based on uniformly random θ values in the interval of

[0.032; 0.052] and σ values in the interval [0.008; 0.012]. The mean/CVaR

model is then run for all 100 scenario trees and the results are analyzed.

By studying the �rst stage solutions we �nd that the risk�averse mortgage

strategies, i.e. those found for high λ values in the objective function

are robust with regards to parameter uncertainty. Figure D.8 gives the

intuition behind this �nding. The model chooses to combine mortgage

loans for high risk aversion no matter what the parameters are, whereas

single mortgage loans are chosen for the mortgagor with low degree of

risk aversion. As a result the diversi�ed portfolio is more robust with

respect to changes in parameters. This is an additional argument why we

should choose a portfolio of mortgage loans rather than a single mortgage

product, as is normal practice today.
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Figure D.8: The �rst stage solutions are very sensitive to changes in uncertainty

parameters for a model with little or no embedded risk aversion whereas they become

more robust as the degree of risk aversion increases.
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D.5 Analysis of the model applications

We now use the model to analyze the underlying application of mortgage

choice. In particular we investigate the use of the model for the advice

o�ered to individual homeowners, for developing new products, and for

estimating fair premia for CRMs. Throughout this section a �ve�period

model with four rebalancing stages at years 1,2,3 and 5, and prepayment

horizon at year seven is used.

D.5.1 Personal advice

Consider the bottom graph in Figure D.7. Ten di�erent �rst stage (initial)

solutions are represented. Except in the case of the risk�neutral mortgagor

(minimizing the average payments only) the optimal solution involves

mixing an ARM1 with FRM4%. For the more risk�averse mortgagors

a greater part of the mix comes from the �xed�rate mortgage. Each of

these solutions corresponds to a Mean/CVaR point on the �ve�period

frontier of Figure D.6. The main lesson here is that diversi�cation pays

o� for individual mortgagors regardless of existence of �xed mortgage

origination costs. Considering Figures D.6 and D.7 together it also be-

comes clear that rebalancing pays o� as well, regardless of both �xed and

variable transaction costs. It is noteworthy, however, that diversi�cation
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and rebalancing are not usually relevant for small mortgage loans (below

100,000 EURO) or for very short horizons (under 3 years). These issues

were further exempli�ed in ? even with the use of a simpler single period

model.

D.5.2 Product development

So far we have used the model for �nding optimal mortgage strategies

based on FRMs with di�erent coupon payments and ARM1. We can,

however, easily add new products as input in order to quantify the value

added by the new product. This is particularly useful before launching a

new product. A synthetic equivalent of the new product may be tested

within the model framework in order to �nd out whether the product

adds value to certain segments of the market. The marketing of the new

product may then be concentrated on these segments only.

Figure D.9 illustrates this use of the model. Starting with our stan-

dard products (ARM1 and FRMs) we add new mortgage products one

at a time and observe their e�ect on the Mean/CVaR e�cient frontier.

For any mortgagor with a 7�year repayment horizon, adding an ARM2

(adjustable�rate mortgage with bi�annual rate adjustments) does not add

much value, whereas adding ARM3 and in particular ARM4 makes some
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contribution. Adding ARM5 adds more value for the very risk�averse

mortgagors, but it adds less value for mortgagors with some appetite for

risk.

A noteworthy observation was made when we continued the experiments

adding the more exotic products CRM5% and CRM6%. These new prod-

ucts had no in�uence on the original e�cient frontier indicating too high

premia on their embedded cap options. At their current prices these new

products do not add value to homebuyers. In the next section we use the

model to estimate fair premia so that the new products become attractive

for mortgagors.

D.5.3 Deciding fair premia for CRMs

CRMs are designed so that they follow the six�month CIBOR rate with a

�xed premium on top of that for the embedded cap option. The premium

for the CRM5% in November 2006 was for instance 0.8%. We have already

observed that CRMs add no value to the existing mortgage products �

at least for a mortgagor with a seven�year horizon. In Figure D.10 we

illustrate how to use our model in order to �nd out fair premia for a

given CRM for mortgagors with di�erent risk appetites.
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Figure D.9: Adding one mortgage at at time to the existing universe of mortgages.

We add a CRM5% to the existing universe of ARM1 and FRMs, but

we remove the premium of 0.8% (so that we follow the 6�month CIBOR

rate with a 5% cap) in order to make sure the CRM5% is chosen in the

e�cient frontier. As expected such a loan would signi�cantly improve the

e�cient frontier. Notice, however, that even without any premium on

CRM5% the model still suggests diversi�cation (initially with FRM4%)

in order to reduce the CVaR. Only the point furthest right on the frontier

corresponds to a strategy of holding only CRM5%.

Then we add some small premium in incremental steps of 0.1% and rerun

the model, until the CRM5% is no longer chosen as part of the optimal

solution. This happens at around 0.4% for the risk neutral mortgagor
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Figure D.10: We introduce a CRM5% without any premium to begin with and then

increase the premium in small increments until the CRM is no longer part of the

e�cient frontier.

and surprisingly for the very risk averse mortgagor as well.5 For all other

mortgagors the CRM5% is not attractive anymore at a premium of about

0.5%. Hence, a fair premium for the CRM5% would be 0.4�0.5%.

