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Summary

The main topics of the thesis are theoretical and applied queueing theory within
a call center setting.

Call centers have in recent years become the main means of communica-
tion between customers and companies, and between citizens and public in-
stitutions. The extensively computerized infrastructure in modern call centers
allows for a high level of customization, but also induces complicated oper-
ational processes. The size of the industry together with the complex and
labor intensive nature of large call centers motivates the research carried out
to understand the underlying processes.

The customizable infrastructure allows customers to be divided into classes
depending on their requests or their value to the call center operator. The
agents working in call centers can in the same way be split into groups based
on their skills. The discipline of matching calls from different customer classes
to agent groups is known as skills-based routing. It involves designing the
routing policies in a way that results in customers receiving a desired service
level such as the waiting time they experience. The emphasis of this thesis is
on the design of these policies.

The first paper, Queues with waiting time dependent service, introduces a
novel approach to analyzing queueing systems. This involves using the waiting
time of the first customer in line as the primary variable on which the analysis is
based. The legacy approach has been to use the number of customers in queue.
The new approach facilitates exact analysis of systems where service depends
on the waiting time. Two such systems are analyzed, one where a server can
adapt its service speed according to the waiting time of the first customer in
line. The other deals with a two-server setup where one of the servers is only
allowed to take customers who have waited a certain fixed amount of time. The
latter case is based on a commonly used rule in call centers to control overflow
between agent groups.
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Realistic call center models require multi-server setups to be analyzed. For
this reason, an approximation based on the waiting time of the first in line ap-
proach is developed in the paper Waiting time dependent multi-server priority
queues, which is able to deal with multi-server setups. It is used to analyze a
setup with two customer classes and two agent groups, with overflow between
them controlled by a fixed threshold. Waiting time distributions are obtained
in order to relate the results to the service levels used in call centers. Further-
more, the generic nature of the approximation is demonstrated by applying it
to a system incorporating a dynamic priority scheme.

In the last paper Optimization of overflow policies in call centers, overflows
between agent groups are further analyzed. The design of the overflow policies
is optimized using Markov Decision Processes and a gain with regard to service
levels is obtained. Also, the fixed threshold policy is investigated and found
to be appropriate when one class is given high priority and when it is desired
that calls are answered by the designated agent class and not by other groups
through overflow.



Resumé

Hovedomr̊aderne for denne afhandling er teoretisk og praktisk køteori anvendt
inden for call centre.

Call centre har i de senere år vundet frem som m̊aden, hvorp̊a firmaer og
offentlige institutioner kommunikerer med kunder og borgere. En omfattende
computerstyret infrastruktur i moderne call centre giver mulighed for en høj
tilpasningsevne, men kan i samme omgang gøre driften særdeles kompleks.
Størrelsen og den arbejdstunge karakter af call center industrien, samt de kom-
plekse underliggende processer, gør call centre til et interessant forskningsemne.

Den computerstyrede infrastruktur betyder, at kunder kan deles op i forskel-
lige klasser alt efter grunden til deres henvendelse eller efter deres værdi for
call center operatøren. P̊a samme m̊ade kan medarbejderne i call centre deles
op i grupper efter deres kvalifikationer. Problemet med at parre forskellige
kundeklasser og medarbejdergrupper omtales som skills-based routing. Dette
omfatter dirigering af opkald til de rette medarbejdere under hensyntagen til
den service kunderne skal have, herunder den ventetid de bliver udsat for.
Denne afhandling omhandler design af disse regler for opkaldsdirigering.

Den første artikel, Queues with waiting time dependent service, introducerer
en ny tilgang til analyse af køsystemer. Denne tilgang tager udgangspunkt i
brugen af ventetiden for den forreste kunde i køen som den primære variabel
analysen baseres p̊a. Den traditionelle tilgang er at bruge antal kunder i kø som
den primære variabel. Den nye tilgang gør det muligt at analysere systemer,
hvor betjeningen afhænger af den tid, kunden forrest i køen har ventet. To
s̊adanne systemer bliver analyseret. I det første kan et betjeningssted tilpasse
betjeningshastigheden som funktion af den tid, den forreste kunde i køen har
ventet. Det andet system, der analyseres, omfatter to servere, hvoraf den ene
kun m̊a tage kunder, der har ventet en given fast tid. Det sidste tilfælde er
baseret p̊a en regel, der ofte bruges i call centre til at styre opkald mellem
medarbejdergrupper.
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Realistiske call center modeller m̊a nødvendigvis kunne bruges p̊a systemer
med flere betjeningssteder. Med udgangspunkt i dette, udvikles der en ap-
proksimation i artiklen Waiting time dependent multi-server priority queues,
der kan bruges p̊a s̊adanne systemer. Den bruges til at analysere en opsætning
med to kundeklasser og to medarbejdergrupper, hvor der desuden er mulighed
for at sende opkald i overløb mellem grupperne efter en regel baseret p̊a en
fast grænseværdi p̊a ventetiden. Ydermere demonstreres approksimationens
alsidighed ved at anvende den p̊a et system, hvor kunder prioriteres efter en
dynamisk regel.

I den sidste artikel, Optimization of overflow policies in call centers, ana-
lyseres overløbet mellem medarbejdergrupper nærmere. Overløbet optimeres
ved hjælp af Markov beslutningsprocesser og det vises, at en forbedring af
behandlingen af kunder kan opn̊as. Desuden p̊avises det, at overløbsreglen
baseret p̊a en fast grænseværdi p̊a ventetiden er fordelagtig i tilfælde, hvor en
kundeklasse tildeles høj prioritet, samt n̊ar det tilstræbes, at kunder betjenes
af de rette medarbejdere, dvs. at de ikke sendes i overløb.
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CHAPTER 1
Introduction

Call centers are the preferred way for most major companies and public insti-
tutions to interact with customers and citizens. The call center industry is by
all measures large and still growing. As of 2006, 2.2 million jobs exist within
the industry in the US alone (about 1.4% of the entire workforce) with an
expected growth of 25% in the period 2006-2016 [18]. Because of the size and
labour intensive character of the industry there is a large degree of motivation
to understand the dynamics of call centers to ensure proper management and
avoid unnecessary use of resources.

The main driving forces behind aggregating customer contact in call centers
are economy of scale together with the possibility of having a higher degree of
consistency in the interaction with customers. A large call center allows for
more efficient operation, however, it also induces more complex operational
processes. Advanced mathematical methods are required to understand the
details of the processes in order to optimize and improve the operations.

Management within the call center industry involves many areas of op-
erations management such as forecasting, scheduling, capacity planning and
routing optimization. In [21], call center management is described as a cir-
cular iterative process. It starts out setting a desired service level target to
aim for. The next element is data collection from which, forecasting can be
carried out. After having forecasted the expected load, the required staff and
physical structures can be found taking shrinkage (e.g. absence of employees)
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1. Introduction

into account. Finally the actual scheduling of agent work hours can be settled
and the cost of the operation calculated. The process can then start over and
the service level can be adjusted to ensure that excessive costs are not spent
on a too high service level or vice versa.

The above description of call center management is a very general presen-
tation. The elements included in the planning process are described in further
detail in Chapter 2-6. Especially the advent of the highly computerized setup
in modern call centers contributes to more complicated systems. The comput-
erized setup allows a high degree of customization of how calls are handled.
This means that customers can be treated in different ways and the agents
can be divided into groups according to their skills. Such arrangements are
referred to as multi-skill call centers. Within such a setting, the disciplines of
call routing and prioritization become important.

The iterative planning process may be fine for smaller adjustments. How-
ever, for larger changes to the infrastructure of call centers it is essential to
understand what the consequences of these changes will be. By modelling the
call center setup, the effect of changes can be assessed without the risk of
impairing the system during the process.

This thesis centers around routing and handling of calls and is arranged as
follows. A general introduction to the call center world is given in Chapter 2.
This includes a description of the physical structure of call centers and the
central concept of service levels.

Chapter 3 deals with analysis of traffic data. The characteristics of the
traffic to inbound call centers are described together with different aspects
that may affect it. The importance of data collection for analysis of e.g. waiting
time, service time, and abandonment distributions is treated. Finally the use
of historical data for forecasting purposes is described.

Key issues of capacity planning in call centers are treated in Chapter 4. This
basically involves having the right number of agents and the right use of these
to accommodate incoming calls in the desired way. All the different levels of the
planning hierarchy are treated, this ranges from resource acquisition, such as
designing the physical surroundings and the hiring and firing of call center staff
to the more detailed management issues. These include staffing and rostering
of agents, i.e. determining how many agents should be at work at a given time
and how the work schedules of the individual agents should be designed to best
correspond to the need while adhering to rules regarding work hours. Also the
complex issue of call routing in multi-skill call centers is discussed.

In Chapter 5, routing policies based on the waiting time of the first customer
in line are treated. The special case characterized by fixed thresholds is dealt

2



with in detail. This policy is used widely in multi-skill call centers for load
balancing between different agent groups. The discussion in this chapter is
centered around the three papers presented in appendices A, B, and C, which
all deal with the analysis of thresholds.

The use of simulation for modelling call centers is treated in Chapter 6. This
includes a discussion of the benefits and disadvantages of using simulations as
compared to analytical models or approximations. At the end of the chapter,
the possibilities of using simulation for modelling call center performance are
illustrated through a concrete example.

Finally in the last chapter of the summary report, a short discussion of
the contribution of the thesis is given. The main contribution of the thesis is
presented in the appendices in form of three journal papers.

In Appendix A a new approach to modelling queueing systems is presented.
This involves using the waiting time of the first customer in line as the primary
variable, which the analysis is based on. The approach is in many ways similar
to the one used in [10], where the workload is considered. The new approach
is especially convenient when queueing systems with operations that somehow
depend on the experienced waiting time of customers are considered. Two such
systems are analyzed in Appendix A, one where the service rate of a server can
be adjusted according to the waiting time of the customer first in line. The
other analyzed system involves two servers, of which one is only allowed to take
customers who have waited a certain fixed amount of time. The latter system is
based on a common rule used in call centers for skills-based routing, where calls
are only allowed to overflow between different agent groups after having waited
a fixed amount of time. The analysis in Appendix A is elaborated further on
in Appendix A.1 where an additional mathematical investigation regarding the
independence of a linear equation system from the paper is given.

A more application oriented approach is taken in the work presented in
Appendix B. Here an approximation, based on the same approach of using the
waiting time of the customer first in line as the primary variable, is developed.
The approximation is used to model a realistic call center multi-server setup
with two customer classes and two agent groups and overflow from one class to
the other. Furthermore, the general nature of the approximation is illustrated
by modelling a dynamic priority system. In Appendix B.1 the validity of the
approximation in its simplest form is proven.

The last paper, presented in Appendix C, deals with optimization of over-
flow. Again, the same approach of analyzing the waiting time of the first
customer in line is taken. The appropriateness of using the fixed threshold
policy is also examined.

3





CHAPTER 2
Call Center Basics

The fundamental aspects of call centers and call center management are treated
in this chapter. This includes the background and motivation for using call
centers in Section 2.1 and the physical structure in Section 2.2. The use of
different service measures is discussed in Section 2.3.

2.1 Background

The term call center covers a large variety of instances. Another often seen
term, is contact center, where the general consensus is that a call center only
communicates through phone calls whereas contact centers have multiple com-
munication channels such as email or chat beside phone calls. The term call
center may also be avoided in some cases due to it having a somewhat negative
connotation. This may especially be the case for call centers with highly skilled
employees who want to differentiate their service from simpler ones often pro-
vided by students working part time. The term call center is used throughout
this thesis as mainly the discipline of handling calls is considered. See e.g. [15]
for a treatment of contact centers with traffic composed of mixed mail and
phone calls.

The main purpose of gathering customer contact in one central place is
economy of scale, a large central unit is more efficient than multiple smaller
units. The simplest explanation for this is that the risk of one customer having
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2. Call Center Basics

to wait at one place while capacity is available another place is eliminated.
This is treated further in Section 4.2.

Call centers are divided into inbound and outbound depending on who
initiate the calls. The term inbound call center is used for the case where
customers initiate calls, typically to obtain a service. Outbound refers to call
centers where agents call customers. The latter would typically be used to sell
a product or conduct a survey. Combinations of the two are of course also
possible. Inbound call centers are the most interesting from a modelling point
of view as this is where most of the challenges are, due to the stochastic nature
of incoming calls. Outbound call centers can to a large extent decide when
calls take place, whereas there is a large element of uncertainty associated with
inbound call centers. For this reason, this thesis focuses solely on inbound call
centers. Optimization of a combination of in and outgoing traffic is treated in
[11].

People can have many reasons for communicating with call centers. The
most obvious is a person calling a company he does business with, such as a
bank or a support hotline. For outbound call centers it can even be involun-
tarily by salespersons calling and trying to sell services or goods, often at the
most inappropriate of times. This may very well be one of the sources of the
somewhat bad reputation call centers can have. Emergency services, such as
112 and 911 in the European Union and the United States respectively, also
fall under the category call centers. We will refer to people communicating
with a call center as customers no matter the reason.

There is an abundance of general introductions to call centers and call center
management. Highly recommended for a lighter approach to call center man-
agement is [21] whereas [25] gives a more mathematical introduction including
numerous references.

2.2 Call Center Structure

The main resource of call centers is the employees responsible for the commu-
nication with customers. The used terms for these employees are agents or
Customer Service Representatives (CSRs). The fact that salaries account for
60-80% of total operating costs [50], [4] makes this by far the most important
subject for optimization.

Operations in modern call centers are built around an extensively com-
puterized setup as depicted in Figure 2.1. Call centers typically have their
own telephone exchange in the form of a Private Automatic Branch Exchange
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(PABX) that connects phones internally and to the Public Switched Telephone
Network (PSTN) through trunk lines. For further details of the underlying
telecom technology see e.g. [53].

ACD

CTI
PSTN

PABX

Agent terminals

Call center

IVR

Trunk lines

Figure 2.1: The physical structure of a modern call center. Solid lines represent
voice connections and dotted lines data connections.

The effect of limited computer system processing power is analyzed in [3]
by treating the agent pool as a processor sharing unit. This case should really
be avoided though, as payroll costs are generally dominant in call centers. One
could maybe imagine cases in parts of the world where salaries are very low,
where this would be relevant.

A central piece of equipment is the Automatic Call Distributer (ACD) which
distributes incoming calls and collects call statistics. This makes it important
for planning purposes. The distribution of calls is based on algorithms that
can be designed to accommodate calls in desired ways. This topic is discussed
further in Chapter 4.

Interactive Voice Response (IVR) is the technical term for the equipment
that gives welcome messages, plays music, and informs about the caller’s place
in queue, if these services are implemented. The IVR also allows users to
interact with the call center using the keypad of the phone. This includes
letting the customer choose a desired service after hearing a message such as
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2. Call Center Basics

Press 1 for sales, press 2 for technical support... etc. The IVR also handles
automatic phone services where customers can be served or obtain information
without actually talking to an agent. Examples of such services is activation
of credit cards using a secret code sent by mail, checking the balance of a bank
account, and even filing a tax return.

Another used practice, to allow customers to choose a service, is to use
different phone numbers for different services or indeed prioritize customers
by giving important customers another number to dial and thus get ahead in
line. The call center can then identify the called number using Dialed Number
Identification Service (DNIS) and treat the call accordingly.

Many companies employ a set of “lines of defence” as illustrated in Fig-
ure 2.2. The goal of these are to satisfy whatever needs customers may have
without reaching an actual agent in the call center. The first line of defence
can be a web page, where customers can find the information or service they
need, home or internet banking is an example of this. The next step can be an
automatic phone service where customers can get the information or do simple
actions using the numeric keypad of their phone. Only if customers are not
able to take care of their business in the first lines of defence, they get through
to an agent. The service provided by agents may again be divided into multiple
layers. The first level could be less skilled (cheaper) agents capable of handling
simple requests. The second level could then be experts taking care of the
more advanced subjects. The purpose of this is to reduce the time agents must
spend talking to customers, and in this way decrease the required number of
agents and thus the expenses.

A way to reduce the duration of calls is by Computer Technology Integration
(CTI), which enables automatic retrieval of customer records when calls are
put through. This can be implemented by letting customers identify them-
selves while interacting with the IVR or directly using Automatic Number
Identification (ANI) thus removing the need for agents to spend time entering
e.g. account or social security numbers given verbally. Instead the agents can
have all information about the customer ready on their screen as soon as the
call is put through.

In recent years Internet Protocol (IP)-telephony has become more common,
also within the call center world. IP-telephony allows for a larger degree of
flexibility and should cut down on infrastructure costs. Cost reduction can be
obtained through higher bandwidth efficiency and by having a unified commu-
nication system for voice and data including fax, e-mail, access to the Internet,
etc.

The computerized and highly customizable setup of modern call centers
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2. level
agents

1. level agents

Automatic

Web service

phone service

Customers

Figure 2.2: Illustration of the typical lines of defences a company uses to de-
crease the number of calls (and thus the cost) to a call center. The call center is
represented by the inner three circles and agents the inner two.

allows for a virtual single call center to be physically spread out over different
sites. The motivation for this can be to draw from workforce pools in different
regions of a country or different countries for multi-national companies. This
may even be used to exploit different time zones by having a call center in
e.g. Australia, Europe and America thus allowing each of these to be open
only during work hours while providing a 24-hour service. Another possibility
is to allow agents to work from home and still be a part of the virtual call
center. Besides the obvious personal benefits to the employees, having people
work from home may benefit the employer by reducing the number of office
seats needed. Often full-time employees will prefer continuous full day shifts,
however, working from home may convince agents to take shorter shifts during
peak periods, thus increasing flexibility and making the assignment of work
shifts easier.

2.3 Service Measures

Providing a service is the fundamental objective of inbound call centers. The
concept quality of service involves different aspects. Some of these are quan-
titative and easy to measure, others are more qualitative and thus harder to

9



2. Call Center Basics

measure.
Call centers can be characterized by how they are operated, distinguished

by different regimes. Some call centers may have a very low agent utilization
meaning that almost all calls are answered immediately, this is referred to as
the quality driven regime. At the other extreme we have the efficiency driven
regime where almost all customers have to wait before being served, here the
agent utilization will be close to 100%. In between, and where most call cen-
ters operate, is the rationalized regime where agent utilization is high (maybe
90 − 95%), but many calls may still be answered immediately. This is made
possible by large call centers enjoying the benefits of economy of scale. The
different regimes influence how system performance can be approximated. The
important rationalized regime was first thoroughly analyzed in [34] resulting
in its alternative designation, the Halfin-Whitt regime. Sometimes it is also
referred to as the Quality-Efficiency Driven (QED) regime.

Service Levels

The quantitative service measures typically involve how long customers have
to wait before the call is answered by an agent. The simplest measure of this is
Average Speed of Answer (ASA), which is, as the term implies, just the mean
of the time customers wait in queue. The measure used by itself is lacking
in detail, as no information about the waiting time distribution is given other
than its mean.

In in-house call centers the upper management typically sets a Service Level
(SL) target for the operations manager to meet. For outsourced call centers
the call center operator and the company enter a contract in the form of a
Service Level Agreement (SLA). Service levels are common in the simple form
of a specified percentage of calls that should be answered within a certain time,
referred to as Acceptable Waiting Time (AWT) or Service Level Target (SLT).
This is written as e.g. 80/20 which means 80% of calls should be answered
within 20s. This service measure is referred to as Telephone Service Factor
(TSF).

Lost or abandoned calls are also normally considered. This measure would
typically be strongly correlated with the service levels. Customers may even
be encouraged to abandon and call back while they are in queue if the system
is overloaded in order to improve service levels.

The TSF used in call centers varies greatly; 90/20, 85/15 or 90/15 would
typically be regarded as high service levels used in competitive businesses where
customers may take their business elsewhere if service is unsatisfactory. For
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emergency services the demands may be even higher. A TSF of 80/20 is the
classic middle of the road choice often used in banks, insurance companies, and
travel agencies. In the lower end, service levels such as 80/300 may be used
by e.g. soft- and hardware support centers and governmental offices where you
can’t really take your business elsewhere [21].

Service levels have to be approached with some caution. TSF used by itself
actually motivates tossing customers out of the queue as soon as the time they
have spent in the queue exceeds the threshold of the TSF. This approach will
increase the chance of serving other customers within the threshold. Another
similar approach would be to only serve customers which have exceeded the
threshold if no customers having waited less than the threshold are present in
the queue. In order to account for some of these discrepancies a new service
measure is suggested in [49]. The suggested service measure is called the Av-
erage Excess (AE) and it is, as the name suggests, the average time, which
waiting exceeds SLT.

It has been suggested to introduce a third term to TSF representing the
percentage of intervals where a percentage of calls are answered within a time
limit. E.g. 90/80/20 would mean that in 90% of time intervals 80% of calls
should be answered within 20s. The length of the time interval should also be
given.

The widespread use of TSF probably originates in how easily it is inter-
preted. Despite this, less mathematically gifted management may still require
the impossible of the operations management team, such as a 100% service
level with a low SLT for their most priced customers. It may seem appropriate
to guarantee the most valued customers to be answered quickly, however there
must be room for exceptions as 100% service levels in principle require an agent
sitting ready for each customer.

There is some discrepancy about how to calculate the performance measure
TSF from data. This is discussed in [21] and involves how abandonments are
dealt with. Sometimes abandoned calls are disregarded altogether, and TSF
is calculated as the number of calls answered before the SLT divided by the
total number of answered calls. Another option is to divide by the number of
offered calls which will degrade the TSF if many calls abandon. Sometimes
only calls that abandoned before SLT are included. As such there is no unique
right way to do it as long as it is clarified how it is done. However, the method
of dividing the sum of answered and abandoned calls within SLT by offered
calls is recommended in [21].

Even taking the different ways to calculate TSF into account there is still
room for more interpretations. The time period over which the TSF is mea-
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sured, can have a major influence on the resulting values. If TSF is measured
over a short period, the percentage of calls answered within the time limit will
vary much more than if longer periods are used. During a 24-hour period the
required number of calls may be answered within the time limit, however if the
same day is split into hourly intervals the TSF may be exceeded during some
of the intervals.

Customer Satisfaction

The qualitative part of call center service is harder to measure. This includes
the customer’s impression of the conversation, such as politeness and com-
petence of the agent. Agent competence plays a major factor in First Call
Resolution (FCR) which is important because it affects the number of calls a
call center receives. Customers are likely to call back if their intent is not met
the first time.

Many call centers use the possibility of having supervisors or colleagues
sitting next to them and listen in on the calls. In this way agents can receive
feedback on their performance and be coached into giving better service by the
listener-in. Some call centers also have supervisors listening in on calls to assess
performance without agents knowing it. This may not be a good practice from
a work environment point of view, as agents may feel monitored.

The usual suspects when it comes to what determines service quality and
customer satisfaction are ASA, abandonment rate, blocked calls, TSF, FCR,
and talk time. The first three can be expected to be negatively correlated and
the latter three positively correlated to customer satisfaction.

A study in [23] shows a surprising lack of correlation between the usual
performance measures (ASA, abandonment rate, talk time, etc.) and customer
satisfaction in banking/financial call centers, however, no explanation of what
determines satisfaction is given. This essentially highlights the issue of the
assumption that satisfaction is correlated to what can easily be measured rather
than harder to measure factors such as agent kindness, etc. An interesting
result of [23] is that correlation between the usual performance measures is
much larger for call centers within other industries.
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CHAPTER 3
Traffic Analysis

The nature of call traffic to inbound call centers is highly stochastic. Also
the duration of calls and the caller behavior with regard to patience and the
tendency to redial, constitute interesting research topics which are discussed
in this chapter.

3.1 Traffic Characteristics

The traffic to inbound call centers varies greatly with time. This variation can
be seen as a function of the time of day, day of the week, day of the month,
month of the year, and even the year.

The most obvious variation is typically seen intra-day as calls depend on the
work hours and daily routines of people. The business hours of a call center may
also influence the pattern of arriving calls. This could be in the form of a peak
just after opening time. A pronounced variation over the week will also often
be seen, mostly with a distinction between weekdays and weekends. Variation
over the month may especially be seen at the start and end of the month
as many bills have to be settled around this time. Also people may have a
tendency to spend more money on shopping on and just after payday, resulting
in an increased call load to sales call centers. An intra-yearly variation will
typically result from people going on vacation during the summer, Christmas,
etc. Inter-yearly variation can be assumed to come from a general trend in call
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3. Traffic Analysis

loads originating in a changing number of customers or people’s disposition to
use the call center. The possibility of identifying a general trend motivates
saving records of call volumes for a long time.
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Figure 3.1: Calls to an inbound call center during 15 minute intervals over a day
and daily intervals over a month. The number of calls are depicted on a linear axis
without a scale as the intention is only to illustrate the patterns.

The number of calls a call center receives is referred to as offered calls.
This can be considered over any given time interval, such as 15 minute or
daily intervals and includes all calls including both those whom are eventually
served and those whom abandon. Figure 3.1 shows an example of the pattern
of offered calls over a day and over a month for low and high priority calls. The
daily variation is clearly seen with the highest load during work hours and in
the morning in particular. The weekly variation is also clear with fewest calls
in the weekends and most on Mondays. The previously mentioned increase
around the turn of a month seems especially pronounced for the high priority
customers. Also the offered calls of high and low priority customers appear
highly correlated. Observations such as these should all be accounted for when
designing forecasting models as described in Section 3.3.

Calls to an inbound call center are often assumed to arrive according to
a Poisson process (i.e. times between calls are independent and exponentially
distributed) with constant intensity within short time intervals. The rate at
which calls arrive is generally denoted by λ. The reasoning behind this is that
the total number of customers is assumed to be infinite, thus the intensity of
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arriving calls does not depend on the active number of calls. This assumption
is appropriate as the customer base of call centers is normally quite large.

If the average service time of calls is also given, it makes sense to consider
the offered load. The offered load is measured in erlang (E), a dimensionless
unit, given by multiplying the mean arrival rate with the average service time
as

A = λµ−1,

where µ−1 is the average service time and A the offered load.
Redials due to calls not being resolved during the first contact will violate

the Poisson assumption as the arriving calls will be dependent on the service
level and abandonment rate. This means that the way calls are served, influ-
ences the offered traffic, contrary to what is normally assumed in most models,
i.e. the offered traffic being independent of the service quality [37].

3.2 Data Collection

Collection of data in call centers is essential for planning purposes and for
analyzing performance. Large quantities of data are normally logged as data
storage capacity is relatively cheap. This includes number of calls, duration of
calls, waiting times, abandoned calls, etc.

A widely used practice is only to log aggregated call data as this results in
much less data compared to logging of individual calls. Aggregated data would
typically be the number of offered, abandoned, and answered calls during a 15
minute period. Waiting time distributions can also be logged in an aggregated
form as number of calls served after having waited between 0 and 2 seconds, 2
and 4 seconds, again during 15 minute intervals. In this way a lot of information
is discarded compared to logging call-by-call data.

