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Summary

The work presented here consists of contributions in threasa

An efficient algorithm for calculating the entire regulaiion path of the support vec-
tor domain description (SVDD) is presented. The ability &bcalate the entire path
with a complexity in the same order as solving the originadratic problems gives
inspiration to utilize the extra information availableringhe entire path. A method for
hierarchical support vector clustering, based on infoilonarom the entire regulariza-
tion path, and multiple Gaussian kernels is described. Slagenethods are applied in
the attempt to draw direct statistical conclusions from3MDD analysis.

In the context of image registration, different assumgion the warp fields, namely
diffeomorphism and a linear elastic potential in the formredularization are dis-
cussed. A new warp representation which allows statistioalysis on an unrestricted
linear parameter space, where all derivatives are definéatroduced. Furthermore, it
is shown thatl;-norm the parameter space introduces a reasonable mettie actual
space of modelled diffeomorphisms. A new parametrizatiodDodeformation fields,
using potentials and Helmholtz decomposition is also priesk The representation
can be considered a natural parametrization for both elasti fluid image registra-
tion due to the decoupling of the parameters. The deterrhgradient field is shown to
be the first-order small-deformation approximation to teeedminant of the Jacobian
matrix.

Spline approximations of functions and in particular imaggistration warp fields are
discussed. It is shown how spline bases may be learned frewptimization process,
i.e. image registration optimization, and how this may dbnte with a reasonable
prior, or regularization in the method. A new formula, basedthe multivariate di-



vided difference, for explicit calculation of the simpleplises is presented. The for-
mula additionally admits easy calculation of derivativasth spatial, and with respect
to the position of the knots. It is demonstrated that coodgimay be set on the knot
movements, which ensures that the splines form a partitiamity, even if the knots
are not Delaunay. A subdivision scheme is also presentadhwiquires no recalcula-
tion of the configurations of the splines. The use of the ggliior image registration is
demonstrated, and the inherent smoothing or averagingafostlecting warp param-
eterizations at a specific kernel resolution, has been aedlyA refinement measure
has been derived, which is shown to be efficient for guidirg ldtal mesh layout.
With the combination of the refinement measure and the logesibility of the multi-
variate B-splines, the warp field is automatically refinedii@as where it results in the
minimization of the registration cost function.



Resumé

Det preesenterede arbejde bestar af bidrag inden for tredemra

Inden for statistiske kernel-metoder er en hurtig algogitadviklet til beregning af
hele regulariseringsstien for support vector domain dgison - metoden. Metoden
er anvendt til at udvikle et framework til hierarkisk suppwector clustering, som
er baseret p& information fra hele regulariseringsstiematiiple Gaussiske kerner.
Bayesiske metoder er anvendt i et forsagg pa at uddrage elisétistiske konklusioner
fra analysen.

Inden for billedregistrering, som populeert sagt gar ud pdedinere et warp mellem
tilsvarende billeder, er forskellige antagelser om disaepfelter, specielt at de er dif-
feomorphier eller styret af et linear elastisk potentiaskdteret. En ny repreesenta-
tion, som tillader statistisk analyse pa et euklidisk parrum hvor alle afledte er
defineret, er praesenteret. Det er vistatnormen i parameterrummet udggr en for-
nuftig metrik i rummet af diffeomorphier. En ny parametriag a 3D warpfelter til
den medicinske billedregistrering, der anvender potefuizgktioner og Helmholtz’s
dekomposition i gradient og rotation er ogsa preesentesdteDvist at denne repraesen-
tation kan anses for at veere en naturlig parametriserirgnifol bade elastisk og fluid
billedregistrering, da parametrene bliver dekoplede diera feltet er en farste-ordens
approximation til den morfologiske parameter, som deteamien af Jacobianten er.

Spline approksimationer af funktioner, og specielt af @ltpr i billedregistrering er
analyseret og diskuteret. Det er vist hvordan spline baametderes fra optimeringspro-
cessen, og hvordan den kan bidrage med en fornuftig priogider god regularisering
a metoden. En ny eksplicit formel, baseret pa den multiteuddavided difference, til
beregning af simplex splines er introduceret. Denne foeniyg tillader nem beregn-
ing af afledte, bade spatielle og med hensyn til knudepositite. Det er vist at der



kan saettes betingelser for knudepositionerne, saledesmautfivariate splines stadig
reproducerer polynomier, nar knuderne flyttes, ogsa seltr@nguleringen ikke er
Delaunay leengere. Der defineres en metode til subdivisan,ikke kraever at trian-
guleringerne genberegnes. Det vises hvordan disse spimeanvendes til billedreg-
istrering, og der indfgres mal for om en forfinelse af basikfionerne vil bidrage med
bedre ngjagtighed i bestemmelse af billedwarpet.
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CHAPTER 1

Overview

The OECD predicts that public health care costs in the mewdoantries will increase

from an average of 7 % of the gross domestic products in 208%deed 12 % in 2050.

This overgrowth of expenses is partly due to longer life expecies and survival rates
after critical diseases. However, the overgrowth will nhaipe caused by implemen-
tation of new advanced technology for diagnostic suppoaotitmring, and treatment.

This fact both creates a need for financing health care costsacghuge market for

health care technology to be exploited. In order to ensucesacto and financing of
continued high quality health care in Denmark, emphasislshze put on research, de-
velopment, and commercialization of health care technoioghe world market. The

work presented here seek to face several challenges in #hgsenof medical image

analysis. More precisely it consists of contributions irethareas.

In machine learning the termnsupervised learnings used to describe the class of
problems in which one attempts to discover how unlabellad dee organized. How-
ever, in this context thao free lunch theoremrmay be phrased that you cannot make
inference without making assumptions [112], and even ugstiged learning makes
assumptions about the unlabelled data. In this thesisrdiffeapproaches to analyzing
unlabelled data are treated.

The support vector domain description (SVDD) separateahatled data in inliers
and outliers, and may be applied for support vector clusgeiSVC). Contributions to
both methods are included in Part |I. Despite being unsupedyithese methods are



2 Overview

still making assumptions about the data, and finally it israfited to obtain a better
understanding of the assumptions implicitly made aboutitita.

The image registration problem may be considered the unggpd attempt to estab-
lish correspondences between images, or between an imdgwianinformation, ie.
in the form of an anatomical atlas. Unlike shape models, ewagistration algorithms
are only making weak assumptions on the warps, which in te&rnent are assumed
to be described bparameterized deformationifferent assumptions on the warp
fields, namely diffeomorphism and a linear elastic potémighe form of regulariza-
tion are discussed in Part Il, and attempts to develop pdminations suited for the
assumptions are presented.

In Part Il spline approximations of functions, and in peutar image registration warp
fields are discussed. Itis shown how spline bases may beelkfnam the optimization
process, ie. image registration optimization, and how titéy contribute with a rea-
sonable prior, or regularization in the method. Spiked kyeghcouraging results and
theory in this field, new formulae and methods are develop#ttte aim of increasing
the utility of the treated multivariate splines.



Part |

Support vectors for clustering
and outlier detection






CHAPTER 2

Introduction to support
vectors

The support vector machines close to their current form fiesteintroduced by Boser,
Guyon and Vapnik in 1992 [8], and the interest has since equpalso due to the
introduction of support vector regression by Vapnik in 19986]. A dblp search on
support vectoishows a listing oR717 papers, and this has given rise to several views
on support vectors. An interpretation that has relevancéh®support vector domain
description (SVDD), treated in this part of the thesis, Wwél put forward in the current
section.

Define f by some parameterized, sufficiently smooth (this loose ifiefinsuffices
for the current presentation and aim), functipn: R* — H, whereR” is the k-
dimensional space of parameters &ids the set of functiong : R” — R mapping
from ann-dimensional input space to the real line. Then the foll@nvaptimization
problem is an instructive example to examine, which coulthdosly be more general,
however it still specializes neatly to SVDD, for which thenctusions are also valid.

min}  [f(@is B)], + ABI5 B ERY, @i € R (2.1)
i=1

where ) is a regularization parametdf, ||% denotes the inner product with respect
to the matrix¥. The hinge losdz], = (1 — z)H(1 — z), wherez € R andH is
the Heavyside step functior(a) = 1 for ¢ > 0 and H(a) = 0 otherwise), is a



6 Introduction to support vectors

loss function, which is always zero fer> 1. The hinge loss shall be examined more
closely since it gives (2.1) some interesting propertiessitjure 2.1, this error function
is plotted along with a quadratic loss function, which measuhe quadratic distance
to 1 and the negative binomial log-likelihoddg(1 + exp|f(x;; 8)]), which is the loss
function of logistic regression [55].

4 . : :
= Squared error
3.57 —— Hinge loss
3 —— Binomial Log-likelihood ||
257
2
fe 2
15¢
1 L
0.5+
0 ‘ ‘
-3 -2 -1 1 2 3

;
f(x:P)

Figure 2.1: Comparison of the support vector loss functiothe- hinge loss, the
squared error loss function and the logistic regressianfimsction - the binomial log-
likelihood. As remarked by Hastie at al., the log-likeliltbshares asymptotic behavior
with the hinge loss but has a smooth transition [55].

One particular thing about the hinge loss, which is alsordiean Figure2.1, is that
for function values off larger thant, the loss is independent of the particular value of
f. Assume thatf and the set of point$x;} is such that a unique set of parameters
B* € RF, different from the trivial zero vector, minimizes the pheim (2.1), and
furthermore ensures that gf(x;; 5*) > 0. Theng* must be independent of the
values of ally = {x;|f(x;; 8*) > 1,x; € {x;}}, ie. for which f(x;; 5*) is larger
than one. This can be realized by seeing that the sur@.i) §oes not change with
a small perturbation ir;. If f is smooth, as assumed, the loss function will still be
the same value at a different;, since the hinge loss af; is still 0. If a different
3™ exists resulting in a smaller value &.0), this value would by parallel arguments
also be valid forg*, which is a contradiction with the optimality assumptiongdat

is therefore concluded that the parametétsare independent of. Since the zero
vector was not a solution, the function value of some paitits must bel exactly,
because this would still makg(x.,; ) = 0, but in this case a small perturbation of
x,, may still lead to a change in the function value, if it is gegahan zero after the
perturbation, and it cannot be concluded thatis independent of these poinis,,.



In summarys* can be shown to be independent of all points, butahendarypoints

{z} = {z;|f(x;; 8*) = 1,x; € {x;}}, which are called theupport vectorbecause
they are in effect the support 6f that gives* its value. The support vectors may still
have a different impact ofi*, where impact is imagined to be measured as the effect
on B* from making a small perturbation to a support vectgy. For some points the
impact may be small.

Now assume that for some points,, the functionf is smaller thar, ie. f(xps,; 3%) <
1, following the arguments from the previous paragraph, $gisn that the pointsy,,
all have an impact og*. For the special SVDD cases ¢f with quadratic functions,
the impact of these points is indeed equal to the maximuma irthat a support vector
may have, and they are therefore ternbedinded support vectar3 he interior points
orinliers, the support vectors and the bounded support vectors as¢rdted in Figure

2.2

4 T T T
¢ interior point
3.5 % bounded support vector|]
3l support vector
2.5¢
3
g 2
1.5¢
1,
0.5
0 ‘ ‘ N
-3 -2 -1 i v¥ 3

;
f(xB)

Figure 2.2: lllustration of the three classes of points, suead by their impact on the
function (2.1).

In SVDD (this is, in fact, also valid for support vector maoés (SVMs)) the hinge loss
can be replaced by a set of slack variables and complimeotastraints on these vari-
ables. As demonstrated in Chap8rthese can be removed by introducing Lagrange
multipliers and solving the dual problem. These Lagrangédipliers are effectively
determining thempactof the parameters, and they behave as described. An effect of
this is that the parameters are independent of all the laerd if the number of sup-
port vectors and bounded support vectors is low, this giwesyasparse representation

of the parameters.



8 Introduction to support vectors

In conclusion the hinge loss is a tool for modelling outliarsd boundary, as noted
by Tax and Duin [3]. These conclusions also hold for suppectar regression [96].
Pontil states that the information needed for classificalies in the support vectors
[81].

In the paper in Chapter 3 [49], the effect of the regular@aparametek on the param-
eters is shown to be linear. The chapter introduces an effialgorithm for calculating
the entire regularization path, with the same complexitthasalgorithm for the SVM
by Hastie et al. [54]. In Chapter 4 an application of the ent&gularization path
for hierarchical support vector clustering is demonsttd#]. In chaptels Bayesian
methods are applied to SVDD, hinting that more informechestion of the parameters
for the support vector clustering could be obtained. Fnafi Chapter 6 the SVDD
method and the obtained results are discussed.



CHAPTER 3

On the Regularization Path
of the Support Vector
Domain Description

Michael Sass Hansen, Karl Sjostrand and Rasmus Lafsen

Abstract

Through the internet and a growing number of increasingphssiicated measuring
devices, there is a vast amount of data in many applicatidosever, the dimension-
ality is often high, and the time available for manual laingjlis often scarce. Methods
for unsupervised novelty detection are a great step towamsting these challenges,
and the support vector domain description has already sitewsorth in this field. The
method has recently received more attention, since it has sleown that the regular-
ization path is piece-wise linear, and can be calculatedieffily. The presented work
restates the new findings in a manner which permits the elonlwith O(n - np)
complexity in each iteration step instead®fn? +n%,), wheren is the number of data
points andn g is the number of boundary points. We believe this will furtheomote
the use of this method.

1This paper was submitted to Pattern Recognition Letters [49]
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3.1 Introduction

We are often faced with data of high dimensionality. Imagiegices with an intrinsic
high number of variables are emerging for more and more egdins, and in order to
deal with this class of data, a whole series of data analgsls have emerged. Many of
these use the kernel trick to create efficient algorithméimipaeamlessly with the high
number of dimensions through inner products, while keefi¥gbility for modelling
distributions [106]. The support vector domain descript{&VDD), introduced by
Tax and Duin [101] in 1999, is a method for one-class labg]limhich also falls into
the aforementioned category. SVDD may be used for noveltyatien, clustering or
outlier detection [115, 5, 36]. The data is classified aseeithliers or outliers through
the introduction of a minimal containing sphere. The dgdimn has strong ties to the
one-class version of the two-class method support vectohimas (SVM) [88].

The basic goal of SVDD is to find a minimal sphere containirigis while minimizing
the distance from the boundary to the outliers. More fornialtan be stated as the
following optimization problem

ming: 4 ¢ >, & + AR? where(x; —a)(x; —a)T <R*+¢;, & >0Vi (3.1)

whereX = [x; ...X,] is the data matrix with each poirf € R?, ais the center an®

is the radius of the sphere, afdare the slack variables, allowing some points,ahe
liers, to lie outside the sphere, while still satisfying the coaisits. The regularization
is governed by the parameter A large value ofA puts a high penalty on the radius
and results in a small sphere, whereas a simédlts the radius grow to include more
points adnliers.

Originally, the optimization problem as posed in seci®8 is transformed into the
dual problem using the Lagrange multipliers with the Kar#siinn-Tucker conditions,
and is solved as a quadratic optimization problem. Recéntlgs shown by Sjostrand
et al. [95] that the regularization path of the parametés piece-wise linear, and can
be calculated with af)(n% + n?) complexity for each iteration step, wheig << n

is the number of points on the boundary of the sphererailthe total number of
points. This result has been used to construct a generaliseghce by Hansen et al.
[40]. In section3.3a more efficient approach reducing the complexitpia - ng) in
each iteration step is derived.
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3.2 The support vector domain description

A Lagrangian operator can be used to solve the problem ofignitie optimum sphere,
posed in[8.1). The Lagrangian is given by

Ly Y a;(xxF —2axt +aal — R — &)+ >, &+ AR = > vi&, (3.2)

whereq; and~; are the Lagrange multipliers. The Karush-Kuhn-Tucker dimgn-
tary conditions hold since the optimization problem is @mand they are given by

ai(x;x] —2ax! +aal —R*—¢&) = 0 (3.3)
vi& = 0. (3.4)
The optimum is given where the derivatives of the variableszaro
oL,
6Lp . . ZZ ;X
—q =0 © a= o (3.6)
SLp
= =1 —q T
73 0 & N Q; (3.7)

From equations3.7), (3.3) and IB.4), it is seen thaty; = 1 for outliers (sincey; = 0)
andq; = 0 for inliers. On the boundaryy,; can take any value if0; 1]. Inserting
equations§.5/3.7) in (3.2), the minimization problem is transformed to the problem of
maximizing the Wolfe dual form

1
T T
ngx E XXy — X E E Q05X X5 0<a; <1, E o = A,
7 7 i 7

The dimensionality of the input vectorks can be increased using a basis expansion
and the dot-product substituted by an inner product. Theripnoducts can then be
replaced byK; ; = K (X;, X;), where K is a positive definite kernel function satisfying

oy 12 .
Mercer's theorem. The Gaussian kerél; = K (x;,X;) = exp —1%=41" is a pop-
ular example of such a kernel function. The optimizationbfgm may then be stated
as

Wd = InaaXZOéiKi’i - % Z ZO&Z‘O{]‘KLJ‘ (38)
% % J
0<o; <1, ) o=\ (3.9)

For a given\, the squared distance from the center of the sphere to apisnt
FA) = K(x,%)

_§ Z OéiK(X, Xi) + % Z Z O[iOéjKi’j s (310)
i i
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where the decision boundary is not necessarily a sphere spiéace of the input points,
although it is, in the space of the basis of the kernel fumctised. For the derivation
the following sets are defined; the sétontains all the input pointd3 denotes the set
of points on the boundary) is the set of outliers, and Idtbe the set of inliers.

3.3 Calculating the regularization path of the SVDD

This derivation is the main contribution of the current waakd differs from the deriva-
tion by Sjostrand et al. to provide the basis for a more effic@alculation of the
parameters using updating and downdating of a matrix ievéfao well known theo-
rems, showing that the Lagrange multipliers are contindoua convex problem, are
stated in Appendix 3.711. In Sectibn 3.3.1 an expressioth®piece-wise linear rela-
tion betweernn and X is derived along with a scheme for fast calculation. Fingily
algorithm is outlined in Sectidd.3.2

3.3.1 Piece-wise linear regularization path

Let the generalized radius be denotediythen a boundary point;, whereh € B
must satisfy

2 1
f(Xh; )\) = Kh,h — X E aiKh,i + 7\2 E E aiajKZ-,j = _RQ7 h (S B (311)
A A 7

The first sum can be split in terms depending)oand constant terms (alwaysor

0 for points on the outside and inside). This giVe§ i Kpn; = Y ;cp @il +

> ico @K ;. Only the first term depends onwhile the boundary sef3, stays fixed,
sinceq; is alwaysl on the outside. Let; = K ; and define

1
R/ = R2 — F ZaiajKi,j
i

and notice thaf?’ takes the same value for @l € B. Let K p denote the matrix
containing the inner products of the boundary poitts; o denote the matrix with

inner products of the boundary points and outliers, ankgdbe a vector with elements
k;, i € B. Letap be a vector with the Lagrange multiplietis on the boundary, and
let 1, be a column vector of lengtfi with all elements equal to. Letnp denote the

number of points inB, then the set of equation3.(1) can be rewritten in matrix form
as

2 o 2
[)\KB,B 177,3} { Rl? ] =kp — XKB,O]-no- (3.12)
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This system of equations consistsgf equations and 5 + 1 unknown variables. The
constraint from((3.5) is included in the linear system, anda; = >, 5 a; + no,
whereno is the number of outliers.

%KB,B 1713 ap _ kB - %KB,O]-TLO
17, 0 R | A —no

[ Lir 0., | k —2Kp ol

_ NnBXng np B B,041np

S R (R A )
This may be rewritten

2K Loy || Inpxng Onp | [ aB — kg n —2Kp0l,,
., 0 0, A R |77 1

np

—no

Define
2Kpp 1
K/ — ) nB
|
Assuming the points are in general position in the expan@sgspsuch that the circle

center is determined by at most the expanded plus one pthietsk” can be inverted
to obtain an expression fatg.

InB Xnpg OnB ap _ 1—1 le _2KB,O]-no
[ o \ | = K A 1|t o (3.13)
From this we learn thatvp is piece-wise linear im\, while none of the constraints
given in (3.9) are violated.

