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Summary

The work presented here consists of contributions in three areas.

An efficient algorithm for calculating the entire regularization path of the support vec-
tor domain description (SVDD) is presented. The ability to calculate the entire path
with a complexity in the same order as solving the original quadratic problems gives
inspiration to utilize the extra information available from the entire path. A method for
hierarchical support vector clustering, based on information from the entire regulariza-
tion path, and multiple Gaussian kernels is described. Bayesian methods are applied in
the attempt to draw direct statistical conclusions from theSVDD analysis.

In the context of image registration, different assumptions on the warp fields, namely
diffeomorphism and a linear elastic potential in the form ofregularization are dis-
cussed. A new warp representation which allows statisticalanalysis on an unrestricted
linear parameter space, where all derivatives are defined, is introduced. Furthermore, it
is shown thatL2-norm the parameter space introduces a reasonable metric inthe actual
space of modelled diffeomorphisms. A new parametrization of 3D deformation fields,
using potentials and Helmholtz decomposition is also presented. The representation
can be considered a natural parametrization for both elastic and fluid image registra-
tion due to the decoupling of the parameters. The determinant gradient field is shown to
be the first-order small-deformation approximation to the determinant of the Jacobian
matrix.

Spline approximations of functions and in particular imageregistration warp fields are
discussed. It is shown how spline bases may be learned from the optimization process,
i.e. image registration optimization, and how this may contribute with a reasonable
prior, or regularization in the method. A new formula, basedon the multivariate di-
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vided difference, for explicit calculation of the simplex splines is presented. The for-
mula additionally admits easy calculation of derivatives,both spatial, and with respect
to the position of the knots. It is demonstrated that conditions may be set on the knot
movements, which ensures that the splines form a partition of unity, even if the knots
are not Delaunay. A subdivision scheme is also presented, which requires no recalcula-
tion of the configurations of the splines. The use of the splines for image registration is
demonstrated, and the inherent smoothing or averaging cost, of selecting warp param-
eterizations at a specific kernel resolution, has been analyzed. A refinement measure
has been derived, which is shown to be efficient for guiding the local mesh layout.
With the combination of the refinement measure and the local flexibility of the multi-
variate B-splines, the warp field is automatically refined inareas where it results in the
minimization of the registration cost function.



Resumé

Det præsenterede arbejde består af bidrag inden for tre områder.

Inden for statistiske kernel-metoder er en hurtig algoritme udviklet til beregning af
hele regulariseringsstien for support vector domain description - metoden. Metoden
er anvendt til at udvikle et framework til hierarkisk support vector clustering, som
er baseret på information fra hele regulariseringsstien ogmultiple Gaussiske kerner.
Bayesiske metoder er anvendt i et forsøg på at uddrage direkte statistiske konklusioner
fra analysen.

Inden for billedregistrering, som populært sagt går ud på atdefinere et warp mellem
tilsvarende billeder, er forskellige antagelser om disse warpfelter, specielt at de er dif-
feomorphier eller styret af et linear elastisk potential, diskuteret. En ny repræsenta-
tion, som tillader statistisk analyse på et euklidisk parameterrum hvor alle afledte er
defineret, er præsenteret. Det er vist atL2-normen i parameterrummet udgør en for-
nuftig metrik i rummet af diffeomorphier. En ny parametrisering a 3D warpfelter til
den medicinske billedregistrering, der anvender potential funktioner og Helmholtz’s
dekomposition i gradient og rotation er også præsenteret. Det er vist at denne repræsen-
tation kan anses for at være en naturlig parametrisering inden for både elastisk og fluid
billedregistrering, da parametrene bliver dekoplede. Gradient feltet er en første-ordens
approximation til den morfologiske parameter, som determinanten af Jacobianten er.

Spline approksimationer af funktioner, og specielt af warpfelter i billedregistrering er
analyseret og diskuteret. Det er vist hvordan spline baser kan læres fra optimeringspro-
cessen, og hvordan den kan bidrage med en fornuftig prior, der giver god regularisering
a metoden. En ny eksplicit formel, baseret på den multivariate divided difference, til
beregning af simplex splines er introduceret. Denne formulering tillader nem beregn-
ing af afledte, både spatielle og med hensyn til knudepositionerne. Det er vist at der



iv

kan sættes betingelser for knudepositionerne, således at de multivariate splines stadig
reproducerer polynomier, når knuderne flyttes, også selv omtrianguleringen ikke er
Delaunay længere. Der defineres en metode til subdivision, som ikke kræver at trian-
guleringerne genberegnes. Det vises hvordan disse splineskan anvendes til billedreg-
istrering, og der indføres mål for om en forfinelse af basis funktionerne vil bidrage med
bedre nøjagtighed i bestemmelse af billedwarpet.
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CHAPTER 1

Overview

The OECD predicts that public health care costs in the membercountries will increase
from an average of 7 % of the gross domestic products in 2005 toexceed 12 % in 2050.
This overgrowth of expenses is partly due to longer life expectancies and survival rates
after critical diseases. However, the overgrowth will mainly be caused by implemen-
tation of new advanced technology for diagnostic support, monitoring, and treatment.
This fact both creates a need for financing health care costs and a huge market for
health care technology to be exploited. In order to ensure access to and financing of
continued high quality health care in Denmark, emphasis should be put on research, de-
velopment, and commercialization of health care technology in the world market. The
work presented here seek to face several challenges in the analysis of medical image
analysis. More precisely it consists of contributions in three areas.

In machine learning the termunsupervised learningis used to describe the class of
problems in which one attempts to discover how unlabelled data are organized. How-
ever, in this context theno free lunch theoremmay be phrased that you cannot make
inference without making assumptions [112], and even unsupervised learning makes
assumptions about the unlabelled data. In this thesis different approaches to analyzing
unlabelled data are treated.

The support vector domain description (SVDD) separates unlabelled data in inliers
and outliers, and may be applied for support vector clustering (SVC). Contributions to
both methods are included in Part I. Despite being unsupervised, these methods are
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still making assumptions about the data, and finally it is attempted to obtain a better
understanding of the assumptions implicitly made about thedata.

The image registration problem may be considered the unsupervised attempt to estab-
lish correspondences between images, or between an image and prior information, ie.
in the form of an anatomical atlas. Unlike shape models, image registration algorithms
are only making weak assumptions on the warps, which in this treatment are assumed
to be described byparameterized deformations. Different assumptions on the warp
fields, namely diffeomorphism and a linear elastic potential in the form of regulariza-
tion are discussed in Part II, and attempts to develop parameterizations suited for the
assumptions are presented.

In Part III spline approximations of functions, and in particular image registration warp
fields are discussed. It is shown how spline bases may be learned from the optimization
process, ie. image registration optimization, and how thismay contribute with a rea-
sonable prior, or regularization in the method. Spiked by the encouraging results and
theory in this field, new formulae and methods are developed with the aim of increasing
the utility of the treated multivariate splines.



Part I

Support vectors for clustering
and outlier detection





CHAPTER 2

Introduction to support
vectors

The support vector machines close to their current form werefirst introduced by Boser,
Guyon and Vapnik in 1992 [8], and the interest has since exploded, also due to the
introduction of support vector regression by Vapnik in 1995[106]. A dblp search on
support vectorshows a listing of2717 papers, and this has given rise to several views
on support vectors. An interpretation that has relevance for the support vector domain
description (SVDD), treated in this part of the thesis, willbe put forward in the current
section.

Define f by some parameterized, sufficiently smooth (this loose definition suffices
for the current presentation and aim), functionf : R

k → H, whereR
k is the k-

dimensional space of parameters andH is the set of functionsg : R
n → R mapping

from ann-dimensional input space to the real line. Then the following optimization
problem is an instructive example to examine, which could certainly be more general,
however it still specializes neatly to SVDD, for which the conclusions are also valid.

min
β

n
∑

i=1

[f(xi;β)]+ + λ ‖β‖2Σ , β ∈ R
k , xi ∈ R

n (2.1)

whereλ is a regularization parameter,‖ · ‖2Σ denotes the inner product with respect
to the matrixΣ. The hinge loss[z]+ = (1 − z)H(1 − z), wherez ∈ R andH is
the Heavyside step function (H(a) = 1 for a ≥ 0 andH(a) = 0 otherwise), is a
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loss function, which is always zero forz > 1. The hinge loss shall be examined more
closely since it gives (2.1) some interesting properties. In Figure 2.1, this error function
is plotted along with a quadratic loss function, which measures the quadratic distance
to 1 and the negative binomial log-likelihoodlog(1 + exp[f(xi;β)]), which is the loss
function of logistic regression [55].
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Figure 2.1: Comparison of the support vector loss function –the hinge loss, the
squared error loss function and the logistic regression loss function - the binomial log-
likelihood. As remarked by Hastie at al., the log-likelihood shares asymptotic behavior
with the hinge loss but has a smooth transition [55].

One particular thing about the hinge loss, which is also clear from Figure2.1, is that
for function values off larger than1, the loss is independent of the particular value of
f . Assume thatf and the set of points{xi} is such that a unique set of parameters
β∗ ∈ R

k, different from the trivial zero vector, minimizes the problem (2.1), and
furthermore ensures that allf(xi;β

∗) ≥ 0 . Thenβ∗ must be independent of the
values of allχ = {xi|f(xi;β

∗) > 1,xi ∈ {xi}}, ie. for whichf(xi;β
∗) is larger

than one. This can be realized by seeing that the sum in (2.1) does not change with
a small perturbation inxi. If f is smooth, as assumed, the loss function will still be
the same value at a differentxi, since the hinge loss ofxi is still 0. If a different
βn exists resulting in a smaller value of (2.1), this value would by parallel arguments
also be valid forβ∗, which is a contradiction with the optimality assumption, and it
is therefore concluded that the parametersβ∗ are independent ofχ. Since the zero
vector was not a solution, the function value of some pointsxsv must be1 exactly,
because this would still makef(xsv;β

∗) = 0, but in this case a small perturbation of
xsv may still lead to a change in the function value, if it is greater than zero after the
perturbation, and it cannot be concluded thatβ∗ is independent of these pointsxsv.
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In summaryβ∗ can be shown to be independent of all points, but theboundarypoints
{x} = {xj |f(xj ;β

∗) = 1,xj ∈ {xi}}, which are called thesupport vectorsbecause
they are in effect the support ofβ∗ that giveβ∗ its value. The support vectors may still
have a different impact onβ∗, where impact is imagined to be measured as the effect
on β∗ from making a small perturbation to a support vectorxsv. For some points the
impact may be small.

Now assume that for some pointsxbsv the functionf is smaller than1, ie. f(xbsv;β∗) <
1, following the arguments from the previous paragraph, it isseen that the pointsxbsv

all have an impact onβ∗. For the special SVDD cases off , with quadratic functions,
the impact of these points is indeed equal to the maximum impact that a support vector
may have, and they are therefore termedbounded support vectors. The interior points
or inliers, the support vectors and the bounded support vectors are illustrated in Figure
2.2.
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Figure 2.2: Illustration of the three classes of points, measured by their impact on the
function (2.1).

In SVDD (this is, in fact, also valid for support vector machines (SVMs)) the hinge loss
can be replaced by a set of slack variables and complimentaryconstraints on these vari-
ables. As demonstrated in Chapter3, these can be removed by introducing Lagrange
multipliers and solving the dual problem. These Lagrange multipliers are effectively
determining theimpactof the parameters, and they behave as described. An effect of
this is that the parameters are independent of all the inliers, and if the number of sup-
port vectors and bounded support vectors is low, this gives avery sparse representation
of the parameters.



8 Introduction to support vectors

In conclusion the hinge loss is a tool for modelling outliersand boundary, as noted
by Tax and Duin [3]. These conclusions also hold for support vector regression [96].
Pontil states that the information needed for classification lies in the support vectors
[81].

In the paper in Chapter 3 [49], the effect of the regularization parameterλ on the param-
eters is shown to be linear. The chapter introduces an efficient algorithm for calculating
the entire regularization path, with the same complexity asthe algorithm for the SVM
by Hastie et al. [54]. In Chapter 4 an application of the entire regularization path
for hierarchical support vector clustering is demonstrated [46]. In chapter5 Bayesian
methods are applied to SVDD, hinting that more informed estimation of the parameters
for the support vector clustering could be obtained. Finally, in Chapter 6 the SVDD
method and the obtained results are discussed.



CHAPTER 3

On the Regularization Path
of the Support Vector

Domain Description

Michael Sass Hansen, Karl Sjöstrand and Rasmus Larsen1

Abstract

Through the internet and a growing number of increasingly sophisticated measuring
devices, there is a vast amount of data in many applications.However, the dimension-
ality is often high, and the time available for manual labelling is often scarce. Methods
for unsupervised novelty detection are a great step towardsmeeting these challenges,
and the support vector domain description has already shownits worth in this field. The
method has recently received more attention, since it has been shown that the regular-
ization path is piece-wise linear, and can be calculated efficiently. The presented work
restates the new findings in a manner which permits the calculation with O(n · nB)
complexity in each iteration step instead ofO(n2 +n3

B), wheren is the number of data
points andnB is the number of boundary points. We believe this will further promote
the use of this method.

1This paper was submitted to Pattern Recognition Letters [49]



10 On the Regularization Path of the Support Vector Domain De scription

3.1 Introduction

We are often faced with data of high dimensionality. Imagingdevices with an intrinsic
high number of variables are emerging for more and more applications, and in order to
deal with this class of data, a whole series of data analysis tools have emerged. Many of
these use the kernel trick to create efficient algorithms dealing seamlessly with the high
number of dimensions through inner products, while keepingflexibility for modelling
distributions [106]. The support vector domain description (SVDD), introduced by
Tax and Duin [101] in 1999, is a method for one-class labelling, which also falls into
the aforementioned category. SVDD may be used for novelty detection, clustering or
outlier detection [115, 5, 36]. The data is classified as either inliers or outliers through
the introduction of a minimal containing sphere. The description has strong ties to the
one-class version of the two-class method support vector machines (SVM) [88].

The basic goal of SVDD is to find a minimal sphere containing inliers while minimizing
the distance from the boundary to the outliers. More formally it can be stated as the
following optimization problem

minR2, a, ξi

∑

i ξi + λR2 where(xi − a)(xi − a)T ≤ R2 + ξi , ξi ≥ 0 ∀ i (3.1)

whereX = [x1 . . . xn] is the data matrix with each pointxi ∈ Rp, a is the center andR
is the radius of the sphere, andξi are the slack variables, allowing some points, theout-
liers, to lie outside the sphere, while still satisfying the constraints. The regularization
is governed by the parameterλ. A large value ofλ puts a high penalty on the radius
and results in a small sphere, whereas a smallλ lets the radius grow to include more
points asinliers.

Originally, the optimization problem as posed in section3.2, is transformed into the
dual problem using the Lagrange multipliers with the Karush-Kuhn-Tucker conditions,
and is solved as a quadratic optimization problem. Recentlyit was shown by Sjöstrand
et al. [95] that the regularization path of the parameterλ is piece-wise linear, and can
be calculated with anO(n3

B + n2) complexity for each iteration step, wherenB << n
is the number of points on the boundary of the sphere andn is the total number of
points. This result has been used to construct a generalizeddistance by Hansen et al.
[40]. In section3.3a more efficient approach reducing the complexity toO(n · nB) in
each iteration step is derived.
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3.2 The support vector domain description

A Lagrangian operator can be used to solve the problem of finding the optimum sphere,
posed in (3.1). The Lagrangian is given by

Lp :
∑

i αi(xixT
i − 2axT + aaT −R2 − ξi) +

∑

i ξi + λR2 −∑i γiξi, (3.2)

whereαi andγi are the Lagrange multipliers. The Karush-Kuhn-Tucker complimen-
tary conditions hold since the optimization problem is convex, and they are given by

αi(xixT
i − 2axT

i + aaT −R2 − ξi) = 0 (3.3)

γiξi = 0 . (3.4)

The optimum is given where the derivatives of the variables are zero

δLp

δR2
= 0 ⇔ λ =

∑

i

αi (3.5)

δLP

δa
= 0 ⇔ a =

∑

i αixi
∑

i αi
(3.6)

δLP

δξi
= 0 ⇔ λi = 1− αi (3.7)

From equations (3.7), (3.3) and (3.4), it is seen thatαi = 1 for outliers (sinceγi = 0)
andαi = 0 for inliers. On the boundary,αi can take any value in[0; 1]. Inserting
equations (3.5-3.7) in (3.2), the minimization problem is transformed to the problem of
maximizing the Wolfe dual form

max
α

∑

i

αixixT
i −

1

λ

∑

i

∑

j

αiαjxixT
j , 0 ≤ αi ≤ 1,

∑

i

αi = λ,

The dimensionality of the input vectorsxi can be increased using a basis expansion
and the dot-product substituted by an inner product. The inner products can then be
replaced byKi,j = K(xi, xj), where K is a positive definite kernel function satisfying

Mercer’s theorem. The Gaussian kernelKi,j = K(xi, xj) = exp−‖xi−xj‖
2

γ is a pop-
ular example of such a kernel function. The optimization problem may then be stated
as

Wd = max
α

∑

i

αiKi,i −
1

λ

∑

i

∑

j

αiαjKi,j (3.8)

0 ≤ αi ≤ 1,
∑

i

αi = λ. (3.9)

For a givenλ, the squared distance from the center of the sphere to a pointx is

f(x;λ) = K(x, x)

− 2

λ

∑

i

αiK(x, xi) +
1

λ2

∑

i

∑

j

αiαjKi,j , (3.10)
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where the decision boundary is not necessarily a sphere in the space of the input points,
although it is, in the space of the basis of the kernel function used. For the derivation
the following sets are defined; the setA contains all the input points,B denotes the set
of points on the boundary,O is the set of outliers, and letI be the set of inliers.

3.3 Calculating the regularization path of the SVDD

This derivation is the main contribution of the current work, and differs from the deriva-
tion by Sjöstrand et al. to provide the basis for a more efficient calculation of the
parameters using updating and downdating of a matrix inverse. Two well known theo-
rems, showing that the Lagrange multipliers are continuousfor a convex problem, are
stated in Appendix 3.7.1. In Section 3.3.1 an expression forthe piece-wise linear rela-
tion betweenα andλ is derived along with a scheme for fast calculation. Finallythe
algorithm is outlined in Section3.3.2.

3.3.1 Piece-wise linear regularization path

Let the generalized radius be denoted byR, then a boundary pointxh, whereh ∈ B
must satisfy

f(xh;λ) = Kh,h −
2

λ

∑

i

αiKh,i +
1

λ2

∑

i

∑

j

αiαjKi,j = R2, h ∈ B. (3.11)

The first sum can be split in terms depending onλ and constant terms (always1 or
0 for points on the outside and inside). This gives

∑

i αiKh,i =
∑

i∈B αiKh,i +
∑

i∈O αiKh,i. Only the first term depends onλ while the boundary set,B, stays fixed,
sinceαi is always1 on the outside. Letki = Ki,i and define

R′ = R2 − 1

λ2

∑

i

∑

j

αiαjKi,j

and notice thatR′ takes the same value for allh ∈ B. Let KB,B denote the matrix
containing the inner products of the boundary points,KB,O denote the matrix with
inner products of the boundary points and outliers, and letkB be a vector with elements
ki, i ∈ B. Let αB be a vector with the Lagrange multipliersαi on the boundary, and
let 1j be a column vector of lengthj, with all elements equal to1. Let nB denote the
number of points inB, then the set of equations (3.11) can be rewritten in matrix form
as

[

2

λ
KB,B 1nB

] [

αB

R′

]

= kB −
2

λ
KB,O1nO

. (3.12)
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This system of equations consists ofnB equations andnB +1 unknown variables. The
constraint from (3.5) is included in the linear system, and

∑

i αi =
∑

i∈B αi + nO,
wherenO is the number of outliers.

[

2
λKB,B 1nB

1T
nB

0

] [

αB

R′

]

=

[

kB − 2
λKB,O1nO

λ− nO

]

=

[

1
λInB×nB

0nB

0
T
nB

1

](

λ

[

kB

1

]

+

[

−2KB,O1nO

−nO

])

This may be rewritten
[

2KB,B 1nB

1T
nB

0

] [

InB×nB
0nB

0
T
nB

λ

] [

αB

R′

]

= λ

[

kB

1

]

+

[

−2KB,O1nO

−nO

]

Define

K ′ =

[

2KB,B 1nB

1T
nB

0

]

Assuming the points are in general position in the expanded basis, such that the circle
center is determined by at most the expanded plus one points,thenK ′ can be inverted
to obtain an expression forαB .
[

InB×nB
0nB

0
T
nB

λ

] [

αB

R′

]

= K ′−1

(

λ

[

kB

1

]

+

[

−2KB,O1nO

−nO

])

(3.13)

From this we learn thatαB is piece-wise linear inλ, while none of the constraints
given in (3.9) are violated.

3.3.2 The algorithm

Sinceαi, by theorem 3.2, is continuous as a function ofλ, this may be applied in finding
the regularization path. Notice that ifλ = n, it is easily seen thatαi = 1 , i = 1, . . . , n.
Therefore the algorithm is started in a state, whereλ = n, and from this starting point
λ can be decreased, and the two events that happen while decreasingλ are

• A point from either the inside or the outside enters the boundary

• A point exits the boundary to either the inside or the outside.