The more detailed call-by-call data is e.g. required to analyze the arrival
process in order to investigate the assumption of it being Poisson in short time
intervals. Also call-by-call data could be used to estimate an arrival function,
λ(t), which would be interesting for models dealing with non-stationary traffic
as discussed in Chapter 4. The same goes for detailed analysis of the waiting
time distributions, both for those who are eventually served and those who
abandon. Aggregated data should be adequate for most forecasting purposes
though.

Another topic for which aggregated data cannot be used to examine is first
call resolution. Call-by-call data should be more appropriate for this as the
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same caller calling multiple times within a short time may very well indicate
that his intent was not resolved by the first contact.

The literature dealing with statistical analysis of center data is not as abun-
dant as it could be. This is to some extent probably due to the lack of reliable
call-by-call data. Exceptions are [16] and [17] where the same call-by-call data
from an Israeli call center is analyzed.

Service time

For most analytical work, service times are assumed to be exponentially dis-
tributed. This is often done for practical reasons as exponentially distributed
holding times are easiest to deal with analytically even though it may not al-
ways be the best representation of reality. It also means that only the mean of
the service times needs to be used for modelling. The rate of which calls are
handled by agents is normally denoted µ, i.e. the mean service time is 1/µ.

A detailed analysis of call center service times can be found in [17], where
the service times are shown to be very close to lognormally distributed. The
mean service time was also shown to vary greatly over the 24-hour day with
the longest service times coinciding with the highest offered traffic in the late
morning and afternoon. This was especially the case for regular calls to the
bank, but less so for internet support calls which had a more stable service
time.

The problem of short service is also discussed in [17]. This involves agents
hanging up on customers as soon as they are put through in order to increase
the number of calls the agent handles. This obviously decreases the mean
handling time, which is a part of how agents are evaluated. This issue stresses
the importance of not relying on too simple measures as these may be exploited
by the more scrupulous individuals. By considering the entire service time
distribution this issue was easily identified and appropriate measures could be
taken.

Further analysis can be found in e.g. [13] which treats the holding (service)
time of telephone calls as a mixture of different components. Also the human
perception of time is considered.

As calls constitute a dialogue, service time of a call is obviously dependent
on both the caller and the agent. However, in most multi-skill models the
service time is bound to either the agent pool or the customer class, often out
of convenience.
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Customer Patience

Customers are in simpler models, such as the Erlang-C model treated in Sec-
tion 4.2, assumed to be infinitely patient. This is however not realistic in a
call center setting as customers get tired or annoyed and abandon the queue.
Ignoring abandonments can actually lead to overstaffing as the carried load no
longer equals the offered load.

Some call centers inform customers about their position in queue while they
are waiting. This may influence their patience in either way. Detailed studies
of this are lacking though. What is seen from the waiting time distributions of
customers who abandon, is that announcements cause some people to abandon,
whether the announcements give the position in queue or not. An example of
this is seen in Figure 3.2 where an announcement without information about
position in queue or expected waiting time results in increased abandonment.
Announcements may cause other people to wait longer, but this is hard to
quantify.
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Figure 3.2: Waiting time distribution before abandonment. The peak at 30s
coincides with a “please hold”-message.

If high and low priority customers are routed to a common agent pool, it
may be inappropriate to inform customers about their position in queue. In
this case a low priority customer may experience being pushed further back
in queue by high priority customers arriving while the low priority customer
is waiting. Such an event would be very aggravating for the customer being
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pushed back and probably not something call centers would expose even low
priority customers to.

Another option is to give an estimate of the remaining waiting time. This
can obviously never be more than an estimate, however it actually gives more
valuable information to the customer than just giving the position in queue.
For example being informed that you are number eight in queue may mean
you have to wait for a very long time if only one agent handles calls or a very
short time if hundreds of agents are working. Prediction of waiting times is
examined in [74] where information such as the number of customers in queue
and elapsed waiting time for non-exponential service times are used to improve
estimates.

An interesting note is that in an M/M/n system with a First Come First
Served (FCFS) policy and visible queue the waiting time a customer can expect
to experience is gamma distributed, but if the queue is invisible then the waiting
time is exponentially distributed [37]. This is due to the fact that the expected
number of waiting customers is geometrically distributed and a set of gamma
distributions with shape parameters weighted by a geometric distribution does
indeed result in an exponential distribution.

An empirical analysis of abandonments is given in [78]. It is shown that
experienced callers adapt their patience according to system performance even
if information about queue length is not given, they simply learn that at certain
times they risk waiting a long time if not being served immediately.

What is often referred to as the Erlang-A model extends the Erlang-C model
by including abandonments. Analysis of models including abandonments was
first carried out in [60]. Erlang-A can be seen as a generalization of the Erlang
models, with Erlang-B and Erlang-C being the two extremes with zero and
infinite patience of the customers.

Analysis of customer patience requires inference analysis because the pa-
tience of those served is not known and is thus considered censored data. Em-
pirical data of customer patience is examined in [16] and [17] and shown to
have a nearly constant hazard rate, i.e. the patience is nearly exponentially
distributed. The main deviation from this comes from messages being an-
nounced, stating that the customer is in queue. These messages seem to make
customers abandon the queue, intentionally or not. Customer patience is fur-
ther analyzed in [27] where a method based on boot strapping to determine
confidence intervals is presented.
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3.3 Forecasting

The discipline of predicting the number of incoming calls to a call center is
referred to as forecasting. The importance of thorough forecasting cannot be
overestimated. Unprecise predictions of the call load lead to either over- or
understaffing which in turn results in unnecessary pay costs or unsatisfactory
service levels respectively.

In general, a forecast will be more precise, the shorter the time horizon.
Forecasting with a horizon of a month or more is used to determine the required
staffing levels and from those, schedule the work hours of agents. Forecasting
with a shorter horizon of, say a few days, could be used to call in extra staff if
needed.

It is often assumed that calls arrive according to a time-inhomogeneous
Poisson process. The inhomogeneity stems from the fact that the probability
of a customer making a call varies during the day, week, month and year. The
rate of arrivals is normally denoted λ for time-homogeneous systems and λt or
λ(t) for time-inhomogeneous systems.

The most common approach to forecasting call volumes is a simple top-
down approach [25]. This approach starts with an estimate of the number of
calls during a month or even a year from historical data. From this, weekly,
daily and typically half-hourly estimates are made. As an example, assume
that a call center receives 1′000′000 calls in a year; from historical data it is
known that 10% of calls are made in May, of those, 20% of calls fall in the
first week of the month, 25% of calls are made on Mondays and 5% are made
between 10.00 and 10.30, then the estimated number of calls in the half-hourly
interval would be 1000000 · 0.1 · 0.2 · .25 · 0.05 = 250. Due to the simplicity of
this approach, one might expect that better results would be easily obtainable.
Certain days such as national holidays will not follow this pattern and are often
dealt with from the past experience of an operations manager.

In [69], a number of different approaches to forecasting are examined using
univariate time series methods. The result of this work indicates that a simple
approach referred to as Seasonal mean is hard to beat when the horizon of the
predictions is more than a few days. Seasonal mean is just a moving average
over the same half-hour of the week of previous weeks. For shorter forecasts
with a horizon of 1-2 days another method, Exponential Smoothing for Double
Seasonality, was shown to perform better. This method assigns more weight to
the most recent observations and takes both intra-day and intra-week seasonal
cycles into account.

Also of importance when forecasting is to take the expected service time
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into account. It has been observed that the average service time can increase
during evenings, effectively making the call load higher, see [21] and [17]. Also
a (positive) correlation between the call volume and mean service time has been
observed as agents may become tired and less effective when they are stressed
[16].

In [65] detection of outliers, data visualization, and determination of signif-
icant features such as day of the week effect from noisy data are treated using
singular value decomposition. This is used to develop a forecasting model and
used for a test case based on data from an American financial company. The
outliers are found to nicely correspond to holidays or days with system errors
and a day of the week dependence is identified, both contributing to improving
the forecasts.

Computation of prediction intervals for the arrival rate is treated in [44]. By
using Poisson mixtures to deal with overdispersion, the arrival rate is treated
as a random variable, i.e. the arrival rate λ is drawn from one distribution and
the number of calls in an interval is then drawn from a Poisson distribution
with parameter λ. This is necessary as the variance of observed data is often
higher than the mean, these should be even under the Poisson assumption.
Call center performance is finally determined using the Erlang-C formula.
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CHAPTER 4
Call Center Capacity

Planning

The issue of determining the number of servers required to provide customers
with a desired service level can be very complicated due to the many factors
involved. This topic is treated in the following sections.

4.1 Resource Acquisition

A part of the physical structure to be dimensioned is the number of telephone
trunk lines. All active calls need a trunk line, both those queued, those using
the IVR, and obviously those which have been put through to an agent. In
most cases call centers ensure that there are simply enough trunk lines for
almost any scenario as the required hardware is relatively cheap compared to
agent wages. The number of required trunk lines can be determined by using
the Erlang-B formula [37] as calls are blocked if no line is available. This is
further treated in Section 4.2

The hiring process of agents also falls within resource acquisition. Depend-
ing on the required skill of agents, hiring and training a new agent may take
days, months or even years. This obviously calls for some long term planning
taking into account the expected growth of business, i.e. new customers or fu-
ture acquisitions of other companies. Also people leaving for other jobs and
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retiring must be considered. The hiring problem is not unique to the call center
industry and is well described in the literature such as in [31].

Shrinkage

The number of agents required to man the phones at any given time does not
equal the number of agents that needs to be scheduled for the given time.
The actual number of available agents is decreased due to many causes such
as people calling in sick, needing breaks to go to the toilet and get coffee,
lunch breaks, meetings, coaching, education, vacation, and more. Some factors
can be controlled to some extent as discussed in [1] while other may be more
problematic.

Accounting for shrinkage is normally done by fairly simple methods such
as described in [21] and [20]. The procedure is to use Rostered Staff Factor
(RSF) (also referred to as overlay) as a factor which describes the required
overstaffing needed to account for shrinkage. Not much work in the literature
takes absenteeism into account for general models but [76] treats the number
of active agents, given the number of agents on job, as a random variable.

4.2 Staffing using Queueing Models

The fundamental aspect of staffing is to determine the minimum number of
agents required to satisfy service levels. Obviously overstaffing leads to in-
creased costs and understaffing results in poorer than desired service. This
means that staffing is a key element in call center management, i.e. where
great savings can be made. In this way, a good result for an operations man-
ager is not to have as many calls as possible answered within the TSF, but
rather just the required percentage.

The many different issues related to the flow of calls through the call center
are illustrated in Figure 4.1. Most models only take some parts of the process
into account. This will often be due to necessity as models quickly become very
complicated, however much insight can also be gained from simplified models.

The discipline of determining the required number of servers to offer incom-
ing traffic a given service level is the most classic within queueing theory. It was
pioneered by Agner Krarup Erlang while he worked at the Copenhagen Tele-
phone Company with the aim of determining the number of required circuits to
ensure the desired telephone service. He also worked on determining how many
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Figure 4.1: Call center process diagram.

telephone operators should be working at cord boards used to switch telephone
calls in the early days of telephony. In many ways this can be seen as the
ancestral origin of modern call centers or indeed the mathematical aspects of
call center management. Erlang’s work has proved extremely long-lasting and
his formulae are still widely used within the call center and telecommunication
worlds.

Erlang-C

The most used way of determining the number of agents needed, is by the
Erlang-C formula. The model behind the Erlang-C formula is M/M/n, Marko-
vian arrivals and service completions (time between arrivals and service dura-
tions are exponentially distributed) and n servers with infinite waiting positions
and infinitely patient customers. The formula gives the relation between the
delay probability (the probability of not being served immediately, P(W > 0))
and the number of servers (n), arrival rate (λ) and service rate (µ). It is worth
noting that only the ratio between λ and µ matters, thus the offered traffic is
introduced as A = λ/µ. See for [37] for details and references on the original
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work of Erlang.
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Assuming that calls are handled on a first come, first served (FCFS) basis, then
the waiting time distribution can be found as

P(W ≤ t) = 1− P (W > 0) · e−(nµ−λ)t, n > A, t > 0.

The use of the Erlang-C formula is fairly straightforward as it only requires
estimation of the arrival rate and mean service time, which should be available
from forecasts based on historical data. However, the Erlang-C model has some
shortcomings. A major one being that it does not take customer abandonments
into account. This means that if the offered traffic exceeds n, then the queue
becomes unstable and grows towards infinity.

In order to have a stable system, i.e. the queue will not grow infinitely,
the number of servers must be greater than the offered traffic for an M/M/n
system. The number of servers beyond the offered traffic is referred to as safety
staffing and a well proven rule in this context is the square root safety staffing
principle. In words, this rule dictates that in order to have approximately the
same service level, the number of additional servers beyond the offered traffic
should grow as the square root of the offered traffic. Put formally it becomes

n ≈ A + β
√

A,

where n is the number of servers, A the offered traffic and β a coefficient related
to the service level. The rule applies best to heavily loaded large systems. The
principle behind square root staffing has been known for long, as it is funda-
mentally based on the central limit theorem. In fact Erlang used the principle,
but it was formalized in the call center setting in [14]. The quality of the ap-
proximation behind the square root principle is examined in [41] and shown
to be very good even for moderate sized systems as long as abandonments are
ignored.

The square root safety staffing rule nicely illustrates the economy of scale
principle, one of the main driving factors of call centers. A simple example of
this would be to consider a call center offered a load of 100 E compared to one
offered 400 E. To obtain approximately the same service level (assume β = 1),
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the smaller call center would require a safety staff of 10 agents compared to 20
for the four times larger call center, i.e. only twice as many safety staff despite
a fourfold larger traffic. Put in another way the utilization of agents increases
with the size of call centers, given the same service level as described in [73].

Erlang-B

Also well known is the Erlang-B formula, which is based on a rejection model.
This means that customers that are not served immediately are blocked and
lost. Arrivals and service completions are assumed Markovian as for the Erlang-
C formula. The Erlang-B formula gives the probability of being blocked, B [37]:

B =

An

n!
n∑

i=0

Ai

i!

.

The Erlang-B formula is normally used for trunk capacity calculations [21] in
the call center world, that is how many phone lines should go into the call
center.

Beyond Erlang

There is an abundance of more advanced queueing models in the literature. As
the assumptions behind the Erlang-C model differ from real scenarios, there
should be room for better models. The more advanced models typically take
abandonments, different distributions of service time or patience, varying load,
etc. into account. Some of the literature on these models is discussed here.

A simple extension to the Erlang-C model is to limit the number of queue-
ing positions which in practice is also the case in real call centers due to the
limited number of trunk lines. However, as the number of trunk lines is often
dimensioned generously, it may very well not be the most important exten-
sion of the Erlang-C model to include, when considering call center cases. The
usual notation for this kind of system is M/M/n/k (given Markovian arrival
and service processes), where the k refers to the number of queueing positions.
Some discrepancy exists in the literature whether to include the n servers in
the k queueing positions or not, something to be mindful of.

A more important extension is the inclusion of abandonments in the model.
Neither the Erlang-B nor Erlang-C formula describes the dynamics of a call
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center very well as people tend to have neither zero nor infinite patience. In this
way the Erlang formulas can be seen as two extremes. Many models trying
to fit in between these have been introduced. A simple way of introducing
patience is to assume customers have exponential patience, thus keeping the
Markovian property as done in [60]. This has later been referred to as the
Erlang-A model (A for abandonment) in [26] where the importance of taking
abandonments into account when modelling call centers is examined. It is
shown that ignoring abandonments can result in very significant overstaffing.
The use of the square root safety staffing principle for the Erlang-A case is
examined in [77] and the addition of a correcting term is suggested.

The assumption of exponential service times in call centers does not fit well
with empirical data as discussed in Section 3.2. This means that underlying as-
sumptions of the analytically attractive Erlang-C, M/M/n model are violated.
This calls for the use of the M/G/n model (G referring to general service times)
which is less analytically attractive. It is known that the performance of such
a queueing system depends on the relation between the variation and the mean
of the service time distribution. This relation is typically represented by the
coefficient of variation given by the standard deviation divided by the mean
or the peakedness given by the variance divided by the mean. This relation is
described in [50], where a general introduction to call center queueing models
is given. The relation is examined thoroughly in [73] and it is shown that from
a performance perspective it is advantageous if the arrival process and service
times are of low variability.

As it is generally agreed upon that the service times are not exponential,
many models taking this into account have been developed. Such a model
is presented in [68] where a general service time distribution is approximated
by mixed Erlang distributions (a subclass of phase-type distributions). The
approximation takes abandonments, redials, and varying arrival intensities into
account.

In [72] it is claimed that an M/GI/s/r +GI model is the most appropriate
for call center modelling, where the two GI’s refer to general independent and
identically distributed service times and abandonments. The reasoning behind
this is that the service time and abandonment distributions have been shown
to be non-exponential as discussed in Section 3.2. The “correct” model is
approximated by an M/M/s/r + M(n) model, where M(n) refers to a state
dependent abandonment rate. The use of exponential service times is justified
by a claim that service times mostly influence system performance through the
mean of the distribution, which is somewhat contradictive to the results in [73].

Another implementation taking customer impatience into account is pre-

26



Staffing using Queueing Models

sented in [54]. Here workload dependent balking (customers leaving immedi-
ately before entering the queue) is used to emulate customers being told an
expected waiting time upon calling and hanging up based on this. Phase-type
distributions are used for the service time resulting in an M/PH/1 model,
which is interesting as phase-type distributions can approximate log-normal
distributions quite well.

Time-varying Demand

As described in Section 3.1, the arrival rate of calls is far from constant. The
simplest approach of assuming the arrival rate to be constant at all times has,
not surprisingly, been shown to be a poor approach in almost all cases [29]. This
approach is often called the simple stationary approximation and is only really
useful in cases where the arrival rate fluctuates quickly compared to the service
rate without a general trend. Most often the call arrival process is assumed to
follow a Poisson process with constant rate, which may be adequate when a
short time interval is considered. This approach of having individual (constant)
arrival rates for each interval works quite well for most cases [28] and is often
referred to as a point wise stationary approximation. However, in cases with
large abrupt changes of the arrival rate it may not perform that well. Such
abrupt changes could occur just after a TV commercial promoting a product
being sold by the call center or just after the call center opens. The latter is
obviously not an issue for 24-hour operations, but could e.g. be relevant for call
centers selling tickets for concerts that are being put on sale at certain times.
The results in [28] are based on arrival rates following a sinusoidal pattern, but
should be applicable to general arrival patterns.

Variations in call loads may lead to a build up of waiting customers in one
time interval, e.g. 15 minute interval, which is then carried over to the following
intervals. This could be the case during the absolute peak time of the day as
the call center may very well be slightly understaffed during this time, because
it may not be possible to make rosters that exactly follow the traffic pattern
as most agents work full day shifts. This understaffing in one period may lead
to further understaffing in the following time intervals as both the carried over
calls and the otherwise anticipated calls need to be served.

Fluid models are a useful tool for modelling overload situations. The prin-
ciple behind fluid models is to consider both arriving calls and served calls as
a continuous stream of work instead of individual entities. Fluid models of call
centers are treated and compared to queueing approaches in [5] and further de-
veloped in [43]. Abandonments and retrials are also considered in [55] in a fluid
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setting. The fluid models do not work well in underload situations however, as
the stochastic element is disregarded. Fluid models are used for a multi-server
setting with abandonments in [75]. Staffing of time-varying queues to achieve
time-stable performance is treated in [24]. A fluid approximation that takes
balking, impatience, and retrials into account is presented in [2].

In [24] a simulation based approach is used to determine staffing levels for
inhomogeneous Poisson arrivals, general service times and general customer
abandonment rates, referred to as Mt/G/st + G. The presented iterative-
staffing algorithm (ISA) involves running a series of simulations based on the
time-dependent arrival rate and iteratively adjusting the number of servers, st,
according to a set target delay probability. The algorithm is shown to perform
well for a realistic case.

Yet another approximation for systems with time varying arrival rates is
given in [42], which uses a normal approximation and performs well for both
slowly and quickly changing rates.

Another approach is to use an effective arrival rate at certain time instants
determined by exponentially smoothing an estimated arrival rate. In this way
steps in the arrival rate function can be taken into account, which seem to yield
better results than the point wise stationary approximation. This is due to the
fact that it can take the inertia of the system into account, i.e. after a step down
in the arrival rate function, performance will be worse than the current rate
would otherwise suggest and vice versa for steps up. Abandonments, retrials
with some probability, and non-exponential service times (by using Erlang
distributions) are also treated in [68]. A similar system is treated in [55].

Scheduling

Having determined the number of required agents for each time frame (e.g.
half hour period), the next step is scheduling, i.e. making work rosters for the
individual agents. This will often be done taking the employees preferences
into account. Some may prefer to come in early in the morning while others
may prefer working at night. Also breaks, seminars, and work-hour regulations
need to be worked into the work schedule.

Scheduling is a well established and described discipline within operations
research and available in many commercial products. The mathematical meth-
ods used for this purpose include simulated annealing, genetic algorithms, and
other metaheuristics. The problems are often not solved to optimality due to
their complexity but suboptimal solutions are seen as adequate. Scheduling in-
cluding breaks and reliefs is e.g. treated in [64] where schedules are first made
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without breaks, which are then included and additional agents added as nec-
essary. Another approach based on simulation and cutting plane methods is
presented in [7] and [19].

Sometimes it may not be possible to make a schedule that matches the
required workforce for all time periods. However if short periods (e.g. 15 min-
utes) are used for scheduling it may be acceptable to have a slight understaffing
in a few periods, which may be made up for by overstaffing in other periods.
To fully account for this, staffing and scheduling need to be considered as one
unified problem. This makes for very complex problems which may be difficult
to solve for large systems. A fluid flow based model for staffing presented in
[35] should be able to take possible schedules into account. Other work dealing
with combined staffing and scheduling is discussed in [25].

4.3 Multi-Skill Call Centers

With the advent of more advanced ACDs, the use of skills-based routing is now
the norm in practically all but the smallest call centers. Agents are divided into
different groups according to their skills, e.g. the languages they speak, their
IT-competence or financial knowledge. Incoming calls have to be routed based
on some criteria such as the dialed number (by DNIS) or the number dialed
from (by ANI). Another or additional way to determine how a call should be
routed is from caller input into the IVR such as the customer entering his bank
account number or choosing a desired service.

The reasons for implementing a multi-skill/class environment in a call center
are many. An obvious reason is a desire to differentiate customers and give
them different priorities. Examples of this are that some customers may be
more valuable than others to e.g. a bank and some agents may have better
competencies to handle the important customers. Another example is support
lines that have two numbers customers can call, one free of charge and another
charged number, where customers willing to pay are put ahead in line.

An additional and perhaps even more important reason for having multi-
skill call centers is that it allows for a higher level of specialization of the
agents. Specialized people generally perform better within their speciality [66].
However, dividing agents into smaller skill groups obviously negates some of
the benefit gained by having a larger more effective unit. Allowing customers
to be routed between the different skill groups based on a given policy can to
some extent alleviate this dilemma by introducing some flexibility.
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The use of skills-based routing complicates most of the aspects of call center
management. As seen in Figure 4.2 the structural design of call centers can
become very complicated indeed. Staffing becomes much more difficult as the
number of agents assigned to one agent pool may influence the number of agents
needed in another pool. Staffing of multi-skill call centers has experienced a
growing interest in the literature in recent years. This topic is dealt with in
e.g. [71], [35], and [62], while a recent overview can be found in [51].

µ1 µ1 µ1

λ A

µ2 µ3µ2 µ2 µ3 µ3

1 2 n 31 2 n 2

λ B λ C λ D

1 2 n 1

Figure 4.2: Multi-skill call center. Solid lines represent default call routing, dotted
lines alternative routes.

The general consensus is that simulation is the only feasible way to analyze
multi-skill call centers when they start to get just a little complicated, see e.g.
[8]. The alternative approach to analyze more advanced routing schemes has
been to split them up into smaller parts and introduce a number of canonical
designs which are easier to deal with [25]. A number of canonical designs are
shown in Figure 4.3.

While the canonical structures are often used to gain insight into parts of
a more complicated call center setup, it still remains to be investigated how
large the effect of these simplifications is. The effect will obviously depend on
the individual setup, but caution should indeed be exercised when using these
simplifications. This would be an interesting topic for a simulation study. It
will depend on how large the influence of the ignored parts of the system is. If
higher priority calls routed to a considered agent pool are ignored, the effect
may very well be much larger than if lower priority calls are ignored. This is
treated further in Section 6.3.
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A A B A B A B A B C A

"I" "V" "N" "X" "W" "M"

B

1 2 1 2 3212111

Figure 4.3: Canonical designs for skill-based routing as defined in [25].

The benefit of having cross-trained agents, such as in the “M”-design, has
been thoroughly studied in the literature. The general consensus is that a few
cross trained agents can make a system perform almost as well as a system
with all cross trained agents [48]. This is a way to reduce costs as agents with
more skills can be assumed to be more expensive than those with less.

The “M”-design is also investigated in [67], where one customer class is given
non-preemptive priority over the other, when assigning calls to the generalists.
Balking and abandonments are taken into account and simple performance
measures calculated. A 4-dimensional state space is defined and the balance
equations are solved using the power method. This approach is limited to
smaller systems due to the curse of dimensionality problem.

In [59] it is shown that the Erlang-B formula is also valid for hyper-exponen-
tial service time durations in loss systems, which may occur if calls originate
from different types of customers. Indeed, the Erlang-B formula is valid for any
service time distribution, as only the mean of the service duration affects the
blocking probability [37]. Hyper-exponential service time durations in delay
systems are treated in [59].

A thorough treatment of multi-skill call centers is given in [61]. Limited
computer resources in a multi-skill environment are treated in [3]. A fluid ap-
proximation to multi-server schemes with abandonments is presented in [75].
As always the fluid model works best for heavily loaded systems and it is con-
cluded that the service time distribution mostly affect performance through its
mean, whereas the abandonment (or patience) distribution affects performance
through higher order moments to a higher degree. In [33] staffing of multi-class
call centers (one agent skill, multiple customer classes) is addressed and the
findings indicate that it may be enough to consider the total rate of incoming
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calls.

4.4 Skills-Based Routing

In call centers with multiple customer classes and different agent skills, a central
problem is how to route calls. This is often divided into call and agent selection
policies. Call selection being how agents select the next call when they have
finished serving a call, and agent selection being how incoming calls are routed
if multiple agents are free.

Skills-based routing is obviously strongly intertwined with the other aspects
of call center planning. However, the discipline of agent/call selection under
a given workforce and call load poses many interesting issues. Many different
routing schemes are used in call centers, as illustrated in Figure 4.3, but the
consequence of using these are not fully understood.

The call selection and agent selection problems are treated in [6] for a skills-
based setting. A system with one server pool and multiple customer classes
is considered, where costs can be associated with different quantities such as
queue length, abandonment and number of customers in the system. In most
cases it is desirable to use a work conserving policy, however in certain cases
it may indeed be desirable to have idle agents even while calls are waiting. In
Appendix C it is shown that especially for the case where the cost functions are
step shaped, e.g. zero below a given value and non-zero above it may indeed
be advantageous to keep some servers free.

