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Abstract 
 

Recent in-reactor tensile tests (IRTs) on pure copper have 
revealed a deformation behaviour which is significantly different 
from that observed in post-irradiation tensile tests (PITs). In IRTs, 
the material deforms uniformly and homogeneously without yield 
drop and plastic instability as commonly observed in PITs. An 
increase in the pre-yield dose results in an increase in the level of 
hardening over the whole test periods and a decrease in the uniform 
elongation suggesting that the materials “remember” the impact of 
the pre-yield damage level.  

These features are modelled in terms of the decoration of 
dislocations with glissile dislocation loops. During pre-yield 
irradiation, dislocation decoration is due to the one-dimensional 
(1D) diffusion of cascade induced self-interstitial (SIA) clusters and 
their trapping in the stress field of the static grown-in dislocations. 
During post-yield irradiation and deformation, moving dislocations 
are decorated by the sweeping of matrix loops. 

The interaction of dislocations with loops and between loops is 
discussed as a function of the relevant parameters. On this basis, the 
kinetics of decoration is treated in terms of fluxes of loops to and 
reactions with each other in a conceived 2D space of decoration. In 
this space, loop coalescence, alignment and mutual blocking 
reactions are characterised by appropriate reaction cross sections. In 
the kinetic equations for “dynamic decoration” under deformation, 
the evolution of the dislocation density is taken into account. Simple 
solutions of the kinetic equations are discussed. The apparent 
memory of the system for the pre-yield dose is identified as the 
result of simultaneous and closely parallel transient evolutions of 
the cascade damage and the dislocations up to the end of the IRTs. 

The contributions of dislocation decoration to yield and flow 
stresses are attributed to the interaction of dislocations with aligned 
loops temporarily or permanently immobilized by other loops or 
SFTs (“decoration enhanced obstacle hardening”). On this basis, the 
yield and flow stresses are discussed as a function of pre-yield dose, 
post-yield dose and strain. Assuming physically reasonable values 
for the parameters involved we are able to reproduce the general 
trends and the right orders of magnitude of the yield and flow 
stresses measured in the IRTs on Cu.
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Quantities and Symbols 
 
A:     area vector of loop; A0 ≈ b2 atomic unit area 
B, b:     Burgers vector of dislocation, loop, of magnitude B, b 
c:    atomic concentration  
cg:    atomic concentration of glissile loops 

( , )
,
ml SFT

i vc : atomic concentrations of SIAs, vacancies accumulated in the matrix loops, SFTs  

ci
dc:   atomic SIA concentration involved in decoration 

Dg:   diffusion coefficient of primary glissile SIA clusters (= 10-8m2/s) 
D:    NRT displacement dose (= GNRTt) 
D0:   dose at transition from dislocation to matrix cluster dominance  
Dy:   pre-yield dose (10-3 to 10-2 dpa) 
dl, dml , dSFT:  average diameter of decorating loop, matrix loop, SFT   
ddl, dll:    dislocation-loop, loop-loop distance  
dtr:    “trapping range” (dtr < 200b < 50 nm) 

ddc:    width of the decorated region (during deformation ≈ 80b ≈ 20 nm ) 
( )
,
sw

i vd :    width for absorption of SIAs and vacancies by dislocation sweeping (≈ 20b ≈ 5 nm) 

Edl, Ell:    dislocation- loop, loop-loop interaction energy 
Fdl , Fll:    dislocation-loop, loop-loop force vector 
f :    strength factor for loop interaction with dislocations   
fr:    fractions of SIAs recombining, ( = 0.9) 
fr, fi

g,s:    fractions of SIAs clustered in glissile, sessile loops, (fi
g,s = 0.1, 0.4) 

G:    normal vector on glide plane 
g :    unit vector in loop glide direction 
G:    defect generation rate, G = (1-fr)GNRT; GNRT: NRT displacement rate ( = 5x10-8/s ) 
Gi

g,s = fi
g,sG:  generation rate of SIAs in glissile, sessile loops 

Gik(r):    elastic Green’s function 
Jl,SFT:   apparent flux density of matrix loops, SFTs to moving dislocation 
 ji,v,:    apparent flux density of SIAs and vacancies in matrix clusters to moving dislocation 
k2, kg

2:    sink strength, for glissile loops. 
kTm:    thermal energy at melting point Tm  
L:    unit vector along dislocation line 
MF:    mobility of loops in force field 
Ml,SFT:    Number density of matrix loops, SFTs  
ml,SFT:    average number of SIAs, vacancies in matrix loops, SFTs (100 to 200, 30 to 100) 
N:    2D number density of decorating loops, N+ of aligned loops  
n:    average number of SIAs in decorating loops, n+ in aligned loops  
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p:    fraction of differing loop orientations,  p = 5/6 and 1/2 for edge and screw dislocations 
Q:    eigen-strain tensor of loops, components Qij 

ql,SFT, :  ratio of trapping to geometrical cross sections (2 to 5) , , ,( /l SFT l SFT l SFT
tr geomq s s= )

rdl:    separation vector between dislocation and loop 
s:    cross section 

s*:    cross section of strong interaction (s*  ≈ 4m1/2 brdl)  
sco, sal, sbl, san:    cross sections for loop coalescence, alignment, blocking annihilation  

sgeom:   geometrical cross section of loop (≈  mb2) 
,l SFT

trs :   trapping cross section of loops and SFTs 

s:    coordinate of loop along glide path; origin at point of closest approach to other defect  
T:    temperature  
Tm:    melting temperature 
t:    time 
vd:    dislocation velocity 
x, y, z:   coordinates in the glide direction, normal to the glide plane, along the dislocation line 

α:   “coverage”, fraction of decorated plane covered with SIAs (0 ≤ α ≤ 1) 

α+:    coverage by aligned loops (5% to 30% for “moderate decoration”) 

β :    rate constant for dislocation evolution (0.1 to 0.5) 

δ :    effective “stand-off” distance of blocked loops from dislocation (≈ 10b ≈ 2.5 nm) 

ε:    plastic strain  
( )
,
sw

i vε :   characteristic strains for matrix defect reduction by dislocation sweeping (≈ 10 to 20%) 

ε& :    strain rate = 10-7/s 

ηi,v:   fraction of NRT SIAs/ vacancies accumulating in  matrix loops/ SFTs (≈ 0.5 to 2%)  

κ :   reciprocal mean free path;  

κd,l,SFT:   contributions of dislocations, sessile SIA loops, SFTs to κ 

μ:   shear modulus (= 55 GPa for Cu) 

ν:    Poisson’s ratio (= 1/3 for Cu)  

ρ:    dislocation density; initial value ρ0 ≈ 1012/m2; saturated value ρs ≈ (2 to 5)x1014/m2  

σ:    stress field; σd: stress field of dislocation  

σ% :    resolved shear stress;  

yσ% :   shear yield stress; σy: tensile yield stress ≈ 3 yσ%  

fσ% :    flow shear stress; σf: tensile flow stress ≈ 3 fσ%  

τ :    time to quasi-steady-state of primary glissile clusters 

φi,v:    fractions of SIAs and vacancies which can be absorbed and annihilated: φi ≤ ½, φv << 1 

χ+, χ-:    fraction of aligned, non-aligned loops (averages over dislocation types: χ+ = ¼ , χ- = ¾) 

Ω:   matrix atom volume (Ω = b3/√2 for FCC) 
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1. Introduction 
 

Effects of irradiation with energetic particles such as fission and fusion neutrons on the 
mechanical properties of metals and alloys, particularly at temperatures below recovery stage V, 
have been recognized and studied since the beginning of the 1960s [1-3]. Post-irradiation tensile 
tests (PITs) have shown that (i) the yield strength of metallic materials increases with increasing 
displacement dose, (ii) materials irradiated to a dose beyond a certain level exhibit the 
phenomenon of yield drop and the deformation is found to occur in a localized fashion, (iii) the 
irradiation causes an almost complete loss of work hardening and a drastic decrease in uniform 
elongation, i.e. ductility (see Ref [3] for review). 

It is scientifically as well as technologically of great interest to examine the relevance of PITs by 
studying the response of materials to a more realistic simultaneous exposure to neutron 
irradiation and deformation in a real reactor environment. Such in-reactor tensile tests (IRTs) 
have been performed recently on pure Cu and a CuCrZr alloy [4]. The deformation behaviour 
observed in these tests is indeed qualitatively different from that observed in post-irradiation 
tensile tests (PITs). The IRTs show, for example: (a) the materials deform homogeneously and do 
not exhibit yield drop and plastic instability as commonly observed in PITs, and (b) an increase 
in the pre-yield dose results in an increase in the yield stress, a decrease in the post-yield 
hardening rate, an increase in the maximum hardening level and a decrease in the uniform 
elongation (see figs. 1 and 2). The effect of pre-yield dose on the hardening rate and the level of 
maximum hardening suggest that the materials “remember” the impact of the pre-yield damage 
level over the whole test period. 

Modelling of radiation hardening is based on two classical hardening theories designed for two 
extreme microstructural situations: (1) Orowan’s “Dispersed Barrier Hardening (DBH) model” 
where dislocation glide is assumed to be hindered by a random distribution of (immobile and 
indestructible) obstacles such as precipitate particles [5,6]; in this case, the yield stress is defined 
by the resolved shear stress necessary for dislocations to overcome the obstacles by bowing out 
between them, and the yielding process is necessarily associated with dislocation generation; (2) 
Cottrell’s “atmosphere hardening” where impurities accumulated in the strain field of 
dislocations are assumed to block the dislocations [7];  in this case, the yield stress is defined by 
the resolved shear stress required to pull the dislocations away from the impurity “atmosphere”, 
and yielding is followed by a yield drop without generation of new dislocations. 

Most previous attempts to model radiation hardening are based on the DBH-model assuming that 
irradiation produces (immobile and indestructible) obstacles against dislocation glide such as 
stacking fault tetrahedra (SFTs) and dislocation loops (see for instance [8]). Striking features in 
radiation hardening under cascade damage conditions such as the increase of the yield stress 
without dislocation generation, the yield drop, the tendency to plastic instability and flow 
localization in narrow bands can, however, not be rationalized in terms of any DBH-type model. 
These features have been treated in terms of “Cascade Induced Source Hardening” (CISH) model 
[9] where the defect structure locking the dislocations are assumed to originate from the glide and 
trapping of glissile clusters of self-interstitial atoms (SIAs) in the form of small dislocation loops 
produced in displacement cascades [10,11]. 

It is important to recognize that in the past the treatment of radiation hardening has been strictly 
limited to the consideration of the effect of irradiation only on the yield stress. Both from 
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scientific and technological points of view, it is of interest, however, to understand the effect of 
irradiation not only on the yield stress but also on the evolution of the plastic flow and strain 
hardening beyond the yield point as a function of strain and displacement dose. Note that it is this 
evolution which may determine the life time of materials employed in different components of 
fission and fusion reactors. 

In the present paper, we make an attempt to model the concurrent production of displacement 
cascades and dislocations under irradiation and deformation as occurring in IRTs. Under IRT 
conditions, the decoration of dislocations with dislocations loops is assumed to develop 
continuously during pre- as well as during post-yield irradiation; during pre-yield irradiation by 
the one-dimensional (1D)  diffusion and trapping of newly produced glissile clusters, during post 
yield irradiation mainly by the sweeping of matrix loops. We sketch a “decoration hardening” 
model where the yield stress as well as the post-yield flow stress is considered to be controlled by 
the degree of decoration. Our emphasis will be on identifying the necessary conditions and 
mechanisms. 

In section 2, we first describe the main experimental results of the recent in-reactor tensile tests 
(IRTs) and the main theoretical ideas of the physical processes considered to be relevant for the 
experimental observations. Section 3 is devoted to the elastic interaction between dislocations 
and small dislocation loops and between such loops which is considered to form the energetic 
basis for the evolution of dislocation decoration with loops. The kinetics of dislocation 
decoration under pre-yield as well as post-yield conditions is treated in section 4. The effect of 
dislocation decoration on the yield and the flow stress is discussed in section 5. In section 6, the 
main results are summarised and their implications for other irradiation and deformation 
conditions and other materials are discussed. Conclusions are presented in section 7. 

2. Physical Basis for the Present Theoretical 
Considerations 

 

2.1    Experimental observations  
The theoretical considerations of this paper are based on the results of recent in-reactor tensile 
tests (IRTs) and microstructural investigations of pure Cu samples studied in these tests [4]. The 
stress response of pure Cu samples as a function of test time is shown in fig. 2.1 for 3 different 
pre-yield doses when the deformation was started (increasing in the sequence of test numbers 3, 
1, 2). These results form the basis for figs. 2.2a and 2.2b where the increases in the yield stress 
and post-yield flow stress relative to unirradiated reference samples are plotted vs. dose and 
strain, respectively. Figures 2.1, 2.2a and 2.2b show that the samples deform uniformly without 
yield drop. A prominent feature of the stress response observed in the IRTs is that an increase in 
the pre-yield dose results in an increase in the level of hardening in its whole evolution from the 
yield stress to the on-set of fracture - as if the materials “remembered” the impact of the pre-yield 
damage level over the whole test period, i.e. over a dose range of more than 2 orders of 
magnitude. 

As illustrated by the example shown in fig. 2.3, microstructures observed after IRTs are 
characterized by a relatively homogeneous spatial distribution of substantially decorated 
dislocations, without indication of segregation in the form of walls and cells as observed in 
unirradiated and deformed pure Cu samples. These features indicate that deformation proceeds in 
a rather homogeneous fashion. 
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The mechanical behaviour revealed by figs. 2.1 and 2.2 is fundamentally different from what 
would be expected from the point of view of the conventional picture of radiation hardening 
which assumes that radiation induced immobile and indestructible obstacles such as SFTs and 
dislocation loops (determined by the total dose) control the mechanical response of materials. In 
such a model it is not understandable at all why the stress response, say at 2x10-2 dpa, should 
significantly depend on the much lower pre-yield dose in the range < 10-2 dpa.  

We conclude from this surprising dependence of the stress response on pre-yield dose that, under 
IRT conditions, the hardening cannot be explained in terms of radiation induced obstacle 
hardening alone. Instead, the stress response in IRTs seems to originate from the structure of the 
dislocation and their immediate environment, i.e. from the dislocations coupled to the loops 
decorating them. Therefore, we will focus in the following on modelling the evolution of 
dislocation decoration under static as well as dynamic conditions and its effect on the stress 
response. 

2.2     Physical processes 
In the present paper, we attribute hardening under IRT conditions primarily to the decoration of 
dislocations with cascade induced dislocation loops. Naturally, the direct contact of dislocations 
with obstacles such as loops and SFTs will also contribute to hardening. The details of the 
microscopic processes involved in dislocation decoration are very complicated. It appears 
therefore useful to start the discussion with a qualitative description of these processes. 

In displacement cascades, efficient recombination and clustering of both vacancies and self-
interstitial atoms (SIAs) take place. Certain fractions of the surviving SIAs form glissile and 
sessile clusters, respectively. Glissile SIA clusters in the form of small dislocation loops perform 
a very fast and far ranging one-dimensional (1D) diffusion along close packed directions of the 
lattice [12]. During the early stages of irradiation (pre-yield irradiation), particularly of pure 
metals, such clusters are mainly trapped in the long range strain/stress fields of grown-in 
dislocations and accumulate there because of the limitation of their diffusion to 1D (provided 
they are able to change their direction of motion or to climb transversally to their 1D diffusion 
directions). Thus, the 1D diffusion of SIA clusters and their interaction with dislocations is the 
origin of the decoration of static dislocations with SIA loops [10, 11]. 

Loops with different, though crystallographically equivalent, Burgers vectors approach a 
dislocation from different diffusion directions and are repulsed at one side and attracted at the 
opposite side of the dislocation as schematically illustrated in fig. 2.4. For edge dislocations, the 
interaction is strongest when the Burgers vectors of the dislocation and the loop have the same 
direction (“aligned loop”). During the evolution of dislocation decoration process, loops 
themselves interact and react with each other. The following main reactions are conceivable: 
coalescence of two aligned or two “non-aligned loops” and coalescence of a non-aligned with an 
aligned loop with subsequent alignment. 

While dislocations at rest are decorated by the 1D diffusion and trapping of primary cascade 
induced SIA clusters, dislocations moving during deformation are considered here to get 
decorated with loops mainly by sweeping the matrix during their glide. The experimental 
findings that dislocations formed during deformation are significantly decorated with loops [4] 
provide evidence that these dislocations have indeed swept and dragged matrix loops.  

As schematically illustrated in fig. 2.5, dislocations moving during deformation “see” an apparent 
drift flux of matrix clusters (loops and SFTs) with whom they interact and react via the cloud of 
aligned loops accompanying them. The fate of matrix loops swept by a moving dislocation 
depends on their glide direction relative to the glide plane of the dislocation. Matrix loops gliding 
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parallel to the glide plane (aligned loops) can join the loop cloud accompanying a dislocation. 
Upon close contact, one aligned loop may agglomerate with another aligned loop or with a non-
aligned loop with subsequent alignment forming thereby a larger aligned loop. A member of the 
aligned loop ensemble may be immobilised and left behind the moving dislocation by a close 
interaction without direct contact with a matrix cluster.  

A Matrix loop gliding transversely to the glide plane can approach the dislocation and can get 
incorporated in its core, provided its motion to the dislocation has not been blocked by a close 
interaction with another matrix cluster. The preferential absorption of (non-aligned) loops 
(compared to vacancy absorption) would cause edge segments to climb and render screw 
segments helical1). A contact between a member of the loop ensemble and a SFT will result in 
partial recombination of SIAs and vacancies contained in both. Growth of the loop ensemble, 
absorption of loops by the dislocation and partial recombination of SIAs in loops and vacancies 
in SFTs will reduce the fraction of defects accumulated in the matrix. 

Decoration is expected to reduce the effective mobility of the dislocations which are being 
continuously produced during deformation. Because “younger” (i.e. a newly generated) 
dislocation segments are less decorated, they are more mobile and faster than “older” segments 
and, consequently, sweep faster, such that their degree of decoration soon becomes comparable to 
that of “older” segments. Dislocations once decorated will remain decorated during deformation, 
i.e. they will not get separated from their loop cloud. 

Because of the reduction of the effective mobility of dislocations upon decoration, the stress 
required to move them with a certain velocity increases with increasing degree of decoration. In 
the stress response to deformation, this manifests itself in an increase in the yield and the post-
yield flow stress. An important point to be discussed in hardening due to dislocation decoration is 
the origin of the force between a moving dislocation and the dragged loop ensemble responsible 
for the reduction of the dislocation mobility. Two main contributions to this force have to be 
considered: (1) the finite mobility of the loops, and (2) the mutual interaction between members 
of the loop ensemble and between the latter and matrix clusters. 

In the following, we make an attempt to quantify the qualitative picture of dislocation decoration 
and its relation to hardening as described in the present section. A central question in our 
considerations will be as to whether or not the mechanisms introduced here are efficient enough 
to be relevant for the observed defect accumulation and the associated mechanical response. 