3.3.2 The algorithm

Sinceo;, by theorerh 3.2, is continuous as a function pthis may be applied in finding
the regularization path. Notice that\f= n, itis easily seenthat; =1,i=1,...,n.
Therefore the algorithm is started in a state, where n, and from this starting point
A can be decreased, and the two events that happen while siecrgare

e A point from either the inside or the outside enters the bamyd

e A point exits the boundary to either the inside or the outside

In between any of these events, the regularization patheisepivise linear, as shown
in section3.3.1, and the parameters can be calculated ff@rhJ).

In the following, let! be the last event that occurred ahét 1 be the next event, so
that\' was the previous and bigger value of the regularizationmpater. Leto; be the
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value of alla; at the event anda;1 at the following event + 1. Then using thatx
is continuous

a1 = o+ (N = \Dp,, (3.14)

where only the pointsy; on the boundary need to be updated. ketc A be any

point, and)\. be the value of for which the event following everitwould happen, if

everything exceph was fixed. In Sectiol.3.2.1)\, is found for all points outside the
boundary, ieJ U O, and in Section 3.3.2.2, is found for points on the bounda#y.

3.3.2.1 Boundary entry event

This event happens at a point where the distance to one ofafoundary points
equals the radius of the (generalized) sphere. This canditan be formulated as

2 1
f(xe;)‘) - R*= Kete - )\*ZaiKe,i + ﬁ ZzaiajKi,j - R*=0
€ € i

Using thatR? is given by equation3;11) we find that

2 2
0=Kcc— . Zl: ;Ko — Kpp+ " zi:aiKh,i
2
= Ke,e - Kh,h + Y(Kh,A - KE,A)(al + (/\6 - )‘l)pl)
e

i
(K}L,A - Ke,A)al + )\?(Ke,o - Kh,h)
(Kh,A - Ke,A)pl + %(Ke,e - Kh,h) ’

S A —N=— (3.15)

where the sums have been replaced by matrix productspahds been substituted
using (3.14). As we are decreasing the valué ofve are only interested in values of
e — Al smaller thard. The biggest value, smaller than zero ef- \! therefore marks
the first entry event to occur. Since the complexity of calting K4 acy is O(n?),
this calculation should be done iteratively, updatifig 4 c; in each step, by noting
Ka a1 = Kaaoy + (MY — XN)K 4 pp, it can be calculated with complexity
O(n-npg).

3.3.2.2 Boundary exit event

Though equation3 13 gives an explicit expression far;, this is only the case, when
denotes a point on the boundary. Otherwigés limited by the constraint® < o < 1.
As «;, for i on the boundary, increases or decreases monotonicaljypaslof the two
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constraints comes into effect. Let the effective constiaéngiven by

_J o if p.>0
Cemﬁ—{ 1t pe<0

then the boundary exit value for tléh point is given by

Ceacit,e — Qe

Ae — A = :
Pe

3.3.2.3 Finding the next event + 1

Having calculated the first entry event and the first exit evitre only thing left is to
choose which of the two events happens first and let

M =XM1 max  {A. -}
LA N—A<0

An issue that has to be dealt with is how to propagaté the boundary set is the
empty set. This is done simply by adding the closest outti¢gh¢ boundary set, which
corresponds to making a discontinuous changginbut not inf(x) or c.

3.4 Complexity

The slope ofx with respect to\, given byp = K’~![kp 1]7 in (3.13 can be calculated
using simple matrix multiplications of complexit9(rn%). K’'~! can be calculated
using updating and downdating, also with complexit§n% ), as is shown in Appendix
The complexity of calculating ; is O(n%), while the complexity of evaluating
the boundary entry conditions@(n - n ), which means that the overall complexity in
each iteration step is of the order©fn - ng), asn > np. The regularization path of
the SVM could be found with the same complexity [54], and thebfems also show
strong resemblance. FiguBel shows a graph of the calculation time of the previous
algorithm and the presented implementation. Note that dnepaitation time follows
the theoretical complexity. For a populationl®00 points, the current implementation
can be up tal00-times faster, and for our testing purposes this has beelintitefor
the length of the calculations we set up for the previous @mgntation. The stability
of the calculations has also set a natural limit, as disclisssection3.4.1
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3.4.1 Stability

As the current fast implementation depends strongly on tipgl@alculations, rather
than recalculating them, there is a risk that the result evift due to numeric insta-
bility. This issue is investigated by running the implensgian on different data sets,
while testing the results for given values of the regulditraparameter\ using an
implementation of quadratic programming. The stabilitysw@sted on randomly gen-
erated data sets of dimension 2 and 3, and size 3000 and the result can be seen
in Figure3.2 The result can be seen to differ by no more th&i% even for25, 000

10

»-\
o,

Max difference

H
S

2 3

10 10°
Number of A updates

10°

Figure 3.1: Logarithmic plot of the congjgyre 3.2: Logarithmic plot of the error of
plexities of the two different implementgse jmplementation compared to the result

tions. obtained using quadratic programming.
updates and downdates of the inverse and the valie of

In the highn domain, the previously presented implementation suffén@d impreci-
sion in calculating the next valwé+! because the value was directly estimated rather
than, as in the current work, the differenge! — ).

3.5 Demonstration

To demonstrate the method a small example is analyzed usegriplemented al-
gorithm. From two sources wit-dimensional Gaussian distributiom80 points are
sampled and they are analyzed with a Gaussian kernel fungitb a width of1. The
result can be seen in FiguB3. Note that this value of the kernel parameter leaves
room for a rather flexible decision boundary. In the Figumeait be seen that some of
the points, the support vectors, are outside and some ade jm®rresponding to a;
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Figure 3.3: Decision boundaries for different values\of

of 0. In Figure3.4the entire regularization path ef, that is thea; corresponding to
each point, can be observed.

The calculation is performed in a fraction of a second fog thther small sample size.

3.6 Conclusion

The support vector domain description (SVDD) is a new andifgspmethod. Recent
work by Sjostrand et al. [95] demonstrated that the regeadion path of the weight
coefficients depends piece-wise linearly anThis allows for an efficient calculation
of the regularization path. The current work restates nedirfgs in a manner that
permits the calculation with a complexity 6f(n - n) instead ofO(n? + n%) in each
iteration step. It has been demonstrated thakfer 800 points, the calculation of the
regularization path could be performed uplt@-times faster. The algorithm keeps
the numeric error small for sample sizes up to 3000 pointslemthan0.5% in the
analyzed cases. We believe that this contribution wilvalfor even more applications
of the method, either for choosing robust estimates of thadce, or possibly in the
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0.2{

Value of Lagrange multipliers

Figure 3.4: The path of the loading coefficienis all going from0 on the inside td
on the outside, as is increased.

area of support vector clustering.

3.7 APPENDIX

3.7.1 Continuity of the Lagrange multipliers

THEOREM 3.1 The Wolfe dual formiV, given by|8.8) is continuous with respect to
the regularization parametea.

PROOF Let «; be a solution for a given set of points and regularizatiompeater),

and . a solution for regularization parametgy. It is seen that forang < s < 1,
a = sag + (1 — s)ag, satisfies the conditions am, and due to the polynomial form

of Wy it can be concluded thdv/; is continuous.

THEOREM 3.2 The Lagrange multipliersx are continuous with respect ta
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PrRoOFE Follows directly from the fact thall’; is continuous and the solution to a
convex problem is unique.

3.7.2 Calculation of K'~!

The two events that may occur to the boundary set either eeduaugmenB by one

point. This allows for an efficient calculation @€’—!, which is the purpose of the

current section. Using the following result by Volker Streis [99], the updates and

downdates of the inverse can be calculated efficiently

[ A B ]1 3 [ A1 4 A"1BS,CA~Y —A"'BS, (3.16)
C D - —SACA71 Sa '

where the Schur complement dfis denotedS, = (D — CA~'B)~!. The efficient
calculation ole’Jj, the inverse of matrix<’ after event,, will be presented in the
following two paragraphs.

Updating Suppose that the poiat has been added tB; to form B, thenk]
can be written as

+1

Ki Ko ] . (3.17)

K., =
141
+ Ky B, Ky p

HereSs = (Kp- p- — Kp- g, K, ' Kp, 1)~ " and defineSc = K, ' Kp, 3+, then the
inverse can be calculated from

’ —1
K Kpp ] (3.18)

. KZ_1+SCSASCT —ScSa
Ky g, Ky p= ’

- [ —S45%, Sa

which only requires a multiplication of a vector with a matof sizenpg, and this
multiplication has complexity)(n%)

Downdating Suppose that the poidt has been removed from; to form By ;.
Then K;~' can be written using equatiol.(8, only hereb* is the point that was
removed from the boundary

-1

Cixng Dix1 K- Ky« =
I+1

/
K/—l _ AnBL+1 XNBy L B"Bl+1 x1 _ I: Kl+1 KBH»lyb*
=
,Bit1

= K/[;i =A—-BCD™' (3.19)



20 On the Regularization Path of the Support Vector Domain De  scription




CHAPTER 4

Hierarchical Multiscale
Support Vector Clustering

Michael Sass Hansen, David Alberg Holm, Karl Sjostrand,sBam Dan Ley, lan John
Rowland and Rasmus Larsen

Abstract

Clustering is the preferred choice of method in many apptoa, and support vector
clustering (SVC) has proven efficient for clustering noisyl dnigh-dimensional data
sets. A method for multiscale support vector clusteringamdnstrated, using the
recently emerged method for fast calculation of the entgularization path of the
support vector domain description. The method is illusttain artificially generated
examples, and applied for detecting blood vessels from taghlution time series of
magnetic resonance imaging data. The obtained result®bostrwhile the need for
parameter estimation is reduced, compared to supportnveattering.

1This paper was presented at the International Symposium éatiddl Imaging 2007 [46]
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4.1 Introduction

With the emergence of new imaging modalities and an eveeasing resolution of

existing ones, the need for unsupervised clustering iggrédzan ever. Clustering can
be performed by parametric models, which is the case in ttie&ns algorithm intro-

duced by MacQueen [70], or it can be done by using a distanesume for grouping

points as in hierarchical clustering algorithms.

Ben-Hur et al. presented support vector clustering (SV®jchvutilizes kernel func-
tions to efficiently deal with high dimensional data [3]. SU€Ees the one-class support
vector domain description (SVDD) as the basis of the clusgeslgorithm. Tax and
Duin introduced SVDD in 1999 [101]. In SVDD the points are mpag into a high di-
mensional feature space, which divides inliers from otsli¢ is frequently calculated
with a Gaussian kernel replacing the Euclidian inner prodiibe decision boundary
consists of contours enclosing clusters of the data paiois the surrounding outliers.

The SVC clustering algorithm makes no assumption about tineber of clusters or
the shape of the clusters. Ben-Hur et. al. proposed to vargdhameters of the SVDD,
namely the kernel width and the regularization parametermanner that increases the
number of clusters while keeping the number of outliers amghded support vectors
(BSV) low. Hierarchical support vector clustering was praed by Ben-Hur in [4],
and this algorithm applies SVC subsequently on each clostére data contained in
clusters. It achieves in this way a strict hierarchy of @ust The clustering, however,
is determined from the initial clustering and its paramgter

The cluster labelling can be assigned more efficiently ugiogimity graph modelling
as proposed by Yang et al. [114].

In line with the seminal work by Efron et al. [24], where thguéarization path of the
LASSO regression algorithm is derived and similar to thekaar the support vector
machine by Hastie et al. [54], Sjostrand and Larsen show2606 that the entire reg-
ularization path of the SVDD is piecewise linear and can beutated efficiently [94].
This result is the backbone of a pseudo-hierarchical supeator clustering (HSVC),
presented by the current authors [40]. This algorithm et a clustering given a
scale parameter of the Gaussian kernel. Clusters are éstirgbustly and efficiently
for all values of the regularization parameter. A more rolaligstering estimate is
calculated from this ensemble of clusterings that form ceting hierarchical repre-
sentations, without prior knowledge of the number of owlieThe HSVC clustering
was tested on registered perfusion MR images.

The current work presents multiscale support vector dligg€MSVC), which may be
considered as parallel HSVC on multiple scales of the Gandsrnel. We observe the
data in different scales, and from the clustering obtainediiltiple scales we propose



4.2 The MSVC algorithm 23

to learn the clustering. The proposed method is indeperaféhe number of outliers
and bases the clustering on information from all scales énréimge of scales of the
data.

4.2 The MSVC algorithm

The foundation of the multiscale support vector clusteafgprithm is the one-class
support vector classification, this is also, in general,ahge for previous SVC algo-
rithms. The recently emerged method for an efficient catmraof the entire regular-

ization path of the SSVD forms the basis for finding clustenrmtaries as described
in Sectiord.2.1 Between events the discrimination function varies monigadly, and

it is concluded that the description is complete. The MSV@gbeathm is described in

Section 4.2.4.

4.2.1 Cluster Boundaries from the SVYDD

The cluster boundaries defining the different clusters aset on the support vector
domain description (SSVD), posing it as a quadratic optatidn problem for a fixed
value of the regularization parameter and given a kernedtion. The criterion to be
maximized, given a point set;, can be formulated as

i .+ AR? | Subjectt
Rglgl& Z:f + ubject to
(Xi — a)(Xi — a)T < R2 + fi and gi >0 Vi.

This criterion seeks to find the minimal sphere encapsuatiost of the points, while
minimizing the distance to the outliers also denoted suppmtors. The regularization
parameten helps to minimize the radiuB? and for large values of the radius will
tend to be smaller and vice versa. The number of outliersrisgly related to the
regularization parametex.

Using Lagrange multipliers the optimization problem (4&ah be restated as
1
rr(lgx Z O[Z'XiXZT — X Z Z aianiX?,
% i 7
0<a; <1, Z%‘Z)v 4.1)

whereq; are the Lagrange mulitpliers. For inliets = 0 and for outliersa; = 1,
which is a consequence of the Karush-Kuhn-Tucker compliargrconditions. For
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points on the boundary thsupport vectorsa are betweet and1. The outliers are
also callecboundedsupport vectors. The dimensionality can be increased @sbagis
expansion and substituting the dot-product with an innedpct, the inner products
can be replaced by a suitable kernel functfonk’; ; = K (x;, X;). In the current work
the applied kernel function was the Gaussian kefaget;, X;) = exp(—||x; — X;|[|*/7)
with multiple scales. The optimization problem can be folated similarly to the
problem original stated by Tax and Duin [101], only with ayblily different notation.

1
max E OZzK11 - = E E OéZ'OZjKij
o A ’
7 o 7

0<ao; <1, ) o=\ (4.2)

For a given\ the squared distance from the center of the sphere to ayant
Fx;2) = |h(x) — al|* = K (x,x)
2 1
_XzaiK(X7Xi) + FZZaiaij (43)
[ g J

4.2.1.1 The Entire Regularization Path of the SVDD

It was shown by Sjostrand and Larsen that the entire regal@oh path of the parame-
ter A can be calculated with approximately the same complexitge@sired for solving
the initial optimization problem, posed by Tax and Duin [9%he regularization path
of the parameters; is piecewise linear, which allows for the efficient calcidat This
fact can be realized by analysis of the distance functioms@points on the boundary.

f(Xn; A) = f(Xe;A), hkeB (4.4)

where B is the set of points on the boundary. Formulating this equdir different
points on the boundary and using the constrainta.oftom (4.2) gives a complete set
of equations for estimating all;. Let a be a vector with the values; and letp andgq
be the slope and intersection respectively, then (refed4bfpr a detailed derivation)

a=\p+aq, (4.5)

wherep andgq are the slope and intersection of the path on the intervaledmsn events
where a point either leaves or joins the boundgxy, A\, 1 [. An example of clustering
boundaries for different values of the regularization pagter and given kernel width
is illustrated in Figurét.1
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Figure 4.1: SVDD calculated for the entire regularizatiaitp The bold line marks
the boundary between inliers and outliers, actually a sphethe expanded basis of

the kernel function.
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4.2.2 Support Vector Clustering

In SVC, proposed by Ben-Hur et al. [3] the clustering is bagieelctly on the result
of the SVDD. SVC forms an initial step in our proposed mubliscsupport vector
clustering. From the distance given by E4.3) the radius can naturally be defined as
the distance of the points on the boundary. N@wf the SVDD can be calculated by

R=f(Xi;\) = Kip, — %Z%Km + % ZzaiajKi,j~
: T g

Consider an arbitrary point, and letg(x, \) be a distance function, defining the dis-
tance to the boundary.

glx, ) = f(x,\) — R . (4.6)

Now g is the decision function determining if a point is an inlielam outlier. In Figure
[4.1 the discriminating functiory is calculated to create the contour dividing inliers
from outliers. Since the optimization problem is to find aexghin thespace of the
expanded basjshe result appears very little like a sphere in the two disi@mal input
space. The different enclosed areas could be considerddsisrs, denoted support
vector clusters.

4.2.2.1 Cluster assignments

The decision functiory(x, \) specifies ifx is an inlier or outlier, but it contains no
direct information to determine if two points are connectbtspired from Figurét.1

it is observed that all paths connecting two points in twdedént clusters have some
points outside the clusters, which obviously serves as argedefinition of clusters.
The current algorithm uses an adjacency matrix to identifydluster. The connection
graph is sparsely built, similar to the approach chosen byg¥Yet. al. [114]. The
adjacency matri¥ is given by

A — 1o, ifg(xi 4+ p(X; — %) <0V pe 0] (4.7)
R 0 , else ) '

The clusters are detected from the adjacency matrix by ustgagdard graph theory
concepts. Outliers are by definition not adjacent to anytgplut are assigned to the
closest detected cluster, using a euclidian distance measu

4.2.3 SVC based on the Entire Regularization Path

Given regularization parametarand kernel widthy the clustering can be determined
from the adjacency matri¥4(7). When X varies on the interval [O;n] gives rise to



4.2 The MSVC algorithm 27

changes in the distance function, and thus potentially thstering. Previously we
showed thatf(x, \), the distance function given by Eq. (4.3), is monotonic oa th
interval [\;; A\;11[ between two events [40]. From this it can be concluded that th
events of a point joining or leaving the boundary of the SVBRIlso important related
to the formations of clusters. On the interya}; \;;1] a cluster cannot be divided
and merge again, meaning to say that all cluster formatiathd&observed by only
examining the points of events.

4.2.4 Multiscale Support Vector Clustering

The width of the Gaussian kernel, is effectively defining the scale of the clustering
problem. Wheny is of the same order as the biggest distance in the data,iatlers
produce sizeable kernel values as noted by Ben-Hur et al. [3]

Ymaz = max [X; - ;% (4.8)

At this value of~ the resulting boundary will form only one cluster, which the
purpose of clustering is not very interesting, but it setagper limit to the scale of the
clustering. As the one-cluster scenario is not very intergsve choose an initial value
of the kernel 5 times smaller than, ... were we expect to observe some clustering, at
least for some values of the regularization paramgterhe algorithm then continues
by cutting by half the scale parameter, which provides imi@tion about all scales in
the detected clusters. When most of the clusters only coateercluster due to a small
scale parameter, the algorithm is stopped.

4.2.4.1 Hierarchical Structure of Clusters

The clusters only change slowly with changes in the regzdsion parametek, which
gives the different support vectors clusterings for givamameters\ and« a rather
high level of redundancy. When an event consists of a poinirigahe boundary to
become an outlier, this does not necessarily alter the ynduch elsewhere. Since
the point is still close to the same cluster, and may be aatsativith this, still, many
clusters are close to identical. The similarity can be olesbin Figure4.1 Moreover,
the same clusters may appear again at a different scale fiffeeedt value of the
regularization parameters.

The idea presented in this paper, is to collect all the simgilasterings, across regu-
larization parameter and scale parameter, and build arbigraf clusters. The toy
example illustrated in Figurd.1 demonstrates clustering on an increasingly smaller
scale., and there is a strong relation between the diffetasterings of the data, which

is illustrated in Figuré&t.2
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Figure 4.2: The hierarchy of multiscale support vector tglting: From coarse to de-
tailed description.

The clusters, calculated for different values of the regedaéion and scale parameters,
are not, in general, nested in a strictly hierarchical wayatt multiple different hierar-
chical clusterings may be proposed. These different adluspeesentations demonstrate
ways to split a cluster in smaller clusters.