5The intuition behind this is that the features of CRMs appeal to mortgagors with

a medium risk appetite, so exactly these mortgagors would accept a higher premium

for this product.
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D.6 Conclusion

In this paper we showed that diversi�cation and re�balancing of the mort-

gage loans pay o� for a typical mortgagor. Building on the single period

model of ? we observed that adding stages implies more diversi�cation

in the initial portfolio. This is in contrast to the existing practice where

mortgagors hold one type of mortgage loan only. We exempli�ed how the

results of the multistage Mean/CVaR model may be used for advanced

analysis prior to mortgage choice recommendations as well as for product

development.

Finally we used the model to show that CRMs, as o�ered today, are not

attractive. Hence a reduction in premia for CRMs with shorter horizons

and using CRMs as a component of the mortgage portfolio is recom-

mended.

Considering income and house price dynamics would add some insights for

even more individualized advice. Likewise extensive studies for di�erent

repayment horizons, di�erent initial loan values and di�erent mortgage

loan combinations are needed to establish some rules of thumb which

could be used on a daily basis for personal advice on the mortgage choice.

These issues remain as future work.
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Appendix 1: The interest rate model

We use a variant of the Vasicek interest rate model as used in Jensen &

Poulsen (2002) the underlying stochastic process to generate estimates of

future short rates:

dr(t) = κ(θP − r(t))dt+ σdW p(t),

where r(t) is the short rate, W is a brownian motion and κ, θ and σ are

the Vasicek model's parameters controlling the height of the interest rate

jumps, the long run mean level of interest rates and the volatility of the

interest rates. The model is given under real�world probability measure P .

This can be shifted to the risk free measure Q using the transformation:

θQ = θP + π, π ∈ R

where π is the risk premium, so the Vasicek model under the risk free

probability measure Q becomes:

dr(t) = κ(θQ − r(t))dt+ σdWQ(t)
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The expectation of short rates are then found as follows:

EQ(r(t)) = r0 · exp(−κt) + θQ(1 − exp(−κt))
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Abstract

Dynamic stochastic programming (DSP) provides an intuitive framework

for modelling of �nancial portfolio choice problems where market frictions

are present and dynamic re�balancing has a signi�cant e�ect on initial

decisions. The application of these models in practice, however, is lim-

ited by the quality and size of the event trees representing the underlying

uncertainty. Most often the DSP literature assumes existence of �appro-

priate� event trees without de�ning and examining qualities that must be

met (ex�ante) in such an event tree in order for the results of the DSP

model to be reliable. Indeed de�ning a universal and tractable framework

for fully �appropriate� event trees is in our opinion an impossible task. A

problem speci�c approach to designing such event trees is the way ahead.

In this paper we propose a number of desirable properties which should

be present in an event tree of yield curves. Such trees may then be used

to represent the underlying uncertainty in DSP models of �xed income

risk and portfolio management.
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E.1 Introduction

One of the main sources of uncertainty in analyzing risk and return prop-

erties of a portfolio of �xed income securities is the stochastic behavior

in the evolution of the shape of the term structure of the interest rates

(yield curve). This uncertainty is sometimes referred to as shape risk, see

for example Zenios (2007). Shape risk refers to the risk that interest rates

with di�erent maturities change in di�erent ways as the time goes by.

Figure E.1 shows how the Danish yield curves have changed in the period

1995 to 2006.

We can see that the short rates have been more volatile than the long

rates. We also observe that a simple parallel shift assumption does not

hold; yield curves evolve in more complicated manners. Capturing the

dynamics of yield curves in a multi period scenario tree is the purpose of

this paper.

Dynamic stochastic programming (DSP) provides a �exible framework

for portfolio and risk management problems. Trade frictions such as �xed

costs, tax a�ects and limits on borrowing and short sale of assets can
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Figure E.1: Historical data on Danish yield curves for the period 1995 to

2006.

be incorporated in such models. Portfolio readjustments may as well be

captured. This is in particular important for �xed income securities due

to the usually long term perspectives of such investments. Finally no as-

sumptions on the underlying uncertainty are required. This means that

for example heavy tails which play an important role in extreme event

considerations can be accounted for. But it also means that special care

needs to be taken when it comes to modelling the underlying uncertainty.
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The event trees should be consistent with historical data as well as inter-

nally consistent with regards to the mechanisms governing the dynamics

of the uncertain variables (see Ziemba 2001). ? Such consistency criteria

include for example the no arbitrage conditions (see Klaassen 2002).

We suggest the following guidelines for generating an event tree of yield

curves:

1. The distance between the underlying continuous interest rate pro-

cess and the discretized event tree should be minimized.

2. The event tree should match the underlying continuous process both

globally, i.e. for any given future period as well as locally, i.e. for

any subtree of the event tree.

3. The actual levels of the generated scenarios should be realistic, for

example the tree should not include any negative interest rates, or

many extreme scenarios.

4. The volatilities of the interest rates of di�erent maturity should be

consistent with the implied volatilities of a market benchmark.

5. There should be no arbitrage opportunities in any of the subtrees

of the event tree.
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6. Types of changes in the shape of the yield curve in future nodes

of the event tree should re�ect those observed historically from an

economical regime which is assumed similar to the one the event

tree is built for.

7. The model should be mean reversive.

8. No volatility clumping; Volatility clumping refers to the case where

a period of high volatility is followed by another period of high

volatility. Volatility clumping is observable in the equity market, but

empirical studies have shown that there is no volatility clumping for

the interest rates.