In between any of these events, the regularization path is piece-wise linear, as shown
in section3.3.1, and the parameters can be calculated from (3.13).

In the following, letl be the last event that occurred andl + 1 be the next event, so
thatλl was the previous and bigger value of the regularization parameter. Letαl be the
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value of allαi at the eventl andαl+1 at the following eventl + 1. Then using thatα
is continuous

αl+1 = αl + (λl+1 − λl)pl, (3.14)

where only the pointsαi on the boundary need to be updated. Letxe ∈ A be any
point, andλe be the value ofλ for which the event following eventl would happen, if
everything exceptλ was fixed. In Section3.3.2.1λe is found for all points outside the
boundary, ie.I ∪O, and in Section 3.3.2.2λe is found for points on the boundaryB.

3.3.2.1 Boundary entry event

This event happens at a point where the distance to one of the non-boundary points
equals the radius of the (generalized) sphere. This condition can be formulated as

f(xe;λ)−R2 = Ke,e −
2

λe

∑

i

αiKe,i +
1

λ2
e

∑

i

∑

j

αiαjKi,j −R2 = 0

Using thatR2 is given by equation (3.11) we find that

0 = Ke,e −
2

λe

∑

i

αiKe,i −Kh,h +
2

λe

∑

i

αiKh,i

= Ke,e −Kh,h +
2

λe
(Kh,A −Ke,A)(αl + (λe − λl)pl)

⇔ λe − λl = − (Kh,A −Ke,A)αl + λl

2 (Ke,o −Kh,h)

(Kh,A −Ke,A)pl + 1
2 (Ke,e −Kh,h)

, (3.15)

where the sums have been replaced by matrix products, andα has been substituted
using (3.14). As we are decreasing the value ofλ, we are only interested in values of
λe−λl smaller than0. The biggest value, smaller than zero, ofλe−λl therefore marks
the first entry event to occur. Since the complexity of calculatingKA,Aαl is O(n2),
this calculation should be done iteratively, updatingKA,Aαl in each step, by noting
KA,Aαl+1 = KA,Aαl + (λl+1 − λl)KA,Bp, it can be calculated with complexity
O(n · nB).

3.3.2.2 Boundary exit event

Though equation (3.13) gives an explicit expression forαi, this is only the case, wheni
denotes a point on the boundary. Otherwiseαi is limited by the constraints0 ≤ α ≤ 1.
As αi, for i on the boundary, increases or decreases monotonically, only one of the two
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constraints comes into effect. Let the effective constraint be given by

Cexit,e =

{

0 if pe ≥ 0
1 if pe < 0

then the boundary exit value for theeth point is given by

λe − λl =
Cexit,e − αl,e

pe

3.3.2.3 Finding the next eventl + 1

Having calculated the first entry event and the first exit event, the only thing left is to
choose which of the two events happens first and let

λl+1 = λl + max
xe∈A,λe−λl<0

{λe − λl}

An issue that has to be dealt with is how to propagateα if the boundary set is the
empty set. This is done simply by adding the closest outlier to the boundary set, which
corresponds to making a discontinuous change inR2, but not inf(x) or α.

3.4 Complexity

The slope ofα with respect toλ, given byp = K ′−1[kB 1]T in (3.13) can be calculated
using simple matrix multiplications of complexityO(n2

B). K ′−1 can be calculated
using updating and downdating, also with complexityO(n2

B), as is shown in Appendix
3.7.2. The complexity of calculatingpB is O(n2

B), while the complexity of evaluating
the boundary entry conditions isO(n ·nB), which means that the overall complexity in
each iteration step is of the order ofO(n · nB), asn ≥ nB . The regularization path of
the SVM could be found with the same complexity [54], and the problems also show
strong resemblance. Figure3.1 shows a graph of the calculation time of the previous
algorithm and the presented implementation. Note that the computation time follows
the theoretical complexity. For a population of1000 points, the current implementation
can be up to100-times faster, and for our testing purposes this has been thelimit for
the length of the calculations we set up for the previous implementation. The stability
of the calculations has also set a natural limit, as discussed in section3.4.1.
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3.4.1 Stability

As the current fast implementation depends strongly on updating calculations, rather
than recalculating them, there is a risk that the result willdrift due to numeric insta-
bility. This issue is investigated by running the implementation on different data sets,
while testing the results for given values of the regularization parameterλ using an
implementation of quadratic programming. The stability was tested on randomly gen-
erated data sets of dimension 2 and 3, and sizen = 3000 and the result can be seen
in Figure3.2. The result can be seen to differ by no more than0.5% even for25, 000
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Figure 3.2: Logarithmic plot of the error of
the implementation compared to the result
obtained using quadratic programming.

updates and downdates of the inverse and the value ofλ.

In the highn domain, the previously presented implementation sufferedfrom impreci-
sion in calculating the next valueλl+1 because the value was directly estimated rather
than, as in the current work, the differenceλl+1 − λl.

3.5 Demonstration

To demonstrate the method a small example is analyzed using the implemented al-
gorithm. From two sources with2-dimensional Gaussian distributions100 points are
sampled and they are analyzed with a Gaussian kernel function with a width of1. The
result can be seen in Figure3.3. Note that this value of the kernel parameter leaves
room for a rather flexible decision boundary. In the Figure itcan be seen that some of
the points, the support vectors, are outside and some are inside, corresponding to aαi
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Figure 3.3: Decision boundaries for different values ofλ.

of 0. In Figure3.4 the entire regularization path ofα, that is theαi corresponding to
each point, can be observed.

The calculation is performed in a fraction of a second for this rather small sample size.

3.6 Conclusion

The support vector domain description (SVDD) is a new and popular method. Recent
work by Sjöstrand et al. [95] demonstrated that the regularization path of the weight
coefficients depends piece-wise linearly onλ. This allows for an efficient calculation
of the regularization path. The current work restates new findings in a manner that
permits the calculation with a complexity ofO(n · nB) instead ofO(n2 + n3

B) in each
iteration step. It has been demonstrated that forn = 800 points, the calculation of the
regularization path could be performed up to100-times faster. The algorithm keeps
the numeric error small for sample sizes up to 3000 points, smaller than0.5% in the
analyzed cases. We believe that this contribution will allow for even more applications
of the method, either for choosing robust estimates of the distance, or possibly in the
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area of support vector clustering.

3.7 APPENDIX

3.7.1 Continuity of the Lagrange multipliers

THEOREM 3.1 The Wolfe dual formWd given by (3.8) is continuous with respect to
the regularization parameter,λ.

PROOF. Let α1 be a solution for a given set of points and regularization parameterλ1,
andα2 a solution for regularization parameterλ2. It is seen that for any0 ≤ s ≤ 1,
α = sα1 + (1 − s)α2, satisfies the conditions onα, and due to the polynomial form
of Wd it can be concluded thatWd is continuous.

THEOREM 3.2 The Lagrange multipliersα are continuous with respect toλ.
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PROOF. Follows directly from the fact thatWd is continuous and the solution to a
convex problem is unique.

3.7.2 Calculation ofK ′−1

The two events that may occur to the boundary set either reduce or augmentB by one
point. This allows for an efficient calculation ofK ′−1, which is the purpose of the
current section. Using the following result by Volker Strassen [99], the updates and
downdates of the inverse can be calculated efficiently

[

A B
C D

]−1

=

[

A−1 + A−1BSACA−1 −A−1BSA

−SACA−1 SA

]

(3.16)

where the Schur complement ofA is denotedSA = (D − CA−1B)−1. The efficient
calculation ofK ′−1

l+1 , the inverse of matrixK ′ after eventl, will be presented in the
following two paragraphs.

Updating Suppose that the pointb∗ has been added toBl to form Bl+1, thenK ′
l+1

can be written as

K ′
l+1 =

[

K ′
l KBl,b∗

Kb∗,Bl
Kb∗,b∗

]

. (3.17)

HereSA = (Kb∗,b∗ −Kb∗,Bl
K ′−1

l KBl,b∗)
−1 and defineSC = K ′−1

l KBl,b∗ , then the
inverse can be calculated from

[

K ′
l KBl,b∗

Kb∗,Bl
Kb∗,b∗

]−1

=

[

K ′−1
l + SCSASCT −SCSA

−SAST
C SA

]

, (3.18)

which only requires a multiplication of a vector with a matrix of sizenB , and this
multiplication has complexityO(n2

B)

Downdating Suppose that the pointb∗ has been removed fromBl to form Bl+1.
ThenK ′−1

l can be written using equation (3.18), only hereb∗ is the point that was
removed from the boundary

K ′−1
l =

[

AnBl+1
×nBl+1

BnBl+1
×1

C1×nBl+1
D1×1

]

=

[

K ′
l+1 KBl+1,b∗

Kb∗,Bl+1
Kb∗,b∗

]−1

⇒ K ′−1
l+1 = A−BCD−1 (3.19)
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CHAPTER 4

Hierarchical Multiscale
Support Vector Clustering

Michael Sass Hansen, David Alberg Holm, Karl Sjöstrand, Carsten Dan Ley, Ian John
Rowland and Rasmus Larsen1

Abstract

Clustering is the preferred choice of method in many applications, and support vector
clustering (SVC) has proven efficient for clustering noisy and high-dimensional data
sets. A method for multiscale support vector clustering is demonstrated, using the
recently emerged method for fast calculation of the entire regularization path of the
support vector domain description. The method is illustrated on artificially generated
examples, and applied for detecting blood vessels from highresolution time series of
magnetic resonance imaging data. The obtained results are robust while the need for
parameter estimation is reduced, compared to support vector clustering.

1This paper was presented at the International Symposium for Medical Imaging 2007 [46]
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4.1 Introduction

With the emergence of new imaging modalities and an ever-increasing resolution of
existing ones, the need for unsupervised clustering is greater than ever. Clustering can
be performed by parametric models, which is the case in the k-means algorithm intro-
duced by MacQueen [70], or it can be done by using a distance measure for grouping
points as in hierarchical clustering algorithms.

Ben-Hur et al. presented support vector clustering (SVC), which utilizes kernel func-
tions to efficiently deal with high dimensional data [3]. SVCuses the one-class support
vector domain description (SVDD) as the basis of the clustering algorithm. Tax and
Duin introduced SVDD in 1999 [101]. In SVDD the points are mapped into a high di-
mensional feature space, which divides inliers from outliers. It is frequently calculated
with a Gaussian kernel replacing the Euclidian inner product. The decision boundary
consists of contours enclosing clusters of the data points from the surrounding outliers.

The SVC clustering algorithm makes no assumption about the number of clusters or
the shape of the clusters. Ben-Hur et. al. proposed to vary the parameters of the SVDD,
namely the kernel width and the regularization parameter, in a manner that increases the
number of clusters while keeping the number of outliers and bounded support vectors
(BSV) low. Hierarchical support vector clustering was presented by Ben-Hur in [4],
and this algorithm applies SVC subsequently on each clusterof the data contained in
clusters. It achieves in this way a strict hierarchy of clusters. The clustering, however,
is determined from the initial clustering and its parameters.

The cluster labelling can be assigned more efficiently usingproximity graph modelling
as proposed by Yang et al. [114].

In line with the seminal work by Efron et al. [24], where the regularization path of the
LASSO regression algorithm is derived and similar to the work on the support vector
machine by Hastie et al. [54], Sjöstrand and Larsen showed in2006 that the entire reg-
ularization path of the SVDD is piecewise linear and can be calculated efficiently [94].
This result is the backbone of a pseudo-hierarchical support vector clustering (HSVC),
presented by the current authors [40]. This algorithm estimates a clustering given a
scale parameter of the Gaussian kernel. Clusters are estimated robustly and efficiently
for all values of the regularization parameter. A more robust clustering estimate is
calculated from this ensemble of clusterings that form competing hierarchical repre-
sentations, without prior knowledge of the number of outliers. The HSVC clustering
was tested on registered perfusion MR images.

The current work presents multiscale support vector clustering (MSVC), which may be
considered as parallel HSVC on multiple scales of the Gaussian kernel. We observe the
data in different scales, and from the clustering obtained in multiple scales we propose
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to learn the clustering. The proposed method is independentof the number of outliers
and bases the clustering on information from all scales in the range of scales of the
data.

4.2 The MSVC algorithm

The foundation of the multiscale support vector clusteringalgorithm is the one-class
support vector classification, this is also, in general, thecase for previous SVC algo-
rithms. The recently emerged method for an efficient calculation of the entire regular-
ization path of the SSVD forms the basis for finding cluster boundaries as described
in Section4.2.1. Between events the discrimination function varies monotonically, and
it is concluded that the description is complete. The MSVC algorithm is described in
Section 4.2.4.

4.2.1 Cluster Boundaries from the SVDD

The cluster boundaries defining the different clusters are based on the support vector
domain description (SSVD), posing it as a quadratic optimization problem for a fixed
value of the regularization parameter and given a kernel function. The criterion to be
maximized, given a point setxi, can be formulated as

min
R2, a, ξi

∑

i

ξi + λR2 , Subject to

(xi − a)(xi − a)T ≤ R2 + ξi and ξi ≥ 0 ∀ i.

This criterion seeks to find the minimal sphere encapsulating most of the points, while
minimizing the distance to the outliers also denoted support vectors. The regularization
parameterλ helps to minimize the radiusR2 and for large values ofλ the radius will
tend to be smaller and vice versa. The number of outliers is strongly related to the
regularization parameterλ.

Using Lagrange multipliers the optimization problem (4.1)can be restated as

max
αi

∑

i

αixixT
i −

1

λ

∑

i

∑

j

αiαjxixT
j ,

0 ≤ αi ≤ 1,
∑

i

αi = λ, (4.1)

whereαi are the Lagrange mulitpliers. For inliersαi = 0 and for outliersαi = 1,
which is a consequence of the Karush-Kuhn-Tucker complimentary conditions. For
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points on the boundary the,support vectors, α are between0 and1. The outliers are
also calledboundedsupport vectors. The dimensionality can be increased usinga basis
expansion and substituting the dot-product with an inner product, the inner products
can be replaced by a suitable kernel functionK, Ki,j = K(xi, xj). In the current work
the applied kernel function was the Gaussian kernelK(xi, xj) = exp(−‖xi − xj‖2/γ)
with multiple scales. The optimization problem can be formulated similarly to the
problem original stated by Tax and Duin [101], only with a slightly different notation.

max
αi

∑

i

αiKi,i −
1

λ

∑

o

∑

j

αiαjKi,j

0 ≤ αi ≤ 1,
∑

i

αi = λ. (4.2)

For a givenλ the squared distance from the center of the sphere to a pointx is

f(x;λ) = ‖h(x)− a‖2 = K(x, x)

− 2

λ

∑

i

αiK(x, xi) +
1

λ2

∑

i

∑

j

αiαjKi,j (4.3)

4.2.1.1 The Entire Regularization Path of the SVDD

It was shown by Sjöstrand and Larsen that the entire regularization path of the parame-
terλ can be calculated with approximately the same complexity asrequired for solving
the initial optimization problem, posed by Tax and Duin [94]. The regularization path
of the parametersαi is piecewise linear, which allows for the efficient calculation. This
fact can be realized by analysis of the distance functions oftwo points on the boundary.

f(xh;λ) = f(xk;λ), h, k ∈ B (4.4)

whereB is the set of points on the boundary. Formulating this equation for different
points on the boundary and using the constraints onαi from (4.2) gives a complete set
of equations for estimating allαi. Let α be a vector with the valuesαi and letp andq

be the slope and intersection respectively, then (refer to [94] for a detailed derivation)

α = λp + q, (4.5)

wherep andq are the slope and intersection of the path on the intervals between events
where a point either leaves or joins the boundary,[λl;λl+1[. An example of clustering
boundaries for different values of the regularization parameter and given kernel width
is illustrated in Figure4.1.
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Figure 4.1: SVDD calculated for the entire regularization path. The bold line marks
the boundary between inliers and outliers, actually a sphere in the expanded basis of
the kernel function.
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4.2.2 Support Vector Clustering

In SVC, proposed by Ben-Hur et al. [3] the clustering is baseddirectly on the result
of the SVDD. SVC forms an initial step in our proposed multiscale support vector
clustering. From the distance given by Eq. (4.3) the radius can naturally be defined as
the distance of the points on the boundary. NowR of the SVDD can be calculated by

R = f(xk;λ) = Kk,k −
2

λ

∑

i

αiKk,i +
1

λ2

∑

i

∑

j

αiαjKi,j .

Consider an arbitrary pointx, and letg(x, λ) be a distance function, defining the dis-
tance to the boundary.

g(x, λ) = f(x, λ)−R . (4.6)

Now g is the decision function determining if a point is an inlier or an outlier. In Figure
4.1 the discriminating functiong is calculated to create the contour dividing inliers
from outliers. Since the optimization problem is to find a sphere in thespace of the
expanded basis, the result appears very little like a sphere in the two dimensional input
space. The different enclosed areas could be considered as clusters, denoted support
vector clusters.

4.2.2.1 Cluster assignments

The decision functiong(x, λ) specifies ifx is an inlier or outlier, but it contains no
direct information to determine if two points are connected. Inspired from Figure4.1
it is observed that all paths connecting two points in two different clusters have some
points outside the clusters, which obviously serves as a general definition of clusters.
The current algorithm uses an adjacency matrix to identify the cluster. The connection
graph is sparsely built, similar to the approach chosen by Yang et. al. [114]. The
adjacency matrixA is given by

Aij =

{

1 , if g(xi + µ(xj − xi)) < 0 ∀ µ ∈ [0; 1]
0 , else

}

. (4.7)

The clusters are detected from the adjacency matrix by usingstandard graph theory
concepts. Outliers are by definition not adjacent to any points, but are assigned to the
closest detected cluster, using a euclidian distance measure.

4.2.3 SVC based on the Entire Regularization Path

Given regularization parameterλ and kernel widthγ the clustering can be determined
from the adjacency matrix (4.7). Whenλ varies on the interval [0;n] gives rise to
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changes in the distance function, and thus potentially the clustering. Previously we
showed thatf(x, λ), the distance function given by Eq. (4.3), is monotonic on the
interval [λl;λl+1[ between two events [40]. From this it can be concluded that the
events of a point joining or leaving the boundary of the SVDD is also important related
to the formations of clusters. On the interval[λl;λl+1[ a cluster cannot be divided
and merge again, meaning to say that all cluster formations will be observed by only
examining the points of events.

4.2.4 Multiscale Support Vector Clustering

The width of the Gaussian kernel,γ, is effectively defining the scale of the clustering
problem. Whenγ is of the same order as the biggest distance in the data, all point pairs
produce sizeable kernel values as noted by Ben-Hur et al. [3].

γmax = max
i,j
‖xi − xj‖2 . (4.8)

At this value ofγ the resulting boundary will form only one cluster, which forthe
purpose of clustering is not very interesting, but it sets anupper limit to the scale of the
clustering. As the one-cluster scenario is not very interesting we choose an initial value
of the kernel 5 times smaller thanγmax were we expect to observe some clustering, at
least for some values of the regularization parameterλ. The algorithm then continues
by cutting by half the scale parameter, which provides information about all scales in
the detected clusters. When most of the clusters only containone cluster due to a small
scale parameter, the algorithm is stopped.

4.2.4.1 Hierarchical Structure of Clusters

The clusters only change slowly with changes in the regularization parameterλ, which
gives the different support vectors clusterings for given parametersλ andα a rather
high level of redundancy. When an event consists of a point leaving the boundary to
become an outlier, this does not necessarily alter the boundary much elsewhere. Since
the point is still close to the same cluster, and may be associated with this, still, many
clusters are close to identical. The similarity can be observed in Figure4.1. Moreover,
the same clusters may appear again at a different scale for a different value of the
regularization parameters.

The idea presented in this paper, is to collect all the similar clusterings, across regu-
larization parameter and scale parameter, and build a hierarchy of clusters. The toy
example illustrated in Figure4.1 demonstrates clustering on an increasingly smaller
scale., and there is a strong relation between the differentclusterings of the data, which
is illustrated in Figure4.2.
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Figure 4.2: The hierarchy of multiscale support vector clustering: From coarse to de-
tailed description.

The clusters, calculated for different values of the regularization and scale parameters,
are not, in general, nested in a strictly hierarchical way. In fact multiple different hierar-
chical clusterings may be proposed. These different cluster representations demonstrate
ways to split a cluster in smaller clusters.

4.2.4.2 Quality Measure of Competing Clusterings

The described algorithm results in several competing cluster representations of the data,
and each representation has several scales. To assess the quality of different clusterings
we previously introduced a scheme similar to the ’within’ and the ’between’ covariance
matrices, trace(S−1

W SB) [40]. Instead ofSW we argued that a weighted within matrix
S∗

W should be calculated, weighted by the length of the intervalwhere a given point is
an inlier, or an outlier associated with the cluster.