4.2.4.2 Quality Measure of Competing Clusterings

The described algorithm results in several competing etuspresentations of the data,
and each representation has several scales. To assesaliheajuifferent clusterings
we previously introduced a scheme similar to the 'withinddhe 'between’ covariance
matrices, trac(égvlsB) [40]. Instead ofSy, we argued that a weighted within matrix
Sy should be calculated, weighted by the length of the intembare a given point is
an inlier, or an outlier associated with the cluster.

Nclusters

Sw = Z Z I'L(Xi — i) TN (X — ) (4.9)

j=1 ieC;

whereA; defines the weighting of the point, which depends linearlytr@nlength of
the interval of\ where the point is an inlier and where it is an outli¢f; is a nor-
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malization constant. A potential clustering can now be ss=# using the measure
trace Sj;, ' Sp), which evaluates the variance within clusters, compardtigantro-
duced distance between clusters. In Figuré 4.1 small valfias corresponding to a
high confidence in the data, results in a separation of thepavts of the '+’ cluster,
whereas the other groups are merged into one cluster. Toppissite for high values
of the regularization parameter, where the smaller clastaty appear to be outliers,
but the two overlapping clusters are divided. The discration feature removes the
need to select one value af and appears to adapt to clusters of different variance.
The criterion for accepting a subclustering is introducgeddhreshold on the cluster
separation, given by tra(;@;;v‘lsB). The lower the threshold, the more clusters are
accepted.

4.2.5 Complexity

The efficient calculation of the entire regularization pathhe SVDD allows the ap-
plication of the described algorithm. The complexity foe tteferenced algorithm is
O(n? + n%) for each step between two events, wheggis the number of boundary
points. For each event, the clusters are detected from faeeaatty matrix, which can
also be calculated with a complexity of the order ofi€)( Comparing with other clus-
ters is done with complexity @(- n¢usters)- Since the number of events is typically
in the vicinity of 3-5n the overall complexity is polynomial with a degree around 3.
On the tested example, with about 100 points in 300 dimessithe algorithm took

a few minutes. The algorithm performance is virtually indlegent on the number of
dimensions whereas it works best for a limited number of nlsg®ns.

4.3 An application of MSVC: Vascular detection from
MR sequences

When tumors reach a volume df— 2mm?, the supply of nutrients through simple
diffusion is not sufficient to allow further growth. The tum@sponse via the secretion
of signalling molecules that stimulate angiogenesis (treegss of developing new
blood vessels). The angiogenic process is an obvious tergieé design of new anti-

cancer agents and extensive research has been conduchedares of regulation of

angiogenesis [61].

An approach to study angiogenesis in mice is placing a Matdigamber assay in mice
in vivo [67]. To assess in vivo angiogenesis, MR images haentacquired before,
during and after the injection of a contrast agent bolus ctwviieduces the signal of
blood in order to detect blood vessels [56]. The matrigehdber set-up is shown in
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Figure4.3 inside the mouse and after the extraction. The effects emntinavascular
signal due to the bolus administration is illustrated inuf&4.4.

(a) (b)

Figure 4.3: a: A mouse with embedded Matrigel chamber. b: Arlgel chamber
removed from a mouse. Red areas correspond to areas witth @ssels.

Figure 4.4: Snapshots of an MR sequence of a Matrigel chaplaeed in a mouse.

300 consecutive frames are acquired with a time resolutiéhab seconds. Animals
were anesthetized and fixated during the scan, resultirgsgthan 1 pixel movement
throughout the scan. Due to limitations in bandwidth and mgtra subset of pixels
was selected for designing the cluster criteria.

The chosen pixels, all within the matrigel chamber, aresifiated in Figurét.5. In
Figure 4.6, two time series of two different pixels are ithaged (noise pixel + pixel of
interest). The difference between the noise pixel and thkel pf interest is small com-
pared to the level of noise. Consequently MSVC was appligtiégoints illustrated
in Figure 4.5, and three clusters were identified

Since the mouse was fixated during the scan, the frames anmeddo be registered.
Because of limitations in bandwidth and memory, a subseti#lp is selected for

designing the cluster criteria. The chosen pixels, all inithe Matrigel chamber are
illustrated in Figuré4.5 In Figure/4.6 two time series of two different pixels are il-
lustrated. The difference between the noise pixel and tkel pif interest is small

compared to the level of noise. MSVC was applied to the pdilustrated in Figure

[4.5. Three clusters were identified from the multiscale suppecdtor clustering by

applying the quality measure described in Seddah4.2 Figurel4.7 shows average
intensity curves of the points assigned to the differenstels.
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Figure 4.5: The (white) marked subset ~ Figure 4.6:Selection of the signal re-

of points is used for calculation of the ~ sponse of two pixels from within the
clustering by MSVC. Matrigel chamber. Top: no blood ves-

sel, only noise. Bottom: probably
contains a blood vessel. The noise is
of the same order as the signal change.
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Figure 4.7: Curves showing the average of each of the thresterb+ one standard
deviation. Only one appears contrast-bolus and thus blelated.
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The distance to the 3 clusters is calculated pixel-wise pairts assigned to the nearest
cluster. The clustered images are compared to the differbatween T2 before and
after injection of contrast agenf\{T2) and to an optical image of the extracted chamber
to validate the results. Figuee8 shows the results from the three modalities. It can
be observed that for this chamber there is a very strong latie between the blue
cluster (Fig| 4.8(a)), and thAT2 weighted images (Fig. 4.8(b)) and the red area on
the optical image (Fig/4.8(c). The two noise classes seem to be distributed a bit
differently, as the red one is primarily concentrated acbtive area with blood vessels.
Similar results are obtained in the second example MR seguemly in this scan

(@) (b) ©

Figure 4.8: Comparison of segmentations. a: Clustering BYRI. b: difference in T2
weighted images. c: optical image of the extracted chamber.

MSVC divides the data in 4 clusters, which can be seen in EigB. In Figure 4.10
the result of the clustering is compared to th€2 images and to an optical image. Not
all of the blood vessels apparent in the optical image arectkd in theAT2 image,
hence the need for further refinement using a clusteringadeth

4.4 Conclusion

The proposed multiscale support vector clustering (MS\&Cdlémonstrated to give
sensible results on a random data set and in a real clustgplgation, and this with
the same parameters in spite of the fact that the two datameet®ry different in scale,
n and dimensionality. The presented method is rather fastsavidually independent
on the dimensionality if the problem.

The proposed clustering algorithm has only one paramet@chas the threshold for
splitting clusters, and this parameter correlates stgomgih the number of clusters
(and their quality in terms of separation). We thereforedvel that MSVC can be a
very useful tool in many applications where it is possibleédfine a kernel.
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Figure 4.9: Curves showing the average of each of the thresterk+ one standard

deviation. The bolus is only visible in one and thus bloodted curve. The clustering
is done on the sequence shown in Figure 4.4
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Figure 4.10: Segmentation comparison. a:Clustering by RISV difference in T2 c:
optical image of the extracted chamber
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CHAPTER 5

Bayesian formulation of the
Support Vector Domain
Description

In the current work a Bayesian formulation of support vedtmmain description (SVDD)
was developed having SVDD, as it was presented by Tax andiDa®99, as the max-
imum a posteriori solution. The introduced method is shawdliver estimates of the
probability and also a measure of the certainty of this estiém Using the algorithm
developed in [49], the entire regularization path can beiefitly calculated, and calcu-
lating the derived approximated evidence of the data iggbttfarward when the entire
regularization path is available.

The method was tested dnand 2-dimensional artificial data sets, of which the
dimensional is included in the presentation for illustrati The tests seem promising
considering the number of approximations involved, butfdreulation still needs to
prove its worth on real world problems.
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5.1 Introduction

We are often faced with data of high dimensionality. Imagiegices with an intrinsic
high number of variables are emerging for more and more egdins, and in order
to deal with this class of data, a whole series of data arsmlysils have emerged.
Often they are using the kernel trick, to create efficienbatgms dealing seamlessly
with the high number of dimensions through inner productsi)enkeeping flexibility
for modelling distributions [106]. The support vector domdescription (SVDD),
introduced by Tax and Duin [101] in 1999, is a method for olss< labelling, which
also falls in the aforementioned category. SVDD may be useddvelty detection as
was done by Zhang et al. [115], for clustering, which has bera whole separate
field of study [3, 110] or outlier detection [103].

To increase robustness Tax and Duin included a penalty rmegative examples in
their support vector domain description [104]. Park et avehused SVDD combined
with geodesic distance for pattern denoising [79]. Seo aoduged SVDD for face
detection [91]. However, neither provided information awhto estimate the param-
eters. Guo et al. demonstrate how postprocessing thesedgutie SVDD could give
a tighter fit, calculating a new boundary function, based ma\gerage distance to the
SVDD nearest boundary points [36]. This involves settingeision threshold, which
has to be set after empirical trials. Schélkopf et al. intimed a different one-class
classifier, which finds the hyperplane that best separagedata from the origin. They
show that for radial basis kernels, the data really lies dwesp and finding the optimal
hyperplane corresponds to finding a hypersphere which sggrtree part of the sphere,
which is mainly populated by data, ie. yielding the sameltesis SVDD [88, 6].

In 2004, Sollich used Bayesian methods for analyzing thepaeupsector machines
[97]. This Bayesian analysis enabled him to estimate thdeevie of the method,
which may be used for model evaluation [69]. Several intergsnethods for improv-
ing SVDD have been proposed, however a Bayesian calculatievidence would still
be of much use for estimating evidence of different sets cdipaters. This is the mo-
tivation for the current work presented here. In 2000, Tigphtroduced th&®elevance
Vector Machinewhich gives a Bayesian interpretation of the support wettachine,
and introduces a set of relevance parameters that chooselg¢hance of a vector for
either regression or classification [105]. The relevan@oremachine is, however, de-
fined similar to the SVM problem and has a drawback in the Bt computational
cost associated with the optimization.
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5.2 Support Vector Domain Description: A probabilis-
tic interpretation

Suppose a data setconsisting ofn samplese; is given. Following the idea of SVDD
introduced in [102], the data is analyzed by estimating ain@d enclosing hyper-
sphere, containing most of the data examples, while minimithe distance to outliers,
and the radius of the sphere. In [95] it is demonstrated h@netttire regularization
path can be calculated efficiently, and using the same pattte optimization problem
can be stated as

: 2 2 2
min > (lz—al*— R?), + AR (5.1)

X, eD

where) is a regularization parameteR, is the radius of the sphera,is the center of
the sphere, an@l) . denotes the (reverse and shifted) hinge loss function diyen

~J 0 ,z2<0
(@), = z ,x>0

To allow the sphere to assume a more general shape, the dpthenpaojected into
an expanded basis, and by defining the inner product in thenglqa basis< -, - >,
expressionq.1) may be stated as the following minimization problem

AR? + Z ((o(m:), d(x5)) — 2 (d(x4), a) + (@, a) — RQ)+ (5.2)

T, eD

whereg(x) is a transformation to a basis that may be expanded. To inteod prob-
abilistic interpretation off (5]2) it is natural to assumattlit describes the negative
log-posterior probability for the parametaisand R, givenD. The ordinary SVDD
would then be interpreted as the maximum a posteriori (MAR)t®N. The first term
corresponds to a prior

Q(a, R) x exp (—)\RQ — %7_2 (a, a)) (5.3)

where the hyperparametar(the usual regularization parameter) controls the inverse
variance of the radiug, + are standard deviations, and taking the limit-> oo cor-
responds to a non-informative prior @ as is implicitly assumed in normal SVDD,
where no restrictions are placed on the center of the sphere.

Since [(5.2) is defined solely using inner products in thesbabithe image ofp, it
is preferable to introduce variables taking the values efitiner productsh, =<
x;,a >. Itis seen that these new parameters may be generated fraussi@n pro-
cess, and the covariance of these zero-mean parameters is

E(@:8;) = E((z;.a) - (z;,0)) = 7* (@:,2,) = 1K,
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since the elements @f are assumed to be independent and identically distribuid w
variancey?. The inner productz;, z;) is seen to define the covariance functifsy
and it is clear why the kernel functiolt,; is generally termed the covariance in [11].
If the analysis is limited to stationary kernels, ie. megrafi norms are constant, the
expressions for the original problem statement (5.1) amnat ¢6.3) become trivially
constant with respect to changesiinHowever, let’ be the matrix Penrose pseudo in-
verse operator, then in the finite dimensional case, whedithension of the expanded
basis is smaller than the number of samples and the rafikisiequal to the dimension
of the (finite dimensional) expanded basis, the prior (5.8Y ilme written

1
Q(®, R) o exp (—)\R2 - 27_2<I>TKT<I>> (5.4)

where K denotes a (square) matrix with eleme(is;;), and® is a vector with ele-
ments®;. Otherwise, when data is not spanning the whole expandes), bets{u} }
denote a orthonormal basis for the partwhot spanned by«;}, let {a}} be the
projections ofa on these basis vectors, and &gt denote a vector with elements.
Then it is easily seen that the MAP estimate &ris 0. In this case, when the data
is not spanning the entire (expanded) feature space, the (pr#) could be corrected
by adding a third terrraréy—2 < a*,a* > in the exponent, however for simplicity of
presentation this will be assumed not to be the case. Maogesistingly however, is to
replace the original formulation dfz, a) with ®” KT® as was done in5(4), even if
stationary kernels are used, noting that this is in fact dvatad reformulation of the
original problem.

The second term ifB(2), which is data dependent, may be interpreted as a liketihoo
term given by
Q(Dla, R)
o exp l— > (b)), ¢(a:)) — 2 (¢(), @) + (a,a) — R?)

T, €D

Applying the new parametrization ¢&, a) yields the following likelihood function
Q(D|®, R)

o exp [ 3 (K — 20, + ®TK® — R2)+ (5.5)

X, eD

Aiming at using the method for outlier detection it is usdfulntroduce a binary vari-
ablesy;, which takes the valugif the pointx; is outside the sphere andf it is inside,
ie. when the value of the hinge loss B is 0.

O\l , K;; —2®;+®"K'® — R <0

1\0 , else (5.6)

Plys = 1\ys — /D, ®, ) — {
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This trivial definition is already normalized.

The normalization factor of)(D|®,, R) depends in general of® and R, so using
Q(D|®, R) directly as stated irl (5.5) would change the property thatSWDD is
obtained as the MAP solution. To avoid this problem, thetjpiobability P(D, ®, R)

is written as

P(D,®;,R) = Q(D|®, R)Q(®, R)/N (D) . (5.7)
The shape of the posterior probabiliB(D|®, R) x Q(D|®, R)Q(®, R) is by con-

struction having the SVDD as the MAP solution. The normaiarafactor V(D) is
chosen most simple to k2 - independent, and it may be defined as

N(D) =N = /Q((I),R)N((I),R)dcbdR

N(@® R) =Y Q({z:})Q(D|®,R)
{T:}

= ZQ({%}) exp [ Z (K71 —20,+ ®TK'® — RZ)

{x;} x,eD

+

whereQ({x;}) is some prior on the obtained set of input vectors. Usuakgéhvec-
tors are assumed sampled independently from the input spasiag this definition
sampling can be done by sampling a vedkoand a radiusk from the Gaussian prior
Q(®, R), then sample a sét; } from Q({x;}), and if a realization of a uniform ran-
dom variable is smaller tha@({x; }|®, R), the sample is accepte@({x;}|®, R) is
guaranteed to be smaller thaphowever it may be quite improbable for many realiza-
tions of ®. In the case of a high number of sampldésjs sampled from a Gaussian
process with one particular covariance structure, and (&eoring the hinge loss)
evaluated with a different covariance structure, which esafiractical sampling hard
in high dimensions.

The actual prior distribution is then given by
P(®,R) x Q(®,R)N(®,R) , (5.8)
and the likelihood by
P(D|®,R) x Q(D|®,R)/N(®,R) , (5.9

Given the shape of the likelihood it is not so surprising thette normalization depends
on® andR.

Using the introduced representation, the log-posteriartmmaximized, which gives
the usual SVDD result.
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5.2.1 Maximizing the log-posterior

We maximize the log-posterior of the model
—2
“AR? — %@TKHI)
-y (—2@- + K+ ®TKT® RQ)
, +
Replacing the hinge loss by a set of valugswherea; = 1 when the distance is
bigger than zeray; = 0 if it is negative, and) < o < 1 when the distance is zero (this

process is equivalent to introducing slack variables argtdrsge multipliers as done
in Chaptel3), gives the expression,

—2
COR? - %@TKT@ - [72<1>,; v K+ ®TKT® - R? (5.10)

By differentiating with respect t@®, wherea conveniently represents a vector contain-
ing the elementéa; ) we get

20— [y 42 o | K@ =0
L SR
T St

Using this expression we arrive at the Lagrangian dual aintd the one described in
[95], which has to be maximized with respect{ta; }, to achieve the MAP solution,
supposing ; «; is known:

1 2
where the sun)_, o; = s is assumed fixed. By differentiating with respectidit is
seen that
Z a; = A s

and substitution intg (5.11) demonstrates how the probkeidéntical to the SVDD
minimization problem3.8), where\ determines ", «;.

1
Z il — Nrly2 Z i K
[ 3
The expression is noted to be increasing with increasingegabfA. If K; ; represent

stationary kernels, e.g. the Gaussian kernel [32], therapti oy 4 p is independent
of v, and an obtained solution is thus the same as the one fromah&WDD.
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5.3 Marginalization of parameters: calculating the evi-
dence

The probabilistic formulation of the SVDD, introduced incBen[5.2, is enabling the

calculation of the evidence of the data, given model and tpgrameters. In a true
Bayesian treatment the hyperparameterandy should be marginalized. With no
prior on A, the evidence of the assumed model is given by

P(D) = /P(D\)\,’y)d)\d’y

P(D|X,~) may be estimated using.), and again the hyperparameters are implicitly
assumed given for notational convenience.

P(D|A, ) = /P(D\R,@)P(R, ®)dPdR
/P(D|R, ®)P(R)P(®)d®dR

Returning to the expression for the MAP estim&é () itis seen that = >, «; alone

is determining the MAP estimate @. Remembering that the valu¢s; } depend on
the data likelihood and the argument of the hinge loss fongii is realized that the
optimal value, givers, can only be obtained ikR? corresponds to the MAP estimate of
R2. Let s be given bys = )\ then

-2
P(D|\,7) = /exp [—)\RQ - %@TKT@—

A . Tt _ p2
Z(Kw 20, + dTK1® R)+ INd®IR  (5.12)

%

To estimate this integral, an approximation is made, wideie developed around the

MAP value given the sum = s(R?). Letay, ap,; be the MAP values of the parameters
a;, and defingb = &, 4 p + AP, whereAd is the perturbation of the MAP estimate,
then

—2
P(D|)\, ) = /eXp {—/\RQ — %A@TKTAQ—

3 <di —2 (A@i - M) + A*I)TKTA<I>> /Nd®JR  (5.13)

Z QM AP,

i +
is approximated using a modified version of Laplace’s me{bd#l However, inspect-
ing the argument of the hinge loss, it is seen that for smatlpeationsA®, the sum

is dominated by the constant terms, and for increasing fiiations, the quadratic term
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becomes dominant. Therefore, the sum over all data poiatsigned the valuesand
>, o; respectively. The linear terms in the sum are seen to appaiely cancel out
except for skewness induced by the hinge loss function. Plpeoximated evidence
becomes

P(D|\,7) ~ / exp [-AR?] - exp [—;MF (2nKT +~721,) A@}

- exp [— Z amapiKii+ayapKayap + R? Z amvap,| /NAAIR®
(27T)n/2
exp | R? QM AP
N Z AL
cexp [=AR® = anapiKii + adapKanap| dR . (5.14)

By using the entire regularization path of the SVDD, thiggral can be computed to
an approximation of smaller order than the previous appmakons, by calculating the
trapezoidal sum along the regularization path. This is dubé fact that the radiuB

is decreasing monotonic as a function of the regularizgti@rameter\, as noted in
Section 5.2.1. In the Appendix 5.6.1 details on calculafingre included.

Unfortunately, there seems to be no straightforward waystionate the normalization
constant\/. The sampling procedure discussed earlier is too cumbergorhigher
dimensions, and the integral is hard to approximate for #reegal case. It has been
argued by Opper and later by Sollich that the Bayesian tresattstill may give sensible
results, even when the evidence is not properly normali@éd{7]. However, it is the
view and experience of the author that at least obtainingasomable approximation
would be much preferable, if one wants to compare differemtidance functions (or
the implicitly given parameters of these, as in Chapter 4).