There is a vast amount of literature on interest rate modelling. These

models can in general be categorized as being discrete or continuous,

normal or a log�normal, 1�factor or multi�factor and �nally either more

theoretically or more empirically inclined. What all such models have in

common is the fact that they have been originally developed either for

estimating current prices of interest rate sensitive assets, or for prediction

purposes. None of the standard models therefore are designed in order to

construct yield curve event trees ful�lling criteria 1 to 8 at the same time.

In this paper, we propose an overall framework for building a yield curve

event tree and testing whether or not the consistency criteria are re-
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spected. The rest of this paper is organized as follows:

In section E.2 we perform factor analysis (also known as principal compo-

nent analysis) in order to identify the most signi�cant factors in capturing

yield curve variability. Then in section E.3 we describe a simple 3�factor

vector auto regressive model with lag 1 (VAR1) representing the underly-

ing stochastic process. A non�linear discretization model of the stochas-

tic process is then suggested in section E.4. In section E.5 we outline an

approximative approach for solving the discretization model. In section

E.6 we argue why a simple 1�factor interest rate model such as the Va-

sicek model is not appropriate for stochastic programming applications

and why the proposed 3�factor model provides more reliable solutions.

Finally we conclude the paper in section E.7.

E.2 Factor analysis of yield curves

Factor analysis is a statistical technique to detect the most important

sources of variability among observed random variables. It may be used

on historic time series of a multidimensional random variable to decide

factors ordered after how much variability they explain. In linear algebraic

terms it is an orthogonal linear transformation that transforms data to a
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new coordinate system in such a way that the greatest source of variance

lies on the �rst factor, the second largest on the second factor and so

on. It is used for reducing the dimensionality of a data set while keeping

its characteristics. This is done by keeping only the main factors while

ignoring the ones that only explain an insigni�cant proportion of the

variance.

Litterman & Scheinkman (1991) and Knez, Litterman & Scheinkman

(1994) use factor analysis to show that three factors explain � at a min-

imum � 96% of the variability on several American zero coupon yield

curves in the period 1985 to 1988. Dahl (1994) shows similar results for

the Danish data in the 1980's and Bertocchi, Giacometti & Zenios (2005)

repeat the experiments for American and Italian data during 1990's again

with similar results.

These �ndings are used by some practitioners to improve duration hedging

(immunization) by factor based duration hedging (factor immunization).

The main shortcoming of these hedging techniques is that they are myopic

and do not consider the re�balancing e�ects in long term �xed income

portfolio investments. Rather than using factor analysis for shape risk

hedging, we use factor analysis as a means of �nding a su�cient number

of factors to be used as the underlying factors of uncertainty for the
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proposed interest rate model of this paper. We perform factor analysis on

the Danish yield curves for the period 1995�2006. Like in earlier works we

�nd that 3 factors are enough to capture almost all variability (99.99%)

for the Danish yield curves. Figure E.2 shows the factor loadings as a

function of maturities in years.
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Figure E.2: Factor loadings of the Danish yield curves for the period 1995

to 2006.

The �rst factor explains almost 95% of all variability. It can be interpreted

as a slight change of slope for interest rates with maturities up to approx-
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imately 6 years together with a parallel shift for the rest of the curve. The

second factor, explaining 4.7% of the variability, corresponds to a change

of slope for the whole curve. However the slope change for the �rst 10

years is much more pronounced. Finally the third factor corresponds to a

change of curvature in the yield curves. This factor explains only about

0.3% of the total variability.

From a statistical viewpoint we could su�ce with level and slope as the

main sources of variability. Nevertheless we do not reject the third factor,

curvature, due to its economical appeal; changes of curvature are observed

now and then, and a model not being able to represent those changes

properly has a potential weakness of not capturing important movements

in the interest rate market.

Inspired by the results found in this section we de�ne the three factors

which we want to use in our interest rate model as follows:

1. Level: An arbitrary rate such as the one year rate,Y1, may be used

as a proxy for level.

2. Slope: A good proxy for the slope would be Y20 − Y1 where Y20

stands for the 20 year rate. This expression is an approximation of

the average slope of the yield curve. The 20 year bond is chosen
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as the long rate here, since we observe in our historical data, that

almost all yield curves �atten at about this maturity.

3. Curvature: The expression Y6 − (ωY1 + (1 − ω)Y20), with Y6 as the

6 year rate, may be used as a proxy for the curvature. ω is the

weight corresponding to the proportion of the distance in between

the middle of long rates. It is chosen so that the curvature would

be zero if the curve is a straight line, negative if the curve is convex

and positive if the curve is concave.

In the rest of this paper we use level, slope and curvature de�ned as above

as the factors of the interest rate model in question.

E.3 A vector autoregressive model of interest rates

A vector autoregressive model with lag 1 (VAR1) may be de�ned as:

xt+1 = µ+A(xt − µ) + εt+1

where xt is an n × n matrix, µ is an n × 1 vector and εt+1 ∼ Nn(0,Ω)

and Ω is an n × n matrix. In this formulation of the VAR1 model, µ is
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interpreted as the long term drift. A and µ are deterministic parameters

which need to be calibrated based on historical data.