S∗
W =

nclusters
∑

j=1

∑

i∈Cj

1

Πj
(xi − µi)

T Λj,i(xi − µi) , (4.9)

whereΛj defines the weighting of the point, which depends linearly onthe length of
the interval ofλ where the point is an inlier and where it is an outlier.Πj is a nor-
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malization constant. A potential clustering can now be assessed using the measure
trace(S∗

W
−1SB), which evaluates the variance within clusters, compared tothe intro-

duced distance between clusters. In Figure 4.1 small valuesof λ, corresponding to a
high confidence in the data, results in a separation of the twoparts of the ’+’ cluster,
whereas the other groups are merged into one cluster. This isopposite for high values
of the regularization parameter, where the smaller clusters only appear to be outliers,
but the two overlapping clusters are divided. The discrimination feature removes the
need to select one value ofλ, and appears to adapt to clusters of different variance.
The criterion for accepting a subclustering is introduced as a threshold on the cluster
separation, given by trace(S∗

W
−1SB). The lower the threshold, the more clusters are

accepted.

4.2.5 Complexity

The efficient calculation of the entire regularization pathof the SVDD allows the ap-
plication of the described algorithm. The complexity for the referenced algorithm is
O(n2 + n2

B) for each step between two events, wherenB is the number of boundary
points. For each event, the clusters are detected from the adjacency matrix, which can
also be calculated with a complexity of the order of O(n2). Comparing with other clus-
ters is done with complexity O(n · nclusters). Since the number of events is typically
in the vicinity of 3-5n the overall complexity is polynomial with a degree around 3.
On the tested example, with about 100 points in 300 dimensions, the algorithm took
a few minutes. The algorithm performance is virtually independent on the number of
dimensions whereas it works best for a limited number of observations.

4.3 An application of MSVC: Vascular detection from
MR sequences

When tumors reach a volume of1 − 2mm3, the supply of nutrients through simple
diffusion is not sufficient to allow further growth. The tumor response via the secretion
of signalling molecules that stimulate angiogenesis (the process of developing new
blood vessels). The angiogenic process is an obvious targetin the design of new anti-
cancer agents and extensive research has been conducted in the area of regulation of
angiogenesis [61].

An approach to study angiogenesis in mice is placing a Matrigel chamber assay in mice
in vivo [67]. To assess in vivo angiogenesis, MR images have been acquired before,
during and after the injection of a contrast agent bolus, which reduces the signal of
blood in order to detect blood vessels [56]. The matrigel chamber set-up is shown in
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Figure4.3, inside the mouse and after the extraction. The effects on the intravascular
signal due to the bolus administration is illustrated in Figure 4.4.

(a) (b)

Figure 4.3: a: A mouse with embedded Matrigel chamber. b: A Matrigel chamber
removed from a mouse. Red areas correspond to areas with blood vessels.

Figure 4.4: Snapshots of an MR sequence of a Matrigel chamberplaced in a mouse.

300 consecutive frames are acquired with a time resolution of 2.56 seconds. Animals
were anesthetized and fixated during the scan, resulting in less than 1 pixel movement
throughout the scan. Due to limitations in bandwidth and memory, a subset of pixels
was selected for designing the cluster criteria.

The chosen pixels, all within the matrigel chamber, are illustrated in Figure4.5. In
Figure 4.6, two time series of two different pixels are illustrated (noise pixel + pixel of
interest). The difference between the noise pixel and the pixel of interest is small com-
pared to the level of noise. Consequently MSVC was applied tothe points illustrated
in Figure 4.5, and three clusters were identified

Since the mouse was fixated during the scan, the frames are assumed to be registered.
Because of limitations in bandwidth and memory, a subset of pixels is selected for
designing the cluster criteria. The chosen pixels, all within the Matrigel chamber are
illustrated in Figure4.5. In Figure4.6 two time series of two different pixels are il-
lustrated. The difference between the noise pixel and the pixel of interest is small
compared to the level of noise. MSVC was applied to the pointsillustrated in Figure
4.5. Three clusters were identified from the multiscale supportvector clustering by
applying the quality measure described in Section4.2.4.2. Figure4.7 shows average
intensity curves of the points assigned to the different clusters.
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Figure 4.5: The (white) marked subset
of points is used for calculation of the
clustering by MSVC.
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Figure 4.6:Selection of the signal re-
sponse of two pixels from within the
Matrigel chamber. Top: no blood ves-
sel, only noise. Bottom: probably
contains a blood vessel. The noise is
of the same order as the signal change.
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Figure 4.7: Curves showing the average of each of the three clusters± one standard
deviation. Only one appears contrast-bolus and thus blood related.
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The distance to the 3 clusters is calculated pixel-wise, andpoints assigned to the nearest
cluster. The clustered images are compared to the difference between T2 before and
after injection of contrast agent (∆T2) and to an optical image of the extracted chamber
to validate the results. Figure4.8 shows the results from the three modalities. It can
be observed that for this chamber there is a very strong correlation between the blue
cluster (Fig. 4.8(a)), and the∆T2 weighted images (Fig. 4.8(b)) and the red area on
the optical image (Fig.4.8(c)). The two noise classes seem to be distributed a bit
differently, as the red one is primarily concentrated around the area with blood vessels.
Similar results are obtained in the second example MR sequence, only in this scan

(a) (b) (c)

Figure 4.8: Comparison of segmentations. a: Clustering by MSVC. b: difference in T2
weighted images. c: optical image of the extracted chamber.

MSVC divides the data in 4 clusters, which can be seen in Figure 4.9. In Figure 4.10
the result of the clustering is compared to the∆T2 images and to an optical image. Not
all of the blood vessels apparent in the optical image are detected in the∆T2 image,
hence the need for further refinement using a clustering method.

4.4 Conclusion

The proposed multiscale support vector clustering (MSVC) is demonstrated to give
sensible results on a random data set and in a real clusteringapplication, and this with
the same parameters in spite of the fact that the two data setsare very different in scale,
n and dimensionality. The presented method is rather fast andis virtually independent
on the dimensionality if the problem.

The proposed clustering algorithm has only one parameter, which is the threshold for
splitting clusters, and this parameter correlates strongly with the number of clusters
(and their quality in terms of separation). We therefore believe that MSVC can be a
very useful tool in many applications where it is possible todefine a kernel.
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Figure 4.9: Curves showing the average of each of the three clusters± one standard
deviation. The bolus is only visible in one and thus blood related curve. The clustering
is done on the sequence shown in Figure 4.4

(a) (b) (c)

Figure 4.10: Segmentation comparison. a:Clustering by MSVC. b: difference in T2 c:
optical image of the extracted chamber
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CHAPTER 5

Bayesian formulation of the
Support Vector Domain

Description

In the current work a Bayesian formulation of support vectordomain description (SVDD)
was developed having SVDD, as it was presented by Tax and Duinin 1999, as the max-
imum a posteriori solution. The introduced method is shown to deliver estimates of the
probability and also a measure of the certainty of this estimate. Using the algorithm
developed in [49], the entire regularization path can be efficiently calculated, and calcu-
lating the derived approximated evidence of the data is straightforward when the entire
regularization path is available.

The method was tested on1 and 2-dimensional artificial data sets, of which the1-
dimensional is included in the presentation for illustration. The tests seem promising
considering the number of approximations involved, but theformulation still needs to
prove its worth on real world problems.
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5.1 Introduction

We are often faced with data of high dimensionality. Imagingdevices with an intrinsic
high number of variables are emerging for more and more applications, and in order
to deal with this class of data, a whole series of data analysis tools have emerged.
Often they are using the kernel trick, to create efficient algorithms dealing seamlessly
with the high number of dimensions through inner products, while keeping flexibility
for modelling distributions [106]. The support vector domain description (SVDD),
introduced by Tax and Duin [101] in 1999, is a method for one-class labelling, which
also falls in the aforementioned category. SVDD may be used for novelty detection as
was done by Zhang et al. [115], for clustering, which has become a whole separate
field of study [3, 110] or outlier detection [103].

To increase robustness Tax and Duin included a penalty term for negative examples in
their support vector domain description [104]. Park et al. have used SVDD combined
with geodesic distance for pattern denoising [79]. Seo and Ko used SVDD for face
detection [91]. However, neither provided information on how to estimate the param-
eters. Guo et al. demonstrate how postprocessing the results of the SVDD could give
a tighter fit, calculating a new boundary function, based on an average distance to the
SVDD nearest boundary points [36]. This involves setting a decision threshold, which
has to be set after empirical trials. Schölkopf et al. introduced a different one-class
classifier, which finds the hyperplane that best separates the data from the origin. They
show that for radial basis kernels, the data really lies on sphere, and finding the optimal
hyperplane corresponds to finding a hypersphere which segments the part of the sphere,
which is mainly populated by data, ie. yielding the same results as SVDD [88, 6].

In 2004, Sollich used Bayesian methods for analyzing the support vector machines
[97]. This Bayesian analysis enabled him to estimate the evidence of the method,
which may be used for model evaluation [69]. Several interesting methods for improv-
ing SVDD have been proposed, however a Bayesian calculationof evidence would still
be of much use for estimating evidence of different sets of parameters. This is the mo-
tivation for the current work presented here. In 2000, Tipping introduced theRelevance
Vector Machine, which gives a Bayesian interpretation of the support vector machine,
and introduces a set of relevance parameters that choose therelevance of a vector for
either regression or classification [105]. The relevance vector machine is, however, de-
fined similar to the SVM problem and has a drawback in the significant computational
cost associated with the optimization.
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5.2 Support Vector Domain Description: A probabilis-
tic interpretation

Suppose a data setD consisting ofn samplesxi is given. Following the idea of SVDD
introduced in [102], the data is analyzed by estimating an optimal enclosing hyper-
sphere, containing most of the data examples, while minimizing the distance to outliers,
and the radius of the sphere. In [95] it is demonstrated how the entire regularization
path can be calculated efficiently, and using the same notation the optimization problem
can be stated as

min
R,a

∑

xi∈D

(

‖xi − a‖2 −R2
)

+
+ λR2 (5.1)

whereλ is a regularization parameter,R is the radius of the sphere,a is the center of
the sphere, and(·)+ denotes the (reverse and shifted) hinge loss function givenby

(x)+ =

{

0 , x ≤ 0
x , x > 0

To allow the sphere to assume a more general shape, the data may be projected into
an expanded basis, and by defining the inner product in the expanded basis< ·, · >,
expression (5.1) may be stated as the following minimization problem

λR2 +
∑

xi∈D

(

〈φ(xi), φ(xi)〉 − 2 〈φ(xi),a〉+ 〈a,a〉 −R2
)

+
(5.2)

whereφ(x) is a transformation to a basis that may be expanded. To introduce a prob-
abilistic interpretation of (5.2) it is natural to assume that it describes the negative
log-posterior probability for the parametersa andR, givenD. The ordinary SVDD
would then be interpreted as the maximum a posteriori (MAP) solution. The first term
corresponds to a prior

Q(a, R) ∝ exp

(

−λR2 − 1

2
γ−2 〈a,a〉

)

(5.3)

where the hyperparameterλ (the usual regularization parameter) controls the inverse
variance of the radiusR, γ are standard deviations, and taking the limitγ → ∞ cor-
responds to a non-informative prior ona, as is implicitly assumed in normal SVDD,
where no restrictions are placed on the center of the sphere.

Since (5.2) is defined solely using inner products in the basis of the image ofφ, it
is preferable to introduce variables taking the values of the inner productsΦi =<
xi,a >. It is seen that these new parameters may be generated from a Gaussian pro-
cess, and the covariance of these zero-mean parameters is

E (ΦiΦj) = E (〈xi,a〉 · 〈xj ,a〉) = γ2 〈xi,xj〉 ≡ γ2Kij
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since the elements ofa are assumed to be independent and identically distributed with
varianceγ2. The inner product〈xi,xj〉 is seen to define the covariance functionKij

and it is clear why the kernel functionKij is generally termed the covariance in [11].
If the analysis is limited to stationary kernels, ie. meaning all norms are constant, the
expressions for the original problem statement (5.1) and prior (5.3) become trivially
constant with respect to changes ina. However, let·† be the matrix Penrose pseudo in-
verse operator, then in the finite dimensional case, when thedimension of the expanded
basis is smaller than the number of samples and the rank ofK is equal to the dimension
of the (finite dimensional) expanded basis, the prior (5.3) may be written

Q(Φ, R) ∝ exp

(

−λR2 − 1

2
γ−2

Φ
T K†

Φ

)

(5.4)

whereK denotes a (square) matrix with elements(Kij), andΦ is a vector with ele-
mentsΦi. Otherwise, when data is not spanning the whole expanded basis, let {u∗

j}
denote a orthonormal basis for the part ofa not spanned by{xi}, let {a∗

i } be the
projections ofa on these basis vectors, and leta∗ denote a vector with elementsa∗

i .
Then it is easily seen that the MAP estimate fora∗ is 0. In this case, when the data
is not spanning the entire (expanded) feature space, the prior (5.4) could be corrected
by adding a third term− 1

2γ−2 < a∗,a∗ > in the exponent, however for simplicity of
presentation this will be assumed not to be the case. More interestingly however, is to
replace the original formulation of〈a,a〉 with Φ

T K†
Φ as was done in (5.4), even if

stationary kernels are used, noting that this is in fact a motivated reformulation of the
original problem.

The second term in (5.2), which is data dependent, may be interpreted as a likelihood
term given by

Q(D|a, R)

∝ exp

[

−
∑

xi∈D

(

〈φ(xi), φ(xi)〉 − 2 〈φ(xi),a〉+ 〈a,a〉 −R2
)

+

]

Applying the new parametrization of〈a,a〉 yields the following likelihood function

Q(D|Φ, R)

∝ exp

[

−
∑

xi∈D

(

Ki,i − 2Φi + Φ
T K†

Φ−R2
)

+

]

(5.5)

Aiming at using the method for outlier detection it is usefulto introduce a binary vari-
ablesyi, which takes the value1 if the pointxi is outside the sphere and0 if it is inside,
ie. when the value of the hinge loss in (5.5) is 0.

P (yi = 1\yi = 0|D,Φ, R) =

{

0\1 , Ki,i − 2Φi + Φ
T K†

Φ−R2 < 0
1\0 , else

(5.6)
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This trivial definition is already normalized.

The normalization factor ofQ(D|Φi, R) depends in general onΦ andR, so using
Q(D|Φ, R) directly as stated in (5.5) would change the property that the SVDD is
obtained as the MAP solution. To avoid this problem, the joint probabilityP (D,Φ, R)
is written as

P (D,Φi, R) = Q(D|Φ, R)Q(Φ, R)/N (D) . (5.7)

The shape of the posterior probabilityP (D|Φ, R) ∝ Q(D|Φ, R)Q(Φ, R) is by con-
struction having the SVDD as the MAP solution. The normalization factorN (D) is
chosen most simple to beD - independent, and it may be defined as

N (D) = N =

∫

Q(Φ, R)N(Φ, R)dΦdR

N(Φ, R) =
∑

{xi}

Q({xi})Q(D|Φ, R)

=
∑

{xi}

Q({xi}) exp

[

−
∑

xi∈D

(

Ki,i − 2Φi + Φ
T K†

Φ−R2
)

+

]

whereQ({xi}) is some prior on the obtained set of input vectors. Usually these vec-
tors are assumed sampled independently from the input space. Using this definition
sampling can be done by sampling a vectorΦ and a radiusR from the Gaussian prior
Q(Φ, R), then sample a set{xi} from Q({xi}), and if a realization of a uniform ran-
dom variable is smaller thanQ({xi}|Φ, R), the sample is accepted.Q({xi}|Φ, R) is
guaranteed to be smaller than1, however it may be quite improbable for many realiza-
tions ofΦ. In the case of a high number of samples,Φ is sampled from a Gaussian
process with one particular covariance structure, and later (ignoring the hinge loss)
evaluated with a different covariance structure, which makes practical sampling hard
in high dimensions.

The actual prior distribution is then given by

P (Φ, R) ∝ Q(Φ, R)N(Φ, R) , (5.8)

and the likelihood by

P (D|Φ, R) ∝ Q(D|Φ, R)/N(Φ, R) , (5.9)

Given the shape of the likelihood it is not so surprising thata the normalization depends
onΦ andR.

Using the introduced representation, the log-posterior can be maximized, which gives
the usual SVDD result.
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5.2.1 Maximizing the log-posterior

We maximize the log-posterior of the model

−λR2 − γ−2

2
Φ

T K†
Φ

−
∑

i

(

−2Φi + Ki,i + Φ
T K†

Φ−R2
)

+

Replacing the hinge loss by a set of valuesαi whereαi = 1 when the distance is
bigger than zero,αi = 0 if it is negative, and0 ≤ α ≤ 1 when the distance is zero (this
process is equivalent to introducing slack variables and Lagrange multipliers as done
in Chapter3), gives the expression,

− λR2 − γ−2

2
Φ

T K†
Φ−

∑

i

αi

[

−2Φi + Ki,i + Φ
T K†

Φ−R2
]

(5.10)

By differentiating with respect toΦ, whereα conveniently represents a vector contain-
ing the elements(αi) we get

2α−
[

γ−2 + 2
∑

i

αi

]

K†
Φ = 0

⇒ ΦMAP =
1

∑

αi + 1
2γ−2

Kα .

Using this expression we arrive at the Lagrangian dual similar to the one described in
[95], which has to be maximized with respect to{αi}, to achieve the MAP solution,
supposing

∑

i αi is known:

∑

i

αiKi,i −
1

∑

αi + 1
2γ−2

∑

i,j

αiαjKi,j +

(

λ−
∑

i

αi

)

R2 (5.11)

where the sum
∑

i αi = s is assumed fixed. By differentiating with respect toR2 it is
seen that

∑

i

αi = λ ,

and substitution into (5.11) demonstrates how the problem is identical to the SVDD
minimization problem (3.8), whereλ determines

∑

i αi.

∑

i

αiKi,i −
1

λ + 1
2γ−2

∑

i,j

αiαjKi,j

The expression is noted to be increasing with increasing values ofλ. If Ki,j represent
stationary kernels, e.g. the Gaussian kernel [32], the optimumαMAP is independent
of γ, and an obtained solution is thus the same as the one from normal SVDD.
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5.3 Marginalization of parameters: calculating the evi-
dence

The probabilistic formulation of the SVDD, introduced in Section 5.2, is enabling the
calculation of the evidence of the data, given model and hyperparameters. In a true
Bayesian treatment the hyperparametersλ and γ should be marginalized. With no
prior onλ, the evidence of the assumed model is given by

P (D) =

∫

P (D|λ, γ)dλdγ

P (D|λ, γ) may be estimated using (5.7), and again the hyperparameters are implicitly
assumed given for notational convenience.

P (D|λ, γ) =

∫

P (D|R,Φ)P (R,Φ)dΦdR

∫

P (D|R,Φ)P (R)P (Φ)dΦdR

Returning to the expression for the MAP estimate (5.11) it is seen thats =
∑

i αi alone
is determining the MAP estimate ofΦ. Remembering that the values{αi} depend on
the data likelihood and the argument of the hinge loss function, it is realized that the
optimal value, givens, can only be obtained ifR2 corresponds to the MAP estimate of
R2. Let s be given bys = λ then

P (D|λ, γ) =

∫

exp

[

−λR2 − γ−2

2
Φ

T K†
Φ−

∑

i

(

Ki,i − 2Φi + Φ
T K†

Φ−R2
)

+

]

/NdΦdR (5.12)

To estimate this integral, an approximation is made, whereΦ is developed around the
MAP value given the sums = s(R2). LetαMAP,i be the MAP values of the parameters
αi, and defineΦ = ΦMAP +∆Φ, where∆Φ is the perturbation of the MAP estimate,
then

P (D|λ, γ) =

∫

exp

[

−λR2 − γ−2

2
∆Φ

T K†∆Φ−

∑

i

(

di − 2

(

∆Φi −
∑

i αMAP,i∆Φi
∑

αMAP,i

)

+ ∆Φ
T K†∆Φ

)

+

]

/NdΦdR (5.13)

is approximated using a modified version of Laplace’s method[69]. However, inspect-
ing the argument of the hinge loss, it is seen that for small perturbations∆Φ, the sum
is dominated by the constant terms, and for increasing perturbations, the quadratic term
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becomes dominant. Therefore, the sum over all data points isassigned the valuesn and
∑

i αi respectively. The linear terms in the sum are seen to approximately cancel out
except for skewness induced by the hinge loss function. The approximated evidence
becomes

P (D|λ, γ) ≈
∫

exp
[

−λR2
]

· exp

[

−1

2
∆Φ

T
(

2nK† + γ−2In

)

∆Φ

]

· exp

[

−
∑

i

αMAP,iKi,i + αT
MAP KαMAP + R2

∑

i

αMAP,i

]

/Nd∆dRΦ

=
(2π)n/2

N
√

|2nK† + γ−2In|

∫

exp

[

R2
∑

i

αMAP,i

]

· exp

[

−λR2 −
∑

i

αMAP,iKi,i + αT
MAP KαMAP

]

dR . (5.14)

By using the entire regularization path of the SVDD, this integral can be computed to
an approximation of smaller order than the previous approximations, by calculating the
trapezoidal sum along the regularization path. This is due to the fact that the radiusR
is decreasing monotonic as a function of the regularizationparameterλ, as noted in
Section 5.2.1. In the Appendix 5.6.1 details on calculatingR are included.

Unfortunately, there seems to be no straightforward way to estimate the normalization
constantN . The sampling procedure discussed earlier is too cumbersome for higher
dimensions, and the integral is hard to approximate for the general case. It has been
argued by Opper and later by Sollich that the Bayesian treatment still may give sensible
results, even when the evidence is not properly normalized [97, 77]. However, it is the
view and experience of the author that at least obtaining a reasonable approximation
would be much preferable, if one wants to compare different covariance functions (or
the implicitly given parameters of these, as in Chapter 4).

