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Preface 
 
This thesis contains my work on Dynamic Modelling of Micropollutants in the 
Integrated Urban Wastewater System. It was conducted at the Department of 
Environmental Engineering at the Technical University of Denmark (DTU 
Environment) during 2004-2008. Part of the material also developed during visits at the 
Department of Industrial Electrical Engineering and Automation (Lund University, 
Sweden) and at modelEAU (Université Laval, Québec, Canada). The main supervisor 
was Associate Professor Peter Steen Mikkelsen while Professor Mogens Henze co-
supervised. 
 
The thesis consists of a summary and 7 papers, among which 5 have been published and 
2 are submitted to international peer reviewed journals with ISI ranking. 
 
Paper 1: Lindblom, E., Gernaey, K.V., Henze, M. and Mikkelsen, P.S. (2006). 

Integrated modelling of two xenobiotic organic compounds.  
Water Sci. Technol., 54(6-7), 213-221. 
 

Paper 2: Lindblom, E., Ahlman, S. and Mikkelsen P.S. (2007). How uncertain is 
model-based prediction of copper loads in stormwater runoff?  
Water Sci. Technol., 56(11), 65-72. 
 

Paper 3: Lindblom, E., Madsen, H. and Mikkelsen, P.S. (2007). Comparative 
uncertainty analysis of copper loads in stormwater systems using GLUE 
and grey-box modeling. Water Sci. Technol., 56(6), 11–18. 
 

Paper 4: Lindblom, E., Ahlman, S. and Mikkelsen P.S. (2008). Uncertainty-based 
calibration of a stormwater surface accumulation-washout model using 
sampled Zn, Cu, Pb and Cd field data. Submitted. 
 

Paper 5: Press-Kristensen, K., Lindblom, E., Schmidt, J.E. and Henze, M. (2008). 
Examining the biodegradation of endocrine disrupting bisphenol A and 
nonylphenol in WWTPs. Water Sci. Technol., 57(8), 1253-1256. 
 

Paper 6: Press-Kristensen, K. Lindblom, E. and Henze, M. (2007). Modelling as a 
tool when interpreting biodegradation of micro pollutants in activated 
sludge systems. Water Sci. Technol., 56(11), 11-16. 
 

Paper 7: Lindblom, E., Press-Kristensen, K., Vanrolleghem, P.A., Mikkelsen, P.S. 
and Henze, M. (2008). Dynamic experiments with high bisphenol-A 
concentrations modelled with an ASM model extended to include a 
separate XOC degrading microorganism. Submitted. 
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The papers above are included in the printed version of the thesis but not in the www-
version. Copies of the papers may be obtained from the Library at the Department of 
Environmental Engineering, Technical University of Denmark (library@env.dtu.dk). 
 
The following other publications were prepared during the PhD project but are not 
included as an integral part of the thesis: 
 
Cloutier, F., Lindblom, E., Press-Kristensen K., Henze M., Mikkelsen P.S. and 
Vanrolleghem P.A. (2007). Modélisation dynamique du compartement de composés 
organiques xénobiotiques dans des stations d’épuration. In: Proceedings 30e Symposium 
sur les Eaux Usées. Saint-Hyacinthe, Canada, 16-17 October, 2007. 
 
Ráduly, B., Lindblom, E. and Gernaey, K.V. (2007). A hybrid modelling approach in 
the simulation of integrated urban wastewater systems. Presented at: European 
Congress of Chemical engineering – 6 (ECCE-6). Copenhagen, Denmark, 16-20 
September, 2007. 
 
Ráduly, B., Capodaglio, A. G., Lindblom, E. and Gernaey K.V. (2006). Model 
reduction using neural networks applied to the modelling of integrated urban 
wastewater systems. In: Proceedings of the 20th European Conference on Modelling 
and Simulation ECMS 2006. Modelling Methodologies and Simulation Key 
Technologies in Academia and Industry. Bonn, Germany, 28-31 May, 2006.  
 
Benazzi, F., Lindblom, E. and Katebi, R. (2005). Software sensor application to 
WWT processes and future perspectives when applied to integrated urban 
wastewater systems. Presented at: The 4th World Wide Workshop for Young 
Environmental Scientists. Domaine de Chérioux, Vitry sur Seine, France, 10 – 13 
May, 2005. 
 
Lindblom, E., Raduly, B. and Mikkelsen, P.S. (Eds.). (2005). System process modelling 
report. Environment & Resources DTU, Technical University of Denmark, 116 pp. Incl. 
Annexes. EU research training network (contract HPRN-CT-2001-00200), 
http://www.env.dtu.dk/publications/fulltext/2005/MR2005-018.pdf. 
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Abstract 
 
The focus of this thesis is dynamic modelling of micropollutants in the integrated urban 
wastewater system consisting of sewer catchments, wastewater treatment plants and 
receiving waters. Micropollutants are present in urban water due to manufacturing, 
disposal and use of man-made chemicals in all parts of the society as well as formation 
in e.g. combustion processes in connection with heating and traffic. From here, 
micropollutants leach into the natural environment to a large extent via pipe systems 
collecting both wastewater from household and industry and stormwater runoff from 
paved surfaces. The general hypothesis of the thesis is that models that realistically 
describe the fate of micropollutants in the system can be developed based on their 
inherent properties (e.g. biodegradability, liquid-solid partition coefficient) together 
with well-established mathematical descriptions of the physical, chemical and biological 
processes that occur in integrated urban wastewater systems. The hypothesis is 
examined by means of modelling three defined focus areas following the sequence of a 
generic model development procedure.  
 
In focus area 1, Integrated modelling, a conceptual model for the fate of 
micropollutants in a simplified representation of the integrated urban wastewater system 
is developed. The presented model is capable of elucidating several frequently discussed 
integrated scale problems influencing the fate of micropollutants, e.g. induced re-
suspension of particulates and overflow of detention basin structures during wet 
weather, and effects of external disturbances and operational conditions on the 
wastewater treatment performance. Thereby it is shown for the stormwater pollutants 
pyrene and the wastewater pollutant bisphenol-A that the developed model-based tool 
can enhance process-understanding, and the possibilities for using models for optimal 
design of monitoring programmes and emission control strategies on an integrated scale 
are outlined.  
 
In focus area 2, Stormwater quality modelling, an uncertainty-based model calibration 
methodology is developed and discussed in relation to model predictions of stormwater 
pollution loads. Rather than one optimally calibrated solution, the result of the method 
is a distribution of model parameters, which if propagated through the model generates 
model output predictions that are consistent with (bracket) the experimental 
observations. The method is discussed and applied in combination with data from a 
separate system in Gothenburg including one month’s monitoring data of rainfall, 
stormwater runoff and zinc, copper, lead and cadmium concentrations. It is shown that 
the relatively few and uncertain experimental observations, together with the 
uncertainties of input data and model structures, involves that a wide range of 
parameters are able to yield similar and equally valid model outputs. The total observed 
loads of the case study elements could be predicted with an uncertainty of �20-80%, 
conditional on the used model and monitoring data. 
 



 vi

In focus area 3, Wastewater treatment plant modelling, process formulation extensions 
to state-of-the-art activated sludge models are shown and discussed. Compared to 
wastewater treatment plant models describing removal of traditional pollutants like 
organic matter and nutrients, at least sorption/desorption, volatilisation/stripping and 
biological degradation by specialised microorganisms must be considered if the fate of 
micropollutants are to be realistically simulated. A single-substrate growth and decay 
model is developed and recommended for describing biodegradation of the endocrine 
disrupting micropollutant bisphenol-A in a pilot scale wastewater treatment plant. A 
calibration methodology that combines steady-state data with dynamic step-response 
data is developed as well. The presence of a specific bisphenol-A degrading organism in 
the activated sludge is established. 
 
In the thesis it is shown that not too complex lumped, conceptual and deterministic 
models can be used to elucidate several complex phenomena of importance to the fate 
of micropollutants in the integrated urban wastewater system. To be practical also for 
predictive purposes several sources of uncertainty should be considered, which can 
however be modelled as model parameter uncertainty using the developed uncertainty-
based calibration method. 
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Dansk sammendrag  
 
Hovedemnet for denne afhandling er dynamisk modellering af miljøfremmede stoffer 
ved lave koncentrationer i det integrerede urbane spildevandssystem bestående af 
kloakoplande, spildevandsrensningsanlæg og vandløb. Tilstedeværelse af 
miljøfremmede stoffer i urbant vand skyldes produktion, brug og bortskaffelse af 
menneskeskabte kemikalier i alle dele af samfundet samt f.eks. forbrændingsprocesser i 
forbindelse med opvarmning og trafik. Miljøfremmede stoffer opsamles i både 
spildevand fra husholdninger og industri og regnvand afstrømmet fra befæstede 
overflader og udledes i stort omfang til miljøet gennem byernes afløbs- og 
spildevandssystemer. Den grundlæggende hypotese er, at modeller som realistisk 
beskriver miljøfremmede stoffers skæbne i systemet kan udvikles med udgangspunkt i 
stoffernes iboende egenskaber (f.eks. bionedbrydelighed, væske-faststof 
fordelingskoefficient) samt veletablerede matematiske beskrivelser af de fysiske, 
kemiske og biologiske processer, som optræder i det integrerede spildevandssystem. 
Denne hypotese undersøges ved at gennemføre udvalgte trin fra en generisk 
modeludviklings procedure for tre definerede fokusområder indenfor afhandlingens 
hovedemne. 
 
En konceptuel model for en forenklet repræsentation af det integrerede urbane 
spildevandssystem er udviklet og udbygget med processer, der beskriver miljøfremmede 
stoffers skæbne, specielt tilbageholdelse og transport samt sorption og bionedbrydning. 
Det er derved påvist for stofferne pyren, der forekommer hyppigt i afstrømmet 
regnvand, og bisphenol-A, der findes i spildevand, at denne form for simuleringsværktøj 
kan øge procesforståelsen og dermed mulighederne for at designe 
moniteringsprogrammer og emissions kontrol strategier på oplandsskala. Modellen er i 
stand til at belyse betydningen af adskillige integreret skala fænomener på skæbnen af 
miljøfremmede stoffer, f.eks. forøget resuspension af partikulært bundne stoffer under 
regn, overløb fra forsinkelsesbassiner og effekterne af varierende tilløb og driftforhold 
på funktionen af renseanlæg. 
 
En usikkerheds-baseret kalibreringsmetode er udviklet og diskuteret i forbindelse med 
modelprædiktioner af forureningsmængder i regnvand afstrømmet fra urbane 
overflader. Frem for et optimalt parametersæt er resultatet en fordeling af 
modelparametre, som forplantes gennem modellen og giver resultater, der er i 
overensstemmelse med (dækker) de eksperimentelle observationer. Metoden anvendes 
og diskuteres i sammenhæng med data fra et separat kloakopland i Göteborg med en 
måneds moniteringsdata for nedbør og afstrømning samt zink, kobber, bly og cadmium 
koncentrationer. Det påvises, at de relativt få og usikre eksperimentelle observationer 
samt usikkerhed på input og modelstruktur resulterer i at et bredt område af 
modelparametre er i stand til at give tilsvarende og lige valide model output. 
Totalafstrømningen af disse tungmetaller kan prædikteres med en usikkerhed på �20-
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80% af middelværdien, betinget af den anvendte dynamiske model og 
moniteringskampagne. 
 
Tilføjelser af specifikke processer til eksisterende aktiv slam modeller er diskuteret. 
Sammenlignet med traditionelle rensningsanlægs modeller, der beskriver fjernelse af 
organisk materiale og næringsstoffer, må sorption/desorption, fordampning/stripning og 
bionedbrydning ved hjælp af specifikke mikroorganismer som minimum tages i 
betragning for at simulere fjernelse af miljøfremmede stoffer realistisk. En Monod 
vækst- og nedbrydningsmodel baseret på et enkelt substrat er udviklet og anvendt til at 
beskrive nedbrydning af det østrogene stof bisphenol-A i et pilotskala renseanlæg. En 
kalibreringsmetode, som udnytter en kombination af steady-state og dynamiske step-
respons data, er desuden udviklet og anvendt til at påvise tilstedeværelsen af specifikke 
bisphenol-A nedbrydende mikroorganismer. 
 
Afhandlingen viser, at ikke-distribuerede, konceptuelle deterministiske modeller kan 
benyttes til at belyse adskillige komplekse fænomener af betydning for miljøfremmede 
stoffers skæbne i det integrerede spildevandssystem. I forbindelse med anvendelse af 
modellerne ved praktisk prædiktion er det vigtigt at tage højde for adskillige kilder til 
usikkerhed, som imidlertid kan modelleres som modelparameter usikkerhed ved at 
bruge den udviklede metode til usikkerheds-baseret kalibrering. 
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1 Introduction 
 
The conventional notation for low concentration substances that are not naturally 
present in the environment is micropollutants. Around 100 000 chemicals are registered 
in the European Union and are, as a result of manufacturing, disposal and use, emitted 
to the environment. A substantial proportion of the total load of micropollutants enters 
the receiving waters by discharge from urban areas (e.g. Eriksson et al., 2002, 2003). 
The major discharge points are direct industrial discharges (with or without treatment), 
wastewater treatment plants (WWTPs), separate storm sewers, combined sewer 
overflows (CSOs), building drains and smaller discharge pipes and surface runoff. The 
primary sources of micropollutants are the products which contain them, such as 
household chemicals, personal care products, pesticides, vehicles, construction materials 
and road surfaces etc, as well as the chemicals used in manufacturing. 
 
The discharge concentrations of most micropollutants are usually far below acute 
human toxic levels, and it is mainly adverse long-term effects and the ecological impact 
that is of concern. It has been established that some micropollutants have hormonal or 
endocrine disrupting potential and current studies report that specific xenobiotic organic 
compounds (XOCs) in the effluents of wastewater treatment plants (and consequently 
also in stormwater discharges, via CSOs) are responsible for effects such as sterile fish 
in certain recipients (Press-Kristensen et al., 2007).  
 