The conditional mean and covariance for the error term εt+1 are given as:

E[εt+1|xt] = 0

E[εt+1εt′+1|xt] = Ω

Given the state of an uncertain variable at time xt, the purpose of the

model is to predict the state of the variable at time t+1, i.e. xt+1. Based

on the �ndings of the previous section we de�ne the vector xt as the

proxies for level, slope and curvature (lt, st, ct)T of the yield curves.

An example of the VAR1 model with 3 factors looks like:

lt+1 = µl + all(lt − µl) + als(st − µs) + alc(ct − µc) + εl,t+1

st+1 = µs + asl(lt − µl) + ass(st − µs) + asc(ct − µc) + εs,t+1

ct+1 = µc + acl(lt − µl) + acs(st − µs) + acc(ct − µc) + εc,t+1

To estimate the parameters of the VAR1 model (µ,A,Ω) we can use the

parameter estimation for a general linear regression model of the form:
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yi = α+ βxi + εi, for all i = 1, · · · , n

Or in matrix form:



y1

...

yn


 =




1 x1

...
...

1 xn





 α

β


 +



ε1

...

εn




This can be rewritten as:

Y = Xδ + ε

The VAR1 model can be rewritten in this form. Now we may use standard

least square estimators as follows:

δ̂ = (XT
X)−1X

T
Y

which minimizes the sum of least squares in the expression ||Y −Xδ||2.

The estimator for the residuals (ε) is given as:
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res = Y −Xδ̂

Ω̂ = resTres/(n − 1)

The estimator δ̂ is then decomposed into µ and A from the VAR1 model

and the estimator Ω̂ can be directly used as the estimator for Ω in the

VAR1 model.

The VAR1 model so far may only be used for one�period predictions

(same interval length as in the historical time series). But it may easily

be extended to predict k periods ahead:

xt+k = µ+Ak(xt − µ) + εt+k

where εt+k ∼ Nn(0,
∑k

i=1A
i−1Ω(Ai−1)T)

The reasons for choosing a VAR1 model as the underlying model of in-

terest rate uncertainty are the following:

1. One can choose any factors or any number of factors to describe

the variability. This gives us maximum �exibility with respect to

our observations from a factor analysis of interest rates.
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2. Time step �exibility. Varying time steps can be easily implemented.

3. Mean reversion is built into the VAR1 model.

The VAR1 model is discrete in time but continuous in states, so in order to

use the model as a scenario generator for stochastic programs we need to

discretize it in states as well. This can be done using a moment matching

model (See Høyland & Wallace (2001)). We propose a yield curve scenario

discretization model in the next section.

E.4 Scenario generation and event tree construc-

tion

In DSP literature for �xed income securities often simple models of inter-

est rates are used to represent the underlying interest rate uncertainty.

In several applications lattice structures are either blown up into unique

paths or sampled from so that to account for the path dependency of

DSP problems. One immediate problem with such approaches is that the

uncertainty space is not covered as e�ciently as possible. This is due to

the recombining structure of the original trees together with the fact that

only a very coarse time step discretization is possible due to the curse of

dimensionality when the recombining trees are blown up.
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Others (Nielsen and Poulsen 2004, etc.) have used continuous interest

rate models. Such models are either continuous both in time and state, or

discrete in time and continuous in states. Discretizing in time is normally

straight forward; it is a question of reformulating a di�erential equation

into a di�erence equation. Discretizing in state, however, is often a more

challenging issue. A number of nodes (in our case including yield curve in-

formation) have to be generated for each time point to give a discrete rep-

resentation of the continuous distribution. There is no general consensus

as to the best way of doing this discretization. In one stream of research

the main focus is on generating discrete distributions which mimic the

underlying continuous distribution as closely as possible. This is either

done by sampling (see Shtilman and Zenios 1993) , or moment matching

approaches (Høyland and Wallace 2001). In the other stream of research

the aim is not necessarily to get the closest discrete representation of

the continuous distribution, but rather �nding a discrete representation

which results in a closer approximation to the �true� optimal solution

of the stochastic program in question. Here the �true� optimal solution

refers to the solution we would get, if we were able to solve the stochastic

program using the underlying continuous process directly. Indeed if we

were able to do that, there would be no need to discretize the process in

the �rst place, but it can be shown (See P�ug 2001) that in general if the

discrete process has the smallest distance (using the transport metric) to
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the underlying continuous process, then the SP solutions found will be

guaranteed to be within certain bounds of the �true� SP solutions. (See

also P�ug 2001, P�ug and Hochreiter 2002, Pennanen 2004, Romisch and

Heitsch 2003) ?. Although theoretically appealing, the guaranteed bounds

are in many cases too large in order to have any practical interest, (See

Wallace and Kaut 2003) . Comparison and further development of spe-

cialized models and solution algorithms for these two streams of scenario

discretization approaches is the subject of future research.

An extensive comparative study of di�erent yield curve scenario genera-

tion approaches is outside the scope of this paper. Instead we propose a

yield curve scenario generation model which abides by the criteria 1 to

8 mentioned earlier in this paper. Note that the following model is sin-

gle period. It can be extended to a multi�period model with some minor

changes.

We de�ne the following sets, parameters and variables:

Sets:

f : Set of factors (level, slope and curvature), f ′ is alias for f .

i: Set of zero coupon bonds (zcb's).

i′: A subset of the set i corresponding to the zcb�rates which de�ne the

three factors. We have chosen i′ to be the set of 1, 6 and 20 year zero
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coupon bonds.

j: Set of parameters of the Nelson Siegel function; 0 to 3.

t: Set of time points.

s: Set of scenarios.