                                                      
1)  It is not clear, however, whether screw dislocation segments are able to incorporate loops 

completely or partially in their cores as they do incorporate single SIAs and vacancies. 
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3. Energetics of Dislocation Decoration with Loops 
The strong long-range elastic interaction between dislocations and SIA clusters moving one-
dimensionally in form of a small glissile dislocation loops forms the basis of dislocation 
decoration under static as well as dynamic conditions. With progressing decoration, also the 
interaction between members of the loop ensembles decorating dislocations becomes 
increasingly important. The relative strength of the loop-dislocation and loop-loop interaction 
may be expected to be essential for the evolution of decoration and the related mechanical 
response. It is clear that already the energetics of dislocation decoration represents a very 
complicated multi-particle problem which can not be treated rigorously. For the discussion of the 
kinetics of decoration, at least some basic elements of its energetics are needed which we present 
in this section. 

Details of the loop-dislocation and loop-loop interaction depend on the crystallography of the 
dislocations and loops involved. Considering a FCC crystal structure (e.g. of Cu), we assume for 
both dislocations and loops, Burgers vectors (BVs) of <110>/2-type, for the former glide planes 
of {111}-type, and for the latter, according to computer simulations for Cu [14], {110}-type habit 
planes (differently from the {111}-type habit planes assumed in [11]), i.e. totally 6 loop 
configurations. For a given edge dislocation, for instance, 3 of the 6 loop configurations are able 
to glide parallel to the glide plane of the dislocation, (1 of them with BV b aligned with the BV B 
of the dislocation, and the other 2 with glide components in the dislocation line direction, 
allowing a distribution of such loops over a gliding dislocation); and the other 3 of the 6 
configurations glide obliquely to the glide plane of the dislocation and can thus be absorbed when 
the latter moves. 

If a loop glides parallel to the glide plane of a (moving) dislocation it can reach this only by 
climb or by changing its direction, i.e. its Burgers vector [15] (which we ignore here). If a loop 
glides obliquely to the glide plane of a moving dislocation, both can meet each other by glide at 
the intersection of the loop path with the glide plane. 

3.1  Interaction of dislocations with single loops  
We use the isotropic elastic continuum approach to estimate the magnitude of the elastic 
interaction between a single dislocation and a single loop as a function of the spatial separation 
vector, rdl, i.e. the distance and relative orientation between the dislocation and the loop. For 
loop-dislocation distances large compared to the loop diameter, ddl >> dl, the loop may be 
considered to represent an elastic dipole of eigen-strain tensor Q. In this small (or 
“infinitesimal”) loop approximation, the interaction energy of the loop, Edl, in the stress field of 
the dislocation, σd(ddl), may be written as [16, 17] 

 Edl(rdl)  = − Q⋅σd(rdl) = − Qij σd
ij(rdl) .     (3.1) 

Einstein’s summation convention for summing up over repeated indices (denoting components of 
vectors and tensors) is to be used in eq. (3.1) and, when appropriate, later. The force between the 
dislocation and the loop is given by the gradient of the interaction energy 

Fdl(rdl)  =  − ∇Edl(rdl).       (3.2) 

For a well developed loop of area vector A and Burgers vector b 

 Q = (A b + b A )/2 →  (Ai bj + Aj bi)/2 ,  with A · b  = Ai
 bi  ≈ nΩ , (3.3) 
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where n is the number of SIAs contained in the loop and Ω ≈ b3 (Ω = b3/√2 for FCC) is the 
volume of matrix atoms. For isotropic Q, as for instance for SFTs, Qij = nΩδij/3,  Qii = nΩ. 

In the small loop approximation where the radius of curvature of the dislocation has to be large 
compared to the diameter dl of the loop, we may approximate the stress field in eq. (3.1) by that 
of a straight dislocation. According to eq. (3.1), the spatial dependence of the interaction energy 
is determined by that of the stress field of the dislocation. Thus, for a straight dislocation 
segment, the dependence of the interaction energy on rdl has the symmetry corresponding to 
σd(−rdl) = −σd(rdl), i.e.  

 Edl(−rdl) = − Edl(rdl) .       (3.4) 

According to eq. (3.4), the directional dependence of the interaction energy is characterised by 
attractive and repulsive directions. If a loop is attracted at one side of the dislocation, it is 
repulsed at the opposite side; it is, for instance, attracted at the side of dilatation and repulsed at 
the side of compression of an edge dislocation. As a result, the directional average of the 
interaction energy vanishes. 

Simple estimates of the magnitude of the interaction energy and the force between dislocations 
and loops are obtained by ignoring the vector and tensor characters of the quantities in eq, (3.1). 
Setting Q → nΩ, σd(rdl) → μb/2πrdl we write  

⎪Edl(rdl)⎪  ∼  nμΩb/2πrdl  and ⎪Fdl(rdl)⎪  ∼   nμΩb/2πrdl
2,   (3.5) 

where μ  is the shear modulus of the matrix.   

According to eq. (3.5), the energy and the force Edl(rdl) and Fdl(rdl) increase linearly with the 
number n of SIAs contained in the loop and decrease inversely with the distance and the square 
of the distance, respectively. Equation (3.5) suggests using nμΩ/2π, nμΩ/b2π, and rdl/b as natural 
energy, force and length units, respectively. We will use eq. (3.5) for SFTs as well as for loops. 

The dependence of the interaction energy on the direction of the spatial separation vector, rdl, i.e. 
the angular dependence, is much more complicated than the distance dependence and varies 
considerably with the configuration of the loop relative to that of the dislocation (a relatively 
simple expression can be derived for pure screw dislocations, see appendix A1). For the 
derivation of explicit expressions for interaction energies and forces, the coordinate system is 
chosen such that the expressions for the stress fields of straight dislocations given in text books 
[17, 18] can be directly used: x, y and z coordinates in the glide direction, perpendicular to the 
glide plane (normal vector G) and along the dislocation line (unit vector L), respectively (suffices 
1,2 and 3 for vector and tensor components). 

To illustrate the dependence of the interaction energy on the direction, lines of equal interaction 
energy, “equipotential lines”, in appropriate planes as plotted in fig. (3.1) have been calculated 
(see appendix A1). The equipotential lines are kidney shaped for the interaction of a loop with an 
edge dislocation (except for loops with BV perpendicular to BV of the edge dislocation), and 
circular for the interaction of a loop with a screw dislocation.  

The calculations show that the interaction is strongest for b �  B(edge), vanishes for b and ⊥ 
B(screw), and is comparable in magnitude for the remaining 9 combinations of configurations 
listed in table A1, including the 4 remaining combinations of loop configurations with a screw 
type dislocation (in variance to the common assumption, that screw dislocations do not interact 
with loops). 

�

For edge dislocations, the interaction is attractive, Edl(rdl)  < 0, and repulsive, Edl(rdl)  > 0, at the 
side of dilatation, and compression, respectively. At one side of a screw dislocation, the 

12                                                    Risø-R-1610(EN) 



interaction is attractive for one loop configuration gliding parallel to the glide plane of the 
dislocation and repulsive for the other. Analogous relationships hold for loops gliding obliquely 
to the glide plane of a screw dislocation. Accordingly, under irradiation without deformation, 
decoration will develop only at one side of edge type but around screw type dislocations.  Note 
that upon cross slip of a screw dislocation segment non-aligned loops would become aligned and 
visa versa. 

A 1D diffusing glissile loop arriving at an attractive side of a dislocation at rest will be trapped in 
a local energy minimum, in a “valley”, defined by the tangent of the 1D diffusion direction to the 
corresponding equipotential line. In the case of an edge dislocation, two “valleys” separated by a 
“mountain ridge” exist for kidney shaped equipotential lines. The relative strengths of the 
interactions of loops of different configurations with a dislocation are expected to manifest 
themselves in the frequency distributions of the loops decorating the dislocation. 

An important quantity in dislocation decoration is the width of the decorated region, dtr. The pre-
yield decoration of dislocations at rest is most likely spatially limited by the thermally activated 
de-trapping of small primary 1D diffusing loops at the boundary of decoration which determines 
an upper bound of dtr. For estimating the range of efficient trapping as a function of temperature, 
for the  time being without regard to the degree of decoration, we introduce in eq. (3.5) μΩ ≈ 
35kTm as a homologous elastic energy unit where kTm is the thermal energy at the melting point 
Tm of the metal: 

      ⎪ Edl ⎢≈ 6nkTmb/rdl .       (3.6) 

 Trapping of loops by dislocations at rest is expected to be efficient within the “trapping range”, 
rdl < dtr, where the magnitude of the attractive interaction energy is larger than the thermal 
energy,⎪Edl ⎢ > kT. In this range, the probability for detrapping decreases steeply with decreasing 
rdl.  Neglecting detrapping and using ⎪Edl ⎢ > kT in eq. (3.6), we obtain an upper bound estimate 
of the trapping range scaling as 

 dtr   ≈  6nbTm/T .        (3.7) 

For the temperatures around 380K of the IRTs considered here, we find dtr ≈ 20nb, meaning that, 
for instance, for primary loops with n = 10 SIAs per loop the width of the decorated region would 
be as large as dtr ≈ 200b ≈ 50 nm2). For loops having grown far beyond the size of primary loops, 
n >> 10, the trapping range would be significantly larger. Thermally activated de-trapping from 
dislocations is, however, negligible for such loop sizes, i.e. it does not play any role in the 
sweeping of matrix loops by dislocations moving under deformation. Under such dynamic 
conditions, the spatial width of decoration is not limited by the loop-dislocation interaction 
energy relative to the thermal energy but most likely by the mutual immobilisation of dragged 
loops by matrix clusters as considered below. 

3.2  Interaction between two loops 
So far, we have considered the interaction between a single dislocation and a single loop. During 
the evolution of a loop cloud around a dislocation, the probability of members of the loop cloud 
to interact with each other more strongly than with the dislocation increases with increasing 
density of loops in the decorated region. Two loops will react with each other if their glide 
cylinders intersect each other. But even if their glide cylinders do not intersect, the elastic 

                                                      
2)  A more rigorously derived estimate of a representative interaction energy [19] yields a smaller 

factor of about 3.5 instead of 6 in eqs. (3.6), resulting in correspondingly lower values for dtr. 
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interaction between 2 loops can be stronger than their interactions with the dislocation if their 
distance is small compared to their distance to the dislocation.  

For loop-loop distances larger than the loop diameters, dll >> dl, we may again use the small loop 
approximation to estimate the loop-loop interaction energy. In this approximation, the interaction 
energy of two loops, (1) and (2), E12, is given by an expression analogous to eq. (3.1), except that 
the strain tensor is now that of one of the loops and the stress tensor that of the other loop. By use 
of the elastic Greens function, the complicated stress field of a loop may be related to its eigen-
strain tensor as shown in the appendix A1.  

The dependence of the interaction energy of 2 loops with non-intersecting glide cylinders on their 
distances from their positions of closest approach is illustrated in fig. (3.2) for different 
combinations of loop configurations. For all combinations, the interaction energy has an absolute 
minimum at the closest approach positions of the loops. 

As done in eq. (3.5) for the interaction of a single loop with a dislocation, we may introduce 
simple estimates for the interaction energy and the corresponding force between two loops 
containing m and n SIAs, respectively, by ignoring the vector and tensor character of the 
quantities involved. Accordingly, we write for two loops containing m and n SIAs 

⎪Ell(rll)⎪ ∼ mnμΩ 2/4πrll
3  and ⎪Fll(rll)⎪  ∼ 3mnμΩ 2/4πrll

4.   (3.8) 

Equation (3.8) is also a reasonable estimate for the interaction of a loop with a well relaxed large 
SFT and represents an upper bound estimate for the small SFTs developing under cascade 
damage conditions. 

As for the trapping of a loop in the field of a dislocation, mutual trapping of two small loops is 
expected to be efficient within the “trapping range”, rll < rtr, where the magnitude of the attractive 
interaction energy is⎪ Ell ⎢ > kTm.  With eq. (3.8), this yields for the trapping range, rtr, and the 
corresponding trapping cross section, str, respectively 

rtr ∼ 1.5 ( mnTm/T )1/3 b,  str = πrtr
2 ∼ 7( mnTm/T )2/3b2 ,   (3.9) 

in agreement with the estimate given in ref. [19]. The trapping cross section given in eq. (3.9) can 
be significantly larger (say by 1 order of magnitude) than the geometrical cross section of the 
bigger of the two loops, sg ≈  mb2. 

  

3.3  Interaction between two loops in the field of a dislocation 
In a loop cloud decorating a dislocation, loops interact with each other as well as with the stress 
field of the dislocation. In fact, it is the strength of loop-loop interaction relative to the loop-
dislocation interaction which will be assumed later to limit the evolution of dislocation 
decoration and to determine the associated yield and flow stresses. For example, an “aligned” 
loop accompanying a moving dislocation will be removed from the loop cloud by a close 
interaction with a “non-aligned” loop if the maximum attractive force between both is larger than 
that between the “aligned” loop and the dislocation, and when, in addition, no physical contact 
with subsequent alignment takes place. 

Assuming rll << rdl, we find an estimate of the effective cross section for strong interaction, s*, 
by equating the loop-dislocation and loop-loop forces as given by eqs. (3.5) and (3.8)3) 

s* = πrll
2  ≈ 4m1/2 brdl ,       (3.10) 

                                                      
3)  we choose the letter s for cross section to avoid confusion with the letter σ  for stress  
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According to eq. (3.10), the cross section for strong loop-loop interaction increases linearly with 
the distance of the blocked loop from the dislocation rdl. Since strong interaction may result in 
mutual blocking of loops of different glide direction (“blocking cross section”), s* represents a 
key quantity in the evolution of dislocation decoration and the associated yield and flow stresses 
as will be shown below. Equation (3.10) is confirmed by a more quantitative derivation in the 
framework of the small loop approximation given in the appendix A1. Even though this 
approximation is doubtful for small loop distances, it is considered here to reproduce the main 
trends. 

The interaction of more than two loops in the field of a dislocation is analytically intractable. For 
estimating effects of loop-loop interaction in dense loop ensembles it is useful to focus on 1 loop 
or two loops, and to approximate the surrounding loops, in the sense of a mean field 
approximation, by a continuous distribution beyond an appropriately chosen distance from the 
loops considered. 

4.  Kinetics of Decoration of Dislocations with SIA 
Loops  

  
Dislocation decoration is the result of the capture of cascade induced loops and a variety of 
reactions between such loops in the distorted lattice region close to the dislocation. An analytical 
treatment of this complicated inhomogeneous defect reaction kinetics is not possible without 
substantial simplifications. We describe the kinetics occurring in the real 3D region of decoration 
by an equivalent kinetics occurring in an imaginary 2D space defined by a conceived projection 
of the real loop distribution on a plane containing the dislocation and the normal to its glide 
plane. In this description, a useful measure for the local degree of decoration is the fraction of 
that plane covered with SIAs, the “coverage” α, given by the projected (2D) number density of 
loops times the average number of SIAs per loop (with a limiting value α = 1 for one additional 
atomic layer).    

4.1  Kinetics of decoration in the absence of plastic deformation  
In displacement cascades, efficient recombination and clustering of both vacancies and self-
interstitial atoms (SIAs) take place. SIA clusters are produced in the form of small dislocation 
loops which are glissile or sessile on the time scale of computer simulations (for reviews see 
[12]). The relations between the NRT-displacement rate, GNRT, and the generation rates of SIAs 
surviving intra-cascade recombination, G, consisting of partial fractions surviving in glissile and 
sessile loops, Gi

g,s, may be written as 

  ,     (4.1) , ,(1 ) , g s g s
r NRT i iG f G G f= − = G

                                                     

 where fr (≥ 80%) and fi
g,s (fi

g + fi
s ≈ 50%) are the fractions of SIAs recombining in cascades and 

clustered in glissile or sessile loops, respectively4). The formation of stable SIA clusters and the 
1D diffusion of a fraction of them forms the basis of the extended “production bias model” 
(PBM) [12, 13]. 

The temporal evolution of the concentration of glissile loops (per matrix atom), cg, is determined 
by their generation rate, Gg, and their rate of trapping and/or absorption by sinks 

 
4)  to avoid confusion with the strain denoted by the letter ε, we use here the letter f for the fractions, in 

stead of ε as used in our previous work [12] 
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  .       (4.2)   2
g g g gc G D c k= −& g

Here Gg = fi
g Gi

g/ni
g is the generation rate (ni

g: average number of SIAs in glissile loops), gD is 

the diffusion coefficient for 1D diffusion and kg
2 is the total strength for reactions of the glissile 

loops with sinks. This sink strength kg
2 is determined by the reciprocal mean free path κ of the 

1D diffusing loops in the sink structure [12, 15] 

 ,      (4.3) 2 6 ( )g d l Sk κ κ κ κ= + + FT

+

2

which consists of partial contributions from dislocations, existing sessile SIA loops and stacking 
fault tetrahedra (SFTs), respectively: 

    (4.4) , , ,/ 4, ,d tr l SFT l SFT l SFT d l SFTd s Nκ π ρ κ κ κ κ κ= = = +

Here dtr is the diameter of the trapping range and ρ the density of dislocations;  and  

are the trapping cross sections and number densities of loops and stacking fault tetrahedra, 
respectively.  

,
tr
l SFTs ,l SFTN

For the very fast diffusing glissile loops the transient to quasi-steady-state occurs at a very early 
stage where (in pure metals) the dislocations form the dominant sinks and thus determine the 
characteristic time to quasi-steady-state, τ,  defined by eq. (4.2) as 

 .       (4.5) 2
,1/ 1/g g g g dD k D kτ = ≈

With Dg ≈ 10-8m2/s, an initial dislocation density ρ0 ≈ 1012/m2 and dtr ≈ 50nm, we obtain τ ≈ 0.1s, 
corresponding to about 5x10-9dpa for GNRT = 5x10-8/s. In the stage following this very short 
transient, the glissile loops are simply partitioned over the existing sinks, first predominantly over 
the existing dislocations, later predominantly over sessile loops and SFTs evolving between the 
dislocations.  

The basis for dislocation decoration during pre-yield irradiation is that a 1D diffusing glissile 
loop once trapped in the strain field of a dislocation can not reach the dislocation core and get 
absorbed there, unless it climbs or changes its glide direction, which are unlikely processes for 
the temperature range considered here. In describing dislocations decoration, defect accumulation 
within the trapping range of dislocations has to be coupled with that in the matrix between the 
dislocations. The latter has been treated in some detail within the framework of the so called 
“production bias model” (PBM) [12, 13]. For the purpose of the present paper, aimed primarily at 
identifying mechanisms and conditions for dislocation decoration, it is sufficient to use 
appropriate approximations allowing an analytical treatment of the features of the matrix 
evolution relevant for decoration. For estimating defect accumulation during pre-yield irradiation 
in its early build-up stage, we make the following approximations: 

(1) certain constant fractions, ,i vη (0.5 to 2%), of the SIAs and vacancies generated by NRT 

displacements are accumulating in loops and SFTs, implying that the total concentrations of SIAs 
and vacancies accumulated in loops and SFTs, , increase linearly with increasing dose 

which is a reasonable assumption for low pre-yield irradiation dose < 10-2 dpa, and 

,
,
l SFT
i vc

(2) the trapping cross sections in are proportional to (even though larger than) the 

corresponding geometrical cross sections, 

,l SFT
trs ,l SFTκ

,
geom
l SFTs . 