Agent Selection

Agent selection can further be divided into which agent pool calls are routed
to and which individual agent in the pool gets the call. The most common
practice in call centers is to route incoming calls to the agent who has waited
the longest within an agent pool. This can be seen as the most fair policy for
the agents. However, in a contact center where agents have other tasks than
answering calls it may be better to use a different scheme in order to give agents
fewer but longer breaks. This would allow them better to be able to concentrate
on other tasks (answering emails, etc.) and is certainly an interesting topic for
further research.

Agent pool selection becomes relevant when calls are allowed to go to more
than one agent pool and agents are free in these. This could be incoming A-
calls in the “N”-design, but not B-calls. Or B-calls, but not A- and C-calls
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in the “W”-design. The standard way to implement agent pool selection is to
have a preferred agent pool for each call type, this could be pool number 1 for
A-calls in the “N”-design. Often it would be preferable to send calls to agents
who are most specialized in order to let more generalized agents be available
to handle other call types. This means that A-calls should be sent to agent
pool 1 and B-calls to agent pool 3 if possible in the “M”-design. Agents in
pool 2 should thus only be assigned calls if none of the respective specialized
agents are available. An approach for optimizing routing policies in complex
setups based on one-step policy improvement is presented in [12]. No queues
are allowed in the system thus the objective is to minimize blocked calls which
is effectively done.

Another implementation used in call centers is only to allow calls to go to
a server group after a certain fixed time. The motivation for this type of setup
could be if a call center has a front and back office, where it is preferred that
front office agents take the calls. Back office agents may have other tasks and
only be used when a queue builds up in order to improve the service levels.
This type of policy is treated further in Chapter 5.

A multi-skill system without waiting room is treated in [52] in order to
examine the loss probability and overflow process. They treat setups with
many skills and customer types and come up with an approximation that is
used to analyze the performance of different routing policies, i.e. the order of
which incoming calls select an agent type.

Call Selection

Call selection becomes relevant when an agent finishes serving a customer and
is allowed to take multiple classes of calls, i.e. agents in the “V”-design or agent
pool 2 in the “N”-design. Within each of the queues, the norm is to answer
calls according to FCFS for fairness, even if other policies may improve service
levels as discussed in Section 2.3.

A straightforward approach to call selection is to rank customers strictly
according to different priorities. Early work on this policy is presented in [22].
This is also referred to as head-of-line prioritization, as high priority customers
are allowed to get in front of lower priority customers. When an agent finishes
a call, the next call routed to the agent will be the one waiting with the highest
priority. This policy may, however, lead to very long waiting times for lower
priority customers, especially if the majority of customers are of high priority.

Using dynamic priority can to some extent overcome the risk of exceedingly
long waiting times for low priority customers. This prioritization scheme is
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implemented by adding a constant, kX , dependent on the priority class, X,
to the waiting time of customers. When an agent becomes free, the next call
he will receive, will be the one with the lowest combined value of the waiting
time and the constant. The added constant can in this way be seen as a target
waiting time, and lower values of the constants correspond to higher priority.
This policy was first described in [38] in its discrete form and is sometimes also
referred to as scheduling according to due date. The tail behavior is described
in [39] as being exponential, and the first part of the distribution is examined
using The Erlang Approximation (TEA) in Appendix B.

Service according to the dynamic priority discipline is bounded by FCFS
and head-of-line prioritization. If different classes have the same priority con-
stant they will obviously be served according to FCFS. At the other extreme,
if a customer class’ priority constant is allowed to tend to infinity, then it will
always get service before other classes, which would correspond to strict or
head-of-line prioritization.

The dynamic priority discipline is referred to as being endogenous [40],
because the order in which customers are served not only depends on their
priority class but also on the waiting time the individual customer has already
incurred. A prioritization scheme based on a somewhat similar principle is
introduced in [46] and further treated in [47]. Instead of adding/subtracting
constants as in dynamic priority, the waiting time is multiplied with different
factors based on relative priority, and the customer with the highest product
is chosen for service.

The fixed threshold policy discussed for agent selection also applies for call
selection policies. It implies that agents are only allowed to take calls from
certain queues that have waited at least the given threshold. This is typically
combined with different priorities in the normal sense. An example could be
to make agent pool 2 in the “N”-design of Figure 4.3 take B-calls, unless there
is a waiting A-call that has waited more than the given threshold. This is a
common policy in call centers, probably due to ease of implementation. Also it
is convenient to relate the fixed thresholds to TSF, however this relation is not
really backed by anything but assumptions. Indeed it is not straightforward,
and it is certainly not documented in the literature until now. It is treated in
Chapter 5 and Appendix C.
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CHAPTER 5
Waiting Time Based

Routing Policies

Routing policies based on a fixed or deterministic threshold on the waiting time
of the first customer in line are used widely in real call centers but the effects
of using these are not very well understood or described in the literature. The
three papers in appendices A, B, and C examine routing policies with waiting
time based policies, in particular, fixed thresholds.

The reasons for using fixed thresholds may be many. One is prioritization
of calls by letting some calls wait longer than others, before overflow is allowed.
The most obvious reason is probably in relation to service levels in the form of
TSF. In this way the fixed threshold can be used to send a call to another agent
group, just before its waiting time reaches the SLT, in order to keep service
levels high. The reasoning behind this is that a call has a certain amount of
time to be routed to the agent group for which it was intended, while still
keeping the possibility of letting it overflow to avoid excessively long waiting
times. The actual effects of using the policy are analyzed in Appendix C.

Fixed type threshold policies have been treated in the literature, however
the threshold has been based on the number of customers in queue rather than
on the waiting time. Such a setup is analyzed in [36]. There is an evident
advantage to base the threshold on the waiting time of the first in line as
compared to the queue length. A queue-length based threshold is strongly
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dependent on the service times and number of servers. Take as an example
a threshold that allows overflow when 20 customers are waiting, this may not
be a strict threshold during peak hours where maybe 100 agents are working,
whereas during the night where traffic is low and maybe only a few agents are
on duty, the overflow threshold would be very high in terms of waiting time.

The lack of literature on fixed threshold policies based on the waiting time
can be ascribed to the difficulties of dealing with constant values in stochastic
systems. Most variables in models are normally assumed to follow the expo-
nential distribution or other closely related distributions, because these are
easier to deal with due to the lack of memory property. As the policy is widely
used in call centers, it is essential to obtain a better comprehension of what
the implications of using it are.

The natural and most used approach to model queueing systems, since the
times of Erlang, has been to base the analysis on the number of customers
in line. Indeed a fixed threshold overflow policy is analyzed in [9] based on
this approach. Here, states of the Markov chain correspond to the number
of customers in queue, and state dependent overflow probabilities are used to
emulate a fixed threshold. The fixed threshold in this case determines whether
an incoming call is allowed to go to a back-office group of agents or not. The
decision to allow overflow or not is thus taken immediately upon arrival from
a straightforward presumption that the risk of having to wait more than the
given threshold increases with the number of customers already in queue. The
approach seems to work well and an approximation of the waiting time dis-
tribution together with other performance measures are obtained. Apart from
[9], the literature on fixed thresholds on the waiting time is non-existent.

The three papers presented in appendices A, B, and C deal with fixed
thresholds on the waiting time and are all based on a novel approach. Instead
of considering the number of customers queued, the waiting time of the first
customer in line is used as the primary variable. This approach allows fixed
thresholds to be dealt with directly, contrary to the usual approach. In all
cases the waiting time distributions are derived or approximated. Obtaining
the waiting time distributions is essential to fully understand the dynamics of
the system and to relate the results to the use of TSF as a performance measure
in call centers.

The simple design of Figure 5.1a is analyzed analytically in Appendix A
and discussed in Section 5.1. An approximation capable of dealing with the
more complex setup in Figure 5.1b is presented in Appendix B and discussed in
Section 5.2. In Appendix C overflow in systems with “N”-design is optimized,
this is also discussed in Section 5.3.
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Figure 5.1: The setups with fixed thresholds, which the work presented in ap-
pendices A-C is centered around. The simpler setup in (a) is analyzed analytically
whereas approximations are used for the more involved multi-server setup in (b).

5.1 An Analytical Approach

The simplest possible setup using the fixed threshold on the waiting time of
the first customer in line (Wt) is analyzed in Appendix A. An illustration of
the setup is shown in Figure 5.1a. Only having one primary server (front office
agent) and one secondary server (back office agent) allows an analytical solution
of the waiting time distribution to be found. Calls are only allowed to go to the
back office (secondary) server when its waiting time has reached or surpassed
a fixed value K. Both service times and arrivals are assumed Markovian.

Put briefly, the analysis is based on the evolution of the waiting time of
the first customer in line. This First In Line (FIL) process is illustrated with
an example in Figure 5.2. Wt obviously increases linearly with time, when at
least one customer is queued. Whenever customer i enters service, the waiting
time of the first customer in line decreases with an exponential value, Ai, as
the time between arrivals is exponential. If Wt in this way decreases to a
negative value, it is taken as the customer who just initiated service was the
only one in the queue, and Wt is set to zero. This process is analyzed using
forward Kolmogorov equations and level crossing arguments. In this way eight
linear equations are produced. The solution to this equation system gives a
set of constants, which are included in the final solution of the waiting time
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Figure 5.2: Illustration of the waiting time of the first customer in line process
for the setup shown in Figure 5.1a. The numbers in circles illustrate arrivals and
service times of customers.

distribution.
As mentioned, the solution is based on solving a set of eight equations. This

equation system has been shown to be solvable for all conceivable parameter
values, however general independence of all the equations has not been shown.
What has been shown though, is that at least seven of the eight equations are
independent, this is done in Appendix A.1.

The form of the resulting waiting time distribution is extremely simple and
attractive as it is in a way intuitively evident. The density of the waiting time
customers experience in the system, wFIL(x), is given in Equation 5.1. The
constants c1 and c2 are determined from solving the equation system discussed
earlier.

wFIL(x) =

c1e
(λ−µp)x, for 0 < x ≤ K;

c2e
(λ−µp−µs)x, for x > K.

(5.1)

As is seen, the shape of the waiting time distribution takes the same fun-
damental form as for an M/M/1 queue, i.e. exponentially distributed waiting
times for values below and above K respectively. An additional atom at the
overflow threshold K corresponds to the customers allowed to go to the sec-
ondary server because their waiting time reached K.
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For the front and back office setup there is an interesting consequence of
the fact that higher traffic is allowed than what the front office server can
handle. The consequence of this is that the waiting time distribution for values
less than K becomes concave when λ > µp. This is illustrated in Figure 5.3a.
If the primary server is highly overloaded and the overflow threshold is large,
most calls will experience a waiting time close to K as illustrated in Figure 5.3b.
Obviously the traffic must be less than the combined capacity of the two servers
in order for the system to be stable as abandonments are not considered.
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Figure 5.3: Analytically determined waiting times for the two server setup shown
in Figure 5.1a.

Even though the direct practical use of this result may be limited, it is
theoretically very interesting, as it may indicate that a similar simple result
would apply to a multi-server setup. This hypothesis does require further
research though. Also the results can be seen as a proof of concept of the FIL
approach.

5.2 The Erlang Approximation

The analytical approach used for the two server setup treated in Appendix A
is not easily applicable to more complex setups, as the number of equations
and the resulting expressions increase very quickly with the complexity of the
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system. An example of this is that a 2-dimensional FIL process would need to
be analyzed, if a system with two queues was to be considered. In Appendix B
The Erlang Approximation (TEA), based on the same fundamental idea of
modelling the waiting time of the customer first in line, is presented.

A discrete approximation of the FIL process is used, instead of modelling it
explicitly as in Appendix A. This allows the system to be modelled as a Contin-
uous Time Markov Chain (CTMC) through which waiting time distributions
can be obtained. Besides modelling the waiting time of the first in line, the
number of free servers is also included in the model thus allowing multi-server
setups to be treated.

The principle behind TEA is illustrated in Figure 5.4. Whenever servers are
free the system is modelled in the usual way of keeping track of the number of
free servers, represented by negative indices. When customers start queueing
up the FIL waiting time is modelled by states with positive indices. Tran-
sitions with rate γ represent evolving time. The number of steps backward,
when a customer goes into service, follows a truncated geometric distribution
illustrated by the double arrows in Figure 5.4. These correspond to the ex-
ponentially distributed jumps in the continuous representation described in
Section 5.1. A truncated state space is used for the actual computations.

nµ nµ nµnµ
−n 210−1−2

λ γ

µ(n−1)

λ λ γ
3

Figure 5.4: The Erlang Approximation illustrated by states and transitions of the
Markov chain for the relatively simple M/M/n system.

The waiting time of customers is approximated by considering the states
from which customers enter service. For example, if a customer enters service
from state i, this corresponds to having waited a sum of i exponentially dis-
tributed (with rate γ) time frames, i.e. a gamma distributed amount of time.
The approach used to determine the waiting time distributions is described in
detail in Appendix B.

When TEA is used for system with “N”-design, the underlying Markov
chain becomes 2-dimensional. The combination of the number of free servers
(negative indices) and the FIL waiting time (positive indices) in each dimension
helps reduce the curse of dimensionality problem and makes the approximation
of the “N”-design feasible. Systems with three or more server groups and
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customer classes could in principle also be analyzed using TEA, but then the
curse of dimensionality would quickly become a problem.

TEA is shown to converge to the analytically correct solution when used
for an M/M/1 system in Appendix B.1. It converges for γ → ∞ and when
the number of states with positive indices representing the FIL waiting time
is infinite. This result nicely supports the fundamental approach of TEA.
Simulations are used to verify TEA for the more complex setups.

TEA is first and foremost used to model the “N”-design shown in Figure 4.3
and obtain the waiting time distribution from which relevant performance mea-
sures such as ASA and TSF are easily calculated. An example of the waiting
times as found through TEA is presented in Figure 5.5a and compared to
simulations.

The generic nature of TEA is also demonstrated in Appendix B by analyzing
other models such as systems featuring dynamic priority, which were discussed
in Section 4.4. A conjecture in [39] states that the tails of the waiting time
distributions have an exponential shape for a system based on the “V”-design
with dynamic priority. This is based on the fact that if customers arrive at
a system where they can expect to wait a long time, then a B-customer that
has already waited (kA−kB) will receive the same service as a recently arrived
A-customer. The conjecture is illustrated in Figure 5.5b where a logarithmic
plot is used to illustrate the exponential tails. TEA is shown to work best
for the lower and most interesting part of the waiting time distribution. The
deviation of the model from the simulations in the upper part is magnified by
the logarithmic plot.

5.3 Optimization of Overflows

The next obvious question is whether the fixed threshold policy is actually
attractive and if it is, for which scenarios. This is treated in Appendix C,
where the “N”-design from Appendix B is further analyzed. The approach
used for the optimization is based on adding decisions to the states in the
underlying Markov chain of TEA. In this way it can be treated as a Markov
Decision Process.

The decisions subject to optimization are in regard to how agents in server
group 2 of the “N”-design choose calls. When an agent in this group becomes
free and calls are waiting in both queues it must choose whether to take an A-
or B-customer into service. Likewise, if only A-calls are waiting it must choose
whether to serve this or leave it. The reason for not taking an A-call, while no
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(b) “V”-design, dynamic priority.

Figure 5.5: Waiting time distributions found from The Erlang Approximation.

B-calls are waiting, would be to keep the group 2 server(s) reserved for future
B-calls.

In order to optimize the control of overflowing calls, costs must be assigned
to certain events. In Appendix C this is done by imposing a cost whenever
a call is taken into service after having waited in queue. The actual form of
these cost functions depends on what service measures are prioritized such as
ASA and/or TSF. Costs can also be assigned to whenever an A-call is taken
by a group 2 agent, i.e. when an overflow happens. Depending on how the
cost functions are given, both A- and B-calls can be of higher priority than the
other.

It is shown that the fixed threshold policy is in some cases nearly optimal.
This is the case if ASA is considered and A calls are given higher priority than
B calls and an additional cost is assigned to overflowing calls.

The optimal policies when only considering ASA take some fairly simple
forms. In general there should almost never be free servers, if calls are waiting.
If calls from both classes are waiting and an agent from pool 2 becomes free,
he should generally take the customer having waited the longest. Different
parameters may affect the optimal policy in favour of either customer class
though.

When TSF is used as basis for the cost functions, the picture becomes much
more involved. The optimal policies become rather complex, however, they can
be well explained by closer inspection as done in Appendix C.

An example of the optimal policy when the optimization is based on TSF
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Optimization of Overflows

is seen in Figure 5.6a. Each marker corresponds to a state in the state space
of the underlying Markov chain of TEA. The x-axis represent free servers in
agent group 1 (negative indices) and the FIL waiting time of queue A (positive
indices), the y-axis represent server group 2 and the B-queue in the same way.
Green markers mean that A-calls should be sent to server group 2, blue markers
they should not. The white areas show states where no decision is possible. As
is seen no decisions are possible when group 1 servers are vacant. Whenever A-
calls are queued, decisions are tied to each state, except when all group 2 servers
are occupied and no B-calls are waiting. This is due to a technical modelling
issue explained in the detailed presentation of the optimization approach in
Appendix C.

Figure 5.6b shows the resulting waiting time distribution of the optimized
policy compared to having a fixed threshold policy. It is seen that the tail of
the optimized policy is larger than that of the fixed threshold policy for A-calls,
but more calls are served within the SLT (the rightmost vertical dotted black
line) when using the optimized policy. As the optimization is only based on
the fraction of calls served within the SLT, this is as desired.

0 10 20 30 40 50 60

40

30

20

10

0

−10

i

j

 

 

a = 1
a = 2

(a) Optimal policy.

0 0.5 1 1.5 2
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Waiting time

P
(W

<w
)

 

 

A optimized
B optimized
A fixed
B fixed

SLT
b

SLT
a

(b) Waiting time distributions.

Figure 5.6: The resulting policy from optimizing with regard to TSF (green means
send A-call to server group 2, blue means do not) and the appertaining waiting
time distributions comparing fixed and optimized thresholds.

All in all, Appendix C shows that the fixed threshold policy may indeed
be attractive to use, however it can be improved by more complex policies in
most cases.
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CHAPTER 6
Simulation Modelling

The very complex nature of modern call centers makes it difficult if not im-
possible to construct analytical models that describe their operation and per-
formance in detail. Discrete event simulation is often mentioned as the only
feasible approach, when the performance of multi-skill call centers needs to be
investigated [57], [25].

Modelling a call center by discrete event simulation enables very complex
setups to be analyzed. This includes call centers with multi-skill setups, general
service time distributions, time varying arrival rates, and a varying number of
agents working during the day.

A detailed simulation model can in many cases represent a real scenario
more closely than analytical models, especially for complex setups. A simula-
tion model built on a real scenario is thus suitable to analyze what happens if a
certain parameter, such as the threshold determining when overflow is allowed,
is tweaked. This may be the case even if the simulations are not capable of
reproducing the real performance data precisely, a general trend may still be
easily identifiable.

One of the drawbacks of simulations is that it can be hard to restrict the
extent of the investigation to something that produces transparent and useful
results due to the many parameters involved in complex models. In order to
structure the investigations, proper “design of experiments”-techniques should
be used, see [58] and [45] for exhaustive texts on this topic.

45



6. Simulation Modelling

Another drawback is that running a sufficient number of simulations to
obtain reliable results can be time consuming even on high performance com-
puters. Also the implementation of a complex model can require a lot of work.

There is an abundant amount of literature on discrete event simulation both
in the general setting and within the call center world. The role of simulation
as a tool to aid in decision making within complex multi-skill call centers is
discussed in [8]. The fundamental issues connected to call center simulation
such as relevant inputs and outputs are described [57] and [56]. Simple exam-
ples of the possibilities of simulation modelling that deal with cross training of
agents in multi-skill call centers are also given in both of these references.

A real-world scenario involving an outbound call center is analyzed using
simulations in [32]. Three different call scheduling methods, including the one
actually used in the call center, are compared and it is shown that one of the
alternative methods will result in more Right Party Contacts (RPCs).

Within this chapter the basic elements of discrete event simulation are de-
scribed in Section 6.1. The different approaches that can be taken regarding
the use of software for simulation are discussed in Section 6.2. Finally in Sec-
tion 6.3, an example is given of how simulations can be used to investigate the
effect of relying upon canonical model structures.

6.1 Discrete Event Simulation Basics

A realistic discrete event simulation model of a call center involves a lot of
parameters. Some of these are normally regarded as uncontrollable factors,
such as call patterns and service times. Obviously measures can be taken to
modify these, but basically this involves much more than changing a parameter
somewhere in the telephony system. On the other hand, controllable factors
include routing policies, agent schedules, and the assigned agent skills.

Based on these parameters, a discrete event simulation model simulates
the operation of a call center down to the individual calls arriving, perhaps
waiting, and finally being served by an agent or abandoning. An illustration
of how the handling of calls by individual agents proceed in a simulation of
a multi-skill call center is shown in Figure 6.1. The illustrated simulation is
based on a setting similar to the one in Figure 4.2, i.e. a setting with four
different call types, three agent groups, and overflow between these. Figure 6.1
also illustrates how a simulation model easily can be adapted to account for
different arrival and service rates, different number of agents in the groups, and
specific routing policies.
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Figure 6.1: Illustration of the details of agents’ work in a discrete event simulation
of a multi-skill call center as the one seen in Figure 4.2. Each line corresponds to
an individual agent, the circles show when agents pick up calls, and the lines to
the right of the circles show the service times.

The term discrete event simulation refers to how the software program takes
all events into account. These events could include an arriving call, a call having
waited a certain time that allows it to overflow, and agents finishing serving
a call. The events are then typically simulated in the order they happen, and
the times at which they happen are updated and recorded for analysis.

Service and inter-arrival times are typically assumed to happen according
to a given distribution from which the individual values for the calls are sam-
pled. This sampling of values relies heavily on random number generation, thus
simulations of the same system will give different results if not the same seed is
used. This means that the more simulations are carried out, the more precise
the result can be assumed to be and indeed confidence intervals can and should
be determined. In this way simulations can be used to verify the correctness of
analytical results as is done in the work presented in Appendix A. Simulations
are also often used to examine how good approximations are, examples of this
are seen in Appendix B and in [52].

Relevant data should be collected during the simulations in order to be
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6. Simulation Modelling

able to assess the performance of the simulated system. Figure 6.2 shows the
number of occupied agents and the number of different calls in queue for a
simulation of a multi-skill system as an illustration of this.
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Figure 6.2: Illustration of the load on a simulated system and the transient that
needs to be taken into account when starting with an empty system. Only events
within the vertical dotted lines should be used to calculate performance measures.

What is seen from Figure 6.2 is that it takes some time for the system to
reach a steady phase. An often used approach is to start with an empty system
and disregard the transient phase until the system reaches a stable phase. How
long this transient phase should be, is ambiguous, however, as a starting point
it is better to make it too long than too short. A somewhat similar modification
of the simulated data must be carried out at the end of the simulation. Here
it is appropriate to remove all events after the last arrival, as low priority calls
queued after this time instant will never be overtaken by high priority calls and
thus in principle receive better service.

The collected data forms the basis for the outputs of the simulation such
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Choice of Software

as TSF, ASA, and fraction of abandoned calls. These outputs can be used to
examine what effect different changes of the controllable factors will trigger.

6.2 Choice of Software

Simulation of call center performance can be approached in different ways. A
fundamental decision is whether to build a simulation model from scratch or
use a commercial software package. Building a simulation model from scratch
using a programming language such as C, C++, Java, Matlab, etc. requires a
certain level of familiarity with stochastic processes and discrete event simula-
tion principles together with the obvious programming skill. Contrary to this,
using a commercial software package such as Arena, Extendsim or OPNET
should be much more approachable, as these will typically provide a graphical
user interface. It should also be taken into account that acquiring the license
for a commercial software package can be quite costly.

In [70] simulation of a call center using C and Arena is compared. In general
the C-implementation is favoured by the authors due to its faster performance
and better ability to deal with the finer details in a call center setup. An
example of the difficulties of dealing with details in the commercial software
is the possibility to assign calls to the free agent who has waited the longest,
which proved troublesome in Arena but straightforward in C. However, for
most call center managers’ point of view, Arena, or other dedicated commercial
simulation packages, may indeed be preferable due to the much faster and easier
model building process. In this perspective it should also be pointed out that
managers in commercial call centers may not have the time and perhaps not
the skill to develop a simulation program from scratch.

The aforementioned possible lack of programming skills among call center
managers is also addressed in [63] where an implementation of a simulation
tool with an Excel interface is presented. The underlying simulation engine
is based on a combination of Visual Basic and Arena. Despite the obvious
advantage of a familiar interface, the model only encompasses a single-skill
call center. Building a flexible multi-skill simulation tool in this way quickly
becomes much more involved than what is presented in [63]. Using such an
approach will also still require a costly license for the simulation software.

An in-between approach, between the full-blown commercial software pack-
ages and from-the-scratch implementations, might be to have a dedicated sim-
ulation model built, based on a given call center setup. This could eventually
have an Excel/VB interface as above combined with a dedicated program writ-
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ten in e.g. C. For a multi-skill call center the most feasible solution using this
approach would probably be to have a dedicated model where routing policies
are somewhat fixed, but the individual variables, such as call load, number of
agents, etc. can be tweaked as desired.

6.3 Illustrative Simulation Example

A small example of how discrete event simulation can be used to investigate
a concrete issue is presented in this section. It is in no way an exhaustive
analysis, but rather just a teaser of the possibilities. The simulation model was
implemented in Matlab.

Consequence of relying on canonical designs

In Section 4.3, it was discussed how one should be careful if relying too much on
performance measures obtained from analyzing the simplified canonical struc-
tures shown in Figure 4.3. In order to investigate the consequence of ignoring a
part of a multi-skill setup, the system in Figure 6.3 is analyzed using a discrete
event simulation model.
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Figure 6.3: The simulated setup, dotted lines show where the FIL waiting time
must exceed a threshold, before calls are allowed to be taken from the queue.

The reference case corresponding to a simplified canonical “X”-design is
shown in black in Figure 6.3. It includes two call types, B- and C-calls, and
two server groups, group 1 and 2. This reference case is compared to a case
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Illustrative Simulation Example

where lower priority calls are added to the system, referred to as D-calls and
illustrated with grey in the right part of Figure 6.3. The last case examined
is one where high priority calls are added, corresponding to the A-calls in the
figure, also shown in grey. In this case no D-calls are present.

The parameters used for the simulation are given in Table 6.1. Arrival
rates, service times and abandonments are all assumed Markovian. The units
can be arbitrary as long as they are consistent. In the call center setting they
could very well be minutes (and 1/minute). The arrival rate of calls of type i is
given as λi, service rates of agents in group j as µj , number of agents in group
j as nj , abandonment rate of type i calls as αi and finally the fixed thresholds
on the waiting time of the first in line before overflow is allowed for call type i
is given as ki.

Table 6.1: Parameters for the simulation.