5.3.1 The expected value oj;

The output that is actually expected to be of interest in thedyasis is the individual
classifications of the input vectoss as either inliers or outliers. 1r5(6) the variables
y; were defined, which make this distinction. These variabkygedd on the param-
eters (and the hyperparameters) as well as on the input miat® Specifically on the
covariance of the input). However, using.14) the expected value (considering the
parameters as stochastic variables) may be calculatedwtittaving to find the nor-
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malization factor\V. The hyperparameters are implicitly assumed to be given by
E(y;) =0- P(y; =0/D) +1- P(y; = 1|D)
:/1 - P(y; = 1|D, ®, R)P(®, R|D)d®dR

_ [1-P(y = 1|D,®,R)P(D|®, R)P(®, R)d®dR
B P(D) '

(5.15)

A scaled version ofP(D|®, R) may be used, since it is normalized with the same
scaled version when calculatirigfD) using 6.14). Given the definition of the expec-
tation, and the variablg; it is seen that the expectation can actually be perceived as
the probability for the point; to be an outlier. Following the same arguments we may
calculate the variance gf

E((y; — E(1:))?)
=(0—E(y:))* - P(y: = 0|D) + (1 — E(y:))* - P(y; = 1|D)

However, for binary variables the variance is giveniby; — E(y;))?) = E(y;) —
E(y:)*.

5.4 Example

A small 1-dimensional test example was generated to demonstratadtieod, con-
sisting of two clusters of Gaussian randomly sampled poiitis varianced.75 and
1.05, and centered with a distance @falong with20 Gaussian distributed noise ob-
servations centered at the mean with a varia@iceThe example is analyzed with the
ultimate goal of finding the mean classification of each pastwell as the variance
of the estimate. A Gaussian kernel, with a kernel width@®fs chosen, and illustrated
along with the sampled points in Figure 5.1.

The regularization parametarwas set aR0, coinciding with the number of true out-
liers, ie. the number of noisy observations added to the pl@anThe expected value,
and variance ofj; for each of the points was calculated as described in Sebtid,
only the distribution with respect tA® is assumed to be dense around the MAP value
®* such that the whole probability may be assumed to lie at tilisev The results are
visualized in Figuré&.2

The proposed method is seen to identify the two clusters glienwith some errors
due to the overlapping groups, and, maybe, also the needipost vectors to define
a cluster. The variance of the estimates is particularigrégting, and a plot of it can
be seen in Figurg.3
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Figure 5.1: The distribution of th&! 1D points is illustrated, as well as the size of the
kernel used .
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Figure 5.2: lllustration of classification result of thettegample, along with the de-
cision function on the interval, where the dashed lines sti@iexpected valug: one
standard deviation.
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Figure 5.3: lllustration of the variance of the classifioatestimates in Figure 5.2. The
variance is seen to be bigger on the boundaries betweeridastd outliers.
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It is evident from the variance plots, that the variance eféktimates is bigger on the
boundaries between the clusters and the outliers. This &waal consequence of the
definition of the variance, however the width of the peaksois he wide peaks can
be perceived to reflect the fact that it is harder to tell (gitlee scale) if the left outlier
points are actually inliers or outliers. It is interestimgriote, that the variance is also
comparably small in the cluster centers, where the distamsepport vectors is bigger.
This may be seen as an argument for the support vector idéeg gense that modelling
the boundary is the most important for (one-class) classifin. The distribution of the
conditional probability giver is shown in Figuré 5.4. The distribution is seen to be
lightly peaked, with a small favor to smaller radii, whichremsponds well with the
choice of regularization parametgr

x 10

w »

Conditional probability
N

l L L L L
0.7 0.75 0.8 0.85 0.9 0.95
Radius R

Figure 5.4: Relation between the conditional evidencelierdata given the radius,
ie. with @ marginalized (the evidence has not been properly norntliZehe\ value
of 20 favors smaller radii, since it a priori assumes a high nunobeutliers.

5.5 Discussion and conclusion

In the current work a Bayesian formulation of SVDD was depelibhaving the SVDD
presented by Tax and Duin [101] as the maximum a posteritrtiea. In Sectiorb.4,

the introduced method was shown to deliver estimates of thkability, and also a
measure of the certainty of this estimate. Using the algoritieveloped in Chapt&
the entire regularization path can be efficiently calculatnd calculating the derived
approximated evidencé& (14 is straightforward when the entire regularization path
is available. Marginalizing\ may be quite straightforward without adding too much
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computational load, but estimating the normalization ficieht remains an open prob-
lem. The method was tested dnand 2 dimensional artificial data sets, where the
1-dimensional has been presented for visualization. Thdteeseem promising con-
sidering the approximations involved and the small complelut the formulation still
needs to prove its worth on real world problems.

5.6 APPENDIX

5.6.1 CalculatingR

R is clearly defined when the value df, «; is at an event, and in between, the value
can be calculated by using the standard distance functidsoandary points defined
in in Chaptei3.

2
Rzikb* . Ky o0+ ——— -
20 2% Y

i ; Q)

Making the substitution from the linear regularizationtpé8.13), representing. =
o’ + tp, wherea/ is the value ofx from the previous event, andlis the slope of the
(linear) change imx, andt is a parametrization of the line. Making the substitutidw, t
resultis

R? =
ky

2 ; 1 ) .
ZKb,i(Oéf +tpi) + (o +tp)TK (ol + tp)

T g, 4 N2
Yo+t 5 (Ziag—i—t)

In the case when the algorithm is initialized, for no regiatation, all points are inliers,
ie. a = 0, and the radius assumes the following fixed value until the: eeent

R* =1k, —2) Kypi+p Kp (5.16)
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CHAPTER 6

Discussion and conclusion

In Chapter3] an efficient algorithm for calculating the entire regutation path of
the support vector domain description (SVDD) was preseritad ability to calculate
the entire path with a complexity in the same order as soltlegoriginal quadratic
problems gives inspiration to utilize the extra informatiavailable from the entire
path. Not much effort in the literature on SVDD has been ptd otetermining the
optimal value of the regularization, or possibly an ensenatbivalues, and some efforts
appear ad hoc [3]. In Chapter 4, a method for hierarchicgbsrtiprector clustering,
based on information from the entire regularization patid, multiple Gaussian kernels
is described. This method can be considered an extensiomp&viously developed
method, which is also empirically shown to give good resoiftseal world data [40].

Testing the methods on more data would be interesting inutued to draw more con-
clusions on the nature of the support vector domain degmmifor clustering. How-
ever, this would also be very interesting to see combinel i analysis presented in
Chaptef5, where Bayesian methods are applied in the attempt to dnaetditatistical
conclusions from the SVDD analysis.
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CHAPTER 7

Introduction to
parameterizations of
deformations

Computations performed on a computer need by nature to laengderized at some

point to a finite dimensional space. This may be done in diffeways, for instance

by a discretize-optimize approach or an optimize-diszeetipproach [73]. In image

registration, the Cubic B-spline kernels used by Ruecked.e [85] and the cosine

kernels presented by Cootes et al. [16] are both exampldasaktizations that restrict

the optimization to the finite dimensional space of the badig parameters are in both
cases controlling the deformation field:ityy andz directions, where the support of the
control point influence is given by the associated basistfoncand the deformation

field is given as a linear combination of the basis functiartgere the linear coefficients
are the control points.

For some applications, however, it has been shown to bedbi®to choose a differ-
ent parametrization to increase the stability of the optation. In electrostatics and
fluid flow estimation parameterizing by the divergence areddbrl has this property
[57, 60]. In ChaptelB an image registration parametrization is introduced, tvicie-
fines thek parameters iR”*, while guaranteeing that the resulting deformation field
is diffeomorphic [45]. In Chapte® deformation potentials are presented, where the
curl and the gradient of the potentials are controlling tafodnation fields [42]. This
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representation is shown to give an intuitive interpretat the linear elastic regular-
ization.



CHAPTER 8

Diffeomorphic Statistical
Deformation Models

Michael S. Hansen, Mads F. Hansen and Rasmus Latsen

Abstract

In this paper we present a new method for constructing diff@phic statistical defor-
mation models in arbitrary dimensional images with a nadingenerative model and
a linear parameter space.

Our deformation model is a modified version of the diffeonficpnodel introduced by
Cootes et al. The modifications ensure that no boundaryiaéstr has to be enforced
on the parameter space to prevent folds or tears in the dafamfield.

For straightforward statistical analysis, principal cament analysis and sparse meth-
ods, we assume that the parameters for a class of deformméitam a linear manifold
and that the distance between two deformations are givehebgnetric introduced by
the Lo-norm in the parameter space. The chogmorm is shown to have a clear and
intuitive interpretation on the usual nonlinear manifold.

Our model is validated on a set of MR images of corpus callogitmground truth in
form of manual expert annotations, and compared to Coatestel.

1This paper was presented at the NRTL workshop, which wasgfdhte International Conference on
Computer Vision 2007 [45].
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We anticipate applications in unconstrained diffeomoegynthesis of images, e.g. for
tracking, segmentation, registration or classificatiorppges.
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8.1 Introduction

Registration is the problem of establishing corresponddmsiween points in different
images. It has been used for building models of variatiorrdqugs of images for sev-
eral years. Cootes et al. proposed the very successfuéagpearance models in 1998
[15], which, once trained, can establish correspondentedas points in the model
and the images using a piecewise affine mapping. Rueckdrtgeaented a statistical
deformation model based on registrations of an atlas torttagés of the group [85].
Joshi et al. demonstrate how to construct an unbiased atlasd population [59],
and Cootes et al. presented a guaranteed diffeomorphie shagel [16] by using
smooth kernels for interpolating a warp field and puttingrieions on the variation of
the parameters. Vester-Christensen et al. have presemgsctalerated version of this
algorithm [108], which is based on the inverse compositiomethod by Baker et al.,
which we have also made extensive use of in the presented[ijork

8.2 Methods

We define image registration as the identification of corwasgipnce between positions
in images. In the current work we address problems wheredirespondences can be
represented by a diffeomorphic functighe H, whereH denotes the infinite dimen-
sional group of diffeomorphisms dR”. The mapping from one image to the other
is differentiable and the inverse exists and is also difféadle. Popular speaking this
limits the problem of registration to the problem of finding@oth warps without folds
or tears. More precisely this is fulfilled, when the Jacobeafahe warp field is positive
and well defined.

In the statistical analysis of the warp functions we arerggted in estimating an unbi-
ased atlas of the structures we are registering. We idesilifj an atlas as the group-
wise maximizer of similarity between the atlésand the deformed imagds, while
minimizing the deformation fields;.

(s, R| = ?iEZS[R, I; 0 ¢;] + aD(¢;)? . (8.1)

whereS denotes the similarity measure afd¢) denotes the regularization term, in-
troduced to regularize the wakp further than just restricting it to the space of the
parameters, and is the regularization parameter.
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8.2.1 Parameterized diffeomorphisms

Fletcher et al. have investigated geodesic curves on thinean manifolds of the
parameters of the M-reps parameterization [28]. Most ofclimeent statistical analy-
sis, however, is based on the assumption that the data i®etboa a linear manifold
with the Euclidean metric, e.g. principal component arial{BCA) and independent
component analysis (ICA), which have nice properties atytioal tools. This is our
motivation for introducing a functiog which identifiesR™ with a (hopefully inter-
esting) subset of diffeomorphisms.

Let H(R") denote the set of diffeomorphisnig : RY — RY). Now letG be a
bijective mapping:

G:RM H; . (8.2)

whereH; = G(RM) c H. We letH, inherit the Euclidean metric from the parameter
spaceRM

d(G(t1),G(t2)) = d(t1,t2) = [[t1 — t2]l2
t1,t2 € RM andg(tl), g(tz) € H; s (83)

from which we conclude tha is a homeomorphism, and that the spakigs= G(R)
andR™ are topologically equivalent. To conclude it can be obsétiat the defined
metric on the space of parameterized warps istheorm onRY as intended.

8.2.1.1 Composition of warps

The composition of more diffeomorphisms is diffeomorphibjch is a very important
property of diffeomorphisms in the present context.

feM,ic{l,2,. . . ,n}
¢:fnofn_1o...of1$¢€7'{ (84)

This allows for the construction of diffeomorphisms of higltomplexity by the com-
position of several simpler warps. We shall assume we ardindeaith parameterized
warp functions, and our statistical analysis of warps carebleced to the analysis of
the warp parameters, in line witB.g). For all images in our set the warp parameters
shall warp from oureference R, into the currentarget, /. In order to be able to com-
pare parameters from different warp compositions it is @vidhat all our parameters
exist in the same space. This is achieved by ensuring thatatls f; in a composition
warp from the reference coordinate system[16].
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8.2.1.2 Grid based diffeomorphisms

Several grid based representations of diffeomorphisme baen presented and they
are commonly used at different levels of detail and compesedeedingly [16, 73, 85].
A general trait of the grid methods is that they manipulateghrameters of the func-
tions describing the diffeomorphism, and that the functibave a local support in the
image, either as points defined in the image or as basis &msctvith support around
a control point. Often this parameterization of the gridnigér in the parameters and
this obviously imposes some restrictions on the paramétgosoduce diffeomorphic
warps. Cootes et al. specify a cut-off at displacementaefargan% of the cosine based
kernel [16] and Lee et al. find a threshold bound on the B-sgharameters to secure
that the B-spline based warp function is diffeomorphic [66]

8.2.1.3 A proposeds

Let F be the function mapping from a real parameter sfeinto the space of func-
tions fromR" to RY, e.g. in case of the B-spline warp,maps from the parameter
space into the space of-dimensional B-spline functiong : RV to RY, the image of
F, K can be shown to contain functions that are not diffeomorphic

As discussed in the previous section there can for some heaaed warps be speci-
fied a threshold such th& = |—71, 71| X -+ X |—7ar, 7as[ @NdF : P — Hy, where

H; = F(P) C H. In the current study we have investigated the use of a foncti

g :RM — P, thatis, a bounded monotonic injective function into thacspof thresh-
olded displacement parameters. Construc@ing F o g, wheregG : RM — H, gives

us the desired functiodi, namely a homeomorphic mapping from the parameter space
RM into the space of diffeomorphisms. As an example of the fangt we have cho-

sen a set of hyperbolic tangent function, because the rahgeavit is close to linear is
large. The composed mappiggand the different ranges are illustrated in Figure 8.1.

We defineg coordinate-wise by
g= {gl, ...7gA[} Wheregi R — ]—Ti,Tl‘[
S; = gi(lfi) = 7; tanh a;t; ,for i€ {1, ,M} (85)

wherer; are the threshold parameters reducing the displacemeatnpter space of
the warp toP € R™, s = {s1,...,spr} € P are the displacement parameters and
are constants ensuring that the impact of gadh of the same order of magnitude.
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H(R*“*’)
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Figure 8.1: lllustration of the mapping from R” to G, along with our proposed
composed mapping = Fog
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8.2.1.4 Properties of thgy mapping

Before we continue with an empirical validation of our prepd mapping we will
make some theoretical considerations over the choice ofbarmrphic mapping.
For small valueg € RM the L, norm inRM is equivalent to a scalefl, norm in
g(RM) to a first order. In other words, relating this to diffeomdrpwarps, for small
deformations the defined norm is equivalent to the usualicn@pplied in analysis of
the warp fields [16, 85].

8.2.1.5 The parameter distribution

We believe that the distribution of the parameters is wedkdibed by normal distribu-
tion, and we will show what distribution this describes ie tlisplacement parameter
space of the warp function. L¢f, be the marginal distribution of the parameteand
fq: be the marginal distribution of the warp parametges= g;(¢;), then

2
1 -
fiti) = se % (8.6)
\2mo;
-1 2
1 g (;’i)
o= (7
T 90, -1 /2m02
2 2
0207 o ) mng)? e20? o Gitri)?
e 27 + e 2o 8.7
. . ) ©.7)

wherepu; = “2‘“ and this distribution is seen to be the composition of thraa<sian
distributions scaled by—!. For smally; this is approaching the Gaussian distribu-
tion which is often the distribution for the warp parametershe small deformation
domain and foru; big the twou; displaced distributions dominate, and we observe
a high concentration of parameters around the thresholth the presence of strong
deformations this also what we expect when imposing a ttdgin the warp deforma-
tion parameters. Based on these considerations we expédtdimensional normal
distribution of our parameters to be well suited for moaejlithe distributions of the
observed deformations.

8.2.1.6 Statistical deformation model

In the previous section we argued that the expected disitribwf warps could be
modelled as aid/-dimensional normal distribution. If this is the case PCknswn to
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be the optimal choice of analysis tool for creating a compaadel of the observations,
and is therefore the method of choice in the current impleatiem.

8.3 Implementation

To validate our approach for construction of diffeomorpiiédormation model we have
adapted the grid based diffeomorphisms by Cootes [16] withgomapping. These
diffeomorphisms can be viewed as an extension to standedrlinterpolation, where
the interpolation coefficients are transformed by a sugt#&ernelk(r) which ensures
smoothness across the grid boundaries. The displacemenbfpointz ¢ R? is
given by

M-
M-

u(m, d) = kn(v)km(w)di+n,j+m

0

3
]
o

n

I
MH
MH

ai+m,j+'rz(x)di+n,j+'7n (88)
m=0n=0
_ |a(x) 0
_ [ ’ a(w)T]d 8.9)

whereky(r) = k(r), ki1(r) = 1 — k(r), i andj is the local indices of the neighboring
grid points,v andw are relative positions af in the neighborhood andlandd; ; are all
the displacements and the displacement of thg)-node, respectively. By substituting
the displacementd with the ¢ mapping with a suitable threshotd this deformation
model will no longer be able to generate non-diffeomorplsisin the present example
using the Cootes kernet,= 1/7.

For notational simplicity the displacement in thik direction will represented by
ui(z,t;) = a(z) g, (t;), (8.10)
and the warp function is written in the form

plr,t) =z + u(x,t). (8.11)

8.3.1 Image registration

To drive the registration between a reference im&gand a target imagé we apply
the sum-of-squared-differences (SSD) as our similaritpsnee and the regularization
term is given byD(¢) = d(e, ¢) = ||t||2, wheree is the identity map corresponding to
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t = 0. The SSD comparison leads us to calculate the referencesiamathpe arithmetic
mean of the warped target images, as this is the optimum Sksibosoto (8.1) [59].

> (R(m) - I(p(x,t)* + at]3 (8.12)

N = N =

> B (w,t) + alt]3. (8.13)
xr

To achieve a fast optimization we apply the inverse comosit optimization ap-
proach by Baker et al. [1] to the cost function. Thus, we abtaminimum by itera-
tively minimizing

Fult) = 53 (Rlp(a Ab) — Ip(e,1)?
ot’
+allt - aAtAtH? (8.14)

with respect taAt and updating according to
p(x,t') — p(x,t) 0 o~ ' (x, At). (8.15)
In AppendixX8.7.2it is shown howt' is derived from(8.15.

By performing a first-order Taylor-expansion &y (x, At) aroundz in (8.14), tak-
ing the derivatives wrtAt and setting them equal to zero we get

At=H"1 zm: SD(x)"E(x,t) + a;ZtTt (8.16)
where
SD(zx) = vmmw (8.17)
and
H =) SD(x)'SD(z) + a [aai/t] : [;XJ . (8.18)

€T

The advantages with this inverse compositional approadhaisS D(x) can be pre-
computed as it is not dependenttn
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8.4 Validation: corpus callosum model

To demonstrate our approach we have created a deformatidel miothe Corpus Cal-
losum from 62 two dimensional MR images of the mid-sagittalss-section of the
corpus callosum brain structure. This data set is part oE &2IS (Leukoaraiosis and
DISability) study [78], a pan-European study involving Idshitals and more than 700
patients. Furthermore, each corpus callosum have manbedy annotated with 72
landmarks by a clinician, which we will later use for valibat

Prior to the non-rigid registration a rigid registrationsygerformed to filter out non-
anatomical variation. This was achieved by performing Rrstes analysis on the sets
of annotation. After the rigid registration an initial reé@ce was created by comput-
ing the mean image of the rigid registered images. All cogallkbsum images were
then non-rigidly registered to the reference, and a neweafee was computed by
averaging. This was done multiple times until the referestebilized. For the non-
rigid registration the cosine kerng(r) = 0.5(1 + cos(wr)) was applied [16]. The
non-rigid warps were modelled by composing three grid basteomorphisms in a
fine-to-coarse manner. The dimensions of the applied greire wx 4, 10 x 8 and
20 x 16. The non-rigid registrations were carried out in coarsene firder. After
each levelp; of the warp was estimated the target image was updated byngeattpe
target image back into the reference coordinate fram&hyi (x) = T,,(p(x)). This
was done to ensure that different parameters from differanps could be compared
[16]. a; of theg mapping was set proportional to the inverse of the squaredgde
distance because the grid was 2 dimensional. The imagereggia was validated
using the Dice measure, which is twice the intersecting bedaeen the ground truth
shape outline of the warped image and the outline of theeréer shape divided by
the total area inside the two outlines. The ground truth waained from the expert
annotations. The Dice measure wa384 + 0.048. In Fig.[8.2we show an example
of a typical registration of an image. In Fig. 8.3 the cumiutabverlap of the aligned
corpus callosum shapes before and after a rigid registragidlustrated, showing a
clear improvement in correspondences between the shapes.