Nonylphenol (from e.g. car wash detergents) is an example of an endocrine disrupting 
chemical that has been found in stormwater (Björklund et al., 2007). Else, traditional 
stormwater micropollutants are often divided into (Ahlman, 2006) heavy metals (toxic 
to plants and animals), polycyclic aromatic hydrocarbons (PAHs) (carcinogenic) and 
herbicides/pesticides. In Eriksson et al. (2007), it is noticed that the list of interesting 
stormwater pollutants will need to be expanded in the future with the implementation of 
the EU Water Framework Directive (WFD) (European Commission, 2000). They 
therefore developed a methodology where “other miscellaneous organic compounds” 
(i.e. XOCs) were identified as well. Out of 233 investigated stormwater micropollutants 
their method judged 151 to be potentially hazardous considering either humans, animals 
or plants.  
 
Water supply, urban drainage and wastewater treatment systems were originally 
designed to solve conventional problems (supply of potable water, flood protection and 
sanitation) and water quality research has mainly focused on organic matter and 
nutrients. The legislative requirement to achieve a reduction and/or elimination in the 
discharge of also some micropollutants within the extremely short time frame of 20 
years, as set out in the WFD has therefore placed the water authorities and utilities 
responsible for the treatment and disposal of wastewater and stormwater, as well as 
industries which use and emit micropollutants across Europe, under enormous pressure.  
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1.1 Motivation 
If the substances are not withdrawn from the market by legislation (which is an actively 
debated option, but a difficult one in the case of some compounds e.g. medicaments, 
that are needed for human welfare or PAHs, that are produced to a large extent in 
traffic), it is the layout and operation of the urban wastewater system that will be 
responsible for reaching the higher standards imposed by the new requirements, by 
being more efficient in reducing micropollutant discharges. Increased global 
urbanisation and the threats of possible climate effects of course don’t simplify the 
problem. Complicating things even further, experimental procedures to investigate the 
fate of micropollutants in the urban wastewater system are difficult and expensive: the 
compounds are present at low concentrations, several processes occurring concurrently 
often contribute to one specific outcome (they are interrelated i.e. it might be difficult to 
see cause-relationships), the analytical methods are uncertain and expensive and 
numerous practical problems are related with the variability of the rainfall–runoff 
process and the aggressive wastewater environment.  
 
A mathematical model is a practical way of summarizing the best available knowledge 
about how a certain substance behaves, and how it is affected by various processes in 
particular systems. This type of knowledge enhances the possibilities for optimising 
wastewater and stormwater operation and treatment processes, as well as monitoring 
programmes at an integrated urban catchment scale. Models are therefore important 
tools for gaining the understanding, which is necessary for reaching new discharge 
standards decided by society. 
 
As pointed out in Rauch et al. (2002), the advance of models as tools for design and 
operation of the integrated urban wastewater system has followed the above-mentioned 
historical concerns (water supply, flood protection, sanitation). Thus, there are several 
hydraulic models which focus on flooding prevention as well as water quality models 
developed to describe removal of traditional pollutants, mainly organic matter, nitrogen 
and phosphorus. Some of these models are implemented in commercial simulation 
platforms (e.g. SWMM, MOUSE, WEST), but they are usually not concerned with 
specific chemical compounds and thus they cannot be applied directly to describe the 
fate and transport of micropollutants. For this purpose, the models must be extended.  
 

1.2 Objectives and hypothesis 
The overall aim of the thesis is to develop dynamic mathematical models that 
realistically describe the fate and transport of micropollutants in the integrated urban 
wastewater system. By the definition of three focus areas (FAs) a number of more 
specific objectives are stated.  
 
FA1. In focus area 1, the objective is to develop a conceptual model structure that can 

help to further understand the fate of both wastewater and stormwater 
micropollutants from source (households, industry, urban surfaces) to destination 
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(CSOs, primary and secondary sludge and the effluent of the WWTP) in a simple 
representation of the integrated urban wastewater system.  

 
FA2. In focus area 2, the objective is to discuss, develop and show suitable methods to 

analyse the uncertainty of a stormwater accumulation-washout model, especially 
considering that available dynamic micropollutant data for calibration are sparse. 

 
FA3. In focus area 3, the objective is to develop and calibrate a model, which can be 

used to better understand and optimize WWTPs that are able to remove 
micropollutants in combination with removal of traditional pollutants. 

 
The general hypothesis is that models to fulfil the objectives can be developed based on 
inherent properties of micropollutants (e.g. biodegradability, liquid-solid partition 
coefficient) together with well-established mathematical descriptions of the physical, 
chemical and biological processes that occur in integrated urban wastewater systems. 
The hypothesis is checked by means of modelling the defined focus areas following the 
sequence of a generic model development procedure. In this way each focus area sheds 
light on important aspects of importance also to the overall aim of the thesis. 
 

1.3 Outline of the thesis 
The thesis consists of a summary (Chapters 1-9) accompanied by 7 papers in the 
Appendices, among which 5 have been published and 2 are submitted to international 
peer reviewed journals with ISI ranking. In Chapter 1 the motivation and objectives are 
stated, and the author’s publications are listed. In Chapter 2, the general methodology of 
the thesis is presented. Chapter 3 includes background information regarding the three 
focus areas of the thesis as well as more detailed problem specifications. The remainder 
of the summary presents and discusses the actual results of the research. Chapter 4 is 
concerned with the issues of model formulation and model performance analysis. Then 
in Chapters 5 and 6 the formulated models are evaluated against experimental data, and 
methods for model calibration and uncertainty analysis are developed and applied. 
Chapter 7 lists the conclusions of the thesis and in Chapter 8 suggestions for future 
work are discussed. Finally, Chapter 9 includes the bibliography. 
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2 Methodology 
 
The methodology of the thesis, shown schematically in Figure 2.1, was developed at an 
early stage of the project and is described step-by-step in general terms in this chapter. 
The figure illustrates an “ideal” way of advancing while approaching problems with the 
help of a model. Since it has not been practically possible within the scope of the thesis 
to follow all steps in detail for each included topic, the figure also indicates where the 
focus of each focus area and included paper lies.  
 

 
 
Figure 2.1. Schematic representation of the generic modelling methodology and the main focus of the 3 
focus areas and 7 attached papers. 
 

2.1 Model formulation 
In the model formulation phase, problem specifications are used together with available 
material and a priori knowledge (from experience, literature) to define system 
boundaries, to characterise the incorporated processes which are of interest to consider 
and to chose a way of modelling these. The “appropriate” way will always depend on 
the stated model objectives, which are intimately related to the problem specifications 
shown in the following chapter. To facilitate the further discussion of the thesis the 
notation, which is used to classify mathematical models, are given below.  

2.1.1 Dynamic versus static models 
The following general notation for a continuous dynamic model is used: 
 

 ),,,( �uxtf
dt
dx

�  (2.1) 
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  ),,,( �uxthm�  (2.2) 
 
Here t is time, x is a vector including the state variables, u is a vector including the 
model input variables and � is the model parameter vector. The functions in f include 
the mathematical “rules” that describe how the model states are related with the inputs 
and the parameters. Most often not all state variables are observable and therefore a 
vector with observable model output variables m, which are related to the state variables 
through the functions in h, is introduced. The dynamic model can be converted to a 
static model by letting the derivatives in Equation 2.1 equal zero. 

2.1.2 Distributed versus lumped models 
Distributed dynamic models take into account both the time and spatial dimensions and 
need to be described with partial differential equations. In a lumped dynamic model the 
state variable x is distributed in time but not in space, which results in ordinary 
differential equations. The necessary simplification is the definition of regions where 
the processes are assumed to not vary in space.  

2.1.3 Deterministic versus stochastic models 
In a deterministic model the future outputs are uniquely determined by (1) the current 
states in x and (2) the future inputs u. A stochastic model contains random variables and 
the outputs are therefore not known with certainty, thus they are expressed as 
probability distributions.  

2.1.4 Conceptual versus mechanistic models 
If the functions in f are based on the laws of physics and include many details the model 
is referred to as a mechanistic (or reductionist) model. In contrast, conceptual models 
simplify the details of purely mechanistic models by using parameters for empirical 
relationships rather than for physical laws. The parameters of conceptual models can 
often not be measured directly and, to have predictive power, they therefore need to be 
calibrated with data until measurements and model output coincide.  

2.1.5 Chosen model types of the thesis 
Following the notation in the text above, most models that are hypothesised to be 
practical in this thesis are dynamic, lumped, deterministic and conceptual. 
 
The general choice of using dynamic models is due to the involved phenomena, which 
all are dynamic, together with one of the major aims of the project, to provide improved 
understanding. The models are furthermore lumped, which is required for keeping the 
complexity at an acceptable level. 
 
In environmental modelling in general, as well as here, the application of deterministic 
models dominates over stochastic modelling. In much, this depends on the scarce 
availability of data, which requires that some relationships are (at least assumed to be) 
deterministically known. An exception to the use of deterministic models is grey-box 
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modelling (Section 2.3.3), which is an example of a stochastic model application of the 
thesis.  
 
The chosen models are more or less conceptual models; “more or less” because it is 
often not possible to categorise a model as solely conceptual or mechanistic. To mention 
two examples:  
 
� Parameters in mechanistic models are physically interpretable and thereby in theory 

possible to measure. However, it is often necessary to conduct such experiments in a 
laboratory scale and the results must then be extrapolated to other environmental 
conditions, which in itself can be seen as a conceptualisation.  

 
� Due to the relatively high level of complexity of the activated sludge models 

(ASMs) of Henze et al., 2000, these are often considered to be quite mechanistic. 
On the other hand, they describe thousands of different biomass families with two 
(ASM1, ASM3) or three (ASM2, ASM2d) state variables and are in this sense thus 
conceptual.  

 
One reason for applying conceptual instead of mechanistic models is lack of knowledge, 
the details of the incorporated processes are simply not known. A second reason is that 
the mechanistic model would be very complex and not possible to validate because of 
lack of data. 

2.1.6 Level of accuracy 
It is important to decide upon the required level of accuracy. This level will depend 
upon the purpose of the modelling study and on project budget (money and time). 
Again, here are two examples: 
 
� A WWTP model aimed at supporting model based control requires that only a 

limited part of the plant is modelled whereas a model of the same plant aimed at 
operator training would better be plant-wide (including all compartments e.g. 
screens). In the first case the model accuracy is important whereas for the second 
model calibration might not be required as long as the general behaviour of the plant 
is captured.  

 
� A model for a sewer system aimed at improving detailed understanding needs to be 

mechanistic and distributed to study hydraulics and water quality processes in 
individual sewer stretches but does not necessarily require high accuracy. A model 
for the same system aimed at pollutant load or flow predictions based on rain data 
can very well be lumped, conceptual and completely stochastic, if it outputs 
sufficiently good predictions.  
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It is appropriate to question whether the formulation and implementation of a 
mathematical model to define and solve some of the problems in this thesis is overly 
complicated, and thereby a waste of time. Here, the obvious answer is no. A specific 
micropollutant is affected by not one but several inputs and processes at various 
locations within the system. Moreover, the number of micropollutants of interest is 
continuously growing. As the system size and number of studied compounds increases 
the involved problems will soon be un-manageable by solely traditional “paper and pen” 
methods.  
 

2.2 Model implementation and performance analysis 
Once formulated, the models have been implemented (coded) as C-file S-functions in 
MATLABTM /SimulinkTM. The most often non-linear ordinary differential equations are 
solved with built in numerical solver methods (ode45 or ode15s). MATLABTM was 
chosen as the simulation platform since it is considered to be one of the most 
fundamental software tools at research institutes all over the world. SimulinkTM is an 
add-in to MATLABTM that provides a graphical user interface for building dynamic 
models as block diagrams. Later in Chapter 4 (Figure 4.10) a Simulink flow-scheme is 
shown. The only exception to the use of MATLABTM is found in the implementation of 
the grey-box model, which was done in the software CTSM (Kristensen and Madsen, 
2003). 
 
After implementation, the model performance is analysed, i.e. it is checked that the 
simulated outcomes are consistent with the presumed formulation. If not, the model 
formulation and implementation phases must be reconsidered. Several examples of 
model performance analyses (simulations) will be shown throughout Chapter 4. 
 

2.3 Experimental design, model calibration and uncertainty 
analysis 

This phase deals with the issue of analysing/evaluating the developed model structures 
by comparing them with experimental data. In Equations 2.1 and 2.2 the general 
dynamic model was formulated as a continuous model with regard to the time variable t. 
In practise, experimental data are only partially available, at instances k=1,2,…,N-1, N. 
A discrete experimental observation yk will never exactly equal the associated model 
output mk and therefore, to compare the model with the N real data, the following 
observation equation is introduced:  
 
 � � kkk euxtmy �� �,,,  (2.3) 
 
The deviation between the experimental observation and the associated model output is 
given by the error, or residual, ek, which is a result of a number of uncertainties: 
 
� Uncertainty in the relationships f and h between model variables. 
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� Uncertainty in the model parameters �. 
� Uncertainty in the input data u. 
� Uncertainty in the observations yk, including uncertainty in the registered sampled 

time instances tk.  
 

2.3.1 Model calibration 
The process of searching for a parameter set that minimises or optimises some objective 
function, which is often chosen to depend on the errors, is referred to as parameter 
estimation or model calibration. Throughout the thesis, the “goodness-of-fit” of a 
certain parameter set �(i) has been evaluated based on the following objective function: 
 

 � �� � � �� �� �
2

1
, 	

�


�
N

k

i
kk

i myySSE ��  (2.4) 

 
i.e. based on the sum of squared errors (SSE).  

2.3.2 Uncertainty analysis 
With model uncertainty analysis, we mean an analysis aimed at providing information 
about the error ek (e.g. influence on model predictive uncertainty, origin, structure, 
magnitude etc). Two approaches to model uncertainty analysis have been applied and 
are discussed below. 

2.3.3 Grey-box modelling 
A grey-box model takes into account the various uncertainties listed above by adding a 
stochastic noise term ( � � ��� d ) to the differential equations of the deterministic 
differential equation (Equation 2.1) and by modelling the error term in the observation 
equation (Equation 2.3) as a white noise process:  
 
 � � � � d��� dtt,x,u,�fdx ��  (2.5) 
 
 � � � ��� kkk euxtmy �� ,,,  (2.6) 
 
where �  is a standard Wiener process and � (�) a function as described in Kristensen 
et al., (2004) and Madsen (2007).  
 