5.3.1 The expected value ofyi

The output that is actually expected to be of interest in the analysis is the individual
classifications of the input vectorsxi as either inliers or outliers. In (5.6) the variables
yi were defined, which make this distinction. These variables depend on the param-
eters (and the hyperparameters) as well as on the input data (more specifically on the
covariance of the input). However, using (5.14) the expected value (considering the
parameters as stochastic variables) may be calculated without having to find the nor-
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malization factorN . The hyperparameters are implicitly assumed to be given by

E(yi) =0 · P (yi = 0|D) + 1 · P (yi = 1|D)

=

∫

1 · P (yi = 1|D,Φ, R)P (Φ, R|D)dΦdR

=

∫

1 · P (yi = 1|D,Φ, R)P (D|Φ, R)P (Φ, R)dΦdR

P (D)
. (5.15)

A scaled version ofP (D|Φ, R) may be used, since it is normalized with the same
scaled version when calculatingP (D) using (5.14). Given the definition of the expec-
tation, and the variableyi it is seen that the expectation can actually be perceived as
the probability for the pointxi to be an outlier. Following the same arguments we may
calculate the variance ofyi

E((yi − E(yi))
2)

=(0− E(yi))
2 · P (yi = 0|D) + (1− E(yi))

2 · P (yi = 1|D)

However, for binary variables the variance is given byE((yi − E(yi))
2) = E(yi) −

E(yi)
2.

5.4 Example

A small 1-dimensional test example was generated to demonstrate themethod, con-
sisting of two clusters of Gaussian randomly sampled pointswith variances0.75 and
1.05, and centered with a distance of6, along with20 Gaussian distributed noise ob-
servations centered at the mean with a variance35. The example is analyzed with the
ultimate goal of finding the mean classification of each point, as well as the variance
of the estimate. A Gaussian kernel, with a kernel width of10 is chosen, and illustrated
along with the sampled points in Figure 5.1.

The regularization parameterλ was set at20, coinciding with the number of true out-
liers, ie. the number of noisy observations added to the example. The expected value,
and variance ofyi for each of the points was calculated as described in Section5.3.1,
only the distribution with respect to∆Φ is assumed to be dense around the MAP value
Φ

∗ such that the whole probability may be assumed to lie at this value. The results are
visualized in Figure5.2.

The proposed method is seen to identify the two clusters, however with some errors
due to the overlapping groups, and, maybe, also the need for support vectors to define
a cluster. The variance of the estimates is particularly interesting, and a plot of it can
be seen in Figure5.3.
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Figure 5.1: The distribution of the34 1D points is illustrated, as well as the size of the
kernel used .
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Figure 5.2: Illustration of classification result of the test example, along with the de-
cision function on the interval, where the dashed lines showthe expected value± one
standard deviation.
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Figure 5.3: Illustration of the variance of the classification estimates in Figure 5.2. The
variance is seen to be bigger on the boundaries between clusters and outliers.
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It is evident from the variance plots, that the variance of the estimates is bigger on the
boundaries between the clusters and the outliers. This is a natural consequence of the
definition of the variance, however the width of the peaks is not. The wide peaks can
be perceived to reflect the fact that it is harder to tell (given the scale) if the left outlier
points are actually inliers or outliers. It is interesting to note, that the variance is also
comparably small in the cluster centers, where the distanceto support vectors is bigger.
This may be seen as an argument for the support vector idea, inthe sense that modelling
the boundary is the most important for (one-class) classification. The distribution of the
conditional probability givenR is shown in Figure 5.4. The distribution is seen to be
lightly peaked, with a small favor to smaller radii, which corresponds well with the
choice of regularization parameterλ.
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Figure 5.4: Relation between the conditional evidence for the data given the radiusR,
ie. with Φ marginalized (the evidence has not been properly normalized). Theλ value
of 20 favors smaller radii, since it a priori assumes a high numberof outliers.

5.5 Discussion and conclusion

In the current work a Bayesian formulation of SVDD was developed having the SVDD
presented by Tax and Duin [101] as the maximum a posteriori solution. In Section5.4,
the introduced method was shown to deliver estimates of the probability, and also a
measure of the certainty of this estimate. Using the algorithm developed in Chapter3
the entire regularization path can be efficiently calculated, and calculating the derived
approximated evidence (5.14) is straightforward when the entire regularization path
is available. Marginalizingλ may be quite straightforward without adding too much
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computational load, but estimating the normalization coefficient remains an open prob-
lem. The method was tested on1 and 2 dimensional artificial data sets, where the
1-dimensional has been presented for visualization. The results seem promising con-
sidering the approximations involved and the small complexity, but the formulation still
needs to prove its worth on real world problems.

5.6 APPENDIX

5.6.1 CalculatingR

R is clearly defined when the value of
∑

i αi is at an event, and in between, the value
can be calculated by using the standard distance function onboundary points defined
in (3.11) in Chapter3.

R2 = kb −
2

∑

i αi
·
∑

i

Kb,iαi +
1

(
∑

i αi)
2 ·αT Kα

Making the substitution from the linear regularization path (3.13), representingα =
αj + tp, whereαj is the value ofα from the previous event, andp is the slope of the
(linear) change inα, andt is a parametrization of the line. Making the substitution, the
result is

R2 =

kb −
2

∑

i αj
i + t

·
∑

i

Kb,i(α
j
i + tpi) +

1
(

∑

i αj
i + t

)2 · (αj + tp)T K(αj + tp)

In the case when the algorithm is initialized, for no regularization, all points are inliers,
ie. α = 0, and the radius assumes the following fixed value until the next event

R2 = kb − 2
∑

i

Kb,ipi + pT Kp (5.16)
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CHAPTER 6

Discussion and conclusion

In Chapter3, an efficient algorithm for calculating the entire regularization path of
the support vector domain description (SVDD) was presented. The ability to calculate
the entire path with a complexity in the same order as solvingthe original quadratic
problems gives inspiration to utilize the extra information available from the entire
path. Not much effort in the literature on SVDD has been put into determining the
optimal value of the regularization, or possibly an ensemble of values, and some efforts
appear ad hoc [3]. In Chapter 4, a method for hierarchical support vector clustering,
based on information from the entire regularization path, and multiple Gaussian kernels
is described. This method can be considered an extension of apreviously developed
method, which is also empirically shown to give good resultson real world data [40].

Testing the methods on more data would be interesting in the future to draw more con-
clusions on the nature of the support vector domain description for clustering. How-
ever, this would also be very interesting to see combined with the analysis presented in
Chapter5, where Bayesian methods are applied in the attempt to draw direct statistical
conclusions from the SVDD analysis.
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Part II

Parametrization of
deformations





CHAPTER 7

Introduction to
parameterizations of

deformations

Computations performed on a computer need by nature to be parameterized at some
point to a finite dimensional space. This may be done in different ways, for instance
by a discretize-optimize approach or an optimize-discretize approach [73]. In image
registration, the Cubic B-spline kernels used by Rueckert et al. [85] and the cosine
kernels presented by Cootes et al. [16] are both examples of discretizations that restrict
the optimization to the finite dimensional space of the basis. The parameters are in both
cases controlling the deformation field inx,y andz directions, where the support of the
control point influence is given by the associated basis function, and the deformation
field is given as a linear combination of the basis functions,where the linear coefficients
are the control points.

For some applications, however, it has been shown to be favorable to choose a differ-
ent parametrization to increase the stability of the optimization. In electrostatics and
fluid flow estimation parameterizing by the divergence and the curl has this property
[57, 60]. In Chapter8 an image registration parametrization is introduced, which de-
fines thek parameters inRk, while guaranteeing that the resulting deformation field
is diffeomorphic [45]. In Chapter9 deformation potentials are presented, where the
curl and the gradient of the potentials are controlling the deformation fields [42]. This
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representation is shown to give an intuitive interpretation of the linear elastic regular-
ization.



CHAPTER 8

Diffeomorphic Statistical
Deformation Models

Michael S. Hansen, Mads F. Hansen and Rasmus Larsen1

Abstract

In this paper we present a new method for constructing diffeomorphic statistical defor-
mation models in arbitrary dimensional images with a nonlinear generative model and
a linear parameter space.

Our deformation model is a modified version of the diffeomorphic model introduced by
Cootes et al. The modifications ensure that no boundary restriction has to be enforced
on the parameter space to prevent folds or tears in the deformation field.

For straightforward statistical analysis, principal component analysis and sparse meth-
ods, we assume that the parameters for a class of deformations lie on a linear manifold
and that the distance between two deformations are given by the metric introduced by
theL2-norm in the parameter space. The chosenL2-norm is shown to have a clear and
intuitive interpretation on the usual nonlinear manifold.

Our model is validated on a set of MR images of corpus callosumwith ground truth in
form of manual expert annotations, and compared to Cootes’smodel.

1This paper was presented at the NRTL workshop, which was partof the International Conference on
Computer Vision 2007 [45].
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We anticipate applications in unconstrained diffeomorphic synthesis of images, e.g. for
tracking, segmentation, registration or classification purposes.
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8.1 Introduction

Registration is the problem of establishing correspondence between points in different
images. It has been used for building models of variation in groups of images for sev-
eral years. Cootes et al. proposed the very successful active appearance models in 1998
[15], which, once trained, can establish correspondence between points in the model
and the images using a piecewise affine mapping. Rueckert et al. presented a statistical
deformation model based on registrations of an atlas to the images of the group [85].
Joshi et al. demonstrate how to construct an unbiased atlas from a population [59],
and Cootes et al. presented a guaranteed diffeomorphic shape model [16] by using
smooth kernels for interpolating a warp field and putting restrictions on the variation of
the parameters. Vester-Christensen et al. have presented an accelerated version of this
algorithm [108], which is based on the inverse compositional method by Baker et al.,
which we have also made extensive use of in the presented work[1].

8.2 Methods

We define image registration as the identification of correspondence between positions
in images. In the current work we address problems where the correspondences can be
represented by a diffeomorphic functionf ∈ H, whereH denotes the infinite dimen-
sional group of diffeomorphisms onRN . The mapping from one image to the other
is differentiable and the inverse exists and is also differentiable. Popular speaking this
limits the problem of registration to the problem of finding smooth warps without folds
or tears. More precisely this is fulfilled, when the Jacobeanof the warp field is positive
and well defined.

In the statistical analysis of the warp functions we are interested in estimating an unbi-
ased atlas of the structures we are registering. We identifysuch an atlas as the group-
wise maximizer of similarity between the atlasR and the deformed imagesIi, while
minimizing the deformation fieldsφi.

[φi, R̂] = min
φi,R̂

∑

i

S[R̂, Ii ◦ φi] + αD(φi)
2 . (8.1)

whereS denotes the similarity measure andD(φ) denotes the regularization term, in-
troduced to regularize the warpφ further than just restricting it to the space of the
parameters, andα is the regularization parameter.
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8.2.1 Parameterized diffeomorphisms

Fletcher et al. have investigated geodesic curves on the nonlinear manifolds of the
parameters of the M-reps parameterization [28]. Most of thecurrent statistical analy-
sis, however, is based on the assumption that the data is located on a linear manifold
with the Euclidean metric, e.g. principal component analysis (PCA) and independent
component analysis (ICA), which have nice properties as analytical tools. This is our
motivation for introducing a functionG which identifiesRM with a (hopefully inter-
esting) subset of diffeomorphisms.

Let H(RN ) denote the set of diffeomorphisms(f : R
N → R

N ). Now let G be a
bijective mapping:

G : R
M → Ht . (8.2)

whereHt = G(RM ) ⊂ H. We letHt inherit the Euclidean metric from the parameter
spaceRM

d(G(t1),G(t2)) ≡ d(t1, t2) = ‖t1 − t2‖2 ,

t1, t2 ∈ R
M andG(t1),G(t2) ∈ Ht , (8.3)

from which we conclude thatG is a homeomorphism, and that the spacesHt = G(RM )
andR

M are topologically equivalent. To conclude it can be observed that the defined
metric on the space of parameterized warps is theL2 norm onR

M as intended.

8.2.1.1 Composition of warps

The composition of more diffeomorphisms is diffeomorphic,which is a very important
property of diffeomorphisms in the present context.

fi ∈ H , i ∈ {1, 2, . . . , n}
φ = fn ◦ fn−1 ◦ . . . ◦ f1 ⇒ φ ∈ H (8.4)

This allows for the construction of diffeomorphisms of higher complexity by the com-
position of several simpler warps. We shall assume we are dealing with parameterized
warp functions, and our statistical analysis of warps can bereduced to the analysis of
the warp parameters, in line with (8.3). For all images in our set the warp parameters
shall warp from ourreference, R, into the currenttarget, I. In order to be able to com-
pare parameters from different warp compositions it is evident that all our parameters
exist in the same space. This is achieved by ensuring that allwarpsfi in a composition
warp from the reference coordinate system[16].
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8.2.1.2 Grid based diffeomorphisms

Several grid based representations of diffeomorphisms have been presented and they
are commonly used at different levels of detail and composedsucceedingly [16, 73, 85].
A general trait of the grid methods is that they manipulate the parameters of the func-
tions describing the diffeomorphism, and that the functions have a local support in the
image, either as points defined in the image or as basis functions with support around
a control point. Often this parameterization of the grid is linear in the parameters and
this obviously imposes some restrictions on the parametersto produce diffeomorphic
warps. Cootes et al. specify a cut-off at displacements larger than1

π of the cosine based
kernel [16] and Lee et al. find a threshold bound on the B-spline parameters to secure
that the B-spline based warp function is diffeomorphic [66].

8.2.1.3 A proposedG

LetF be the function mapping from a real parameter spaceR
M into the space of func-

tions fromR
N to R

N , e.g. in case of the B-spline warps,F maps from the parameter
space into the space ofN -dimensional B-spline functionsf : R

N to R
N , the image of

F ,K can be shown to contain functions that are not diffeomorphic.

As discussed in the previous section there can for some parameterized warps be speci-
fied a threshold such thatP = ]−τ1, τ1[ × · · · × ]−τM , τM [ andF : P → Ht, where
Ht ≡ F(P) ⊂ H. In the current study we have investigated the use of a function
g : R

M → P, that is, a bounded monotonic injective function into the space of thresh-
olded displacement parameters. ConstructingG = F ◦ g, whereG : R

M → Ht gives
us the desired functionG, namely a homeomorphic mapping from the parameter space
R

M into the space of diffeomorphisms. As an example of the function g we have cho-
sen a set of hyperbolic tangent function, because the range where it is close to linear is
large. The composed mappingG and the different ranges are illustrated in Figure 8.1.

We defineg coordinate-wise by

g = {g1, ..., gM} wheregi : R→ ]−τi, τi[

si = gi(ti) = τi tanh aiti , for i ∈ {1, ...,M} (8.5)

whereτi are the threshold parameters reducing the displacement parameter space of
the warp toP ⊂ R

M , s = {s1, ..., sM} ∈ P are the displacement parameters andai

are constants ensuring that the impact of eachti is of the same order of magnitude.
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Figure 8.1: Illustration of the mappingG from R
N to G, along with our proposed

composed mappingG = F ◦ g
.
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8.2.1.4 Properties of theg mapping

Before we continue with an empirical validation of our proposed mapping we will
make some theoretical considerations over the choice of homeomorphic mappingg.
For small valuest ∈ R

M the L2 norm in R
M is equivalent to a scaledL2 norm in

g(RM ) to a first order. In other words, relating this to diffeomorphic warps, for small
deformations the defined norm is equivalent to the usual metric applied in analysis of
the warp fields [16, 85].

8.2.1.5 The parameter distribution

We believe that the distribution of the parameters is well described by normal distribu-
tion, and we will show what distribution this describes in the displacement parameter
space of the warp function. Letfti

be the marginal distribution of the parameterti and
fgi

be the marginal distribution of the warp parametersi = gi(ti), then

fi(ti) =
1

√

2πσ2
i

e
−

t2i
2σ2

i (8.6)

fgi
(si) =

1

2ai · τi

√

2πσ2
i

(

e
−

g−1(si)
2

2σ2
i +

e
µ2

i

2σ2
i

2
e
−

(g−1(si)−µi)
2

2σ2
i +

e
µ2

i

2σ2
i

2
e
−

(g−1(si)+µi)
2

2σ2
i

)

(8.7)

whereµi =
σ2

i ai

2 and this distribution is seen to be the composition of three Gaussian
distributions scaled byg−1. For smallµi this is approaching the Gaussian distribu-
tion which is often the distribution for the warp parametersin the small deformation
domain and forµi big the twoµi displaced distributions dominate, and we observe
a high concentration of parameters around the thresholdτi. In the presence of strong
deformations this also what we expect when imposing a threshold on the warp deforma-
tion parameters. Based on these considerations we expect anM -dimensional normal
distribution of our parameters to be well suited for modelling the distributions of the
observed deformations.

8.2.1.6 Statistical deformation model

In the previous section we argued that the expected distribution of warps could be
modelled as anM -dimensional normal distribution. If this is the case PCA isknown to
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be the optimal choice of analysis tool for creating a compactmodel of the observations,
and is therefore the method of choice in the current implementation.

8.3 Implementation

To validate our approach for construction of diffeomorphicdeformation model we have
adapted the grid based diffeomorphisms by Cootes [16] with our g mapping. These
diffeomorphisms can be viewed as an extension to standard linear interpolation, where
the interpolation coefficients are transformed by a suitable kernelk(r) which ensures
smoothness across the grid boundaries. The displacement ofa 2D pointx ∈ R

2 is
given by

u(x,d) =
1
∑

m=0

1
∑

n=0

kn(v)km(w)di+n,j+m

=
1
∑

m=0

1
∑

n=0

ai+m,j+n(x)di+n,j+m (8.8)

=

[

a(x)⊤ 0

0 a(x)⊤

]

d (8.9)

wherek0(r) = k(r), k1(r) = 1− k(r), i andj is the local indices of the neighboring
grid points,v andw are relative positions ofx in the neighborhood andd anddi,j are all
the displacements and the displacement of the(i, j)-node, respectively. By substituting
the displacementsd with theg mapping with a suitable thresholdτ , this deformation
model will no longer be able to generate non-diffeomorphisms. In the present example
using the Cootes kernel,τ = 1/π.

For notational simplicity the displacement in theith direction will represented by

ui(x, ti) = a(x)⊤gτ (ti), (8.10)

and the warp function is written in the form

ϕ(x, t) = x + u(x, t). (8.11)

8.3.1 Image registration

To drive the registration between a reference imageR and a target imageI we apply
the sum-of-squared-differences (SSD) as our similarity measure and the regularization
term is given byD(φ) = d(e, φ) = ‖t‖2, wheree is the identity map corresponding to
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t = 0. The SSD comparison leads us to calculate the reference image as the arithmetic
mean of the warped target images, as this is the optimum SSD solution to (8.1) [59].

F (t) =
1

2

∑

x

(R(x)− I(ϕ(x, t))2 + α‖t‖22 (8.12)

=
1

2

∑

x

E2(x, t) + α‖t‖22. (8.13)

To achieve a fast optimization we apply the inverse compositional optimization ap-
proach by Baker et al. [1] to the cost function. Thus, we obtain a minimum by itera-
tively minimizing

Fic(t) =
1

2

∑

x

(R(ϕ(x,∆t))− I(ϕ(x, t))2

+α‖t− ∂t′

∂∆t
∆t‖2 (8.14)

with respect to∆t and updatingt according to

ϕ(x, t′)← ϕ(x, t) ◦ϕ−1(x,∆t). (8.15)

In Appendix8.7.2it is shown howt′ is derived from (8.15).

By performing a first-order Taylor-expansion onR(ϕ(x,∆t) aroundx in (8.14), tak-
ing the derivatives wrt.∆t and setting them equal to zero we get

∆t = H−1

[

∑

x

SD(x)⊤E(x, t) + α
∂t′

∂∆t

⊤

t

]

(8.16)

where

SD(x) = ∇R(x)
∂ϕ(x,0)

∂t
(8.17)

and

H =
∑

x

SD(x)⊤SD(x) + α

[

∂t′

∂∆t

]⊤ [
∂t′

∂∆t

]

. (8.18)

The advantages with this inverse compositional approach isthat SD(x) can be pre-
computed as it is not dependent ont.
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8.4 Validation: corpus callosum model

To demonstrate our approach we have created a deformation model of the Corpus Cal-
losum from 62 two dimensional MR images of the mid-sagittal cross-section of the
corpus callosum brain structure. This data set is part of theLADIS (Leukoaraiosis and
DISability) study [78], a pan-European study involving 12 hospitals and more than 700
patients. Furthermore, each corpus callosum have manuallybeen annotated with 72
landmarks by a clinician, which we will later use for validation.