S s
foNE

(a) Template image (b) Warped template (c) Reference image
Figure 8.2: Registration of an image to the reference.

To create a compact deformation model, PCA was applied tpdhemeters after the
groupwise registration of the images. 13 modes of variatmnd describe 95 % of the
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(a) Before nonrigid registration (b) After nonrigid registration

Figure 8.3: Cumulative overlap of the aligned corpus calioshapes before and after
a rigid registration

observed variation in the population as observed in Fi§uteand the first three modes
are illustrated in Fig8.5 The first mode of variation is seen to be related to a vertical
stretch and in particular to the size of the septum pellutidihe dark area between the
bright corpus callosum and the bright Fornix), the seconderis related to the kink of
the corpus callosum and the thickness of the structure andaime goes for the third
mode but with a different bending of the Fornix. Rueckertiehave also analyzed the
corpus callosum and they found modes quite similar to the émend in the current
study [85]. For comparison we applied a regularized versio@ootes’ algorithm to
the same problem, and constructed a similar PCA model ofdhiation. The variance
of the modes is nearly identical, as shown in Fige#and the obtained Dice scores
were also the same. The major difference between the defiommodes are to be
found where the warp displacement parameters are close toth 1 /7. The sites in
the Cootes warp with highest curvature are closer to simgldan the same sites in the
warp based on our parameterization.

o
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0'20 20 40 60 80 0'20 20 40 60 80

Number of modes Number of modes
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Figure 8.4: Plot relating described variance with numbemafdes included in the
model. a: the presented method. b: method introduced byeSattal. [16].
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(a) 1st mode;-3 std. dev. (b) 2nd mode—3 std. dev. (c) 3rd mode—3 std. dev.

(e) 1 st mode;+3 std. dev. () 2nd mode+3 std. dev. (g) 3rd mode+3 std. dev.

Figure 8.5: First three modes of the corpus callosum deftiomanodel estimated with
the current method, shown as the reference watp8dstd. deviations.

(a) 1st mode;-3 std. dev. (b) 2nd mode—3 std. dev. (c) 3rd mode—3 std. dev.

(e) 1 st mode4-3 std. dev. (f) 2nd mode+3 std. dev. (9) 3rd mode+3 std. dev.

Figure 8.6: First three modes of the corpus callosum deftomanodel estimated
with a constrained version of Cootes’ method, shown as tieeeece warped- 3 std.
deviations
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8.5 Discussion

We have shown how a parametric function can be defined on theumded linear
spaceR™ and still produce diffeomorphic warps. When this is accosiyil by first
mappingR™ into an open bounded subset®t’, which inevitably leads to an asymp-
totic behavior at the closure of the bounded set. In our imgleted example the pa-
rameters of the model by Cootes et al. asymptotically apm'rérawhere singularities
in the warpmayoccur. We believe that our distance measure is very reakondien
we are indeed approaching a singularity, as a small chante idisplacement param-
eters of the warp will cause a huge impact on curvature of thgviunction. In Fig.
[8.7, where -6 std. deviations of the first mode is shown. We sdeathimgularity start
to form in the contracting area but this is highly unlikelymedicted by our model and
metric.

=-'—_‘ '__"l--m

Figure 8.7: -6 Std. deviations of the first mode, normal vies a zoomed view on the
beginning singularity.

With the choice ofanh function, the asymptotic behavior is assumed to be expa@ient
which may not always be the case. There are obviously antafuairiety of mono-
tonic bounded functions, e.g. arcus tangent, and we wilhbestigating the choice of
function in more detail.

A problem, we believe, that may occur with the proposed ntethdhat we cannot be
sure that the threshold does actually mark a singularityimfpke translation would for
instance be asymptotic as well, which is why initial rigitgalment is very important
indeed. Currently we investigate more involved paramedstrictions than the simple
threshold to circumvent this possible problem.

Our validation on corpus callosum data showed that we wdeetablearn the impor-
tant modes of variation, similar to previous obtained rsswbhile the relatively high
Dice coefficient illustrated that our warp representatiaswable to capture the large
variations in the data set. We believe it is an advantageathabnfigurations in our
parameter space are valid diffeomorphism, such that allignégs and derivatives dur-
ing the optimization are well defined. Also we find it an ademy# for tracking etc.
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that the the deformation as a function of the deformationehpdrameters is smooth,
when using the presented method.

8.6 Conclusions

This paper proposed a new warp representation which allatistical analysis on an

unrestricted linear parameter space, where all derivative defined. Furthermore, we
have shown thal.,-norm the parameter space introduces a reasonable mettie in
actual space of modelled diffeomorphisms, and that oulteesampare well to those

obtained using Cootes’ deformation model.
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8.7 APPENDIX

8.7.1 Warp inversion

THEOREM 8.1 Consider the functionp : RY x RM — RY of typep(x,t) =
x + u(z,t) and lety:(z) = p(zx,t) be aC'-diffeomorphism. Ifu(z,0) = 0 and
u(x,t) = —u(zx, t), p(x, —t) converges with second-order §o ! (z, t).
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PrROOE

= |z; +ui(zx, ht) — u;(x + u(x, ht), ht) — z;|

< Jui(x, ht) — ui(x, ht) + %(w, ht)u(zx, ht)|
0%u; ou
T Z ™ bl
< |ht 0m3ht<w’0)8ht(w70)ht|
< el |17 (8.19)

8.7.2 Derivation of update function

In general, it is unlikely thagp(x, t) o o~ (z, At) can be parameterized with(z, t'),
and thus it has to be approximated.

In Appendix 8.7.1, it was shown thet(x, —t) is a first-order approximation to—*(z, t)
as the error converges with second-order to zero. The cdtiggom Eq.[8.15 is ap-
proximated with the parametetswhich minimizes the SSD between the true compo-
sitional warp and the warp(x, t')

D Ap(@) Ap(x) (8.20)
where
A‘p(m) = Lp(cp(m, At)? t) - 90(:137 t/)
= a(@) (g, (At) — g, ()
+a(p(x, At))g.(1). (8.21)
If
a(z1)’ a(p(x1,At)"
A= : ,andA, = :
a(z,)T a(p(@n, At)T

the updated warp parametefsan be found by solving the system
0= A(g,(At;) — g.(t)) + Apg, (L:). (8.22)

The least square solution to the system is

ti=g;" (ATAgogT(ti) + gT(Ati)) (8.23)
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whereA — [ATA} AT

As A, has to be evaluated on warped points it is relatively comjmutal expensive to
evaluate. Thus, we perform a first-order Taylor expansiodgrand arrive at

t =k (ATA,Ag, (M) + g,(At) +g,(t)) (8.24)

where

. 8a(wj)T
A, =1+ dlag(T g-(ti))j=1..n (8.25)

K2



CHAPTER 9

Curl-gradient Image Warping

Introducing Deformation Potentials for Medical Image
registration using Helmholtz Decomposition

Michael Sass Hansen, Niels Vorgaard Christensen and Rakarasn®

Abstract

Image registration is becoming an increasingly importaatin medical image analy-
sis, and the need to understand deformations within anddegtaubjects often requires
analysis of obtained deformation fields.

The current paper presents a novel representation of tioendafion field based on the
Helmholtz decomposition of vector fields. The two decompagsetential fields form
a curl free field and a divergence free field. The represemtdtas already proven its
worth in fluid modelling and electrostatics, and we showdbdias desirable features in
image registration and morphometry in particular. The piéds are shown to a offer
decoupling of the two potential fields in both elastic anddfluimage registration. For
morphometry applications, we show that when decomposiegi&iormation field in
symmetric and antisymmetric parts, the vector potentiahaldescribes the vorticity,
and the scalar gradient potential gives a first-order appraton to the determinant of
the Jacobian.

We provide some insight into the behavior of curl and divamgerepresentation of
the warp field by constructed examples and by a demonstratigral medical image

1This paper was presented at the International Conferen@ooiputer Vision Theory and Applications
2009 [42]
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data. Our theoretical findings are readily observable ireoupirical experiment, which
further illustrates the benefit of the parametrization.
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9.1 INTRODUCTION

Image registration is becoming an increasingly importaat in medical image analy-
sis, and the need to understand deformations within andgegtaubjects often requires
analysis of obtained deformation fields [100, 21].

The image registration task has been approached in margratiff ways. It can be
achieved by calculation of dense deformation fields usingpacametric methods as
described by Modersitzki [73]. Vermuei al. proposed a levelset representation of the
deformations [107]. For more than a decade parametric septation of the deforma-
tion fields has also been very popular in the literature, wieo prominent examples
are the cosine kernels presented by Coetes. [16], and the Cubic B-spline kernels
used by Rueckeret al. [85]. The later introduces a certain smoothing by the finite
size of the parametric kernel functions, but often furtlegiularizationis introduced.
Haber and Modersitzki introduced regularization termsrsuee displacement regu-
larity [37]. Elastic registration is a popular form of regtikation, originating from
continuum mechanics as described by Christensen and Joft®&oand by Kybicet

al. [62].

In the subsequent morphometry it has been shown that theidaaof the deformation
field is very important under a Gaussian random field assamuin the deformation
field [58]. Chunget al. have investigated different measures of morphometry, fsad a
introduced a strain-curl representation of the defornmefield, which has interesting
relations to other morphometry measures [13]. Hsiaal. have shown that using a
parameterizing of the deformation field by its divergenog eurl makes it less prone to
grid folding than B-spline representation, while it allofes an efficient and stable op-
timization [57]. Kohlbergeet al. have used potential functions for motion estimation
of fluids [60].

In Section9.2 we propose a new parametric representation of the defayméeld,
which is based on the Helmholtz decomposition of vector $ield the following we
show how this representation can also be parameterized bgthrkernels, how it can
be considered a natural representation for elastic imagjstration, we show how it
can be given a strong interpretation in morphometry, andlyimee point out how the
numerical stability and smoothness obtained by Hefeal. [57] can also be reached
by our representation.

We have demonstrated an implementation of the presentedochein MRI Corpus
Callosa images from the midsagittal plane in Section 9.3.



74 Curl-gradient Image Warping

9.2 METHODS

We present the developed methodology by introducing thenHeltz decomposition
representation in Sectibn 9.2.1, with some intuitive destraion of the introduced po-
tential functions. Subsequently we give theoretical nasttbns by formulating simple
elasticity regularization in Secti®2.2 morphometric interpretation in Secti®m2.3
and finally we demonstrate properties for optimization int®@[9.2.4.

9.2.1 Helmholtz Decomposition of Vector Fields - Introduang Two
New Deformation Potentials

We define a warp functiop as the mapping between two 3-dimensional images, the
image! and the referenc®, ¢ : R? — R3, which satisfies that the poiat in the
referenceR corresponds to the poigi(x) in the imagel. The important aspect of this
definition is that thatp can be considered a vector field. For medical image analysis
purposes we can furthermore assume that the vector fieldosthiras this will usually

be our best assumption for the anatomical topology. Thessiderations also holds
for the deformation fieldy, which we define as the difference from the identity warp,
such thatp = x + u.

We apply the Helmholtz decomposition to the deformatiordfielsing the fact that a
vector field, which is twice continuously differentiabledawith rapid enough decay at
infinity, can be split into a sum of the gradient of a scalarction and the curl of a

vector function [35]

u(z) =VV(x)+V x A(x), 9.1)

whereV : R® — R andA : R? — R? are scalar and vector potentials functions
respectively. Section®.2.29.2.3and9.2.4all deal with specific properties of this rep-
resentation by potentials. Because they are new in the ffeftedical image analysis,
we start by exploring some of the immediate properties cdafpmotentials. Recall that
the deformation field is merely a sum of the two, then we shallare the gradient
potentialV’, and the curl potentiall one at a time.

9.2.1.1 The gradient potentiall’

The gradient potential is roughly speaking governing lawaitraction or expansion,
this is in particular true in the presence of sufficiently #rdaformations. The same
potential is used in electrostatics to describe the etmdtpotential. In Figur®.1gra-

dient potentials and their impact on the deformation fielel iustrated. It can be
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Figure 9.1: Gradient potential;, are illustrated in the upper row, and their impact
on the deformation fields are shown below. The quadrati@asas with constant cur-
vature produce global scaling, and the potentials withlleadations produce a local
contraction or expansion.

observed how a positive versus a negative gradient resudtsgansion or contraction
of the deformation fields. Two-dimensional functions aredifor the purpose of illus-
tration.

9.2.1.2 The curl potential A

The curl potential field is the equivalent to the magneticeptiaal field in electrostat-

ics. It is describing purely divergence-free deformatjomkich can be interpreted as
vortices. In Figured.2 different curl potentials and their impact on the deforimati

field are illustrated. For the purpose of illustration orthe t-component of the curl

potential A is illustrated, and only the impact on they directions of the deformation
field are illustrated.

9.2.2 Elastic Registration

As previously mentioned, the elastic potential is oftenduf@ image registration,
which is often based on a physical motivation in terms of aast&d tissue model
[12, 62]. Regularization is usually formulated by a poteh&i and differential op-
erators [37]

Su] = /Q (Blul, Blu) g da - 9.2)



76 Curl-gradient Image Warping
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Figure 9.2: z-component,A, of curl potential fieldsA are shown in the upper row,
and the impact on the, y coordinates of the deformation field are shown below. A
quadratic potential with constant curvature produces bajlomtation of the deforma-

tion field, and a local change to the potential results in alleartex in the deformation
field.

The corresponding Gateaux derivative is then given by

Sl = [ (Aful(@). (@) do 03)
where A = B*B. For the elastic potential this Navier-Lamé operator i®giby

A=B*Blu] =pAu+ A+ p)V(V - u) (9.4)

9.2.2.1 Elastic registration of the Helmholtz Decompositin

We examine how the elastic potential affects the HeImha@tmdnhposition of the warp
field, and straightforward calculations give
> e+t N(V - u)de, (9.5)

Pl = ‘/Qlua,b 1

wheree;; = du;/dx; + duj/dx;. Nowu = VV +V x A and
Alu] = pAu+ A+ p)V(V - u)
=puA(VV +V x A)
+ A+ p)V(V - (VV +V x A))
= (2u+ A\)VAV + uAV x A. (9.6)

3

This is a rather remarkable result, since we can now decdhplevo potentials. Let
A= 21 + A and)\g = W, then
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and replacing the Lamé constantsand A by A; and \,, we have a clear notion of
how to interpret the two regularization parameters. Nowvallies of\; and A\, have
meaning in a physical material-property sense (as goesrfegative. as well), which
should be considered. It can be argued, though, that the watiqgmal model should
be extended to include these cases as well [73]. All deawuatiare also valid if we
had differentiated in the time-domain, so our potentialrespntation has the same
advantages in fluid image registration.

9.2.3 Deformation-based Morphometry

Following Chunget al. we shall assume that the displacement fieid a smooth func-
tion in time, capturing the variation in shape over time [118]Section 9.8 we discuss
how an artificial time can be introduced, even when we areglmiter-subject regis-
tration. Introducing deformation fields as a function oféim(x, t), the deformation
field u atx + dz can be written using a Taylor expansion

u(x + dx,t) =~ u(z,t) + Jyde , (9.8)
whereJ (, denotes the Jacobian of the deformation field. It is usualtymed that the

Jacobian contains all information relevant in morphomedngd still following Chung
we shall look at a possible decomposition of it.

9.2.3.1 \Vorticity and strain of the Jacobian

The Jacobian can be divided into symmetric and antisymmpéits by the following
decomposition

Ou; B 1 (0u;  Ou 1 (0u;  Ou

The first antisymmetric part is termed vorticity and the setpart the strain. Using
this (9.8) may be written as

u(x + dx,t) =
u(x,t) — %V x u(x,t) x de + e(x,t)de, (9.10)

where the strain matrix is given by = (¢;;) = 1 (g%g + (gﬂ)T). Observe that

the vorticity depends on the potential alone. Sinc& x VV(x,t) = 0 we get
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V x u(x,t) = V x V x A(x,t). The diagonal elements of the strain mawiare in
particular given by

ey = L (Om, Om
11_2 6$1 83:1

Ay 0As | OV
9 (0303 Oxa + 311)

= 9.11
P (9.11)
Taking the temporal derivative, the deformation velociy de written as
Ou(x +dx,t)  Ou(x,t)
ot ot
10 Oe(x, t)dx
— §&V x u(x,t) x de + — (9.12)

and in [13] it is shown that the first order approximation te flacobian determinant is
the sum of the diagonal elements of the strain matyix

(9|Ju| ~ 8611 8622 6633
ot~ ot ot ot
9 0?2V 9%V 9*V

ot \ 0z3  0x3 023 )

This is seen to depend on the gradient potential alone, wd@intbe understood, when
we consider that this approximation of the Jacobian deteantiis the divergence of

the deformation fieldy - w. In summary we notice that our introduced representation
gives several simplifications in relating our parametetfigdomorphological changes.

(9.13)

9.2.4 On Stability and Optimization

Hsiaoet al. were using the curl and the divergence of the deformatiod fisl pa-
rameters for image registration. Their experimental tessihowed this gave better
stability in terms of avoiding grid folding than using a wnif B-spline parameteriza-
tion [57]. In the current setting these quantities are gvglWV x u =V x V x A and
V-u =V - -VV = AV respectively. The div-curl solver presented could be &gpli
for our parameterizations as well, disregarding that wepagsenting a different reg-
ularization term. However, for the morphometry test in 8&d9.3we have applied a
parameterized variational approach described in Appéhdixwhich demonstrates our
method with elastic regularization. We believe that thehodtpresented in the current
work has a humber of advantages. They have to make use osiomesrof discretized
operators to reconstruct the actual deformation field inapmization step, which
gives them a registration less prone to folding. We can gimgpé the exact differential
operators on our potentials in order to arrive at actualmedtions in our formulation,
and use the regularization to enforce smoothness andiloiligrt
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9.3 RESULTS

To demonstrate that the described parameterization cabalgractically implemented,
we have implemented a cubic B-spline parameterizationefitio potential fields. The
implementation is described in more detail in Appendix @ in the next section we
show results, and hope to add more intuition for the presemp@roach through visu-
alization of the potentials on 2D spaces.

9.3.1 Morphometry on Corpus Callosum

The corpus callosum has been the subject of much analyskeifidld of medical
imaging [21, 85]. This is probably because of its relativ@iiyple shape, and the good
contrast in MRI. We have also chosen corpus callosum MR imagmpled in the mid-
sagittal plane to demonstrate the presented method. Thesdatised for the tests is
a subset consisting of 62 MR images from the LADIS (Leukamgigiand DISability)
study [78] - a pan-European study involving 12 hospitals made than 700 patients.
In the optimization we use an artificial tintewhen registering one image to another
[73]. Since the quantitative analysis is not the major aibjecof the current presen-
tation, we put emphasis on illustrating properties of oueptals. In Figuréd.3the
image registration result of one corpus callosum to anathshown. We analyze the

Figure 9.3: Registration by the proposed parameterizafibe image in the middle is
registered to the reference (left) and the result is shoviheaight.

determinant of the deformation field to identify which areas mostly deformed by
the registration process. In Figlire 9.4 the distributiothefdeterminant and the areas
with significantly different values are illustrated. It isen that the expansion (in this
case) is most outspoken in 3 regions of the corpus callosumeivis not so surprising
when we investigate the reference, and target image in &g

The potentials parameterizing the image registration hogve in Figurg9.5. It can
be seen that th& -field is describing expansion and contractions, and skeéithe
areas with interesting Jacobian determinant in Figure &4kso seen to represent a
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Figure 9.4: Above: The distribution of the determinant & dfmacobian. Below: Region
of interest, where the deformation measured by the detamhirs outside a range of 2
std. dev..

rather strong contraction from thé-potentials. TheA-field is describing rotation - or
vortices in the deformation field.
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Figure 9.5: Potential functions shown with images and deéiion fields using the
HSV colormap. The potential is the value and the image is tlee heft: V-potential

along with (normalized) deformations this potential causRight: A-potential, and
the curl deformations this potential causes.