Using these approximations we may write 
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      (4.6) , , ,
, , ,/l SFT l SFT l SFT

l SFT i v i vq c b q Gtκ ≈ ≈ /bη

)where is the ratio of the trapping and the geometrical cross sections. , , ,( /l SFT l SFT l SFT
tr geomq s s=

A measure for the global degree of decoration is the volume averaged atomic SIA concentration 
involved in decoration, ci

dc. In quasi-steady-state of the glissile loop concentration within the 
matrix, we may write the temporal rate of change of this quantity according to eqs. (4.1) to (4.4) 
as  

 .       (4.7) ( ) / ( )dc g
i i dc f G t tκ κ=&

A useful measure for the local degree of decoration is the atomic “coverage”, α, of the conceived 
plane of decoration as introduced above. Its average value is obtained by taking the total SIA 
concentration involved in decoration, ci

dc, to be distributed over the volume defined by the total 
dislocation length, ρV, the width of decoration, ddc, and the thickness of an atomic layer, b. This 
yields the relation 

 dc
i dcc d bρα= .        (4.8) 

Using the approximation given by eq. (4.6), the analytical integration of eq. (4.7) yields a 
logarithmic dose dependence of ci

dc, and, according to eq. (4.8), analogously of α. Assuming 

i vη η η= =  and , we may write the solution for α in the form l SFTq q q= =

0 0( / ) ln(1 / )q qt tα α= +  with 0 ( /8) /g
ifα π η=  and 0 0 /(8 )trt bd Gπ ρ η= ,  (4.9) 

where α0 and t0 are the values of coverage and time characterising the transition from dislocation 
to matrix cluster dominance in the sink strength. Order of magnitude values of the parameters are 
α0   ≈ 0.1 and D0 = GNRTt0   ≈ 10-4 to 10-3 dpa. 

The dose dependence of α according to eq. (4.9) is plotted in fig. (4.1) for α0 = 0.2 and different 
values of q and D0. In the stage where the strain fields of the dislocations form the dominant sink 
for primary glissile loops, qt << t0, the dependence of the coverage on pre-yield dose is first 
linear, independently of η and q, and flattens later, for qt > t0, to a slower logarithmic increase, 
when the flux of these loops is being increasingly screened by the loops and SFTs evolving 
between the dislocations. With increasing dose, the uncertainty in α becomes increasingly larger 
due to the increasing uncertainty in the evolution of the matrix clusters. The dependence of α on 
dose will manifest itself in the dependence of the yield stress as we will show in section 5.  

Already at a minimum pre-yield dose of 5x10-4 dpa (corresponding to an elastic strain of 10-3) we 
find significant dislocation decoration with values of the coverage α between 2% and 10%. The 
reduction of the mobility of dislocations by such well developed loop clouds already at low pre-
yield dose may well be expected to prevent them from segregating in cell walls. This is consistent 
with the experimental observation that no cell walls are formed in the Cu samples treated in IRT 
with a pre-yield dose of 7.5 10-4 dpa [4]. 

 

4.2  Kinetics of decoration during plastic deformation 
While dislocations at rest are decorated by the 1D diffusion and trapping of primary cascade 
induced SIA clusters, dislocations moving during deformation are considered here to acquire 
loops mainly from sweeping the matrix. The experimental findings that dislocations formed 
during deformation are significantly decorated with loops provide evidence that such loops, even 
though apparently sessile in the matrix, are indeed able to move in the strong stress fields of 
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dislocations. We may refer in this context to the well known phenomenon that apparently sessile 
loops move to and disappear at free surfaces due to attractive image forces [20]. 

Decoration is expected to reduce the mobility of the dislocations which are being continuously 
produced during deformation. Because “younger” dislocation segments are less decorated, they 
are more mobile and faster than “older” segments and, consequently, sweep faster, such that their 
degree of decoration soon becomes comparable to that of “older” segments, depending on the 
instantaneous levels of dislocation density and stress. Because of this state dependent spectrum of 
dislocation decoration and velocity, the evolution of decoration and stress would be necessarily 
coupled from the very beginning. Under the condition of strain rate controlled deformation, the 
treatment of these interconnected evolutions can be separated into two parts, first the treatment of 
dislocation decoration, then the analysis of the related stress response, by assuming that all 
dislocations move with the same (the average) velocity determined by the dislocation density and 
the strain rate.  

We will use this simplification in the following treatment. One has to keep in mind, therefore, 
that within this approach only the evolution of some representative average degree of dislocation 
decoration can be studied.  

The relation between the plastic strain rate, ε& = dε/dt, (or the total plastic strain, ε) and the 
average velocity of mobile dislocations vd (or average dislocation displacement Δx) is given by 
the Orowan equation in its differential or integral form 

 ,dbv b xε ρ ε ρ= =& Δ .         (4.10) 

For a strain rate of 10-7/s and dislocation densities ρ > ρ0 = 1012/m2, typical for the IRTs 
considered here, we find a rather low upper bound estimate for the dislocation velocities, vd < 0.5 
nm/s and values decreasing from there with increasing ρ during deformation. This range of 
velocities is more than 12 orders of magnitude lower than the ones used in computer simulations 
for dislocations dragging primary cascade induced SIA clusters [21]. This means, in turn, that the 
loops having been formed in the matrix would be able to follow the dislocation even if they were 
by 12 orders of magnitude less mobile than the primary cascade induced SIA clusters, i.e. 
virtually sessile relative to the latter on the scales of simulations.  

A necessary condition for the continuous dragging of a loop of a given mobility, Ml, at a distance 
rdl = y from the glide plane of a dislocation moving with velocity vd is that the force exerted by 
the dislocation on the loop, Fdl, is sufficiently strong to allow the loop to follow the dislocation 
with the same velocity, vl = vd , meaning that the maximum force for that distance max ( )dlF y  is 
equal to or larger than the necessary force, MF Fdl = vl = vd . i.e. 

 max ( )F dl F dl dM F y M F v≥ = .      (4.11) 

According to this, loops developed in the matrix would be able to follow the dislocation even if 
they were by 12 orders of magnitude less mobile than the primary cascade induced SIA clusters, 
i.e. virtually sessile relative to the latter. 

From this we can draw a conclusion on the role of the loop mobility in dislocation decoration 
under dynamic conditions. Let us assume that the width of the decorated region is limited at y = 
ddc by the mobility of the dragged loops and consider the consequences of this assumption. Using 
in eq. (4.11) for max ( )dlF y  the (not specified) estimate of the level of Fdl as given by eq. (3.5) and 
for vd eq. (4.10) we find that decoration would be limited to the range 

 2 1( / 2dc Fy d n M b / 2)μ ρ πε≤ ≈ Ω & .      (4.12) 
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According to eq. (4.12), ddc would depend on two parameters, MF and ρ, which must be 
considered to vary by several orders of magnitude during irradiation and deformation. Thus, on 
the one hand, ρ increases during deformation by more than 2 orders of magnitude which, at a 
constant MF, would result in an increase in ddc by more than 1 orders of magnitude; on the other 
hand, a steep decrease of the MF (say by 12 orders of magnitude) with increasing loop size in the 
matrix at a constant ρ would manifest itself in a steep decrease of ddc (by 6 orders of magnitude). 
Such strong variations in ddc to be considered on the basis of eq. (4.12) contrast with real 
variations of ddc apparently limited to a range of a few tens of nm during IRTs which are very 
unlikely to be consistent with eq. (4.12).  

We therefore conclude that dislocation decoration is most likely not controlled by the loop 
mobility, at least not in most parts of the parameter ranges of the IRTs considered here. This 
means that the loop mobility is most likely far above the limit defined by eq. (4.11). Below, we 
will argue that the spatial limitation of decoration (to a few tens of nm) is due to the mutual 
blocking of loops of different Burgers vectors the probability of which increases with increasing 
distance from the dislocation. 

A dislocation moving with a velocity vd through the matrix containing SIA and vacancy clusters 
in the form of loops and SFT, respectively, “sees” continuous apparent drift fluxes of matrix 
loops and SFTs, Jl,SFT, and  the corresponding fluxes of SIAs and vacancies contained in them, 
ji,v, which may be related to the dislocation velocity and the strain rate  as 

 ( )
, , , ,, /m

l SFT d l SFT i v d i vJ v M j v c= = Ω  with / .dv bε ρ= &
 

  (4.13) 

Matrix loops gliding parallel to the glide plane of a dislocation, “aligned loops” (fraction χ+ of all 
loops), can follow the dislocation, pulled and pushed at the side of attractive and repulsive 
interaction with the dislocation, respectively. Differently from the decoration of dislocations at 
rest with loops during pre-yield irradiation, moving dislocations are decorated at both the sides of 
attractive and repulsive interaction. Loops gliding obliquely to the glide plane, “non-aligned 
loops” (fraction χ- of all loops), can reach the dislocation and get absorbed by it provided they are 
not blocked by the interaction with loops with different Burgers vector, particularly with aligned 
members of the dragged loop ensemble. Vacancies in the form of SFTs may interact with 
dragged aligned loops which may result in (partial) annihilation.  

Absorption of non-aligned loops by moving dislocations and the partial annihilation of SFTs with 
aligned loops results in reductions of the concentrations of SIAs and vacancies accumulated in 
the matrix, . Using eq. (4.13), we may describe this reduction by ( )

,
m

i vc

( ) ( )
, , , , ( / )m

i v i v i v dc i v dc i vsw
c j d d bφ ρ φ ε= − Ω = − && ,

mc ,     (4.14a)  

or alternatively, by using / /d dt d dε ε= & , 

( ) ( )
, ./ /m sw

i v i vsw
dc d ε ε= − , with ( ) ( )

, ,( / ) /sw sw
i v i v i vb dε φ= ,    (4.14b) ε

where φi,v are fractions φi,v of SIAs and vacancies which can be absorbed and annihilated, 
respectively, when encountered by a decorated dislocation within ranges of widths ( )

,
sw

i vd , where 
( )
,
sw

i vε is the characteristic strains for the reduction of  by dislocation sweeping. (Note that the 

total volume fractions swept by all dislocations is given by ). It is emphasised here, that 

by the Orowan equation (4.10), the strain rate has dropped out in eq. (4.14b). 

( )
,
m

i vc
( )
, /sw

i vdε b

The effects of dislocation sweeping on SIA and vacancy accumulation in the matrix are 
qualitatively different and the meaning of the parameters is correspondingly different.  Since at 
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most all non-aligned, i.e. half of all matrix loops, can get absorbed by the dislocation, the fraction 
φi is limited to φi ≤ ½. The fraction φv of vacancies in SFTs partially annihilated by dragged 
aligned loops will increase with increasing degree of decoration. However, because of the 
necessity of direct contacts between SFTs and loops for (partial) annihilation, φv and with this the 
sweeping effect on vacancy accumulation in the matrix SFTs, may be expected to remain 
negligible during deformation. The width for the sweeping and absorption of non-aligned loops, 

( )sw
id , will decrease with increasing degree of decoration because of the increasing probability 

for blocking of non-aligned matrix loops by aligned loops accompanying the dislocations. 

An interesting question in this context is as to whether sweeping of matrix loops by moving 
decorated dislocations can significantly affect the SIA concentration in the matrix. Assuming for 

the characteristic strain ( )
,
sw

i vε in eq. (4.14b) φi ≤ ½ and ( )sw
id  ≈ 20b ≈ 5 nm, we find a rough lower 

bound estimate  (see discussion below). This means that for the IRTs discussed here a 
reduction in the SIA concentration in the matrix by dislocation sweeping should indeed not be 
ignored. Incorporation of SIA loops into the core of dislocations (with edge component) would 
lead to jog formation and by this reduce the mobility of the dislocations. Preferential absorption 
of SIAs would result in climb of the moving dislocations and an accumulation of an excess of 
vacancies in the matrix. Since these are second order effects of dislocation sweeping we will 
neglect them in the following. 

( )sw
iε ≥10%

The moving system constituted by a dislocation and its associated loop ensemble will encounter 
matrix clusters with whom it interacts and reacts as described qualitatively in section 2.2. With 
respect to the evolution of the dragged loop ensemble, gain and loss processes may be 
distinguished. An “aligned loop” (fraction χ+ of all loops) gliding parallel to the glide plane of a 
dislocation will be incorporated into the dragged cloud which thus represents a gain process. 
Coalescence between two aligned loops may occur. This process does not change the coverage 
but reduces the number of aligned loops by one. A “non-aligned loop” (fraction χ- of all loops) 
gliding obliquely to the glide plane can get absorbed by the dislocation unless it does not 
significantly interact with members of the dragged cloud; in the latter case, it either gets aligned 
and consequently incorporated into the dragged cloud, or it blocks an “aligned loop” and stays 
back together with the latter behind the moving dislocation. Reaction and (partial) annihilation of 
“aligned loop” with SFTs will result in a reduction of the degree of decoration. These gain and 
loss processes may be described in terms of effective cross sections for loop coalescence and 
alignment, mutual loop blocking and (partial) annihilation, sco, sal, sbl, and san, respectively.  

On the basis of these considerations, rate equations for the temporal evolution of the coverage of 
the decorated area with SIAs, α+, and for the 2D number density of aligned loops N+ may be 
derived. We illustrate the main features of the derivation by discussing the effect of matrix loop 
incorporation into decoration and refer to Appendix A2 for the complete derivation. According to 
eq. (4.13) in conjunction with eq. (4.10), the apparent drift flux of matrix loops aligned with 
respect to the Burgers vector of the dislocation (fraction χ+ of all loops) to a atomic unit area A0 ≈ 
b2 in the decorated area results in a local increase of α+ described by 

 ( ) 2 ( ) 2/ /ml ml
i iin

d d t j b c b( )α χ χ ε+ + += = & ρ                  (4.15a) 

or alternatively, using / /d dt d dε ε= & , 

 ( ) 2/ /ml
iin

d d c bα ε χ ρ+ += ( )            (4.15b) 
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As in eq. (4.14b), the strain rate has dropped out in eq. (4.15b) upon using the Orowan equation 
(4.10). 

In the description of decoration during deformation, the expansion of the whole decorated space 
(i.e. the increase in the product of the total dislocation length and the width of the decorated area) 
when the dislocation density increases has to be taken into account. This can be achieved by 
introducing an effective loss term ( / ) /d dtα ρ ρ+− in eq. (4.15b) where ( / ) /d dtρ ρ  describes the 
relative volume increase of the decorated space due to the increase in the dislocation density. 
This term can be included in the rate of change term at the right hand side of eq. (4.15b) which 
thus may be written in the form 

2( )/ ml
iin

d b d cα ρ ε χ+ = ( )
+       (4.16) 

Including alignment, blocking and annihilation reactions as described above, we may write the 
complete rate equation for the temporal evolution of the coverage, α+, in the form (for more 
details see appendix A2) 

 
{ }

{ }

2 ( ) ( )

( ) ( ) ( ) 2

( ) / ( / / ) /

/ / /

ml ml ml
al bl i i

SFT SFT SFT
bl v an v

d b d s n s m b c

s m s n c b

α ρ ε χ χ α

α

+ + − + +

+ +

= + −

− +

2 ( )

b

]/

  (4.17) 

In eq. (4.17), n+ and m are the average numbers of SIAs per aligned loop in the dragged cloud 
and per SIA loop in the matrix, respectively, ci

(ml) and cv
(SFT) are the concentrations of SIAs and 

vacancies clustered in the matrix loops and SFTs, respectively.  

For the temporal evolution of the 2D number density of aligned loops, a rate equation analogous 
to eq. (4.15) may be derived (with coalescence of 2 aligned loops as an additional loss term, 
without alignment as a gain term). From the solutions of the rate equations for the coverage and 
the density, the average size of the aligned loops may be deduced (see Appendix A2). In our 
following discussion of the main features in the evolution of decoration and its effect on the 
mechanical response, where we consider the loop size as a parameter, consideration of the 
temporal evolution of the coverage as determined by eq. (4.17) is, however, sufficient. 

To complete eq. (4.17), we have to consider the temporal increase of the dislocation density 
during deformation. In the early stage, i.e. in the absence of recovery, the dislocation density may 
be assumed to increase as 

  ,    (4.18a) 3/ 2 1/ 2 1/ 2/ ; / /dv b d dρ β ρ βερ ρ ε βρ= = =& &

where 0.1 < β < 1 is a numerical rate constant. Limiting this multiplication rate by a factor 
accounting for saturation of the dislocation density by recovery at some saturation level ρs, we 
may describe the evolution of the dislocation density parametrically as  

  .     (4.18b) 1/ 2 1/ 2/ [1 ( / )sd d bρ ε βρ ρ ρ= −

Equation (4.17), describing the evolution of dislocation decoration during deformation, is the 
central equation of this section. Without deriving solutions, we can draw an important conclusion 
from the terms appearing in eq. (4.17): the instantaneous rate of decoration evolution depends on 
the instantaneous values of the dislocation density ρ and the defect densities accumulated in the 
matrix , and, via the evolution of  ρ and , on the levels of strain and dose reached (and 

other parameters involved), but it does not explicitly depend on strain and dose rates. 

( )
,
m

i vc ( )
,
m

i vc

From the mathematical point of view, eq. (4.17) represents an inhomogeneous, linear 1st order 
differential equation for α+ as a function of the main variable, strain or dose, and parameters 
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including the distance from the dislocation, y, contained in the distance dependence of the critical 
cross section for mutual loop blocking, s* ≈ 4m1/2by. Its solution, subject to an appropriate initial 
condition, can be obtained by standard methods. Assuming transient build-up behaviour for 
defect accumulation in the matrix as well as for the dislocation evolution, more precisely, linear 
increase of with dose and validity of eq. (4.18.a), respectively, this solution can be 

expressed in terms of incomplete gamma functions of the main variable and the parameters as 
detailed in Appendix 2.  

( , )
,
ml SFT

i vc

For understanding the main trends, it is sufficient to discuss certain characteristic limiting cases 
which we do here for negligible recombination of loops with SFTs (last term in eq. (4.17)). The 
two main limiting cases are 

(1) “weak decoration” (exactly valid at the “medium distance” where the terms for loop gain by 
alignment and loss by blocking in eq. (4.17) just cancel each other): 

2( ) / ml
id b d cα ρ ε χ+ = ( )

+

0

;      (4.19a) 

(2) quasi-steady state ( /d dα ε+ → ):  

{ }( ) 2 ( ) ( ) ( ) 2 ( ) ( ) ( ) 2/ ( ) / ( / / ) / ( / ) /ml ml ml ml SFT SFT SFT
i bl i al i bl vc d b d s m s n c b s m c bα χ ρ ε χ+ + − += + − + v .            

                     (4.19b) 

The choice of values for the fractions of “aligned loops” and “non-aligned loops”, χ+ and χ-, (χ+ 
+ χ- = 1) deserve a brief discussion here. As already discussed in section 3 for FCC crystals, 3 of 
the 6, i.e. half of the loop configurations glide parallel to the {111}-type glide plane of a 
dislocation, suggesting to use χ+ = χ- = ½. For an edge dislocation, the loop configuration with 
the same Burgers vector as the dislocation (“fully aligned loop”) is energetically most favourable 
and is expected to align other loops upon direct contact. The other two configurations gliding 
parallel to the glide plane have opposite glide components in the dislocation line direction. 
Therefore, these loops immobilise and remove themselves efficiently, even at relatively low 
densities within the planes of attractive or repulsive interaction in which they are pulled or 
pushed by the moving dislocation, respectively. For edge dislocations, we therefore consider only 
fully aligned loops to contribute significantly to decoration and, accordingly, assume χ+(edge) = 
1/6, χ-(edge)  = 5/6.  