The uncertainty of a model prediction is given by simulating the grey-box model 
(Equations 2.5-2.6) with the maximum-likelihood estimate �̂ , i.e. with the parameter set 
that is most likely to predict the data. The software CTSM (Kristensen and Madsen, 
2003) was used to find this estimate. Note that compared to the deterministic model, the 
grey-box model contains additional model parameters in the two stochastic noise terms, 
which makes it possible to model the uncertainty.  
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2.3.4 Uncertainty-based model calibration 
The second approach to model uncertainty analysis, here entitled “uncertainty-based 
model calibration”, does not as above involve a model reformulation. The uncertainty is 
instead projected on the already existing deterministic model and its parameters �, 
which are seen as random. Essentially this means that, conditional on the model 
structure, states, time and input data, the model output m (Equation 2.2) is modelled as 
depending only on the values of the deterministic model parameters. The concept that 
several combinations of parameters are able to yield similar and equally valid outputs is 
referred to as equifinality (Beven and Freer, 2001; Beven, 2006). 
 
The model parameter vector is defined by the so called joint posterior parameter 
distribution g(�|y), which is obtained by updating the prior parameter distribution �(�) 
with a likelihood measure L(y|�), indicating how well different parameter sets from the 
prior perform as compared to the experimental observations: 
 

 � � � � � ���� ��� |1| yL
K

yg  (2.7) 

 
Here K is a normalising constant ensuring that g is a true probability distribution (the 
integral of g(�|y) over all � should be unity). The posterior parameter distribution is 
assumed to include all knowledge about the statistical properties of a certain model 
output. The model prediction uncertainty is given by Monte Carlo propagation of the 
posterior through the model followed by analysis of the empirical prediction quantiles. 
For example, with N draws of � from g(�|y) the probability P of that a model output mk 
lies in a certain region Ak is calculated by simply counting and averaging the times this 
happens: 
 

 � �� � � �� �� �	
�

���
N

n
k

n
kkk Am

N
AmP

1

1 �� 1  (2.8) 

 
where the function 1 takes the value 0 or 1: 
 

 � �� � � �
�
�
� �

�� kk
pk

Am
Am

�
�

else   
if

 0
 1

1  (2.9) 

 
The region Ak in which 95% of the model outputs fall yields P=0.95 and the empirical 
95% model prediction quantile. Throughout the thesis it has been presumed that when 
these 95% quantiles bracket approximately 95% of the observations yk the model output 
uncertainty is adequately described. Following the basic idea if the GLUE methodology 
(see below) the parameter sets that that in this manner yield outputs in the region Ak are 
hence denoted behavioural.  
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An obvious difficulty with Equation 2.8 is that it requires access to draws of � from 
g(�|y) to be solved. The Metropolis algorithm (Metropolis et al., 1953) is one way of 
directly generating such draws based on Markov Chain Monte Carlo (MCMC) sampling 
that has been applied. A second way is to reformulate the equation so that draws from a 
known distribution, e.g. �(�), are sufficient. This trick is utilised by the importance 
sampling methodology (e.g. Robert and Casella, 2000). The Metropolis algorithm and 
importance sampling are further discussed in Section 6.5.     
 
The way of expressing model uncertainty as parameter uncertainty is closely connected 
to the Bayesian statistical paradigm in general and to the generalized likelihood 
uncertainty analysis method (GLUE) of Beven and Binley (1992) in particular. 
According to Beven (2008), “GLUE is a form of Bayesian model conditioning 
methodology without the need for defining a formal structure for the errors”. The same 
author moreover states that “Bayesian identification of models is a special case of 
GLUE…” (Beven et al. 2008). Mantovan and Todini (2006) on the other hand baptize 
GLUE as “pseudo-Bayesian” and criticize the method for being an inconsistent and 
incoherent statistical inference process. The main difference between GLUE and the 
Bayesian method is the interpretation of the likelihood function. In formal Bayesian 
statistics the likelihood function is defined as “… any function proportional to the 
density of the data, conditional on the parameters” (Tanner, 1996). It thus includes 
information about the probability of predicting the data with a certain parameters set. In 
GLUE as well as in the current approach the likelihood function is replaced with a less 
formal likelihood function, which is interpreted as a measure that reflects the degree of 
belief the modeller has in various parameter values (conditional on the model structure) 
as a simulator of the data.  
 
In the following, the intention is to keep theoretical discussions like the ones above at a 
minimum. McIntyre et al. (2002) refers the conversion of the likelihood response 
surface into a “calibrated” parameter distribution like in Equation 2.7 as “uncertainty-
based model calibration”; this notation is hereby used. 
 

2.4 Model reformulation 
During the model calibration and uncertainty analysis phase, the model structure is 
continuously checked. This activity is similar to the model performance analysis 
(Section 2.2), but considers exhaustively the obtained data: if the model/s cannot 
simulate the experimental observations, or if data and prior knowledge cannot motivate 
the model structure, this is reformulated. Else, the best model/s is/are evaluated in the 
scenario analysis phase. 
 

2.5 Scenario analysis and uncertainty assessment 
To assess the influence of the model structure and parameter uncertainty, the models 
can be exposed to scenarios. Scenarios are here defined as plausible descriptions of how 
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the system (including its inputs) might behave outside the environment of the 
experimental activity. Although the scenario analysis phase have not been completed 
yet for all three focus areas the methods for uncertainty analysis were selected bearing 
in mind that the results should be applicable in scenario analysis. An attractive feature 
of the uncertainty based calibration methodology is that the predictive distributions 
follow directly from propagating the posterior parameter distribution through the model. 
Thus, having derived the posterior and defined the scenario, much of the work is done! 
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3 Description of focus areas 
 
As outlined in section 1.2 the research in this thesis is focused around three areas 
(Figure 3.1). It started out with focus area 1 (FA1), in which an integrated model for the 
fate of stormwater and wastewater micropollutants in a simple representation of the 
urban wastewater system was developed. From here it was decided to study stormwater 
quality modelling in focus area 2 (FA2) and wastewater treatment plant modelling in 
focus area 3 (FA3). The reason for these prioritisations was partly, as will be seen 
below, due to collaboration opportunities.  
 

 
 
Figure 3.1. Locations of the three focus areas within the integrated urban wastewater system and the 
selected model compounds. FA2 concerns the stormwater of a separate sewer system whereas FA1 and 
FA3 concern combined sewer systems. D: Detention. T: Treatment.  
 

3.1 Selected model compounds 
While studying micropollutants in urban storm- and wastewater a significant number of 
substances, each having specific inherent properties and thus behaving differently, need 
to be considered. This fact introduces an obvious difficulty as compared to traditional 
urban water quality research and motivates further the formulation of, like here, general 
models that simulate the fate of specific chemicals (which we know little about) by the 
adjustment of parameter values according to their inherent chemical properties (which 
we often know more about). Although generality is aimed for, both considering the 
developed models and methods, each focus area constitute a case study with specific 
micropollutants as shown below. 

3.1.1 The PAH pyrene 
Polycyclic aromatic hydrocarbons (PAHs), are compounds that carry carcinogenic 
and/or mutagenic activity. Main sources of PAHs are traffic activities (vehicular 
component wear, fluid leakage and pavement degradation) and PAHs such as pyrene are 
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consequently found in runoff water from urban areas (Shinya et al., 2000). Pyrene is 
affected by sorption to suspended solids but is not easily degraded (Eriksson et al., 
2005) and was chosen as an example of an organic stormwater micropollutant in FA1. 

3.1.2 Bisphenol A 
Bisphenol A (BPA) from polycarbonate was selected as a wastewater micropollutant in 
FA1 and FA3 since BPA has been detected in treated wastewater on a global scale in 
potentially endocrine disrupting concentrations (Press-Kristensen et al., 2007). BPA is 
an intermediate in the production of, and a residual in, polycarbonate, epoxy resins, 
flame retardants etc. BPA is manufactured in large quantities in the plastic industry, for 
the production of polycarbonates and epoxy resins. Studies have shown that BPA, when 
present in for example food packaging, can leach into the products and result in 
estrogenic activity (Birkett and Lester, 2003). BPA is reported to be easily degraded in 
WWTPs and is affected by sorption to particulate organic matter (Clara et al., 2005). 

3.1.3 Heavy metals 
Heavy metals are of particular interest in stormwater runoff and wastewater due to their 
toxicity, ubiquitous feature, and the fact that metals cannot be biologically transformed. 
The National Urban Runoff Program (NURP) conducted by the U.S. Environmental 
Protection Agency, concluded that heavy metals were the most common priority 
pollutants found in urban runoff (USEPA, 1983). The heavy metals copper (Cu), zinc 
(Zn), lead (Pb) and cadmium (Cd) are studied in FA2. 
 

3.2 Focus area 1 – Integrated modelling  
The long term goal of focus area 1 (Paper 1) is to deliver a model-based tool that can 
enhance process understanding and thereby the possibilities for optimising monitoring 
programmes and emission control strategies on an integrated scale. The objective 
comprises the description of fate and transport of micropollutants in the integrated urban 
wastewater system, from source to destination during both dry and wet weather 
conditions. An important sub-objective was also to establish an initial integrated 
modelling platform that can potentially be used as a basis for further research activities 
at DTU Environment. 
 
FA1 provides an example where models are used to improve system understanding; a 
context in which it is relevant to formulate the model detailed enough to capture the 
system behaviour qualitatively, whereas the numerical accuracy of the model outputs is 
of less importance. The work in FA1 is conducted without access to case-specific 
experimental data, but with experience from other studies and literature.  
 
Being an introductory study the following reasonably ambitious specifications were 
defined: To achieve a model capable of elucidating  
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(1) relevant phenomena influencing the fate of micropollutants in the integrated 
urban wastewater system environment and 

(2) how these phenomena are related to the pollutant origin (stormwater or 
wastewater) and the inherent chemical properties of micropollutants. 
 

3.3 Focus area 2 – Stormwater quality modelling 
The objective of focus area 2 (Papers 2, 3 and 4) is to systematically analyse the 
uncertainty related with estimating the total load of pollution (heavy metals) from a 
separate stormwater drainage system without making strong prior assumptions. Several 
computer models have been developed for analysing stormwater quality problems and if 
applied in an appropriate way, these can be used to achieve further understanding for 
predicting flow and water quality in sewer systems and receiving waters and thereby for 
decision support. The true and correct meaning of ‘appropriate’ is likely to be discussed 
by model users always, because one certain model output will never equal a unique and 
perfect solution to a practical problem. To post a statement grounded on a model output 
you will be asked about the reliability and validity of this, e.g. we have to know how 
uncertain the model is. Therefore it is relevant to define a (practical) method that can 
give quantitative information about uncertainty conditional on the available information 
(models and data). 
 
The results of this focus area are conditional on results of a parallel PhD study (Ahlman, 
2006), which included a measurement campaign conducted in the densely populated 6 ha 
Vasastaden urban catchment in the city of Göteborg, Sweden. The generated data 
include measurements of rainfall intensity, runoff flow and flow-proportional 
concentration analyses of Cu, Zn, Pb and Cd in the stormwater. The referenced parallel 
PhD study also presents a dynamic conceptual stormwater model named SEWSYS, 
which to a large degree acts as a basis for the stormwater model that is developed and 
used in FA2. 
  

3.4 Focus area 3 – WWTP modelling 
Conventional WWTPs are not designed for removing micropollutants but are known to 
remove micropollutants and to reduce the estrogenic effect of wastewater (e.g. 
Poseidon, 2005). Consequently, if urban wastewater passes through a WWTP on its’ 
way to the recipient, this compartment may constitute an important micropollutant 
barrier in the integrated system. The ability to optimize and control micropollutant 
removal in activated sludge systems depends on the understanding of the important 
processes and on how these interact with operational parameters (e.g. plant 
configuration, the hydraulic retention time (HRT), the sludge retention time (SRT)), as 
well as environmental (e.g. temperature) and compound-specific (e.g. sorption potential, 
degradability) parameters. 
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The specific objective of FA3 (Papers 5, 6 and 7) is to formulate and validate a process 
model for the removal of BPA in activated sludge systems using data from experiments 
designed to, as a first step, investigate the possible presence of specific BPA-degrading 
biomass. The focus area benefits from a parallel PhD study (Press-Kristensen, 2007), in 
which the fate of BPA in WWTPs is studied following an experimental approach. The 
experiments are performed in a pilot plant placed next to the Lynetten WWTP receiving 
a mixture of urban and industrial wastewater from Copenhagen, Denmark. The pilot 
plant configuration mimics the activated sludge system of the full scale plant and 
includes an anaerobic reactor (1.65 m3) and two aerobic/anoxic reactors (5 m3 each) 
operated according to the BioDenitro principle (see Figures 1 and 2 in Paper 6), and 
one secondary clarifier. 
 
The aim is to suggest a simple model that can easily be combined with the traditional 
growth-based activated sludge models (ASMs), which are defined in Henze et al., 
(2000). The model must include traditional wastewater variables and the physical 
characteristics of the system (volumes, flows, the concentration of mixed liquor 
suspended solids (MLSS) etc.) to be capable of describing operational parameters (e.g. 
HRT, SRT). The behaviour of BPA, e.g. model variables and the additional biological 
and physico-chemical fate processes should be included as well. 
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4 Model formulation and performance analysis  
 
In the urban wastewater system, micropollutants are affected by on the one hand 
physico-chemical processes such as sorption/desorption, volatilisation and stripping and 
on the other hand, by biological processes like biodegradation. Moreover, physical 
transport processes such as flow, sedimentation and re-suspension have a secondary 
impact on the fate of micropollutants via the physico-chemical processes. The degree of 
influence from the physico-chemical processes on the fate of a micropollutant depends 
on the inherent properties of the micropollutant in question as well as of the physical 
transport and storage processes in the particular system, which will in their turn depend 
on the configuration of the studied system, i.e. on the included compartments (type, 
dimension) and on the way they are linked.  
 
This chapter starts with Section 4.1 where a literature review and discussion on how to 
model the important physico-chemical and biological processes are given. In Section 
4.2. the equations for the various transport processes used throughout the thesis are then 
worked through. Finally in Section 4.3 the configuration of the models in the three focus 
areas are outlined. The selections of physico-chemical, biological and physical process 
models in each compartment are also discussed and motivated. In connection with the 
model formulations a number of simulations, which illustrate the proceeding of the 
model performance analysis phase are shown. 
 