Parameter λA λB λC λD

Reference case 0 27 27 0
Added low priority case 0 27 27 6
Added high priority case 6 27 27 0

Shared parameters n1 = 30, n2 = 30,
µ1 = 1, µ2 = 1,
αA,...,D = 1

3 , kA,...,D = 1
5 .

As is seen, the three cases only differ in that a small amount of D-calls
are added in the second case and a small amount of A-calls in the third case.
In this way, the total traffic offered to the constant number of servers is not
the same in the reference case as in the other two cases. As the intent is to
investigate the consequences of ignoring a part of the setup altogether, this is
as it should be.

In all cases 200 iterations of 10′000 calls were simulated and the average
values of the performance measures calculated. This amount of simulations
gives only a small uncertainty on the last digit of the presented results. In
this way, the uncertainties are nowhere near significant as compared to the
differences between the service measures of the three cases.

The first output of the simulations is the percentage of calls served within
1/3 time unit corresponding to 20s if minutes are used as time unit. The per-
centage is calculated by taking the number of calls served within the time limit
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6. Simulation Modelling

divided by the number of offered calls, thus abandoned calls are also counted
in the denominator as discussed in Section 2.3. The other two performance in-
dicators shown, are ASA and the percentage of abandoned calls. The average
values of the results from the 200 simulations are shown in Table 6.2.

Table 6.2: Simulation results. Input parameters are assumed to be in minutes.

Call type A B C D

Service levels with 20s SLT.

Reference case - 98.7% 95.5% -
Added low priority case - 97.6% 88.9% 54.1%
Added high priority case 99.0% 95.9% 75.9% -

Average Speed of Answer

Reference case - 2.27s 3.15s -
Added low priority case - 4.17s 6.64s 30.7s
Added high priority case 1.84s 6.36s 10.4s -

Lost calls due to abandonments

Reference case - 1.28% 1.76% -
Added low priority case - 2.32% 3.73% 17.8%
Added high priority case 1.04% 3.52% 5.99% -

It is seen from Table 6.2 that adding high priority calls affects the three
shown performance parameters of B- and C-calls to a much larger degree than
adding low priority calls. Obviously, this can also be interpreted as ignoring
high priority calls, when relying on canonical structures induces a much larger
error than ignoring low priority calls.

The results presented in this section correspond nicely to what could be
expected. They illustrate in a tangible way that caution and common sense
should be exercised if relying on a simplified model of a larger more complex
system. Furthermore the results give a small example of the possibilities of
using discrete event simulation for modelling call center performance.
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CHAPTER 7
Discussion

The content and contributions of this thesis are summarized and discussed in
this chapter.

In chapters 2-6 of the thesis, the fundamental methods and issues of call cen-
ter management are treated. This spans from a general description of call cen-
ters and their structure over data analysis to capacity planning using queueing
models and simulations. A thorough literature review together with numerous
references are given throughout these chapters.

The main part of the thesis is the three papers presented in appendices
A, B, and C. The background of this work and these papers is discussed in
Chapter 5.

The single main contribution is the development and use of the First In
Line (FIL) analysis. This approach involves modelling the waiting time of the
customer first in line as the main variable. This is a fundamentally new ap-
proach to modelling queueing systems and opens up new possibilities regarding
analysis of certain queueing systems as discussed below.

The concept of FIL analysis is proven by the analytical approach taken in
the paper presented in Appendix A. Two different uses of the approach are
presented in this paper, one dealing with a single server that adapts its service
according to the waiting time of the first in line. This analysis is interesting,
because one could very well imagine a server that hurries up the current service,
if a waiting customer becomes impatient after having waited a long time. The
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other use treats a two-server setup where the secondary server is only allowed
to take jobs that have waited more than a given fixed time. The FIL approach
enables exact analysis of this system, which was otherwise problematic due
to the inherent difficulties of dealing with deterministic entities in stochastic
systems. As a result, a very simple and attractive expression is found for the
waiting time distribution of customers in the latter system.

An approximation based on the FIL principle is developed in the paper
presented in Appendix B and referred to as The Erlang Approximation. This
approximation enables analysis of more complex systems than what is feasible
using the exact approach of Appendix A. The versatility of TEA is demon-
strated by approximations of the performance of different queueing systems,
all where the waiting time of customers somehow plays an important role.
Numerous suggestions for further uses are also discussed.

The last paper, presented in Appendix C, takes the use of the approaches
developed in the two former papers a step further. Here, the overflow between
server groups is optimized with regard to the service level measures used in the
call center industry. Furthermore the appropriateness of the often used fixed
threshold policy is verified and the implications of using it are discussed.

The work presented spans a nice range of research fields. From the very
analytical approach in Appendix A, over the more application oriented ap-
proximation of Appendix B, to optimization of concrete call center processes
in Appendix C.

The FIL approach should be taken into consideration whenever queueing
systems, in which processes somehow depend on the waiting time of customers,
are to be analyzed.
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Abstract

Motivated by service levels in terms of the waiting-time distribution seen in e.g. call
centers, we consider two models for systems with a service discipline that depends on
the waiting time. The first model deals with a single server that continuously adapts
its service rate based on the waiting time of the first customer in line. In the second
model, one queue is served by a primary server which is supplemented by a secondary
server when the waiting of the first customer in line exceeds a threshold. Using level
crossings for the waiting-time process of the first customer in line, we derive steady-
state waiting-time distributions for both models. The results are illustrated with
numerical examples.

Keywords: Waiting-time distribution; Adaptive service rate; Call centers; Contact
centers; Queues; Deterministic threshold; Overflow; Level crossing.

1 Introduction

In service systems, the tail probability (or distribution function) of the waiting time of
customers is one of the main service-level indicators. For example, in call centers the
service level is generally characterized by the telephone service factor (TSF), i.e., the
fraction of calls whose delay fall below a prespecified target. Typically, call centers use a
80-20 TSF meaning that 80% of the calls should be taken into service within 20 seconds,
see [12]. Motivated by performance measures in terms of tail probabilities of waiting times,
we consider queueing systems where the service mechanism is based on waiting times of
customers. This type of control policy is commonly used in call centers [20], and indeed
the authors have often encountered it in various forms when working with call centers.
However, the literature on it is limited. In the traditional queueing literature, routing and
control are commonly based on the number of customers present.
The main goal of this paper is to find the steady-state waiting-time distribution for queue-
ing systems where the service characteristics depend on the waiting time of the first cus-
tomer in line. This type of service control seems to be new in the queueing literature,
despite its widespread use in the industry. In the sequel we use FIL as an abbreviation of
first customer in line.
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We consider two Markovian queueing models: (i) single-server queues with FIL waiting-
time dependent service speed and (ii) a queue with two heterogeneous servers, where the
secondary server is only activated as soon as the FIL waiting time exceeds some target
level. For both models, the analysis is based on the waiting process of the first customer
in line (FIL-process). Using level crossings, we find the steady-state distribution of the
FIL-process and derive the waiting-time distribution as a corollary.
First, in Section 2, we study the single-server model, where the service speed can be
continuously adapted based on the waiting time of the first customer in line. This model
is related to the study of dams and queueing systems with workload-dependent service
rates, see e.g. [4], [5], [16] or [24]. The difference is that the service speed here depends
on the waiting time instead of the amount of work present.
Second, in Section 3, we consider a system with a single queue and two heterogeneous
servers, where the secondary server takes the first customer in line into service as soon as
his waiting time exceeds some threshold. The primary motivation for this model stems
from routing mechanisms in call centers with operators in front and back offices. Typically,
the only task of operators in the front office would be to answer calls whereas operators
in the back office would have other assignments and only answer calls under high load.
A common problem is then how to meet the service level agreements while keeping the
disturbance of the back office operators to a minimum, see [12] and references therein.
Overflow problems are in general difficult to analyze, see [11], because the overflow traffic
is not Poisson; the deterministic threshold of this model only adds to this. We believe
though that the model is of independent interest and has its applications in other areas
where the service level involves the (tail) distribution of the waiting time, as in, e.g.,
telecommunication and production systems.
Related to the heterogeneous-servers model above is the slow-server problem, see [18],
[19], [23] and [25]. In the slow-server model, a single queue is served by two heterogeneous
servers with service rates µ1 and µ2, where µ1 > µ2. In [23], the author gives qualitative
and explicit quantitative results on when to maintain or discard the slow server. In the
models of [18] and [19], customers can be assigned to one of the servers depending on the
number of customers present. There it was shown that the fast server should always be
used and that the slow server should only be used if the number of customers exceeds some
threshold. This result was derived for an infinite waiting space. We note that in case of a
finite queue length, the optimal policy is not necessarily of a threshold type, see [25].
The literature on queueing models where the service time process depends on the waiting
time is limited. In [3], a system with time dependent overflow is approximated by a
queue-length dependent overflow. Prioritization based on adding different constants to the
waiting times of customers is introduced in [17] and referred to as dynamic prioritization.
There are some studies of single-server queues where the service time depends on the
waiting time experienced by the customer in service (instead of the first customer in line),
see [6], [22] and [26]. Furthermore, in [7] the authors consider an M/M/2 queue where
non-waiting customers receive a different rate of service than customers who first wait in
line. Their analysis is based on the “system point method” [8], which is closely related to
the level crossing equations [10] of Section 3.
Some numerical results are presented in Section 4. Conclusions and topics for further
research can be found in Section 5.
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2 Single-server queue

In this section we consider a single-server queue where the service speed depends on the
waiting time of the first customer in line. In particular, we assume that customers arrive
according to a Poisson process with rate λ and have exponentially distributed service
requirements with mean 1/µ. The service discipline is assumed to be FIFO. Denote by
Wt the waiting time of the first customer in the queue at time t, with the convention that
Wt = 0 if the queue is empty. Also, let Yt denote the number of customers in service
at time t (thus Yt ∈ {0, 1}). The service speed depends on the waiting time of the first
customer in line and the service speed function is denoted by r(·). Let r(0) be the service
speed for state (Wt, Yt) = (0, 1) and 0 be the speed for state (0, 0). For convenience, define
ρ0 = λ/(µr(0)). We assume that r(·) is strictly positive, left-continuous, and has a strictly
positive right limit on (0,∞).
The process {(Wt, Yt), t ≥ 0} can now be described as follows. Given that Wt0 = w > 0
and the next service completion is at time t1 > t0, the waiting-time process of the first
customer in line during (t0, t1) behaves as Wt0+t = w + t and Yt0+t = 1. If Sw denotes the
time until the next service completion, conditioned on the initial waiting time w > 0, then
P(Sw > t) = exp

(
−µ

∫ w+t
w r(y)dy

)
. At the moment of a service completion, the second

customer in line (if there is any) becomes the first customer in line. Since the interarrival
times between customers are exponentially distributed, we have

Wt+1
=

(
Wt−1

−Aλ

)+
, (1)

where (x)+ = max{x, 0} and Aλ denotes an exponential random variable of rate λ.
It remains to specify the boundary cases of an empty queue. For (0, Yt0), the time until
the next state transition has an exponential distribution with rate λ+µr(0)Yt0 . For (0, 1)
the next state is (0, 0) with probability µr(0)/(λ+µr(0)), or Wt starts to increase linearly
as described above with probability λ/(λ + µr(0)). For (0, 0), the next state is (0, 1) with
probability one.
Since the service requirements and interarrival times are exponentially distributed, the
process {(Wt, Yt), t ≥ 0} is a Markov process. Assuming that the system is stable (see [9,
Corollary 4.2] for stability conditions), the process is regenerative and thus has a stationary
distribution, see e.g. [2, Chapter VII]. Below, we determine the steady-state distribution
of this process and derive from it the waiting-time distribution of an arbitrary customer.
For this, we introduce the steady-state distribution of the FIL-process as WFIL(x) =
limt→∞ P(Wt ≤ x) and the corresponding density as wFIL(x) = dWFIL(x)/dx. For the
atom in zero, Yt is included in the notation as WFIL(0, y) = limt→∞ P(Wt = 0, Yt = y).

Theorem 2.1 We have WFIL(0, 1) = ρ0W
FIL(0, 0). The density of the FIL-process is

wFIL(x) = λρ0W
FIL(0, 0) exp

{∫ x

0
(λ− µr(y))dy

}
,

where

WFIL(0, 0) =
[
1 + ρ0 + λρ0

∫ ∞

0
exp

{∫ x

0
(λ− µr(y))dy

}
dx

]−1

.

It is instructive to derive the distribution of the FIL-process based on level crossing argu-
ments. We refer to Remark 2.1 below for an alternative proof based on results in [5].

III



Proof For x > 0, using (1), the level crossing equations read

wFIL(x) =
∫ ∞

y=x
e−λ(y−x)µr(y)wFIL(y)dy. (2)

The left-hand side corresponds to upcrossings of level x and the right-hand side corresponds
to the long-run average number of downcrossings through level x. Observe that we have
continuous upcrossings of waiting-time levels and downcrossings by jumps, where the
jump sizes correspond to interarrival times between successive customers (in contrast to
workloads in single-server queues). Taking derivatives on both sides of Equation (2) yields

d
dx

wFIL(x) = λ

[∫ ∞

y=x
e−λ(y−x)µr(y)wFIL(y)dy

]
− µr(x)wFIL(x)

= (λ− µr(x))wFIL(x),

where the second step follows from (2). The solution of this first-order differential equation
can be readily obtained as

wFIL(x) = Cexp
{∫ x

0
(λ− µr(y))dy

}
. (3)

Balancing the transitions between the interior part of the state space and the boundary
part, we have

λWFIL(0, 1) =
∫ ∞

0
e−λyµr(y)wFIL(y)dy.

Using the above and letting x ↓ 0 in (2) yields limx↓0 wFIL(x) = λWFIL(0, 1). Also, letting
x ↓ 0 in (3) determines the constant C = limx↓0 wFIL(x) = λWFIL(0, 1).
Now, balancing the transitions between the two boundary states gives

λWFIL(0, 0) = µr(0)WFIL(0, 1),

which enables us to determine the three constants in terms of WFIL(0, 0). Finally, using
normalization, we have

WFIL(0, 0) + WFIL(0, 1) + λWFIL(0, 1)
∫ ∞

0
exp

{∫ x

0
(λ− µr(y))dy

}
dx = 1.

Expressing WFIL(0, 1) in WFIL(0, 0) and solving for WFIL(0, 0) completes the proof.

To determine the waiting time, we only need to consider the FIL-process at specific points
in time. We introduce the waiting time an arbitrary customer experiences as W and the
distribution of this as W (x) = P(W ≤ x). Using PASTA, it is easy to see that the atom in
zero of the waiting time is given by P(W = 0) = WFIL(0, 0). In case of non-zero waiting
times, the waiting times are given by the FIL-process embedded at epochs just before
downward jumps.
Let Ns(u, v) denote the number of customers taken into service during the interval (u, v].
Consider an infinitesimal interval (t, t + h], h > 0. Then, P(Wt > x; Ns(t, t + h) = 1) =∫∞
x µr(y)hwFIL(y)dy + o(h). Note that P(Ns(t, t + h) = 1)/h (for h → 0) is the rate at
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which customers are taken into service and, since every customer leaves the queue through
the server and the system is stable, equals λ. Combining the above, we have

P(W > x) = lim
h→0

P(Wt > x | Ns(t, t + h) = 1)

= lim
h→0

P(Wt > x; Ns(t, t + h) = 1)
P(Ns(t, t + h) = 1)

=
1
λ

∫ ∞

x
µr(y)wFIL(y)dy.

The density of the steady-state waiting time, w(x), can be obtained by differentiating the
above:

Corollary 2.1 For the steady-state waiting time, we have P(W = 0) = WFIL(0, 0) and
density

w(x) =
µr(x)wFIL(x)

λ
,

where WFIL(0, 0) and wFIL(·) are given in Theorem 2.1.

Remark 2.1 We note that the steady-state waiting time and FIL distributions take a
similar form as the steady-state workload distribution of an M/M/1 queue with workload-
dependent arrival and/or service rate, see e.g. [4], [16] or [2], p. 388. Also related is the
elapsed waiting time process in the M/G/1 queue [21].
For positive values, the FIL-process is a special case of the model considered in [5], i.e.,
an on/off storage system with state-dependent rates restricted to up intervals. Applying
[5, Theorem 1] combined with [5, Section 6] and taking (in the notation of [5]) r0(x) ≡ 1,
λ0(x) = µr(x) and λ1(x)/r1(x) ≡ λ with λ1(x) and r1(x) tending to infinity, directly yields
the FIL-density represented in (3). Furthermore, combining results on expected excursion
times [5, Theorem 2] with standard renewal arguments provides the remaining constants.
¦

Remark 2.2 For a renewal arrival process, the interior part of the state space can be
straightforwardly adapted. In particular, Wt is still a Markov process for positive waiting
times and the level crossing equation (2) then reads

wFIL(x) =
∫ ∞

y=x
µr(y)wFIL(y)(1−A(y − x))dy,

where A(·) is the interarrival-time distribution. Note that the above equation can be
written as a Volterra integral equation of the second kind, see e.g. [27]. For the FIL
process to be a Markov process, a supplementary variable is required to describe the
elapsed interarrival time at the boundary of the state space, i.e., in case there is no
customer in line. We note that Corollary 2.1 remains valid for a renewal process. ¦

Example 2.1 The results become even more tractable in various special cases. Here, we
consider the case of two service speeds determined by a threshold value of the waiting
time of the first customer in the queue. Specifically, we assume that

r(x) =
{

r1, for 0 ≤ x ≤ K,
r2, for x > K.
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This example may serve as an approximation for the case of two heterogeneous servers in
Section 3, where the secondary server is only activated as soon as the FIL-process exceeds
K.
Using Theorem 2.1 and Corollary 2.1, we may easily obtain the steady-state distribution of
the FIL-process and the waiting time. Here, we present the atom in zero and the density of
the waiting time. Let ρi = λ/(µri), for i = 1, 2. After some straightforward calculations,
we obtain

w(x) =





r1µρ1W (0)e−r1µ(1−ρ1)x, for 0 < x ≤ K,

r2µρ1W (0)e(r2−r1)µKe−r2µ(1−ρ2)x, for x > K,

where

W (0) =
[

1
1− ρ1

+ ρ1e
−r1µ(1−ρ1)K

(
1

1− ρ2
− 1

1− ρ1

)]−1

.

3 Two-server queue

In this section we turn our attention to a system with two heterogeneous servers. As in
Section 2 we use the concept of a FIL-process, where Wt denotes the waiting time of the
first customer in line at time t. Again customers arrive to the queue according to a Poisson
process with rate λ. A primary server handles jobs with exponentially distributed service
times with mean 1/µp. A secondary server starts serving customers when Wt exceeds a
threshold K. The service times at the secondary server are exponentially distributed with
mean 1/µs. As in the one-server model of Section 2, the service discipline is FIFO and the
servers will always complete a started job, i.e., the secondary server will finish an already
started job even if Wt drops below K due to a service completion. In this section Yt refers
to the number of active secondary servers at time t, thus Yt ∈ {0, 1}. For the system to be
stable we assume λ < µp + µs. The described two-server system is depicted in Figure 1.

Wt ≥ K

λ µp

µs

Figure 1: The queue is served by a primary server with rate µp which is supplemented
by a secondary server with service rate µs, when the waiting time of the first in line, Wt,
equals or exceeds K.

When dealing with the two-server setup, we introduce the steady-state joint distribution
of the FIL-process as WFIL

i (x) = limt→∞ P(Wt ≤ x; Yt = i). The joint steady-state density
of the FIL-process is denoted wFIL

i (x).
A sample path of the FIL-process is shown in Figure 2. Wt increases linearly with time
whenever a customer is in the queue. When the n’th customer enters service at time
t, the waiting time of the first in line decreases with min(An, Wt−) from Wt− to Wt+ =
max(Wt− − An, 0), where An is the exponentially distributed interarrival time with rate
λ between customers n and n + 1. Because both service times and interarrival times are
exponentially distributed, the FIL-process is Markovian.
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Figure 2: Elapsed waiting time of the first customer in line, Wt. The occupation of the
servers are shown beneath the graph. Notice how Wt keeps increasing after customer #3
finishes service as the secondary server is not allowed to start a new service until the level
K is reached.

The analysis of the system is based on the level crossing equations for the FIL-process.
These are more involved, compared to those in Section 2, and are thus presented in
Lemma 3.1. From this, the steady state distribution of the FIL-process is determined and
given in Theorem 3.1.

Lemma 3.1 We consider the level crossing equations with upcrossings of level x on the
left-hand side and downcrossings on the right-hand for three different cases.

(i) For x < K and an active secondary server we have

wFIL
1 (x) + µsW

FIL
1 (x) = µp

∫ ∞

y=x
e−λ(y−x)wFIL

1 (y)dy

+ µs

∫ ∞

y=K
e−λ(y−x)wFIL

1 (y)dy

+ wFIL
0 (K−)e−λ(K−x).

(ii) For x < K and an inactive secondary server

wFIL
0 (x) = µp

∫ K

y=x
e−λ(y−x)wFIL

0 (y)dy + µsW
FIL
1 (x).

(iii) For x > K the secondary server will always be active

wFIL
1 (x) = (µp + µs)

∫ ∞

y=x
e−λ(y−x)wFIL

1 (y)dy.

Proof Only case (i) is dealt with in detail as it is the most complicated. The level
crossing equations are obtained from setting up forward Kolmogorov equations. For case
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(i) this becomes

P(Wt+dt ≤ x + dt; Yt+dt = 1)
= (1− µpdt− µsdt)P(Wt ≤ x; Yt = 1)

+ µpdtP(Wt ≤ x + An; Yt = 1)
+ µsdtP(K < Wt ≤ x + An; Yt = 1)
+ (1− µpdt)P(Wt ∈ [K − dt,K];Wt ≤ x + An;Yt = 0) + o(dt).

Subtracting P(Wt ≤ x + dt;Yt = 1) from both sides, dividing by dt and letting dt → 0
allows us to rewrite the term on the left side and the first term on the right side as
derivatives with regard to t and x respectively. Moreover dt cancels from the rest of the
terms except the last. Note that µpP(Wt ∈ [K − dt,K];Wt ≤ x + An; Yt = 0) → 0 for
dt → 0. Hence,

d
dt
P(Wt ≤ x; Yt = 1)

=− d
dx
P(Wt ≤ x; Yt = 1)− (µp + µs)P(Wt ≤ x; Yt = 1)

+ µpP(Wt ≤ x + An; Yt = 1) + µsP(K < Wt ≤ x + An; Yt = 1)

+ lim
dt→0

P(Wt ≤ K; Yt = 0)− P(Wt ≤ K − dt; Yt = 0)
dt

· P(An > K − x).

By letting t → ∞, the left side of the expression tends to zero. The probabilities can be
written in form of density and distribution functions, using convolution for the probabilities
involving An; e.g. P(Wt ≤ x + An; Yt = 1) = WFIL

1 (x) + P(x < Wt ≤ x + An, Yt = 1) =
WFIL

1 (x)+
∫∞
y=x e−λ(y−x)wFIL

1 (y)dy. Using limdt→0,t→∞
(
P(Wt≤K;Yt=0)−P(Wt≤K−dt;Yt=0)

dt

)
=

wFIL
0 (K−), then leads to:

0 = − wFIL
1 (x)− (µp + µs)WFIL

1 (x)

+ µp

(
WFIL

1 (x) +
∫ ∞

y=x
e−λ(y−x)wFIL

1 (y)dy

)
+ µs

∫ ∞

y=K
e−λ(y−x)wFIL

1 (y)dy

+ wFIL
0 (K−)e−λ(K−x).

Finally, the level crossing equation for case (i) can be obtained by simply rearranging the
above terms.
We now turn to case (ii). Following an approach similar to the one for case (i), the level
crossing equation can be found from the initial Kolmogorov equation

P (Wt+dt ≤ x + dt; Yt+dt = 0) = (1− µpdt)P(Wt ≤ x; Yt = 0)
+ µpdtP(Wt ≤ x + An; Yt = 0)
+ µsdtP(Wt ≤ x; Yt = 1) + o(dt).

In case (iii) the Kolmogorov equation is of the following form

P(Wt+dt ≤ x + dt;Yt+dt = 1) = (1− µpdt− µsdt)P(Wt ≤ x; Yt = 1)
+ (µp + µs)dtP(Wt ≤ x + An; Yt = 1) + o(dt).

Again, using the same approach as for case (i), the level crossing equation of Lemma 3.1,
case (iii), can be obtained.

VIII



Theorem 3.1 The density of the FIL-process, for Yt = 0, is

wFIL
0 (x) = −c1e

(λ−µp)x − r1c3e
r1x − r2c4e

r2x, for 0 < x < K,

and, for Yt = 1, it is

wFIL
1 (x) =





r1c3e
r1x + r2c4e

r2x, for 0 < x < K;

c2e
(λ−µp−µs)x, for x > K,

with r1, r2 given by (6) and (7). The marginal density of the FIL-process for the two-server
system becomes

wFIL(x) =





c1e
(λ−µp)x, for 0 < x < K;

c2e
(λ−µp−µs)x, for x > K.

The constants ci, i ∈ {1, 2, 3, 4}, are determined in Subsection 3.1.

Proof The densities of the FIL-process are found from the level crossing equations given
in Lemma 3.1. The derivative with respect to x of the level crossing equation in case (i)
becomes

wFIL
′

1 (x) + µsW
FIL

′
1 (x) = λ

[
µp

∫ ∞

y=x
e−λ(y−x)wFIL

1 (y)dy

+ µs

∫ ∞

y=K
e−λ(y−x)wFIL

1 (y)dy

+ wFIL
0 (K−)e−λ(K−x)

]

− µpw
FIL
1 (x),

where the first and last term on the right-hand side of the above equation stem from the
derivative of µp

∫∞
y=x e−λ(y−x)wFIL

1 (y)dy. By rearranging and noting that the term inside
the brackets equals wFIL

1 (x) + µsW
FIL
1 (x), as given in the level crossing equation, we end

up with a second-order differential equation:

WFIL
′′

1 (x) + [µp + µs − λ] WFIL
′

1 (x)− λµsW
FIL
1 (x) = 0. (4)

The general solution of (4) is of the form:

WFIL
1 (x) = c3e

r1x + c4e
r2x, (5)

where

r1 =
λ− (µp + µs)−

√
(µp + µs − λ)2 + 4λµs

2
, (6)

r2 =
λ− (µp + µs) +

√
(µp + µs − λ)2 + 4λµs

2
(7)

and c3 and c4 are constants. The derivative of (5) with respect to x yields the density,
wFIL

1 (x), for 0 < x < K, as given in Theorem 3.1.
The expressions for wFIL

0 (x) for x < K and wFIL
1 (x) for x > K can be found in the same

way as the solution to the derivative of the level crossing equations in cases (ii) and (iii)
of Lemma 3.1 respectively. Finally the marginal density of wFIL(x) is found as the sum of
wFIL

0 (x) and wFIL
1 (x).
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3.1 Constants and atoms

To fully describe the distribution of the FIL-process, the atoms in zero must be determined
together with the constants in Theorem 3.1. The atoms, corresponding to the queue being
empty, can be divided into four different boundary states; both servers are unoccupied
(N), only the primary server is occupied (P), only the secondary server is occupied (S),
and both servers are occupied (PS). The probabilities of being in these states are referred
to as WFIL

N (0), WFIL
P (0), WFIL

S (0) and WFIL
PS (0), respectively.