A screw dislocation, on the other hand, does not interact with loops having the same Burgers 
vector. The other two configurations gliding parallel to the glide plane move well separated from 
each other, one pushed ahead, the other pulled behind the moving dislocation at one side, and the 
opposite at the other side of the dislocation, respectively. Accordingly we assume χ+(screw) = 
1/3, χ-(screw) = 2/3 for screw dislocations. Averaging simply over the values for edge and screw 
dislocation, we assume in the following χ+ = ¼ and χ- = ¾. 

Other important parameters are the cross sections for coalescence, alignment, blocking and 
annihilation reactions, sco, sal, sbl, and san, for which quantitative values are also not known with 
certainty. For alignment of non-aligned matrix loops by aligned dragged loops, it is reasonable to 
assume that the glide cylinders of such loops will have at least to touch each other, meaning that 
n+b2 < sal ≈ 4n+b2 (coalescence + alignment, sco = sal). As described in section 3 and appendix A2, 
mutual blocking occurs when the interaction of an aligned loop with a non-aligned loop is 
stronger than with the dislocation which applies within an area s*  ≈ 4m1/2by around each of the 
loops, where y (= rdl) is the distance of the centre of the bound di-loop complex from the glide 
plane of the dislocation, and when, in addition, no direct contact with subsequent alignment takes 
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place. Accordingly the blocking cross section is defined by sbl = s* - sal. A loop line has probably 
to cut a SFT to yield significant annihilation, which even then will be most likely not complete as 
computer simulations indicate. We therefore neglect san in our parametric study of the dynamic 
evolution of decoration. 

Equation (4.19a) is most suited to illustrate the conditions for the maintenance of “moderate 
decoration” during deformation. The global sweeping rate represented by the right hand side of 
eq. (4.19a) must be sufficiently large to keep α+ at the left hand side of eq. (4.19a) during 
dislocation evolution at a “significant but moderate” level, say between 5% and 30%. Setting α+ 
in eq. (4.19a) constant, using there eq. (4.18a) for /d dρ ε , and assuming χ+ = 1/4 and β  = 0.15 , 
we estimate that “significant but moderate decoration” should occur in the range of the damage to 
dislocation density ratio, ci

(ml)/bρ1/2, 

  0.03 < ci
(ml)/bρ1/2 < 0.2      (4.20) 

Assuming for the concentration of SIAs accumulating in the matrix during the transient ci
(ml) ≈ 

1% of the dose, and for the initial and final dislocation density 1012/m2 and 2x1014/m2, 
respectively, we find that the ratio ci

(ml)/bρ1/2  in eq. (4.20) increases for a low pre-yield dose of 
10-3 dpa  upon irradiation to 2x10-2 dpa  (and straining to 4%) from about 0.04 to 0.06, and 
decreases for a high pre-yield dose of 10-2 dpa  from about 0.3 to 0.07, i.e. in the first case it 
moves up from close to the lower boundary to the middle of the range, whereas in the second it 
moves down from the upper boundary to the middle.  

This is illustrated in fig. (4.2), where the range of “moderate decoration” in the ci
(ml)-ρ parameter 

plane is shown together with the values of ci
(ml) and ρ expected for low and high pre-yield dose at 

the beginning and towards the end of deformation in the IRT experiments, respectively. Above 
the upper boundary, realised by even longer pre-irradiation, heavy decoration as in PITs is 
expected to occur, whereas below the lower boundary, realised for higher strain rates and/or 
lower SIA accumulation than in the IRTs considered here, decoration is expected to be 
insignificant. Also a substantial increase of the dislocation density by pre-irradiation work 
hardening would tend to reduce decoration according to eq. (4.20). Note again that decoration 
depends on strain and dose but not explicitly on strain and dose rate. 

The relatively small variation of the damage to dislocation build-up ratio defined by eq. (4.20) 
provides also an explanation for the apparent memory of the deforming material concerning the 
impact of the pre-yield damage level on the degree of decoration and the related flow stress 
during the whole IRT period. Under the concurrent production of cascade damage and 
dislocations, the supply of SIAs from the increasing storage in the matrix to the growing 
dislocation population seems to be just sufficient to maintain “moderate decoration” during the 
whole test periods – even though the ratio ci

(ml)/bρ1/2 varies somewhat, depending on the initial 
damage accumulated during pre-yield irradiation as illustrated in fig. (4.2).5)  

A more detailed discussion of the evolution of the degree of decoration as a function of pre-yield-
dose and post-yield dose or strain confirms this interesting maintenance of moderate decoration. 
In order to illustrate this feature, we employ the “weak decoration”/“medium distance” 
approximation given by eq. (4.19a) assuming for the SIA concentration in the matrix linear dose 
increase, ( )ml

i ic Dη= , and for ρ the validity of eq. (4.18a). In fig. 4.3, the degree of decoration α+ 
resulting from these approximations is plotted vs. strain for low and high pre-yield doses pre-

                                                      
5)  The apparent memory may be illustrated by the following simple picture: two cars (cascade 

damage and dislocations) starting at different times from a certain starting point on a road will 
approximately keep their initial distance if they move approximately with the same velocity. 
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yield doses Dy. For the low pre-yield dose, α+ does not depend significantly on dose/strain since 
the effects of the increasing loop supply and the increasing dislocation population almost balance 
each other; for the high pre-yield dose, on the other hand, α+ is first high, or even increases 
initially, due to the high level of loop supply, which is subsequently, however, not sufficiently 
high to maintain the high level of α+ for the increasing density of dislocations. 

It is important to emphasise here that the strong initial variation of α+ for high pre-yield dose is 
an artefact of our assumption that all dislocations start to move at the same time and continue to 
move with the same (the average) velocity (determined by the dislocation density and the strain 
rate) and with the same degree of decoration during deformation. Such an artefact may be 
removed by averaging α+ over strain increments characteristic for the evolution of the 
dislocations (< 1%). Fortunately, however, the behaviour of α+ briefly after yielding and thus the 
artefact do not significantly affect the later evolution of decoration. This is due to the fact that α+ 
tends to approach quasi-steady state independent of its initial value, as demonstrated by the 
dashed lines in fig. 4.3 for which, in addition to “weak decoration” approximation given by  eq. 
(4.19a), the quasi-steady state approximation given by eq. (4.19b) is used. 

So far, unlimited transient behaviour for both defect accumulation in the matrix and dislocation 
multiplication was assumed. It has been mentioned above that, at a few % of strain, sweeping by 
dislocations moving under deformation must be considered to be associated with a significant 
reduction of defect accumulation in the matrix. Here, we add a brief parametric discussion of this 
effect. Assuming a source term corresponding to a transient linear defect accumulation in the 
matrix in the absence of deformation, , and a loss term according to eq. (4.14b), ( )

, ,
m

i v i vc η= D
( ) ( )
, ,/m sw

i v i vc ε− , describing the effect of sweeping on the evolution of defect concentrations during 

deformation, we introduce the following simple rate equation 

 ( ) ( ) ( )
, , ,/ / /m

i v i v i v i vdc d c ,
m swε η ε ε′= −  ,     (4.21) 

where /d dDε ε′ ≡ (= 2). Assuming for the time being that the characteristic strains for the 

sweeping effect, ( ) ( )
, ,( / ) /sw sw

i v i v i vb d ,ε φ=

, ,( 0) i v yc ε η= =

, is a rate constant (independent of strain) and taking the 

initial condition , we may write the solution of eq. (4.21) in the form ( )m
i v D

 { }( ) ( ) ( ) ( )
, , , 0 , ,( ) ( / ) 1 (1 / )exp( / )m sw sw

i v i v i v i v i vc Dε η ε ε ε ε ε ε′ ′= − − − sw    (4.22) 

As mentioned above, ( )
,
sw

i vε depends, via ( )
.
sw

i vd  and ,i vφ , on the degree of decoration (and via this on 

strain).  

For the sweeping and absorption of non-aligned loops, we may estimate the dependence of 
( )sw
id on α+ in the following way: On its way to the moving dislocation, a non-aligned loop may 

be blocked by an aligned loop. The probability for this blocking increases with increasing 
distance from the dislocation. The value of ( )sw

id  may be considered the distance where the 
probability for finding within the cross section of strong interaction an aligned loop reaches the 
order of 1, meaning s*N+ ≈ 1. Using s* ≈ 4m1/2b ( )sw

id  and N+ = α+/(nb2) we find ( )sw
id = m1/2 

b/(4α+) and . According to this, ( ) 1/ 24 /( )sw
i imε α φ+= ( )sw

iε is of the order of α+.  We have used eq. 
(4.22) to illustrate the effect of dislocation sweeping on decoration assuming 10% and 20% for 

( )
,
sw

i vε for the low and high pre-yield doses, respectively. According to fig. 4.3, dislocation 

sweeping results in a significant reduction of the degree of decoration in the strain range of a few 
%. On a relative scale, this reduction is stronger for low than for high pre-yield doses. It should, 
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however, be noticed here that, in this strain range, saturation of the dislocation density by 
recovery is also expected to occur. Dislocation saturation would result in a trend opposite to that 
induced by sweeping, i.e. it would increase the degree of decoration. 

An important feature of decoration under deformation is its dependence on the distance⎟y⎜from 
the dislocation which is determined by the distance dependence of the blocking cross sections, 

( )ml
bls , ∝ ⎟y⎜. Using the latter dependences in eq. (4.19b), we find that α+ decreases for large 

⎟y⎜ asymptotically as α+ ∼ 1/⎟y⎜. The transition occurs around the “medium distance”, ytr, where 
the terms for loop gain by alignment and loss by blocking in eq. (4.19b) counterbalance each 

other. Using there χ- =3/4, sbl/sal = 

( )SFT
bls

/y m b  and , we may write ytr as ( ) ( )ml SFT
i vc c=

 
( ) ( )(3/2) /(3/4 1/ ) (3/2) /(3/4 1/ )ml SFT

tr i v ml SFTy b m b m d≈ + ≈ d+ ,    (4.23)  

where dml and dSFT are average matrix loop and SFT diameters, respectively. Since the decrease 
of α+ with⎟y⎜is relatively moderate, α+ ∼ 1/⎟y⎜, decoration may be expected to affect the flow 
stress significantly even for y > ytr.  The effective range of decoration at one side of a dislocation 
may therefore be estimated to be some multiple, say between 2 to 5, of ytr, and the effective total 
width of decoration, ddc, twice of this multiple of ytr. Assuming in eq. (4.23) loop and SFT sizes 
of 5nm and 2.5nm, respectively, we estimate the values of ddc to range from 10 to 25 nm which is 
consistent with TEM observations after the IRTs considered here. Independent of quantitative 
values, eq. (4.23) shows that the spatial scale of dislocation decoration under deformation is 
controlled by the average sizes of the matrix clusters. 

5.  The Role of Dislocation Decoration in Hardening 
 

In crystalline materials, plastic deformation is due to the generation and motion of dislocations. 
Accordingly, the stress response to deformation depends on the resistance of such dislocations to 
motion, defined by their intrinsic mobility, their interaction with other dislocations (increasing 
during plastic deformation) and their interaction with other lattice defects such as impurities, 
precipitate particles and, during or after irradiation, irradiation induced self-defects such as SIA 
clusters and SFTs (increasing during irradiation). An increase in the density of the defects 
interacting with dislocations increases the stress required to start them moving and multiplying.  

In general, several of these types of interactions must be considered to concurrently contribute to 
an increase in the yield and the flow stress (hardening) [5,7]. Each contribution to hardening is 
characterised by some typical length scale: “strain (or work) hardening” resulting from the 
mutual interaction of dislocations, for instance, by the spacing in Frank-Read sources; “particle 
(obstacle) hardening” by the distance between the obstacles in glide planes of the dislocation. 
Generally, each contribution increases with decreasing length scale, as for instance in strain and 
obstacle hardening. 

In the case of plastic deformation under concurrent production of cascades and dislocations in 
pure Cu, treated in the present work, “strain hardening” and “radiation hardening” by SIA 
clusters and SFTs must be considered to contribute to total hardening. Self-defects such as SIA 
clusters and SFTs indeed represent obstacles against dislocation glide. They do not represent, 
however, indestructible and in the case of loops even not immobile obstacles as considered in the 
DBH model, but can move in the field of dislocations and can get incorporated and annihilated in 
the dislocation core. In fact, contributions of SIA clusters and SFTs to hardening may originate 
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from the interaction of these types of defects with dislocations at three fundamentally different 
spatial levels: 
(1) Clusters incorporated into the core of a dislocation (with an edge component) form 
 super-jogs there and reduce by this the intrinsic dislocation mobility.6) 
(2) Clusters encountered by dislocations act as (temporary) obstacles against glide. 
(3) Decoration of dislocations with clusters is associated with forces contributing to 
 hardening.  

We consider the latter effect which we call “decoration hardening” to be particularly relevant 
under the IRT conditions considered here and focus therefore our attention on this contribution. 
In this mechanism, again two fundamentally different types of contributions have to be 
distinguished: 
(a)  the contribution due to the limited intrinsic mobility of loops, 
(b) the contribution due to the temporary or permanent immobilisation of members of a 
 loop cloud by their mutual interaction and their interaction with matrix clusters. 

The locking of dislocations by a completely blocked cloud of loops as considered in the cascade 
induced source hardening (CISH) model [9] is a limiting case of the latter mechanism. For 
members of a loop ensemble dragged by a moving dislocation, matrix clusters represent 
obstacles. The contribution of the interaction of a loop cloud with matrix clusters and the transfer 
of the corresponding forces to the dislocation may therefore be considered to be an indirect 
obstacle hardening enhanced by the accumulation of loops (“decoration enhanced indirect 
obstacle hardening”). 

We start here with discussing mechanism (3a), i.e. the possible role of the finite intrinsic loop 
mobility. 
 
5.1   Possible role of the finite intrinsic loop mobility in decoration 
        hardening 
In order to keep our discussion of the role of the intrinsic mobility of loops decorating 
dislocations transparent, we ignore their mutual interaction and their interaction with matrix 
clusters and assume in addition that all members of the loop ensemble are aligned (α = α+) and 
have the same mobility, and that, at and after yielding, all dislocations are equally and 
homogeneously decorated and move with the same velocity determined by the Orowan equation 
(4.10). In this case, the forces between the moving dislocations and the loops accompanying them 
are, according to eq. (4.11), independent of the loop-dislocation distance up to the boundary of 
the decorated region, ddc, defined by eq. (4.12). During the motion of a dislocation, the force on 
its segments due to a resolved shear stress, σ% , is balanced by the total force of all loops on these 
segments. Using for the maximum force at y = ddc the estimate given by eq. (3.5) and multiplying 
this with the aerial density of the loops and the area covered by loops we obtain  
  
 , / 2y f dcb dσ αμ π=%        (5.1) 

In this mechanism, the width of the decorated region is the characteristic length scale. If 
decoration hardening were controlled by the intrinsic loop mobility, eq. (5.1) would apply to both 
yielding and post-yielding plastic flow. Values of σ%  around 30 MPa corresponding to tensile 
yield and flow stresses of the order of 100 MPa as observed in PITs on copper (μ = 55Gpa) 

                                                      
6)  Note that this contribution to hardening is enhanced due to the fact that loops are collected 

within a relatively broad range around the dislocations (sweeping range). 
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would be consistent with  α ≈ 0.2 and ddc/b ≈ 60 (15 nm) which appears reasonable. The problem 
is, however, that, according to eq. (4.12), ddc depends on ρ  and MF according to  
which must thus be considered to vary significantly during irradiation and deformation. An 
increase in ρ during deformation by two orders of magnitude, at constant MF, for instance, would 
result in an increase of both ddc according eq. (4.12) and a corresponding decrease of 

1/ 2( )dc Fd M ρ�

σ% according 
to eq. (5.1), by 1 order of magnitude. It would be an extraordinary coincidence if this wrong 
tendency (decrease of σ% with increasing strain) were just compensated in the required way by an 
opposite trend in MF. We conclude that decoration hardening is most likely not controlled by the 
intrinsic loop mobility, at least not in most parts of the parameter range used in the IRTs 
considered here. 
 
5.2  Contribution of cluster-cluster interactions to decoration hardening 
The temporary or permanent immobilisation of members of a loop cloud by their mutual 
interaction and their interaction with matrix clusters is associated with forces on the dislocation 
dragging (pulling or pushing) them which contribute to hardening. This indirect hardening can 
dominate the direct obstacle hardening by matrix clusters because of the high degree of 
accumulation associated with decoration (“decoration enhanced indirect obstacle hardening”). 

The dynamic behaviour of a decorated dislocation is a complicated multi-particle problem. All 
members of the loop ensemble do not only interact with the dislocation but also with each other. 
The relative importance of an interaction between two members of the interacting ensemble 
compared to the other interactions depends on their mutual distance in relation to their distance to 
other loops and the dislocation as described in section 3. Thus, even though the interaction 
between 2 loops is generally smaller than their interaction with the dislocation, the former can 
become larger than the latter for loop-distances much smaller than the loop-dislocation distances. 
Below the critical distance where the change over from loop-dislocation to loop-loop dominance 
occurs, 2 loops with different Burgers vectors will block each other in their motion relative to the 
dislocation. This mutual blocking does not only limit the evolution of decoration during 
deformation but the interaction of blocked pairs or complexes of loops with dislocations can also 
contribute significantly to decoration hardening, as will be discussed in the following. 
 
5.2.1  Contribution of blocked loops to the yield stress 
We first consider the extreme limiting case of complete immobilisation of loop clouds by mutual 
loop blocking used previously to estimate source hardening in PITs [11]. In this case, the (upper) 
yield stress was interpreted as the stress necessary to unlock the dislocations from their loop 
clouds. Two idealised arrangements of immobile loops were considered: a row of loops, and a 
broad continuous distribution of loops of width ddc, both separated from the leading dislocation 
by a “stand-off” distance, δ. In the latter case which is more suited as an introductory example for 
our subsequent discussion, the loop distribution was assumed to form a sessile edge dislocation 
dipole of effective Burgers vector b’ and width ddc (see fig. 5.1). The shear stress, yσ% , necessary 

to unlock an edge dislocations from such a dipoles is given by the maximum opposite shear stress 
exerted by the immobile dipole on the dislocation which yields for ddc >> δ [11]  
  
 /8 )y b (1σ αμ ν δ= −% π ,       (5.2) 

where we have  introduced the effective coverage α =  b’/b. The formal similarity of eqs. (5.1) 
and (5.2) is striking but the difference in the length scales in the denominator, ddc in eq. (5.1) and 
δ in eq. (5.2), is essential for the difference in the corresponding stress levels.  
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Using α = 1,  δ = 10b ≈ 2.5 nm in eq. (5.2),7) a yield stress as high as σ%  ≈ 300 MPa was 
estimated for Cu (μ ≈ 55GPa, ν ≈ 1/3) [11]. Half of this value, i.e. 150 MPa, would be obtained 
for a more reasonable value of α = 0.5. We emphasise here that the tensile yield stress is about 3 
times the shear yield stress, 3y yσ σ≈ % , i.e. for yσ%  ≈ 300 (150) MPa, σy  ≈ 900 (450) which is 3 

(1.5) times higher than the value of σy ≈ 300 MPa measured in PITs after irradiation to about 
0.1dpa (with values in parenthesis for α = 0.5).8) It was concluded that such seriously decorated 
dislocations are completely locked by their cluster clouds and new dislocations can be generated 
only locally at heterogeneities in the lattice where the stress is substantially intensified. This 
would initiate inhomogeneous deformation along channels associated with a sudden yield drop. 