Prior to the non-rigid registration a rigid registration was performed to filter out non-
anatomical variation. This was achieved by performing Procrustes analysis on the sets
of annotation. After the rigid registration an initial reference was created by comput-
ing the mean image of the rigid registered images. All corpuscallosum images were
then non-rigidly registered to the reference, and a new reference was computed by
averaging. This was done multiple times until the referencestabilized. For the non-
rigid registration the cosine kernelk(r) = 0.5(1 + cos(πr)) was applied [16]. The
non-rigid warps were modelled by composing three grid baseddiffeomorphisms in a
fine-to-coarse manner. The dimensions of the applied grids were5 × 4, 10 × 8 and
20 × 16. The non-rigid registrations were carried out in coarse to fine order. After
each levelϕi of the warp was estimated the target image was updated by warping the
target image back into the reference coordinate frame byTn+1(x) = Tn(ϕ(x)). This
was done to ensure that different parameters from differentwarps could be compared
[16]. ai of theg mapping was set proportional to the inverse of the squared grid node
distance because the grid was 2 dimensional. The image registration was validated
using the Dice measure, which is twice the intersecting areabetween the ground truth
shape outline of the warped image and the outline of the reference shape divided by
the total area inside the two outlines. The ground truth was obtained from the expert
annotations. The Dice measure was0.884 ± 0.048. In Fig. 8.2 we show an example
of a typical registration of an image. In Fig. 8.3 the cumulative overlap of the aligned
corpus callosum shapes before and after a rigid registration is illustrated, showing a
clear improvement in correspondences between the shapes.

(a) Template image (b) Warped template (c) Reference image

Figure 8.2: Registration of an image to the reference.

To create a compact deformation model, PCA was applied to theparameters after the
groupwise registration of the images. 13 modes of variationcould describe 95 % of the
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(a) Before nonrigid registration (b) After nonrigid registration

Figure 8.3: Cumulative overlap of the aligned corpus callosum shapes before and after
a rigid registration

observed variation in the population as observed in Figure8.4, and the first three modes
are illustrated in Fig.8.5. The first mode of variation is seen to be related to a vertical
stretch and in particular to the size of the septum pellucidum (the dark area between the
bright corpus callosum and the bright Fornix), the second mode is related to the kink of
the corpus callosum and the thickness of the structure and the same goes for the third
mode but with a different bending of the Fornix. Rueckert et al. have also analyzed the
corpus callosum and they found modes quite similar to the ones found in the current
study [85]. For comparison we applied a regularized versionof Cootes’ algorithm to
the same problem, and constructed a similar PCA model of the variation. The variance
of the modes is nearly identical, as shown in Figure8.4 and the obtained Dice scores
were also the same. The major difference between the deformation modes are to be
found where the warp displacement parameters are close to the limit 1/π. The sites in
the Cootes warp with highest curvature are closer to singular than the same sites in the
warp based on our parameterization.
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Figure 8.4: Plot relating described variance with number ofmodes included in the
model. a: the presented method. b: method introduced by Cootes et al. [16].
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(a) 1st mode,−3 std. dev. (b) 2nd mode,−3 std. dev. (c) 3rd mode,−3 std. dev.

(d) Reference

(e) 1 st mode,+3 std. dev. (f) 2nd mode,+3 std. dev. (g) 3rd mode,+3 std. dev.

Figure 8.5: First three modes of the corpus callosum deformation model estimated with
the current method, shown as the reference warped± 3 std. deviations.

(a) 1st mode,−3 std. dev. (b) 2nd mode,−3 std. dev. (c) 3rd mode,−3 std. dev.

(d) Reference

(e) 1 st mode,+3 std. dev. (f) 2nd mode,+3 std. dev. (g) 3rd mode,+3 std. dev.

Figure 8.6: First three modes of the corpus callosum deformation model estimated
with a constrained version of Cootes’ method, shown as the reference warped± 3 std.
deviations
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8.5 Discussion

We have shown how a parametric function can be defined on the unbounded linear
spaceRM and still produce diffeomorphic warps. When this is accomplished by first
mappingR

M into an open bounded subset ofR
M , which inevitably leads to an asymp-

totic behavior at the closure of the bounded set. In our implemented example the pa-
rameters of the model by Cootes et al. asymptotically approach 1

π where singularities
in the warpmayoccur. We believe that our distance measure is very reasonable when
we are indeed approaching a singularity, as a small change inthe displacement param-
eters of the warp will cause a huge impact on curvature of the warp function. In Fig.
8.7, where -6 std. deviations of the first mode is shown. We see that a singularity start
to form in the contracting area but this is highly unlikely aspredicted by our model and
metric.

Figure 8.7: -6 Std. deviations of the first mode, normal view and a zoomed view on the
beginning singularity.

With the choice oftanh function, the asymptotic behavior is assumed to be exponential,
which may not always be the case. There are obviously an infinite variety of mono-
tonic bounded functions, e.g. arcus tangent, and we will be investigating the choice of
function in more detail.

A problem, we believe, that may occur with the proposed method is that we cannot be
sure that the threshold does actually mark a singularity. A simple translation would for
instance be asymptotic as well, which is why initial rigid alignment is very important
indeed. Currently we investigate more involved parameter restrictions than the simple
threshold to circumvent this possible problem.

Our validation on corpus callosum data showed that we were able to learn the impor-
tant modes of variation, similar to previous obtained results, while the relatively high
Dice coefficient illustrated that our warp representation was able to capture the large
variations in the data set. We believe it is an advantage thatall configurations in our
parameter space are valid diffeomorphism, such that all gradients and derivatives dur-
ing the optimization are well defined. Also we find it an advantage for tracking etc.
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that the the deformation as a function of the deformation model parameters is smooth,
when using the presented method.

8.6 Conclusions

This paper proposed a new warp representation which allows statistical analysis on an
unrestricted linear parameter space, where all derivatives are defined. Furthermore, we
have shown thatL2-norm the parameter space introduces a reasonable metric inthe
actual space of modelled diffeomorphisms, and that our results compare well to those
obtained using Cootes’ deformation model.
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8.7 APPENDIX

8.7.1 Warp inversion

THEOREM 8.1 Consider the functionϕ : R
N × R

M 7→ R
N of typeϕ(x, t) =

x + u(x, t) and letϕt(x) = ϕ(x, t) be aC1-diffeomorphism. Ifu(x,0) = 0 and
u(x, t) = −u(x, t), ϕ(x,−t) converges with second-order toϕ−1(x, t).
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PROOF.

|ξi(ht)| = |ϕi(ϕ(x, ht),−ht)− xi|
= |xi + ui(x, ht)− ui(x + u(x, ht), ht)− xi|

< |ui(x, ht)− ui(x, ht) +
∂ui

∂x
(x, ht)u(x, ht)|

< |ht⊤
∂2ui

∂x∂ht
(x,0)

∂u

∂ht
(x,0)ht|

< |c| · |h2| (8.19)

8.7.2 Derivation of update function

In general, it is unlikely thatϕ(x, t)◦ϕ−1(x,∆t) can be parameterized withϕ(x, t′),
and thus it has to be approximated.
In Appendix 8.7.1, it was shown thatϕ(x,−t) is a first-order approximation toϕ−1(x, t)
as the error converges with second-order to zero. The composition in Eq. 8.15 is ap-
proximated with the parameterst′ which minimizes the SSD between the true compo-
sitional warp and the warpϕ(x, t′)

∑

x

∆ϕ(x)⊤∆ϕ(x) (8.20)

where

∆ϕ(x) = ϕ(ϕ(x,∆t), t)−ϕ(x, t′)

= a(x)⊤(gτ (∆t)− gτ (t′))

+a(ϕ(x,∆t))gτ (t). (8.21)

If

A =







a(x1)⊤

...
a(xn)⊤






, andAϕ =







a(ϕ(x1,∆t)⊤

...
a(ϕ(xn,∆t)⊤







the updated warp parameterst′ can be found by solving the system

0 = A(gτ (∆ti)− gτ (t′i)) + Aϕgτ (ti). (8.22)

The least square solution to the system is

t′i = g−1
τ

(

A†Aϕgτ (ti) + gτ (∆ti)
)

(8.23)
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whereA† =
[

A⊤A
]−1

A⊤.

As Aϕ has to be evaluated on warped points it is relatively computational expensive to
evaluate. Thus, we perform a first-order Taylor expansion onAϕ and arrive at

t′i = k−1
(

A†AJi
Agτ (∆ti) + gτ (∆ti) + gτ (ti)

)

, (8.24)

where

AJi
= I + diag(

∂a(xj)

∂xi

⊤

gτ (ti))j=1...n (8.25)



CHAPTER 9

Curl-gradient Image Warping

Introducing Deformation Potentials for Medical Image
registration using Helmholtz Decomposition

Michael Sass Hansen, Niels Vorgaard Christensen and RasmusLarsen1

Abstract

Image registration is becoming an increasingly important tool in medical image analy-
sis, and the need to understand deformations within and between subjects often requires
analysis of obtained deformation fields.

The current paper presents a novel representation of the deformation field based on the
Helmholtz decomposition of vector fields. The two decomposed potential fields form
a curl free field and a divergence free field. The representation has already proven its
worth in fluid modelling and electrostatics, and we show it also has desirable features in
image registration and morphometry in particular. The potentials are shown to a offer
decoupling of the two potential fields in both elastic and fluid image registration. For
morphometry applications, we show that when decomposing the deformation field in
symmetric and antisymmetric parts, the vector potential alone describes the vorticity,
and the scalar gradient potential gives a first-order approximation to the determinant of
the Jacobian.

We provide some insight into the behavior of curl and divergence representation of
the warp field by constructed examples and by a demonstrationon real medical image

1This paper was presented at the International Conference onComputer Vision Theory and Applications
2009 [42]
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data. Our theoretical findings are readily observable in ourempirical experiment, which
further illustrates the benefit of the parametrization.
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9.1 INTRODUCTION

Image registration is becoming an increasingly important tool in medical image analy-
sis, and the need to understand deformations within and between subjects often requires
analysis of obtained deformation fields [100, 21].

The image registration task has been approached in many different ways. It can be
achieved by calculation of dense deformation fields using nonparametric methods as
described by Modersitzki [73]. Vermuriet al. proposed a levelset representation of the
deformations [107]. For more than a decade parametric representation of the deforma-
tion fields has also been very popular in the literature, where two prominent examples
are the cosine kernels presented by Cooteset al. [16], and the Cubic B-spline kernels
used by Rueckertet al. [85]. The later introduces a certain smoothing by the finite
size of the parametric kernel functions, but often furtherregularizationis introduced.
Haber and Modersitzki introduced regularization terms to ensure displacement regu-
larity [37]. Elastic registration is a popular form of regularization, originating from
continuum mechanics as described by Christensen and Johnson [12] and by Kybicet
al. [62].

In the subsequent morphometry it has been shown that the Jacobian of the deformation
field is very important under a Gaussian random field assumption on the deformation
field [58]. Chunget al. have investigated different measures of morphometry, and also
introduced a strain-curl representation of the deformation field, which has interesting
relations to other morphometry measures [13]. Hsiaoet al. have shown that using a
parameterizing of the deformation field by its divergence and curl makes it less prone to
grid folding than B-spline representation, while it allowsfor an efficient and stable op-
timization [57]. Kohlbergeret al. have used potential functions for motion estimation
of fluids [60].

In Section9.2 we propose a new parametric representation of the deformation field,
which is based on the Helmholtz decomposition of vector fields. In the following we
show how this representation can also be parameterized by smooth kernels, how it can
be considered a natural representation for elastic image registration, we show how it
can be given a strong interpretation in morphometry, and finally we point out how the
numerical stability and smoothness obtained by Hsiaoet al. [57] can also be reached
by our representation.

We have demonstrated an implementation of the presented method on MRI Corpus
Callosa images from the midsagittal plane in Section 9.3.
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9.2 METHODS

We present the developed methodology by introducing the Helmholtz decomposition
representation in Section 9.2.1, with some intuitive demonstration of the introduced po-
tential functions. Subsequently we give theoretical motivations by formulating simple
elasticity regularization in Section9.2.2, morphometric interpretation in Section9.2.3,
and finally we demonstrate properties for optimization in Section 9.2.4.

9.2.1 Helmholtz Decomposition of Vector Fields - Introducing Two
New Deformation Potentials

We define a warp functionϕ as the mapping between two 3-dimensional images, the
imageI and the referenceR, ϕ : R

3 → R
3, which satisfies that the pointx in the

referenceR corresponds to the pointϕ(x) in the imageI. The important aspect of this
definition is that thatϕ can be considered a vector field. For medical image analysis
purposes we can furthermore assume that the vector field is smooth, as this will usually
be our best assumption for the anatomical topology. These considerations also holds
for the deformation field,u, which we define as the difference from the identity warp,
such thatϕ = x + u.

We apply the Helmholtz decomposition to the deformation field, using the fact that a
vector field, which is twice continuously differentiable and with rapid enough decay at
infinity, can be split into a sum of the gradient of a scalar function and the curl of a
vector function [35]

u(x) = ∇V (x) +∇×A(x), (9.1)

whereV : R
3 → R andA : R

3 → R
3 are scalar and vector potentials functions

respectively. Sections9.2.2,9.2.3and9.2.4all deal with specific properties of this rep-
resentation by potentials. Because they are new in the field of medical image analysis,
we start by exploring some of the immediate properties of these potentials. Recall that
the deformation field is merely a sum of the two, then we shall explore the gradient
potentialV , and the curl potentialA one at a time.

9.2.1.1 The gradient potentialV

The gradient potential is roughly speaking governing localcontraction or expansion,
this is in particular true in the presence of sufficiently small deformations. The same
potential is used in electrostatics to describe the electrical potential. In Figure9.1gra-
dient potentials and their impact on the deformation field are illustrated. It can be
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Figure 9.1: Gradient potentials,V , are illustrated in the upper row, and their impact
on the deformation fields are shown below. The quadratic surfaces with constant cur-
vature produce global scaling, and the potentials with local variations produce a local
contraction or expansion.

observed how a positive versus a negative gradient results in expansion or contraction
of the deformation fields. Two-dimensional functions are used for the purpose of illus-
tration.

9.2.1.2 The curl potentialA

The curl potential field is the equivalent to the magnetic potential field in electrostat-
ics. It is describing purely divergence-free deformations, which can be interpreted as
vortices. In Figure9.2 different curl potentials and their impact on the deformation
field are illustrated. For the purpose of illustration only the z-component of the curl
potentialA is illustrated, and only the impact on thex, y directions of the deformation
field are illustrated.

9.2.2 Elastic Registration

As previously mentioned, the elastic potential is often used for image registration,
which is often based on a physical motivation in terms of an elastic tissue model
[12, 62]. Regularization is usually formulated by a potential S and differential op-
eratorsB [37]

S[u] =

∫

Ω

〈B[u],B[u]〉
Rd dx . (9.2)
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Figure 9.2:z-component,Az of curl potential fieldsA are shown in the upper row,
and the impact on thex, y coordinates of the deformation field are shown below. A
quadratic potential with constant curvature produces a global rotation of the deforma-
tion field, and a local change to the potential results in a local vortex in the deformation
field.

The corresponding Gâteaux derivative is then given by

du;vS[u] =

∫

Ω

〈A[u](x),v(x)〉
Rd dx , (9.3)

whereA = B∗B. For the elastic potential this Navier-Lamé operator is given by

A = B∗B[u] = µ∆u + (λ + µ)∇(∇ · u) (9.4)

9.2.2.1 Elastic registration of the Helmholtz Decomposition

We examine how the elastic potential affects the Helmholtz decomposition of the warp
field, and straightforward calculations give

P[u] =

∫

Ω

µ

3
∑

a,b=1

ǫ2ab + (µ + λ)(∇ · u)2dx , (9.5)

whereǫij = δui/δxj + δuj/δxi. Now u = ∇V +∇×A and

A[u] = µ∆u + (λ + µ)∇(∇ · u)

= µ∆(∇V +∇×A)

+(λ + µ)∇(∇ · (∇V +∇×A))

= (2µ + λ)∇∆V + µ∆∇×A. (9.6)

This is a rather remarkable result, since we can now decouplethe two potentials. Let
λ1 = 2µ + λ andλ2 = µ, then

A[u] = λ1∇∆V + λ2∆∇×A (9.7)
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and replacing the Lamé constantsµ andλ by λ1 andλ2, we have a clear notion of
how to interpret the two regularization parameters. Not allvalues ofλ1 andλ2 have
meaning in a physical material-property sense (as goes for anegativeµ as well), which
should be considered. It can be argued, though, that the computational model should
be extended to include these cases as well [73]. All derivations are also valid if we
had differentiated in the time-domain, so our potential representation has the same
advantages in fluid image registration.

9.2.3 Deformation-based Morphometry

Following Chunget al. we shall assume that the displacement fieldu is a smooth func-
tion in time, capturing the variation in shape over time [13]. In Section 9.3 we discuss
how an artificial time can be introduced, even when we are doing inter-subject regis-
tration. Introducing deformation fields as a function of time,u(x, t), the deformation
field u atx + dx can be written using a Taylor expansion

u(x + dx, t) ≈ u(x, t) + Judx , (9.8)

whereJu denotes the Jacobian of the deformation field. It is usually assumed that the
Jacobian contains all information relevant in morphometry, and still following Chung
we shall look at a possible decomposition of it.

9.2.3.1 Vorticity and strain of the Jacobian

The Jacobian can be divided into symmetric and antisymmetric parts by the following
decomposition

∂uj

∂xi
=

1

2

(

∂uj

∂xi
− ∂ui

∂xj

)

+
1

2

(

∂uj

∂xi
+

∂ui

∂xj

)

(9.9)

The first antisymmetric part is termed vorticity and the second part the strain. Using
this (9.8) may be written as

u(x + dx, t) =

u(x, t)− 1

2
∇× u(x, t)× dx + ǫ(x, t)dx , (9.10)

where the strain matrix is given byǫ = (ǫij) = 1
2

(

∂u
∂x +

(

∂u
∂x
)T
)

. Observe that

the vorticity depends on theA potential alone. Since∇ × ∇V (x, t) = 0 we get
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∇× u(x, t) = ∇×∇×A(x, t). The diagonal elements of the strain matrixǫ are in
particular given by

ǫ11 =
1

2

(

∂u1

∂x1
+

∂u1

∂x1

)

=
∂
(

∂A2

∂x3
− ∂A3

∂x2
+ ∂V

∂x1

)

∂x1
(9.11)

Taking the temporal derivative, the deformation velocity can be written as

∂u(x + dx, t)

∂t
=

∂u(x, t)

∂t

− 1

2

∂

∂t
∇× u(x, t)× dx +

∂ǫ(x, t)dx

∂t
(9.12)

and in [13] it is shown that the first order approximation to the Jacobian determinant is
the sum of the diagonal elements of the strain matrixǫ;

∂|Ju|
∂t

≈ ∂ǫ11
∂t

+
∂ǫ22
∂t

+
∂ǫ33
∂t

=

∂

∂t

(

∂2V

∂x2
1

+
∂2V

∂x2
2

+
∂2V

∂x2
3

)

. (9.13)

This is seen to depend on the gradient potential alone, whichcan be understood, when
we consider that this approximation of the Jacobian determinant is the divergence of
the deformation field,∇ · u. In summary we notice that our introduced representation
gives several simplifications in relating our parameters tothe morphological changes.

9.2.4 On Stability and Optimization

Hsiao et al. were using the curl and the divergence of the deformation field as pa-
rameters for image registration. Their experimental results showed this gave better
stability in terms of avoiding grid folding than using a uniform B-spline parameteriza-
tion [57]. In the current setting these quantities are givenby∇×u = ∇×∇×A and
∇ · u = ∇ · ∇V = ∆V respectively. The div-curl solver presented could be applied
for our parameterizations as well, disregarding that we arepresenting a different reg-
ularization term. However, for the morphometry test in Section 9.3we have applied a
parameterized variational approach described in Appendix9.4, which demonstrates our
method with elastic regularization. We believe that the method presented in the current
work has a number of advantages. They have to make use of inversions of discretized
operators to reconstruct the actual deformation field in theoptimization step, which
gives them a registration less prone to folding. We can simply use the exact differential
operators on our potentials in order to arrive at actual deformations in our formulation,
and use the regularization to enforce smoothness and invertibility.
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9.3 RESULTS

To demonstrate that the described parameterization can also be practically implemented,
we have implemented a cubic B-spline parameterization of the two potential fields. The
implementation is described in more detail in Appendix 9.4,and in the next section we
show results, and hope to add more intuition for the presented approach through visu-
alization of the potentials on 2D spaces.

9.3.1 Morphometry on Corpus Callosum

The corpus callosum has been the subject of much analysis in the field of medical
imaging [21, 85]. This is probably because of its relativelysimple shape, and the good
contrast in MRI. We have also chosen corpus callosum MR images sampled in the mid-
sagittal plane to demonstrate the presented method. The data set used for the tests is
a subset consisting of 62 MR images from the LADIS (Leukoaraiosis and DISability)
study [78] - a pan-European study involving 12 hospitals andmore than 700 patients.
In the optimization we use an artificial timet, when registering one image to another
[73]. Since the quantitative analysis is not the major objective of the current presen-
tation, we put emphasis on illustrating properties of our potentials. In Figure9.3 the
image registration result of one corpus callosum to anotheris shown. We analyze the

Figure 9.3: Registration by the proposed parameterization. The image in the middle is
registered to the reference (left) and the result is shown tothe right.

determinant of the deformation field to identify which areasare mostly deformed by
the registration process. In Figure 9.4 the distribution ofthe determinant and the areas
with significantly different values are illustrated. It is seen that the expansion (in this
case) is most outspoken in 3 regions of the corpus callosum, which is not so surprising
when we investigate the reference, and target image in Figure 9.3.