Eight independent equations are needed to determine the eight constants; the probability
of being in the four boundary states and the ci’s, i ∈ {1, 2, 3, 4}. Two equations follow
directly from the boundary states in 0, as N and S can only be entered and left from other
boundary states. Writing the rate out of the states on the left-hand side and the rate into
the states on the right-hand side gives

λWFIL
N (0) = µpW

FIL
P (0) + µsW

FIL
S (0) (8)

and

(λ + µs)WFIL
S (0) = µpW

FIL
PS (0). (9)

The rate out of P is λ + µp as this state can only be left by an arrival or a departure
from the primary server. The state can be entered by an arrival in state N or a departure
from the secondary server in state PS. P can also be entered from the FIL-process for
non-zero Wt given that Yt = 0 and Wt < An. This is represented by the second term on
the right-hand side in (10).

(λ + µp)WFIL
P (0) = λWFIL

N (0) + µp

∫ K

0+

e−λywFIL
0 (y)dy + µsW

FIL
PS (0). (10)

The balance equation for WFIL
PS (0) is found in the same way:

(λ + µp + µs)WFIL
PS (0) = λWFIL

S (0) + µp

∫ ∞

0+

e−λywFIL
1 (y)dy

+ µs

∫ ∞

K
e−λywFIL

1 (y)dy + wFIL
0 (K−)e−λK . (11)

Three more equations can be obtained by considering boundary conditions. By letting
x ↓ 0 in (5) we have

WFIL
S (0) + WFIL

PS (0) = c3 + c4. (12)

Letting x ↑ K in the level crossing equation of case (ii) in Lemma 3.1 gives

wFIL
0 (K−) = µsW

FIL
1 (K)

= µs

[
WFIL

S (0) + WFIL
PS (0) +

∫ K

0
wFIL

1 (y)dy

]
, (13)

and the same limit in the level crossing equation of case (i) gives

wFIL
1 (K−) + µsW

FIL
1 (K) = wFIL

0 (K−) + (µp + µs)
∫ ∞

y=K
e−λ(y−K)wFIL

1 (y)dy

= wFIL
0 (K−) + c2e

(λ−µp−µs)K . (14)
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The final equation is obtained by normalization of the FIL-process:

1 =
∫ K

0
wFIL

0 (y)dy +
∫ ∞

0
wFIL

1 (y)dy + WFIL
N (0) + WFIL

S (0) + WFIL
P (0) + WFIL

PS (0). (15)

The analytical expressions for the constants do not seem to give any additional insight into
the problem. Solving the equations numerically is straightforward. We have shown that at
most two of the equations can be mutually dependent and all numerical investigations point
toward them being independent. Furthermore we argue that as long as the requirements
for stability of the system are fulfilled, a unique solution to the equation array must exist
and thus the equations must indeed be independent.

3.2 Waiting-time distribution

We now turn to the waiting-time distribution and use the same definition of this as in
Section 2; W (x) = P(W ≤ x), where W is the waiting time an arbitrary customer expe-
riences. Observe that arriving customers are directly taken into service in case the queue
is empty and the primary server is available. Using PASTA, it is easy to obtain the atom
in zero of the waiting time:

P(W = 0) = WFIL
N (0) + WFIL

S (0).

In case the waiting time is non-zero, the waiting time corresponds to the FIL-process at
epochs right before downward jumps. Here, we again consider an infinitesimal interval
(t, t + h) and apply similar arguments as in Section 2. In particular, for x ≥ K, we have

P(Wt > x;Ns(t, t + h) = 1) = (µp + µs)h
∫ ∞

x
wFIL

1 (y)dy + o(h).

For 0 < x < K, we have

P(Wt > x; Ns(t, t + h) = 1) = µph

∫ K−h

x
wFIL

0 (y)dy + µph

∫ K

x
wFIL

1 (y)dy

+
∫ K

K−h
wFIL

0 (y)dy + (µp + µs)h
∫ ∞

K
wFIL

1 (y)dy + o(h).

Note that
∫ K
K−h wFIL

0 (y)dy/h → wFIL
0 (K−), as h → 0. Also, observe that P(Ns(t, t + h) =

1)/h (for h → 0) is the rate at which customers are taken into service and, since every
customer leaves the queue through the server and the system is stable, equals λ. Combining
the above and using a similar conditioning as in Section 2, we obtain

P(W > x) =





1
λ

[
µp

∫ K
x (wFIL

0 (y) + wFIL
1 (y))dy

+wFIL
0 (K−) + (µp + µs)

∫∞
K wFIL

1 (y)dy
]
, for 0 ≤ x < K,

µp+µs

λ

∫∞
x wFIL

1 (y)dy, for x ≥ K.

(16)

From this, we obtain the density of the steady-state waiting time and the atom at K:
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Corollary 3.1 For the steady-state waiting time, we have two atoms

P(W = 0) = WFIL
N (0) + WFIL

S (0),

P(W = K) =
wFIL

0 (K−)
λ

,

and density

w(x) =





µp

λ c1e
(λ−µp)x, for 0 < x < K,

µp+µs

λ c2e
(λ−µp−µs)x, for x > K.

Remark 3.1 Note that the form of the steady-state waiting time density (and distribu-
tion) is closely related to the density in Example 2.1, i.e., the single-server model with two
service speeds determined by a threshold on the FIL-process. In particular, the parame-
ters ri, i = 1, 2, and µ should be taken such that r1µ = µp and r2µ = µp +µs (for instance,
let µ = µp, r1 = 1, and r2 = 1 + µs/µp). The main difference between the waiting-time
distributions concerns the atom at K. ¦

4 Numerical results

To illustrate the difference in behavior of the waiting-time distribution for the one server
system of Example 2.1 and the two-server system treated in Section 3, a few numerical
results are shown in Figure 3. The parameters have been chosen such that the two cases
are comparable.
The waiting-time distributions in Figure 3b are found from Corollary 3.1 and the cor-
responding eight constants, found with Maple, are given in Table 1. It is seen how the
relation between λ and µp governs the shape of the distribution for x < K; it is convex
for λ < µp, concave for λ > µp and a straight line for λ = µp. Notable are also the atoms
at K which are absent in the two-speed single server case of Figure 3a.
The somewhat better performance of the two-server model can be explained by the sec-
ondary server finishing an already started service when Wt drops below K, whereas the
single server system of Example 2.1 will change the service speed to r1 immediately.

Table 1: Numerical results for common parameters λ = 2, µs = 3.

(µp = 1, K = 1.5) (µp = 2, K = 1.0) (µp = 4, K = 0.5)

WN 0.0470 0.2298 0.5318
WP 0.0860 0.2181 0.2559
WS 0.0027 0.0078 0.0133
WPS 0.0135 0.0195 0.0166
c1 0.1990 0.4751 0.5451
c2 6.3453 2.9956 0.6123
c3 -0.6401·10−4 -0.2673·10−3 -0.4749·10−3

c4 0.01626 0.0276 0.0304

In Figure 4 we compared the performance of the service mechism based on waiting times to
the control based on queue lengths, since the latter is common in the queueing literature.
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Figure 3: Numerical comparison of the one and two-server models.

For the model with queue-length based control, the secondary server is only allowed to
take customers into service when more than 30 and 3 customers, in Figures 4a and 4b,
respectively, are waiting in the queue. These parameters have been chosen such that the
resulting average waiting times are nearly identical for the two policies. The waiting-time
distribution for the queue-length based threshold is found by taking the average of 50
simulations of 100.000 calls each. In this way the 95% confidence intervals become too
narrow to display in the figure. It is seen that the waiting-time based threshold results in
less variation of waiting times which is preferable as the objective is to have more control
over the system. This reduction in variability of waiting times is accentuated for larger
threshold value as displayed in Figure 4a. The figure illustrates the interesting, but not
surprising, phenomenon of how the probability mass gathers around K for λ > µp, K
large and waiting-time based control.
Given the distribution of the waiting-time and FIL-process, most of the commonly used
performance measures such as TSF are easily found. Other performance measures such
as the utilization of the servers can be found as

ap = 1−WN(0)−WS(0),

as = 1−WN(0)−WP(0)−
∫ K

0
wFIL

0 (y)dy,

where ap and as are the utilization of the primary and secondary server, respectively.

5 Conclusions and topics for further research

We have studied queueing systems where the provided service depends on the waiting time
of the first customer in line. This type of control is commonly used in call centers and has
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Figure 4: Waiting-time thresholds compared to queue-length thresholds.

mainly been motivated by a frequently used setup referred to as an “inverted V”, see [1].
The main contribution is that we have shown ways to deal with systems where the service
changes depending on the waiting time, which can be inherently difficult to deal with in
particular in the case of fixed thresholds.
The first model of this paper deals with a single server that operates with a service speed
depending on the waiting time of the first customer in line. We derived the waiting-time
distribution of an arbitrary customer entering the system and showed how the model can
be used for the threshold case.
The second model of this paper deals with a two-server setup where a secondary server
supplements a primary server when the waiting time of the first in line exceeds a threshold.
Again the waiting distribution of an arbitrary customer has been derived and numerical
examples have been given. It was illustrated that a waiting-time based threshold is prefer-
able to a queue-length based, when a high degree of control of the waiting times is desired.
Also, The simplicity of the form of the solution for the waiting time given in Corollary 3.1
provides some useful insight.
In the model presented in Section 3, only one primary and one secondary server was
considered. This is easily extended to a more general setup with multiple primary servers
by introducing additional states for WFIL(0) along with the four already used. The extra
boundary states should describe the number of unoccupied servers. Analyzing a setup
with multiple secondary servers would be much more difficult as the joint distribution of
wFIL

i (x) must be extended to include i ∈ {0, 1, ..., n}, where n is the number of secondary
servers.
A related routing setup, often seen in call centers and used as a way to prioritize a group of
customers over another, is the “N” design, see [12]. Also related are [13], [14] and [15]. The
“N” design is basically an extension to the model of Section 3 where the secondary server
also has a queue of its own, from which it receives jobs. Extending the model presented in
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this paper to the “N” design, necessitates the use of a 2-dimensional FIL-process in order
to keep track of the waiting time of the first customer in line in both queues.
There is still much to be done in relation to analysis of complex queueing systems such
as those seen in call centers. Even though simulation may remain the dominant way of
modelling these systems, it is indeed worth pursuing analytical approaches to gain insight
not obtainable through simulation such as the result in Corollary 3.1.
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Addendum

A.1 Addendum

Independence of Equations

In this addendum to Appendix A, we examine the independence of the eight
equations obtained for the two-server queue in the paper Queues with waiting
time dependent service. It is shown that at most two of the equations can be
dependent, but all numerical investigations point towards all eight equations
being independent. The eight equations are re-listed below.

λWFIL
N (0) = µpWFIL

P (0) + µsW
FIL
S (0), (A.1)

(λ + µp)WFIL
P (0) = λWFIL

N (0)

+ µp

Z K

0+
e−λywFIL

0 (y)dy + µsW
FIL
PS (0), (A.2)

(λ + µs)W
FIL
S (0) = µpWFIL

PS (0), (A.3)

(λ + µp + µs)W
FIL
PS (0) = λWFIL

S (0) + µp

Z ∞
0+

e−λywFIL
1 (y)dy

+ µs

Z ∞
K

e−λywFIL
1 (y)dy + wFIL

0 (K)e−λK , (A.4)

1 =

Z K

0

wFIL
0 (y)dy +

Z ∞
0

wFIL
1 (y)dy + WFIL

N (0)

+ WFIL
S (0) + WFIL

P (0) + WFIL
PS (0), (A.5)

wFIL
0 (K−) = µs

»
WFIL

S (0) + WFIL
PS (0) +

Z K

0

wFIL
1 (y)dy

–
(A.6)

wFIL
1 (K−) + µsW

FIL
1 (K) = wFIL

0 (K) + c2e
(λ−µp−µs)K , (A.7)

WFIL
S (0) + WFIL

PS (0) = c3 + c4, (A.8)

where

wFIL
0 (x) = −c1e

(λ−µp)x − r1c3e
r1x − r2c4e

r2x, for 0 < x ≤ K,

wFIL
1 (x) =

r1c3e
r1x + r2c4e

r2x, for 0 < x ≤ K;

c2e
(λ−µp−µs)x, for x > K,
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A. Queues with waiting time dependent service

with r1, r2 given by

r1 =
λ− (µp + µs)−

√
(µp + µs − λ)2 + 4λµs

2
,

r2 =
λ− (µp + µs) +

√
(µp + µs − λ)2 + 4λµs

2
.

Writing Equations (A.1)-(A.8) in matrix form as Ax = b where

x =



WFIL
N (0)

WFIL
P (0)

WFIL
S (0)

WFIL
PS (0)
c3

c4

c1

c2


, b =



0
0
0
0
1
0
0
0


,

results in a rather complicated A-matrix, which should be non-singular for
the eight equations to be independent. We introduce the following matrix
operations:

• SwitchRow(a,b): Switches the position of rows a and b. For instance,
SwitchRow(2,4) on rows numbered [1, 2, 3, 4] yields [1, 4, 3, 2].

• InsertRow(a,b): Inserts row a on row b’s position and shifts the other
rows as required. Example: InsertRow(2,4) on rows numbered [1, 2, 3, 4]
yields [1, 4, 2, 3].

• Eliminate(a,b,c): Eliminates element (a, b) (row a, column b) of the ma-
trix using element (c, b) and manipulates the remaining elements of row
a accordingly. The procedure can formulated as:

A(a, .) = A(a, .)− A(a, b)
A(c, b)

A(c, .).

As an example, running Eliminate(2,1,3) on the matrix B yields C in
Equation (A.9).

B =

1 2 3
4 5 6
7 8 9

 , C =

1 2 3
0 3

7
6
7

7 8 9

 (A.9)
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For the purpose of showing independence of the eight equations, we can
disregard the b-vector and only concentrate on showing non-singularity of the
matrix A. This also means, we can interchange and shift columns without
considering the effects this would otherwise have on x. We introduce Switch-
Column(a,b) and InsertColumn(a,b) in the same way as SwitchRow(a,b) and
InsertRow(a,b) above. By running the following operations on A, we obtain
relatively simple expressions for the first six columns of matrix.

A(2, .) = A(2, .) − eλK (A(6, .) + µsA(8, .)), A(6, .) = A(2, .) + µsA(8, .),
Eliminate(2,7,6) , Eliminate(4,7,6) , Eliminate(5,7,6) , Eliminate(4,8,7) , Eli-
minate(5,8,7) , SwitchColumn(5,7) , SwitchColumn(6,8) , Eliminate(2,1,1) ,
Eliminate(5,1,1) , Eliminate(1,3,3) , Eliminate(2,3,3) , Eliminate(4,3,3) , Eli-
minate(5,3,3) , Eliminate(8,3,3) , InsertColumn(4,6) , InsertColumn(2,5) , In-
sertRow(3,2) , InsertRow(6,3) , InsertRow(7,4) , SwitchRow(6,7) , SwitchCo-
lumn(3,5) , Eliminate(5,3,6) , SwitchColumn(2,3) , InsertRow(6,2) , Switch-
Column(4,5) , InsertRow(4,6), A(6, .) = A(6, .) + A(7, .), Eliminate(7,6,8) ,
SwitchRow(6,8) A(8, .) = A(8, .)−A(7, .).

The matrix operations have been carried out in Maple. The resulting six
leftmost columns of the modified matrix Am become

Am( . , 1..6) =

2666666666664

−λ µp 0 0 0
µpµs

λ+µs

0
λ+µp

λ
0 0 0

λ+µp

λ

0 0 −λ− µs 0 0 µp

0 0 0 −eK(λ−µp) 0 0

0 0 0 0 eK(λ−µp−µs) 0

0 0 0 0 0 −λ+µp+µs

λ+µs

0 0 0 0 0 0
0 0 0 0 0 0

3777777777775
.

This implies that, at most two of the eight equations can be dependent, as
all the elements below the diagonal in the first six columns of A have the value
zero and the diagonal elements cannot be zero for (positive) finite values of K,
λ, µp, and µs.

Lower, right 2-by-2 matrix

Now, we only need to consider the lower right 2-by-2 part of Am to show full
independence. In theory this should a straightforward task, but unfortunately
the expressions in the four elements have become rather complicated, due to
the matrix manipulations done earlier. The most obvious way to show full
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rank of the 2-by-2 matrix is to show the determinant cannot be 0. The four
expressions are listed and simplified individually below.

Am(7, 7) =
eK(r1−λ)µpr1 − µpr1 + r1µseK(r1−λ) − µseK(r1−λ)λ

r1 − λ

−
λ2 + 2µsλ + µsµp + µ2

s

λ + µp + µs

=
µpr1

`
eK(r1−λ) − 1

´
+ µseK(r1−λ)(r1 − λ)

r1 − λ
−

(λ + µs)2 + µpµs

λ + µp + µs

=
µpr1

`
eK(r1−λ) − 1

´
r1 − λ

+ µseK(r1−λ) −
(λ + µs)2 + µpµs

λ + µp + µs

=
(r1(µp + µs) − λµs)eK(r1−λ) − µpr1

r1 − λ
−

(λ + µs)2 + µpµs

λ + µp + µs

=

„
r1µp

r1 − λ
+ µs

«
eK(r1−λ) −

µpr1

r1 − λ
−

(λ + µs)2 + µpµs

λ + µp + µs
,

Am(7, 8) =
eK(r2−λ)µpr2 − µpr2 + r2µseK(r2−λ) − µseK(r2−λ)λ

r2 − λ

−
λ2 + 2µsλ + µsµp + µ2

s

λ + µp + µs

=
µpr2

`
eK(r2−λ) − 1

´
+ µseK(r2−λ)(r2 − λ)

r2 − λ
−

(λ + µs)2 + µpµs

λ + µp + µs

=
µpr2

`
eK(r2−λ) − 1

´
r2 − λ

+ µseK(r2−λ) −
(λ + µs)2 + µpµs

λ + µp + µs

=
(r2(µp + µs) − λµs)eK(r2−λ) − µpr2

r2 − λ
−

(λ + µs)2 + µpµs

λ + µp + µs

=

„
r2µp

r2 − λ
+ µs

«
eK(r2−λ) −

µpr2

r2 − λ
−

(λ + µs)2 + µpµs

λ + µp + µs
,
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Am(8, 7)

=
1

(r1 + µp − λ)(µ2
p − λ2)

„
µsµpλ

2 − µsµ
3
p + µsµ

3
pe

K(r1+µp−λ) − λ
2

µse
r1K

µp

+
λ2(−r1µp + er1K r1µp − er1K r1λ − r1µs − µser1K λ + r1λ − r2

1 + µser1K r1 + µsλ + r2
1er1K )µp

r1 + µp − λ

+
λ2(−r1µp + er1K r1µp − er1K r1λ − r1µs − µser1K λ + r1λ − r2

1 + µser1K r1 + µsλ + r2
1er1K )µ2

p

r1(r1 + µp − λ)

−
2λ3(−r1µp + er1K r1µp − er1K r1λ − r1µs − µser1K λ + r1λ − r2

1 + µser1K r1 + µsλ + r2
1er1K )µp

r1(r1 + µp − λ)

−
λ3(−r1µp + er1K r1µp − er1K r1λ − r1µs − µser1K λ + r1λ − r2

1 + µser1K r1 + µsλ + r2
1er1K )

r1 + µp − λ

+
λ4(−r1µp + er1K r1µp − er1K r1λ − r1µs − µser1K λ + r1λ − r2

1 + µser1K r1 + µsλ + r2
1er1K )

r1(r1 + µp − λ)

«

+
λ2 + 2µsλ + µsµp + µ2

s

λ + µp + µs

=
1

(r1 + µp − λ)(µ2
p − λ2)

»
µsµpλ

2 − µsµ
3
p + µsµ

3
pe

K(r1+µp−λ) − λ
2

µse
r1K

µp

+

0@λ
2

µp − λ
3 +

λ2µ2
p − 2λ3µp + λ4

r1

1A
·

0@−r1µp + er1K r1µp − er1K r1λ − r1µs − µser1K λ + r1λ − r2
1 + µser1K r1 + µsλ + r2

1er1K

r1 + µp − λ

1A –

+
(λ + µs)2 + µpµs

λ + µp + µs

=
1

(r1 + µp − λ)(µ2
p − λ2)

"
µpµs

„
λ
2 “1 − e

r1K
”

+ µ
2
p

„
e

K(r1+µp−λ) − 1
««

+ λ
2 `

µp − λ
´  

1 +
µp − λ

r1

!0@
“
1 − er1K

” `
λµs + r1(λ − µp − µs − r1)

´
r1 + µp − λ

1A#

+
(λ + µs)2 + µpµs

λ + µp + µs

=
µpµs

„
λ2

“
1 − er1K

”
+ µ2

p

„
e

K(r1+µp−λ) − 1
««

(r1 + µp − λ)(µ2
p − λ2)

+
(λ + µs)2 + µpµs

λ + µp + µs

= −
µpµsλ2

(r1 + µp − λ)(µ2
p − λ2)

e
kr1 +

µ3
pµs

(r1 + µp − λ)(µ2
p − λ2)

e
K(r1+µp−λ)

−
µpµs

r1 + µp − λ
+

(λ + µs)2 + µpµs

λ + µp + µs
,
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and

Am(8, 8)

=
1

(r2 + µp − λ)(µ2
p − λ2)

„
µsµpλ

2 − µsµ
3
p + µsµ

3
pe

K(r2+µp−λ) − λ
2

µse
r2K

µp

+
λ2(−r2µp + er2K r2µp − er2K r2λ − r2µs − µser2K λ + r2λ − r2

2 + µser2K r2 + µsλ + r2
2er2K )µp

r2 + µp − λ

+
λ2(−r2µp + er2K r2µp − er2K r2λ − r2µs − µser2K λ + r2λ − r2

2 + µser2K r2 + µsλ + r2
2er2K )µ2

p

r2(r2 + µp − λ)

−
2λ3(−r2µp + er2K r2µp − er2K r2λ − r2µs − µser2K λ + r2λ − r2

2 + µser2K r2 + µsλ + r2
2er2K )µp

r2(r2 + µp − λ)

−
λ3(−r2µp + er2K r2µp − er2K r2λ − r2µs − µser2K λ + r2λ − r2

2 + µser2K r2 + µsλ + r2
2er2K )

r2 + µp − λ

+
λ4(−r2µp + er2K r2µp − er2K r2λ − r2µs − µser2K λ + r2λ − r2

2 + µser2K r2 + µsλ + r2
2er2K )

r2(r2 + µp − λ)

«

+
λ2 + 2µsλ + µsµp + µ2

s

λ + µp + µs

= −
µpµsλ2

(r2 + µp − λ)(µ2
p − λ2)

e
kr2 +

µ3
pµs

(r2 + µp − λ)(µ2
p − λ2)

e
K(r2+µp−λ)

−
µpµs

r2 + µp − λ
+

(λ + µs)2 + µpµs

λ + µp + µs
.

We note the last part of each of the four expressions of Am(7..8, 7..8) are
identical. If we write the values as

Am(7, 7) = a− x,

Am(7, 8) = b− x,

Am(8, 7) = c + x,

Am(8, 8) = d + x,

the determinant, D, of Am(7..8, 7..8) becomes:

D = (a− x)(d + x)− (b− x)(c + x)
= ad− bc + x(a− b + c− d), (A.10)
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where

a =

„
r1µp

r1 − λ
+ µs

«
eK(r1−λ) −

µpr1

r1 − λ
,

b =

„
r2µp

r2 − λ
+ µs

«
eK(r2−λ) −

µpr2

r2 − λ
,

c =
−µpµsλ2

(r1 + µp − λ)(µ2
p − λ2)

ekr1 +
µ3

pµs

(r1 + µp − λ)(µ2
p − λ2)

eK(r1+µp−λ) −
µpµs

r1 + µp − λ
,

d =
−µpµsλ2

(r2 + µp − λ)(µ2
p − λ2)

ekr2 +
µ3

pµs

(r2 + µp − λ)(µ2
p − λ2)

eK(r2+µp−λ) −
µpµs

r2 + µp − λ
,

x =
(λ + µs)2 + µpµs

λ + µp + µs
.

In order to make the above expressions appear nicer for further manipula-
tions, we introduce:

P1 = µs + r1 = λ− µp − r2,

P2 = µs + r2 = λ− µp − r1,

R1 = λ− r1 = r2 + µp + µs,

R2 = λ− r2 = r1 + µp + µs

thus

a =
(

µs −
r1µp

R1

)
e−kR1 +

µpr1

R1
,

b =
(

µs −
r2µp

R2

)
e−kR2 +

µpr2

R2
,

c =
µpµsλ

2

P2(µ2
p − λ2)

ekr1 −
µ3

pµs

P2(µ2
p − λ2)

e−kP2 +
µpµs

P2
,

d =
µpµsλ

2

P1(µ2
p − λ2)

ekr2 −
µ3

pµs

P1(µ2
p − λ2)

e−kP1 +
µpµs

P1
,

x =
(λ + µs)2 + µpµs

λ + µp + µs
.

Now Equation (A.10) is considered piece by piece using the relations given
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at the end of this addendum. For the first part

ad =

„„
µs −

r1µp

R1

«
e−kR1 +

µpr1

R1

« 
µpµsλ2

P1(µ2
p − λ2)

ekr2 −
µ3

pµs

P1(µ2
p − λ2)

e−kP1 +
µpµs

P1

!

=

„
µs −

r1µp

R1

«
µpµsλ2

P1(µ2
p − λ2)

e−K(µp+µs) −
„

µs −
r1µp

R1

«
µ3

pµs

P1(µ2
p − λ2)

e−K(λ+µs)

+

„
µs −

r1µp

R1

«
µpµs

P1
e−kR1 +

µpr1

R1

µpµsλ2

P1(µ2
p − λ2)

ekr2 −
µpr1

R1

µ3
pµs

P1(µ2
p − λ2)

e−kP1

+
µpr1

R1

µpµs

P1

=

 
µpµ2

sλ2

P1(µ2
p − λ2)

−
µpµsλ2

µ2
p − λ2

!
e−K(µp+µs) −

 
µ3

pµ2
s

P1(µ2
p − λ2)

−
µ3

pµs

µ2
p − λ2

!
e−K(λ+µs)

+

„
µpµ2

s

P1
− µpµs

«
e−kR1 +

µpµsλ2

µ2
p − λ2

ekr2 −
µ3

pµs

µ2
p − λ2

e−kP1 + µpµs,

and

bc =

„„
µs −

r2µp

R2

«
e−kR2 +

µpr2

R2

« 
µpµsλ2

P2(µ2
p − λ2)

ekr1 −
µ2

p

P2(µ2
p − λ2)

e−kP2 +
µpµs

P2

!