9.4 Discussion and conclusion

In this paper we introduce the theory of a new parametedratf 3D deformation
fields to the field medical image analysis, using potential$ ldelmholtz decompo-
sition. Similar methods have already proven valuable ictebdstatics and fluid flow
estimation [35, 60]. We show the representation can be dere a natural parameter-
ization for both elastic and fluid image registration due®decoupling of the param-
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eters. For morphometry we have demonstrated that one oivth@atentials directly
gives us the vorticity of the deformation field. The deteramingradient field is shown
to be the first-order small-deformation approximation te determinant of the Jaco-
bian matrix - probably the most accepted morphometry meassed. Contemporary
methods for optimization can supposedly be adapted to tfenerization [57, 60]
and we have outlined our implementation based on finiterdiffees, in Appendix 914.

The major contribution of the paper is primarily a theoratione, but we have for
demonstration purposes included 2D examples illustratingelation between the po-
tentials and the observed deformation fields. It shown tleatan get sensible results,
where most of the theoretical observations are readilyg®izable from our empirical
experiments, and we anticipate many applications in thd fi€&lmorphometry. For
future work we plan to design quantitative tests on differeedical data sets, to add
further empirical validation to the theoretic results destoated in the current paper,
and to document the impact on achieved solutions.

APPENDIX

In this section we give an overview of implementation dstallat are not of great
importance to the theoretical contributions of this paprerSection9.4 we introduce
the uniform cubic B-spline that are used in our implemeatatin Sectiof®.4we show
some details on their regularization, and in Sedtion 9.24jive some details on how
the evaluations can be sped up.

B-spline representation of fields

We represented the potential fields by cubic B-splinespfdglig [85]. So in summary
the two potential fields are represented as

Bk(T)Bl(s)Bm(t)Uk,l,m (9.14)

~

<
[

@ [[M]e
NE
NE

o
3
[}

w |l
« ol

A = Bk(T)Bl(S)Bm(t)ak’l’m . (915)

=~
Il
<
Il
<}
Il
<}



82 Curl-gradient Image Warping

Regularization of the B-splines

Applying the elastic constraint® @) to the B-spline fields, we get for the scalar poten-
tial

VAV =V > (B{(r)Bi(s)Bu(1)

k,l,m=0
+ By, (r) B} (8) By (t) + Bi(r)Bi(8) By, (t)) vk 1,m (9.16)

and for the vector potential we get

3 3 3
AV x ZZ Z By (r)Bi(s) B (t)ag,i,m (9.17)
The regularization of the control points is now determingd b

OSful _ su Slul =

5vlkm u";"’klm
/ <A[u](m), 5“> da (9.18)
Q OViim

Optimization

We note that in our parameterized setting, th@perator can be written as linear com-
bination of the parametetd = K 4p, as can the warp field = Ky p. Using this
(9.18 can be rewritten as

0S[u]
Mikm U s [u]
/(KAP)TKu,kZmdﬂ?:PT/ K Ky jimdz (9.19)
Q Q

it is seen that the Gateaux derivative is indeed linear irprameters, and the integral
needs only be evaluated once. The distance measure betgfemmnce and image can
for instance be théy-norm

DR, T;u] = /Q Tz +u) — R(x))? da (9.20)
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with the Gateaux derivative

DR Tou) = [ (F(a,0(a)).0) o da

where f(z, u(x))
=VT(z + u(z))(T(x + u(x)) — R(x)) (9.22)

And the same kernel substitutions can be made as for theargzation. This facilitates
a quick estimation of the deformation field. A further spepdsuigained by implement-
ing a multi-grid cubic B-spline approach has been used, lwhiso helps avoid local
minima. In our presented results we used control pointdésta of 5, 10 and 20 pixels,
respectively.
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Multivariate splines






CHAPTER 10

Introduction to splines and
adaptive parametrization

The wordspline originally stems from the wooden rods shipbuilders werengisis
drawing devices for drawing bent curves [20]. They were ehdsecause they were
producing smooth curves by minimizing the bending enengg,tais property has also
spiked the interest in splines as a mathematical tool. Bxaplappeared in connection
with Steklov means, which was observed by L. Maurer in 189¢.[They were studied
from a statistical point of view by Sommerfeld [98] and P§|88]. In 1966 Curry and
Schoenberg published a more contemporary formulationeoBtspline theory [18].

The extension of the curve splines to surfaces and more dim@nwas initially ap-
proached by de P. de Casteljau and P. Bézier, published bgmB82.966, who intro-
duced the Bézier patches [26, 10]. Michelli laid some of thenflation for multivariate
splines in 1980 [72].

The work presented here focuses on multivariate splinabtteir application in im-
age analysis, and in particular image registration. Splinay be considered as sets of
functions, which are each a compactly supported collecifqriecewise polynomials.
In the univariate case the cubic B-splines have been showininize an approxima-
tion to the bending energy. Multivariate splines (incluglthe univariate splines) are
the Peano kernel in the integral representation of dividédrdnces [7, 74]. That is,
they define the local interpolation function, which inteigies the derivative of a func-
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tion given the same result as the divided difference appratidn to true derivatives.
Multivariate splines are defined using knots, which are inegal position, meaning
that the control points are not constrained to follow anytipalar geometry. Splines
are used for function approximation in many applicatior§y,[and here some prelimi-
nary concerns on splines in image registration will be dised.

10.1 Univariate linear splines

Some properties of the flexible representation can be iliateid by considering a sim-
ple 1 dimensional example of using splines. The one-dimensiaredr B-spline may
be defined by

t—t; .
tg+1_th if tj <t< tj+1
bja(t) = ﬁ if ¢4 <t <tj40
otherwise,
where the knotgt4, ..., ¢, 2} are a non-decreasing sequence of real numbieran

index specifying the spling, € {0,...,n}. An example of linear B-splines is shown
in Figure10.1

Figure 10.1:3 linear B-spline basis functions. The knots are illustrdigdlack ™.

If ¢; is the control point value associated with thk B-spline, then a function may be
approximated by the linear combination of the B-spline &snctions

p(t) =Y ¢;Bjalt) .
i=1
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A linear combination of B-splines is illustrated in Figlk@.2

15

p(x)

Figure 10.2: Linear combination of three B-spline basi<fioms illustrated in Figure
10.1 The weights:;,co andes are1.078, —0.763 and—0.644 respectively.

10.2 Registration of functions

Let the two functionsf; : R — R (¢ € {1,2}), be such that one is a locally stretched
and compressed version of the other, anddetR — R be the function describing
the correspondences, i¢s o p(x) = f1(z), = € §, and letu be the displacements
u = ¢ — x. The functionsf; and f; could for instance be two time series. It is
instructive to examine the process of estimating this fionct. In Figures10.3/10.4
and10.5 a set of these functions is illustrated.

0.5

1 2 4 05 2 4
X X

Figure 10.3:f; is alocally Figure 10.4: ¢, mapping Figure 10.5: v measures
deformed version of;. from f5 to f1. the local deformation.

In order to estimate the functiana basis of B-splines is constructed, and the problem
is formulated as the minimization of the squared residutal/éen the composef} o ¢
and f; with respect to the control points. Two different linear B-spline base§); ..}



90 Introduction to splines and adaptive parametrization

with uniform knots and{b; ,, } with nonuniform knots, are analyzed. Both bases are
shown in Figure 10/6.

0.8¢
0.67
1
0.4 o
0.6|
0.2} 1 0.4
{ 0.2)
% 0 2 4 6 o / y \
X X
(@) Uniform knots{b; ., } (b) Adaptive knots{b; , }

Figure 10.6: (a) shows basis functions based on uniformigpéad knots, and (b)
shows basis functions of knots that are adapted to the apiplic

The minimization problem is posed as
2

Enilf filx) — f2 erch .- () +allLe|3, (10.1)
Cj =

where the first sum is taken over a setccﬂiamplesL is a usual Tikhonov regularizer
in the form of a matrix which is taken to be the identity mairixhe current example,
c is a vector containing the elements. and« is the regularization parameter. This
problem is nonlinear in nature due to the compositiorfofvith ¢ = = + Zj .-
b;..(x), however it can be solved by gradient based methods and lioeakization.
For an analysis of the optimization problem (10.1) the défee is linearized in the
variables{c; .} by forming a first-order Taylor expansion

2 :c+§cj7 . IS

AC]‘V, . bj7.($) .
z+30 ;¢ by (x)

df2
P! x+;¢?,.'bj,<($) t a9y

Let the sample points be numbered and ordered in fsét and introduce the matrix

A with elementsd;; = 22 - b; .(x;). Furthermore, let the residual
J oz :ri+zj c?y;bj,.(m) 5
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error given the Taylor expansion poing be a vectorb with elementsh; = f; —
f2 (;z: +22; - bjy.(a:)) and the vector\c have the elementac; such that we have

linearizedc aroundcy, then the linearized problem, using the Taylor expansicay m
be written as the following optimization problem

|AAc — b||2 + a||L(co + Ac)||3 (10.2)

This approximated optimization problem will be discussedriore detail in Section

10.3.

10.3 The Picard condition

It seems worthwhile to consider which problems can actuadysolved by a certain
discretization, as well as the stability and the convergaoperties of the discretiza-
tion in question. P. Hansen introduced the discrete Picaindition for discrete prob-

lems, which loosely defined gives insight into wether a sekevhels contained in

A, defined in[(0.9, can be expected to reproduce the vedt@and can give some
insight to the challenges of a parametrization of the typesiztered here [52]. The dis-
crete Picard condition for discrete problems is introducedhe discretized Tikhonov-

regularization problem

Ty = mmin |Az — b2 + o Lx||3 (10.3)

which for the current analysis is equivalent to the optirti@aproblem[(10.2). Per-
forming generalized singular value decomposition of thérinaet (A, L) gives the
generalized singular values as well as the corresponding eigenvectoy$25].

THEOREM 10.1 (THE DISCRETE PICARD CONDITION (DPC).) Let b be defined
as in (10.3. Thenb satisfies the DPC if, for all numerically nonzero generalisengu-
lar valuesy;, the corresponding Fourier coefficierjts! b| on the average decay faster
to zero than they,.

Returning to the linearized optimization problef0(2), this analysis may be applied
to the problem during the optimization procedure. The Beoyéletcher-Goldfarb-
Shanno (BFGS) algorithm is applied for the optimizationd9, 33, 92].

When the optimization algorithm is started, all parametgrare initialized close to
zero, and the plots of the matri4 can be seen in FigulE).7. It is evident that fotz in
the range to 4, there is naA response, since the gradientfafis zero. It is seen from
the uniform knot placement that a lot of redundant infororais available, giving the
same forces on most splines foin the interval0 to 2.
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X

(2) Uniform knots{b;,. } (b) Adaptive knots{b;, }

Figure 10.7: (a) shows the matrix based on uniformly sampled knots, and (b) shows
A based on functions of knots that are adapted to the apjplicati

The GSVD analysis of the linearization shows a division @f ¢éigenvectors in higher
and lower frequency components. In Figure 10.8 every seabtid eigenvectors with
nonzero generalized eigenvalugsare shown, and this spectral representation of the
matrix A illustrates how the parameters are able to reproduce tgettéunctionbd,
which is illustrated in Figure 10.9.

1
1 0.5
<= 0 Wi N o 0
= W
-1 -0.5
_ -1
20 2 4 0 2 4
X X

Figure 10.8: lllustration of the set ofFigure 10.9: The residualswhen the
eigenvectors for the uniform B-splinesoptimization algorithm is initialized.

Generally, it appears quite plausible for the basis fumstitm be able to represent the
residualsb, and in Figuré10.10the generalized eigenvalues are seen as well as the
projection ofb onto the eigenvectors.

For both the uniform and the nonuniform basis, the projectiare seen to decay at
least as rapidly as the eigenvalues them selves, from whichconcluded that the
optimization problem is properly regularized. In fact,stluinly depends slightly on
the regularization parameter, so it appears that the implicit regularization imposed
by the discretization and basis functions is already a gegdlarization for the stated
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Figure 10.10: (a) shows basis functions based on uniforamgpted knots, and (b)
shows basis functions of knots that are adapted to the apiplic

problem. For the nonuniform knot positions it may be diffidol discuss the behavior
of the eigenvalues versus the projections on the eigemgefiiothe small number of
basis functions. However, the tendency of faster decrggsiojections|u;b| from
Figure 10.10 persists during the course of optimizatian,if.the linearization is done
at different steps of the BFGS optimization.

It is interesting to see the analysis performed at an exaotgiined by adding some
noise to the original example. In Figi8.11functionsf; andf;, which are generated
from f; and f, by adding noise, are illustrated. In this more realisticregke, the
linearization looks somewhat different as seen in FiglOel2 where every second
column of the matrixA is illustrated (compare to FigulD.?).

Figure 10.11:Functionsf; and f, with Ei 10121l ) fhe .
added Gaussian noise and smoothed f03Y€ Y- " ustration of the lineariza-
form f; andf;. tion matrix A.
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The added noise adds a response to all those basis fundtians/ére having zero
response in the noise free case because the gradient isaah tkis case. Examining
the discrete Picard condition becomes interesting foretleaamples of functions. In
Figure10.13 the generalized eigenvalues and the projections on tleaneggtors can
be visually examined, and it is evident that the Picard dioifrom Theorem 10.1
is satisfied for both bases initially, whereas close to th@gg point, the nonuniform
sparse representation shows the opposite relationshipebatthe two curves. The
result that the linearization of the reduced model is notigahtly regularized, hints
at the fact that the high frequencies of tAebasis are needed to do the optimization.
For the less sparse example of uniform basis functions, itiigyato describe these
frequencies are better build into the model, and thereforeegularization is needed
to make the problem numerically stable. It is hypothesized the Picard condition
will actually contribute information about the descrigtigower of the basis and if it is
sufficient for the problem, i.e. if refinement is needed.

10° 10
100 . > - S \ . 101 //
107 10"
o —Eigenvalues —Eigenvalues
4 ---Projections a1 ---Projections
10 10
10 20 30 1 2 3 4 5
(a) Uniform, Init (b) Nonuniform, Init
102 // 102
10° ; 10"
e ST —Eigenvalues
Sho YTy T o - --Projections
10 71\ .- v 10 R
v —Eigenvalues
4 ---Projections a el
10 10
10 20 30 1 2 3 4 5
(c) Uniform, Convergence (d) Nonuniform, Convergence

Figure 10.13: Visual examination of the Picard condition rioisy functions, at the
beginning and at the convergence of the optimization, fah e uniform and the
nonuniform sets of knots.
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10.4 Condition numbers and the stability of optimiza-
tion

The condition number of a matrix is useful for examining tiebgity of matrix in-
version and in particular the stability of solving lineaisms with respect to small
perturbations in the observations. The condition numbearrmftrix M is defined as

k(M) = % (10.4)

whereo,, ando; are the largest and smallest singular valueg\bfrespectively. A
large difference in smallest and largest eigenvalues s¢batributing to a high condi-
tion number, which means the matrix is badly conditionede §bndition number sets
a limit on the degree of impact a perturbation of the measturdtion b has on the
solutione, when solving the linear systemdc = b. In the noise free example, only
17 of the possible31 generalized singular values are nonzero (FiglBel0, which
indicates a very badly conditioned system. Adding noiseaadke system better con-
ditioned, however noise is not adding information to theirofation process, only
numerical stability, cf. Figurd0.13 Alternatively regularization may be introduced
to add stability, but it also has an effect on the obtainedtsmi [53]. Hansen showed
that the tradeoff between regularization and functiomifitfior 'nice enough’ functions
has a identifiable optimum, which may be found using the lveuiHowever, let two
functions, defined on two intervals, each have optimum patars in this way, then
the union of the intervals and a function defined by a uniorheffunctions may not
have one optimal parameter, if the two parameters are nopatibhe. This combined
function would not qualify as being 'nice enough’, which addotivation to introduce
more local regularization, i.e. a different regularizatam each interval. Returning to
the optimization, if parameters are only well defined andusblto perturbations due
to regularization, information from thdataonly propagates to the parameters through
the regularization, and if the regularization has locaighbkor) impact, it requires more
iterations to propagate the information to all parametershe previous noise-free ex-
ample, both bases achieved the numerical optimum, but g banditioned uniform
B-splines required2 BFGS iterations, versus this iterations of the nonuniform B-
splines. Based on these considerations it may be hypo#tetiat a locally adjustable
regularization, and a sparse representation of highlylagiged areas can provide sta-
ble optimization, robust results, and efficient optimiaati This can be considered an
argument for parameterizing using nonuniform B-splinesnaltivariate splines in
higher dimension) since the restriction to the linear sgg@ned by the basis can be
considered a local regularization, which can be made arilitrsmooth by adjusting
the order of the splines, and in highly regularized areab laitge basis functions, the
parametrization is sparse, which should yield faster cayarece.
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10.5 Conclusion

Based on the considerations in Sectidh4 it appears that multivariate B-splines may
provide a good basis for parameterizing function approtiona and image registra-
tion in particular. SectiofL0.3indicates that it may also be possible to assess if an
approximating basis is suitable for a given problem, anddtensiderations are the
motivations for the Chapteis3 and 12. Multivariate splines are introduced in Chap-
ter[13, and it is demonstrated how they may be appliedifieage registration And

in Chapter 12 multivariate splines asémplex splinesre discussed in more detail,
developing methodology facilitating the goals motivatedhe current chapter.



CHAPTER 11

Adaptive parametrization of
B-splines for Image
Registration

Michael Sass Hansen, Ben Glocker, Nassir Navab and Rasmserta

Abstract

We present an adaptive parametrization scheme for dynamsh mefinement in the
application of parametric image registration. The schesnbaised on a refinement
measure ensuring that the control points give an efficigmtereentation of the warp
fields, in terms of minimizing the registration cost functioln the current work we

introduce multivariate B-splines as a novel alternativeht widely used tensor B-

splines enabling us to make efficient use of the derived nreasu

The multivariate B-splines of order n aré*C' smooth and are based on Delaunay
configurations of arbitrary 2D or 3D control point sets. Eéfitt algorithms for finding
the configurations are presented, and B-splines are thrihgghflexibility shown to
feature several advantages over the tensor B-splines. itin agipefforts to make the
tensor product B-splines more flexible, the knots are stillid to reside on a regular
grid. In contrast, by efficient non-constrained placeméithe knots, the multivariate
B-splines are shown to give a good representation of inh@megus objects in natural
settings.

1This paper was presented at International Conference forpQter Vision and Pattern Recognition [43]
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The wide applicability of the method is illustrated throuthapplication on medical
data and for optical flow estimation.
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11.1 Introduction

Image alignment is a challenging task due the inferior nurobeonstraints compared
to the number of unknowns. One approach to overcome thidgois to reduce di-
mensionality of the problem. Hence, parametric image tedisn has become quite
popular and has been successfully applied to many applicati The two main ad-
vantages are (i) the reduced number of parameters whichalag&eoroblem tractable
from an optimization point of view and (i) often the trangfeation model inherently
provides some smoothness properties on the warping fieldrder to be able to cap-
ture the present deformations, hierarchical approacheskieen considered where the
number of parameters is successively increased duringptimai@ation process. How-
ever, these update schemes often follow some heuristioaplpes, for instance in
mesh-based models by simply reducing the spacing betwedrotpoints and thus do
not incorporate any quantitative or qualitative measurgrabout the state of the reg-
istration. One can claim, that the refinement strategy hégnifisant influence on the
solution and should be guided by some knowledge obtainedttlirfrom the images
and/or the optimization process. Furthermore, one camdhat the transformation
model should be flexible enough and dynamically adjustablerder to reflect such
extracted knowledge during image alignment. Thereforepmpose a framework for
parametric image registration which allows us on one harasess the quality of the
current solution locally and on the other hand we can estirtteg potential improve-
ment by a local refinement of the parameter set. Since, orld eapect that such an
improvement will spatially vary over the image domain, thé& a need for flexible
transformation models.