Parameters:

Meanf : The mean value for factor f . This value comes from the VAR1

model.

Covarf,f ′ : The covariance matrix of the error term taken from the VAR1

model.

Skewnessf : Skewness of factor f . Assumed to be zero based on the nor-

mality assumption of the VAR1 model.

τ t
i : Time to maturity for zcb i at time t.

PP parent
i : Prices of the zero coupon bonds at the root, The prices are

calculated using initial rates: PP parent
i = e−riτ

parent

i .

ψConst: The martingale probability; assumed equal for all scenarios. It is

found from the equation PP parent

i′′ =
∑

s ψ
Const where bond i′′ matures

exactly at the children nodes of the tree with a price of 1.

Variables:

xf,s: A future estimate of factor f in scenario s given by the VAR1 model.
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E(x)f : The expected value of factor f over all scenarios.

σ(x)f,f ′ : The covariance matrix of factors across all scenarios.

E3(x)f : The skewness of factors across all scenarios.

Y
(V AR1)
i′,s : The 3 yields comprising the 3 factors at scenario s.

NSYi′,s: The 3 yields comprising the 3 factors at scenario s as given by

the Nelson Siegel function.

ϕs,j : Parameter j of the Nelson Siegel function at scenario s.

Ri,s: The entire yield curve given by the Nelson Siegel function at scenario

s.

CPi,s: Price of bond i at scenario s.

The overall objective of the optimization model is to match the moments

of the underlying stochastic process (the VAR1 model) as closely as possi-

ble. At the same time the parameters of the Nelson Siegel function should

be found so that the yields resulting from Nelson Siegel are as close as

possible to those found by the VAR1 model. We need Nelson Siegel (or

some other yield curve smoothing function) in order to get the rest of the

yield curve, since the VAR1 model is based on 3 yields only.

The objective function is to minimize sums of least squares corresponding

to the overall objective of the model:
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Minimize
∑

f

(E(x)f −Meanf )2 +
∑

f

∑
f ′

(σ(x)f,f ′ − Covarf,f ′)2+

∑
f

(E3(x)f − Skewnessf )2 +
∑

s

∑
i′

(Y (V AR1)
i′,s −NSYi′,s)2

(E.1)

The moments of the discrete scenarios as found by the optimization model

are de�ned in Equations E.2 to E.4:

E(x)f =
∑

s

psxf,s for all f (E.2)

σ(x)f,f ′ =
∑

s

ps(xf,s − E(x)f )(xf ′,s′ − E(x)f ′) for all f, f ′ (E.3)

E3(x)f =
∑

s(xf,s − E(x)f )3

(
∑

s(xf,s − E(x)f )2)3/2
for all f (E.4)

In Equation E.5 the 3 yields corresponding to the 3 underlying maturities

used in the VAR1 model are found by the Nelson Siegel model. Note that

the �nal term of the objective function requires that NSYi′,s should be as

close as possible to the 3 yields found by the VAR1 model. So Equation

E.5 in interaction with the objective function calibrates the parameters

of the Nelson Siegel function. These parameteres are used in Equation

E.6 to decide the entire yield curve at each scenario.
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NSYi′,s = ϕs,0 + ϕs,1e
−ϕs,3τparent

i′ + ϕs,2τ
parent

i′ e−ϕs,3τi′ for all i′, s

(E.5)

Ri,s = ϕs,0 + ϕs,1e
−ϕs,3τi + ϕs,2τ

parent
i e−ϕs,3τparenti for all i, s

(E.6)

The VAR1 model is de�ned in terms of factors and not yields. Equations

E.7 to E.9 �nd the yields corresponding to the factors estimated by the

VAR1 model at each scenario.

Y
(V AR1)
1,s = x1,s for all s (E.7)

Y
(V AR1)
20,s = x2,s + Y

(V AR1)
1,s for all s (E.8)

Y
(V AR1)
6,s =

5
19
Y

(V AR1)
20,s +

14
19
Y

(V AR1)
1,s + x3,s for all s (E.9)

The main reason to de�ne the yield curve discretization process as an

optimization model is that it enables us to add constraints which give the

user a degree of control over the outcome. One such constraint may be

forcing a lower bound on interest rates, for instance not allowing negative

rates:
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Ri,s ≥ 0 for all i, s (E.10)

Another condition may be not to allow arbitrage in the interest rates. In

Equations E.11 and E.12 we introduce a more restrict condition than the

no arbitrage condition, namely we require that martingale probabilities

should be equal across all scenarios:

CP child
i,s = e−Ri,sτchildi for all i, s (E.11)

PP parent
i =

∑
s

ψConstCP child
i,s for all i (E.12)

The model E.1 through E.12 gives the user a great degree of �exibility

over the outcome of the discretization process. Subjective expert opin-

ion is integrated with objective econometrical and �nancial theory. The

model, however, is non�linear, non�convex and as such has several local

minima. Solving such a problem fall into the realm of global optimization.