=

„
µs −

r2µp

R2

«
µpµsλ2

P2(µ2
p − λ2)

e−K(µp+µs) −
„

µs −
r2µp

R2

«
µ3

pµs

P2(µ2
p − λ2)

e−K(λ+µs)

+

„
µs −

r2µp

R2

«
µpµs

P2
e−kR2 +

µpr2

R2

µpµsλ2

P2(µ2
p − λ2)

ekr1 −
µpr2

R2

µ3
pµs

P2(µ2
p − λ2)

e−kP2

+
µpr2

R2

µpµs

P2

=

 
µpµ2

sλ2

P2(µ2
p − λ2)

−
µpµsλ2

µ2
p − λ2

!
e−K(µp+µs) −

 
µ3

pµ2
s

P2(µ2
p − λ2)

−
µ3

pµs

µ2
p − λ2

!
e−K(λ+µs)

+

„
µpµ2

s

P2
− µpµs

«
e−kR2 +

µpµsλ2

µ2
p − λ2

ekr1 −
µ3

pµs

µ2
p − λ2

e−kP2 + µpµs.

Gathering the former two expressions eliminates all non-exponential ele-
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ments.

ad− bc =
µpµ

2
sλ

2

µ2
p − λ2

(
1
P1

− 1
P2

)
e−K(µp+µs) −

µ3
pµ

2
s

µ2
p − λ2

(
1
P1

− 1
P2

)
e−K(λ+µs)

+
(

µpµ
2
s

P1
− µpµs

)
e−kR1 −

(
µpµ

2
s

P2
− µpµs

)
e−kR2

+
µpµsλ

2

µ2
p − λ2

ekr2 − µpµsλ
2

µ2
p − λ2

ekr1 −
µ3

pµs

µ2
p − λ2

e−kP1 +
µ3

pµs

µ2
p − λ2

e−kP2

=
µsλ

2(r1 − r2)
µ2

p − λ2
e−K(µp+µs) −

µ2
pµs(r1 − r2)

µ2
p − λ2

e−K(λ+µs)

− µpµsr1

µs + r1
e−kR1 +

µpµsr2

µs + r2
e−kR2

+
µpµsλ

2

µ2
p − λ2

ekr2 − µpµsλ
2

µ2
p − λ2

ekr1 −
µ3

pµs

µ2
p − λ2

e−kP1 +
µ3

pµs

µ2
p − λ2

e−kP2

The expression inside the parenthesis in Equation (A.10) is now considered.
First part by part

a− b =
(

µs −
r1µp

R1

)
e−kR1 +

µpr1

R1
−
(

µs −
r2µp

R2

)
e−kR2 − µpr2

R2

=
(

µs −
r1µp

R1

)
e−kR1 −

(
µs −

r2µp

R2

)
e−kR2 + r1 − r2,

and

c− d =
µpµsλ

2

P2(µ2
p − λ2)

ekr1 −
µ3

pµs

P2(µ2
p − λ2)

e−kP2

+
µpµs

P2
− µpµsλ

2

P1(µ2
p − λ2)

ekr2 +
µ3

pµs

P1(µ2
p − λ2)

e−kP1 − µpµs

P1

=
µpµs

µ2
p − λ2

(
λ2

P2
ekr1 − λ2

P1
ekr2 −

µ2
p

P2
e−kP2 +

µ2
p

P1
e−kP1

)
+ r2 − r1,

which together becomes

a− b + c− d =
(

µs −
r1µp

R1

)
e−kR1 −

(
µs −

r2µp

R2

)
e−kR2

+
µpµs

µ2
p − λ2

(
λ2

P2
ekr1 − λ2

P1
ekr2 −

µ2
p

P2
e−kP2 +

µ2
p

P1
e−kP1

)
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The entire expression for the determinant becomes

D = ad− bc + x(a− b + c− d)

=
µsλ

2(r1 − r2)

µ2
p − λ2

e−K(µp+µs) −
µ2

pµs(r1 − r2)

µ2
p − λ2

e−K(λ+µs)

− µpµsr1

µs + r1
e−kR1 +

µpµsr2

µs + r2
e−kR2

+
µpµsλ

2

µ2
p − λ2

ekr2 − µpµsλ
2

µ2
p − λ2

ekr1 −
µ3

pµs

µ2
p − λ2

e−kP1 +
µ3

pµs

µ2
p − λ2

e−kP2

+
(λ + µs)

2 + µpµs

λ + µp + µs

»„
µs −

r1µp

R1

«
e−kR1 −

„
µs −

r2µp

R2

«
e−kR2

+
µpµs

µ2
p − λ2

„
λ2

P2
ekr1 − λ2

P1
ekr2 −

µ2
p

P2
e−kP2 +

µ2
p

P1
e−kP1

«–

=
µsλ

2(r1 − r2)

µ2
p − λ2

e−K(µp+µs) −
µ2

pµs(r1 − r2)

µ2
p − λ2

e−K(λ+µs)

+

»
(λ + µs)

2 + µpµs

λ + µp + µs

„
µs −

r1µp

R1

«
− µpµsr1

µs + r1

–
e−kR1

−
»
(λ + µs)

2 + µpµs

λ + µp + µs

„
µs −

r2µp

R2

«
− µpµsr2

µs + r2

–
e−kR2

+
µpµsλ

2

µ2
p − λ2

„
x

P2
− 1

«
ekr1 − µpµsλ

2

µ2
p − λ2

„
x

P1
− 1

«
ekr2

+
µ3

pµs

µ2
p − λ2

„
x

P1
− 1

«
e−kP1 −

µ3
pµs

µ2
p − λ2

„
x

P2
− 1

«
e−kP2

92



Addendum

Finally, inserting the expressions for R1, R2, P1 and P2 yield

D =
µsλ

2(r1 − r2)
µ2

p − λ2
e−K(µp+µs)

−
µ2

pµs(r1 − r2)
µ2

p − λ2
e−K(λ+µs)

+
[
(λ + µs)2 + µpµs

λ + µp + µs

(
λµs − r1(µp + µs)

λ− r1

)
− µpµsr1

µs + r1

]
e−K(λ−r1)

−
[
(λ + µs)2 + µpµs

λ + µp + µs

(
λµs − r2(µp + µs)

λ− r2

)
− µpµsr2

µs + r2

]
e−K(λ−r2)

+
µpµsλ

2

µ2
p − λ2

(
λ2 + λµs

(λ + µp + µs)(µs + r2)
− r2

µs + r2

)
ekr1

− µpµsλ
2

µ2
p − λ2

(
λ2 + λµs

(λ + µp + µs)(µs + r1)
− r1

µs + r1

)
ekr2

+
µ3

pµs

µ2
p − λ2

(
λ2 + λµs

(λ + µp + µs)(µs + r1)
− r1

µs + r1

)
e−K(µs+r1)

−
µ3

pµs

µ2
p − λ2

(
λ2 + λµs

(λ + µp + µs)(µs + r2)
− r2

µs + r2

)
e−K(µs+r2) (A.11)

In order to analyze the determinant further, we denote the eight lines in
the expression (A.11) as D(1) through D(8).

Numerical investigations

Numerical evaluations of the determinant given in (A.11) indicate that the
determinant is always negative for valid values of K, λ, µp and µs (all should be
positive and finite). A more detailed numerical investigation of the individual
elements of D is given in Table (A.1), where the rough magnitudes are shown
for different parameter values.

A pattern is seen in the signs of the individual elements of the determinant
by looking at the values in Table A.1. This pattern is shown in Table A.2

Analysis of the determinant

By looking at the values of the determinant elements in the numerical investi-
gation, it is seen, it should be possible to show that the determinant is always
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λ > µp λ < µp

λ 1 1 1 1 1 1
µp 0.01 0.01 0.99 1.01 1.01 10
µs 1 10 0.02 0.01 10 0.01

D(1) 2·10−2 4·10−19 2.4·10−3 −8.3·10−4 −2.0·10−19 −3.4·10−24

D(2) −2·10−8 −4·10−25 −2.3·10−3 8.8·10−4 2.1·10−19 7.9·10−4

D(3) 1·10−9 8·10−29 2.0·10−4 2.4·10−4 3.0·10−27 3.0·10−21

D(4) 2·10−0 1·101 1.5·10−3 7.7·10−4 7.3·10−0 9.2·10−5

D(5) −6·10−10 −3·10−30 −1.2·100 1.2·100 1.4·10−24 3.3·10−21

D(6) −4·102 −1·104 −9.8·100 4.7·100 4.7·105 1.0·10−3

D(7) 4·10−4 1·10−2 9.1·100 −5.0·100 −5.1·105 −2.4·1017

D(8) 5·10−16 2·10−36 1.1·100 −1.3·100 −1.5·10−24 −7.8·10−1

D −4·102 −1·104 −7·10−1 −4·10−1 −3·104 −2·1017

Table A.1: Numerical evaluation of determinant elements (K = 4.7 used).

λ > µp λ < µp

D(1) + −
D(2) − +
D(3) + +
D(4) + +
D(5) − +
D(6) − +
D(7) + −
D(8) + −

Table A.2: Pattern of the signs of the determinant elements. It is seen how the
sign of D(3) and D(4) remain positive, whereas the rest alternate with the relation
of λ and µp.

negative. This can be done by showing the following inequalities are fulfilled,

D(1) + D(2) > 0, (A.12)
D(3) + D(4) > 0, (A.13)
D(5) + D(8) < 0, (A.14)
D(6) + D(7) < 0, (A.15)
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together with

−1 <
D(1) + D(2) + D(3) + D(4)

D(6) + D(7)
< 0. (A.16)

First, we show that D(1) + D(2) > 0:

D(1) + D(2) =
µsλ

2(r1 − r2)
µ2

p − λ2
e−K(µp+µs) −

µ2
pµs(r1 − r2)

µ2
p − λ2

e−K(λ+µs)

=
µs(r1 − r2)

µ2
p − λ2

e−Kµs
(
λ2e−Kµp − µ2

pe
−Kλ

)
.

The nominator of the fraction and the middle exponential term are always
negative. For λ > µp, the denominator is negative and the expression inside
the parentheses is positive. When λ < µp, both of these change their sign,
thus, the whole expression is always positive.

D(3) + D(4) is by far the least nice term because of the many r’s involved
in the expression. It appears to always be positive from the numerical results,
this has not been verified analytically though:

D(3) + D(4) = +

»
(λ + µs)

2 + µpµs

λ + µp + µs

„
λµs − r1(µp + µs)

λ− r1

«
− µpµsr1

µs + r1

–
e−K(λ−r1)

−
»
(λ + µs)

2 + µpµs

λ + µp + µs

„
λµs − r2(µp + µs)

λ− r2

«
− µpµsr2

µs + r2

–
e−K(λ−r2)

Now we look at D(5) + D(8), which seems to be negative judging from the
numerical experiments.

D(5) + D(8) =
µpµsλ

2

µ2
p − λ2

(
λ2 + λµs

(λ + µp + µs)(µs + r2)
− r2

µs + r2

)
eKr1

−
µ3

pµs

µ2
p − λ2

(
λ2 + λµs

(λ + µp + µs)(µs + r2)
− r2

µs + r2

)
e−K(µs+r2)

=
µpµs

µ2
p − λ2

λ2 + λµs − r2(λ + µp + µs)
(λ + µp + µs)(µs + r2)

(
λ2e−Kµp − µ2

pe
−Kλ

)
.

In the expression for D(5) + D(8), the first fraction alternates with opposite
sign compared to the last parentheses, with the relation between λ and µp,
thus always creating a negative sign together. The nominator of the second
fraction seems to take both positive and negative values, this needs further
investigation though.
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Finally, D(6) + D(7) is considered.

D(6) + D(7) = −
µpµsλ2

µ2
p − λ2

„
λ2 + λµs

(λ + µp + µs)(µs + r1)
−

r1

µs + r1

«
ekr2

+
µ3

pµs

µ2
p − λ2

„
λ2 + λµs

(λ + µp + µs)(µs + r1)
−

r1

µs + r1

«
e−K(µs+r1)

=
µpµs

µ2
p − λ2

λ2 + λµs − r1(λ + µp + µs)

(λ + µp + µs)(µs + r1)
e−K(µs+r1)

“
µ2

p − λ2eK(λ−µp)
”

=
µpµs

µ2
p − λ2

λ2 + λµs − r1(λ + µp + µs)

(λ + µp + µs)(µs + r1)
e−K(µs+r1−λ)

“
µ2

pe−Kλ − λ2e−Kµp

”
Here, the first fraction and the parentheses at the end always have the

same sign, meaning they are positive together. The denominator of the second
fraction is always negative, due to r1 < −µs, as shown at the end of this
addendum. Thus, the term D(6) + D(7) is always negative.

We have now shown the inequalities (A.12) and (A.15) hold. The inequali-
ties (A.13) and (A.14) remain to be finally proved.

By showing Equation (A.16) holds, it should be possible to prove the ele-
ments D(1), D(2), D(3), D(4), D(6), and D(7) are less than zero together.

D(1) + D(2) + D(3) + D(4)

D(6) + D(7)

=

(
µs(r1 − r2)

µ2
p − λ2

e
−Kµs

“
λ
2
e
−Kµp − µ

2
pe
−Kλ

”

+

"
(λ + µs)2 + µpµs

λ + µp + µs

„
λµs − r1(µp + µs)

λ− r1

«
−

µpµsr1

µs + r1

#
e
−K(λ−r1)

−
"

(λ + µs)2 + µpµs

λ + µp + µs

„
λµs − r2(µp + µs)

λ− r2

«
−

µpµsr2

µs + r2

#
e
−K(λ−r2)

)
,(

µpµs

µ2
p − λ2

λ2 + λµs − r1(λ + µp + µs)

(λ + µp + µs)(µs + r1)
e
−K(µs+r1−λ)

“
µ
2
pe
−Kλ − λ

2
e
−Kµp

”)

It is of course possible to interchange r1’s and r2’s from the expressions at
the end of this addendum, but it does not seem to simplify the expression.

To summarize, it has been shown that at least seven of the eight equa-
tions (A.1)-(A.8) are independent. Furthermore, a strong indication of all
eight being independent has been given using numerical examples with differ-
ent parameter values covering a representative set of cases.

Useful relations regarding the r’s

A few relations used for the manipulations in the earlier sections are listed in
this section.
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Addendum

r1 + µp − λ < 0

Proof

µp − λ +
1

2

„
λ− µp − µs −

q
(−λ + µp + µs)2 + 4λµs

«
< 0

1

2
(−λ + µp − µs) <

1

2

q
(−λ + µp + µs)2 + 4λµs

−λ + µp − µs <
q

(−λ + µp + µs)2 + 4λµs

r2 + µp − λ > 0

Proof

µp − λ +
1

2

„
λ− µp − µs +

q
(−λ + µp + µs)2 + 4λµs

«
> 0

−λ + µp − µs +
q

(−λ + µp + µs)2 + 4λµs > 0q
(−λ + µp + µs)2 + 4λµs > λ− µp + µs

(−λ + µp + µs)
2

+ 4λµs > λ
2

+ µ
2
p + µ

2
s − 2λµp + 2λµs − 2µpµs

λ
2

+ µ
2
p + µ

2
s − 2λµp − 2λµs + 2µpµs + 4λµs > λ

2
+ µ

2
p + µ

2
s − 2λµp + 2λµs − 2µpµs

4µpµs > 0

r1 < 0

Proof

r2 + µp − λ > 0
λ− µp − µs − r1 + µp + µp − λ > 0

−µs > r1

0 < r2 < λ
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r2
1 = (λ− µp − µs)r1 + λµs

r2
2 = (λ− µp − µs)r2 + λµs

r1r2 = −λµs

r1 + r2 = λ− µp − µs

R1R2 = λµp

R1P1 = (λ− r1)(µs + r1)

= −r2
1 + (λ− µs)r1 + λµs

= −(λ− µp − µs)r1 − λµs + (λ− µs)r1 + λµs

= µpr1

R2P2 = (λ− r2)(µs + r2)

= −r2
2 + (λ− µs)r2 + λµs

= −(λ− µp − µs)r2 − λµs + (λ− µs)r2 + λµs

= µpr2

1

P1
− 1

P2

=
P2 − P1

P1P2

=
µs + r2 − µs − r1

(µs + r1)(µs + r2)

=
r2 − r1

µ2
s + µs(r1 + r2) + r1r2

=
r2 − r1

µ2
s + µs(λ− µp − µs) + 1

4
((λ− µp − µs)2 − (λ− µp − µs)2 − 4λµs)

=
r1 − r2

µpµs
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Abstract

We introduce a new approach to modelling queueing systems where the priority or
the routing of customers depends on the waiting time of the first customer in line. The
approach uses the waiting time of the first customer in line as the primary variable
and we obtain waiting time distributions for complex systems, such as the N-design
routing scheme widely used in e.g. call centers and systems with dynamic priorities.

Keywords: Waiting time distribution; Call centers; Priority queues; Deterministic
threshold; Erlang distribution; Dynamic priority; Due-date.

1 Introduction

The traditional approach to modelling queueing systems developed by Erlang, Engset,
Fry and Molina has been to look at the number of customers in queue, see [8] for original
references. In this paper we introduce an alternative way of modelling queueing systems
useful for priority rules often used in real scenarios.

Prioritization of customers in real queueing systems is often implemented as a function
of the waiting time of the customer first in line (FIL). This is for example used in call
centers to route calls between agent pools in order to meet service levels of different
customer classes [6]. The service levels are usually characterized by the telephone service
factor (TSF), i.e. the fraction of calls answered within a certain time. The use of TSF
thus motivates the examination of waiting time distributions rather than just average
values. Prioritization based on waiting times is also used in the health care sector for e.g.
operating room scheduling [3].

The traditional approach of modelling the number of customers in a system is not useful
for modelling these systems as no information about the FIL waiting time is inherent in the
variables. Instead we introduce the Erlang approximation (TEA) as a way of modelling
the waiting time of the customer first in line. We show how TEA can be used for finding
the waiting time distribution for different queueing systems.
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The literature on this kind of prioritization is very limited despite its widespread use
in the industry. In [2] a system is considered, where a single queue is served by two
servers of which one are only allowed to take in customers when they have waited a given
amount of time, and an expression for the waiting time distribution is found. In [1]
a similar time-dependent overflow is approximated by a state-dependent overflow where
states represent the number of customers in the system. Beside these, the literature is
limited to less similar systems such as [14] where service times are exponentially distributed
with parameters which depend on the waiting time experienced by the customer entering
service.

In Section 2 TEA is presented for the simple case of an M/M/n queue and it is shown
how the waiting time distribution can be found. The principles behind TEA are easier to
explain with this simple case and it also facilitates verification of the approximation by
theoretical values.

In Section 3 it is shown how TEA can be used for modelling the N-design system with
deterministic thresholds as shown in Figure 1a. The N-design is composed of a group of
flexible servers and a group of specialized servers and two classes of customers. There exist
multiple papers about the N-design; e.g. in [17] performance measures, such as average
queueing delay and queue length distribution, are derived for a bilingual call center where
a fraction of the agents are bilingual and the rest unilingual. In [16] the N-design is also
examined and it is shown that a few flexible servers can improve performance significantly,
when this is measured as the mean service time, however neither of these papers deal with
the deterministic overflow threshold.

Further possibilities of TEA are discussed in Section 4, including an example of how the
approach can be used for a system with low and high priority customers and scheduling
according to due dates, also referred to as dynamic priority [11], [5]. Scheduling according
to due date is a generalization of strict non-preemptive prioritization where high priority
customers are not always given service first. This prioritization scheme is for example used
for operating rooms scheduling to ensure lower priority operations will not experience
exceedingly long waiting times while still keeping high priority patients’ waiting times
relatively low [3].

n b n a

µa µa µa µb µb µb

bλaλ

1 2 1 2

>kW
FIL

(a) N-design

λaλ

1 2

µ µ µ

b

n

a

FIL

bargmax{W  −k ,W  −k }ba

FIL

(b) V-design

Figure 1: Systems analyzed in Section 3 (Fig. 1a) and Section 4.1 (Fig. 1b).

Possible extensions of TEA are also discussed in Section 4. Only non-preemptive cases
are considered here although the presented method could also be used for preemptive
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(non-resume) prioritization. Finally a conclusion is given in Section 5.

2 The Erlang approximation

The fundamental idea of the Erlang approximation is to describe the FIL waiting time in
a discretized form as states in a continuous time Markov chain (CTMC). The transition
rate diagram of the CTMC for TEA of an M/M/n queue is shown in Figure 2.

nµ nµ nµnµ
−n 210−1−2

λ γ

µ(n−1)

λ λ γ
3

Figure 2: Transition rate diagram for the Erlang approximation of the M/M/n system.

We define WFIL
t as the waiting time of the first customer in line at time t, with the

convention WFIL
t = 0 when the queue is empty. In TEA we let states numbered {1, 2, ...}

represent WFIL
t > 0. Transitions from state i to i+1 with rate γ represent the, in principle

linearly, increasing FIL waiting time in a discrete way.
Whenever the queue is empty we have to differentiate between the number of free

servers. This is done by letting states with negative numbers represent the number of free
servers, thus state −n corresponds to all n servers being vacant and state 0 to all servers
being busy and the queue being empty. Arrivals occur with rate λ and are only “seen”
by the model when the queue is empty. In the negative states, i < 0, where servers are
unoccupied an arrival just goes to a free server and i increases by one. In state i = 0,
were all servers are busy and the queue empty, an arriving customer enters the queue and
becomes the first customer in line. This means WFIL

t starts to increase, represented by the
γ-transitions. Customers arriving when i > 0 are not seen by the model as these arrivals
do not affect WFIL

t .
Service completions occur with rate nµ for i ≥ 0 and rate (n+i)µ for i < 0. Whenever a

service completion occurs at time t and the queue is not empty, the FIL waiting decreases
with min{S,WFIL

t }, where S is a random variable describing the inter-arrival time of
customers. In the considered M/M/n queue, S is exponentially distributed as the inter-
arrival times in a Poisson arrival process are exponential. This translates to a set of
transitions from state it− to states it+ , following a geometric distribution in the discrete
setting of TEA as given in Theorem 2.1. Here t− and t+ refer to the time just before and
just after the transition at time t and it+ ∈ {0 ... it−} is the set of states from 0 to it− .
These transitions are illustrated with the double arrows in Figure 2.

Theorem 2.1 The discretization of the interarrival distribution is given as:

P (It+ = it+ |It− = it−) =





1−
it−−1∑

h=0

(
λ

λ + γ

)(
γ

λ + γ

)h

, for it+ = 0;

(
λ

λ+γ

)(
γ

λ+γ

)it−−it+
, for it+ ∈ {1, .., it−}.

Proof The theorem follows directly from the geometric distribution, where the probabil-
ity of having a γ-transition in a given state is γ/(λ + γ). This means that the probability
of going from state it− to it+ equals the probability of having had it− − it+ , γ-transitions
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since the last λ-transition. The probability of a transition to state 0 is thus 1 minus the
sum of probabilities of transitions to the other states.

In order to determine the state probabilities at stationarity numerically, a finite state
space is defined. This is done by truncating the number of phases describing the waiting
time at state D, thus i ∈ {−n, ..., D}. By solving πG = 0, where G is a generator matrix
containing the transition rates, the steady-state probabilities are given in the row vector
π. An example of the generator matrix is shown in (1) for an M/M/2 system with D = 3.

G =




−∑
λ 0 0 0 0

µ −∑
λ 0 0 0

0 2µ −∑
λ 0 0

0 0 p(0|1)2µ −∑
γ 0

0 0 p(0|2)2µ p(1|2)2µ −∑
γ

0 0 p(0|3)2µ p(1|3)2µ p(2|3)2µ −∑




, (1)

where
∑

represents the sums of the individual rows and the p(j|i)′s are given in Theo-
rem 2.1.

The truncation of the state space introduces the risk of having a large probability mass
in the truncated state, especially if γ is large. The value of γ has a significant influence on
the approximation. Increasing it means that more states are required for the truncation
of states not to have a too significant influence on the precision of the approximation.
However, having γ large at the same time improves the approximation as it then better
represents the continuously elapsing time. This suggests having a threshold on probability
mass in the truncated state, e.g. πD < 0.001, otherwise γ as large as possible. The
structure of G further suggests that the value of γ should be increasing with µ, n, D.

2.1 Waiting time distribution

In order to determine the waiting time distribution, the embedded Markov chain at service
initiations is considered. Service initiations occur at λ-transitions from states with vacant
servers, i.e. i < 0 and µ-transitions from states i > 0.

The state probability just before a service initiation from state i is denoted α(i). We
let the distribution of α(i) be given in the vector α which can be found as:

αµλ(i) =
π(i)Λµλ(i)∑D

j=−n π(j)Λµλ(j)
, (2)

Here Λ(i)µλ is the sum of the transition intensities from state (i) that result in a service
initiation and the subscripts show the transitions that are considered. For the M/M/n
system Λ(i)µλ becomes

Λµλ(i) =





λ for i < 0;
0 for i = 0;
nµ for 0 < i ≤ D,

(3)

where we should note that nµ =
∑i

j=0 p(j|i)nµ. The waiting time distribution can now
be found from (2) and (3). A customer entering service when i < 0 goes directly to

IV



a free server and experiences no waiting time, this is represented by the first sum in
Equation (4). When a customer enters service from a state i > 0, he/she has waited a
sum of i exponentially distributed time periods, each with mean 1/γ. Let FΓ(t; i, γ) =
1 −∑i−1

h=0
(γt)h

h! e−γt be the cdf of an Erlang-distribution with shape parameter i ∈ N and
scale parameter γ ∈ R+, then we have the second sum in Equation (4). The waiting time
distribution, as approximated by TEA, of a customer entering the system then becomes:

P (W ≤ t) =
−1∑

i=−n

αµλ(i) +
D∑

i=1

FΓ(t; i, γ)αµλ(i), (4)

Figure 3 shows the waiting time distribution as found by TEA for a small (3a) and
a large system (3b) respectively, both compared to the theoretical distribution given as
F (t) = 1 − E2,n(A)e−(n−A)µt, A < n, t ≥ 0, where A = λ/µ is the offered traffic and
E2,n(A) is the delay probability as given by Erlang’s C-formula [8]. It can be seen that
the approximation does indeed converge for D →∞, as desired.
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Figure 3: The waiting time distribution as found by TEA compared to Erlang-C for a
small (3a) and large system (3b) respectively.

In Figure 4 the absolute error for different values of the load on the system, ρ, is shown
for two different model sizes, D = 200 (4a) and D = 1000 (4b). It is seen that TEA is
able to handle different values of the load, ρ, well.

2.2 Infinite state space

Instead of truncating the state space, we can solve TEA of the M/M/1 queue for an
infinite number of states. The generator matrix (1) bears a strong resemblance to the
ditto for an M/G/1 system for i ≥ 1, see [7], if we extend it to an infinite number of
states. This motivates guessing a solution to the steady state probabilities in the form of
π(i) = θβi(1− β), where θ is a normalizing constant. Solving the infinite set of equations
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Figure 4: The absolute error of the waiting time distribution as found by TEA is compared
to the corresponding distribution from Erlang-C for different loads. Fig. 4a shows a coarser
approximation than Fig. 4b. Note that as, without loss of generality, µ = 1 we have the
load, ρ, equals λ/n.