4.1 Physico-chemical and biological process modelling 
For physico-chemical and biological processes in WWTPs, the ASM models prepared 
by the International Water Association (IWA) Task Group on Mathematical Modelling 
for Design and Operation of Biological Wastewater Treatment (see Henze et al., 2000) 
are the most widespread. The popularity of these, especially the activated sludge model 
no. 1 (ASM1), have also inspired the development of river and sewer water quality 
models based on the same concepts (Reichert et al., 2001; Vollertsen and Hvitved-
Jacobsen, 2000).  
 
The water quality process modelling described below follows the concept of the above-
mentioned ASM-type models. Organic material is described in chemical oxygen 
demand (COD) units. One gram particulate COD is assumed to represent 0.75 g volatile 
suspended solids (VSS). Only physico-chemical and biological process modelling of 
organic micropollutants, or xenobiotic organic compounds (XOCs), are considered in 
the thesis and therefore XOC is used as a subscript referring to a generic XOC.  

4.1.1 Sorption  
Sorption of substances in the environment may be caused by adsorption of compounds 
on the surface of particulate material or by absorption of hydrophobic compounds in the 
lipophilic cell membrane of biomass and the fat fraction of sludge (Siegrist et al., 2003). 
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Adsorption to inorganic suspended solids has not been modelled in the thesis. Normally, 
only the non-dissociated fraction of hydrophobic compounds is assumed to be affected 
by sorption. Dependent upon the total concentration of the compound under study and 
the composition and concentration of the solid material, a certain equilibrium between 
the concentration of sorbed and dissolved micropollutant will be established.  
 
A majority of previously published models for the environmental fate of 
micropollutants (and chemicals in general) assume that this equilibrium is reached 
instantaneously. The main reason for the assumption, in otherwise often dynamic 
models, is that the solid-liquid equilibrium is reached in a short time compared to the 
time scales of the competing processes. This is also the main reason for why in literature 
only solid-liquid partition coefficients (e.g. the Kd [L3·M VSS-1] value) are given; 
information about dynamics is not. Another reason is probably that an experiment 
where a dynamic process is sampled at N time-instances is approximately N times more 
expensive than a similar steady state experiment. In the literature, it has however been 
experimentally shown that the dynamics of the sorption process might influence e.g. the 
biodegradation potential of a treatment process (Wang and Grady, 1995).  
 
In this thesis it is argued that, as well as assuming instantaneous (0 minutes) 
equilibrium, it is equally well-grounded to assume a time constant of say, 5, 10 or 15 
minutes. To allow for possible slowly established equilibrium, the proposed general 
model for the solid-liquid distribution of a XOC is formulated with two reverse dynamic 
processes. Sorption is modelled as a mixed second order expression including a sorption 
rate ksor [L3·M VSS-1·T-1], the concentration of soluble XOC SXOC [M COD·L-3] and the 
concentration of volatile suspended solids XVSS [M VSS·L-3]. Desorption is assumed to 
be proportional to the concentration of sorbed XOC, XXOC [M COD·L-3] in a first order 
manner with a desorption rate kdes [T-1]. As shown in the example below (Figure 4.1, 
Equations 4.1-5), following addition of a hypothetical non-volatile XOC to a vessel 
operating in batch mode with a constant concentration of VSS, ksor/kdes will equal 
XXOC·(SXOC·VSS)-1 at equilibrium, i.e. equal the Kd value, and this insight can be used for 
calibration.  
 

(a) (b) 

    
 
Figure 4.1: (a) A hypothetical experiment where a XOC, only affected by sorption is added to a vessel 
with constant concentration of VSS. (b) Simulation of the experiment with SXOC,0=1 M COD·L-3and 
XVSS=3000 mg/l. Fast dynamics (ksor=0.25 l·mg VSS-1·d-1, kdes = 500 d-1). Slow dynamics (ksor=0.05 l·mg 
VSS-1·d-1, kdes = 100 d-1). In both cases Kd=ksor/kdes=0.5 l·g VSS-1. 
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The mass balance equation for the hypothetical experiment is  
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i.e. the equilibrium (the Kd-value) is given by the quota ksor/kdes. The dynamics can be 
assumed to be fast if no other information is available. This structure mimics the one 
applied in Jacobsen and Arvin (1996), as well as the way chemical phosphorus 
precipitation is described in ASM2d (Henze et al., 2000). 

4.1.2 Volatilisation and stripping 
Transport across the free surface of flowing water is critical to the movement of 
numerous compounds in the environment. The most rigorously investigated compound 
in this context is the transfer of oxygen from air into water, in sewer and river models a 
process referred to as reaeration. None of the model compounds (Section 3.1) of this 
thesis are significantly affected by removal to air processes and consequently these have 
not received attention in the attached papers. However, for many other micropollutants 
transport from water to air is an important fate process and therefore a short discussion 
of how it can be modelled is given below. 
 
Non-forced transport of a substance from the water phase to the gas phase is generally 
termed volatilisation. The transformation can be modelled as KLaXOC·(SXOC-CG,XOC) 
where KLaXOC [T-1] is the overall mass transfer rate and CG,XOC the bulk gas 
concentration of the XOC. Most technical and environmental systems such as ponds, 
sewers and rivers are relatively well ventilated and therefore CG,XOC is often negligible 
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and assumed to be zero. A relatively good knowledge about oxygen transfer rates in the 
sewer, the river and the WWTP can be utilised to model volatile chemicals with a 
dimensionless Henry law constant H>4·10-2, through the two-film boundary-layer 
theory (the rate at which a chemical volatilises can be correlated to the oxygen 
reaeration rate based on its diffusivity). Diffusivities for various compounds in water 
can be approximated in several ways e.g. by the Wilke and Chang method (see Bird et 
al. (2002) for a description). For slowly volatilising compounds (H<4·10-6) volatilisation 
can be neglected. In the case of moderately volatile compounds (4·10-6<H<4·10-2) both 
the liquid film and gas film influences the mass transfer (Trapp and Harland, 1995). The 
mass transfer rate related to the gas phase must then be estimated.  
 
In turbulent vessels, such as the aeration basin in activated sludge systems, the aeration 
process accounts for the majority of volatile micropollutant losses by mass transfer 
(Melcer et al., 1994). Such forced removal is usually termed stripping.  

4.1.3 Biological degradation 
Degradation converts the micropollutants into other chemical structures and can occur 
either biologically by the activity of viable biomass or by the surrounding 
chemical/physical environment, e.g. (natural) sunlight or (forced) advanced oxidation, 
abiotic degradation. For the modelled organic compounds (pyrene and bisphenol-A) and 
the considered systems possible abiotic degradation processes are assumed to not be 
relevant, and are dismissed in the thesis. Although biological degradation might occur 
everywhere in the integrated urban wastewater system (in Vollertsen and Hvitved-
Jacobsen (2000) the sewer is compared to a chemical/biological reactor), the 
forthcoming analysis is limited to consider biological degradation in WWTPs, which are 
actually designed to enhance these processes. Hence, the upcoming discussion is 
focused on biological degradation of XOCs in WWTPs.  
 
Biological degradation is a complex process, and several equations are used to describe 
it, e.g. by assuming zero order, first order, pseudo first order (also referred to as mixed 
second order) kinetics or by using various types of growth-based Monod model 
formulations. A number of different approaches for modelling biological XOC 
degradation in WWTPs found in the literature are shown in Table 4.1 and Table 4.2. 
The most simple zero- and first-order models (processes A and B) assume that, given a 
certain hydraulic retention time (reaction time), a fixed amount (in A) or a fixed fraction 
(in B) of the XOC in the influent is removed, independently of other water quality 
variables. In a zero-order reaction model, the removed amount is independent of the 
influent concentration while in the first-order case it is not. The SimpleTreat model of 
Struijs et al. (1991) assumes that XOCs are exclusively biologically degraded in the 
water phase of the aeration tank, a process that is modelled as a first order reaction with 
respect to SXOC. In an attempt to provide a generalised fate model for the fate of XOCs 
in biological treatment plants, Byrns (2001) use this type of kinetics as well. Cowan et 
al. (1993) found that the specific degradation cannot be explained by the soluble 
chemical alone. In their model (WW-TREAT) the biodegradation was therefore 
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described (Process C) with two first order reactions: (1) biodegradation of SXOC and (2) 
biodegradation of XXOC. This is the only reference of the thesis where the particulate 
XOC fraction is affected by degradation. 
 
A common feature of both the zero and first order formulations is that the organisms 
responsible for the degradation, are not explicitly modelled. The rate coefficients k0 [M 
COD·L-3·T-1] and k1 [T-1] are instead lumped parameters, which in one way or another 
assumes a constant concentration of active XOC degrading biomass, XB,XOC [M COD·L-

3], in the activated sludge. If this assumption does not hold, or if the XOC degradation is 
affected by other environmental factors as well (e.g. redox conditions, the suspended 
solids concentration or DO-levels of the aeration tanks), the extrapolation of an estimate 
of k0 or k1 from one configuration to another looses sense. On the other hand, if the 
influence of the HRT is dominant and knowledge about other factors are scarce, the 
zero or first order formulation might be a good choice and they probably also constitute 
the most commonly applied equations for reactions in environmental systems. 
 
Assuming that nutrients are present in sufficient concentrations, and that the metabolites 
from the degradation process do not inhibit the degradation, the TOXCHEM model 
(Melcer et al., 1994) describes degradation as a pseudo first order reaction proportional 
to SXOC and the concentration of volatile suspended solids (XVSS), see process D1. In a 
recent EU project about removal of pharmaceuticals (Poseidon, 2005) process D2 was 
proposed, including the concentration of total suspended solids XTSS [M·L-3] instead of 
XVSS. In Jacobsen et al. (1996) a similar reaction, but with suspended solids 
concentration replaced by the concentration of total active heterotrophic biomass, XB,H 
[M COD·L-3], was used (Process D3). In the model proposed by Govind et al. (1991), 
only the part of XB,H actually capable of degrading the XOC, XB,XOC [M COD·L-3], is 
included in the degradation equation (Process D4). They propose to estimate the active 
biomass concentration by the introduction of a yield parameter.  
 
Table 4.1. Zero, first and pseudo first order models for biological degradation of XOCs found in the 
literature. 
 

Process Removal rate [M COD M-3 T-1] Reference 
A Zero order 0k
   

B First order XOC1 Sk �
  
Struijs et al. (1991), 
Byrns (2001)  

C 
Two first 
order XOCX1,XOC1 XkSk �
�
  Cowan et al. (1993) 

D1 XOCVSS2 SXk ��
  Melcer et al. (1994) 
D2 XOCTSS2 SXk ��
  Poseidon (2005) 
D3 XOCHB,2 SXk ��
  Jacobsen et al. (1996) 
D4 

Pseudo 
first order 

XOCXOCB,2 SXk ��
  Govind et al.(1991)  
 
The pseudo first order expressions in Process D1 and D2 take into account the 
suspended solids concentration and thus distinguish between e.g. an activated sludge 



 22

reactor (high XTSS) and an aerated lagoon (low XTSS). On the other hand the removal rate 
increases linearly with the suspended solids concentration independently of the sludge 
activity (a plant operated at a very long sludge age and a resulting high but “dead” XVSS 
could be predicted to be more effective than in reality). This is solved by the 
formulation in D3 and D4 which requires estimates of actual active biomass 
concentrations. 
 
In growth based models, such as the ASM models, different biomass fractions 
responsible for different reactions are modelled explicitly as dynamic state variables. A 
“general” process model for aerobic growth of specific XOC degrading biomass is 
shown in matrix notation in Table 3. The growth rate of specific biomass with SXOC as 
substrate (Process 1) is given by the maximum specific growth rate of specific biomass 
on XOC XOC�̂  [T-1] and the half saturation constants KXOC [M COD·L-3] and KO,XOC [M 
-COD·L-3]. The ratio between the mass of formed biomass and degraded XOC is given 
by the yield YXOC. The specific biomass decay (Process 3), is characterised by the decay 
rate parameter bXOC [T-1]. Complicating things quite a lot, most bacteria can use many 
different organic compounds to satisfy their energy needs (McCarty, 2000) and it is 
logic to in a general approach assume that the specific biomass growth on “normal” 
mixed substrate as well. In Table 4.2 this is seen as Process 2, which conceptually has 
corresponding but numerically different, parameter values as process 1. 
 
Processes 1-3 were recently used by Peev et al. (2004) to model biodegradation (not 
sorption) of linear alkylbenzene sulphonates (LAS). In Jacobsen and Arvin (1996) it is 
assumed that the removal of SXOC does not result in an increase of specific biomass and 

XOC�̂  is treated as a degradation rate kbio rather than a growth rate. By replacing XOC�̂  
with kbio·YXOC in Process 1, and by replacing the 1 in matrix element (1,5) with 0, the 
matrix is identical their proposed model. Siegrist et al., (1989) noted that the specialists 
may preferably degrade other substrates than the XOC, e.g. that growth on easily 
degradable substrate might compete with degradation of their studied micropollutant, 
nitrilotriacetate (NTA). Therefore they multiply Process 1 with a switching function 
KI,XOC/( KI,XOC+SS) to switch off growth on XOC when SS is high.  
 
Table 4.2 shows a possible XOC process add-in to the ASM models, not the entire 
resulting integrated process model. If the additional processes were to be included with 
e.g. ASM1, several processes not shown would affect the SO and SS variables as well. 
This is illustrated in Figure 4.2 (left), where the XOC state variables are integrated with 
the carbonaceous components of ASM1. It can be seen that in this case the specific 
XOC degrading biomass has to compete for the “normal” active heterotrophic biomass 
XB,H [M COD L-3] of ASM1 (which cannot be seen from Table 4.2). 
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Figure 4.2 (right) shows the evolution of the XOC concentration with time following 
addition of a hypothetical non-volatile XOC at t=0 d to an aerated vessel (operating in 
batch mode) with the processes of Table 4.2 extended with the above-mentioned 
switching function of Siegrist et al. (1989). The simulation can be seen as a continuation 
of the hypothetical sorption experiment in Figure 4.1, but now with variable XVSS and 
biodegradation as well. Immediately after addition, some soluble XOC rapidly attaches 
to the initially present VSS and forms sorbed XOC (Processes 4-5). During the first day, 
readily degradable substrate (SS) is removed by aerobic growth of heterotrophs (not 
shown in the matrix) and aerobic growth of XOC degraders (Process 2). The associated 
biomass growth involves a continuation of the sorption process. At t�1.2 d, the primary 
substrate is depleted and the starving competent biomass substitutes SXOC for SS as 
substrate, and the process aerobic growth of XOC degraders with SXOC (Process 1) takes 
over. When degradation of SXOC has begun, sorbed XOC is released to solution and 
eventually degraded. 
 