The potentials parameterizing the image registration are shown in Figure9.5. It can
be seen that theV -field is describing expansion and contractions, and several of the
areas with interesting Jacobian determinant in Figure 9.4 are also seen to represent a
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Figure 9.4: Above: The distribution of the determinant of the Jacobian. Below: Region
of interest, where the deformation measured by the determinant, is outside a range of 2
std. dev..

rather strong contraction from theV -potentials. TheA-field is describing rotation - or
vortices in the deformation field.

Figure 9.5: Potential functions shown with images and deformation fields using the
HSV colormap. The potential is the value and the image is the hue. Left: V -potential
along with (normalized) deformations this potential causes. Right: A-potential, and
the curl deformations this potential causes.

9.4 Discussion and conclusion

In this paper we introduce the theory of a new parameterization of 3D deformation
fields to the field medical image analysis, using potentials and Helmholtz decompo-
sition. Similar methods have already proven valuable in electrostatics and fluid flow
estimation [35, 60]. We show the representation can be considered a natural parameter-
ization for both elastic and fluid image registration due to the decoupling of the param-
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eters. For morphometry we have demonstrated that one of the two potentials directly
gives us the vorticity of the deformation field. The determinant gradient field is shown
to be the first-order small-deformation approximation to the determinant of the Jaco-
bian matrix - probably the most accepted morphometry measure used. Contemporary
methods for optimization can supposedly be adapted to the parameterization [57, 60]
and we have outlined our implementation based on finite differences, in Appendix 9.4.

The major contribution of the paper is primarily a theoretical one, but we have for
demonstration purposes included 2D examples illustratingthe relation between the po-
tentials and the observed deformation fields. It shown that we can get sensible results,
where most of the theoretical observations are readily recognizable from our empirical
experiments, and we anticipate many applications in the field of morphometry. For
future work we plan to design quantitative tests on different medical data sets, to add
further empirical validation to the theoretic results demonstrated in the current paper,
and to document the impact on achieved solutions.

APPENDIX

In this section we give an overview of implementation details that are not of great
importance to the theoretical contributions of this paper.In Section9.4 we introduce
the uniform cubic B-spline that are used in our implementation. In Section9.4we show
some details on their regularization, and in Section 9.2.4 we give some details on how
the evaluations can be sped up.

B-spline representation of fields

We represented the potential fields by cubic B-splines, following [85]. So in summary
the two potential fields are represented as

V =

3
∑

k=0

3
∑

l=0

3
∑

m=0

Bk(r)Bl(s)Bm(t)vk,l,m (9.14)

A =
3
∑

k=0

3
∑

l=0

3
∑

m=0

Bk(r)Bl(s)Bm(t)ak,l,m . (9.15)
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Regularization of the B-splines

Applying the elastic constraints (9.6) to the B-spline fields, we get for the scalar poten-
tial

∇∆V = ∇
3
∑

k,l,m=0

(B′′
k (r)Bl(s)Bm(t)

+Bk(r)B′′
l (s)Bm(t) + Bk(r)Bl(s)B

′′
m(t))vk,l,m (9.16)

and for the vector potential we get

∆∇×A =

∆∇×
3
∑

k=0

3
∑

l=0

3
∑

m=0

Bk(r)Bl(s)Bm(t)ak,l,m (9.17)

The regularization of the control points is now determined by

δS[u]

δvlkm
= du, δu

δvklm

S[u] =

∫

Ω

〈

A[u](x),
δu

δvklm

〉

dx (9.18)

Optimization

We note that in our parameterized setting, theA-operator can be written as linear com-
bination of the parametersA = KAp, as can the warp fieldu = Kup. Using this
(9.18) can be rewritten as

δS[u]

δvlkm
= du, δu

δvklm

S[u] =
∫

Ω

(KAp)T Ku,klmdx = pT

∫

Ω

KT
AKu,klmdx (9.19)

it is seen that the Gateaux derivative is indeed linear in theparameters, and the integral
needs only be evaluated once. The distance measure between reference and image can
for instance be theL2-norm

D[R, T ;u] =

∫

Ω

[T (x + u)−R(x)]
2
dx (9.20)
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with the Gateaux derivative

du;vD[R, T ;u] =

∫

Ω

〈f(x,u(x)),v〉Rd dx

wheref(x,u(x))

=∇T (x + u(x))(T (x + u(x))−R(x)) (9.21)

And the same kernel substitutions can be made as for the regularization. This facilitates
a quick estimation of the deformation field. A further speed up is gained by implement-
ing a multi-grid cubic B-spline approach has been used, which also helps avoid local
minima. In our presented results we used control point distances of 5, 10 and 20 pixels,
respectively.
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Part III

Multivariate splines





CHAPTER 10

Introduction to splines and
adaptive parametrization

The wordspline originally stems from the wooden rods shipbuilders were using as
drawing devices for drawing bent curves [20]. They were chosen because they were
producing smooth curves by minimizing the bending energy, and this property has also
spiked the interest in splines as a mathematical tool. B-splines appeared in connection
with Steklov means, which was observed by L. Maurer in 1896 [71]. They were studied
from a statistical point of view by Sommerfeld [98] and Pólya[80]. In 1966 Curry and
Schoenberg published a more contemporary formulation of the B-spline theory [18].

The extension of the curve splines to surfaces and more dimensions was initially ap-
proached by de P. de Casteljau and P. Bézier, published by Bézier in 1966, who intro-
duced the Bézier patches [26, 10]. Michelli laid some of the foundation for multivariate
splines in 1980 [72].

The work presented here focuses on multivariate splines, and their application in im-
age analysis, and in particular image registration. Splines may be considered as sets of
functions, which are each a compactly supported collectionof piecewise polynomials.
In the univariate case the cubic B-splines have been shown tominimize an approxima-
tion to the bending energy. Multivariate splines (including the univariate splines) are
the Peano kernel in the integral representation of divided differences [7, 74]. That is,
they define the local interpolation function, which interpolates the derivative of a func-
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tion given the same result as the divided difference approximation to true derivatives.
Multivariate splines are defined using knots, which are in general position, meaning
that the control points are not constrained to follow any particular geometry. Splines
are used for function approximation in many applications [26], and here some prelimi-
nary concerns on splines in image registration will be discussed.

10.1 Univariate linear splines

Some properties of the flexible representation can be illuminated by considering a sim-
ple1 dimensional example of using splines. The one-dimensionallinear B-spline may
be defined by

bj,1(t) =











t−tj

tj+1−tj
if tj ≤ t ≤ tj+1

tj+2−t
tj+2−tj+1

if tj+1 ≤ t ≤ tj+2

0 otherwise,

where the knots{t1, . . . , tn+2} are a non-decreasing sequence of real number,j is an
index specifying the spline,j ∈ {0, . . . , n}. An example of3 linear B-splines is shown
in Figure10.1.
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Figure 10.1:3 linear B-spline basis functions. The knots are illustratedby black ’*’.

If cj is the control point value associated with thejth B-spline, then a function may be
approximated by the linear combination of the B-spline basis functions

p(t) =
n
∑

j=1

cjBj,1(t) .
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A linear combination of B-splines is illustrated in Figure10.2.
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Figure 10.2: Linear combination of three B-spline basis functions illustrated in Figure
10.1. The weightsc1,c2 andc3 are1.078,−0.763 and−0.644 respectively.

10.2 Registration of functions

Let the two functionsfi : R → R (i ∈ {1, 2}), be such that one is a locally stretched
and compressed version of the other, and letϕ : R → R be the function describing
the correspondences, ie.f2 ◦ ϕ(x) = f1(x), x ∈ Ω, and letu be the displacements
u = ϕ − x. The functionsf1 and f2 could for instance be two time series. It is
instructive to examine the process of estimating this function u. In Figures10.3, 10.4
and10.5, a set of these functions is illustrated.
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Figure 10.3:f2 is a locally
deformed version off1.
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Figure 10.4: ϕ, mapping
from f2 to f1.
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Figure 10.5: u measures
the local deformation.

In order to estimate the functionu a basis of B-splines is constructed, and the problem
is formulated as the minimization of the squared residual between the composedf2 ◦φ
andf1 with respect to the control pointscj . Two different linear B-spline bases,{bj,u}
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with uniform knots and{bj,n} with nonuniform knots, are analyzed. Both bases are
shown in Figure 10.6.
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(a) Uniform knots,{bj,u}
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(b) Adaptive knots,{bj,n}

Figure 10.6: (a) shows basis functions based on uniformly sampled knots, and (b)
shows basis functions of knots that are adapted to the application.

The minimization problem is posed as

min
{cj}

∑

x



f1(x)− f2



x +
∑

j

cj,· · bj,·(x)









2

+ α‖Lc‖22 , (10.1)

where the first sum is taken over a set ofx samples,L is a usual Tikhonov regularizer
in the form of a matrix which is taken to be the identity matrixin the current example,
c is a vector containing the elementscj,· andα is the regularization parameter. This
problem is nonlinear in nature due to the composition off2 with ϕ = x +

∑

j cj,· ·
bj,·(x), however it can be solved by gradient based methods and locallinearization.
For an analysis of the optimization problem (10.1) the difference is linearized in the
variables{cj,·} by forming a first-order Taylor expansion

f2



x +
∑

j

cj,· · bj,·(x)



 ≈

f2



x +
∑

j

c0
j,· · bj,·(x)



+
∂f2

∂x

∣

∣

∣

∣

x+
∑

j c0
j,··bj,·(x)

∑

j

∆cj,· · bj,·(x) .

Let the sample points be numbered and ordered in a set{xi}, and introduce the matrix

A with elementsAij = ∂f2

∂x

∣

∣

∣

xi+
∑

j c0
j,··bj,·(x)

· bj,·(xi). Furthermore, let the residual
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error given the Taylor expansion pointc0 be a vectorb with elementsbi = f1 −
f2

(

x +
∑

j c0
j,· · bj,·(x)

)

and the vector∆c have the elements∆ci such that we have

linearizedc aroundc0, then the linearized problem, using the Taylor expansion, may
be written as the following optimization problem

‖A∆c− b‖22 + α‖L(c0 + ∆c)‖22 (10.2)

This approximated optimization problem will be discussed in more detail in Section
10.3.

10.3 The Picard condition

It seems worthwhile to consider which problems can actuallybe solved by a certain
discretization, as well as the stability and the convergence properties of the discretiza-
tion in question. P. Hansen introduced the discrete Picard condition for discrete prob-
lems, which loosely defined gives insight into wether a set ofkernels contained in
A, defined in (10.2), can be expected to reproduce the vectorb and can give some
insight to the challenges of a parametrization of the type considered here [52]. The dis-
crete Picard condition for discrete problems is introducedfor the discretized Tikhonov-
regularization problem

xα = min
x
‖Ax− b‖22 + α‖Lx‖22 (10.3)

which for the current analysis is equivalent to the optimization problem (10.2). Per-
forming generalized singular value decomposition of the matrix set (A,L) gives the
generalized singular valuesγi as well as the corresponding eigenvectorsui [25].

THEOREM 10.1 (THE DISCRETE PICARD CONDITION (DPC).) Let b be defined
as in (10.3). Thenb satisfies the DPC if, for all numerically nonzero generalized singu-
lar valuesγi, the corresponding Fourier coefficients|uT

i b| on the average decay faster
to zero than theγi.

Returning to the linearized optimization problem (10.2), this analysis may be applied
to the problem during the optimization procedure. The Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm is applied for the optimization [9,29, 33, 92].

When the optimization algorithm is started, all parametersc0 are initialized close to
zero, and the plots of the matrixA can be seen in Figure10.7. It is evident that forx in
the range2 to 4, there is noA response, since the gradient off2 is zero. It is seen from
the uniform knot placement that a lot of redundant information is available, giving the
same forces on most splines forx in the interval0 to 2.
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(a) Uniform knots,{bj,u}
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(b) Adaptive knots,{bj,n}

Figure 10.7: (a) shows the matrixA based on uniformly sampled knots, and (b) shows
A based on functions of knots that are adapted to the application.

The GSVD analysis of the linearization shows a division of the eigenvectors in higher
and lower frequency components. In Figure 10.8 every secondof the eigenvectors with
nonzero generalized eigenvaluesλi are shown, and this spectral representation of the
matrix A illustrates how the parameters are able to reproduce the target functionb,
which is illustrated in Figure 10.9.
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Figure 10.8: Illustration of the set of
eigenvectors for the uniform B-splines.
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Figure 10.9: The residualsb when the
optimization algorithm is initialized.

Generally, it appears quite plausible for the basis functions to be able to represent the
residualsb, and in Figure10.10the generalized eigenvalues are seen as well as the
projection ofb onto the eigenvectors.

For both the uniform and the nonuniform basis, the projections are seen to decay at
least as rapidly as the eigenvalues them selves, from which it is concluded that the
optimization problem is properly regularized. In fact, this only depends slightly on
the regularization parameterα, so it appears that the implicit regularization imposed
by the discretization and basis functions is already a good regularization for the stated
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(a) Uniform knots,{bj,u}
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(b) Adaptive knots,{bj,n}

Figure 10.10: (a) shows basis functions based on uniformly sampled knots, and (b)
shows basis functions of knots that are adapted to the application.

problem. For the nonuniform knot positions it may be difficult to discuss the behavior
of the eigenvalues versus the projections on the eigenvectors for the small number of
basis functions. However, the tendency of faster decreasing projections|ujb| from
Figure 10.10 persists during the course of optimization, i.e. if the linearization is done
at different steps of the BFGS optimization.

It is interesting to see the analysis performed at an exampleobtained by adding some
noise to the original example. In Figure10.11functionsf∗

1 andf∗
2 , which are generated

from f1 andf2 by adding noise, are illustrated. In this more realistic example, the
linearization looks somewhat different as seen in Figure10.12, where every second
column of the matrixA is illustrated (compare to Figure10.7).
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Figure 10.11:Functionsf1 andf2 with
added Gaussian noise and smoothed to
form f∗

1 andf∗
2 .
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Figure 10.12:Illustration of the lineariza-
tion matrixA.
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The added noise adds a response to all those basis functions that were having zero
response in the noise free case because the gradient is not zero in this case. Examining
the discrete Picard condition becomes interesting for these examples of functions. In
Figure10.13, the generalized eigenvalues and the projections on the eigenvectors can
be visually examined, and it is evident that the Picard condition from Theorem 10.1
is satisfied for both bases initially, whereas close to the optimal point, the nonuniform
sparse representation shows the opposite relationship between the two curves. The
result that the linearization of the reduced model is not sufficiently regularized, hints
at the fact that the high frequencies of theA basis are needed to do the optimization.
For the less sparse example of uniform basis functions, the ability to describe these
frequencies are better build into the model, and therefore no regularization is needed
to make the problem numerically stable. It is hypothesized that the Picard condition
will actually contribute information about the descriptive power of the basis and if it is
sufficient for the problem, i.e. if refinement is needed.
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Figure 10.13: Visual examination of the Picard condition for noisy functions, at the
beginning and at the convergence of the optimization, for both the uniform and the
nonuniform sets of knots.
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10.4 Condition numbers and the stability of optimiza-
tion

The condition number of a matrix is useful for examining the stability of matrix in-
version and in particular the stability of solving linear systems with respect to small
perturbations in the observations. The condition number ofa matrixM is defined as

κ(M) =
σn

σ1
(10.4)

whereσn andσ1 are the largest and smallest singular values ofM respectively. A
large difference in smallest and largest eigenvalues is thus contributing to a high condi-
tion number, which means the matrix is badly conditioned. The condition number sets
a limit on the degree of impact a perturbation of the measuredfunctionb has on the
solutionc, when solving the linear systemAc = b. In the noise free example, only
17 of the possible31 generalized singular values are nonzero (Figure10.10), which
indicates a very badly conditioned system. Adding noise makes the system better con-
ditioned, however noise is not adding information to the optimization process, only
numerical stability, cf. Figure10.13. Alternatively regularization may be introduced
to add stability, but it also has an effect on the obtained solution [53]. Hansen showed
that the tradeoff between regularization and function fitting for ’nice enough’ functions
has a identifiable optimum, which may be found using the L-curve. However, let two
functions, defined on two intervals, each have optimum parameters in this way, then
the union of the intervals and a function defined by a union of the functions may not
have one optimal parameter, if the two parameters are not compatible. This combined
function would not qualify as being ’nice enough’, which adds motivation to introduce
more local regularization, i.e. a different regularization on each interval. Returning to
the optimization, if parameters are only well defined and robust to perturbations due
to regularization, information from thedataonly propagates to the parameters through
the regularization, and if the regularization has local (neighbor) impact, it requires more
iterations to propagate the information to all parameters.In the previous noise-free ex-
ample, both bases achieved the numerical optimum, but the badly conditioned uniform
B-splines required72 BFGS iterations, versus the28 iterations of the nonuniform B-
splines. Based on these considerations it may be hypothesized that a locally adjustable
regularization, and a sparse representation of highly regularized areas can provide sta-
ble optimization, robust results, and efficient optimization. This can be considered an
argument for parameterizing using nonuniform B-splines (or multivariate splines in
higher dimension) since the restriction to the linear spacespanned by the basis can be
considered a local regularization, which can be made arbitrarily smooth by adjusting
the order of the splines, and in highly regularized areas with large basis functions, the
parametrization is sparse, which should yield faster convergence.
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10.5 Conclusion

Based on the considerations in Section10.4, it appears that multivariate B-splines may
provide a good basis for parameterizing function approximation, and image registra-
tion in particular. Section10.3 indicates that it may also be possible to assess if an
approximating basis is suitable for a given problem, and these considerations are the
motivations for the Chapters13 and 12. Multivariate splines are introduced in Chap-
ter 13, and it is demonstrated how they may be applied forimage registration. And
in Chapter 12 multivariate splines andsimplex splinesare discussed in more detail,
developing methodology facilitating the goals motivated in the current chapter.



CHAPTER 11

Adaptive parametrization of
B-splines for Image

Registration

Michael Sass Hansen, Ben Glocker, Nassir Navab and Rasmus Larsen1

Abstract

We present an adaptive parametrization scheme for dynamic mesh refinement in the
application of parametric image registration. The scheme is based on a refinement
measure ensuring that the control points give an efficient representation of the warp
fields, in terms of minimizing the registration cost function. In the current work we
introduce multivariate B-splines as a novel alternative tothe widely used tensor B-
splines enabling us to make efficient use of the derived measure.

The multivariate B-splines of order n are Cn−1 smooth and are based on Delaunay
configurations of arbitrary 2D or 3D control point sets. Efficient algorithms for finding
the configurations are presented, and B-splines are throughtheir flexibility shown to
feature several advantages over the tensor B-splines. In spite of efforts to make the
tensor product B-splines more flexible, the knots are still bound to reside on a regular
grid. In contrast, by efficient non-constrained placement of the knots, the multivariate
B-splines are shown to give a good representation of inhomogeneous objects in natural
settings.

1This paper was presented at International Conference for Computer Vision and Pattern Recognition [43]
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The wide applicability of the method is illustrated throughits application on medical
data and for optical flow estimation.
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11.1 Introduction

Image alignment is a challenging task due the inferior number of constraints compared
to the number of unknowns. One approach to overcome this problem is to reduce di-
mensionality of the problem. Hence, parametric image registration has become quite
popular and has been successfully applied to many applications. The two main ad-
vantages are (i) the reduced number of parameters which makes the problem tractable
from an optimization point of view and (ii) often the transformation model inherently
provides some smoothness properties on the warping field. Inorder to be able to cap-
ture the present deformations, hierarchical approaches have been considered where the
number of parameters is successively increased during the optimization process. How-
ever, these update schemes often follow some heuristic approaches, for instance in
mesh-based models by simply reducing the spacing between control points and thus do
not incorporate any quantitative or qualitative measurement about the state of the reg-
istration. One can claim, that the refinement strategy has a significant influence on the
solution and should be guided by some knowledge obtained directly from the images
and/or the optimization process. Furthermore, one can claim that the transformation
model should be flexible enough and dynamically adjustable in order to reflect such
extracted knowledge during image alignment. Therefore, wepropose a framework for
parametric image registration which allows us on one hand toassess the quality of the
current solution locally and on the other hand we can estimate the potential improve-
ment by a local refinement of the parameter set. Since, one could expect that such an
improvement will spatially vary over the image domain, there is a need for flexible
transformation models.

(a) Regular B-spline grid (b) Multivariate B-spline knots

Figure 11.1: In (b) it is seen how the multivariate B-splinescan adopt to the structure
in the image.

B-splines are popular in numerous applications because of achievable smoothness prop-
erties and the local support. Tensor product B-splines wereintroduced for modeling
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free form deformations (FFD) in the context of computer graphics [89]. The method
was improved by using hierarchical B-splines [30, 113]. Thesame subdivision scheme
was used in medical image registration [86]. However, the tensor product B-splines
are defined uniformly on a grid, and in the search for a more local control of the repre-
sentation detail, the notion of anactive set of knotswas introduced in [87]. Still, such
an simulation approach consists of locally uniform grids which cannot represent the
imaged objects in an appropriate way.