πG = 0 yields an expression for the steady state probabilities;

πi =





µγ(µ− λ)
λ3 + µ2γ

, for i = −1

λγ(µ− λ)
λ3 + µ2γ

, for i = 0

λ2(µ− λ)
λ3 + µ2γ

(
λ + γ

µ + γ

)i

, for i ≥ 1

(5)

We can find the waiting time distribution from the steady state probabilities (5) in the
same way as for the truncated system described in Section 2.1, the resulting expression
becomes

P (W ≤ t) = 1− λ(λ + γ)
λ2 + µγ

e
γ

µ+γ
(λ−µ)t

.

This turns out to converge to the known expression for the M/M/1 queue [8] for γ →∞,
which proves that TEA does indeed converge to the correct solution.

3 Call center modelling

In this section it is shown how the Erlang approach introduced in Section 2 can be used for
modelling the system shown in Figure 1a. This system is referred to as an N-design due to
the outline of the routing scheme [6]. The system is motivated by the call handling often
seen in call centers, where the servers would be agents answering calls from customers
with different needs or importance.

In the setup, two job types, a and b, arrive at queue a and queue b with rates λa

and λb respectively. Queue a is served by a group of na servers each handling jobs with
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service rate µa; queue b is similarly served by nb servers each working with service rate
µb. When the waiting time, Wt,a, of the first job in queue a exceeds a limit, k, the job is
allowed to go to server group b with non-preemptive priority over jobs in queue b. This
means that there may be vacant b-servers even if there are a-customers waiting. As before
γ-transitions represent the increasing FIL-waiting time with the addition that we let both
FIL-waiting times increase simultaneously when jobs are queued in both queues.

The Erlang model used to describe this system is depicted in Figure 5. In this case
the Erlang approximation presented in Section 2, is extended to two dimensions, one for
each queue and server group. States are denoted (i, j), where i and j represent the a and
b jobs respectively in the same way as for the M/M/n case described in Section 2. We
let X denote the complete set of states. The deterministic threshold, k, on the overflow
is modelled by m phases after which the a-calls are allowed to go to the b-server group.
In this 2-dimensional model the FIL-waiting times for queues a and b are truncated at
states Da and Db respectively. It would be appealing to solve this system for an infinite
number of states as was done for the M/M/1 queue in Section 2.2. However, the more
complex generator matrix and the fact that one will have to deal with an infinite number
of states in two dimensions would lead to complex analytical expressions, furthermore the
additional insight gained would be limited.
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Figure 5: Illustration of the Erlang model. The horizontal and vertical directions describe
queues a and b respectively. Negative indices refer to the number of vacant servers in each
server group and positive indices refer to the waiting time of the first customer in line.
The double arrows illustrate a distribution of transition intensities to a number of states
in the given direction with total intensity as given next to the arrow. This distribution is
given in Theorem 2.1.

When at least one of the servers in group b is vacant and queue a reaches state m, the
next γ-transition will result in the first job in queue a being allowed to go to a free server
in group b thus decreasing the waiting time of the first in line in queue a and decreasing
the number of vacant servers in group b by one. This situation corresponds to the diagonal
double arrows originating from states (m, j < 0).
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The use of Erlang distributions for approximating step functions in stochastic models
often suffers from the curse of dimensionality. This is to some extent avoided by combining
the number of free servers and the waiting time of the first in line in one dimension for
each of the job types.

Extra care has to be taken when determining the waiting time distribution for the
two job types. The transitions leading to service initiations in the N-design model are
λa and λb-transitions from states with vacant servers, i.e. i < 0 and j < 0 respectively,
γ-transitions from states where i = m and j < 0, and finally µa and µb-transitions from
states i > 0 and j > 0 respectively.

Besides the obvious differentiation between service initiations for a and b jobs, it is
also necessary to deal with service initiations for a jobs due to γ transitions in a special
way. This is due to γ-transitions representing customers having waited exactly k and not
a gamma-distributed amount of time.

The state probabilities just before service initiations are denoted α(i, j)a and α(i, j)b

for a and b-calls respectively. The distribution of α can be found as:

αa
µλ(i, j) =

π(i, j)Λa
µλ(i, j)∑

(i,j)∈X π(i, j)Λa
µλγ(i, j)

, (6)

αa
γ(m, j) =

π(m, j)Λa
γ(m, j)∑

(i,j)∈X π(i, j)Λa
µλγ(i, j)

, j < 0. (7)

Here Λa(i, j) is the sum of the transition intensities from state (i, j) that result in a service
initiation for a-calls. The subscripts on Λ are used to differentiate between the different
transitions that lead to service initiations. For a-calls, Λ is given as:

Λa
µλ(i, j) =





λa for i < 0
0 for i = 0
naµa for 0 < i ≤ m

naµa + nbµb for m < i

(8)

Λa
γ(i, j) =

{
γ for i = m, j < 0;
0 else.

(9)

Λa
µλγ(i, j) = Λa

µλ(i, j) + Λa
γ(i, j) (10)

For the b-calls the expressions are somewhat simpler:

Λb
µλ(i, j) =





λb for j < 0, i ≤ m;
nbµb for 0 < j, i ≤ m

0 else.

(11)

Using the same approach as in Section 2, the waiting time distribution for type a jobs
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Figure 6: The Erlang approximation compared to simulations with 95% confidence in-
tervals. The parameters used are k = 0.33min., λa = 0.75min−1, λb = 1.75min−1,
µa = 0.33min−1, µb = 0.5min−1, γ = 30min−1, na = 2, nb = 5, m = 10, Da = 50 and
Db = 300 for Figure 6a and k = 0.33min, λa = 7min−1, λb = 10min−1, µa = 0.33min−1,
µb = 0.5min−1, γ = 90min−1, na = 20, nb = 27, m = 30, Da = 40 and Db = 200 for
Figure 6b.

can be found from (6) and (7) as:

P (Wa ≤ t) =





−1∑

i=−na

Db∑

j=−nb

αa
µλ(i, j) +

Da∑

i=1


FΓ(t; i, γ)

Db∑

j=−nb

αa
µλ(i, j)


 , t < k,

−1∑

i=−na

Db∑

j=−nb

αa
µλ(i, j) +

−1∑

j=−nb

αa
γ(m, j)

+
Da∑

i=1


FΓ(t; i, γ)

Db∑

j=−nb

αa
µλ(i, j)


 , t ≥ k,

The waiting time distribution for type b jobs can in a similar fashion be found as:

P (Wb ≤ t) =
Da∑

i=−na

−1∑

j=−nb

αb
µλ(i, j) +

Db∑

j=1

[
FΓ(t; j, γ)

Da∑

i=−na

αb
µλ(i, j)

]
,

where the αb can be found in the same way as for the a-jobs from Equation (6) using (11)
instead of (8). γ-transitions never lead to service initiations for b-jobs thus leading to a
simpler expression.

In Figure 6, TEA is compared to simulations for a small (Figure 6a) and a large system
(Figure 6b). It is seen that TEA is able to give a good approximation even for large
systems.
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4 Further possibilities of TEA

The possibilities of TEA are not limited to the N-design presented in Section 3. In this
section we show how a system with dynamic prioritization can be modelled using TEA
and discuss how discretionary prioritization and the inclusion of abandonments in models
could be approached. A setup with overflow to a back office, such as the one dealt with
in [1], could also be analyzed with TEA.

4.1 Dynamic prioritization

In this section we show how TEA, introduced in Section 2, can be used for a system with
dynamic priority. In this case the next customer to be served when a server becomes
available at time t, is selected from two queues, a and b, by max{Wt,a − ka,Wt,b − kb},
where the k’s are constants and the Wt’s FIL-waiting times as previously. Arrivals are
assumed to occur according to a Poisson process with rates λa and λb to the two queues.
Jobs from both queues are served by a joint group of n servers that each handle the jobs
with exponential service time with mean 1/µ. If one queue is empty, jobs from the other
will always be taken into service immediately if a server is vacant. The system is illustrated
in Figure 1b.

As is shown in [4], the average waiting time of the low priority customers in a static
priority system with two classes grows quickly when the relative frequency of high-priority
customers increases. This prioritization scheme is thus desirable when exceedingly long
waiting times should be avoided for all classes while still giving some priority to certain
customers.

The exact formulation of the additive prioritization scheme may vary as only the dif-
ference of the constants matters, adding ka and kb to Wt,b and Wt,a respectively would
be equivalent. Here it is formulated by subtraction of a constant for each queue which
especially for systems with more than two queues make things more clear as it can be
interpreted as a target waiting time for each queue.

This prioritization scheme was first introduced in [9] and is referred to as dynamic
priority or sequencing according to due-date in the literature. In [10], Jackson’s conjecture
is given, stating that the tails of the waiting time distributions for the different priority
classes are exponential with the same shape. Indeed the shape of the tails are the same
as for an FCFS system, only shifted ka − kb from each other. The conjecture doesn’t say
anything about the remaining, lower part of the distribution, which is where TEA can
give a good approximation.

The state space of TEA for the V-design system with dynamic priority becomes two-
dimensional as the FIL-waiting times of both queues need to be taken into account. States
i < 0 keep track of the number of vacant servers in the same way as for the M/M/n system
treated in Section 2. Whenever a server finishes a job and i > 0, the next customer taken
into service must be chosen from max{Wt,a − ka, Wt,b − kb}. This is implemented in the
model by dividing the state space into two parts representing either option as illustrated
in Figure 7 with the thick dotted line.

In Figure 8, a plot of the waiting time distribution for a dynamic priority two class sys-
tem is shown as found by TEA. Customers are always taken immediately into service when
a server is vacant, thus the distributions start at the same value in 0. Figure 8 illustrates
Jackson’s conjecture [10] as it plots the waiting time distributions on a logarithmic scale
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Figure 7: Transition rate diagram for modelling dynamic prioritization using TEA. The
dotted line divides the state space into sections determining from which queue the next
customer will be taken.

thus producing straight lines for the exponential tails. Simulation results with confidence
intervals are shown for validation.

A possible extension to the dynamic priority model would be to keep servers free to
cater for potential a-customers even though b-customers may be in line. This could be
treated as an optimization problem and approached using Markov Decision Processes. It
would be somewhat analogous to the slow-server problem [12], [13] and [15].

4.2 Discretionary priority

The discretionary priority discipline is a mix of the preemptive and non-preemptive dis-
ciplines, [11]. The idea is that high priority customers are only allowed to preempt lower
priority customers under certain circumstances, e.g. that a low priority customer has just
started service. In this case TEA could be used in an inverted way by modelling the
elapsed service time of the last low priority customer who entered service and thus only
allowing high priority customers to preempt when this value is under a given threshold.

4.3 Abandonments

The inclusion of abandonments is often considered essential when dealing with call centers
[18]. It should be possible to extend the model to take abandonments into account by
introducing transitions representing abandonments of the FIL customer. Also a negative
binomial distribution should be used in Theorem 2.1 instead of the geometric distribu-
tion in order to account for the possibility of customers further back in the line having
abandoned the system.

Including abandonments ought to improve the Erlang approximation as it will decrease
the risk of the truncation having a significant negative influence.
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(a) Waiting time distribution.
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(b) Waiting time distribution, logarithmic plot.

Figure 8: The Erlang approximation compared to simulations for a system with dynamic
priority. The parameters used are ka = 0.25, kb = 1.25, λa = 3.5, λb = 2.5, µ = 1, n = 8,
Da = 90, Db = 150, and γ = 60.

5 Conclusion

We introduced a new approach to modelling queueing systems by using the waiting time of
the customer first in line. This has proved useful when dealing with systems where routing
or priority of customers depends on this waiting time as seen in many real scenarios such
as call centers.

The Erlang approximation (TEA) was introduced in Section 2 and we showed that
the resulting waiting time distribution indeed converges to the theoretical value when the
state space increases in size.

In Section 3 we implemented TEA for a N-design routing scheme with deterministic
threshold on the overflow between server groups, a design often used in call centers. We
showed that it is possible to get a good approximation of the waiting time distribution and
that TEA can thus be an alternative approach to examining complicated systems where
simulation studies have otherwise been seen as the only viable approach.

Further possibilities of TEA were discussed in Section 4 including how abandonments
could be taken into account. We also showed how TEA can be used to model a system
with dynamic priority, thus showing the flexibility of TEA.
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Addendum

B.1 Addendum

Verification of TEA

In this addendum to the paper Waiting time dependent multi-server priority
queues, The Erlang Approximation is verified by using it with an infinite state
space and finding the waiting time distribution of the M/M/1-queue. The
transition rate diagram for this approximation is shown in Figure B.1

pµ 31

pµ 10 pµ 21 pµ 32

pµ 20 pµ 30

210−1
γλ λ γ

3µ

Figure B.1: Transition diagram of TEA applied to the M/M/1-queue.

The generator matrix for TEA applied to the M/M/1-queue is given by:

G =

266666664

−λ λ 0 0 0 0 0
µ −(λ + µ) λ 0 0 0 0
0 µp10 − (γ + µp10) γ 0 0 0
0 µp20 µp21 −

`
γ + µ

P1
i=0 p2i

´
γ 0 0

0 µp30 µp31 µp32 −
`
γ + µ

P2
i=0 p3i

´
γ 0

.

.

.
.
.
.

. . .
. . .

. . .
. . .

. . .

377777775
(B.1)

The steady state probabilities can be found from solving the equation array
0 = πG, where π is a row vector containing the steady state probabilities. The
individual equations of this array can be written out as

0 = −λπ−1 + µπ0

0 = λπ−1 − (λ + µ)π0 +
∞∑

j=1

p0jµπj

0 = λπ0 − (γ + µp01)π1 +
∞∑

j=2

p1jµπj

0 = γπi−1 −

γ + µ
i−1∑
j=0

pij

πi +
∞∑

j=i+1

pijµπj , for i ≥ 2,
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where

pji = P (It+ = i|It− = j) =


1−

j−1∑
h=0

(
λ

λ + γ

)(
γ

λ + γ

)h

, for i = 0;(
λ

λ + γ

)(
γ

λ + γ

)j−i

, for i ∈ {1, .., j},

(B.2)
are the probabilities describing the distribution of the transitions, whenever a
customer goes into service.

Now, inserting (B.2) in each of the above equations yields the following
equations:

0 = −λπ−1 + µπ0 (B.3)

0 = λπ−1 − (λ + µ)π0 + µ

∞∑
j=1

(
1− λ

λ + γ

j−1∑
h=0

(
γ

λ + γ

)h
)

πj (B.4)

0 = λπ0 −
(

γ + µ

(
1− λ

λ + γ

))
π1 + µ

(
λ

λ + γ

) ∞∑
j=2

(
γ

λ + γ

)j−1

πj (B.5)

0 = γπi−1 −
(

γ + µ

(
1− λ

λ + γ

))
πi

+ µ

(
λ

λ + γ

) ∞∑
j=i+1

(
γ

λ + γ

)j−i

πj , for i ≥ 2 (B.6)

The structure of G, as seen in Equation (B.1), bears a strong resemblance
to the generator matrix of an M/G/1-system [30]. This resemblance motivates
guessing a solution of the form: πi = θβi(1 − β), for i ≥ 2, i.e. a geometric
distribution, where θ is a normalizing constant. Inserting this guess in Equa-
tion (B.6) enables us to find an expression for β:
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0 = γθ(1− β)βi−1 −
(

γ + µ

(
1− λ

λ + γ

))
θ(1− β)βi

+ µ

(
λ

λ + γ

) ∞∑
j=i+1

(
γ

λ + γ

)j−i

θ(1− β)βj

0 = γβi−1 −
(

γ +
µγ

λ + γ

)
βi +

µλ

λ + γ

∞∑
j=i+1

(
γ

λ + γ

)j−i

βj

0 = γ −
(

γ +
µγ

λ + γ

)
β +

µλγ

(λ + γ)2
β2 1

1− βγ
λ+γ

0 = γ − γ2

λ + γ
β +

(
−γ − µγ

λ + γ
+

βγ2

λ + γ
+

µβγ2

(λ + γ)2

)
β +

µλγ

(λ + γ)2
β2

0 = γ −
(

γ +
µγ + γ2

λ + γ

)
β +

µλγ + γ2(λ + µ + γ)
(λ + γ)2

β2

0 = γ(λ + γ)2 −
(
γ(λ + γ)2 + (λ + γ)(µγ + γ2)

)
β + (λ + γ)(µγ + γ2)β2

0 = λ + γ − (λ + µ + 2γ)β + (µ + γ)β2,

thus

β = 1 ∧ β =
λ + γ

µ + γ
. (B.7)

Now we consider Equation (B.5) and insert the guess πi = θ(1 − β)βi, for
i ≥ 2:

0 = λπ0 −
„

γ +
µγ

λ + γ

«
π1 + µ

„
λ

λ + γ

« ∞X
j=2

„
γ

λ + γ

«j−1

θ(1− β)βj

0 = λπ0 −
„

γ +
µγ

λ + γ

«
π1 + (1− β)

λµγθβ2

(λ + γ)2
1

1− γβ
λ+γ

0 =

„
λ− λγβ

λ + γ

«
π0 −

„
γ +

µγ

λ + γ
− γ2β

λ + γ
− µγ2β

(λ + γ)2

«
π1 + (1− β)

λµγθβ2

(λ + γ)2

0 =
`
λ(λ + γ)2 − λγβ(λ + γ)

´
π0

−
`
γ(λ + γ)2 + µγ(λ + γ)− γ2β(λ + γ)− µγ2β

´
π1 + (1− β)λµγθβ2

0 = λ(λ + γ) (λ + γ − γβ) π0 − γ(λ + µ + γ)(λ + γ − γβ)π1 + λµγθ(β2 − β3).
(B.8)
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Inserting the non-trivial value of β from Equation (B.7) in Equation (B.8)
yields

0 = λ(λ + γ)
(

λ + γ − γ
λ + γ

µ + γ

)
π0 − γ(λ + µ + γ)

(
λ + γ − γ

λ + γ

µ + γ

)
π1

+ λµγθ

((
λ + γ

µ + γ

)2

−
(

λ + γ

µ + γ

)3
)

0 = λ(λ + γ)
(

µ

µ + γ

)
π0 − γ(λ + µ + γ)

(
µ

µ + γ

)
π1

+ λµγθ

(
λ + γ

(µ + γ)2
− (λ + γ)2

(µ + γ)3

)
0 = λ(λ + γ)π0 − γ(λ + µ + γ)π1 + λγ

(
λ + γ

µ + γ
− (λ + γ)2

(µ + γ)2

)
θ

0 =
1
γ

π0 −
λ + µ + γ

λ(λ + γ)
π1 +

µ− λ

(µ + γ)2
θ (B.9)

By manipulating Equation (B.4) we get:

0 = λπ−1 − (λ + µ)π0 + µ

∞X
j=1

 
1− λ

λ + γ

j−1X
h=0

„
γ

λ + γ

«h
!

πj

0 = λπ−1 − (λ + µ)π0 + µ

∞X
j=1

0B@1− λ

λ + γ

1−
“

γ
λ+γ

”j

1−
“

γ
λ+γ

”
1CAπj

0 = λπ−1 − (λ + µ)π0 + µ

∞X
j=1

„
γ

λ + γ

«j

πj ,

and inserting the guess for πi yields

0 = λπ−1 − (λ + µ)π0 +
µγ

λ + γ
π1 + µ

∞X
j=2

„
γ

λ + γ

«j

θ(1− β)βj

0 = λπ−1 − (λ + µ)π0 +
µγ

λ + γ
π1 + µθ(1− β)

 
∞X

j=0

„
γβ

λ + γ

«j

− 1− γβ

λ + γ

!

0 = λπ−1 − (λ + µ)π0 +
µγ

λ + γ
π1 + µ(1− β)

 
1

1− γβ
λ+γ

− 1− γβ

λ + γ

!
θ.
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The expression for β is inserted:

0 = λπ−1 − (λ + µ)π0 +
µγ

λ + γ
π1 + µ

„
1− λ + γ

µ + γ

«0B@ 1

1−
γ λ+γ

µ+γ

λ+γ

− 1−
γ λ+γ

µ+γ

λ + γ

1CA θ

0 = λπ−1 − (λ + µ)π0 +
µγ

λ + γ
π1 + µ

„
µ− λ

µ + γ

«„
µ + γ

µ
− µ

µ + γ

«
θ

0 = λπ−1 − (λ + µ)π0 +
µγ

λ + γ
π1 +

γ(2µ + γ)(µ− λ)

(µ + γ)2
θ (B.10)

We now consider Equations (B.3), (B.9), and (B.10) again:

0 = −λπ−1 + µπ0

0 =
1
γ

π0 −
λ + µ + γ

λ(λ + γ)
π1 +

µ− λ

(µ + γ)2
θ

0 = λπ−1 − (λ + µ)π0 +
µγ

λ + γ
π1 +

γ(2µ + γ)(µ− λ)
(µ + γ)2

θ

From Equation (B.3), we express π−1 by π0:

π−1 =
µ

λ
π0, (B.11)

By inserting the expression of Equation (B.11) in Equation (B.10), we get:

0 = λπ−1 − (λ + µ)π0 +
µγ

λ + γ
π1 +

γ(2µ + γ)(µ− λ)
(µ + γ)2

θ

0 = λ
µ

λ
π0 − (λ + µ)π0 +

µγ

λ + γ
π1 +

γ(2µ + γ)(µ− λ)
(µ + γ)2

θ

0 = λπ0 +
µγ

λ + γ
π1 +

γ(2µ + γ)(µ− λ)
(µ + γ)2

θ (B.12)

Equation (B.9) is re-written as:

0 =
1
γ

π0 −
λ + µ + γ

λ(λ + γ)
π1 +

µ− λ

(µ + γ)2
θ

π0 =
(λ + µ + γ)γ

λ(λ + γ)
π1 −

(µ− λ)γ
(µ + γ)2

θ (B.13)
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Now, Equation (B.13) inserted in Equation (B.12) gives us an expression for
π1 by θ:

0 = λπ0 +
µγ

λ + γ
π1 +

γ(2µ + γ)(µ− λ)
(µ + γ)2

θ

0 = λ

(
(λ + µ + γ)γ

λ(λ + γ)
π1 −

(µ− λ)γ
(µ + γ)2

θ

)
+

µγ

λ + γ
π1 +

γ(2µ + γ)(µ− λ)
(µ + γ)2

θ

0 =
(λ + 2µ + γ)γ

λ + γ
π1 −

γ(λ + 2µ + γ)(µ− λ)
(µ + γ)2

θ

0 =
1

λ + γ
π1 −

µ− λ

(µ + γ)2
θ

π1 =
(µ− λ)(λ + γ)

(µ + γ)2
θ (B.14)

To obtain π0 given by θ; Equation (B.14) is inserted in Equation (B.13):

π0 =
(λ + µ + γ)γ

λ(λ + γ)
π1 −

(µ− λ)γ
(µ + γ)2

θ

π0 =
(

(λ + µ + γ)γ
λ(λ + γ)

)(
(µ− λ)(λ + γ)

(µ + γ)2
θ

)
− (µ− λ)γ

(µ + γ)2
θ

π0 =
(µ + γ)γ(µ− λ)

λ(µ + γ)2
θ

π0 =
γ(µ− λ)
λ(µ + γ)

θ (B.15)

Next, π−1 is found by inserting Equation (B.15) in Equation (B.11):

π−1 =
µ

λ
π0

π−1 =
µγ(µ− λ)
λ2(µ + γ)

θ (B.16)

As the total probability mass of the states in equilibrium must sum to one, we
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get:

1 =
∞X

i=−1

πi

1 =

"
µγ(µ− λ)

λ2(µ + γ)
+

γ(µ− λ)

λ(µ + γ)
+

(µ− λ)(λ + γ)

(µ + γ)2
+

∞X
i=2

„
1−

λ + γ

µ + γ

«„
λ + γ

µ + γ

«i
#

θ

1 =

"
µγ(µ− λ)

λ2(µ + γ)
+

γ(µ− λ)

λ(µ + γ)
+

(µ− λ)(λ + γ)

(µ + γ)2
+

λ− µ

µ + γ

 
1 +

λ + γ

µ + γ
−

1

1− λ+γ
µ+γ

!#
θ

1 =

"
µγ(µ− λ)

λ2(µ + γ)
+

γ(µ− λ)

λ(µ + γ)
+

(µ− λ)(λ + γ)

(µ + γ)2
+

(λ + γ)2

(µ + γ)2

#
θ

1 =
µγ(µ− λ)(µ + γ) + γ(µ− λ)λ(µ + γ) + λ2(µ− λ)(λ + γ) + λ2(λ + γ)2

λ2(µ + γ)2
θ

1 =
(λ + µ)γ(µ− λ)(µ + γ) + λ2(λ + γ)(µ + γ)

λ2(µ + γ)2
θ

1 =
λ3 + µ2γ

λ2(µ + γ)
θ

θ =
λ2(µ + γ)

λ3 + µ2γ
(B.17)

We can now find the explicit expressions for the steady state probabilities;
first π−1:

π−1 =
µγ(µ− λ)
λ2(µ + γ)

θ

π−1 =
(

µγ(µ− λ)
λ2(µ + γ)

)(
λ2(µ + γ)
λ3 + µ2γ

)
π−1 =

µγ(µ− λ)
λ3 + µ2γ

, (B.18)

then π0:

π0 =
γ(µ− λ)
λ(µ + γ)

θ

π0 =
(

γ(µ− λ)
λ(µ + γ)

)(
λ2(µ + γ)
λ3 + µ2γ

)
π0 =

λγ(µ− λ)
λ3 + µ2γ

, (B.19)
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and π1:

π1 =
(µ− λ)(λ + γ)

(µ + γ)2
θ

π1 =
(µ− λ)(λ + γ)

(µ + γ)2

(
λ2(µ + γ)
λ3 + µ2γ

)
π1 =

λ2(µ− λ)(λ + γ)
(µ + γ)(λ3 + µ2γ)

. (B.20)

Finally πi, for i ≥ 2:

πi = θ(1− β)βi, for i ≥ 2

πi =
λ2(µ + γ)
λ3 + µ2γ

(
1− λ + γ

µ + γ

)(
λ + γ

µ + γ

)i

, for i ≥ 2

πi =
λ2(µ + γ)
λ3 + µ2γ

(
µ− λ

µ + γ

)(
λ + γ

µ + γ

)i

, for i ≥ 2

πi =
λ2(µ− λ)
λ3 + µ2γ

(
λ + γ

µ + γ

)i

, for i ≥ 2

We see that the expression for i ≥ 2 is also valid for i = 1. To sum up, the
steady state probabilities become:

πi =



µγ(µ− λ)
λ3 + µ2γ

, for i = −1

λγ(µ− λ)
λ3 + µ2γ

, for i = 0

λ2(µ− λ)
λ3 + µ2γ

(
λ + γ

µ + γ

)i

, for i ≥ 1

With the state probabilities settled, we can now determine the waiting-time
distribution. First we find the probabilities of having a service initiation from
a state, i, given as αi:

αi =
πiΛi∑∞

j=−1 πjΛj
, (B.21)
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where

Λi =


λ for i < 0;
0 for i = 0;
µ for i ≥ 1,

is the transition intensity from each state that leads to a service initiation. The
denominator in Equation (B.21) is common for all i, thus we start out with
considering this:

∞∑
j=−1

πjΛj = π−1λ +
∞∑

j=1

πjµ

=
µγ(µ− λ)
λ3 + µ2γ

λ +
∞∑

j=1

λ2(µ− λ)
λ3 + µ2γ

(
λ + γ

µ + γ

)i

µ

=
λµγ(µ− λ)
λ3 + µ2γ

+
λ2µ(µ− λ)
λ3 + µ2γ

λ + γ

µ + γ

µ + γ

µ− λ

=
λµγ(µ− λ)
λ3 + µ2γ

+
λ2µ(λ + γ)
λ3 + µ2γ

=
λ3µ + λµ2γ

λ3 + µ2γ

From this, α−1 is determined to:

α−1 =
πiΛi∑∞

j=−1 πjΛj
,

=
µγ(µ− λ)
λ3 + µ2γ

λ
λ3 + µ2γ

λ3µ + λµ2γ

=
λµγ(µ− λ)
λ3µ + λµ2γ

=
γ(µ− λ)
λ2 + µγ
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Obviously α0 = 0 as Λ0 = 0. The αi’s, for i ≥ 1, are found as:

αi =
πiΛi∑∞

j=−1 πjΛj
,

=
λ2(µ− λ)
λ3 + µ2γ

(
λ + γ

µ + γ

)i

µ
λ3 + µ2γ

λ3µ + λµ2γ

=
λ2µ(µ− λ)
λ3µ + λµ2γ

(
λ + γ

µ + γ

)i

=
λ(µ− λ)
λ2 + µγ

(
λ + γ

µ + γ

)i

Now, we have all the elements needed to find the waiting-time distribution.
It is given as:

P (W ≤ t) = α−1 +
∞∑

i=1

FΓ(t; , i, γ)αi,

where FΓ(t; i, γ) = 1−
∑i−1

h=0
(γt)h

h! e−γt is the cdf of an Erlang-distribution with
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shape parameter i ∈ N and scale parameter γ ∈ R+. Inserting the α’s yield:

P (W ≤ t) = α−1 +

∞X
i=1

FΓ(t; , i, γ)αi

=
γ(µ− λ)

λ2 + µγ
+

∞X
i=1

 
1−

i−1X
h=0

(γt)h

h!
e−γt

!
λ(µ− λ)

λ2 + µγ

„
λ + γ

µ + γ

«i

=
(µ− λ)

λ2 + µγ

"
γ + λ

∞X
i=1

„
λ + γ

µ + γ

«i

− λe−γt
∞X

i=1

„
λ + γ

µ + γ

«i i−1X
h=0

(γt)h

h!