Apart of possible overestimates of the yield stress due to an overestimate of α  (= 1) and/or an 
underestimate of δ ( ≈ 2.5 nm) in our previous discussion of hardening in PITs, there are the 
following additional reasons for overestimating the yield stress by using eq. (5.2) without the 
required caution: The leading dislocation as well as the dislocation dipole are assumed in eq. 
(5.2) to be of pure edge type for which the interaction between both is maximum. On the one 
hand, screw components of more general than pure edge dislocations would reduce their 
interaction with a loop ensemble. On the other hand, a pure edge type dislocation dipole, which 
would represent an ensemble of aligned loops, would not be immobile as assumed in eq. (5.2) but 
would easily follow the leading dislocation. Hence, non-aligned loops are not only likely to occur 
within the loop ensemble but even necessary to immobilise it. Thus, in an adequate estimate of 
the yield stress, both the limited probability of blocking of aligned by non-aligned loops and the 
reduction in the total interaction between the loop ensemble and the leading dislocation have to 
be considered. In the following, all of these factors mentioned here will be taken into account. 

In the case of moderate decoration with coverage, say α < 0.3, as occurring in IRTs at relatively 
low pre-yield doses < 10-2 dpa, most of the loops in the cloud are well separated. Aligned loops 
not blocked by non-aligned ones can follow the dislocation; non-aligned loops are absorbed or 
left behind as long as they are not blocked by other loops on their way to or away from the 
dislocation, respectively. The fraction of loop pairs blocking each other (without direct contact) is 
small close to the dislocation. Assuming the contribution of this inner region to hardening to be 
not significant, we have to expect that the yield stress at low doses does no longer depend 
sensitively on the “stand-off distance”, δ. 

With increasing distance y from the dislocation, the blocking cross section introduced in section 
4.2, sbl = s*(y) - sal ≈ 4n1/2by - sal, (where n is the average number of SIAs per loop) increases 
such that, above a certain critical distance, y > δ*, the blocked fraction will exceed a limit where 
virtually all members of the loop ensemble are interconnected and blocked by mutual interaction. 
Around the transition point, y = δ*, the probability for finding, within the blocking cross section 
of a certain loop, another loop of different configuration (i.e. the probability for mutual blocking) 
reaches the order of 1, meaning sblN’ ≈ 1, where N’ is the 2D number density of loops with 
orientations differing from the one considered to be blocked (N’/N = p = 5/6 and 1/2 for edge and 
screw dislocations, respectively).  Using sbl ≈ s*’n1/2bδ* - sal’nb2 and nNb2 ≈ α  in the condition 
sblN’ ≈ 1, where s*’≈ 4 and sal’ ≈ 1 to 4 are numerical factors of the relevant cross sections, we 
find for the critical distance δ* 

     ( * */ ) 1 */ { /( * )}(1 )al als nb s p b n s p s pδ α δ α′ ′′ ′− ≈ → ≈ + α

                                                     

  (5.3) 

 
7)  Misprint in ref. [11], p. 184, 2nd column, 1st sentence after eq. (25): incorrectly printed “25 nm” 

instead of correctly “2.5 nm”.  
8)  This is not mentioned in ref. [11]. 
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According to eq. (5.3), the critical distance δ* decreases, via an increase in α, with increasing 
dose. Assuming that the main contribution to an increase in the yield stress comes from the outer 
region, y > δ*, where the existing loops block themselves effectively, we obtain an estimate of 
the yield stress as a function of pre-yield dose by schematically dividing the region of decoration 
in an inner region adjacent to the dislocation, y < δ*, where mutual loop blocking is neglected, 
and an outer region, y > δ*, where virtually all loops are assumed to block each other (see fig. 
5.2). Substituting, according to this scheme, δ in eq. (5.2) by δ* as given by eq. (5.3) we obtain
  

 (1) 2 ( * / ) /(1 )y y alk s n psσ μα α′′= %% +      (5.4a) 

with (1) / 8 (1 )yk pf π ν=% − ,       (5.4b) 

where f is a factor accounting for the reduction of the average strength of the interaction between 
a general dislocation with a screw component compared to an edge dislocation and a loop 
ensemble containing non-aligned loops. For a random distribution of all loop configurations, 

averages of f and pf are estimated to <f> ≈ 0.5, <pf> ≈ 0.35 (see appendix A3), meaning ≈ 

0.02 for ν = 1/3. 

(1)
yk%

In equation (5.4a), the characteristic length scale associated with the yield stress is the average 
size of the loops, dl ≈ nb , which may be assumed to be of similar magnitude as the “stand-off” 
distance δ in eq. (5.2). On the other hand, the dependence of the yield stress on α as described by 
eq. (5.4) is no longer linear as in eq. (5.2) but (for small α) quadratic, except for the correction 
factor in the denominator of eq. (5.4). This quadratic dependence corresponds to our assumption 
that the yield stress is determined by the pair-wise mutual blocking of loops. Only in the 
(unphysical) limiting case of α → ∞, eq. (5.4) would formally become linearly dependent upon α 
and converge to eq. (5.2) if f = 1 (pure edge type dislocation and dislocation dipole) and  δ ≈ dl 

≈ nb  is assumed.  

For given dislocation type and given probability distribution of loop configurations in the loop 
ensemble (i.e. given pf), eq. (5.4) most likely represents a lower bound estimate of the yield stress 
since the contributions of the decreasing number density of blocked pairs in the inner region, y < 
δ*, is completely neglected even though the weight of each contribution increases with 
decreasing distance from the dislocation due to the increasing magnitude of the interaction. 

An upper bound estimate of the yield stress is obtained by considering a finite probability for 
mutual loop blocking increasing continuously with increasing distance from the dislocation 
(without a step at some critical distance) and by assuming, in addition, that each loop pair 
contributes with the maximum possible force on the dislocation attainable at the corresponding 
distance between the dislocation and the loop pair. In fact, when a dislocation is displaced by the 
action of a stress field, loop pairs closer to the dislocation reach their maximum force earlier than 
loop pairs further away. As shown in appendix A3, such an upper bound estimate can be derived 
more rigorously than eq. (5.4), i.e. without using a schematic division of the decorated region as 
in deriving eq. (5.4). 

The steps in deriving such an upper bound for the yield stress as detailed in appendix A3 may be 
summarised here in the following way: multiply the maximum force between one loop and the 
dislocation with the loop density at that position and with the probability to find at least 1 
blocking other loop within the blocking cross section around the first loop and integrate the 
resulting local force density over the whole decorated area. At yielding, the resulting maximum 
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total force between the loop ensemble and the dislocation is balanced by the force on the 
dislocation due to the shear stress σ%  acting on it. 

This procedure yields an expression of similar form as that given by eq. (5.4), except that the 
value of the pre-factor (2)

yk% ≈ 0.13pf ≈ 0.05 is about 2.5 times higher than (1)
yk%  given by eq. 

(5.4b), and that the correction term 1/(1 )alps α′+  in eq. (5.4) has now the form of an exponential 
integral which has, however, exactly the same asymptotic behaviour as the correction term. In 
our following discussion, we use the simpler form given by eq. (5.4a), and for the pre-factor of 
the tensile yield stress ky ≈ 3 yk% ≈ 0.1, corresponding to a value of yk%  between the lower and 

upper bound estimates, (1)
yk% and (2)

yk% . 

In fig. (5.3), the tensile yield stress according to eq. (5.4a) is plotted vs. dose for → ky = 0.1, 

s*’≈ 4, sal’ ≈ 3, p = 0.7, n = 100 (corresponding to a loop size of dl ≈ 2.5 nm) and the values used 
in fig. (4.1) for characterising the evolution of the coverage α as a function of pre-yield dose. For 
comparison, the available experimental points for the three IRTs considered here and for one PIT 
are included. The uncertainty in the model curves increases with increasing pre-yield dose due to 
the increasing uncertainty in the evolution of α which is related the increasing uncertainty in the 
evolution of the matrix clusters. Nevertheless, the experimental trend is rather well reproduced by 
the model curves. Note that all experimental points are located in the range of the weak 
logarithmic increase of α where the increasing concentration of defects accumulating in the 
matrix form the dominant sink for cascade induced primary glissile loops as discussed in section 
4.1 in conjunction with eq. (4.9). 

(1)
yk%

Upon yielding, a significant fraction of the loops blocked in the outer region, y > δ*, will be left 
behind the moving dislocation, but a certain fraction of the aligned loops will follow the 
dislocation, particularly when, before yielding, the aligned loops in the cloud prevailed in density 
and size compared with the non-aligned ones as may be expected. This remaining fraction will 
affect the subsequent evolution of decoration during deformation. 

5.2.2   Contribution of blocked loops to the flow stress 
During deformation, aligned loops are able to glide with dislocations while non-aligned loops are 
either absorbed by or left behind the dislocations. In this case, decoration hardening is no longer 
expected to be due to the mutual interaction of members of the decorating loop ensembles as in 
yielding but will result from their interaction with matrix clusters encountered by them during 
their motion with their parent dislocation (“decoration enhanced indirect obstacle hardening”). 
Members of loop ensembles will be temporarily or permanently displaced by matrix clusters. By 
this “head wind” of clusters against the decorated dislocations, energy is dissipated which 
manifests itself in a resistance of the dislocations against the forces resulting from the applied 
shear stress. 

According to this picture, the rate of energy transfer from the matrix clusters to the loops 
accompanying the dislocations has to be estimated in order to obtain an estimate of the flow 
stress. The energy transferred by one matrix cluster, a dislocation loop or a SFT, on one member 
of the loop ensemble, ΔEmc,l, generally depends on their mutual distance and their position in the 
decorated area. To calculate the total rate of energy transfer from the matrix cluster wind on the 
loop ensemble dE/dt, the pair wise energy transfer ΔEmc,l multiplied with the apparent flux of 
matrix clusters, Jmc = Mmcvd (where Mmc is their matrix number density) and with the 2D number 
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density of loops in the decorated area, Nl, has to be integrated over the distance coordinates and 
the position coordinate in the 2D area of decoration.  

The procedure simplifies substantially by making the reasonable assumption that the main 
contribution to the flow stress is due to permanent blocking of members of the loop ensemble by 
matrix clusters, occurring for cluster-loop distances within the blocking cross section, s*(y). In 
this case, the energy transferred from a matrix cluster to a certain loop decorating the dislocation 
is close to the extreme value of the energy change along the path of that loop in the stress field of 

the dislocation, , ( )ext
mc l dlE E yΔ ≈ . We use this approximation in equating the rate of energy 

transfer from matrix clusters to the loops in a decorated area of width ddc and length increment Δl 
with the rate of work done by the shear stress on the dislocation, dbv lσ Δ% , obtaining by this for 
the shear flow stress 

  
0

( ) *( ) /dcd ext
f mc dl lM E y N s y dy bσ = ∫%        (5.5) 

Since ( ) 1/ext
dlE y ∝ y  and s*(y) ∝ y, the integrand in eq. (5.5) becomes constant and the 

integration correspondingly trivial. Quantitative extreme values of ( )ext
dlE y  in units of nμb3/2π 

are 1.70 b/y and 0.86 b/y for edge and screw dislocations, respectively (see table A1). Taking into 
account that also temporary displacement contribute to the flow stress, even though less than 
permanent ones, we estimate the average energy transferred per matrix cluster as 

4( ) 1.5 / 2ext
dlE y n b yμ π≈ . Assuming further s*(y) ≈ 4m1/2by, and expressing the 3D number 

densities of matrix clusters by the corresponding concentrations of SIAs and vacancies 
accumulated in the clusters, ( , ) 3

, , ,/( )ml SFT
l SFT d i v l SFTM v c m b≈ , and the 2D density of loops as Nl ≈ 

α+/nb2, we may write eq. (5.5) as 

   { }( ) 1/ 2 ( ) 1/ 2/ / (ml SFT
f i l v SFT dc m c m d bσ μα+≈ +% / )c .    (5.6) 

According to eq. (5.6), the flow stress is, analogous to the yield stress, a bi-linear functions of the 
degrees of defect accumulation in the decorated region and in the matrix, α+ and . This is 

due to our assumption that 

( , )
,
ml SFT

i vc

fσ%  is controlled by the (two-body) interaction of members of the loop 

ensemble with matrix clusters. Differently from the yield stress (and other contributions to 
hardening), the flow stress given in the form of eq. (5.6) depends on 2 (instead of 1) meso-scopic 
length scales: it is directly proportional to the width of the decorated region, ddc, and, similar as in 
eq. (5.4a) for the yield stress, inversely proportional to the size of the matrix clusters ml,SFTb. 

According to eq. (5.6) in conjunction with eq. (4.15), α+ controls the dependence of fσ% on the 

pre-yield dose and on the evolution of the dislocation density.  Both α+ and fσ%  depend on dose 

and strain as well as on the dislocation density, but not separately on dose rate and strain rate. 
These two rates and their ratio control, however, as to whether or not a moderate degree of 
decoration is maintained during IRTs which is able to control a continuous flow stress. 

In figure (5.4), we have used eq. (5.6) in conjunction with eq. (4.19a) for α+ to plot the tensile 
flow stress, 3f fσ σ= % , as a function of plastic strain for three different values of the pre-yield 

dose, assuming a transient linear increase of with dose. The parameters assumed for the 

evolution of the coverage α+ are the same as used in fig. (4.3); for the other parameters contained 

( , )
,
ml SFT

i vc
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in eq. (5.6) we have assumed ddc = 80b ≈ 20 nm, ml = 150, mSFT = 70 (corresponding to average 
loop and SFT sizes of about 5 and 2.5 nm, respectively).  

Also included in fig. (5.4) are curves illustrating the dislocation sweeping on the flow stress. For 
the characteristic strain of the sweeping effect, the same values as in fig. 4.4 are assumed. 
According to fig. (5.5), saturation of the SIA concentration in the matrix results in a significant 
reduction of the flow stresses increasing with increasing strain. It should, however, be noticed 
here that, at high strains, also saturation of the dislocation density by recovery is expected to 
occur. Dislocation saturation would result in a trend opposite to that induced by sweeping, i.e. it 
would increase the level of the flow stress. 

According to fig. (5.4), the level of the flow stress is significantly lower for the low than for the 
high pre-yield dose, but the rate of hardening is larger in the former than in the latter case, i.e. the 
distance between the curves decreases with increasing strain. These trends shown by the curves, 
particularly the effect of the pre-yield dose on the flow stress are consistent with the trends found 
in the IRTs considered here. At large strain, however, the hardening rate appears to be too strong. 
The incl,usion of the effect of dislocation sweeping seems to bring the shapes of the flow stress 
curves closer to the experimental ones shown in fig. (2.2). As for the coverage, the apparent 
memory concerning the impact of the pre-yield damage level on the flow stress during the whole 
IRT period is due to the simultaneous and parallel evolution of dislocations and defects 
accumulating in the matrix during their build-up phases, with differences in the flow stress 
increasing with increasing pre-yield dose. 

At low total doses (pre-yield + post-yield dose), the model curves shown in fig. (5.4) deviate 
systematically from the experimentally observed trends. In this dose range, the estimated 
contribution of decoration hardening to the flow stress is obviously too small to explain the 
experimentally observed steep increase in the flow stress. This indicates that another contribution 
is dominating in this range. We think that this contribution may be attributed to irradiation 
induced obstacle hardening, most likely due to SFTs.  

In view of the simple nature of the approximations used in this work, the experimentally 
observed trends, particularly the pronounced effect of the pre-yield dose on the flow stress, may 
be considered to be roughly reproduced by our approach. 
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6. Summary and Discussion  
In the present work, an analytical study of the plastic deformation of metals under concurrent 
production of cascades and dislocations as observed in recent in-reactor tensile tests (IRTs) on 
pure copper is presented. In these tests, two surprising features were observed: (i) the material 
deforms uniformly and rather homogeneously without yield drop as commonly observed in post-
irradiation tensile tests (PITs), and (ii) an increase in the pre-yield dose results in an increase in 
the level of hardening over the whole test period.  

These features were modelled in terms of the decoration of dislocations with small dislocation 
loops which are assumed to restrain the dislocations when starting and continuing to move upon 
yielding and deformation. During pre-yield irradiation, dislocation decoration results from the 
one-dimensional (1D) diffusion of cascade induced self-interstitial (SIA) clusters and their 
trapping in the stress field of the static grown-in dislocations. In this initial phase, loops 
accumulate at the side of the dislocation where the interaction is attractive. A loop once trapped 
near a dislocation can not reach the dislocation core and get absorbed there, unless it climbs or 
changes its glide direction. We have assumed that such processes are negligible in Cu in the 
temperature range considered here. 

During concurrent post-yield irradiation and deformation, a moving dislocation sweeps by its 
stress field loops accumulated in the matrix. The assumption that loops are able to move in the 
strain field of dislocations contrasts with the assumption of immobile (and indestructible) 
radiation induced obstacles in conventional models of radiation hardening. Loops with Burgers 
vector parallel to the glide plane of a dislocation (i.e. “aligned loops”) were assumed here to 
follow the dislocation, pushed at the repulsive and pulled at the attractive side of the interaction, 
while non-aligned loops were assumed to approach the moving dislocation and get absorbed by 
this. Aligned loops temporarily or permanently immobilized by other loops or stacking fault 
tedrahedra (SFTs) exert restraining forces on dislocations which manifest themselves in 
contributions of dislocation decoration to yield and flow stresses. We expect that this new 
mechanism of decoration enhanced indirect obstacle hardening may even dominate common 
obstacle hardening by direct physical contact of dislocations with irradiation induced clusters as 
well as hardening by enhanced jog formation, provided the degree of accumulation of loops in 
the decorated region is sufficiently high. 

According to this qualitative picture, a detailed knowledge of the interactions of dislocations with 
loops and between loops is required as a basis for a quantitative treatment of the kinetics and 
dynamics of dislocation decoration. In the present work, we have employed the isotropic linear 
elastic continuum approach to discuss these interactions occurring within the dislocation-loop 
system as functions of dislocation type (edge and screw), Burgers vectors of loops (aligned and 
non-aligned), relative to the dislocation-loop orientations and distances. The interactions of loops 
with screw dislocations have been found to be not significantly smaller than with edge 
dislocations. 

Dislocation decoration during pre-yield irradiation is the result of very complicated 
inhomogeneous defect reaction kinetics in the distorted lattice near the dislocations which are 
embedded into a matrix where displacement damage accumulates. This complex problem can not 
be treated analytically without substantial simplifications. We have therefore substituted the 
complicated kinetics occurring in the real 3D region of decoration by an equivalent kinetics 
occurring in an imaginary 2D space and introduced the local “coverage” of this plane with SIAs 
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as a measure of the local degree of decoration. The quality of this approach should be checked by 
appropriate computer simulations, for instance of Monte Carlo type. 