  
 
Figure 4.2. (Left) Illustration of the new state variables (shaded) and their pathways while applied to 
the carbonaceous components of ASM1. (Right) A simulation showing the fate of a hypothetical non-
volatile XOC in an aerated vessel following a pulse addition at t = 0. 
 
It is worth noting that all parameters in growth based models like the one in Table 4.2 
usually cannot be determined from available experimental observations. For example, 
Siegrist et al. (1989) neglect processes 2 and 3 in their parameter estimation procedure 
and choose the inhibition constant high so that the switching function is close to 1. 
 

4.2 Flow, storage and transport modelling 

4.2.1 Flow routing 
Compared to WWTPs, where compartments with constant and completely mixed 
volumes most often can be defined, the hydraulic properties of the upstream system can 
be very complex. Two relatively simple methods to model the formation of stormwater 
flow at the catchment outlet have been applied in the thesis. They describe the following 
phenomena in a similar manner: 
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1. The rainfall is converted to so-called effective rain Peff [L·T-1] by the subtraction of 
initial loss [L] at the beginning of the rainfall. In addition to abstracting the first part 
of the rainfall, this results in a time-delay between the first recorded raindrops and 
the generated hydrograph. 
 

2. The effective rain is multiplied with the total impervious area Atot [L2] and the runoff 
coefficient �  [-]. The latter parameter is a factor taking into account that only part 
of the impervious area is directly connected to the sewer system; in this thesis it is 
not distinguished from the hydrologic reduction factor. 

 
The subsequent shaping of the hydrographs distinguishes the two methods. In the first, 
in the sequel referred to as the time-area method (e.g. Butler and Davies, 2004), a 
catchment-specific concentration time is used to model the time required for transport 
through the catchment and the resulting smoothening on the runoff hydrograph. In the 
second method, referred to as the non-linear reservoir method, the stormwater runoff Q 
[L3·T-1] is calculated as Q=Atot·K·h5/3, where K is a catchment-specific so-called 
reservoir coefficient [L3/5·T-1] and h [L] is the depth of the hypothetical reservoir, which 
is given from the following mass balance equation:  
 

 
3/5hKp

dt
dh

eff �
�� �  (4.6) 

 
The hydraulic routing effects of the sewers are not described mechanistically in the 
models above but can be conceptually included through the choice of parameter values 
(initial loss, � , K). 
 
As described below, one attempt to model part-full pipe flow in a more physical manner 
has been made. The pipes of the sewer are divided into a number of segments i, each 
being built up of n identical cylinder stretches numbered 1,.., j-1,j,j+1,..,n. The segments 
are characterised by a flow Qfull,i [L3·T-1] obtained when the pipe is flowing full, an 
inner pipe diameter di [L] and a total segment length Li [L], see Figure 4.3. The number 
of stretches within each segment will determine the degree of “plug-flow” for the 
segment. Various pipe segments can then be combined to form a network.  
 
 
 

 
Figure 4.3. Illustration of one pipe segment including notation for geometrical properties. 
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The volumetric mass balance for one pipe segment stretch is: 
 

 � �jii,j-
i

ji QQ
nLt

A
,1

,

/
1

d
d


�  (4.7)  

 
where Ai,j [L2] is the water filled cross-sectional area of stretch i,j and Qi,j-1 [L3·T-1] and 
Q i,j are the influent and effluent flow rates of stretch i,j respectively. The outflow is 
calculated according to an empirical equation originally derived by Bretting (1941): 
 

 ��
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full,

,   (4.8) 

 
where hi,j is the water level relative to the bottom of the pipe and Qfull,i is the flow rate 
when the pipe is completely full. The aim of Equation 4.8 is to take into account that in 
part-full pipes, the maximum flow velocity Q/A occurs when the pipe is slightly less 
than full. From Equation 4.7 it is seen that the wetted cross sectional area is the actual 
state variable. When this state variable changes a new effluent flow rate (given by the 
new water level height) needs to be calculated according to Equation 4.8. The wetted 
cross section area (see Figure 4.3 for notation) is correlated with the water level height 
according to the geometry of circle segments (e.g. Råde and Westergren, 1998): 
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The hydraulic modelling approach keeps track of water level height and velocity. 

4.2.2 Storage in detention structures 
Detention is in this thesis modelled as equalisation basins following the theory of a 
linear reservoir:  

 V
V
QQ ��

max

max  (4.10) 

 
where Q is the basin effluent, Qmax denotes the capacity of the downstream system unit 
and Vmax is the volume capacity. If this is exceeded, the maximum flow rate is passed on 
downstream while the remainder is discharged via a combined sewer overflow structure. 
 

 
else                        0

 and  if     

overflow

inmaxinoverflow

�
��
�

Q
QQVVQQQ

 (4.11) 

 
where Qin and Qoverflow is the influent and overflow flow rate respectively. The hydraulic 
mass balance for the detention basin becomes: 
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 overflowin QQQ
dt
dV



�  (4.12) 

 

4.2.3 Pollutant accumulation-washout 
Often, high pollutant stormwater runoff concentrations are seen in the beginning of rain 
events, a fact that is thought to depend on flushing of pollutants accumulated in the 
system during preceding dry weather periods. This feature influence e.g. how a 
monitoring program is designed optimally (when do we measure?) and subsequently 
how a mitigation strategy is implemented (type of treatment and location?). In this 
thesis two types of pollutant accumulation-washout processes are considered. 
 
The model for sediment storage and depletion was originally formulated as part of the 
dynamic influent data generation model of Gernaey et al., (2005, 2006) as a “first flush 
effect generation model block”. It is a good example of a highly conceptual model 
(actually, the level of conceptualisation is so extreme that it is referred to as 
�phenomenological’ in the cited reference). A constant user-defined fraction iTSS [-] of 
the influent TSS is assumed to settle and deposit by sedimentation during dry weather to 
form deposited solids Msed [M], which are re-suspended during periods of increased 
flow: 
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 (4.13) 

 
The general notation �i is here used to compartmentalise the i=1,…,4 conceptual model 
parameters. In the first term on the right hand side �1 [M] is interpreted as the maximum 
amount of solids that can deposit in the sewer. �2 [-] and �3 [L3/T] are parameters used to 
shape a hill-shaped function, which determines at what flow, and how sudden, re-
suspension is activated. �4 [-] is similarly to �2 a dimensionless parameter used to tune 
the strength of the first flush. In a more mechanistic formulation of the phenomena in 
Equation 4.13 the parameters would be variables dependent on e.g. physical properties 
such as sewer system dimension, slope and roughness etc.  
 
The intention of the surface accumulation-washout model is to represent the building up 
of various pollutants on the impervious surfaces (e.g. roofs, roads) of the catchment. 
Pollutants are accumulated in dry periods and washed off during rainfall, processes 
described with classical build-up and washout functions (Overton and Meadows, 1976):  
 

 � � surfeff321tot
surf MpA

dt
dM

���
�� ���  (4.14)  

  
where Msurf [M] is the stored pollutant on the surfaces and �i i=1,2,3 represent 
parameters depending on compound- and catchment-specific properties; the dry 
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deposition load �1 [M·T-1·L-2] (representing different sources of pollution e.g. traffic 
activities, surface corrosion and atmospheric deposition), the rate coefficient for 
pollutant dry removal �2 [T-1] (representing removal by wind and other means) and 
finally the rate constant for wet removal by wash-off �3 [L-1]. 
 
Note the similarities between the sediment storage model above and the accumulation 
washout model: Instead of the Hill function switching depletion on when the flow is 
high, the surface model assumes that wash-off is first order with regard to the effective 
rainfall, else they are similar in structure: �1 corresponds to iTSS·Q·TSS/Atot, �2 to 
iTSS·Q·TSS/�1 and �3 to �4. 
 

4.3 Model configuration building and process selection 

4.3.1 The integrated model 
Every urban catchment, sewer system and WWTP are unique and show different 
behaviour. Therefore it is difficult to define a “general” or “global” integrated model. 
Many integrated urban wastewater systems however encounter the same type of 
problems, which could be studied with the help of benchmarking a model that is capable 
of capturing these. 
 
The chosen layout of the integrated combined urban wastewater system is inspired by 
the Harrestrup river catchment located in the south-western part of the city of 
Copenhagen, which is used as physical system in the DTU Environment course 
“Integrated Urban Water Quality Management” (Grum et al., 2000). The model of the 
combined integrated wastewater system (Figure 4.4) is composed of models of the 
following sub-systems: an urban catchment, two equalisation basins with associated 
overflows, a trunk sewer, and a WWTP.  
 

 
 
Figure 4.4. The simulated integrated urban wastewater system of focus area 1 with stream notation. CSO: 
combined sewer overflow, EFF: effluent, PES: primary excess sludge, SES: secondary excess sludge. 
From Paper 1. 
 
Although a very simple representation of an integrated system, it was developed so that 
it can be used to elucidate integrated scale problems often seen and reported in the 
literature e.g.: (1) induced re-suspension during wet weather, which increases the 
pollutant load on the downstream system, (2) overflow from basin structures, which 
involves that urban wastewater is discharged to the recipient without treatment and (3) 
effects of operational conditions on the WWTP performance.  
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Rain falling on the urban catchment is converted to stormwater through the time-area 
method (Section 4.2). Typical daily concentrations and flow profiles of wastewater from 
households and industry are created according to the influent wastewater generation 
model of Gernaey et al. (2005, 2006), here slightly extended to generate the original 13 
ASM1 component concentrations as well as the 3 additional XOC specific components 
SXOC, XXOC and XB,XOC as defined in Table 4.2. It is assumed that the total concentrations 
of pyrene in stormwater and BPA in wastewater are constant and that sorption 
equilibrium with the dynamic suspended solids concentration is established at 
generation. BPA, which partly is attached to the suspended solids of the wastewater 
settle during dry weather and re-suspend during increased flow according to Equation 
4.13, in the hypothetical sediment storage tank, which is placed at the outlet of the 
catchment. The generated runoff and possibly depleted sediments are then routed 
through the trunk sewer model (Section 4.2.1). The associated retention and 
smoothening of the runoff profile depends upon the dimensions of the trunk sewer and 
make possible for the modeller to study possible un-equally distributed overflows of the 
two surrounding equalisation basins, which are defined by Equations 4.10-4.12 (Section 
4.2.2). A series of five activated sludge reactors followed by a secondary settling tank, 
according to the Benchmark Simulation No. 1 (BSM1) system description developed 
within the European COST action 624 collaboration (see Copp, 2002), is used to 
simulate a common WWTP configuration, a continuous activated sludge system with 
internal recirculation designed for COD and nitrogen removal. The implemented 
primary clarifier model is described in Jeppsson et al. (2006).  
 
Processes 1-5 in Table 4.2 are used to model the physico-chemical and biological 
processes of the two XOCs. Sorption and desorption (Processes 4-5) is assumed to 
occur in the entire system and for both compounds. This is required to simulate removal 
with the primary and secondary excess sludge streams as well as the accumulation in the 
catchment during dry weather and it is also practical in the view of possible future work, 
which could include separate models for transport of soluble and particulate material in 
the equalisation basins and trunk sewer. Biodegradation by specific BPA degrading 
biomass is only considered in the WWTP where Processes 1-3 are integrated with the 
BSM1 default ASM1 process model. Only BPA is affected by biodegradation. 
Volatilisation is not considered since this process is not relevant for the case-study 
compounds.  
 
It is clear from the specification in Chapter 3 that the aim of FA1 is not to produce exact 
numerical numbers of the mass-flows, but rather to elucidate important phenomena, and 
the selection of the type of physically interpretable but conceptual sub-model 
formulations are thus motivated. The equalisation basin model is formulated both to be 
simple and to be general. Settling is not described and no distinctions are made between 
dissolved and suspended components (this would require the definition of a specific 
basin geometry, location of weirs etc). The reasons for formulating the seemingly 
complex trunk sewer model are found by again having a glance at the original problem 
specification. The perspective is to provide a general simulation tool for micropollutants 
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in the integrated system, many micropollutants are volatile and (models for) this process 
depends on the flow velocity and air/water contact area. Thus, the model needs to 
describe these variables as a function of time.  
 
In general, the parameter values of the case study in Paper 1, although believed to be 
realistic, have been chosen subjectively. For example the growth and decay rates of the 
specific biomass are chosen to equal the ones of autotrophic biomass in ASM1. The 
influent concentration of XB,XOC are manipulated to adjust the steady state removal by 
biodegradation. These assumptions result in a model where the WWTP remove 
approximately 70% of the BPA by biodegradation as well as one that is sensitive to the 
sludge age, a fact that is supported by literature (Clara et al., 2005). Models like this, 
developed for enhancing process understanding, can support a statement like “why do 
we find the typical stormwater pollutant pyrene in a wastewater treatment plant also 
after long periods of dry weather conditions?”, whereas the results can not be used 
directly for engineering design (e.g. dimensioning).  
 
Figure 4.5 shows the total mass of pyrene in the WWTP following the simulated storm 
event (12 mm during 5 h) of Paper 1. Initially it is zero since the wastewater is assumed 
not to contain pyrene. When the stormwater reaches the WWTP, pyrene attaches to the 
activated sludge since pyrene has a high Kd value and as it is not easily degraded it stays 
in the WWTP during several sludge ages. The diurnal variation is an effect of the 
suspended solids concentration dynamics caused by the dynamic influent generation 
model. The highly different time constants of the integrated system here become clear. 
Although the studied rain event lasts for only a couple of hours, the stormwater 
pollutant is found in the biological reactors of the WWTP during 3-4 weeks.  
 

 
 
Figure 4.5. Accumulated mass of pyrene in the WWTP (from Paper 1). 
 