#

=
(µ− λ)

λ2 + µγ

"
γ + λ

λ + γ

µ + γ

„
µ + γ

µ− λ

«
− λe−γt

∞X
i=1

„
λ + γ

µ + γ

«i i−1X
h=0

(γt)h

h!

#

= 1− λ(µ− λ)

λ2 + µγ
e−γt

∞X
i=1

„
λ + γ

µ + γ

«i i−1X
h=0

(γt)h

h!

= 1− λ(µ− λ)

λ2 + µγ
e−γt

∞X
h=0

(γt)h

h!

∞X
i=h+1

„
λ + γ

µ + γ

«i

= 1− λ(µ− λ)

λ2 + µγ
e−γt

∞X
h=0

(γt)h

h!

„
λ + γ

µ + γ

«h+1 ∞X
i=0

„
λ + γ

µ + γ

«i

= 1− λ(µ− λ)

λ2 + µγ
e−γt

∞X
h=0

(γt)h

h!

„
λ + γ

µ + γ

«h+1„
µ + γ

µ− λ

«
= 1− λ(λ + γ)

λ2 + µγ
e−γte

γt(λ+γ)
µ+γ

= 1− λ2/γ

λ2/γ + µ
− λ

λ2/γ + µ
e

γ
µ+γ

(λ−µ)t

which converges to P (W ≤ t) = 1 − λ
µe(λ−µ)t for γ → ∞. The Erlang

Approximation is verified by this result.
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Abstract

We examine how overflow policies in a multi skill call center should be designed
to accommodate different performance measures such Average Speed of Answer and
Telephone Service Factor. This is done using a discrete Markovian approximation to
the waiting time of the first customers waiting in line. We show that the widely used
policy, of having a fixed threshold on the waiting time of the first customer in line
determine when overflow is allowed, is far from optimal in many cases. Furthermore
we discuss in which cases this approach is indeed appropriate. The work is motivated
by call center applications but may be applicable to other fields such as health care
management and communication networks.

Keywords: Waiting time distribution; call center; priority queues; Markov Decision
Processes; optimization; Dynamic Programming.

1 Introduction

In call centers a commonly used practice is to allow overflow of calls between different
agent pools. The purpose of this can be to reduce the risk of having calls waiting an
excessive amount of time in one queue while servers assigned to another queue may be
vacant. There can obviously be restrictions on the overflow between groups, e.g., due to
one group of agents not having the competence to answer all types of calls or simply based
on a wish of giving higher priority to one customer class.

The call routing structure of real call centers can often be very complicated with mul-
tiple customer classes and agent/server groups. In order to analyze these setups an often
used practice is to look at different canonical structures, such as the “V”, “N”, “X”, and
“W” designs [4]. The system analyzed here is the one referred to as an N-design. Figure 1
shows an illustration of this system. Two customer classes, a and b, are each served by
their own server group. Furthermore a-calls can be routed to b-servers according to deci-
sions based on the number of free servers and/or the waiting times of the first customers
in line in the two queues. b-calls can never go to a-servers. Also, a-calls cannot preempt
b-calls already being served. It should be noted that a-calls are not necessarily of higher
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priority than b-calls, the fundamental difference lies only in the routing scheme. For ex-
ample, if a-calls are of high priority, the overflow to b-servers could be used to reduce the
risk of having important customers wait too long in the queue. In the case where b-calls
are of higher priority, the overflow from the a-queue could allow any excess capacity in the
b-server group to be utilized. The prioritization of calls will be based on cost functions
discussed later.

µa µa µa µb µb µb

bλaλ

1 2 1 2n a n b

Figure 1: The N-design. a-customers can be sent to b-servers according to decisions based
on the number of free servers and/or the waiting times of the first customers in line in the
two queues.

An often used policy is to allow overflow after the waiting time of the first customer in
line has reached a given fixed threshold, thus not taking into account if servers are vacant
in the server group the overflow is directed to. This policy is examined in [3], [9] and [2].
The idea behind keeping b-servers vacant even though a-customers are waiting, is to have
b-servers ready to answer incoming b-calls. However, the approach of letting the threshold
where overflow is allowed to be independent of the number of free servers, is intuitively
unattractive as it might very well be better to allow overflow earlier if many b-servers
are vacant and later if few b-servers are vacant. In this paper we examine how overflow
policies can be designed to accommodate different performance measures in the best way
and thus avoid a waste of resources.

Different implementations of routing and call selection based on the waiting time of
customers have been examined in the literature, especially for the V-design where two
customer classes share a server group. One simple approach is to assign an ageing factor
that grows proportionally with a customer’s waiting time and choose the customer with
the highest proportional waiting time. This approach was introduced in [8] and later also
examined in [10]. A similar approach is to add a constant to the waiting time for each
customer class and thus prioritize calls based on the values of the constant. This is often
referred to as scheduling according to due dates or dynamic prioritization and was first
examined in [6] and [7].

In [5], call selection is optimized and average costs are given for a single server and two
customer classes with switching costs and preemptive-resume service discipline using one-
step optimization. Non-preemptive systems with multiple customer classes are normally
hard to analyze using Markov Decision Processes as knowledge of the customers currently
being served is required. This requirement is relaxed here by modelling the waiting times
of the first customers in line. As a result, the optimal policies will depend on the waiting
time of the longest waiting call. This makes sense both from a theoretical and a practical
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point of view, especially for objectives that are functions of the waiting time such as
the percentage of calls that have waited shorter than a specific threshold (the Telephone
Service Factor). One can imagine, and it is indeed shown in this paper, that a policy that
uses actual waiting time information performs much better for this type of objective.

The model presented in this paper is also in other aspects more versatile than those
examined in the literature. The cost functions can be chosen freely, and we consider the
N-design instead of the more commonly examined V-design. The N-design can be seen
as a more complicated version of call selection in a V-design system. When a b-server
becomes vacant it has to decide whether to take an a- or b-customer into service, but with
the complication of taking the number of working a-servers into account.

In Section 2 the model is introduced and the optimization process is described. Results
for different cases are given in Section 3 and compared to the fixed threshold policy. Lastly
in Section 4 we conclude on our work and give topics for further work.

2 Model description

We consider the system illustrated in Figure 1. Two customer classes, a and b, have their
own queue and server group with na and nb servers respectively. Overflow can be allowed
from the a-queue to b-servers. Calls are taken from each of the two queues according to
the First In, First Out (FIFO) principle. Arrivals to each of the queues happen according
to Poisson processes with rates λa and λb. Exponential service times are assumed and
individual servers in group a and b complete jobs with rates µa and µb, respectively.
Service rates are thus associated with the servers, not the customers.

The underlying model we use is similar to the one used in [9], but with different overflow
criteria. The system is modelled using a 2-dimensional continuous-time Markov chain
where the two dimensions represent a- and b-calls, respectively. For a-calls we let states
i ≤ 0 represent the number of vacant a-servers, i.e., i = −na corresponds to all a-servers
being vacant and i = 0 corresponds to all being occupied. We use the second dimension
to model b-calls according to the same principle.

When an arrival occurs and all servers are busy, the customer enters the queue and we
start modelling the waiting time of the first customer in line. In this way arrivals are not
explicitly handled by the model for states i > 0 as arrivals do not affect the waiting time
of the first in line when customers are queued. States i > 0 thus represent the waiting
time of the first customer in line, wFIL, in a discrete manner. We let transitions with rate
γ between state i and i + 1 represent elapsing time. Service completions are represented
by a geometric distributed set of transitions from state i to states {0, 1, ..., i} with total
rate naµa. The weights of the transitions are given in Lemma 2.1, where t− and t+ denote
the instants just before and after a transition. Again b-calls are modelled in the same way.

Lemma 2.1

Pa(It+ = it+ |It− = it−) =





1−
it−−1∑

h=0

(
λa

λa + γ

)(
γ

λa + γ

)h

, for it+ = 0;

(
λa

λa+γ

)(
γ

λa+γ

)it−−it+
, for it+ ∈ {1, .., it−}.

See [9] for proof of Lemma 2.1. We introduce the following notations: pa,ij = Pa(It+ =
j|It− = i) and pb,ij = Pb(Jt+ = j|Jt− = i).
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An approach for approximating the waiting time distribution for a system with a fixed
overflow policy, is described in [9]. This approach can also be applied here. It involves the
steady state distribution, π, which is found by setting up a generator matrix, G, according
to the system description above, and solving the equation system πG = 0. Next, the state
probabilities at the instants before service initiations, α(i, j), are found by considering the
embedded Markov chain at service initiations. From this, the waiting time distribution
for a-customers is found as

P (Wa ≤ t) =
Db∑

i=−nb

−1∑

j=−na

αa(i, j) +
Da∑

i=1


FΓ(t; i, γ)

Db∑

j=−nb

αa(i, j)


 ,

where FΓ(t; i, γ) = 1 − ∑i−1
h=0

(γt)h

h! e−γt is the cdf of an Erlang-distribution with shape
parameter i ∈ N and scale parameter γ ∈ R+. The waiting time distribution for b-
customers is found in a similar way.

2.1 Overflow optimization

By introducing decisions in the individual states, we can choose when to allow overflow
from the a-queue to b-servers and thus optimize the system according to some chosen cost
functions. For this purpose Markov Decision Processes are used. We let Vn be the total
expected cost n steps from the horizon and use backwards recursion to determine the
optimal policy [12], [11]. We base the costs on the waiting time experienced by customers,
i.e., when a customer is taken into service after having waited a given time, this event is
assigned a cost. As the waiting times of customers are represented by states with positive
indices we introduce cost functions of the from ca(i) and cb(j). We also introduce the
possibility of imposing a cost for allowing overflow, i.e., whenever an a-customer is sent to
a b-server. This is denoted with cs.

In the case where a-customers are queued and b-servers are free, i.e., states where
i > 0, j < 0, we have the possibility of sending an a-customer to a b-server. We introduce
decisions whenever there has been a transition to one of these states. These decisions are
represented by the W ’s given in Equation (1). The first part of the minimization term
corresponds to doing nothing and staying in the state in which the system just arrived.
The second part corresponds to letting one of the vacant b-servers take an a-customer into
service, which then happens immediately after the decision has been taken.

Wn(i, j) =





min

{
Vn−1(i, j), cs + ca(i) +

i∑

h=0

pa,ihVn−1(h, j + 1)

}
for i > 0, j < 0

Vn−1(i, j) else.

(1)

A slightly different approach to decisions is taken for the case where customers are
queued in both queues, i.e., states i > 0, j > 0. Here all servers are working and decisions
are only allowed whenever a b-server finishes a job, that is, when a µb-transition occurs.
We introduce decisions represented by U(i, j) when a b-server finishes a job in state (i, j).
The option here is whether to take an a- or b-customer into service, as represented by U
in Equation (2).

Un(i, j) = min

{
cb(j) +

j∑

h=0

pb,jhVn−1(i, h), cs + ca(i) +
i∑

h=0

pa,ihVn−1(h, j)

}
(2)
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For i ≤ 0, we have no decisions to make as no a-calls are queued. For states i > 0, j = 0
there is also no decision as no b-servers are free and if one becomes free a transition is
made to a state j = −1, which the next decision will be based on.

Having defined the decisions, we can now set up the equations for the backward recur-
sion. Five different equations are needed due to the structure of the state space. These
are given in Equations (3)-(7). In order to have the same average time between transitions
from each individual state we introduce uniformization terms. These are given in the last
line in each of the equations giving a uniformization rate of γ + λa + λb + naµa + nbµb.

Vn(i, j) = λaWn(i + 1, j) + λbVn−1(i, j + 1)
+ µa(na + i)Vn−1(i− 1, j) + µb(nb + j)Vn−1(i, j − 1) (3)
+ (−iµa − jµb + γ)Vn−1(i, j) for i ≤ 0, j ≤ 0

Vn(i, j) = γVn−1(i, j + 1) + λaVn−1(i + 1, j)

+ µa(na + i)Vn−1(i− 1, j) + µbnb

(
cb(j) +

j∑

h=0

pb,jhVn−1(i, h)

)
(4)

+ (λb − iµa)Vn−1(i, j) for i ≤ 0, j > 0

Vn(i, j) = γWn(i + 1, j) + λbWn(i, j + 1)

+ naµa

(
ca(i) +

i∑

h=0

pa,ihWn(h, j)

)
+ (nb + j)µbWn(i, j − 1) (5)

+ (λa − jµb)Vn−1(i, j) for i > 0, j < 0

Vn(i, j) = γVn−1(i + 1, j) + λbVn−1(i, j + 1)

+ naµa

(
ca(i) +

i∑

h=0

pa,ihVn−1(h, j)

)
+ nbµbWn(i, j − 1) (6)

+ λaVn−1(i, j) for i > 0, j = 0

Vn(i, j) = γVn−1(i + 1, j + 1)

+ naµa

(
ca(i) +

i∑

h=0

pa,ihVn−1(h, j)

)
+ nbµbUn(i, j) (7)

+ (λa + λb)Vn−1(i, j) for i > 0, j > 0

We let the value iteration algorithm run until Vn − Vn−1 converges as follows, where ε
is some small number, e.g. 10−9:

max
(i,j)

{Vn(i, j)− Vn−1(i, j)} −min
(i,j)

{Vn(i, j)− Vn−1(i, j)} < ε.

When the optimal policy has been determined through value iteration, we end up with
a set of decisions, one for each of the states i > 0, j < 0 and i > 0, j > 0. A generator
matrix for the system can then be set up based on these decisions. This is required
to determine the stationary distribution and from this, the waiting time distribution of
customers as described earlier in this section. Performance measures such as TSF and
ASA can readily be extracted from the waiting time distributions.
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2.2 Performance measures

The prevalent way of measuring performance in call centers is to use Average Speed of
Answer (ASA) and Telephone Service Factor (TSF), the latter being the percentage of calls
whose waiting times fall below a service level target. The cost functions for a and b-calls
can be designed to emulate either, or both of these. Furthermore it may be appropriate to
penalize overflow as it might be desired that a-calls are assigned to a-servers and b-calls to
b-servers. The actual form and value of the cost functions ca(i) and cb(j) together with the
overflow/switching cost cs will always be a managerial decision based on often subjective
priorities.

One might choose ca(i) and cb(j) as step functions being 0 below a certain threshold
and some non-zero value above this threshold to represent a given TSF such as 80/20
(percentage/service level target), where we introduce SLTa and SLTb as the service level
targets for a- and b-customers respectively. Another possibility is to let the cost functions
increase linearly, which would then correspond to having a performance measure based
on ASA. A combination of the two performance measures is of course also possible. A
call center manager might choose to value a-calls twice as much as b-calls and thus let the
cost function for a-calls increase twice as fast. However, a-calls need not necessarily be
the high priority customers as discussed earlier.

The optimization of the routing policy is done under a given set of parameters, thus
our target is not to dimension the system to fulfill a given TSF but rather doing as good
as possible under given conditions. That is, serving as many as possible within the time
limit in the TSF of the two customer classes with the possibility of having more weight
on serving one class. Or, in the case where the cost functions are shaped to emulate an
emphasis on ASA, trying to keep this as low as possible.

The way to relate states in the model to actual waiting times is to use the mean time
spent in a state before a γ-transition happens, i.e., 1/γ. For example, if γ = 30 min−1

then being in state i > 0 will correspond to the first customer in line having waited
approximately 2i seconds.

3 Results

In this section we illustrate the optimal policy for a number of different cases. The policies
are illustrated by plots of the state space with colors representing the optimal decision in
each state. In all cases a = 1 (blue) indicates that no action should be taken and a = 2
(green) indicates that a call should be taken from the a-queue and assigned to a b-server.
The white areas indicate that no decision is possible. The policy of allowing overflow after
a given fixed time would in this case correspond to the state space being divided in a blue
section to the left and green section to the right where the border would be a vertical
line situated at the threshold value. No units are given on the parameters or results as
these can be chosen as desired. However, the values have been chosen such that they can
realistically be assumed to be in minutes (or min−1 for the intensities) in a call center
context.

For all results, a larger than shown state space has been used in order to avoid the
influence of the truncated state space. Typically a state space of size 120× 120 has been
used in the calculations to produce valid results for a state space of size 70 × 70. The
results have been verified by setting cs = ∞, which leads to overflow never being allowed.
This corresponds to having two independent M/M/n queues and the resulting waiting
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time distribution from the model can thus be compared to analytical results. The model
has also been compared to the simulations used for verification of the fixed threshold case
in [9], and again the results agree.

Figure 2a shows an optimal policy when the cost functions are based on minimizing
ASA and both types of calls are assigned the same weight or value. It is almost always
optimal to route a-calls to b-servers when some of these are available, which makes sense
as this minimizes the time servers are free while calls are waiting. When calls are waiting
in both queues the optimal policy is in general to take the call that has waited the longest
with a small bias towards b-customers. This is due to that fact that it is not desirable to
end up in a states i < 0 where some servers will not be working.

Figure 2b shows what happens when a penalty is given when calls are allowed to
overflow and the mean waiting time of a-calls are given triple weight compared to the
mean for b-customers. It is seen that the decision to allow overflow is only taken when the
waiting time of a-customers has reached a certain value. In this case the optimal policy
actually bears some resemblance to the often used policy of allowing overflow after a fixed
amount of time, with the difference that the border separating the areas with different
decisions is not totally vertical.
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(a) Optimal policy, equal priority
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Figure 2: Decisions based on optimization of ASA. Green shows where overflow is allowed.
Unique parameters for Figure 2a are: ca(i) = i, cs = 0, and for Figure 2b ca(i) = 3i, cs =
120. Shared parameters for the two figures are cb(j) = j, λa = 5; λb = 4; µa = 1; µb =
1; na = 6; nb = 6; γ = 30; ε = 10−9.

The optimal policy when using TSF as performance indicator can take a rather com-
plicated form as seen in Figure 3a. If lines are overlaid at SLTa, SLTb, i = 0, and j = 0,
as is done with red dotted lines in Figure 3a, the picture becomes more clear. Within each
of these seven areas it can actually be seen that the decisions do indeed follow a monotone
pattern.

The cost functions for Figure 3 have been chosen such that the b-customers are the
ones requiring shorter waiting times (below 10s) and a-customers are of lower priority
and can wait up to 20s before a penalty is given. In this case it can clearly be seen that
when a-customers have not waited for a long time, they should only be sent to b-servers
if many of these are vacant. If customers are waiting in both queues, overflow should
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Figure 3: Optimal policy and waiting distributions when using TSF as performance in-
dicator. The used parameters are: ca(i) = 0 for i ≤ 20, ca(i) = 1 for i > 20, cb(j) =
0 for j ≤ 10, cb(j) = 1 for j > 10, cs = 0, λa = 5; λb = 7; µa = 1; µb = 1; na = 5; nb =
10; γ = 30; ε = 10−9. The vertical lines in Figure b show the service level thresholds for
a- and b-customers.

only be allowed if the first in line in the a-queue is just about to reach its service level
threshold. In the case when both types of customers have exceeded their threshold, we
have a diagonal division of the state space, roughly corresponding to taking the customer
with the shortest waiting time of the two situated first in line into service. In this way,
the probability that the next customer from that queue will be served within its threshold
is maximized.

Figure 3b shows that the number of customers served within their threshold is increased
for both a and b customers. The tail of the waiting time distribution for the optimized
case of a-customers is longer than that of the fixed threshold case, but this does not matter
when the focus is entirely on improving TSF. Also less b-customers are served immediately
using the optimized policy, but again TSF is improved. Table 1 shows the actual numbers.
ASA is also improved for both classes even though it is not taken into account during the
optimization in this case.

Table 1: Numerical results; values from Figure 3.

Policy TSFa TSFb ASAa ASAb

Fixed 87.25% 75.60% 0.3071 0.2274
Optimized 91.29% 76.79% 0.2074 0.2152

Figure 4 shows a case where a-customers are given high priority in the way that they
are valued twice as much as b-customers. Furthermore the service level targets have been
set to what would correspond to 10s and 20s for a- and b-customers respectively if we
assume the parameters are taken to be in minutes. The results show that it is almost
always advantageous to allow overflow when a-customers are given high priority. From
the structure of the optimal policy shown in Figure 4a it appears that instead of having the
waiting time the first in line of a-customers determine when overflow should be allowed,
one should base the decision on the waiting time of the b-customers. Introducing a simple
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policy where overflow is allowed when b-servers are available (j < 0) and when the waiting
time of the first b-customer in line, wFIL

b , has exceeded SLTb, i.e., wFIL
b > SLTb, would

resemble the picture seen in Figure 4a to a high degree. The optimal policy results
in a significant improvement for a-customers at a minor cost to b-customers as seen in
Figure 4b. The actual numbers are given in Table 2.

Table 2: Numerical results; values from Figure 4.

Policy TSFa TSFb ASAa ASAb

Fixed 88.76% 76.36% 0.0603 0.2151
Optimized 94.18% 72.63% 0.0297 0.2504
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Figure 4: Optimal policy and waiting time distributions when using TSF as performance
indicator and a-customers are given high priority. The used parameters are: ca(i) =
0 for i ≤ 5, ca(i) = 2 for i > 5, cb(j) = 0 for j ≤ 10, cb(j) = 1 for j > 10, cs = 0, λa =
5; λb = 7; µa = 1; µb = 1; na = 6; nb = 10; γ = 30; ε = 10−9. The vertical lines in
Figure b show the service level thresholds for a- and b-customers.

A realistic cost function would be a combination of TSF and ASA as both are often used
as performance measures in call centers. Figure 5 shows a case where the cost functions
are based on a combination of the two with a penalty for overflow. Again the optimal
policy has some resemblance to the fixed threshold, especially if the blue area for i > 10,
j > 0 is disregarded. This indicates that the use of a fixed threshold policy corresponds
to having high-priority a-customers and a penalty for overflow. We see that if a fixed
threshold is used, it should be set to a lower value than SLTa.

Table 3: Numerical results; values from Figure 5.

Policy TSFa TSFb ASAa ASAb

Fixed 90.90% 88.02% 0.1033 0.1919
Optimized 92.97% 86.23% 0.0809 0.2157
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Figure 5: A combination of ASA and TSF as performance indicator is used here. The
used parameters are: ca(i) = 3i for i ≤ 10, ca(i) = 3i + 40 for i > 10, cb(j) = j; cs =
120, λa = 5; λb = 7; µa = 1; µb = 1; na = 6; nb = 10; γ = 30; ε = 10−9. The vertical
line in Figure 3b shows the service level threshold for a-customers.

4 Conclusion

In this paper, we have presented a method for optimizing the overflow in queueing systems
based on a call center scenario. We have shown that it is possible to obtain a significant
performance improvement by using more complicated overflow policies compared to the
simple fixed threshold.

The practice of not taking a-customers into service no matter how many free b-servers
there are, is not recommendable. If a-customers are of high priority, it is almost always
optimal to allow overflow to vacant b-servers, especially if no penalty is given to the
overflow. However, in the case where b-customers are of higher priority it may indeed be
better to reserve some servers for potential b-arrivals even if a-customers are waiting as
illustrated in Figure 3. A general rule for when overflow should be allowed based on the
number of free b-servers will most likely depend on many parameters and is a topic of
further research.

The policy of using a fixed threshold for determining when to allow overflow has been
shown to be a good approach when a penalty is associated with overflow and a-customers
are of high priority. This result gives an idea of what the consequence is when the policy
is used in call centers.

In all cases it appears that a fixed threshold should not be set to the same value as the
service level threshold, but to a lower value. This makes sense, as some time is needed for
b-servers to have a chance to become free before the threshold is reached, when calls are
queued in both queues.

A natural and fairly straightforward extension of the model would be to allow overflow
from the b-queue to a-servers and optimize both overflows simultaneously according to
cost functions. This would constitute an X-design, which is one of the other canonical
designs referred to in the introduction.

A final subject for further research is including fairness between servers in the objective
function, i.e., trying to balance the occupation level of the servers. This is highly relevant
for practical purposes, but it is hard to include in the dynamic programming formulation.
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