Defect accumulation within the space of decoration around the dislocations is due to cluster 
fluxes arriving from the matrix and is thus coupled to the defect accumulation there. This 
problem may be treated separately, for instance within the framework of the so called 
“production bias model”. For the purpose of the present paper, aimed primarily at identifying 
mechanisms and conditions for dislocation decoration, we have introduced simple 
approximations allowing an analytical treatment of the main features of the defect evolution in 
the matrix relevant for decoration. Using these approximations (which may be expected to be 
good for low doses) we have found non-negligible dislocation decoration even at the lowest pre-
yield dose applied in the IRTs considered which we consider to be sufficient for preventing 
segregating of dislocations in the form of walls during deformation and for rendering 
deformation uniform and homogeneous. 

An adequate treatment of dislocation decoration under plastic deformation must include an 
adequate consideration of the dislocation evolution. In a fully consistent treatment of the 
concurrent evolution of dislocations and the associated evolution of their decoration with loops, 
coupled spectra of the degree of dislocation decoration and dislocation velocities, with “younger” 
dislocation segments being less decorated and faster than “older” ones, would have to be 
considered. We have substantially simplified this complicated problem by assuming that all 
dislocations move with a given average velocity determined by the dislocation density and the 
strain rate, and, consequently, that the local and instantaneous degree of decoration has the same 
average value for all dislocations depending on total dose and strain but not on their “age”.  

Within the framework of this “average dislocation approach” and the “2D decoration approach”, 
already used in treating pre-yield decoration, we have formulated kinetic rate equations for the 
evolution of decoration under deformation which contain gain terms due to sweeping and loss 
term due to loop blocking as well as reaction terms for loop coalescence and alignment 
characterized by appropriate reaction cross sections. The form of these equations shows that the 
instantaneous rate of decoration evolution depends on the instantaneous densities of dislocations 
and defects accumulated in the matrix, and, via these quantities, on the levels of strain and dose 
reached (and other parameters involved), but it does not explicitly depend on strain and dose 
rates. 

In our model, loop clouds accompanying dislocations during deformation form open dissipative 
sub-systems incorporating matrix loops and excreting (pairs of) clusters back into the matrix. 
Dislocations once decorated remain decorated during deformation, meaning that they do not get 
completely separated from their loop clouds. Thus bunches of loops would stay back only when 
dislocations unlock from part of their loop clouds during yielding but not when they move during 
plastic flow after yielding. On the other hand, we have shown that, even at a strain of only a few 
percent, the sweeping and absorption of matrix defects by moving dislocations results in a 
significant reduction in the degree of decoration. This effect was found to be stronger for low 
than for high pre-yield doses. 

On the basis of approximate solutions for the evolution of decoration, the contributions of 
dislocation decoration to yield and flow stresses were estimated as a function of pre-yield dose 
and plastic strain (or total dose). Postulating that the restraining forces on the moving dislocation 
are due to the interaction of loops decorating dislocations with matrix loops and SFTs, we were 
able to reproduce the experimentally observed general trends: the increase of the yield stress with 
dose is faster than that of the flow stress; an increase in the pre-yield dose results in an increase in 
the level of hardening over the whole dose/strain ranges studied. The qualitative agreement in the 
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flow stress was found to improve when the reduction of defects accumulated in the matrix by 
dislocation sweeping was taken into account. Assuming physically reasonable values for the 
parameters involved we even obtained the right orders of magnitude of the yield and flow 
stresses found in the IRTs, except for low total dose.  

These encouraging results indicate that, in the IRTs of Cu considered here, decoration enhanced 
indirect obstacle hardening is the dominant hardening mechanisms at high total doses. At low 
pre-yield and total dose, however, other hardening mechanisms such as conventional radiation 
hardening by direct contact of dislocations with radiation induced obstacles or hardening by 
enhanced jog formation must be considered to provide larger contributions to the total hardening 
than decoration enhanced hardening discussed in the present work. 

The apparent memory concerning the impact of the pre-yield damage level on the flow stress 
during the whole IRT period was identified in our study as the result of the simultaneous and 
closely parallel transient evolution of dislocations and displacement damage in the matrix up to 
the end of the IRTs. We have found that the increasing supply of SIAs from the increasing 
storage in the matrix required to decorate the growing dislocation population is sufficiently large 
on the one hand and sufficiently limited on the other to maintain “significant but moderate” 
levels of the degree of decoration and of the associated flow stress during the whole test period.  

The limitation of the features discussed in the present work to a relatively narrow band in the 
parameter plane defined by the accumulated defect density and the dislocation density implies 
that our conclusions must be expected to be rather sensitive to changes in the rates of dislocation 
generation or damage accumulation in the matrix when changing from pure Cu considered here 
to an alloy or to another metal of different crystal structure (e.g. BCC). A decrease or increase in 
the rate of defect accumulation relative to the rate of dislocation generation is expected to result 
in an insignificant decoration associated with an insignificant contribution to hardening.  

Also the assumption concerning the properties of cascade induced SIA clusters, for instance their 
intrinsic resistance to direction changes, can not be expected to be justified for other materials. 
An increase in the probability for changes in the glide direction would reduce the degree of 
decoration on the one hand but increase the absorption of clusters from the matrix and the 
associated disturbance of the dislocation cores on the other. These considerations underline the 
necessity for performing IRTs on other materials and for extending our analytical modelling to 
different materials and different irradiation and deformation conditions. 

7. Conclusions  
In the past, experimental and theoretical studies of radiation hardening were restricted to the 
determination and interpretation of the yield stress observed in post-irradiation tensile tests 
(PITs). In recent in-reactor tensile tests (IRTs) both the yielding behaviour and the evolution of 
plastic flow were studied in detail under the conditions of constant damage rate and constant 
strain rate. In these tests, the material has been found to deform uniformly and rather 
homogeneously without yield drop as commonly observed in PITs. Another interesting 
observation is that an increase in the pre-yield dose results in an increase in the flow stress over 
the whole test period. 

In the present work, this surprisingly different deformation behaviour of metals in IRTs was 
attributed to the decoration of dislocations with small dislocation loops developing during the 
concurrent production of cascades and dislocations as revealed by micrographs. During pre-yield 
irradiation, dislocation decoration was considered to result from the one-dimensional diffusion of 
cascade induced self-interstitial (SIA) clusters and their trapping in the stress field of the static 
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grown-in dislocations. During post-yield irradiation and deformation, moving dislocations were 
supposed to get decorated by sweeping with their stress fields loops accumulated in the matrix. 
Decoration was considered to restrain the dislocations from moving under an applied stress. 

According to this qualitative model description, a quantitative analytical treatment of the 
deformation behaviour during the concurrent production of cascades and dislocations would 
consist of appropriately combined considerations of the three main problem complexes: (i) the 
interaction of dislocations with loops and loop ensembles, (ii) the kinetics of decoration under 
pre-yield irradiation as well as post yield irradiation and deformation, and (iii) the dynamics 
controlling the contribution of decoration to yield and flow stresses. Since the primary aim of the 
present work was, to identify the main mechanisms and to describe the general trends properly, 
the treatment was substantially simplified. It should be recognised, however, that a considerable 
amount of work is necessary to extend the present model to describe the problem of IRT 
deformation behaviour comprehensively and qualitatively. 

Linear elasticity theory was employed to study the fundamental interactions occurring within the 
open defect systems of decorated dislocations as a function of the dislocation and loop 
characteristics and their relative orientations and distances. The interactions were found to be 
strong enough for significant decoration of both edge as well as screw dislocation segments. 

The very complicated kinetics of decoration was simplified by substituting the real 3D region of 
decoration by a 2D space. In addition, for decoration under deformation where dislocations are 
continuously generated, the complicated coupled distributions of ages, degrees of decoration and 
velocities of dislocations was represented by a system of “average dislocations” moving with the 
same instantaneous average degree of decoration and average velocity determined by the 
dislocation density and the strain rate. 

Within the framework of these approximations, kinetic rate equations for the evolution of 
decoration under pre-yield irradiation as well as post-yield irradiation and deformation were 
formulated. Approximate solutions of these rate equations were derived and used in discussing 
the general trends in the evolution of decoration. More rigorous solutions of the rate equations 
are expected to provide more details. 

On the basis of the derived approximate solutions for the evolution of decoration, the 
contributions of dislocation decoration to yield and flow stresses were discussed in terms of the 
interactions of dislocations with “aligned” loops immobilized by the interaction with other loops 
and stacking fault tetrahedra. Most of the experimentally observed general trends, particularly of 
the dependence of the flow stress on both strain and total dose, can be rationalised by this new 
“decoration hardening” indicating that this is the dominant hardening mechanism in the IRTs of 
Cu considered here.  

The apparent memory of the system for the pre-yield damage level was identified as the result of 
simultaneous and closely parallel transient evolutions of displacement damage and dislocations 
up to the end of the IRTs. It is found that the specific features discussed in the present work are 
limited to a relatively narrow band in the parameter space of accumulated defect density and 
dislocation density. Any significant change in the ratio of both, for instance by straining copper 
samples before irradiation or by changing to another material with different dislocation and 
cascade defect properties, must be considered to be associated with a qualitative change in the 
significance of decoration hardening. 
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Appendix 
 

A1.  Energetics of Dislocation Decoration with Loops  
 

A1.1   Interaction of dislocations with single loops  
In this work, disturbances of the crystal lattice induced by dislocations and small dislocation 
loops are treated in terms of the isotropic linear elastic continuum approach. For loops, the small 
(“infinitesimal”) loop approximation is used which is valid when the loop diameter is small 
compared to the other spatial scales involved. In this approximation, a SIA cluster of ideal loop 
shape is completely determined by its eigen-strain tensor Q which may be represented by its area 
vector A and its Burgers vector b [17] 

  
 Q = (A b + b A )/2 →  (Ai bj + Aj bi)/2 ,  with A · b  = Ai

 bi  ≈ nΩ   (A1.1) 
 

Einstein’s summation convention for summing up over repeated indices (denoting components of 
vectors and tensors) is employed here and later, when appropriate. In eq. (A1.1), nΩ  is the eigen-
volume of the loop, n is the number of point defects (SIAs) contained in it and Ω ≈ b3 is the 
volume of matrix atoms. For isotropic Q as for instance for SFTs, Qij = Qkk δij/3 with  Qkk = nΩ  
where δij  is Kronecker’s unit matrix. 

The elastic interaction energy and the corresponding force between a loop and a dislocation, 
inducing at the distance vector of the loop, rdl, a stress field σd(rdl), are given, respectively, by  

 
 Edl(rdl)  = − Q σd(rdl) = − Aibj σd

ij(rdl) ,     (A1.2a) 
 
 Fdl(rdl)  = −∇Edl(rdl) =  ∇Aibj σd

ij(rdl).     (A1.2b)  
 

Because of the inversion symmetry of the stress field, σd(−rdl) = −σd(rdl), the interaction energy 
of a loop close to a straight dislocation segment is characterised by attractive and repulsive 
directions and, consequently, its directional average vanishes: 

      

 
( ) ( ), ( )dl dl ll dl dl dlE E E− = − + =r r r 0      (A1.3)  

Quantitative details depend on the crystallography of dislocations and loops. In the following, a 
FCC crystal structure is assumed with dislocations characterised by Burgers vectors of <110>/2-
type and glide planes of {111}-type, and loops characterised by <110>/2-type Burgers vectors 
and {110}-type habit planes (differently from the {111}-type habit planes assumed in [11]), i.e. 
totally 6 equivalent loop configurations.  

For the derivation of explicit expressions for interaction energies and forces, the coordinate 
system is chosen such that the expressions for the stress fields of straight dislocations given in 
text books [17, 18] can be directly used: x, y and z coordinates in the glide direction, 
perpendicular to the glide plane (normal vector G) and along the dislocation line (unit vector L), 
respectively (suffices 1,2 and 3 for vector and tensor components). With this, eq. (A1.2) becomes 
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 Edl(rdl)   = − [(A·Vi) (b·Vj) + (b·Vi) (A·Vj)]σd

ij(rdl)/2 .   (A1.4) 
  

Here, V1,2,3 are the 3 unit vectors in the directions of the coordinates of the dislocation 
representing the matrix for the transformation of the loop vectors into the coordinate system of 
the dislocation.  

Ignoring the vector and tensor characters of the quantities in eqs. (A1.2a) and by setting Q → nΩ, 
σd(rdl) → μb/2πrdl simple estimates of the magnitude of the interaction energy and the 
corresponding force (without directional dependence) are obtained 

 
 ⎪Edl(rdl)⎪  ∼  nμΩb/2πrdl  and ⎪Fdl(rdl)⎪  ∼   nμΩb/2πrdl

2,   (A1.5) 
  

where μ  is the shear modulus of the metal. According eq. (A1.5), the natural energy, force and 
length units are nμΩ/2π, nμΩ/2πb, and rdl/b, respectively, which are therefore used in the results 
presented below. 

The dependence of the interaction energy on the direction of the spatial separation vector, rdl, i.e. 
the angular dependence, is much more complicated than the distance dependence and varies 
considerably with the configuration of the loop relative to that of the dislocation. Only for pure 
screw dislocation segments, a relatively simple expression is obtained:   
  

 Edl(rdl) = (nμΩb/π) (g⋅L)[g⋅(L×rdl)] /(L×rdl)2,    (A1.6) 
                      

where g = b/b is the unit vector in the glide direction of the loop. 

For calculating interaction energy profiles in certain planes perpendicular to a straight dislocation 
line (lines of equal interaction energy, “equipotential lines”), defined by assuming a certain 
constant values for Edl(rdl) we have used polar coordinates for σd

ij(rdl). For calculating the 
interaction energy felt by a loop passing a dislocation on a straight line in direction g, it is better 
to use Cartesian coordinates and to introduce the loop path in vector form as 

 
 rdl = r0 + sg , with  r0 = r0 n ,      (A1.7) 

 

where r0 is the minimum distance vector between the dislocation and the loop with a unit vector 
in its direction n = r0/r0 = (g×L) /⎪g×L⎪, and s is the coordinate of the loop on its path measured 
from the point of closest approach.  

In figure (A1.1), lines of equal energy (equipotential lines) in appropriate planes are plotted for 
all combinations of dislocation-loop configurations introduced. For the same configurations, 
interaction energies and the corresponding forces acting on a loop passing a dislocation are 
plotted as a function of the loop coordinate s in figure (A1.2). The extreme values of these 
energies and forces are obtained by setting ∂Edl/∂s = 0 and ∂Fdl/∂s = - ∂2Edl/∂s2 = 0. In table (A1), 
extrema data (positions and values) are listed (in the figures and the table, a value of 1/3 is 
assumed for Poisson’s ratioν).  

According to table (A1), the interaction is strongest for b �B(edge). It vanishes for b �and ⊥ 
B(screw) for which the scalar and cross vector products in eq. (A1.6) vanish. The strength 
generally decreases with increasing angle between the loop direction and the glide plane. The 
values confirm the usefulness of the crude estimate given by eq. (A1.5). 
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Dislocation Edge [ /110] [111] /[112]  Screw [ /110] [111] /[  110]

Loop E(extreme) F(extreme) E(extreme) F(extreme) 
site strength site strength site strength site strength 

[110]  0.58 1.70 1.22 0.83  0  0 
[011] /[101] 0 1.12 1.73 0.29 0 0.87 0.67 0.49 

[110]  2.55 0.37 0 0.54  0  0 

[101]/[011]  1.14 0.83 0.98 0.65 0 0.87 0.67 0.49 
 

Table A1: Data for the extreme values for the interaction of a dislocation with a loop passing the 
dislocation at unit minimum distance: loop coordinate s in units of b, energies and forces in units 
of nμΩ/2π, nμΩ/2πb, respectively (Poisson’s ratio ν = 1/3). The dislocations are characterised by 
their Burgers vector, glide plane normal and line vector directions, the loops by their Burgers 
vector directions. 

A1.2   Interaction between two loops 
The interaction energy of two loops as a function of their relative positions and orientations may 
be also estimated within the framework of isotropic elastic continuum approach using the small 
loop approximation, which becomes reasonable for loop-loop distances larger than the loop 
diameters, rll >(>) dl. With these approximations, the interaction energy of two loops, (1) and (2), 

(12)
llE , may be represented by [17] 

        (A1.8) (12) (1) (2)
,ll ij ik jl klE P G P=

Here the tensors P(1,2) are elastic dipole-force tensors related to the eigen-strain tensors Q(1,2) of 
the loops according to 

 ,       (A1.9) (1,2) (1,2)
ij ijkl klP C Q=

where Cijkl are the components of the 4th order elastic tensor, and Gik is the elastic Green’s 
function which reads for elastically isotropic materials 

 { }3
11 44 11 44

11 44

1 ( ) / ( ) /
8ik ik ll i k llG C C r C C x

C C
δ

π
= + + − x r ,   (A1.10) 

where C11 and C44 are 2 independent elastic constants of an elastically isotropic material in the 
Voigt notation. In Gik,jl, the subscript combination (,jl) means 2nd order partial differentiation of 
Gik with respect to the coordinates (jl). Because of the inversion symmetry of Gik,jl, (12)

llE  is 

symmetric and its directional average vanishes: 

 (12) (12) (12)( ) ( ), ( )ll ll ll ll ll llE E E− = − + =r r r 0               (A1.11) 

Simple estimates of the magnitude of the interaction energy and the corresponding force between 
two loops, respectively, are obtained by ignoring the vector and tensor character of the quantities 
in eqs. (A1.8 - A1.10). Assuming that loops (1) and (2) contain n and m SIAs, meaning Q(1,2) ≈ 
(n,m)Ω, and representing C11 and C44 simply by μ, we write 

 ⎪Ell(rll)⎪ ∼ mnμΩ2/4πrll
3  and ⎪Fll(rdl)⎪  ∼ 3mnμΩ2/4πrll

4.    (A1.12) 

These estimates are used in section 3.3. 
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The detailed evaluation of eq. (A1.8) for given loop orientations is rather involved. Fortunately, 
with the 6 equivalent loop glide directions g along <110> considered here, only 3 independent 
combinations need to be analysed: glide directions parallel, perpendicular and 60° to each other. 
Using for P eq. (A1.9), for Q eq. (A1.1) and for Gik eq. (A1.10), eq. (A1.8) may be explicitly 
evaluated in the form   

 

{ }
{ }

{ }

3 (1,2) 2 2 2
1 2

2
1 2 1 2 1 2

2 2 2
1 2 1 2 1 2 1 2

4 (1 ) ( ) /( ) 2 2 3( ) 3( )

2(1 2 ) ( ) 3( )( )( )

1 3[( ) ( ) 2( )( )( )] 15( ) ( )

ll ll llr E mnπ ν μ ν

ν

− Ω = − − −

− − −

+ − + + +

r g e

g g g g g e g e

g e g e g g g e g e g e g e 2

g e

,   (A1.13) 

where e is a unit vector in the direction of the separation vector rll, i.e. e = rll/rll. Equation 
(A1.13) confirms that (12)

llE  is symmetric with respect to the 2 loops and that its directional 

average vanishes; it is written such that the 3 terms at its right hand side represent mono-, di- and 
quadrupole terms whose  directional averages vanish separately. 