The general purpose global solvers are as of yet underdeveloped. Special-

ization of existing algorithms is therefore needed for solving this problem

to optimality. This is outside the scope of the current paper. Instead we

propose an approximative approach to �nd reasonable solutions in the

next section.
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E.5 An approximative solution approach

The approximation is in dividing the model into three parts and solving

them in a serial manner instead of solving the entire problem in one go:

1. First we solve a model comprising of the objective function less

the 4th term with constraints E.2 to E.4. This model results in

discretized factors matching the �rst 3 moments of the underlying

VAR1 model one period ahead. We also add constraints E.7 through

E.10 to guarantee no negative rates.

2. Then we solve a second model where the objective function is made

of the 4th term and the only constraint is Equation E.5. Finding the

parameters of the Nelson Siegel model we now simply use Equation

E.6 to �nd the entire yield curves for each scenario.

3. Finally we apply Equations E.11 and E.12 to remove arbitrage.

The two sub models are non�linear non�convex themselves but it is possi-

ble to �nd optimal solutions to these problems using standard non�linear

solvers which is what we have done using GAMS/ConOpt1.

1GAMS/CONOPT is a non linear problem (NLP) solver avail-

able for use with General Algebraic Modeling System (GAMS). See

http://www.gams.com/solvers/solvers.htm
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Wasn't it due to the no�arbitrage conditions then solving the two models

separately would corresponded to solving the entire problem. We therefore

compare the yield scenarios before removing arbitrage with those after

arbitrage removal, See Figures E.3 to E.6. The scenarios in the left are

before the arbitrage removal part of the approximative algorithm has

been applied. The scenarios in the right are after arbitrage removal. The

smaller the change is between the left hand side and the right hand side

scenarios the closer the results of the approximative approach will be to

that of solving the entire problem.

The �rst 2 �gures are from August 2005 when the initial term structure

is rather steep (the stippled curve). In these cases we note that there is

very little di�erence between the rates before and after arbitrage removal,

meaning that the approximative approach generates near optimal solu-

tions for the entire model. In the last 2 �gures the starting point is May

2007 when the initial yield curve is essentially �at. In this case we note

a considerable di�erence between the rates before and after removal of

arbitrage. In both cases, however, the solutions found may be used as

initial solutions for solving the entire problem.

We leave solving the entire problem as future work. Instead we replace

the Nelson Siegel function with an a�ne function developed for our 3�
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factor VAR1 model of interest rates (See Poulsen 2007) . It is known

from interest rate theory that Nelson Siegel does not produce arbitrage

free curves in any continuous model. Given that, there is little hope that

the discretized models will be arbitrage free regardless of the number of

scenarios generated. The a�ne function is, however, constructed arbitrage

free in the continuous setting. So the hope is that by adding scenarios we

will satisfy the no�arbitrage condition in the discrete scenarios as well.

The graphs in the bottom of Figures E.3 to E.6 are the result of an a�ne

smoothing of the yield curves. Again the yield curve scenarios before and

after removing of arbitrage are considered.

In the rest of this work we use the scenario trees based on the a�ne model.

In the next section we will compare interest rate scenarios generated by

our VAR1 model with the well known 1�factor Vasicek model.

E.6 Vasicek versus VAR1 for event tree construc-

tion

A central theme in this paper is to convince the reader that simple 1�

factor interest rate models do not capture the dynamics of historic rates

as indicated by a factor analysis of historic interest rates. Even though
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that does not necessarily have an in�uence on how well such models are

in pricing �xed income securities here and now, that does have an impact

on estimates of prices of assets in future nodes. That is why using sim-

ple models of interest rate as the underlying source of uncertainty in a

stochastic program might result in misleading solutions to the asset allo-

cation and risk management problems that are formulated based on such

interest rate scenario trees. How wrong the solutions of such stochastic

programs will be is problem dependent and need to be studied for individ-

ual applications. In this section we show how we can get a graphical feel

of how well an interest rate scenario tree mirrors what we expect interest

rates to behave based on the criteria mentioned in the introductory part

of this work.

Figures E.7 to E.9 show interest rate trees for 1, 6 and 20 year maturities

starting on the 1th of May 2007 and running over 5 years once using

the 1�factor Vasicek model as the underlying source of uncertainty and

twice using our VAR1 model. The only di�erence between the VAR1

representations is the manner in which discretization takes place. We use

our approximative discretization approach described in the last section

iteratively to the future nodes of the tree to produce these multi period

tree structures.
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It is obvious from the �gures that the trees using the Vasicek model have

almost no volatility for the long rates. Looking at historic yield curves in

Figure E.10 this seems very unrealistic. On the other hand the VAR1 trees

branched in a 4�4�4�4 fashion seem to produce overly large volatilities for

all maturities. This is better seen in Figure E.11 where we only consider

the yield curves 5 years from May 2007. The initial yield curve is presented

using a solid line. Note, however, that in the Vasicek model the initial yield

curve is not the observed curve but reproduced by the model. By only

looking at these graphs there is little room for suspicion left as for the

insu�ciency of a 1�factor Vasicek model in capturing future dynamics of

interest rate, in particular the long rates.