Figure 4.6 (top left) shows how the stored sediments are resuspended during the high 
flow rate induced by the rain event. The increased contribution of stormwater in the 
runoff involves a dilution of the BPA concentration (Figure 4.6, bottom left), with the 
exception of the peak caused by the first flush. Despite the general dilution, the first 
flush phenomenon results in an increased load of BPA in the WWTP effluent (Figure 
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4.6, right). The wastewater generation model is the reason for the (on a daily scale) 
dynamic BPA mass flow profile. 
 
Due to the detention implemented in the model through the trunk sewer model the two 
equalisation basins overflow at different times. In the specific case of Paper 1 
equalisation basin 1 happen to overflow when BPA concentrations are high and the 
BPA overflow load is thus higher here. This exemplifies that the developed model takes 
into account effects like the distribution of overflow pollutant loads depending on the 
dynamics of the pollutant mass routing process and location of CSO structures in the 
system.  
 

     
 

Figure 4.6. Top left: Resuspension of stored suspended solids due to the increased flow rate of the rain 
event. Bottom left: Concentration of total BPA in the sewer trunk. Right: Mass flow of BPA from the 
WWTP. From Paper 1. 
 

4.3.2 The stormwater quality model 
The starting point for the model used in FA2 is the SEWSYS model of Ahlman (2006). 
SEWSYS is a conceptual stormwater model developed for simulations of substance 
flows in urban drainage systems. It was developed with the objective of being a tool for 
testing various source control options by scenario analysis and for summarizing 
knowledge about the distribution of surfaces as pollution sources within a catchment. 
Rain is converted to stormwater through the non-linear reservoir hypothesis shown in 
Equation 4.6. Pollutants are accumulated on and washed out from three different types 
of surfaces: roofs, roads and other impervious areas, according to the accumulation-
washout process model shown in Equation 4.14. In SEWSYS each modelled substance 
is linked to different source parameters which are combined with catchment specific 
attribute data to give emission factors, a feature which is however not used in this thesis. 
Summed up these contribute to the build up of pollutants, which are washed off and 
mixed with the stormwater during rain.  
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Combining Equations 4.6 and 4.14 gives the model shown in Figure 4.7, where the 
stormwater concentration C [M·L-3] has been obtained by assuming complete mix of the 
rain and the washout pollution: 
 

 � �  
dt
dVC

dt
dCV

dt
CVd

����
�  (4.15) 

 
and dV/dt is given from Equation 4.6: 
 

 � �� �CCAM
Ah

p
dt
dC

rainSurf
tot

eff 
�����
�

� ��3  (4.16) 

 
All parameters and variables in Equation 4.16 except the rainwater concentration Crain 
[M·L-3] have been defined above.  
 

 
 
Figure 4.7. The conceptual stormwater rainfall-runoff and accumulation-washout model. From Paper 3. 
 
Figure 4.8 shows the performance of the applied stormwater model. The rain (5 events 
in 4 days) and runoff are shown in the upper panel (left and right). In the lower panel 
(left) the variable mass of stored pollutant on the surface is shown whereas the right plot 
shows the stormwater pollutant concentration. As will be further discussed in Chapter 6, 
neither of these two state variables (Msurf and C) are directly observed. 
 
It must be mentioned that although the stormwater model used in this thesis was 
implemented by the author, it was not developed as a part of this thesis. There are many 
proposed urban stormwater quality models in the literature (Elliot and Trowsdale, 2007) 
and it is not evident that the use of a conceptual process-based model is the best choice 
for load estimation. Vaze and Chiew (2003) for example conclude that if only estimates 
of event loads are of interest, regression models should be used because they are simpler 
and require less data compared to process-based models. However, dynamic models are 
needed to study e.g. the implications of first flush phenomena on the removal processes 
in stormwater treatment systems such as ponds.  
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Figure 4.8. A 4 day simulation with the stormwater quality model used in focus area 2. Effective rainfall 
(top left), stored pollutant on the surfaces (bottom left), stormwater runoff (top right) and stormwater 
concentration (bottom right).   
 

4.3.3 The Lynetten WWTP model 
In contrast to the recirculating WWTP configuration modelled in FA1, the WWTP 
model of FA3 was formulated based on experiments conducted at a plant equipped with 
the more specific Bio-Denitro configuration (Henze et al., 2002). In this, the internal 
recirculation is replaced by controlling the aeration and flow directions in an alternating 
manner. Figure 4.9 shows a simulation of typical concentration profiles in the process.  
 
The model configuration (Figure 4.10) follows the layout of the physical plant where 
pre-settled wastewater enters the biological treatment with 3 completely mixed activated 
sludge reactors (1 anaerobic, 2 aerobic/anoxic) and 1 secondary settler modelled with 
the Takács 10-layer model (Takács at al., 1991). ASM1 was chosen as a basis for the 
process model and calibrated to fit online measurements of suspended solids, ammonia, 
nitrate and phosphate in the two aeration tanks. The calibration was conducted 
“heuristically”, mainly through the fractionation of the influent wastewater into ASM1 
concentrations. 
 

 
Figure 4.9. Alternating concentration profiles in one of the aerobic/anoxic reactors of the Bio-Denitro 
process.  
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Figure 4.10. A SIMULINK screen print of the Lynetten WWTP model. Dimensions and typical flow 
rates are shown in Paper 5 (Figure 1). 
 
The proposed add-in to ASM1 includes 3 additional components (2,3,4) and 4 
additional processes (1,3,4,5) as defined in Table 4.2. The process model is thus similar 
in structure to the one of the integrated model. The reason for dismissing process 2 in 
FA3 is that the experimental data is believed not to be sufficient for establishing growth 
of specific biomass on natural substrate. This is further discussed in Chapter 5. 
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5 Parameter estimation of the BPA biodegradation 
model 

 
In this chapter it is discussed how experimental data collected at the Lynetten pilot-scale 
WWTP are used together with the hypothesised WWTP model (Section 4.3.3) to 
estimate a number of biodegradation model parameters and to establish the presence of 
a separate BPA degrading microorganism. 
 

5.1 Description of experimental data 
For analysis four groups of data from various experimental occasions are exhaustively 
considered:  
 
1. Background: No active experiment was conducted. Data consists of influent and 

effluent samples collected during normal operation and analysed for total BPA 
concentration.  

 
2. Dosage 1: The influent wastewater (15 °C) was spiked with 10 g BPA/d during 46 

days, which corresponded to a total influent concentration of 842 μg/l. Data consists 
of effluent grab samples analysed for total BPA concentration. 

 
3. Dosage 2: The influent wastewater (20 °C) was spiked with 10 g BPA/d during 34 

days, which corresponded to an influent concentration of 1009 μg/l. The experiment 
had been preceded by dosage of 1 g BPA/d during 60 days, corresponding to a total 
influent BPA concentration of 109 μg/l. The data set consists of grab- and flow-
proportional effluent samples analysed for total BPA concentration. 

 
4. Operational: The plant was first operated normally (50% aeration time), which was 

followed by a change in the operational settings (70% aeration time). The data set 
consists of influent and effluent samples from both periods (Paper 6). The samples 
were analysed for total BPA concentration.  

 
The Background data set shows that during normal operating conditions, the total 
concentration of BPA is lowered from 9 μg/l in the influent to 4 μg BPA/l in the 
effluent (Paper 5). In the same paper it is also shown that this removal probably is 
caused by biodegradation under aerobic conditions.  
 
The two data sets Background 1 and Background 2 are plotted in Figures 5.1-5.2. Figure 
5.1 shows that the measured effluent BPA concentration converges towards the influent 
concentration (833 μg BPA/l) after approximately 5 days. The subsequent BPA removal 
increased during 40 days until the measured effluent concentrations were at the same 
level as during the Background experiment.  
 



 

 
 
36

5.2 Model simplification and preparation for calibration 
The hypothesised process model, which is shown in Table 4.2, is the most simple 
explanation for the observed behaviour. To facilitate the calibration procedure, a 
number of model simplifications were done: 
 
� The Bio-Denitro configuration was mathematically simplified to a chemostat. 
� Immediate sorption equilibrium was assumed. 
� The maximum specific growth rate of specific biomass on “natural” substrate was 

assumed to be zero, thus this process was neglected (process 2 in Table 4.2). 
� The numerical values of the decay rate (bXOC) and yield (YXOC) were assumed and 

not included in the calibration. 
 
Motivations for these simplifications can be found in Paper 7. Note that replacing the 
Takács settler model with a perfect settler model (chemostat) do not imply that we say 
that e.g. secondary settling should never be modelled or that the replacement of the two 
alternating Lynetten tanks with a single tank assumes that a BioDenitro plant behaves 
similar to a standard recycling plant. The simplifications are for this specific case and 
the available data, where they do not seem to have a significant effect on the estimation 
of the selected model parameters.  
 

5.3 Calibration procedure 
The data from the Background and Dosage 1 experiments were used for calibration of 
the parameters of the hypothesised BPA degradation model. The Dosage 2 data were 
subsequently used for model validation.  
 
Regarding the sorption parameters kdes=1000 d-1 and ksor=0.5 l mg VSS-1·d-1, which 
correspond to a Kd of 0.5 l· g VSS-1, were used. These values are in accordance with the 
data (during the first 5 days in Figure 5.1, biological growth has not started and 
sorption/desorption is the only active process) and with values reported in literature. In 
principle, this choice of sorption parameters affects the subsequent estimation of 
biodegradation parameters but in the case of BPA sorption is not very important: 
although the highest Kd value found in literature is selected (1 l·g SS-1, Clara et al., 
2004), less than 7% of the influent BPA load is removed via sorption.          
 
The calibration protocol developed and shown in Paper 7 suggests a method to give the 
parameters XOC!̂ , KXOC and 0

XOCB,X (the initial concentration of specific XOC degrading 
biomass) numerical values. In short, the developed estimation method proceeds as 
follows: Starting from steady state, a dynamic simulation mimicking the Dosage 1 
experiment is performed. An optimisation algorithm (fmincon in Matlab) is used to find 
the value of XOC!̂  that minimises the sum of squared errors (Equation 2.4) between 
simulated and measured effluent BPA concentrations. KXOC is constrained by being 
replaced with a function depending on XOC!̂  and the effluent steady state BPA 
concentration. The initial steady state specific biomass concentration is constrained by 



 

 
 
37

being replaced with a function depending on XOC!̂  and the influent and effluent BPA 
concentration. This is to allow for including information from the Background 
experiment in the dynamic estimation. 
 
Following the methodology, two attempts (i) and (ii) to estimate the parameters are 
done. The results of these are shown in Figure 5.1 below. In (i) the steady state removal 
is respected, while in (ii) this is only partially true. The steady state effluent 
concentration is indeed respected but instead of calculating the initial biomass 
concentration from the steady state removal, it is in case (ii) estimated together with 

XOC!̂  from the step-response data. 
 

5.4 Results 
The simulated effluent BPA concentrations shows a reasonable fit to the experimental 
concentration data for both estimations. The steeper slope of the simulation in (i) 
compared to the data depends on the initial low concentration of specific biomass which 
requires a high estimate of XOC!̂  to simulate the time required to reach a new steady 
state effluent. In estimation (ii) an improvement of the fit is obtained by estimating the 
initial biomass concentration as well. Note however that the results of (ii) are not in 
accordance with the hypothesized model and experimental observations. A 10 times 
higher influent BPA concentration would be required to cultivate the high estimate of 
initial specific biomass. Attempt (ii) should here thus be seen as a guide for future 
model development, where a plausible new hypothesis could be that part of the 
“normal” heterotrophs are capable of metabolising BPA as well. 
 
 

 
 
Figure 5.1. Calibration of the BPA model based on the Background and Dosage 1 experiments (from 
Paper 7). Dots: Measured effluent BPA concentrations. Dashed line: Estimation (i). Solid line: 
Estimation (ii). 
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For validation (see Paper 7 for details), the estimates from (i) are used in a simulation 
of the Dosage 2 experiment (Figure 5.2). Compared to the calibration scenario, this 
validation scenario is identical with regards to inputs (step increase in influent BPA 
load). However, the initial state of the process is expected to be different (Dosage 2 was 
preceded by an additional dosage period whereas Dosage 1 was conducted with “fresh” 
sludge) and the operational and environmental conditions are significantly different. In 
summary one can say that the calibrated model is exposed to a difficult validation 
scenario, especially regarding the varying temperatures. Temperature is well known to 
have a high influence on the rate parameters of biological degradation models and the 
correction factors used to describe it could not be calibrated before validation.  

 
The validation shown in Figure 5.2 does not give a perfect fit but the model predicts the 
correct general structure of the data. The results show that biodegradation of BPA is 
sensitive to operational conditions before and during the experiment and that the 
proposed model structure is capable of capturing important characteristics of the 
observed BPA removal. 
 

 
Figure 5.2 Evaluation of BPA model by simulating the Dosage 2 experiment (from Paper 7). Dots: 
Measured effluent BPA concentrations. Solid line: No preceding BPA dosage. Temperature corrections 
according to XB,H of ASM1. Dashed line: Temperature corrections according to the heterotrophs (XB,H) of 
ASM1. Dotted line: Temperature corrections according to the autotrophs (XB,A) of ASM1. Dashed-dotted 
line: Fitted temperature corrections. For details, see Paper 7. 
 
For application of the proposed model and parameter estimates to natural wastewater 
environments, with low BPA concentrations, the results must be extrapolated. It should 
then be considered that the BPA concentrations during the dosage experiment were 
significantly higher than during normal WWTP operation and that some parameter 
values have been assumed fixed in the calibration.  
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6 Uncertainty-based calibration of the accumulation-
washout model 

 
In this chapter it is discussed how experimental data (rain intensities, stormwater flow 
and concentrations) from a sampling campaign are used together with a model (the 
SEWSYS model, Section 4.3.2) to estimate the uncertainty related with model 
predictions of stormwater pollutant loads. The chapter is based on Papers 2, 3 and 4. 
 

6.1 Description of experimental data 
For the total period of the sampling campaign (five weeks), there are continuous (1-
minute resolution) measurements of the stormwater flow, yQ [L3·T-1], at the catchment 
outlet as well as (1-minute resolution) rain intensity measurements. The rain intensity 
measurements had been averaged to 5-minute resolution data before they were used as a 
model input in this thesis. For 13 of the in total 18 identified rain events, 57 flow 
proportional samples were collected during the sampling intervals tk, k=1,2,...,57, 
having typical durations of 20-80 minutes. The samples were analysed for Zn, Cu, Pb 
and Cd concentrations. These measurements are denoted yC,k [M·L-3]. In Figure 6.1 the 
characteristics and notation of the available experimental data for event #3 are shown. 
The coloured areas in the upper panel (light and dark grey) represent the, for this event, 
14 sampled stormwater volumes. The entire event was not sampled, which is seen as the 
non-coloured area during the last hour of the event. In the following the event volumes 
are therefore sometimes referred to as the “partial” sampled event volume etc.    
 