For a further evaluation of eq. (A1.13), it is useful to count the coordinates of the loops along 
their glide path, s1 and s2, from the point of closest approach where there separation vector is 
assumed to be r0 with a unit vector n = (g1×g2)/⎪g1×g2⎪ With this reference point, the position 
vectors of the two loops, r1 and r2, and their distance, rll, may be written as  

 r1 = r0/2 + g1s1 , r2 = −r0/2 + g2s2 ,  
2 2 2

0 1 2 1 2 12( )llr r s s s s= + + − g g 2

2

 (A1.14) 

The interaction according to eq. (A1.13) has an extreme value (maximum attractive for ν > 1/4) 
at the point of closest approach, rll = r0, s1 = s2 =0, where g1e = g2e = 0 such that eq. (A1.13) 
yields 

 3 (1,2) 2 2
0 0 14 ( ) /( ) 1 4 2(1 2 )( )llr E mnπ μ ν νΩ = − − −r g g .                (A1.15) 

According to eq. (A1.15), the strength of the maximum attractive interaction as a function of the 
relative loop orientation is −1, −2ν, −4ν+1 for 0°, 60°, 90° configurations, respectively (−1, 0, 
+1, for ν =0; −1, −2/3, −1/3, for ν = 1/3 (Cu);  −1, −1, −1 for ν = ½). These numbers show that 
the estimates given by eq. (A1.12) are indeed representative.  

In figure (A1.3), equipotential lines calculated on the basis of eq. (A1.13) in conjunction with eq. 
(A1.14) are plotted for the three different (non-equivalent) combinations of loop configurations 
as a function of the loop coordinates s1 and s2. According to fig. (A1.3a), two equivalent loops 
with the same Burgers vector have to overcome an energy barrier to reach one of their two 
energy minima. According to fig. (A1.4b,c), on the other hand, two loops of different 
configuration reach their minimum at closest approach down hill (through 1 of the 4 valleys) 
from any point in the 2D loop-loop space. 

The interaction of a loop, say of loop (1), with an isotropic defect such as a SFT (dilatation 
centre) is obtained from eq. (A1.13) by averaging over the directions of the other loop (2). Using 

/3i j ijg g δ=  we get 

{ }3 (1,2) 2
14 (1 ) ( ) /( ) 2(1 ) 1/ 3 ( )ll ll llr E mnπ ν μ ν− Ω = − + −r 2g e    (A1.16) 

It should be noticed here that SFTs are characterised by a negative relaxation volume (- mΩ  for 
well developed SFTs). 
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A1.3   Interaction between a dislocation and two loops 
In a loop cloud decorating a dislocation, loops interact with each other as well as with the 
dislocation. The strength of the loop-loop interaction relative to the loop-dislocation interaction is 
crucial for the evolution of dislocation decoration and the associated yield and flow stresses. 

The importance of the loop-loop interaction relative to the loop-dislocation interaction increases 
with decreasing loop-loop distance compared to the loop-dislocation distance. The correct scaling 
behaviour and a quantitative estimate for the transition from loop-dislocation to loop-loop 
dominance in the interaction of a loop containing n SIAs with a dislocation and with a loop 
containing m SIAs is obtained by equating the estimates for the (maximum) loop-dislocation and 
loop-loop forces as given by eqs. (A1.6) and (A1.12), yielding for loop-loop distance of this 
transition,  , *

llr

 *2 1.23ll dlr m≈ br .       (A1.17) 
 
According to eq. (A1.17), the transition from loop-dislocation to loop-loop dominance occurs 
when the loop-loop distance is approximately equal to the geometrical average of the two other 

length scales: loop diameter ∼ mb and dislocation-loop distance rdl. 

In a rigorous treatment, the energy of each loop in the presence of the other loop and the 
dislocation must be analysed in detail. The appropriate loop coordinates for such an analysis are 
the minimum distances of the loops from the dislocation, rd1,2, and between the loops, r12, and the 
distances, sd1,2 and s1,2,  from these points of closest approach, as sketched in fig. A1.4. With 
these coordinates, the energy of the two loops may be written as 

E1,2 = Ed1,2(rd1,2, sd1,2) + E1,2(r12,s1,s2) .                          (A1.18) 
 
An analytical analysis is possible (and useful) only when the distance between the loops is small 
compared to their distance to the dislocation, r12 << rd1,2 such that the field of the dislocation may 
be expanded about the central point of the loop pair, (x,y). In this case, the 1st partial derivatives 
of the dislocation-loop interaction energy with respect to s1,2 (and analogously the 2nd 
derivatives) may be written as 

 
  (A1.19) 

where the derivatives with respect to (x,y) are to be taken at (x,y). Hence, in this approximation, 
there are totally five coordinates including s1, s2 representing the degrees of freedom of the 
mobile loops, and x, y, r12 representing geometrical parameters. For the most important case of an 
aligned loop gliding in x-direction (loop 1), where 

1,2 1 1,2 1 1,2 1 1,2 2/ ( / )( / ) ( / )( / ); /d d d dE s E x x s E y y s E s∂ ∂ = ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ ∂ ∂ =

1/ 1x s

...

∂ ∂ = 1/y s and 0∂ ∂ =

1 1 1,2/ ( / )d d

 = 0, eq. (A1.19) 

simplifies to E s E x∂ ∂ = ∂ ∂ 2 2 2 2
1 1 1,2/ ( / )d dE s E x∂ ∂ = ∂ ∂ and . 

Two neighbouring loops form a stable pair far away from the dislocation as well as in the stress 
field of a dislocation, depending on their distance and position with respect to the dislocation. 
Generally, the force balance conditions ∂E1,2/∂s1,2 = 0 in conjunction with the stability 
conditions  2 2

1,2 1,2/ 0E s∂ ∂ >

∂E1,2/∂s1,2 = 0,                  (A1.20)  

define the stable region in the x, y, r12 parameter space. At given r12 and y, for instance, an 
aligned loop gliding in x-direction (loop 1) and a non-aligned loop gliding in y-direction (loop 2) 
forming a bound (stable) pair around x = 0 (see fig. A1.4) will remain bound for all x when even 
the strongest force exerted by the dislocation on loop 1 cannot overcome the force keeping the 

2 2
1,2 1,2/ 0E s∂ ∂ >
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loops together. In this case, the boundary between instability in some range of x and stability at 
all x is defined by the balance of the maximum forces (in x-direction) between the dislocation and 
loop 1 and between loop 1 and 2, i.e. by 

2 2
1 12 1 1,2 12 1/ / 0, / 0, /d dE x E s E x E s∂ ∂ + ∂ ∂ = ∂ ∂ = ∂ ∂ = 0 .   (A1.21) 

A fully analytical evaluation of eq. (A1.21) is possible but rather involved. The treatment is even 
more involved for other loop-loop combinations than the ones shown in fig. A1.4. The degree of 
freedom is reduced to s1 and the procedure becomes much simpler for the important case of the 
interaction of an aligned loop containing n SIAs with an immobile isotropic cluster containing m 
SIAs (or a SFT containing m vacancies) as described by eq. (A1.16), for instance in the stress 
field of an edge dislocation. In this case, the maximum loop-dislocation force (according to table 
A1) and the maximum loop-cluster force following from eq. (A1.16), respectively, are 

max
2

0.55
1 2dl

n bF
y

μ
ν π

Ω
=

−
, 

2
max

4

11.93
1 6cl

cl

mnF
r

ν μ
ν π

+ Ω
= −

−
             (A1.22) 

 yields for ν = 1/3 max max 0dl clF F+ =

*2 1.25clr ≈ mby         (A1.23) 
 
in good agreement with the estimate given by eq. (A1.17). In the following section, this relation 
is used to define a cross section for the blocking of an aligned loop by a matrix cluster. 

 

A2. Kinetics of Dislocation Decoration with Loops  
 

In the present work, decoration of dislocations by loops is considered to occur in an imaginary 
2D space of decoration. In this description, real or apparent fluxes of clusters from the matrix to 
the decorated area due to cluster diffusion or due to the motion of the dislocation represent 
cluster sources in the 2D space. The probability for the occurrence of reactions of clusters, 
already present there, with clusters arriving from the matrix is quantified by appropriate reaction 
cross sections. 

A2.1   Reaction cross sections 
The main reactions to be considered are (1) cluster coalescence of loops of equal configuration, 
(2) alignment of two loops of different configuration, particularly the alignment of a non-aligned 
in the close vicinity of a aligned loop, (3) immobilisation (blocking) of a loop of a certain 
configuration by a close interaction without direct contact with a loop of another configuration or 
with an immobile cluster such as a SFT, and (4) (partial) annihilation of a (SIA) loop with a 
SFTs. The cross sections for these coalescence, alignment, blocking, annihilation reactions are 
denoted by sco, sal, sbl, and san, respectively. 

Coalescence of two loops requires that their glide prisms at least touch each other. For two 
circular loops, (1) and (2), this means that the distance between their centres is smaller than the 
sum of their radii, dll ≤ r1 + r2. Accordingly, the cross section for coalescence may be described 
by 

sco = π (r1 + r2)2.        (A2.1) 
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For the present purposes, it is useful to express the sizes by the number of SIAs per loop, i.e. 

πr1,2
2  =  n1,2A0 where A0 ≈ b2 ( 2

0 3 / 4A b= in FCC) is the atomic unit area per SIA in a loop, 
such that eq. (A2.1) may be written in the form 

 
 2

1 2(co 0)s n n= + A ,       (A2.2) 

 
According to eq. (A2.2),  n1,2A0  <  sco  <   4 n1,2A0. 

A change of the Burgers vector of a loop to an energetically more favourable configuration in the 
stress field of a dislocation can only be expected to occur when primary loops come very close to 
the dislocation. Consequently, it is reasonable to assume that alignment of larger loops requires, 
as coalescence, direct contact of the loops involved, meaning that the corresponding cross 
sections have the same values as for coalescence, eqs. (A2.1) and (A2.2),   
   

sal(n1,n2) = sco(n1,n2).       (A2.3) 
  
A necessary condition for the blocking of a loop by another loop of different configuration or 
by a SFT is that the distance is smaller than a critical value as defined by eq. (A1.23). The 
critical cross section corresponding to eq. (A1.23) is     
  

 *2* 4cls r mπ= ≈ by        (A2.4) 
  
This cross section increases with increasing distance of the cluster pair from the dislocation. The 
blocking of an aligned loop by a non-aligned loop requires in addition that no direct contact occurs 
which would result in alignment is possible, meaning     
  

 sbl = s* - sal .        (A2.5) 
   
Under deformation, a loop following a moving dislocation may encounter a SFT. Mutual 
(partial) annihilation requires that a segment of the loop cuts the SFT. Loops developing under 
deformation may be expected to be considerably larger than SFTs, dl >> dSFT (about 10 nm 
compared to 2.5 nm). In this case the cross section for annihilation may be approximated by
  

 san ≈ π dl dSFT.        (A2.6) 
  
Since, for dSFT << dl, san is significantly smaller than the other relevant cross sections sco, sal, sbl, 
and since, in addition, annihilation will be only partial, this reaction is neglected in estimating the 
degree of decoration  and its effect on hardening. 

A2.2   A simple coalescence model 
The evolution of loop size distributions in the 2D space of decoration by fluxes of clusters from 
the matrix can be treated by the standard procedures developed for 3D. For the present purpose of 
estimating decoration and hardening, only the fraction of the 2D region occupied by loops 
(coverage), loop densities, and some average loop size are needed. To illustrate a procedure for 
deriving these 3 main quantities, we assume that only aligned loops containing m SIAs arrive 
with flux density J from the matrix in the 2D space of decoration where possible reactions with 
existing loops, containing n SIAs on the average, are restricted to coalescence. The probability 
for the occurrence of coalescence is quantified by the size dependent cross sections sco(n). 

Coalescence does not affect the increase in the coverage α due to the flux of aligned loops, but 
reduces the increase in the 2D number density N compared to the increase without coalescence. 
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Consequently, the evolution of α, N and the average number of SIAs per loop in the 2D space, n, 
may be described by         
  

dα/dt  =  mA0J ,          (A2.7a) 
 
dN/dt = [1 - sco(m,n)N] J ,        (A2.7b) 
 

 nA0N = α .        (A2.7c) 
  

According to eq. (A2.7a), the time dependence of α is determined by that of mJ in this simple 
model 

 α  = A0 ∫ mJdt .         (A2.8) 

For constant m and J, α increases linearly with time. 

Eliminating J from eq. (A2.7a,b), expressing sco(m, n) by eq. (A2.2) and introducing the number of 
loops per area of incoming loop as normalised 2D number density N* = mA0N and the number of 
incoming to existing loops as normalised loop size, n/m, the following set of equations is obtained 
for these two quantities         
  

 */ 1 (1 / *) *dN d N Nα α= − +                 (A2.9a) 

 n/m  =  α/N*                  (A2.9b) 
 
The solution of eq. (A2.9a) subject to the initial condition N*(α= 0) = 0 is obtained by numerical 
integration.  The results for N* and n/m, as functions of α are shown in fig. A2.1. For small α, 
both N* and n/m increase linearly with α. When, at α ≈ 0.4, n/m exceeds about 2.5, a newly 
arriving loop begins to coalesce on the average with more than 1 existing loop, resulting in a 
decrease of N* and an acceleration in the increase of n/m . At the limit α = 1, N* reaches very 
small and n/m very large values, indicating a state close to percolation. Note that, in a distribution 
of loop sizes, n would have the meaning of the first moment of the number of SIAs per loop. 

A2.3   A kinetic model for the evolution of dislocation decoration under 
deformation 

In the more general case of dislocation decoration under deformation, apparent drift fluxes of 
matrix clusters of different sizes, including loops of different Burgers vectors and SFTs, would 
have to be considered to contribute to the evolution of decoration. For the present purpose, it is 
sufficient to distinguish apparent fluxes of “representative” aligned and non-aligned matrix loops, 

Jl+,l-, and SFTs, JSFT, containing averages numbers ( , )l l
im + − and  of SIAs and vacancies, and 

the  corresponding single defect fluxes, (l
ij

( )SFT
vm

, )l+ − , and vj , respectively. The relations between these 

fluxes and the number densities of loops and SFTs, (m
lN (m

SF
) and )

TN , and the concentrations of 

SIAs and vacancies contained in them, (ml
ic d (SFT

vc re, respectively,   

   

) an ) , a

, ,

( , ) ( ) ( )
, , ,

, ,

/ , /
l l d l SFT d SFT

l l ml SFT
i l l l l d i v SFT SFT d v

J v M J v M

j m J v c j m J v c

χ

χ
+ − + −

+ −
+ − + − + −

= =

= = Ω = = Ω
             (A2.10) 

 
Here χ+,- are the fractions of aligned and non-aligned loops and    
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 /dv bε ρ= &         (A2.11) 
  
is the (average) dislocation velocity. 

The following three types of reactions of aligned loop accompanying dislocations with matrix 
clusters have to be considered. 

 
(a) Incorporation of aligned matrix loops and agglomeration with existing loops: 
 

The effects of this reaction on the evolution of decoration have been discussed in the preceding 
subsection. It does not affect the increase in the coverage α+ resulting from the flux of aligned 

matrix loops, ( )l
ij

+ , but it reduces the increase in the 2D number density N+ compared to that 

without this reaction. Without other reactions, the temporal evolution of α+ and N+, would follow 
the rate equations 

 
( )

0/ ml
id dt j Aα χ+ += , / (1 )co mldN dt s N Jχ+ + += − ,    (A2.12a) 

 
where sco denotes the cross section for agglomeration (coalescence). 

 
(b) Agglomeration with non-aligned matrix loops and reaction with SFTs associated with 

alignment and partial annihilation, respectively: 

These reactions result in changes of α+ (increase or decrease), respectively, but do not affect N+. 
Their contributions to the temporal change of α+ are determined by the fluxes of SIAs and 
vacancies to the fraction of the decorated area where they are operative, sal,anN+ = sal,anα+/n+A0, 
and accordingly given by         
  

( ) ( )
, 0 0

( ) ( )

( / ) |

( / ) ( / )

ml SFT
al an al i an v

ml SFT
al i an v

d dt s N A j s N A j

s n j s n j

α χ

χ α α
+ − + +

− + + + +

= −

= −
    (A2.12b) 

 
(c) blocking by non-aligned loops or SFTs: 

Blocking reactions reduce N+, and, by this, also α+ = n+N+A0. Their contributions to the temporal 
change of α+ and N+ are         
  

   ( ) ( )/ | ml SFT
bl bl ml bl SFTdN dt s N J s N Jχ+ − + += − −

( ) ( ) ( ) ( ) ( ) ( )/ | / /ml ml ml SFT SFT SFT
bl bl i i bl v vd dt s j m s j mα χ α α+ − + += − −    (A2.12c)

  
Note that the contributions of reactions (b) and (c) to dα+/dt depend on the average sizes of 
the decorating loops, n+, and the matrix clusters, ml,SFT, respectively. 

In describing decoration under deformation, the expansion of the space of decoration upon 
dislocation length increase associated with an effective thinning of α+ and N+ has to be taken into 
account. The term describing this may be derived in the following way. Consider, for instance, 
the total number of aligned loops involved in the decoration of dislocations of total length L over 
a width ddc within a volume V, which is given by N+Lddc = N+ρVddc. Without loop reactions, the 
temporal change of this number, (dN+ρ/dt)Vddc must be equal to the total flux of aligned loops to 
this stripe, Jml+Lddc = χ+JmlρVddc yielding (dN+ρ/dt) = χ+Jmlρ or, after devision by ρ, (dN+/dt) + 
N+(dρ/dt)/ρ = χ+Jml. An analogous relation is obtained for α+. Accordingly, the relation between 
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the temporal evolutions of α+ and N+ with and without thinning is    
  

 ( , )/ | ( , )/ | ( / ) ( , )with withoutd N dt d N dt Nα α ρ ρ+ + + + + += − & α    (A.2.13) 
  
The description of the thinning effect by the second term at the r.h.s. of eq. (A.2.13) appears 
reasonable and could have been guessed without derivation: the factor /ρ ρ&  in this term  
represents the relative volume increase of the decorated space due to the increase in the 
dislocation density. 

The complete rate equations are obtained by adding the source terms and the reaction terms as 
given by eqs. (A2.12a,b,c) and (A.2.13). Using eqs. (A2.10) (with Ω ≈ b3 , A0 ≈ b2) and (A2.11) 
to express the fluxes in eqs. (A2.12a,b,c) by the corresponding defect concentrations, and 
changing from time to strain by / /d dt d dε ε= & , we may write the rate equations for α+ and N+ in 
the form           
  

  
2 ( ) 2 ( ) 2 (

2 ( ) 2 ( )

( ) / [ ( /( ) /( )]

[ /( ) /( )]

ml ml ml
i al bl l i

SFT SFT
an bl SFT v

d b d c s n b s m b c

s n b s m b c

ρα ε χ χ α)

α
+ + − + +

+ +

= + −

− +
  (A2.14a) 

 

2 ( ) 2

( ) 2 ( ) ( ) 2 ( )

( ) / /( )

[( )/( ) ] [ /( ) ]

ml
i l

ml ml SFT SFT
co bl l i bl SFT v

d b N d c m b

s s m b c N s m b c N

ρ ε χ+ +

+ +

=

− + −

,
,
ml SFT
i vc 0

 (A2.14b)

  
where ρ, and ml,SFT 

are functions of the variable ε or dose D ( ( / )D D Dε ε ′= +

d dD
 with 

/ε ε′ = , respectively. 