Cootes et al. created a minimum description length optimization scheme for the place-
ment of control points of triangular piecewise affine interpolation basis functions [17].
However, the method is defined as a groupwise method, and it relies heavily on the
calculation of the inverse deformation. Recently Chandrashekara et al. proposed a
parameterization based on a subdivision scheme, also to obtain a limited number of
parameters [83].

We instead propose to use the multivariate B-splines as presented by Neamtu, to obtain
a flexible and smooth warp interpolation function with localsupport[75]. They are
capable of representing fields more densely in some areas, while keeping the number
of degrees of freedoms small for an efficient optimiation.

Dahmen et al. [19] introduced the so called DMS-splines or triangular B-splines based
on the multivariate simplex splines and auxiliary knots. Franssen et al. [31] described a
new method for efficient calculation of triangular B-splines using an evaluation graph.
Recently, Wang et al. [111] introduced DMS-splines in computer vision for nonrigid
registration with rigid parts that defined by manual landmarks. The most recent mul-
tivariate B-splines were introduced by Neamtu [75], and they rely heavily on the new
concept of Delaunay configurations [76].

The remainder of this paper is organized as follows: first we will present the general
framework for parametric image registration. Based on this, we derive our adaptive
parametrization scheme. In Section11.4we present the concept behind multivariate
B-splines and their use in our framework for image registration. Experimental results
are shown in Section11.5while the last Section concludes our paper.

11.2 Parametric Image Registration

The image registration problem can be formulated as the minimization of the functional
J given by

J [I,R,ϕ] = D [I,R;ϕ] + S[ϕ] (11.1)

whereI is ans-dimensional deformable image,R is the target/reference image,ϕ is the
mapping fromR into corresponding points inI. In the present work we are focusing on
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parametric image registration, which means that the warps can formally be represented
by

ϕ : RM → (f : Rs → Rs) (11.2)

which means that the parameters ofϕ determines what the warp will look like. We will
think of ϕ as being represented as

ϕ =
∑

i

ciKi(x) , (11.3)

whereKi are the basis functions, and the vectorsci = [ci1...cis]
T are the parameters

associated with the basis function.

D[I,R;ϕ] is a similarity measure andS[ϕ] is a regularization measure, and we will
discuss these functionals in the context of parametric warprepresentation, in the fol-
lowing sections.

11.2.1 Similarity Measures

As a similarity measure the sum of squared distances (SSD) isused, but this could be
exchanged with any other common similarity measures.

D[I,R;ϕ] =

∫

Ω

[I ◦ϕ(x)−R(x)]
2
dx (11.4)

For the subsequent analysis we shall need some of the derivatives ofD[I,R;ϕ]. The
Gâteaux derivative ofD is given by

dϕ,vD[I,R;ϕ] =

∫

Ω

〈f(x,ϕ),v〉Rs dx (11.5)

wheref can be perceived as registration forces in the image, and is given by

f(x,ϕ(x)) = (I ◦ϕ(x)−R(x)) · ∇I ◦ϕ(x) , (11.6)

which is also denoted as thedriving forceof the registration process.

The variationv(x) is restricted to the subspace spanned by the basis functions. The
derivative with respect to a warp parametercij is given by

∂D
∂cij

= d
ϕ,

∂ϕ
∂cij

D[I,R;ϕ] =

∫

Ω

〈

f(x,ϕ),
∂ϕ

∂cij

〉

Rs

dx
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11.2.2 Regularization

Often some prior knowledge is available about the presentedimage registration prob-
lem. This prior knowledge can generally be expressed as a differential regularizerB,
and some Sobolev norm.

S[ϕ] =

∫

Ω

〈B[u],B[u]〉Rs dx , (11.7)

whereϕ = Id + u. This norm has a Gâteaux derivative given by

du;vS[u] =

∫

Ω

〈A[u](x),v(x)〉Rd dx , (11.8)

whereA = B∗B. For the present work the commonly used elastic regularizeris chosen,
which can be represented by

B[u] =

[ √
µ 0

0
√

2µ + λ

] [

∇× u

∇ · u

]

(11.9)

from whichA = µ∆u + (λ + µ)∇(∇ · u). We can again form the derivative with
respect to the parameter

∂S[u]

∂cij
=

∫

Ω

〈

A[u],
∂u

∂cij

〉

dx (11.10)

11.3 Adaptive Parametrization

After minimizing (11.7) the following equation must hold for the reached optimum.

∂J [I,R;ϕ]

∂cij
=

∂D[I,R;ϕ]

∂cij
+

∂S[u]

∂cij
= 0 . (11.11)

This is the parameterized version of the variational optimum

f(x) +A[u] = 0 , x ∈ Ω (11.12)

Now observe that (11.11) can be interpreted as an averaged projection of the variational
optimum (11.12)

∂D
∂cij

+
∂S[u]

∂cij
=

∫

Ω

〈

f(x, ϕ) +A[u],
∂u

∂cij

〉

dx = 0

where the projection is performed on to the support of the warp parameter. This pro-
jection, derived from (11.3), is given by

∂u

∂cij
(x) = ejKi(x), x ∈ Ω ,
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whereej denotes the unit vector along thejth dimension andKi is the basis function
associated with the parametercij . In popular terms, each of our parameters is designed
to achieve the variational optimum (11.12) inaverageonly, and for this reason it seems
obvious to pose the question; how well is the variational optimum achieved? We pro-
pose to measure this fitness of a basis function in terms of theimprovement we could
achieve by replacing the basis function with several more local basis functions. We will
assume that the basis function can be refined into several similar basis functions, only
with a smaller support, and the response of these local basisfunctions can be modelled

by applying a Gaussian filter on the force residues
〈

f(x, ϕ) +A[u], ∂u
∂cij

〉

. The filter

response will model the changes that can be achieved with a basis function refinement,
when we choose the kernel size to be close to that of the refinedbasis functions.

Let 1 = e1 + ... + es then the above consideration lead us to define a refinement
measureF by

F [BI ] =

∫

Ω

FσI
∗ (〈f(x, ϕ) +A[u],1BI(x)〉)2 dx , (11.13)

whereFσI
∗ denotes convolution with a Gaussian of a kernel widthσI which should

be chosen in the order ofσI = [vol[BI ]]
1/s

/4, where vol[BI ] is the volume of the
convex hull of the basis function support. A perfect fit wouldmean that the only way
(11.12) was not satisfied would be noise, andF [BI ] would then be0. However, if
there is spatial coherency in the forces,f(x, ϕ)+A[u], thenF [BI ] will give an output
suggesting to do a refinement of the mesh. This criteria should guide the refinement.

In order to make efficient use of the proposed adaptation scheme, we need a set of basis
functions with spatially varying local support.

11.4 Multivariate B-splines

The multivariate B-splines presented in this paper are using a basis of simplex splines.
These splines are smooth functions with local support. Several ways exist for com-
posing sets of simplex splines to form a partition of unity, the most recent one, and
the one presented in the current work, being multivariate B-splines based on Delaunay
configurations [75]. Simplex splines and Delaunay configurations are briefly discussed
here. Throughout the dimension is still denoted bys and the degree of the splines by
n.
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11.4.1 Simplex Splines

Simplex splines are defined iteratively with the zeroth order spline defined on the sim-
plex ofs + 1 knots, e.g. a triangle in 2D.

M(x|{x1, ...,xs+1}) =
{

1/vol[{x1, ...,xs+1}], x ∈ int[{x1, ...,xs+1]
0 x /∈ int[{x1, ...,xs+1]

whereM denotes the spline value,x is a point we wish to evaluate,xi are the knot
points of the simplex spline, int refers to the convex hull ofthe set of points, and vol is
the volume of the convex hull.

The recurrence relation of the higher order simplex splinesis given by

M(x|X) =
∑

xi∈X

λiM(x|X\{xi}) , where

∑

xi∈X

λi = 1,
∑

xi∈X

λixi = x . (11.14)

HereX is a set ofn + s + 1 knots (corresponding to a simplex splineM of ordern,
andλ is seen to be the barycentric coordinates of the points.

The simplex splines aren− 1 smooth on the convex hull of the knots, when none three
of the simplex splines are collinear [75]. Examples of 2D simplex splines of different
orders are illustrated in Figure11.2.

For the elastic regularization discussed in Section 11.6.2the directional derivatives are
needed, and the two first directional derivatives of the simplex splines are

dvM(x|X) = n

s
∑

i=0

µi(v)M(x|X\{xi})

dv2
dv1

M(x|X) = n
s
∑

i=0

µi(v2)dx,v1
M(x|X\{xi}) ,

where
s
∑

i=0

µi = 0,

s
∑

i=0

µixi = x

Complexity The complexity of the multivariate B-splines can be expressed in terms of
the number ofM0 nodes visited, and this isns+1 if a naive implementation is chosen.
However, through fingerprinting visited nodes, this graph can be reduced considerably
[31]. When calculating the interpolation values, the derivatives can be calculated si-
multaneously.
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(a) Linear simplex spline (b) Quadratic simplex spline (c) Cubic simplex spline

(d) 4 knots for linear simplex (e) 5 knots for quadratic simplex (f) 6 knots for cubic simplex

Figure 11.2: Simplex splines of increasing order and smoothness.

11.4.2 Delaunay Configurations

For choosing appropriate sets of knots for simplex splines,the Delaunay configuration
is needed. The Delaunay configuration is a generalization ofthe Delaunay triangula-
tion, where the circumscribed sphere contains exactlyn points. Denote a given De-
launay configuration ofnth order by∆n. Let the set of all interior point sets, withn
points in each be denoted byI. Then a set of interior pointsI ∈ I is associated with a
set of boundary point setsB(I) = {B|(B, I) ∈ ∆n}. We now define the multivariate
B-spline associated withn interior pointsI as [75]

BI =
∑

B∈B(I)

vol[B]M(.|B ∪ I) (11.15)

This normalization ensures a partition of unity, i.e.
∑

I∈I

BI(x) = 1, x ∈ Rs (11.16)

Using these multivariate B-splines as a basis for describing the deformation field, the
field can be defined as

ϕ(x) = x +
∑

I∈I

cIBI(x), cI ,x ∈ Rs (11.17)

Silveira et al. have shown a strategy for efficient computation of the Delaunay config-
urations [93].
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11.4.3 Mesh Layout and Refinement

For deriving an initial guess for placement of the knots, it can be noted that (11.13)
seems most likely to yield big values, in areas where the forces f(x,ϕ) attain big
values. In terms, we expect the most changes to our deformation field to happen where
the gradient is bigger, since the force and the gradient are proportional, (11.6). For
the initial coarse distribution of knots, we propose to distribute them randomly, with a
prior density based on the image gradient of the reference. Additionally, we add knots
sequentially, according to the following update scheme

f(xj+1|R, {x1, ...,xj}) ≈ f(xj+1|R)

j
∏

i=1

f(xj+1|xi)

∝ (∇R)T∇R

‖∇R‖2
j
∏

i=1

[

1− exp

{

− (x− xi)
T (x− xi)

2σ

}]

,

where∇R is the gradient of the reference, andσ is a kernel diameter, where the kernel
in effect limits the chance of a second point being place in the immediate vicinity of a
knot. This function can be perceived as a prior probability for placing knots, and they
can be placed either according to the maximum, or according to a random sampling.
This did not seem to have big effect on results though, due to the subsequent mesh
refinement.

We propose to make the mesh refinement based on subdivision ofthe grid of the knots,
where the B-splines are expected to give most improvement inthe cost function, when
subdivided, according to the refinement measure derived in Section 11.3. To increase
the resolution around a given B-spline, we subdivide the inner points and their trian-
gulated neighbors. To enforce better subdivision, the subdivided knots are tracked to
a nearby gradient, using a localized version off(xj+1|R, {x1, ...,xj}), localized by a
Gaussian. The process of subdivision can be performed repeatedly until a sufficiently
good resolution is obtained.

The local forces, as well as the effect of smoothing is illustrated in Figure11.5. In
Figure11.5 (b), the forces are seen to be directed towards the corpus callosum both
upwards and downwards. In average they even out, so there is no net force on the
parameter. In Figure11.5(a) the differences are seen to be intact after the smooth-
ing. Therefore the refinement function has an output, and theB-spline is selected for
subdivision.
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11.5 Evaluation and Results

To support the methodological considerations presented inthe previous section, we
applied our implemented method on two data sets, both quite different in nature. Our
image registration algorithm is implemented for 2D images,due to the 2D nature of our
applications, but all observations and equations stated inthe current work are equally
valid for three dimensional data.

11.5.1 Groupwise Corpus Callosa Registration

To demonstrate the presented method, we did a groupwise registration of 62 mid-
sagittal cross-section MR images of the corpus callosum brain structure. To apply
the refinement measure (11.13) to a group of images, instead of on a single image, we
calculate the sum over the whole data set for each B-spline, in order to ensure that our
mesh refinement yields the biggest groupwise improvement interms of minimization
of the sum of squared differences.

This data set is part of the LADIS (Leukoaraiosis and DISability) study [78], a pan-
European study involving 12 hospitals and more than 700 patients. Each corpus callo-
sum has been manually segmented by a clinical expert. We usedthese segmentations
for further assessment of the method (see Table 11.1).

All images are registered to one image in the group, and in Figure 11.7 some results
of the image registration algorithm are seen. The results ofour implementation are
compared to the results obtained by rigid alignment and by using an FFD algorithm,
which is based on tensor product B-splines. Our quantitative studies showed that the
FFD with slightly more control points gave inferior results, but still a significant im-
provement from the results of the rigid registration alone.The pre-computations of the
multivariate splines were a lot more time consuming, but in the group-wise registration,
this time was regained in the optimization step, due to the reduced number of control
points.

11.5.2 Optical Flow Estimation

Baker et al. recently presented a database for comparison ofoptical flow results, where
the quantitative results of optical flow estimations can be compared to other available
algorithms [2]. The optical flow problem resembles the imageregistration problem a
lot, in the sense that we seek to identify correspondences, or flow, across image pairs.



108 Adaptive parametrization of B-splines for Image Regist ration

DICE Init. Run
Method median Sens. Spec. N time time
Multi. 0.85 0.91 0.99 407 32 149
FFD 0.83 0.91 0.98 640 1 221
Rigid 0.70 0.80 0.98

Table 11.1: Comparison of the warped segmentations and the reference segmentation
after registration using a rigid transformation, an FFD based method, and our multivari-
ate method. Notice how the initialization time (seconds) islarger, but the group-wise
running time is smaller for the presented method, due to the reduced number of nodes.

Method Dimetrodon Venus Yosemite
Av. End pt. Avg. Ang. Av. End pt. Av. Ang. Av. End pt. Avg. Ang.

Current Method 0.20 4.09 0.72 10.74 0.16 3.10
Bruhn et al. 0.43 10.99 0.51 8.73 0.08 1.69

Black and Anandan 0.35 9.26 0.55 7.64 0.15 2.65
Pyramid LK 0.37 10.27 1.03 14.61 0.20 5.22
Zitnick et al. 0.94 15.82 0.85 15.48 0.68 11.09

MediaplayerTM 0.55 30.10 1.08 11.42 0.47 18.50

Table 11.2: Optical flow evaluation results compared to other contemporary methods

To test the current method on a different application we did the optical flow estimation
on the three data sets, from the set, where ground truth flow isavailable, namely the
image pairs named Dimetrodon, Venus and Yosemite. In Figure11.8 the images are
shown with the final grid resolution and the estimated flow field is shown along with
the ground truth flow fields.

The results are summarized in Table11.2. It is seen that our implementation performs
significantly better on the one data set than any of the other methods in question, and
slightly worse than the best, for the two other data sets.

11.6 Conclusion

The current work has several contributions to the field of parametric image registration.

With an offset in variational optimization theory, we have derived the parametric ver-
sion of the elastic potential regularization and in effect illustrating how the whole class
of differential operator derived regularizers, i.e. curvature and bending energy, can be
easily implemented in a parametric setting.

With the same methodology we have analyzed the inherent smoothing or averaging
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cost, of selecting warp parameterizations at a specific kernel resolution, in comparison
to choosing a finer resolution of the warp kernels. Based on these observations we
have proposed a refinement measure, which is shown to be efficient for guiding the
local mesh layout.

Though both previous results are useful in their own merits,we have introduced the
recently emerged multivariate B-splines based on Delaunayconfigurations, to the field
of image registration. With the combination of our refinement measure and the local
flexibility of the multivariate B-splines, we are able to automatically refine the warp
field in areas where it results in the minimization of the registration cost function. In
effect we get something close to a segmentation of objects allowing for better local
control, even where very inhomogeneous areas share a border.

APPENDIX

11.6.1 Implementation

The inverse compositional optimization approach by Baker et al. was used in our im-
plementation to achieve a fast optimization [1]. We obtain aminimum by iteratively
minimizing

Jic(c) =
∑

x

(R(ϕ(x,∆c))− I(ϕ(x, c))2

+
∑

i

F 2
i (ct− ∂c′

∂∆c
∆c) (11.18)

with respect to∆c, and the regularizer is expressed asF 2
i (c) as derived in Appendix

11.6.2. The parameter updating ofc is done according to

ϕ(x, c′)← ϕ(x, c) ◦ϕ−1(x,∆c). (11.19)

11.6.2 Elastic regularization on Multivariate B-splines

In this section the elastic regularizer and the Lamé operator are derived for the multi-
variate B-splines, as. To use the inverse compositional algorithm for the image regis-
tration, we formulate the regularizer as a sum of functions on the parameters

S[u] =

∫

Ω

λ

2
(∇ · u)2 +

µ

4

s
∑

i,j=1

[

∂ui

∂xj
+

∂uj

∂xi

]2

d x (11.20)
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Using the basis representation (11.17) of u, we can represent the elastic operatorA =
µ∆u + (λ + µ)∇(∇ · u) by the following parameterizations

∆u =
s
∑

i=1

∑

I∈I

cI
∂2

∂x2
i

BI =
∑

I∈I

cI

s
∑

i=1

∂2

∂x2
i

BI

∇(∇ · u) =
s
∑

i,j=1

∑

I∈I

eicIj
∂2

∂xi∂xj
BI (11.21)

For the inverse compositional optimization the regularization term must be formulated
asS[u] =

∑

i F 2
i (c). We parameterize the terms∇ · u and ∂ui

∂xj
+

∂uj

∂xi
by

∇ · u =
∑

I∈I,j∈{1,...,s}

cIj
∂

∂xj
BI (11.22)

[

∂ui

∂xj
+

∂uj

∂xi

]

=
∑

I∈I

cIi
∂

∂xj
BI + cIj

∂

∂xi
BI . (11.23)

It is clear that both terms are linear inc , which yields the representation ofF 2
i , when

the integral is discretized.
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(a) Multivariate B-spline

(b) Tensor product B-spline

Figure 11.3: Illustration of the flexible kernel of Multivariate B-splines compared to
the tensor product B-spline.
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(a) A cell (b) The Delaunay configurations

Figure 11.4: Illustration of a cell of a first order Delaunay configuration. Notice how
point1 is inside the 3 triangles circumscribed spheres forming theDelaunay triangula-
tion of its connected points. They constitute the whole cellwith 1 as an inside point.
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(a) Local ’forces’ acting on parameter (b) Local ’forces’ acting on parameter

(c) The B-spline basis function (d) The B-spline basis function

(e) Smoothed projection of forces (f) Smoothed projection of forces

Figure 11.5: Illustration of a basis function that will be updated (left column), and one
where the impact is not big enough (right column). Notice how(e) and (f) differ by an
order of magnitude.
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(a) Initial placement (b) 2nd level (c) 3rd level

(d) Initial placement (e) 2nd level (f) 3rd level

Figure 11.6: The grid refinement for a uniform setting and ournon-uniform setting on
the corpus callosum data is illustrated here. Our refinementis based on (11.13). Notice
how the structures are nearly segmented by the knots in the non-uniform case.

(a) Rigid (b) FFD (c) Multivariate

Figure 11.7: Checkerboard illustrations of registration results, where the images are
tiled from reference and registered image.
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(a) Dimetrodon image with knot
mesh

(b) Estimated Dimetrodon flow
field

(c) True Dimetrodon flow field

(d) Venus image with knot mesh (e) Estimated Venus flow field (f) True Venus flow field

(g) Yosemite with knot mesh (h) Estimated Yosemite flow field (i) True Yosemite flow field

Figure 11.8: One image of the optical data sets, and the estimated and true flow fields
are shown.
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CHAPTER 12

Multivariate splines

The current work describes a new explicit formulation of themultivariate simplex
splines, based on divided differences and functions resembling the truncated powers,
with compact support for efficient evaluation. The formulation is used for deriving
practical results for the simplex splines, most notably an explicit formula for the cal-
culation of the derivative of the spline with respect to the position of individual knots.
Furthermore, a generalization of Neamtu’s spline space is used to define constraints
that guarantee the reproduction of polynomials, which is the generalization of the par-
tition of unity to higher order polynomials [76]. Neamtu’s results are also used for
describing a sub-division scheme for the simplex spline space.
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12.1 Introduction

Splines have numerous applications in function approximation, function smoothing,
and modelling of form and shape trough free form deformations (FFD). The extension
of the curve splines to surfaces and more dimensions was initially approached by de
P. de Casteljau and P. Bézier, published by Bézier in 1966, who introduced the Bézier
patches [26, 10]. For a better generalization of the univariate splines to more dimen-
sions, Michelli laid some of the foundation for multivariate splines in his work on
Kergin interpolation from 1980 [72]. The initial formulation of the multivariate splines
were purely geometric, defining the spline as the density of ashadow of a higher dimen-
sional simplex to a lower dimensional simplex, therefore also termedsimplex splines,
e.g. the shadow of an opaque tetrahedron on the two dimensional plane produces a
linear simplex spline. Michelli also discovered a recurrence relation for the simplex
spline, which facilitated an easier and stable evaluation of the splines based on alge-
bra, rather than geometry. This recurrence relation has since been proved in several
different ways [38]. A generalization of univariate truncated powers was introduced,
establishing links to the generalization of multivariate divided difference [27, 74, 84].
The cone splines were used for proving more recurrence relations for the multivariate,
including a recurrence relation in dimensions, facilitating the calculation of a spline of
higher dimension from a set of splines of lower dimension [14].