(a) Regular B-spline grid (b) Multivariate B-spline knots

Figure 11.1: In (b) it is seen how the multivariate B-splices adopt to the structure
in the image.

B-splines are popular in numerous applications becausshifeable smoothness prop-
erties and the local support. Tensor product B-splines wereduced for modeling
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free form deformations (FFD) in the context of computer giep [89]. The method

was improved by using hierarchical B-splines [30, 113]. $ame subdivision scheme
was used in medical image registration [86]. However, timsde product B-splines

are defined uniformly on a grid, and in the search for a moralloentrol of the repre-

sentation detail, the notion of @ttive set of knota/as introduced in [87]. Still, such
an simulation approach consists of locally uniform gridsaihcannot represent the
imaged objects in an appropriate way.

Cootes et al. created a minimum description length optitiirascheme for the place-
ment of control points of triangular piecewise affine intdgtion basis functions [17].
However, the method is defined as a groupwise method, antiés teeavily on the
calculation of the inverse deformation. Recently Chartuelara et al. proposed a
parameterization based on a subdivision scheme, also &nobtlimited number of
parameters [83].

We instead propose to use the multivariate B-splines agpted by Neamtu, to obtain
a flexible and smooth warp interpolation function with losabport[75]. They are
capable of representing fields more densely in some aredlg, kaeping the number
of degrees of freedoms small for an efficient optimiation.

Dahmen et al. [19] introduced the so called DMS-splinesiangular B-splines based
on the multivariate simplex splines and auxiliary knotarasen et al. [31] described a
new method for efficient calculation of triangular B-spngsing an evaluation graph.
Recently, Wang et al. [111] introduced DMS-splines in cotepuwision for nonrigid
registration with rigid parts that defined by manual landieaThe most recent mul-
tivariate B-splines were introduced by Neamtu [75], and/ tledy heavily on the new
concept of Delaunay configurations [76].

The remainder of this paper is organized as follows: first vilepresent the general
framework for parametric image registration. Based on, this derive our adaptive
parametrization scheme. In Sectibh.4we present the concept behind multivariate
B-splines and their use in our framework for image regigiratExperimental results
are shown in Sectidh1.5while the last Section concludes our paper.

11.2 Parametric Image Registration

The image registration problem can be formulated as thenmwaition of the functional
J given by

IR, @] =DII, R; p] + Sg] (11.1)
wherel is ans-dimensional deformable imagB,is the target/reference imaggeijs the
mapping fromR into corresponding points ih. In the present work we are focusing on
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parametric image registration, which means that the waapdarmally be represented
by
@:RM = (f: R* = R*) (11.2)

which means that the parameterspofletermines what the warp will look like. We will
think of ¢ as being represented as

e=> cKi(x) , (11.3)

whereK; are the basis functions, and the vectors= [c;1...c;s] are the parameters
associated with the basis function.

D[I, R; ] is a similarity measure anfl[y] is a regularization measure, and we will
discuss these functionals in the context of parametric weyppesentation, in the fol-
lowing sections.

11.2.1 Similarity Measures

As a similarity measure the sum of squared distances (SQBeid, but this could be
exchanged with any other common similarity measures.

DII, R; p] = /ﬂ [ o p(z) — R(z)]* dx (11.4)

For the subsequent analysis we shall need some of the desvalf D[I, R; ¢]. The
Gateaux derivative dP is given by

dpwDlLRig] = [ (f(.p) )5 do (115)

where f can be perceived as registration forces in the image, aridda gy
fl@.o(@)) = (I o p(x) — R(x)) - VIop(x) (11.6)
which is also denoted as tlaeiving forceof the registration process.

The variationv(x) is restricted to the subspace spanned by the basis functidres
derivative with respect to a warp parametgris given by

oD O
= DII. R; =
e = s DL /Q<f<as,so>, acz,->wd””
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11.2.2 Regularization

Often some prior knowledge is available about the presemeade registration prob-
lem. This prior knowledge can generally be expressed adexetitial regularizeis,
and some Sobolev norm.

Slel = [ (Biul. Blulyg. da (1L.7)
whereyp = Id + u. This norm has a Gateaux derivative given by
dy:oS[u] :/ (Alu](x),v(x)) ga dz | (11.8)
Q

whereA = B*B. For the present work the commonly used elastic regulaisagrosen,
which can be represented by

Blu] = { v ﬁ/fﬁ } { U } (11.9)

from which A = pAu + (A + p)V(V - »). We can again form the derivative with
respect to the parameter

OS[u] < 8u>
de., —/Q A[u},aqj dx (11.10)

11.3 Adaptive Parametrization

After minimizing (11.7) the following equation must hold for the reached optimum.
0T, R;¢] _ OD[I,R;p]  OS[u]

= =0. 11.11
881']' 6% + 8Cij 0 ( )

This is the parameterized version of the variational optimu
fl®)+Alul=0, ze€Q (11.12)

Now observe thatl(1.1] can be interpreted as an averaged projection of the vamlti

optimum (11.12)
0D OS[u] ou _
5o+ e —/Q<f(a:,<p) + A, 8Cij>dm 0
where the projection is performed on to the support of thepvparameter. This pro-
jection, derived from11.3), is given by
ou

8%

() =e;K;(z), x€Q,
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wheree; denotes the unit vector along thith dimension andy; is the basis function
associated with the parametgy. In popular terms, each of our parameters is designed
to achieve the variational optimum (11]12)werageonly, and for this reason it seems
obvious to pose the question; how well is the variationalpin achieved? We pro-
pose to measure this fitness of a basis function in terms dftheovement we could
achieve by replacing the basis function with several marallbasis functions. We will
assume that the basis function can be refined into sever#simsis functions, only
with a smaller support, and the response of these local hagifons can be modelled

by applying a Gaussian filter on the force residtég‘ss:c, ©) + Alul, ggjj > The filter
response will model the changes that can be achieved withis faaction refinement,

when we choose the kernel size to be close to that of the refiasid functions.

Let1 = e; + ... + e5 then the above consideration lead us to define a refinement
measure’ by

F[Bz]=/Qfa,*(<f(w,sa)+A[u],1BI(m)>)2dm, (11.13)

whereF,, « denotes convolution with a Gaussian of a kernel wigthwhich should
be chosen in the order af; = [voI[BI]]l/S /4, where vo|Bj] is the volume of the
convex hull of the basis function support. A perfect fit wonidan that the only way
was not satisfied would be noise, aAgB;] would then be). However, if
there is spatial coherency in the forcése, ¢) + A[u], thenF[B;] will give an output
suggesting to do a refinement of the mesh. This criteria shguibe the refinement.

In order to make efficient use of the proposed adaptatiomsehee need a set of basis
functions with spatially varying local support.

11.4 Multivariate B-splines

The multivariate B-splines presented in this paper aregusibasis of simplex splines.
These splines are smooth functions with local support. 1@éveays exist for com-
posing sets of simplex splines to form a partition of unityg most recent one, and
the one presented in the current work, being multivariasples based on Delaunay
configurations [75]. Simplex splines and Delaunay confitjona are briefly discussed
here. Throughout the dimension is still denotedstand the degree of the splines by
n.
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11.4.1 Simplex Splines

Simplex splines are defined iteratively with the zeroth osj#ine defined on the sim-
plex of s + 1 knots, e.g. a triangle in 2D.

M(z|{z1,....xs11}) =

1/VO|[{ZL'1, ...,w5+1}]7 T <€ int[{:ﬂl, ...,ZBS+1]
0 T ¢ int[{:l:l,...,ws+1]

where M denotes the spline value, is a point we wish to evaluate;; are the knot
points of the simplex spline, int refers to the convex hullha set of points, and vol is
the volume of the convex hull.

The recurrence relation of the higher order simplex spliaggven by

M(z|X)= > M\M@X\{z;}) ,where

x,eX
dYox=1 > Nmi==z. (11.14)
iEiGX :BieX

Here X is a set ofn + s + 1 knots (corresponding to a simplex spliaé of ordern,
andA is seen to be the barycentric coordinates of the points.

The simplex splines ane — 1 smooth on the convex hull of the knots, when none three
of the simplex splines are collinear [75]. Examples of 2Dpewn splines of different
orders are illustrated in Figuiiel.2

For the elastic regularization discussed in Section 11t&2lirectional derivatives are
needed, and the two first directional derivatives of the gmpplines are

do M (@|X) = 1S palv) M (@] X\{})

=0

dv,dy, M (x]|X) =n Y pi(v2)da v, M (x| X \{z}) ,
1=0

where zs: w; =0, zs: Wi =
i=0 i=0

Complexity The complexity of the multivariate B-splines can be expedsa terms of
the number of\/, nodes visited, and this is°*! if a naive implementation is chosen.
However, through fingerprinting visited nodes, this gragh be reduced considerably
[31]. When calculating the interpolation values, the ddiwes can be calculated si-
multaneously.
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(a) Linear simplex spline (b) Quadratic simplex spline (c) Cubic simplex spline

el 7 N

(d) 4 knots for linear simplex (e) 5 knots for quadratic simplex (f) 6 knots for cubic simplex

Figure 11.2: Simplex splines of increasing order and smuash.
11.4.2 Delaunay Configurations

For choosing appropriate sets of knots for simplex splittesPDelaunay configuration
is needed. The Delaunay configuration is a generalizatidgheoDelaunay triangula-
tion, where the circumscribed sphere contains exacthpints. Denote a given De-
launay configuration ofith order byA,,. Let the set of all interior point sets, with
points in each be denoted @y Then a set of interior points € 7 is associated with a
set of boundary point set3(I) = {B|(B,I) € A,}. We now define the multivariate
B-spline associated with interior points/ as [75]

By= Y vol[BIM(|BUI) (11.15)
BeB(I)
This normalization ensures a partition of unity, i.e.
> Bi(x)=1, zeR’ (11.16)
IeT

Using these multivariate B-splines as a basis for des@ittie deformation field, the
field can be defined as

@(x)=x+Y» c/Bi(x), crxeR (11.17)

Silveira et al. have shown a strategy for efficient compatatf the Delaunay config-
urations [93].
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11.4.3 Mesh Layout and Refinement

For deriving an initial guess for placement of the knots,aith de noted thatlf.13
seems most likely to yield big values, in areas where theefofdx, ) attain big
values. In terms, we expect the most changes to our defamfiid to happen where
the gradient is bigger, since the force and the gradient amgoptional, [(1.6. For
the initial coarse distribution of knots, we propose torilisite them randomly, with a
prior density based on the image gradient of the referendditiénally, we add knots
sequentially, according to the following update scheme

f@ja|R Ay, o m;}) = f@j4a|R) [ £l lmi)

i=1

e e )

whereV R is the gradient of the reference, ands a kernel diameter, where the kernel
in effect limits the chance of a second point being place énitlmediate vicinity of a
knot. This function can be perceived as a prior probabititydlacing knots, and they
can be placed either according to the maximum, or accordirsgrandom sampling.
This did not seem to have big effect on results though, dubacstibsequent mesh
refinement.

We propose to make the mesh refinement based on subdivisiba gfid of the knots,
where the B-splines are expected to give most improvemehtigost function, when
subdivided, according to the refinement measure derive@dti@®/ 11.3. To increase
the resolution around a given B-spline, we subdivide theiirpoints and their trian-
gulated neighbors. To enforce better subdivision, the isid&tl knots are tracked to
a nearby gradient, using a localized versiorf 6 ; 11| R, {x1, ..., x,}), localized by a
Gaussian. The process of subdivision can be performedtegfigaintil a sufficiently
good resolution is obtained.

The local forces, as well as the effect of smoothing is itastd in Figurél1.5 In
Figure[11.5 (b), the forces are seen to be directed towards the corpleseal both
upwards and downwards. In average they even out, so them metforce on the
parameter. In Figurd1.5a) the differences are seen to be intact after the smooth-
ing. Therefore the refinement function has an output, andtkpline is selected for
subdivision.
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11.5 Evaluation and Results

To support the methodological considerations presentdtdmprevious section, we
applied our implemented method on two data sets, both qiffexeht in nature. Our
image registration algorithm is implemented for 2D imagkes to the 2D nature of our
applications, but all observations and equations statéldeirturrent work are equally
valid for three dimensional data.

11.5.1 Groupwise Corpus Callosa Registration

To demonstrate the presented method, we did a groupwisstnagn of 62 mid-
sagittal cross-section MR images of the corpus callosurm tstaucture. To apply
the refinement measur&d.13 to a group of images, instead of on a single image, we
calculate the sum over the whole data set for each B-splinarder to ensure that our
mesh refinement yields the biggest groupwise improvemetdrins of minimization

of the sum of squared differences.

This data set is part of the LADIS (Leukoaraiosis and DISghiktudy [78], a pan-
European study involving 12 hospitals and more than 70@ptsti Each corpus callo-
sum has been manually segmented by a clinical expert. Wethesd segmentations
for further assessment of the method (see 11.1).

All images are registered to one image in the group, and inrEid1.7 some results
of the image registration algorithm are seen. The resulisuofimplementation are
compared to the results obtained by rigid alignment and lrygusn FFD algorithm,
which is based on tensor product B-splines. Our quantéeagiudies showed that the
FFD with slightly more control points gave inferior resulbait still a significant im-
provement from the results of the rigid registration aloflee pre-computations of the
multivariate splines were a lot more time consuming, bub@group-wise registration,
this time was regained in the optimization step, due to tdeeed number of control
points.

11.5.2 Optical Flow Estimation

Baker et al. recently presented a database for comparisaptio&l flow results, where
the quantitative results of optical flow estimations can tmgared to other available
algorithms [2]. The optical flow problem resembles the imeggistration problem a
lot, in the sense that we seek to identify correspondencdvg across image pairs.
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DICE Init. | Run
Method | median| Sens.| Spec.| N | time | time
Multi. 085 | 091 | 0.99 | 407 | 32 | 149
FFD 083 | 091 | 098 |640| 1 221
Rigid 0.70 | 0.80 | 0.98

Table 11.1: Comparison of the warped segmentations andcfaeence segmentation
after registration using a rigid transformation, an FFDdgamethod, and our multivari-
ate method. Notice how the initialization time (seconddaiger, but the group-wise
running time is smaller for the presented method, due togdeaed number of nodes.

Method Dimetrodon Venus Yosemite
Av. Endpt.  Avg. Ang. | Av. Endpt. Av. Ang. | Av. Endpt.  Avg. Ang.

Current Method 0.20 4.09 0.72 10.74 0.16 3.10
Bruhn et al. 0.43 10.99 0.51 8.73 0.08 1.69
Black and Anandan 0.35 9.26 0.55 7.64 0.15 2.65
Pyramid LK 0.37 10.27 1.03 14.61 0.20 5.22
Zitnick et al. 0.94 15.82 0.85 15.48 0.68 11.09
Mediaplayef™ 0.55 30.10 1.08 11.42 0.47 18.50

Table 11.2: Optical flow evaluation results compared to otlbatemporary methods

To test the current method on a different application we léddptical flow estimation
on the three data sets, from the set, where ground truth flawvagable, namely the
image pairs named Dimetrodon, Venus and Yosemite. In Figilir@the images are
shown with the final grid resolution and the estimated flowdfislshown along with
the ground truth flow fields.

The results are summarized in Talie.2 It is seen that our implementation performs

significantly better on the one data set than any of the otlehods in question, and
slightly worse than the best, for the two other data sets.

11.6 Conclusion

The current work has several contributions to the field oapeatric image registration.

With an offset in variational optimization theory, we haweriged the parametric ver-
sion of the elastic potential regularization and in effdastrating how the whole class
of differential operator derived regularizers, i.e. ctwwa and bending energy, can be
easily implemented in a parametric setting.

With the same methodology we have analyzed the inherent thingoor averaging
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cost, of selecting warp parameterizations at a specificgkeesolution, in comparison
to choosing a finer resolution of the warp kernels. Based esdlobservations we
have proposed a refinement measure, which is shown to beeeffi@r guiding the
local mesh layout.

Though both previous results are useful in their own mews,have introduced the
recently emerged multivariate B-splines based on Delagoafigurations, to the field
of image registration. With the combination of our refinetne®asure and the local
flexibility of the multivariate B-splines, we are able to antatically refine the warp
field in areas where it results in the minimization of the ségition cost function. In
effect we get something close to a segmentation of objetdwialy for better local
control, even where very inhomogeneous areas share a border

APPENDIX

11.6.1 Implementation

The inverse compositional optimization approach by Bakel.ewas used in our im-
plementation to achieve a fast optimization [1]. We obtamiaimum by iteratively
minimizing

Jie(e) = Y (Rle(x,Ac)) - I(p(z, c))®

xr

oc’
2 —
+ Ei F(ct aACAc) (11.18)

with respect taAc, and the regularizer is expressedigq c) as derived in Appendix
11.6.2 The parameter updating ofis done according to

p(x,c) — p(x,c) o (x, Ac). (11.19)

11.6.2 Elastic regularization on Multivariate B-splines

In this section the elastic regularizer and the Lamé opeatoderived for the multi-
variate B-splines, as. To use the inverse compositionakrigfgn for the image regis-
tration, we formulate the regularizer as a sum of functiomghe parameters

B A u ou; 6uj 2
S[u]_/Q§ Z [am] axj dx (11.20)

17_
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Using the basis representatidiil(17 of u, we can represent the elastic operatios
nAu + (A + p)V(V - u) by the following parameterizations

s 2
M=y Ye ,:ZC,Z%B

i=11eT 1eT i=1

Z > eicrj—— 5 a (11.21)

i,j=11€T

For the inverse compositional optimization the regula'rtizaterm must be formulated

au,
asS[u] = 3, F?(c). We parameterize the terni- w and 9 aa;” + 5z~ by

V-ou= > c,j%Bl (11.22)
IEIje{l,..,,s} i
Ou;  Juy B)
; B B 11.23
{am] amj ;CI RS CF s (11.23)

It is clear that both terms are lineardn which yields the representation 6f, when
the integral is discretized.
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(b) Tensor product B-spline

Figure 11.3: lllustration of the flexible kernel of Multivate B-splines compared to

the tensor product B-spline.
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ration

72

(a) Acell (b) The Delaunay configurations

Figure 11.4: lllustration of a cell of a first order Delaunanfiguration. Notice how
point1 is inside the 3 triangles circumscribed spheres formindXthlaunay triangula-
tion of its connected points. They constitute the whole with 1 as an inside point.
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(a) Local 'forces’ acting on parameter (b) Local 'forces’ acting on parameter

(c) The B-spline basis function (d) The B-spline basis function

(e) Smoothed projection of forces (f) Smoothed projection of forces

Figure 11.5: lllustration of a basis function that will bedgped (left column), and one
where the impact is not big enough (right column). Notice jeyvand (f) differ by an
order of magnitude.
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(c) 3rd level

(d) Initial placement (e) 2nd level (f) 3rd level

Figure 11.6: The grid refinement for a uniform setting androam-uniform setting on
the corpus callosum data is illustrated here. Our refinemsédratsed on (11.13). Notice
how the structures are nearly segmented by the knots in thenidorm case.