Obviously we do not wish for our model of choice to reproduce historical

yield curves exactly. That said, it is desired that the model captures char-

acteristics seen in historic data. Our VAR1 model with a 16�4�2�2 dis-

cretization seems to produce a good approximation to the real world data

from 1995�2006 as seen in Figure E.12. Whether or not this is a good his-

torical period which characteristics to mimic is a subjective question, but

it is a subjective question at a high level of abstraction; we do not choose

how the yield curves should exactly look like, but we make a decision as

to which historic period we believe gives rise to a good approximation of

future yield curve scenarios.
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E.7 Conclusions

We have set up a number of qualitative conditions with which a yield

curve scenario generation method should comply. We have shown that

the 1�factor Vasicek model, even though suitable for option pricing, is

unable to capture future dynamics of interest rate, which disquali�es this

model as a source of uncertainty for stochastic programs. We have tailored

a 3�factor VAR1 model using the 3 factors, level, slope and curvature,

describing over 99% of variability in historical interest rates and we have

introduced a discretzation scheme on top of that. We have presented

graphs which give the user a feel of whether or not the scenarios generated

are representative of what is observed in historical data as well as what

is prescribed by econometrical and interest rate theory. Our VAR1 model

with a 16�4�2�2 discretization gives rise to a reasonable representation of

uncertainty over a 5�year period with a modest number of scenarios, 256.

The three major types of yield curve shifts are present in representative

quantities and the volatility of the last 10 years historic data is captured

properly. There is also reversion towards the long term drifts. No negative

rates or extremely low rates are observed. There are, however, some gaps

in between the extreme scenarios and the main bulk of scenarios in the

high end of the scale in particular for long rates. The gap can be closed

if we generate more scenarios for example 32�4�4�4, but this results in
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2048 scenarios which is probably about the highest number of scenarios

most realistic linear stochastic programming applications can handle on

a standard pc. Given that the stochastic programming problems we have

in mind have 0�1 constraints we �nd the trees of approximately 200�300

scenarios more appealing. Whether or not this leads to serious solution

de�ciencies as compared to using 2000-3000 scenarios is subject of future

work. We need special purpose algorithms and/or parallel routines to

perform the comparison. Super computers may as well provide su�cient

computing power for these tests. Our preliminary trials on LP�relaxed

version of our optimization problems at hand show, however, that the

�rst stage solution structures stabilize already at about 200�300 scenarios

despite the gaps in between the high extreme scenarios and the main bulk

of scenarios. Another idea that we leave to future work is trying another

moment matching approach where the �rst four moments (kurtosis being

the fourth) are matched simultaneously at each period conditioned on the

root, and that only the �rst 2 or 3 moments are matched for the sub�

trees in between the periods. Likewise applying the ideas of P�ug (2001)

and Hochreiter and P�ug (2006) on optimal discretization to our problem

remain as future work.
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Figure E.3: Each graph includes the observed yield curve on the 1th of August 2005

(the stippled curve). Four yield curve scenarios one year ahead are included as well. In

the top �gures the Nelson Siegel method is used to smooth the curves. In the bottom

�gures an a�ne function is used. Figures to the left are before removing arbitrage from

the yield curves and �gures to the right are after removal of arbitrage.
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Figure E.4: Each graph includes the observed yield curve on the 1th of August 2005

(the stippled curve). 16 yield curve scenarios one year ahead are included as well. In

the top �gures the Nelson Siegel method is used to smooth the curves. In the bottom

�gures an a�ne function is used. Figures to the left are before removing arbitrage from

the yield curves and �gures to the right are after removal of arbitrage.
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Figure E.5: Each graph includes the observed yield curve on the 1th of May 2007

(the stippled curve). Four yield curve scenarios one year ahead are included as well. In

the top �gures the Nelson Siegel method is used to smooth the curves. In the bottom

�gures an a�ne function is used. Figures to the left are before removing arbitrage from

the yield curves and �gures to the right are after removal of arbitrage.
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Figure E.6: Each graph includes the observed yield curve on the 1th of May 2007

(the stippled curve). 16 yield curve scenarios one year ahead are included as well. In

the top �gures the Nelson Siegel method is used to smooth the curves. In the bottom

�gures an a�ne function is used. Figures to the left are before removing arbitrage from

the yield curves and �gures to the right are after removal of arbitrage.
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Figure E.7: Scenario trees for 1�year rates over 5 years as produced by a 1�factor

Vasicek model with a 3�3�3�3�3 discretization (top), our 3�factor VAR1 model with

a 4�4�4�4 discretization (middle) and our 3�factor VAR1 model with a 16�4�2�2

discretization (down). The green circle shows the average level of scenarios. Note that

there is a jump from year 3 to year 5 in the VAR1 trees.
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Figure E.8: Scenario trees for 6�year rates over 5 years as produced by a 1�factor

Vasicek model with a 3�3�3�3�3 discretization (top), our 3�factor VAR1 model with

a 4�4�4�4 discretization (middle) and our 3�factor VAR1 model with a 16�4�2�2

discretization (down). The green circle shows the average level of scenarios. Note that

there is a jump from year 3 to year 5 in the VAR1 trees.
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Figure E.9: Scenario trees for 20�year rates over 5 years as produced by a 1�factor

Vasicek model with a 3�3�3�3�3 discretization (top), our 3�factor VAR1 model with

a 4�4�4�4 discretization (middle) and our 3�factor VAR1 model with a 16�4�2�2

discretization (down). The green circle shows the average level of scenarios. Note that

there is a jump from year 3 to year 5 in the VAR1 trees.
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Figure E.10: Historic yield curves from 2001 to 2006 (top) and from 1995 to 2006

(down).
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Figure E.11: Yield curves generated 5 years from now (May 2007) using the 1�factor

Vasicek model with a 3�3�3�3�3 discretization (top), our VAR1 model with a 4�4�4�4

discretization (middle) and our VAR1 model with a 16�4�2�2 discretization (down).