Dahmen, Michellig and Seidel discussed the construction ofspline spaces, and intro-
duced the DMS spline space [72, 90]. Neamtu considered in 2000 the introduction of
another morenaturalspline space based on Dealunay configurations [75, 76]. In recent
years multivariate splines are also appearing in the computer vision literature [111, 44].

The recurrence relations for calculating B-splines suffers from an explosion in required
computations with an increase in dimensionality and order of the splines. The evalua-
tion of ans-dimensional spline of orderk requires the evaluation of(s + 1)k simplex
splines of order0 and((s + 1)k − 1)/s barycentric matrices (not all are different). It
was argued by Grandine in 1987 that the redundancy could not be efficiently used for
optimization, however in 2000 Franssen et al. demonstratedan efficient method for
the calculation of B-splines of the DMS space [34, 31]. The current work describes a
new explicit formulation of the multivariate simplex splines, based on divided differ-
ences and functions resembling the truncated powers, only with compact support for
efficient evaluation. The formulation is used for deriving practical results for the sim-
plex splines, most notably an explicit formula for the calculation of the derivative of the
spline with respect to the position of individual knots. Furthermore, a generalization of
Neamtu’s spline space is used to define constraints that guarantee the desirable repro-
duction of polynomials property [76]. Neamtu’s results arealso used for describing a
sub-division scheme for the simplex spline space.
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12.2 Simplex splines

Simplex splines are multivariate generalizations of the univariate B-splines introduced
by Curry and Schoenberg [18]. Simplex splines were defined byde Boor in 1976 [23].

Let X = {x0, . . . ,xs+k} be a set ofn = s + k + 1 points in general position in
R

s, then we will refer toX as a set of knots. The simplex spline may be defined as a
distributionM(x|X), which satisfies the following
∫

Rs

M(x|X)f(x)dx = s!k!

∫

Ss+k

f(ν0x
0 + · · ·+ νs+kxs+k)dν1 · · · dνs+k (12.1)

where

Ss+k = {(ν0, . . . , νs+k)|ν0 + · · ·+ νs+k = 1, νj ≥ 0, j = 0, . . . , s + k}

LetV ∈ X, the number of points inV is#V = s+1, and let the determinantd(V ) 6= 0
be nonzero, then it can be shown thatM(x|X) satisfies the recurrence relation [38]

M(x|X) =
∑

v∈V

d(xv V )

d(V )
M(x|vX) ,

where a subscriptedvV is the operation of taking out a point, and a superscriptedvV

indicates the addition of a point and the coefficientsd(xv V )
d(V ) are in effect the Barycentric

coordinates ofx corresponding to the set of pointsV .

Fork = 0, ie. #X = s + 1, M is defined as a normalized characteristic function

M(x|X) =
χX(x)

vols[X]
=

{

1/vols[X] x ∈ [X]
0 otherwise

12.2.1 Divided differences and B-splines

Univariate divided difference is defined by

[t0, . . . , tn]f ≡
n
∑

i=0

f(ti)
∏

j 6=i(ti − tj)
(12.2)

Truncated powers(x−t)r
+ are defined as(x−t)n truncated to0 whenx < t. B-splines

may be defined as the divided difference of a truncated power

n[t0, . . . , tn](· − t)n
+ = M(t|t0, . . . , tn) (12.3)
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whereM denotes the univariate B-spline normalized to unit integral. Truncated powers
are not very suitable for evaluation due to their non-compact support, however as a
theoretical tool they can be used to show that all polynomialsplines may be represented
by the B-spline basis [22]. Divided difference can be considered an approximation to
the derivative operator, and has the B-spline as its Peano kernel [7, 82]. In Section
12.2.2 it is shown how the multivariate version of divided differences may be applied
for defining an explicit formula for the simplex spline.

12.2.2 Multivariate divided differences

Let I = {I1, . . . , Is} be a set ofs indices,xI = {xI1 , . . . , xIs} ∈ X, and define
d(xI ,x) by

d(xI ,x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

xI1
1 · · · xIs

1 x1

...
. . .

...
...

xI1
s · · · xIs

s xs

1 · · · 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

(12.4)

Following the definition presented by Neamtu, we define the multivariate version of
the divided difference to be given by [74]

[x0, . . . ,xn]f =
∑

I∈N

f(xI)
∏

j∈N\I d(xI , xj)
(12.5)

The following Lemma, which is a straightforward generalization of the univariate case,
is needed to prove Theorem12.2

L EMMA 12.1 Letn ≥ s, andv ∈X, then

[X]d(·, xj)f(·) = [vX]f(·) (12.6)

Neamtu presented a generalization of truncated powers tos dimensions, which allows
for multidimensional version of (12.3). However, this representation does not allow for
very efficient or stable evaluation of the multivariate B-splines, since it does not have
compact support. We introduce a different function, sharing several properties with
truncated powers, which is better suited for the purpose of the presented work

T̂
(i)
xj (xI ,x) = sign[d(xI , xj)] · s! · di(xI ,x) · χI∪j(x) (12.7)

whereχI∪j(x) is the characteristic function of the simplex given by the points{xI , xj}.
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Define

M̂(x|X) = [X]T̂ (·,x) (12.8)

Then it is clear that fork = 0, M̂ andM are identical:M̂(x|X) = χX(x)/d(X) =
M(x|X)

THEOREM 12.2 LetM̂ be defined as in (12.8) then the following recurrence relation
holds

M̂(x|X) =
∑

v∈V

d(xv V )

d(V )
M̂(x|vX) (12.9)

PROOF.

∑

v∈V

d(xv V )

d(V )
M̂(x|vX) =

∑

v∈V

d(xv V )

d(V )
[vX]T̂ k−1

xj (·,x) =

∑

v∈V

d(xv V )

d(V )
[X]d(·, v)T̂ k−1

xj (·,x) =

[X]
∑

v∈V

d(xv V )

d(V )
d(·, v)T̂ k−1

xj (·,x) =

[X]d(·,x)T̂ k−1
xj (·,x) = [X]T k

xj (·,x) = M̂(x|X) (12.10)

It is concluded thatM̂(x|X) = M(x|X) since it holds fork = 0, and they share the
same recurrence relation, so by induction they must be equalfor all valuesk ∈ Z+∪+0.

12.2.3 Derivatives

Using the formula for the simplex spline introduced in (12.8), the derivative of the
simplex spline with respect to the variablex is given by

Dx;vM(x|X) = Dx;v [X]dk(·,x)T̂
(0)
xj (·,x) = k[X]d(·,v)dk−1(·,x)T̂

(0)
xj (·,x)

The introduced formula facilitates easy calculation of thederivatives of the simplex
spline with respect to the position of the knots, and since nothing is characterizing the
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knotxj , it may as well be chosen as the direction of change in the Gateaux derivative

Dxj ;vM(x|X) = Dxj ;v [X]dk(·,x)T̂
(0)
j (·,x) =

Dxi;vs!
∑

I∈N

sign[d(xI , xj)]dk(I,x)χI∪j(x)
∏

i∈N\I d(xI , xi)
) =

−s!
∑

I∈N\{j}

sign[d(xI , xj)]d(I, v)dk(I,x)χI∪j(x)

d(xI , xj)
∏

i∈N\I d(xI , xi)
. (12.11)

For normalized simplex splines special care has to be taken,when the knot being altered
is also part of defining the normalization coefficient. The derivative of the normalized
simplex spline is thus given by

Dxj ;vN(x|X) = Dxj ;vvols[x
B ]M(x|X) =

M(x|X)Dxj ;vvols[x
B ] + vols[x

B ]Dxj ;vM(x|X) (12.12)

where

Dxj ;vvols[x
B ] =

{

sign[d(xB)]
s! d(xjB , v) , j ∈ B

0 j /∈ B
(12.13)

12.3 Multivariate B-spline basis

Let p ∈ Πk be a polynomial of degreek defined inR
s. The polar formP ∈ Πk is a

function ofk vector variablesx1, . . . ,xk ∈ R
s. It satisfies thatP (x, . . . ,x) = p(x)

is symmetric and multi-affine in all the variablesxi.

p(x) =
∑

X ∈ ∆kP (XI)N(x|X) . (12.14)

Especially if p(x) = 1, P = 1, and (12.14) is seen to demonstrate a partition of
unity. Liu and Snoyeink generalizes the result of Neamtu [68]. The simplex spline as
well as the B-spline by Neamtu is shown to provide a reproduction of polynomials.
This reproduction property is satisfied as long as the boundary simplices of Delaunay
configurations keep their sign, which is the only condition necessary for the splines to
reproduce polynomials. The simplex simplex spline space isspanning the whole B-
spline space, and it is less symmetric, which may prove an advantage considering the
discussion in Section10.3.



12.3 Multivariate B-spline basis 123

12.3.1 Configurations and facet-matching

Define a boundary-interior configuration as a pair of points(t, I), wheret is a tuple of
s + 1 points, forming a simplex, andI is a set ofk points disjoint fromt. Define a
normalized simplex spline by

N(·|t, I) ≡ d(t)M(·|t ∪ I) , (12.15)

where we require thatt is ordered such thatd(t) > 0. Neamtu showed that the set
of Delaunay configurations of orderk defines a basis for reproduction of polynomials
of order k. Let Ωt be the closed ball circumscribed to the simplex defined by the
boundary pointst, then a Delaunay configuration(t, I) is defined as above, where
(I ∪K) ∩ Ωt = t ∪ I, which means the circumscribed ball, besidest itself, contains
only theinterior pointsI, from K.

We define faces of a configuration byF =v t, which is essentially a face of the simplex
of the boundary pointst. For a Delaunay configuration we can define three types of
faces, essential, non-essential and phantom faces, as described in Figure12.1.

(a) Non-essential faces (b) Essential faces (c) phantom faces

Figure 12.1:

(a) non-essential faceF , #({v, v̂} ∩Ω) = 0, andv, v̂ are separated by the hyperplane
affF

(b) essential face,l#({v, v̂}∩Ω) = 1, andv, v̂ are on the same side of the hyperplane
affF

(c) phantom face#({v, v̂} ∩ Ω) = 2, andv, v̂ are separated by the hyperplane affF

This definition was introduced by Neamtu, who also proved that all faces of Delaunay
configurations can be labeled as one of these categories [76]. A consequence of this
is that all faces of the configurations are either matched by an oppositeconfiguration
sharing the same face. The configurations are either orderk both of them for the es-
sential faces, orderk− 1 for the phantom faces or two faces of orderk and orderk− 1
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respectively are sharing a face for the essential faces. These properties are important in
the proof by Neamtu of the reproduction of polynomials

The proof is based on recursion in degree of polynomial and splines, and it is well
known that a zeroth order tesselation forms a partition of unity. The two conditions,
satisfied by Delaunay configurations, that facilitates thisproof are

M(x|X ′)d(x
v(vF ′

B)) + M(x|X̂)d(x
v̂(v̂F ′

B)) = 0 (12.16)

d(x
vXB)M(x|F ) + d(x

v̂X̂B)M(x|F ) = 0 (12.17)

They are a consequence of the fact that the pointsv and v̂ are separated by the hy-
perplane affF , which means that the determinants in the expressions are equal deter-
minants of matrices with switched columns and opposite signs. This observation was
also made by Liu and Snoyink, who used it to prove that their link-triangulation algo-
rithm also would form a partition of unity [68]. In the current work, it facilitates the
conclusion drawn in Section12.4.

12.4 Optimizing the approximation

We propose to optimize the approximation using the conclusions from Sections12.3
and 12.2. One way to optimize the approximation would be fitting the parameters based
on gradient information and a fitness function similar to theone presented by Hansen
et al. to add knots [44].

12.4.1 Knot movement

It appears favorable to be able to optimize the position of the knots, while retaining the
reproduction of polynomials property of the B-splines. Following the conclusions from
Section 12.3, this means that none of the boundary points from any configuration order
k or smaller should pass the face spanned by the other boundarypoints of the boundary
simplex, if the face is shared with a configuration of the sameorder. For practical
implementation a slight restriction of these criteria is chosen to avoid that any of the
determinants of the boundary points change sign. In the two dimensional case this
means that no boundary triangle should flip, but no restriction that the configurations
have to remain Delaunay orderk needs to be imposed as illustrated in Figure12.2.

The knot movement changes the values of the splines with configurations including
the knot. This change may be described by the Gateaux derivative (12.12), and in a
linearization, these derivatives may be perceived as additional basis functions, though
the optimization with respect to the knots is obviously a non-linear problem.
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Figure 12.2: Movement of knotv to positionv′

12.4.2 Subdivision

If the representation of the simplex splines are insufficient in certain areas as discussed
in Section10.3, it may be an option to add knots to the representation. Adding knots
as illustrated in Figure 12.3 will reduce the support of the simplex in s + 1 smaller
simplices, assuming that the boundary knots are at the boundary. The additionally in-
troduced faces, between the boundary points and the new point v′, are all non-essential
faces, and by keeping the orientation of the points (by replacing each boundary vertex
by the new vertex) the simplex spline may be replaced by thes + 1 smaller simplex
splines.

Figure 12.3: Subdivision by adding pointv′
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12.4.3 Spline evaluation

To evaluate the splines, a number of evaluations of theχV (x) have to be performed,
which is essentially checking if the pointx is inside the primitive defined by the points
V . However, this function is clearly piecewise constant, andin Figure 12.4 a two-
dimensional simplex is divided in segments where all these functions are constant for
any choice ofV from X. Identifying these segments, and pre-computing the func-
tion values and the determinants in (12.5) means a significant speed-up of the spline
evaluation. However for cubic simplices, there are typically around 110 segments, and
the implementation in 3D, identifying these segments takesaround1 ms runtime, so a
significant number of points needs to be evaluated in 3D for the higher order splines,
for this be more efficient.

(a) Quadratic simplex (b) Cubic simplex

Figure 12.4: (a) shows the number of segments for a cubic simplex spline, and (b)
shows the segments for a cubic spline.

12.5 A view of the splines

The polynomial pieces that are used to piece together the simplex splines in the equa-
tion presented in (12.5) are illustrated in Figure12.5.

In Figure12.6 a two dimensional slice of a three dimensional set of basis functions
are shown. Clearly the basis functions vary significantly inshape and size. In Figure
12.7a two-dimensional slice through a three-dimensional quadratic simplex spline is
illustrated. The derivatives with respect tox, y and z as well as one the knots are
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(a) k=0 (b) k=1 (c) k=2 (d) k=3

Figure 12.5: Demonstration of the polynomial pieces composed to form the simplex
splines.

illustrated in Figure 12.8, whereex denote the unit vector in the spatialx direction etc..
In Figure12.9the derivatives with respect to one of the knots are shown.

Figure 12.6:Illustration of a slice of some of the Basis functions in a three-dimensional
quadratic B-spline basis.

12.6 Conclusion

A new formula, based on the multivariate divided difference, for explicit calculation of
the simplex splines has been presented. The formula additionally admits easy calcula-
tion of derivatives, both spatial, and with respect to the position of the knots. Though
less numerically stable than the recurrence relation, the experiments conducted so far
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Figure 12.7: Illustration of a slice of a three-dimensionalquadratic simplex spline.

(a) Dx;exM(x|X) (b) Dx;ey M(x|X) (c) Dx;ez M(x|X)

Figure 12.8: Illustration of a slice of the spatial derivatives of a three-dimensional
quadratic simplex spline.

(a) Dxj ;exM(x|X) (b) Dxj ;ey M(x|X) (c) Dxj ;ez M(x|X)

Figure 12.9: Illustration of a slice of the derivatives of a three-dimensional quadratic
simplex spline with respect to change in position for one of the B-spline knots.
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indicates that it is well suited for a more efficient calculation of the B-splines, and no
numerical instability was observed. The expression may be applied for even faster eval-
uation of the simplex splines by dividing the simplex into segments that are described
by the same polynomials. This is feasible, but for three-dimensional cubic splines, the
number of points to be evaluated for a simplex spline has to bein the order of thousands
for this approach to be more efficient.

It has been noted that, using simplices inspired by Neamtu, conditions may be set on
the knot movements, which ensures that the splines form a partition of unity, even if
the knots are not Delaunay. A subdivision scheme is also presented, which requires
no recalculation of the configurations of the splines. It is anticipated that the splines
will be of great use for specialized problems, where the basis may be tailored to the
problem at hand.



130 Multivariate splines



CHAPTER 13

Conclusion

The OECD predicts that public health care costs in the membercountries will increase
from an average of 7 % of the gross domestic products in 2005 toexceed 12 % in 2050.
This overgrowth of expenses is partly due to longer life expectancies and survival rates
after critical diseases. However, the overgrowth will mainly be caused by implemen-
tation of new advanced technology for diagnostic support, monitoring, and treatment.
This fact both creates a need for financing health care costs and a huge market for
health care technology to be exploited. In order to ensure access to and financing of
continued high quality health care in Denmark, emphasis should be put on research, de-
velopment, and commercialization of health care technology in the world market. The
work presented here seek to face several challenges in the analysis of medical image
analysis. More precisely it consists of contributions in following three areas.

In Part I an efficient algorithm for calculating the entire regularization path of the sup-
port vector domain description is presented. The ability tocalculate the entire path
with a complexity in the same order as solving the original quadratic problems gives
inspiration to utilize the extra information available from the entire path. A method for
hierarchical support vector clustering, based on information from the entire regulariza-
tion path, and multiple Gaussian kernels is described. Thismethod can be considered
an extension of a previously developed method, which is alsoempirically shown to
give good results on real world data [40]. Testing the methods on more data would
be interesting in the future to draw more conclusions on the nature of the support vec-
tor domain description for clustering. However, this wouldalso be very interesting to
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see combined with the analysis presented in Chapter5, where Bayesian methods are
applied in the attempt to draw direct statistical conclusions from the support vector
domain description analysis.

In Part II different assumptions on the warp fields, namely diffeomorphism and a linear
elastic potential in the form of regularization are discussed. Chapter8 introduces a new
warp representation which allows statistical analysis on an unrestricted linear param-
eter space, where all derivatives are defined. Furthermore,it is shown thatL2-norm
on the parameter space introduces a reasonable metric in theactual space of modelled
diffeomorphisms. The results compare well to those obtained using Cootes’ defor-
mation model. A new parametrization of 3D deformation fields, using potentials and
Helmholtz decomposition is presented. The representationcan be considered a natural
parameterization for both elastic and fluid image registration due to the decoupling of
the parameters. For morphometry it is demonstrated that oneof the two potentials di-
rectly gives us the vorticity of the deformation field. The determinant gradient field is
shown to be the first-order small-deformation approximation to the determinant of the
Jacobian matrix – probably the most accepted morphometry measure used.

Part III discusses spline approximations of functions, andin particular image registra-
tion warp fields. It is shown how spline bases may be learned from the optimization
process, ie. image registration optimization, and how thismay contribute with a reason-
able prior, or regularization in the method. A new formula, based on the multivariate
divided difference, for explicit calculation of the simplex splines is presented. The for-
mula additionally admits easy calculation of derivatives,both spatial, and with respect
to the position of the knots. Though less numerically stablethan the recurrence rela-
tion, the experiments conducted so far indicate that it is well suited for a more efficient
calculation of the B-splines, and no numerical instabilityis observed. The expression
may be applied for even faster evaluation of the simplex splines by dividing the sim-
plex into segments that are described by the same polynomials. This is feasible, but
for three-dimensional cubic splines, the number of points to be evaluated for a simplex
spline has to be in the order of thousands for this approach tobe more efficient. It is
demonstrated, using simplices inspired by Neamtu, that conditions may be set on the
knot movements, which ensures that the splines form a partition of unity, even if the
knots are not Delaunay. A subdivision scheme is also presented, which requires no
recalculation of the configurations of the splines. It is anticipated that the splines will
be of great use for specialized problems, where the basis maybe tailored to the prob-
lem at hand. In Chapter it is demonstrated how the parametricversion of the elastic
potential and in effect illustrating how the whole class of differential operator derived
regularizers, i.e. curvature and bending energy, can be easily implemented in a para-
metric setting. With the same methodology, the inherent smoothing or averaging cost,
of selecting warp parameterizations at a specific kernel resolution, has been analyzed.
A refinement measure has been derived, which is shown to be efficient for guiding
the local mesh layout. With the combination of our refinementmeasure and the local
flexibility of the multivariate B-splines, the warp field is automatically refined in areas
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where it results in the minimization of the registration cost function. The designed
basis gives knots that are close to a segmentation of objectsallowing for better local
control, even where very inhomogeneous areas share a border.
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