(a) Rigid (b) FFD (c) Multivariate

Figure 11.7: Checkerboard illustrations of registratiesults, where the images are
tiled from reference and registered image.
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116 Adaptive parametrization of B-splines for Image Regist ration




CHAPTER 12

Multivariate splines

The current work describes a new explicit formulation of thaltivariate simplex
splines, based on divided differences and functions reegntine truncated powers,
with compact support for efficient evaluation. The formigdatis used for deriving
practical results for the simplex splines, most notably xgplieit formula for the cal-
culation of the derivative of the spline with respect to tlsifion of individual knots.
Furthermore, a generalization of Neamtu’s spline spacesésl o define constraints
that guarantee the reproduction of polynomials, which ésglneralization of the par-
tition of unity to higher order polynomials [76]. Neamtussults are also used for
describing a sub-division scheme for the simplex splinespa
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12.1 Introduction

Splines have numerous applications in function approdonatunction smoothing,
and modelling of form and shape trough free form deformati@i+D). The extension
of the curve splines to surfaces and more dimensions waallyiapproached by de
P. de Casteljau and P. Bézier, published by Bézier in 1966, imthoduced the Bézier
patches [26, 10]. For a better generalization of the uraarsplines to more dimen-
sions, Michelli laid some of the foundation for multivagasplines in his work on
Kergin interpolation from 1980 [72]. The initial formulati of the multivariate splines
were purely geometric, defining the spline as the densitysbbalow of a higher dimen-
sional simplex to a lower dimensional simplex, therefomdermedsimplex splines
e.g. the shadow of an opaque tetrahedron on the two dimeaigitane produces a
linear simplex spline. Michelli also discovered a recucesmelation for the simplex
spline, which facilitated an easier and stable evaluatfohe splines based on alge-
bra, rather than geometry. This recurrence relation has dieen proved in several
different ways [38]. A generalization of univariate trutes powers was introduced,
establishing links to the generalization of multivariateided difference [27, 74, 84].
The cone splines were used for proving more recurrenceaetator the multivariate,
including a recurrence relation in dimensions, facilitgtthe calculation of a spline of
higher dimension from a set of splines of lower dimensior.[14

Dahmen, Michellig and Seidel discussed the constructicspbifie spaces, and intro-
duced the DMS spline space [72, 90]. Neamtu considered il #@9introduction of
another moreatural spline space based on Dealunay configurations [75, 76]cbnte
years multivariate splines are also appearing in the coenpigion literature [111, 44].

The recurrence relations for calculating B-splines saffesm an explosion in required
computations with an increase in dimensionality and ordén®splines. The evalua-
tion of ans-dimensional spline of order requires the evaluation @& + 1)* simplex
splines of ordef) and((s + 1)* — 1)/s barycentric matrices (not all are different). It
was argued by Grandine in 1987 that the redundancy couldeeffiziently used for
optimization, however in 2000 Franssen et al. demonstratedfficient method for
the calculation of B-splines of the DMS space [34, 31]. Theent work describes a
new explicit formulation of the multivariate simplex spdisy, based on divided differ-
ences and functions resembling the truncated powers, aitfiyoempact support for
efficient evaluation. The formulation is used for derivinggtical results for the sim-
plex splines, most notably an explicit formula for the cédtion of the derivative of the
spline with respect to the position of individual knots. thermore, a generalization of
Neamtu’s spline space is used to define constraints thatigigs the desirable repro-
duction of polynomials property [76]. Neamtu’s results al&o used for describing a
sub-division scheme for the simplex spline space.
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12.2 Simplex splines

Simplex splines are multivariate generalizations of thiganmate B-splines introduced
by Curry and Schoenberg [18]. Simplex splines were definediedgoor in 1976 [23].

Let X = {z° ...,z°"*} be a set of» = s + k + 1 points in general position in
R#, then we will refer toX as a set of knots. The simplex spline may be defined as a
distribution M (x| X), which satisfies the following

M(z|X)f(x)de = s!k!/ fwox® + - 4 vepx®F)dyy - - - drgys, (12.1)

Rs Ss+k

where
Ss+k:{(Vo,...,ys+k)|yo+"'+Vs+k:lanZo’j:O""7s+k}

LetV € X, the number of points iV is#V = s+1, and let the determinadf1") +# 0
be nonzero, then it can be shown tidtx|X) satisfies the recurrence relation [38]

Zd (2], X).

where a subscripted)/ is the operation of taking out a point, and a superscrifiiéd

€T
‘;) are in effect the Barycentric

indicates the addition of a point and the coeffici
coordinates oft corresponding to the set of poiris

Fork =0, ie. #X = s + 1, M is defined as a normalized characteristic function

_xx(®) [ 1)voly[X] x € [X]
M(z|X) = vo)l(s X] { 0 otherwise

12.2.1 Divided differences and B-splines

Univariate divided difference is defined by
[tos- - talf = Z H (12.2)
J#l

Truncated powergr —t)', are defined aér —¢)" truncated td whenz < t. B-splines
may be defined as the divided difference of a truncated power

nlto, .. ] (- — )" = M{(t[to, .. . tn) (12.3)
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whereM denotes the univariate B-spline normalized to unit intednaincated powers
are not very suitable for evaluation due to their non-corhgapport, however as a
theoretical tool they can be used to show that all polynosplhes may be represented
by the B-spline basis [22]. Divided difference can be coasd an approximation to
the derivative operator, and has the B-spline as its PeamekE, 82]. In Section
[12.2.2 it is shown how the multivariate version of divideffetiences may be applied
for defining an explicit formula for the simplex spline.

12.2.2 Multivariate divided differences

Let I = {I,,...,I,} be a set ofs indices,z! = {z*,... 2/} € X, and define
d(z', ) by

x{l e x{s 1

d(z!, ) = I 1 : (12.4)
xsl e xss T
1 1 1

Following the definition presented by Neamtu, we define thétivamiate version of
the divided difference to be given by [74]

°,...2"f =Y (G (12.5)

fex jeanrd(a’, o)

The following Lemma, which is a straightforward generdiiza of the univariate case,
is needed to prove Theoréh2.2

LEMMA 12.1 Letn > s, andv € X, then

[X]d(-,27) f(-) = LX]f() (12.6)

Neamtu presented a generalization of truncated powerslimensions, which allows
for multidimensional version of (12.3). However, this repentation does not allow for
very efficient or stable evaluation of the multivariate Bisps, since it does not have
compact support. We introduce a different function, stpgaveral properties with
truncated powers, which is better suited for the purposkeptesented work

Téj) (2!, 2) = signd(z’,27)] - s! - d' (2, @) - x70 () (12.7)

wherex ru; () is the characteristic function of the simplex given by thinpe{«!, 27}.
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Define
M(x|X) = [X]T(-, x) (12.8)

Then it is clear that fok = 0, M and M are identical:M (z|X) = xx (z)/d(X) =
M(z|X)

THEOREM 12.2 Let M be defined as inlQ.8 then the following recurrence relation
holds

aFv) -
407 M (x|, X) (12.9)

M(2|X) =)

veV

PrROOFE

[X)d(-,2)TE (@) = [X]T (- @) = M (@] X) (12.10)

Itis concluded thaf\/ (x| X) = M(x|X) since it holds fork = 0, and they share the
same recurrence relation, so by induction they must be éguall valuesk € Z U+0.

12.2.3 Derivatives

Using the formula for the simplex spline introduced in (32#e derivative of the
simplex spline with respect to the variahtds given by
xd

DM (2| X) = Dgw[X|d* (-, 2)T) (-, 2) = k[X]d(-, v)d" ' (,a)T) (-, 2)

The introduced formula facilitates easy calculation of tiegivatives of the simplex
spline with respect to the position of the knots, and sindhing is characterizing the
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knotz;, it may as well be chosen as the direction of change in thedatderivative

DgspM (x| X) = Dggsp[X]d" (-, 2) 117 (- ) =
o signd(x!, 27)]d* (I, z)x 10, () _
Dgips! I%;/ Hie/\/\l d(z1, ) )
—g! Sigr{d(‘rvaj)]d(IaU)dk(Lw)XIUj(m) ) 12.11
YA ) o dere) -

For normalized simplex splines special care has to be taleern the knot being altered
is also part of defining the normalization coefficient. Thedgive of the normalized
simplex spline is thus given by

DgiwN(z|X) = Dgi.pvols[zP]M (2| X) =

M (2| X)Dgi.V0ls[27] + vols[2P] Dy M (2| X) (12.12)
where
sign[d(:cB)]d B .
DagspVoly[zB] =4 — & —d@7.v), jeB 12.13

12.3 Multivariate B-spline basis

Let p € II; be a polynomial of degrek defined inR*. The polar formP € Il is a
function of k vector variables!, ..., z* ¢ R*. It satisfies thaP(x, ..., x) = p(x)
is symmetric and multi-affine in all the variables.

pl@) =) X € AyP(X;)N(z|X). (12.14)

Especially ifp(z) = 1, P = 1, and [(2.19 is seen to demonstrate a partition of
unity. Liu and Snoyeink generalizes the result of Neamty.[6®ie simplex spline as
well as the B-spline by Neamtu is shown to provide a repradoodf polynomials.
This reproduction property is satisfied as long as the bayrglmplices of Delaunay
configurations keep their sign, which is the only conditi@tessary for the splines to
reproduce polynomials. The simplex simplex spline spasp#nning the whole B-
spline space, and it is less symmetric, which may prove aaradge considering the
discussion in Sectidh0.3
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12.3.1 Configurations and facet-matching

Define a boundary-interior configuration as a pair of pojntg), wheret is a tuple of
s + 1 points, forming a simplex, andl is a set ofk points disjoint fromt. Define a
normalized simplex spline by

NCIET) = dB)M(tUT) (12.15)

where we require that is ordered such that(t) > 0. Neamtu showed that the set
of Delaunay configurations of ordérdefines a basis for reproduction of polynomials
of orderk. Let 2, be the closed ball circumscribed to the simplex defined by the
boundary points, then a Delaunay configuratiai, ) is defined as above, where
(IUK)nNQ, =tUI, which means the circumscribed ball, besidéself, contains
only theinterior points/, from K.

We define faces of a configuration by=,, ¢, which is essentially a face of the simplex
of the boundary points. For a Delaunay configuration we can define three types of
faces, essential, non-essential and phantom faces, atheéelsio Figurel2.1

(a) Non-essential faces (b) Essential faces (c) phantom faces

Figure 12.1:

(a) non-essential fack, #({v, v} N Q) = 0, andv, © are separated by the hyperplane
affF

(b) essential face#({v, 0} NQ) = 1, andv, © are on the same side of the hyperplane
affF’

(c) phantom face#({v, v} N Q) = 2, andv, © are separated by the hyperplaneraff

This definition was introduced by Neamtu, who also proved alidaces of Delaunay
configurations can be labeled as one of these categories A76bnsequence of this
is that all faces of the configurations are either matchedrbyppositeconfiguration
sharing the same face. The configurations are either é@rteth of them for the es-
sential faces, ordédr — 1 for the phantom faces or two faces of ordeaind order — 1
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respectively are sharing a face for the essential faceselpmperties are important in
the proof by Neamtu of the reproduction of polynomials

The proof is based on recursion in degree of polynomial atidesy and it is well
known that a zeroth order tesselation forms a partition afyurThe two conditions,
satisfied by Delaunay configurations, that facilitates pinesof are

M(2|X")d(;("Fp)) + M (2| X)d(5("Fp)) = 0 (12.16)
d(Xp)M(z|F) + dEX)M(z|F) =0 (12.17)

They are a consequence of the fact that the pairdsid ¢ are separated by the hy-
perplane aff’, which means that the determinants in the expressions aisd dgter-
minants of matrices with switched columns and oppositessidiis observation was
also made by Liu and Snoyink, who used it to prove that thek-triangulation algo-
rithm also would form a partition of unity [68]. In the curitework, it facilitates the
conclusion drawn in Sectidb2.4

12.4 Optimizing the approximation

We propose to optimize the approximation using the conghssirom Sectiond2.3
and 12.2. One way to optimize the approximation would befjtthe parameters based
on gradient information and a fitness function similar to @ne presented by Hansen
et al. to add knots [44].

12.4.1 Knot movement

It appears favorable to be able to optimize the position @kitots, while retaining the
reproduction of polynomials property of the B-splines.l&@ing the conclusions from

Section 12.3, this means that none of the boundary poimts &my configuration order
k or smaller should pass the face spanned by the other boupdeatg of the boundary
simplex, if the face is shared with a configuration of the samder. For practical

implementation a slight restriction of these criteria i®sbn to avoid that any of the
determinants of the boundary points change sign. In the tw®mkional case this
means that no boundary triangle should flip, but no resbrcthat the configurations
have to remain Delaunay ordemeeds to be imposed as illustrated in FigLpe2

The knot movement changes the values of the splines withgimations including
the knot. This change may be described by the Gateaux deeid2.13, and in a
linearization, these derivatives may be perceived as iadditbasis functions, though
the optimization with respect to the knots is obviously a-fioear problem.
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Figure 12.2: Movement of knatto positionv’

12.4.2 Subdivision

If the representation of the simplex splines are insufficiecertain areas as discussed
in Section10.3 it may be an option to add knots to the representation. Aylitots
as illustrated in Figure 12.3 will reduce the support of threpdex in s + 1 smaller
simplices, assuming that the boundary knots are at the loun@he additionally in-
troduced faces, between the boundary points and the newpare all non-essential
faces, and by keeping the orientation of the points (by eptaeach boundary vertex
by the new vertex) the simplex spline may be replaced bythel smaller simplex
splines.

Figure 12.3: Subdivision by adding point
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12.4.3 Spline evaluation

To evaluate the splines, a number of evaluations ofythéx) have to be performed,
which is essentially checking if the poimtis inside the primitive defined by the points
V. However, this function is clearly piecewise constant, anéfigure[12.4a two-
dimensional simplex is divided in segments where all thesetfons are constant for
any choice ofV from X. ldentifying these segments, and pre-computing the func-
tion values and the determinants t2(5 means a significant speed-up of the spline
evaluation. However for cubic simplices, there are typycatound 110 segments, and
the implementation in 3D, identifying these segments takesndl ms runtime, so a
significant number of points needs to be evaluated in 3D ferilgher order splines,
for this be more efficient.

(a) Quadratic simplex (b) Cubic simplex

Figure 12.4: (a) shows the number of segments for a cubiclsikrgpline, and (b)
shows the segments for a cubic spline.

12.5 A view of the splines

The polynomial pieces that are used to piece together thglesinsplines in the equa-
tion presented in12.5 are illustrated in Figurd2.5

In Figure 12.6 a two dimensional slice of a three dimensional set of basistfans
are shown. Clearly the basis functions vary significantlghiape and size. In Figure
[12.7a two-dimensional slice through a three-dimensional catacisimplex spline is
illustrated. The derivatives with respect 90 y and z as well as one the knots are
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(a) k=0 (b) k=1 (©) k=2 (d) k=3

Figure 12.5: Demonstration of the polynomial pieces coredds form the simplex
splines.

illustrated in Figure 12.8, wheke, denote the unit vector in the spatiatiirection etc..
In Figure12.9the derivatives with respect to one of the knots are shown.

Figure 12.61llustration of a slice of some of the Basis functions in &#xdimensional
quadratic B-spline basis.

12.6 Conclusion

A new formula, based on the multivariate divided differerfoe explicit calculation of
the simplex splines has been presented. The formula addlitjoadmits easy calcula-
tion of derivatives, both spatial, and with respect to thsifan of the knots. Though
less numerically stable than the recurrence relation, xperements conducted so far
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Figure 12.7: lllustration of a slice of a three-dimensiogahdratic simplex spline.
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(@) Dx;e, M(x|X) (b) Da;e, M (x| X) (¢) Dxze, M(z|X)

Figure 12.8: lllustration of a slice of the spatial derivas of a three-dimensional
guadratic simplex spline.
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(@) Dz;e, M (x| X) (b) Dxj:e, M (x| X) (©) Dxjse. M (| X)

Figure 12.9: lllustration of a slice of the derivatives ofreete-dimensional quadratic
simplex spline with respect to change in position for onéhefB-spline knots.
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indicates that it is well suited for a more efficient calcidatof the B-splines, and no

numerical instability was observed. The expression maybpéel for even faster eval-

uation of the simplex splines by dividing the simplex intgiseents that are described
by the same polynomials. This is feasible, but for threeatisional cubic splines, the
number of points to be evaluated for a simplex spline has to thee order of thousands
for this approach to be more efficient.

It has been noted that, using simplices inspired by Neanatudiions may be set on
the knot movements, which ensures that the splines formtéiparof unity, even if
the knots are not Delaunay. A subdivision scheme is alscepted, which requires
no recalculation of the configurations of the splines. Itrti@pated that the splines
will be of great use for specialized problems, where thesasy be tailored to the
problem at hand.
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CHAPTER 13

Conclusion

The OECD predicts that public health care costs in the metantries will increase

from an average of 7 % of the gross domestic products in 208sdeed 12 % in 2050.

This overgrowth of expenses is partly due to longer life exgecies and survival rates
after critical diseases. However, the overgrowth will nhaime caused by implemen-
tation of new advanced technology for diagnostic suppoahitring, and treatment.

This fact both creates a need for financing health care costsaghuge market for

health care technology to be exploited. In order to ensucesacto and financing of
continued high quality health care in Denmark, emphasislghze put on research, de-
velopment, and commercialization of health care technoinghe world market. The

work presented here seek to face several challenges in #hgsenof medical image

analysis. More precisely it consists of contributions ibhdi@ing three areas.

In Part I an efficient algorithm for calculating the entirguéarization path of the sup-
port vector domain description is presented. The abilitgdtrulate the entire path
with a complexity in the same order as solving the originaddpatic problems gives
inspiration to utilize the extra information availablerindhe entire path. A method for
hierarchical support vector clustering, based on infoionarom the entire regulariza-
tion path, and multiple Gaussian kernels is described. ifigithod can be considered
an extension of a previously developed method, which is atapirically shown to

give good results on real world data [40]. Testing the meshal more data would

be interesting in the future to draw more conclusions on titane of the support vec-
tor domain description for clustering. However, this woaldo be very interesting to
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see combined with the analysis presented in Chéftarthere Bayesian methods are
applied in the attempt to draw direct statistical conclosiédrom the support vector
domain description analysis.

In Part Il different assumptions on the warp fields, nameffigdmorphism and a linear
elastic potential in the form of regularization are disags<Chaptg8lintroduces a new
warp representation which allows statistical analysis mmurestricted linear param-
eter space, where all derivatives are defined. Furthernitoieshown thatL,-norm
on the parameter space introduces a reasonable metric attine@l space of modelled
diffefomorphisms. The results compare well to those obthimging Cootes’ defor-
mation model. A new parametrization of 3D deformation fieladsing potentials and
Helmholtz decomposition is presented. The representatarbe considered a natural
parameterization for both elastic and fluid image registmatiue to the decoupling of
the parameters. For morphometry it is demonstrated thabbtie two potentials di-
rectly gives us the vorticity of the deformation field. Theeteninant gradient field is
shown to be the first-order small-deformation approximmatathe determinant of the
Jacobian matrix — probably the most accepted morphometagune used.

Part IIT discusses spline approximations of functions, iangharticular image registra-
tion warp fields. It is shown how spline bases may be learneu the optimization
process, ie. image registration optimization, and howrttag contribute with a reason-
able prior, or regularization in the method. A new formulaséd on the multivariate
divided difference, for explicit calculation of the simplsplines is presented. The for-
mula additionally admits easy calculation of derivativasth spatial, and with respect
to the position of the knots. Though less numerically stafa the recurrence rela-
tion, the experiments conducted so far indicate that it i$ suited for a more efficient
calculation of the B-splines, and no numerical instabiitpbserved. The expression
may be applied for even faster evaluation of the simplexisgliby dividing the sim-
plex into segments that are described by the same polynamtdlis is feasible, but
for three-dimensional cubic splines, the number of pointse evaluated for a simplex
spline has to be in the order of thousands for this approadle tmore efficient. It is
demonstrated, using simplices inspired by Neamtu, thatliions may be set on the
knot movements, which ensures that the splines form a jpartitf unity, even if the
knots are not Delaunay. A subdivision scheme is also predemthich requires no
recalculation of the configurations of the splines. It iS@pated that the splines will
be of great use for specialized problems, where the basish@agilored to the prob-
lem at hand. In Chapter it is demonstrated how the paramegrigion of the elastic
potential and in effect illustrating how the whole class tffedential operator derived
regularizers, i.e. curvature and bending energy, can by éaplemented in a para-
metric setting. With the same methodology, the inherentating or averaging cost,
of selecting warp parameterizations at a specific kerneluésen, has been analyzed.
A refinement measure has been derived, which is shown to lwéeeffifor guiding
the local mesh layout. With the combination of our refinenmaptisure and the local
flexibility of the multivariate B-splines, the warp field isitmmatically refined in areas
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where it results in the minimization of the registration tchsiction. The designed
basis gives knots that are close to a segmentation of oljéotging for better local
control, even where very inhomogeneous areas share a border
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