 

 

 
 

Figure 6.1. Available data and main model outputs exemplified for event #3. Upper panel: Recorded 
stormwater flow (yQ, solid line), sampled stormwater volumes (light and dark grey coloured areas) and 
simulated stormwater flow (Q, dashed line). Lower panel: 5 simulations of the stormwater concentration 
(C, grey lines) for various values of parameters � and flow proportional concentration measurements 
collected during the time periods tk (yC, horizontal lines). From Paper 4. 
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Table 6.1 shows a summary of the experimental results for each of the j =1,2,...,18 
events. Furthest to the left the event id:s with associated number of sub-samples in 
parenthesis are shown. The event durations (tj) and volumes (Vj), including the 
percentage of actually sampled volumes in parenthesis, are listed to the right. The 
antecedent dry weather periods (tdry) and maximum rain intensities with a 5-minute 
resolution (P5) for each event are given as well. The event mean concentrations (EMCs) 
shown furthest to the right have been calculated as flow-weighted averages of the 
concentration measurements within each event. Because the entire events were not 
sampled, they represent “partial” event mean concentrations. At the bottom, the 
observed “partial” site mean concentrations (SMCs) are shown. These have been 
calculated as flow weighted averages of all 57 samples.  
 
Table 6.1. A summary of the experimental data on an event-basis. See the text and Ahlman (2006) for 
details. *The shown EMCs have been estimated based on partly sampled event volumes. From Paper 4. 
 

EMC* [�g·l-1] 
Event j    tj [h]     Vj [m3]            tdry [d] P5 [mm·h-1] 

Zn Cu Pb Cd 
1 (-)  13.1  145 (-)  -  2.5  - - - - 
2 (-)  2.6  11 (-)  1.1  0.8  - - - - 
3 (14)  6.4  351 (96%)  0.6  8.2  343 254 23.4 0.40 
4 (3)  7.5  108 (88%)  0.3  4.1  370 258 16.0 0.43 
5 (-)  6.7  30 (-)  0.8  0.8  - - - - 
6 (6)  3.1  159 (85%)  0.2  4.1  292 181 9.9 0.33 
7 (2)  1.1  35 (77%)  0.4  3.3  288 219 10.5 0.28 
8 (1)  3.5  58 (81%)  6.9  9.9  752 887 103.2 1.01 
9 (1)  2.5  28 (72%)  0.6  3.3  1050 600 35.5 1.72 
10 (1)  1.5  40 (61%)  2.8  5.8  951 736 44.4 1.66 
11 (3)  3.0  85 (86%)  2.2  6.6  798 334 23.2 1.01 
12 (3)  3.4  72 (94%)  1.7  2.5  619 344 11.3 0.67 
13 (2)  1.3  21 (83%)  3.6  1.6  1436 632 17.1 1.71 
14 (8)  7.9  195 (85%)  4.4  4.1  688 345 18.3 0.85 
15 (2)  2.3  40 (82%)  0.6  3.3  428 233 8.8 0.82 
16 (11)  14.9  420 (55%)  1.4  4.1  294 169 4.9 0.37 
17 (-)  4.4  75 (-)  1.3  1.6  - - - - 
18 (-)  15.7  295 (-)  0.4  3.3  - - - - 
                SMC*  470 295 19.5 0.59 

 

6.2 Model reformulation and preparation for uncertainty 
analysis 

To facilitate the calibration and uncertainty analysis of SEWSYS the original model (cf. 
section 4.3.2) was slightly reformulated and simplified. The two main assumptions, 
which are done in both Papers 2,3 and 4 are summarised below and further motivated 
in Paper 4. 
 
1. After calibration against the observed stormwater event volumes, the hydrological 

parameters K, �  and LOSS were kept fixed. The pollutant concentrations of the 
pure rain water (Crain) were assumed fixed as well.  
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The basic assumption here is that for pollutant load modelling the accumulation-
washout process is significantly more uncertain than the rainfall-runoff process. Results 
of a sensitivity analysis also showed that simulation of the SMC is not sensitive to the 
hydrological sub-model. With the calibrated parameters (K=0.4, � =0.62 and 
LOSS=0.36 mm) the hydrological model moreover simulate the observed event volumes 
well.  
 
2. No attempts to model the origins of the four heavy metals were done. The various 

surfaces (roofs, roads, etc) of SEWSYS were combined to one total impervious area 
Atot and the included emission factors were lumped into one dry deposition load 
parameter �1 [M·T-1·L-2] representing several sources of pollution (e.g. traffic 
activities and surface corrosion), depositing pollutants uniformly on Atot.  

 
The motivation for this simplification is that the model assumes uniform rainfall and no 
spatial dimensions, and because samples were collected at the catchment outlet only. 
The emission factors can thus not be identified from the results of the sampling 
campaign. The model reformulation is an action aimed at reducing the problem of 
equifinality, a concept which was introduced in Section 2.3.4. Various sets of e.g. “the 
emission factor for Cu surface corrosion” and “the emission factor for Cu in brake 
wear” give identical Cu loads in the catchment outlet.  
  
An important outcome of the reformulation and simplification is that the dry deposition 
load �1, the rate coefficient for pollutant dry removal (�2) and finally the rate constant 
for wet removal by wash-off (�3) alone are used to describe the uncertainty related with 
pollutant load modelling. In the sequel of the chapter, � refers to the random 
accumulation-washout parameter vector �=(�1 �2 �3) of Equations 4.14 and 4.16; all 
other model parameters and input data are considered to be fixed. 
 

6.3 Specification of the prior parameter distribution  
For now it is sufficient to note that uniform uncorrelated prior parameter distributions 
have consistently been used for �1, �2 and �3. This is the common choice in the case of 
limited prior knowledge. The upper and lower limits (the ranges) for the distributions 
vary slightly between Papers 2, 3 and 4. This reflects that the prior used in Paper 3 
unavoidably is affected by the results of Paper 2 and that, in the same manner, the prior 
of Paper 4 depends on the results from both Paper 2 and Paper 3. The applied prior 
ranges are motivated in the running text below and are finally summarised in Table 6.2. 
 

6.4 Specification of the likelihood function  
To specify the likelihood function two questions have been considered. The first is 
related to how to compare the “goodness” of various parameter sets e.g. how to grade 
simulations m(�) as compared to experimental data y. The second question is related to 
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the information content of the available observed data and to what model output 
variable that should be evaluated.  

6.4.1 Structure of the likelihood function 
While the chosen “flat” structure of the prior parameter distribution is quite obvious, 
there are numerous available likelihood functions proposed in literature (see Beven and 
Freer, 2001) and the choice is subjective. Often the model errors are assumed to be 
independent and normally distributed. This was done in Kanso et al. (2005) where 
suspended solid concentrations in stormwater runoff with a model similar to the one 
presented here were studied. In Freni et al. (2008) the (also frequently applied) Nash 
and Sutcliffe efficiency criterion was used to analyse the model predictive uncertainty 
of maximum peak flow, flow volume, maximum peak BOD concentration, BOD load 
and maximum oxygen depletion in a down-stream river cross-section. It has been shown 
(perhaps not surprisingly) in the literature that the selection of likelihood function 
influence the results of the uncertainty analysis. Some of the proposed likelihood 
measures do not let the modeller control the extent with which the observations are 
covered by the simulations, an issue treated systematically in this thesis as explained in 
section 2.3.4. However, the choice is only one of several subjective choices that have to 
be made and in this thesis the following likelihood function has consistently been 
applied: 
 
 � � � �� �TySSEyL /,exp| �� 
�  (6.1) 
 
Here, exp denotes the exponential function and SSE is the sum of squared errors, as 
defined in Equation 2.4. The parameter set minimising the sum of squared errors is 
given the highest likelihood while the decrease in likelihood due to larger errors will 
depend on the value of the scaling factor T. This is further discussed in Section 6.5.1. 

6.4.2 Model output variables 
The experiments were designed to provide information about the pollution load and the 
available concentration measurements yC,k do not say anything about the pollutant 
behaviour within the sample periods, thus they cannot directly be compared with the 
continuous simulation C(t) of Equation 4.16. The basic model output variable of interest 
for all three papers of FA2 is the 57 simulated individual intra-event sample masses 
mM,k [M]: 
 
 � � � �" ��

kt
k ttQtCm d ,M  (6.2) 

 
which are to be compared with the corresponding observed intra-event sample mass yM,k 
[M]: 
 
 tyyy

kt
kk d Q,C,M "��  (6.3) 
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The sample masses were combined in various ways in the three papers. This is shown 
and motivated below. 
 
In Paper 2, the model was calibrated by inserting the observed individual sample 
masses yM,k [M] in the objective function: 
 

 � � � �	
�
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In Paper 3, the cumulative sum of the observed masses was instead used: 
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In Paper 4, the masses were evaluated on an event basis.  
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From Equation 6.2 it is clear that the prediction of these sampled intra-event volumes 
have an impact on the prediction of the sampled mass. As the hydrological model 
parameters are kept fixed the predicted intra-event volumes depend only on the time 
series input data, i.e. the effective rain. This data is also fixed within each study but 
differ slightly in Papers 2, 3 and 4. In Papers 2 and 3 the effective rain data were 
obtained from calibration of a continuous time initial loss model proposed by Vezzaro 
(2006). In Paper 4, the following (default in SEWSYS) relationship between rainfall 
and runoff was used to estimate the hydrological parameters LOSS and � :  
 
 � � � �  0       , #

�� LOSSRAINLOSSRAINRUNOFF jjj �   (6.7) 
 
where RUNOFFj denotes the measured stormwater runoff volume [L] for event j and 
RAINj [L] the corresponding rain volume. Both time series provides good estimates of 
the total stormwater event volumes. However, the one of Paper 4 (see Figure 5 in this 
paper) shows quite bad performance considering prediction of the sampled intra-event 
volumes. This is the main reason for why in Paper 4, the 13 partial event masses are 
considered in the likelihood function whereas in Paper 2, the analysed model outputs 
are the 57 individually sampled copper masses. 
 
Consider for example the first sample of event #3 (Figure 6.1, upper panel). The 
observed sample volume is 10 m3 and the measured concentration of Zn in the sample is 
1100 �g·l-1, which corresponds to a mass of 11 g Zn in the runoff. Although the 
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hydrological model simulates the total event volume well (351 m3), the predicted 
volume of the considered individual sample is far too low (1.4 m3). This involves that, 
to predict the observed mass, the three accumulation-washout parameters must be 
chosen to give an average concentration of around 8 mg·l-1, i.e. a significantly higher 
concentration compared to the measured one. The consequence of such a procedure is 
that the uncertainty in predicting the hydrograph is projected on the accumulation-
washout parameters. The main reason for calibrating against the sampled event masses 
in Paper 4, is to reduce this type of effect. 
 
In Paper 3, the cumulative sum of the sampled masses is studied. The reason for this 
“inconsistency” lies in the framework of the CTSM parameter estimation tool where 
you by default calibrate against a discrete “grab sample” and not a discrete “time-
averaged sample”. 
 

6.5 Application 
The stormwater flow and loads of copper were simulated in all three papers, whereas in 
Paper 4 the loads of zinc, lead and cadmium were simulated as well.  
 
With the chosen uniform prior distribution and structure of the likelihood function 
(Equation 6.1), Equation 2.7 states the following for the posterior parameter 
distribution: 
 
 � � � �� �TySSEyg /,exp| �� 
$  (6.8) 
 
This resulting expression of the model parameter uncertainty has previously been used 
by Mailhot et al. (1997) to investigate the uncertainty related to stormwater quality 
model calibration (using artificial data). 
 
Two different methods for approximating the posterior parameter distribution are used 
in the thesis: importance sampling and the metropolis algorithm. In Paper 2 and 3 
importance sampling (e.g. Robert and Casella, 2004) was used. In Paper 4 the 
metropolis algorithm (Metropolis, 1953) was used. In Paper 2 a specific metropolis 
algorithm named SCEM-UA (Vrugt et al., 2003), was applied and compared with the 
importance sampling methodology. A description of the theories behind these is behind 
the scope of this summary. Importance sampling is briefly introduced in Paper 2 while 
the basic ideas of the metropolis algorithm are given in Paper 4. For more dense 
descriptions one can refer to statistical literature such as Robert and Casella (2004) and 
Tanner (1996). Although a few comments are made below, the idea of this thesis has 
not been to grade the two methods against each other. They are simply two alternative 
simulation-based ways of coping with Equations 2.8 and 2.9.  

6.5.1 Deciding when the uncertainty is adequately described 
The parameter T in Equation 6.8 can be seen as a scaling factor whose value depends 
upon the confidence the modeller has on measurements compared to the model. A small 
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value of T will result in narrow posterior distribution prediction bounds while a larger 
value will widen the posterior and the uncertainty bounds. To exemplify this, consider 
the following Metropolis algorithm iteration (as it is implemented in Paper 4): 
 
You have drawn a parameter set � �1�  and propose a second set � � � � %�� �� 1* , where � is 
a normally distributed (symmetric) multivariate with mean 0 and spread defined by the 
covariance matrix � and a scaling factor s, �~N(0,s·�). The proposal is accepted with 
the acceptance probability �:  
 

 � � � �� � � �� �
� �� �

� �� � � �� �
� �� � � �� �

� �� �� �
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���&  (6.9) 

 
If � �� �*�SSE < � �� �1�SSE  the acceptance probability is 1, e.g. moves to areas with higher 
posterior probability is always accepted. Now assume the example illustrated in Figure 
6.2 where the first parameter set gives a “good” simulation with � �� �1�SSE  = 75 and that 
the proposed set is not as good and yields � �� �*�SSE  = 275. If the two sets are evaluated 
with T=100, the acceptance probability is 0.06/0.47=0.14 (solid arrows) whereas if 
T=300 is applied, we accept the proposal with probability 0.40/0.78=0.51 (dashed 
arrows). Thus, by changing the value of T you “choose” to what degree “bad” 
simulations will be accepted. 
 