The initial yield curve is also presented using solid lines for comparison
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Figure E.12: Comparison of the historic yield curves from 1995 to 2006 (top) with

Yield curves generated 5 years from now (May 2007) using our VAR1 model with a

16�4�2�2 discretization (down).
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Appendix 1: No arbitrage arguments

It is well known in option pricing literature that pricing trees should pre-

clude arbitrage opportunities. No arbitrage arguments go hand in hand

with the risk neutral probabilities. Existence of positive risk neutral prob-

abilities is equivalent to no arbitrage. Non positive risk neutral probabil-

ities mean on the other hand that it is possible to go short in one asset

and long in another and receive a risk free positive cash�ow. It is com-

mon practice to use the no arbitrage argument for pricing purposes. The

intuition is that the price of one cash�ow should be used as a reference

for pricing the cash�ows of other assets under similar market uncertainty

scenarios. This no arbitrage argument is accompanied by the assumption

of rational investors and complete markets.

Some researchers within stochastic programming such as Klaassen (2002)

suggest that scenario trees in stochastic programs should in the same man-

ner as pricing trees abide by the no arbitrage conditions. The arguments

for why this is a good idea are two fold:

1. If the optimization models allow the investor to enter both short

and long positions then the optimization model is unbounded if

arbitrage possibilities exist in the tree.
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2. Even though it is not allowed to enter both short and long positions,

or if due to frictions such as transaction costs or trade limitations

the arbitrage possibilities would not result in unboundedness they

would introduce some bias in the result.

While the arguments sound reasonable at a �rst reading there is no prin-

cipal truth about them. The counter argument is the following:

What if the purpose of an optimization model is indeed to detect as-

sumed arbitrage possibilities or biases in an incomplete market? Then by

removing the arbitrage possibilities ex ante we are essentially removing

the grounds for our optimization. Consider the extreme case when the

scenario tree is made of one single scenario. This corresponds to an ex-

tremely speculative situation when the decision maker has a very clear

(deterministic) opinion as to future market movements. Such a scenario

almost always includes arbitrage possibilities. Yet optimization over this

single scenario makes perfect sense as long as the investor has made a

clear assumption as to what particular market movement he or she is

willing to bet on. The point is that removing arbitrage just for the sake

of precluding unboundedness or bias is not necessarily a good idea. For

our speculative investor it would basically mean removing all the fun and

excitement there is in betting.
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In our opinion in optimization models one should make a careful decision

as where to preclude arbitrage possibilities and where to allow them.

We argued in this paper that when generating a tree of interest rates one

should preclude arbitrage possibilities. This basically means that we are

not willing to bet on zero coupon bonds. Once the tree of interest rates

is built, however, we suggest using "state of the art" pricing software (or

ones favorite method for that matter) on any path of tree in order to

get asset prices which are consistent with market data and our interest

rate expectations. Now removing possible arbitrage from the asset prices

in such a tree, by for example adding some high interest scenarios in

di�erent parts of the tree, amounts to not being loyal to our original

subjective expectations on market uncertainty.

These arguments are possibly the most controversial ones in this paper,

but we believe that they are at the same time an important contribution to

the debate of whether or not the no arbitrage arguments should be abided

by blindly in the scenario generation part of stochastic optimization.
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Appendix 2: Separation of the interest rate and mortgage

bond pricing models

In our papers we explicitly preclude arbitrage in the scenario trees of

term structures of interest rate, i.e. we do not allow arbitrage as far as

the zero coupon bonds are concerned. We then use observed mortgage

bond prices in the root node and calculate future mortgage bond prices

for every single path of the tree based on the pricing model of our choice.

This means that we obtain realistic mortgage bond prices at every path

of the scenario tree, but that arbitrage opportunities in the prices of the

mortgage bonds may occur across some of the subtrees of the scenario

tree. Our optimization models do not allow the mortgagor to take advan-

tage of the possible arbitrage opportunities. The existence of arbitrage

in mortgage bond prices will at worst mean that the decisions on the

mortgage choice would be biased as compared to the situation where we

remove these arbitrage possibilities either by changing future mortgage

bond prices or by producing another term structure scenario tree. This

would, in e�ect, amount to merging the term structure tree and the pric-

ing model together.

In our opinion the separation of the term structure tree and the mortgage

bond pricing is necessary to re�ect the existing mismatch in between our
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subjective interest rate expectations and the observed market prices of the

option elements of the mortgages. One may say that the no arbitrage case

for mortgage bond prices is a special case of our setting with separate term

structure trees and mortgage bond pricing. It is in this separation that we

introduce subjectiveness in the choice of a term structure tree. Whether

we choose one term structure tree according to a set of criteria or another

term structure tree according to another set of criteria is a subjective

choice. Which of the trees produce superior results in a real world setting

is left as future work. In our opinion, however, it is more important to

generate realistic term structure and mortgage bond price scenarios (with

no arbitrage in the zero coupon bonds) than removing the mortgage bond

price arbitrage by for example introducing some unrealistic interest rate

scenarios.
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