 
 

Figure 6.2. Illustration of the metropolis algorithm and the function of the scaling factor T. With T=100, 
the move � � � �*1 �� �  is accepted with probability 0.06/0.47=0.14 whereas with T=300 the acceptance 
probability is 0.40/0.78=0.67 cf. Equation 6.9. From Paper 4. 
 
In all following applications, a small value of T was initially selected. This was then 
increased until a significant number of the observations were covered by the 95% 
empirical prediction quantiles.  
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6.6 Results 
Figure 6.3 shows the resulting modelled empirical prediction quantiles of the observed 
Cu masses while using the individually sampled masses in the likelihood function. 
Among the 57 measurements, 6 (encircled) are not within the 95% quantiles.  
 
 

 
Figure 6.3. Measurements (stars) and model predictions (95 and 50% quantiles) of the intra-event 
sampled Cu masses. From Paper 2. 
 
The empirical 50% and 95% quantiles were constructed as described in Section 2.3.4 
with draws from the posterior, as illustrated in Figure 6.4. The structure of the model 
(Equation 4.14) implies that the ratio between the dry deposition rate (�1) and dry 
removal rate (�2), e.g. the horizontal axis, determines the maximum mass of pollutants 
that theoretically can accumulate on the surface during dry weather. The time required 
to achieve this equilibrium is given by the inverse of �2. The value of the wet removal 
rate (�3) on the vertical axis determines the rate at which the accumulated pollutants are 
depleted during wet weather.  
 
 

 
 
Figure 6.4. Draws from the posterior distribution used to construct the quantiles in Figure 6.3. From 
Paper 2. 
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As shown in Table 6.2 wide prior parameter distributions were assumed in Paper 2. The 
investigated time constants for the pollutant build up process are 1.8-18 hours. The 
relatively short time required to reach equilibrium, imposed by the a priori selected high 
values of the lower limit for �2 (1.3 d-1) involves that the “pool of pollutant mass” on the 
surface at the end of a dry period will be in the same order of magnitude as �1/ �2. As 
this mass is lowered, the model output is no longer sensitive to increasing values of the 
wet removal rate. In other words, as shown in Figure 6.4, conditionally on �1/ �2 < 400 
�g Cu·m-2, changing the value of �3 between 0.002 and 0.055 �m-1 does not have a large 
effect on the likelihood, all pollutants are washed off anyway. 
 
From the study one can conclude that to simulate and bracket the observations, a wide 
range of parameter sets should be considered. The results also show that the applied 
upper limit in the prior for �1 (86 400 �g Cu·d-1·m-2) was unnecessarily high. In Figure 
6.6 it is seen that posterior draws of �1 larger than 10 000 �g Cu·d-1·m-2 are not common. 
For the importance sampling methodology, which starts out with a large random sample 
from the prior distribution, this means that many unnecessary model runs with low 
likelihoods are conducted. If the metropolis algorithm is used this is in principle not a 
problem (compare Paper 4, where an open prior is used for �1) because it samples the 
parameter space according to the likelihood power. 
 
Note that the posterior parameter distribution reflects the joint parameter probability, 
e.g. the probability of a parameter set. The conclusion above, that the upper limit of �1 
was unnecessarily high, is conditional on the ranges for the other parameters. Figure 6.6 
establishes a positive correlation between the dry deposition and dry removal and thus if 
higher values of �2 had been allowed, higher values of �1 would have appeared in the 
posterior. 
 
In Paper 3 the ranges for the prior distributions were modified based on the results of 
Paper 2. The maximum values for �1 and �3 and the minimum limit for �2 were 
significantly lowered. The resulting prediction quantiles (Figure 6.5) of the uncertainty-
based calibration remained the same but less effort was spent on sampling “not 
relevant” parameters. The prediction quantiles obtained with the grey-box model 
(Figure 6.5) give rise to a lower uncertainty for prediction of total sampled mass (the 
95% prediction bounds are �30% of the mean for the grey box model compared to 
�50% for the uncertainty-based model calibration methodology). 
 
This difference is perhaps not surprising, since the two methods are based on different 
models. In the way the uncertainty-based model calibration has been applied the method 
cannot always handle errors in inputs. E.g. if there is no rain, the deterministic model 
will not simulate a load, no matter the values of the parameters. The grey-box model on 
the other hand can handle this by either of the two additional stochastic terms.     
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Figure 6.5. Predictions of the accumulated sampled copper loads with uncertainty-based calibration 
(quantiles) and grey-box modelling. From Paper 3. 
 
The maximum likelihood estimates of the grey-box model parameters showed that the 
noise term � of the differential equation was significant compared to the residual 
variance, i.e. the deviation between measured and simulated data cannot be solely 
explained by measurement errors.  
 
In Paper 4 the ranges for �3 were furthered narrowed. They were established by arguing 
that the time constant for pollutant depletion due to a (hypothetical, rectangular) rain 
with moderate-high intensity (2 �m·s-1) should not be smaller than 8 minutes whereas 
for a lower rain intensity of (0.2 �m·s-1) it should not be longer than 1 day. Table 6.1 
shows that the length of the dry weather periods for the sampling campaign were 0.2-6.9 
days. The ranges for �2 was established by assuming that the time constant for 
establishing pollutant equilibrium during dry weather ranges between 10 hours and 10 
days. A faster pollutant build up would mean that we move towards a different model 
structure where the equilibrium is obtained instantaneously. A slower build up rate 
would be possible but since the available experimental data is limited the above-
mentioned upper limit was chosen. With the new restrictions on the rate parameters it 
was possible to have an open uniform prior for the dry deposition parameter. 
 
 

Table 6.2. The prior ranges used in Papers 2, 3 and 4 for Cu. 
 

 �1,Cu [�g·d-1·m-2]    �2 [d-1] �3 [mm-1] 
 min max  min max  min max
Paper 2 0.0 86400  1.3 13.0  0.00 56 
Paper 3 86.4 8640  0.0 13.0  0.00 10 
Paper 4 0.0 �  0.1 2.5  0.05 2 
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In Figure 6.6 draws of the dry removal versus the dry deposition rate posterior 
parameter distributions from Paper 2 (circles) and Paper 4 (stars) are shown. Although 
the model was calibrated against all sampled masses in Paper 2 and the partial event 
masses in Paper 4, the results show that it is possible to cover the experimental 
observations with both a large and a smaller parameter space. The reason is obviously 
the strong correlation between the model parameters, especially �1 and �2. 
 
The parameter distributions resulting from the presented methodology should not be 
interpreted as “all parameter sets must be considered to bracket the observations” but 
rather that “if we want to bracket the observations and given wide ranges of parameters 
with the same prior probability, we might find equally good parameter sets in a very big 
parameter space.    
 
Figure 6.7 shows the 13 simulated and partially observed EMCs that were included in 
the uncertainty based calibration as well as simulated EMCs for the 5 events for which 
concentrations were not measured. If the only available information is the model, input 
data and experimental observations the inherent presumption for the 5 events lacking 
experimental evidence is that the system will behave similarly here as in calibration. 
This is an important underlying presumption of the methodology; the only thing that is 
100% sure is that with the applied model, input data and calibrated parameter, outputs 
that with 95% probability is consistent with the experimental evidence are generated.  
 
The histograms of the SMCs, simulated with the posterior parameter distribution 
derived in Paper 4, are shown in Figure 6.8 together with the “partially” observed 
SMCs of the sampling campaign. The 95% prediction quantiles for the SMCs are in this 
case these observed values ±20%, ±40%, ±80% and ±35% for Zn, Cu, Pb and Cd, 
respectively. The uncertainty for Cu (±40%) is slightly lower than in Paper 2 where the 
total sampled copper mass is predicted with a ±50% uncertainty. One reason for this is 
that in Paper 2, the model outputs were forced to cover the individual sample masses.  
 

 
 
Fig 6.6. Draws from the posterior distribution from Paper 2 (grey circles) and Paper 4 (black dots). 
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Figure 6.7. Simulated and “partially” observed EMCs [�g/l]. From Paper 4.  

The uncertainties anticipated in Figure 6.8 are conditional on the experimental results 
and the concentration measurements are fairly high compared to other studies with 
mixed land use (see Paper 4 for references), e.g. reality includes a site-to-site variation 
that is not considered in this study. Uncertainty in predicting pollutant loads from urban 
catchments without experimental data is therefore higher than the stated numbers. 

 

Figure 6.8. Histograms of the site mean concentrations for the four compounds with results of the 
measurement campaign indicated with crosses. From Paper 4. 



 

 
 
51

7 Conclusions 
 
In focus area 1 a dynamic mathematical model for the fate and transport of 
micropollutants in a simplified representation (few compartments) of the integrated 
urban wastewater system was formulated, implemented and used. The results of the 
conducted simulation study show the capability of the model to elucidate the following 
complex phenomena of importance to the fate of two xenobiotic organic compounds 
(XOCs), the wastewater pollutant bisphenol-A and the stormwater pollutant pyrene:  
 
� Increased micropollutant loading on the downstream system during rain events due 

to re-suspension of wastewater pollutants accumulated by settling of particulate 
material in the sewer. 

� Transient combined wastewater concentration profiles caused by such "first-
flushes". 

� The dependency of the dynamics of the pollutant mass routing process and the 
location of CSO structures in the system on the spatial distribution of overflow 
pollutant loads.  

� The effect of both primary and secondary sludge production on the fate pathways of 
micropollutants in WWTPs. 

� The effect of operational WWTP conditions (e.g. sludge age and hydraulic retention 
time) on the XOC removal capacity. 

� The highly variable time constants of the integrated system.  
 
Thereby, it can be concluded that lumped, conceptual, deterministic and dynamic 
models can be used to realistically simulate part of the fate-processes that affect 
micropollutants in the integrated urban wastewater system. The models do not need to 
include detailed hydraulic equations and can be formulated and implemented by 
extending well-established mathematical descriptions of the physical, chemical and 
biological processes that occur in the system. 
 
While in focus area 1 the capability of the mentioned model types to elucidate various 
phenomena was established, methodologies to analyse the prediction uncertainty of the 
model outputs was highlighted in focus area 2. For the specific case of a conceptual 
stormwater surface accumulation-washout model and a relatively detailed measurement 
campaign the following conclusions can be drawn:  
 
� The experimental observations do not contain information to calibrate various 

correlated source parameters of the original model, which therefore was re-
formulated to yield a simpler structure involving fewer parameters.  

� Wide posterior parameter distributions need to be considered to encompass a large 
share of the measurements with Monte Carlo simulations. The reason for this is 
uncertainties in input (rain) data, model structure and measurements of water quality 
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as well as correlation between model parameters, especially the dry deposition load 
and dry removal rate. 

� Two ways of approximating the posterior model parameter distribution, a Markov 
Chain Monte Carlo algorithm and Importance Sampling, were applied and gave 
nearly identical distributions of the modelled outputs. 

� With the uncertainty-based calibration methodology the total sampled mass of Zinc, 
Copper, Lead and Cadmium can be predicted with an uncertainty of approximately 
±20%, ±40%, ±80% and ±35%, respectively. The results depend on the defined 
threshold value where the uncertainty is judged to be sufficiently described. 

� By adding a stochastic noise terms to the deterministic model, the grey-box analysis 
show a prediction uncertainty of less than ± 30% for Copper.  

� Even when conditioning dynamic stormwater quality models on on-site 
concentration data, relatively large uncertainties should still be acknowledged in 
connection with posting statements about heavy metal loads in stormwater. 

 
In focus area 3 it is shown that BPA is degraded under strictly aerobic conditions and 
that biodegradation is the dominant part of the BPA removal. Experimental step-
response data have been compared with a growth-based process model to conclude the 
following:  
 
� Processes in the fast dynamic region, such as sorption and volatilisation, are not 

dominant for the fate of BPA. Instead, the data establish the presence and growth of 
BPA-degrading biomass.  

� Although a simple biodegradation model is hypothesised, a number of parameters 
have to be kept fixed at values inspired by literature. Several other more complex 
biological degradation models are possible as well, but data does not contain enough 
information to establish those model structures. 

� A tailor-made parameter estimation method was developed, which simultaneously 
utilizes steady state background concentrations and dynamic step response data, as 
well as conceptual simplifications of the plant configuration combined with both 
guided parameter value selection and numerical parameter estimation.  

� After calibration the hypothesised BPA growth model showed a reasonable fit to the 
experimental data. The maximum specific growth rate for BPA degrading bacteria 
was estimated to be 0.47 d-1, which means that an aerobic sludge retention time 
above 13 d is required to support growth.  

� Validation results showed that biodegradation of BPA is sensitive to operational 
conditions before and during the experiment and that the proposed model structure 
is capable of capturing important characteristics of the observed BPA removal 
process. 
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8 Suggestions for future work 
 
Unfortunate for any object sensitive to micropollutant exposure in urban society, but 
fortunate for urban water researchers all over the world, there’s work left to do! Here 
are a few suggestions for future work that crossed my mind during the past years: 
 
� Simulate the fate and behaviour of more pollutants (as a suggestion the EU water 

framework directive priority pollutants) in the integrated urban wastewater system 
to increase the understanding of their fate patterns. Volatilisation and stripping 
processes must be implemented in to the integrated model to study more types of 
micropollutants. 

 
� Simulate more realistic and comprehensive long-term scenarios. Such scenarios 

could be used to e.g. study the efficiency of various BMP:s and treatment options 
towards reducing emissions from the integrated urban wastewater system. The 
applied uncertainty-based model calibration methodology generates results that 
easily can be used in more long-term predictions.  

 
� To get more applicable insight in the behaviour of the specialised BPA degrading 

biomass in the Lynetten treatment plants further experiments at lower, more realistic 
BPA concentrations must be conducted. 
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APPENDICES  
 
7 papers, among which 5 have been published and 2 are submitted to international peer 
reviewed journals with ISI ranking, are enclosed as appendices to the printed version of 
thesis. The papers are however not included in the www-version. Copies of the papers 
may be obtained from the Library at the Department of Environmental Engineering, 
Technical University of Denmark (library@env.dtu.dk). 
 
 
Paper 1: Lindblom, E., Gernaey, K.V., Henze, M. and Mikkelsen, P.S. (2006). 
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