Equations (A2.14a,b) are subject to appropriate initial conditions for ε = 0. The average number 
of SIAs per loop in the decorated area follows from the solutions of eqs. (A2.14a,b) as 
  

                (A2.14c) 2/( )n Nα+ + += b
 

A2.4   Solutions of the rate equations 
The rate equations (A2.14a,b) represent inhomogeneous, linear ordinary 1st order differential 
equations for α+ and N+ as functions of the main independent variable strain ε or dose 

0 /D D ε ε ′= +  with /d dDε ε′ = , and parameters including the distance from the dislocation 

contained in s* ≈ 4m1/2by as the spatial variable. 

In discussing solutions of eqs. (A2.14a,b), it is sufficient to consider α+ described by eq. (A2.14a) 
since the solution for eq. (A2.14ab) is analogous. The form of the left hand side of eq. (A2.14a) 
suggests to introduce the new variable w = b2ρ(α+,N+). Assuming equal SIA and vacancy 
accumulation in the matrix, SFT ml

v ic c c= = , eq. (A2.14a) may be written in the form  
  

 ( ) ( ) 2
,( ) / /( )ml mcl

i i vd w d c S c w bε χ ρ+= + ,              (A2.15) 
  
where S represents the square brackets at the r.h.s. of eq. (A2.14a). Equation (A2.14b) for N+ has 
the same form but with another meaning of S. Note that and ( )ml

ic ( )
, /mcl

i vSc ρ are are functions of ε 
or D. 
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The solution of eq. (A2.15), subject to the initial conditions at ε = 0 (or D = D0), are obtained by 
the standard method: first solution of the homogeneous equations; then variation of the constant 
of that solution. The resulting complete solution contains integrals over the functions involved 
which, in general, however, can not be expressed in terms of well known functions.   

A simplification allowing a closed form analytical representation is obtained by assuming 
transient build-up evolution for both the matrix clusters and the dislocations, for matrix clusters 
linear build-up at constant cluster sizes, for dislocations build-up according to (eq. (4.18a)) 
  

  , (A2.16) 

  
where

, ,
, ,

1/ 2 2 1/ 2 2
0 1

, / 0;

/ / ( /2) ( /2)( )

ml SFT ml SFT
i v i vc c D dm dD

d d b b b D D Dρ ε βρ ρ ρ βε βε

′= =

′= → = + = − +

1/ 2
1 02 /D b

0

ρ βε ′= . Introducing the new independent variable 1 0/( )D D Dτ = − and the 
parameter products 1 0( )P c D Dχ ε+ ′ ′= − 24 /Q Sc and χ β ε− ′ ′= , eq. (A2.15) assumes the form 
  

 2/ /(dw d Pt Qw 1 )τ τ τ= + +       (A2.17) 
  
The solution of eq. (A2.17) subject to 0( )w t t w0= =  is     
  

{ }0
0

0 0

1( ) exp (1 ) exp /(1 )
1 (1 )(1 )

Q
Qw w Q P Qτ τττ τ

τ τ τ
⎛ ⎞ ⎧ ⎫−+

= − + + ⎡⎨ ⎬⎜ ⎟ Iτ+ ⎤⎣ ⎦+ + +⎝ ⎠ ⎩ ⎭
   (A2.18) 

with 

 {
0

exp /(1 )
(1 )Q

zI dz Q z
z

τ

τ

= −
+∫ }+      (A2.19a) 

 
With the substitution /( 1)z Q ζ= − the integral (A2.19a) assumes the form   
  

 
0/(1 )

1 3

/(1 )

( ) exp(
Q

Q Q

Q

I d Q Q
τ

τ

)ζ ζ ζ ζ
+

− −

+

= − − −∫             (A2.19b) 

This form shows that the integral can be expressed in terms of 4 exponential integrals which may 
be written as incomplete Gamma-functions      
    

 .    (A2.20)  
1

0

0

{ [ 2, /(1 )] [ 2, /(1 )]
[ 1, /(1 )] [ 1, /(1 )]}

QI Q Q Q Q Q
Q Q Q Q

τ τ
τ τ

−= Γ − + − Γ − +
− Γ − + + Γ − +
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A3.  Contribution of Dislocation Decoration to the 
Yield Stress 

 
In this work, it is assumed that the forces required to move well separated aligned loops with a 
dislocation are negligible compared to the forces on the dislocation exerted by aligned loops 
blocked by loops of different configuration. An upper bound estimate of the yield stress is 
obtained by assuming that each blocked aligned loop contributes with its maximum possible 
force on the dislocation depending on the distance from the dislocation. It is useful to first 
consider the case of low coverage and then to extend this consideration to the general case.   

A3.1.   Limiting case of low coverage 
For low coverage (and/or small distance of loops from the dislocation), the probability for a 
certain aligned loop to be blocked by the close interaction with a loop of different configuration 
is sbl(y)pN where p (=5/6 and ½ for edge and screw dislocations, respectively) is the fraction of 
loops of different configuration and N is the total 2D number density of loops in the range of the 
loop considered. Consequently, the average contribution of such a loop to the maximum force on 
the dislocation is sbl(y)pNFmax(y), and the contribution of all loop pairs in an area ΔyΔz is 
sbl(y)pN2Fmax(y)ΔyΔz. An upper bound estimate for the total maximum force of the blocked loops 
is obtained by assuming, that all blocked loops contribute with the maximum possible force 
depending on the distance y to the dislocation:      
    

max 2 max
, ( )d dc bl dlF p dydz N s F y= ∫  .     (A3.1) 

  
 The integration has to be performed over the region where sbl(y) = s* - sal, ≥ 0 and N is finite 
(y ≤ ddc). With s* = s*’n1/2by and sal = sal’nb2 where s*’≈ 4 and sal’ ≈ 1 to 4, the lower 
integration limit may be expressed by y1 = ( sal’/s*’) n1/2b. Using nNb2 ≈ α  (assumed to be 
constant over the decorated area of width ddc), and max 4 2/2dlF f n b yμ π=  where f is a factor 
accounting for the strength of the maximum interaction between a general dislocation and an 
aligned loop (see table A1), eq. (A3.1) may be written as  
 

max 2
, ( /2 ) ( *'/d dcF pf b s n zπ μα= IΔ

1

 ,     (A3.2a) 

1

2
1 1(1/ / ) ln( / ) 1 /dcd

dc dcy
I dy y y y d y y d= − = − +∫     (A3.2b) 

At yielding, the maximum force between the loop ensemble and the dislocation given by eq. 
(A3.2a) is balanced by the force on the dislocation due to the shear stress yσ%  acting on it, i.e. 

. According to this condition, the shear stress for yielding may be written 

explicitly as 

max
,d dc yF bσ= Δ% z

 { }2( /2 ) ( * '/ ) ln[( * '/ ') / ] 1 ( '/ * ') /y al dcpf s n s s d nb s s nb dσ π μα= −% al dc+ , (A3.3) 

where the last term in the curly bracket can be neglected for realistically large ddc. 

According to eq. (A3.3), the yield stress σ% would increase logarithmically with the width of 
decoration ddc. This is, however, unrealistic since the quantity pNsbl(y) introduced above for the 
probability of blocking becomes formally larger than 1, pNsbl(y) > 1, for 
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/ */ { /( * )}(1 aly b y b n s p s p )α α′′> ≈ + , i.e. for the conditions of interest where loop blocking 
contributes significantly to the yield stress. In this case, y > y*, the probability for the occurrence 
of more than 1 non-aligned loop in the blocking range of an aligned loop becomes significant.  

A3.2.   General case 
The probability of a certain aligned loop not to be permanently blocked by the close interaction 
with a loop of different configuration decreases exponentially with increasing loop density as 
exp(-sbl(y)pN). Correspondingly, the probability of an aligned loop to be blocked by at least 1 
loop, i.e. 1 or more other loops, is given by 1- exp(-sbl(y)). Consequently, for the more general 
case, eq. (A3.1) has to be modified as       
  

max max
, {1 exp( )} ( )d dc bl dlF N z dy s pN F y= Δ − −∫ .    (A3.4) 

For pN → 0, eq. (A3.4) converges to the limiting case given by eq. (A3.1). With the same 
substitutions as used in the preceding subsection, eq. (A3.4) may be written as  
  
 max 2

, ( /2 )d dcF f bπ μα= z IΔ  ,      (A3.5a) 

1
1 22 {1 exp[ ( ) / ]}dcd dy

y
I y y y

y
= − − −∫ ,     (A3.5b) 

where 2 /( * ' )y nb ps α= . In contrast to eq. (A3.2b), the integral given by eq. (A3.5b) converges 
for ddc → ∞. The latter limit is indeed a good approximation of the integral for ddc >> y1. For this 
case, partial integration of eq. (A3.5b) yields      
  

 1

1 1
2 1 2 2 2( ) exp( / ) exp( / ) exp( )Ei( )dc y

dyI d y y y y y y a a
y

∞−→ ∞ = − =∫ −

'

.  (A3.5c) 

  
Here 1 2/ ala y y ps α= =  and Ei(a) is the standard exponential integral of the variable a with  

Ei( ) exp( )
a

daa a
a

∞
= −∫  

with the limiting behaviour 

 Ei( 0) ln( ) ; Ei( ) exp( ) /a a a a aγ→ → − − → ∞ → −  

where γ = 0.5772 is Euler’s constant.  

Using eq. (A3.5c) for the integral in eq. (A3.5a) and assuming force balance at yielding we 
obtain for the shear yield stress        
  

2( /2 ) ( * '/ )exp( )Ei( )pf s n aσ π μα=% a              (A3.6a) 
  
with the limiting behaviour        
  

 2( 0) ( /2 ) ( * '/ )[ ln( ' )ala pf s n ps ]σ π μα α γ→ → − −%            (A3.6b) 

 ( ) ( /2 ) ( * '/ ') /ala f s sσ π μα→ ∞ →% )n              (A3.6c) 
 
The factor in front of the curly bracket in eq. (A3.6b) is the same as in eq. (A3.3) but the logarithm 
inside the bracket is different and, most importantly, it does no longer contain the width of the 
decorated region ddc. On the other hand, the form of eq. (A3.6a) together with eqs. (A3.6b) is 
similar to eq. (5.4) of the main text, except that the magnitude of yield stress according to eq. 
(A3.5a) is, as expected for an upper bound estimate, larger than according to eq, (5.4). 
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Fig. 2.1: Continuously measured stress response as a function of irradiation and tensile test time 
during the in-reactor tensile tests. Note that the specimens in the Test No. 1, 2, 3 received 
different levels of pre-loading displacement dose before the actual tensile test was activated and 
the specimens started experiencing applied stress. As a result, different amounts of irradiation-
induced defects and their clusters accumulated during the pre-yield period in the absence of 
dislocation generation (fig.3 in [4]). 
 
 

Risø-R-1610(EN)                                                                   51 



 

0

40

80

120

160

200

1.0E-04 1.0E-03 1.0E-02 1.0E-01

DISPLACEMENT DOSE (dpa)

Δ
σ y

 =
 σ

y 
(ir

r .)
 −

 σ
y 

(u
ni

rr
.) 

  (
M

P
a)

0

40

80

120

160

200

Δ
σ f

 =
 σ

f (
irr

.)  
− 

σ f
 (u

ni
rr

.)  
  (

M
Pa

)

  Test No.1, 363K

  Test No.2, 363K

  Test No.3, 393K

OFHC - COPPER
In-reactor test

Tirr = Ttest 

Filled;   yield stress
Open;   flow stress

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.2a:  Irradiation induced increase in yield stress, Δσy, and flow stress, Δσf, as a function of 
displacement dose level for the in-reactor tensile tests at 363 and 393K. The following features 
are worth noting: (a) the increase in the yield stress with dose is faster than that of the flow stress, 
(b) the rate of flow stress increase tends to saturate at a certain dose level particularly when the 
pre-yield dose level is low (e.g. Test No. 1 and 3) and (c) the magnitude of the increase in the 
flow stress decreases substantially with decreasing the pre-yield dose level (fig. 7 in [4]. 
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Fig. 2.2b:  Increase in flow stress, Δσf, as a function of true plastic strain for in-reactor tests at 
363 and 393K. Note that while the increase in the flow stress, Δσf, decreases with strain, the 
magnitude of the increase in the flow stress (at a given strain/dose level) increases with 
increasing level of pre-yield displacement dose. Furthermore, the increase in the flow stress 
beyond a certain strain level (i.e. dose) decreases with increasing strain (dose) and then tends to 
saturate (e.g. Test No. 1 and 3) (fig. 8 in [4]). 
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Fig. 2.3:  An example of the dislocation microstructure in the in-reactor deformed specimen in 
the Test No. 1 at 363K. Note the homogeneous nature of spatial distribution of deformation 
induced decorated dislocations and an almost complete lack of dislocation segregation in the 
form of dislocation walls (fig. 18 in [4]). 
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Fig. 2.4: Schematic illustration of dislocation decoration during pre-yield irradiation: primary 
cascade induced glissile SIA loops with 2 different 1D diffusion directions (indicated by arrows), 
aligned and non-aligned with an edge dislocation, are repulsed at the compressive side where 
they leave a depleted zone and attracted at the dilated side where they accumulate. Possible 
reactions in the decorated zone: agglomeration of 2 aligned (or 2 “non-aligned”) loops and 
agglomeration of a non-aligned with an aligned loop with subsequent alignment; present stage: 
black and fat lines; intermediate stage: medium thick and medium grey lines, final stage: thin and 
light grey lines.  
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Fig. 2.5: Schematic illustration of dislocation decoration during deformation. An edge dislocation 
and a crowd of aligned loops, pushed and pulled at the compressive and dilated (upper and lower) 
side, respectively, move together and “see” by this an apparent drift flux of matrix clusters (loops 
and SFTs) with whom they reacts (double arrows: motion relative to matrix; normal arrow: 
motion relative to dislocation). Possible reactions are: attraction and absorption of non-aligned 
loops (middle region), agglomeration of 2 aligned loops (not shown), agglomeration of a non-
aligned with an aligned loop with subsequent alignment and incorporation into the loop cloud 
(thin and light grey lines and double arrows: final stage), partial recombination of loops with 
SFTs (not shown), blocking and removal of an aligned loop by its interaction with a non-aligned 
loop (or SFT), particularly in the outer region (encircled).   
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Fig. 3.1: Energy of the interaction between a dislocation with [110]/2 Burgers vector (BV) and a 
loop with BV parallel to the (1 11) -glide plane of the dislocation as a function of their mutual 
distance: lines of equal energy (equi-potential lines) in a plane perpendicular to the dislocation 
line, with x and y coordinates in glide direction and normal to the glide plane, respectively; 
energy and distance in units of nμΩ/2π and b, respectively, Poisson’s ratio ν = 1/3; red lines: E = 
+1 (repulsive interaction), E = -1 (attractive interaction) (a) edge dislocation with [110] loops 
(outer lines) and [011]/[10 1]  loops (inner lines), (b) screw dislocation with a [011] loop (E [10 1] = 

- E[011]). Equi-potential lines for other energy values are obtained by the scaling E ∝ 1/rdl. 

 

 
 

 
   (a)                                                  (b)                                               (c) 

 

 

Fig. 3.2: Interaction energies of two loops (in units of  mnμΩ/4π) along their glide paths as a 
function of their coordinates s1 and s2 measured from their points of closest approach (all length 
scales in units of b); (a) 2 parallel loops, (b) 2 loops with 60° inclination, (c) 2 loops with 90° 
inclination. Equi-potential lines for other energy values are obtained by the scaling E ∝ 1/rdd

3. 
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Fig. 4.1: Coverage vs pre-yield dose according to eq. (4.9) for α0 = 0.2 and the pairs of q, D0 
values q = 2.5, D0 = 2x10-4 (full line); q = 2.5, D0 = 5x10-4 (dashed line); q = 5, D0 = 2x10-4 
(dashed-dotted line); q = 5, D0 = 5x10-4 (dotted line). 
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Fig. 4.2: Sketch of the range of “moderate decoration”, 5% < α < 30%, in the parameter plane of 
dislocation density, ρ, and SIA concentration accumulated in matrix loops, ci

(ml), according to eq. 
(4.20). Values of ci

(ml) ( ≈ 1% of dpa) and ρ (1012 … 2x1014 dpa)   expected for low and high pre-
yield dose (10-3 and 10-2 dpa) at the beginning and towards the end of deformation of the IRTs 
(strain 0 and 5%), respectively. For low and high pre-yield dose, the estimated positions of the 
IRTs considered here move from the lower and somewhat above the upper boundary to the 
middle of the range. Above the upper boundary, realised by higher dose rates and/or lower strain 
rates, heavy decoration as in PITs is expected to occur, whereas below the lower boundary, 
realised for higher strain rates and/or lower dose rate, decoration is expected to be insignificant.  
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Fig. 4.3: Evolution of decoration during deformation: coverage vs. strain for low and high pre-
yield doses according to eq. (4.19a) (weak decoration). Dashed lines are for the corresponding 
quasi-steady state approximation according to eq. (4.19b). For low and high pre-yield dose, Dy = 
10-3 dpa, and Dy = 10-2 dpa, αy = 15% and αy = 35% is assumed, respectively. Main parameters 
used in eq. (4.19a,b) in conjunction with eq. (4.18a): χ+ = 1/4, = 0.01D = 0.005ε, β = 0.15, 

ρ0 = 1012/m2. Effect of dislocation sweeping on matrix clusters is neglected. 

( )ml
ic

 

 
Fig. 4.4: Effect of dislocation sweeping on the evolution of decoration during deformation 
according to eq. (4.22). Full lines without (as in fig. 4.3), dashed lines with sweeping effect. The 
sweeping effect decreases with increasing coverage. Accordingly, for low and high dose, Dy = 
10-3 dpa and Dy = 10-2 dpa, characteristic strains for the sweeping effect ( )

,
sw

i vε = 10% and 20% are 

assumed, respectively (see discussion in the paragraph after eq. (4.22)). 
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Fig. 5.1: Schematic illustration of the contribution of decoration to the yield stress: unlocking of a 
dislocation of Burgers vector b from a loop distribution of coverage α and width ddc by a shear 
stressσ% ; loop distribution approximated by a sessile dislocation dipole of effective Burgers 
vector b’ = αb and width ddc separated from the glide plane of the dislocation by a stand-off 
distance δ ; (a) cross section, (b) projection on glide plane.  
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Fig. 5.2: Schematic illustration of the different contributions of the inner and outer region of 
decoration to the yield stress: in the inner region, loops can glide since mutual blocking is 
negligible; in the outer region, loops are immobilised by mutual blocking. The yield stress is 
assumed to be controlled by unlocking of the dislocation from the outer region. The loop 
distributions in the inner and outer regions are approximated by glissile and sessile dislocation 
dipoles (of total width ddc) separated from the glide plane of the dislocation by distances δ and 
δ*, respectively. 
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Fig. 5.3: Contributions of blocking of members of loop clouds decorating dislocations to the 
yield stress as a function of dose according to eq. (5.4a) for α0 = 0.2, k = 0.1, n = 100, s* = 4√n 
by, sal = 3nb2. Squares and diamond: experimental values for IRTs and a PIT, respectively. 

  

 
Fig. 5.4: Contributions of blocking of members of loop clouds by matrix clusters to the flow 
stress as a function of true strain according to eq. (5.6) for ddc = 80b, mSFT = 70, ml = 150 and 
decoration parameters as in figs. 4.3 and 4.4 (χ+ = 1/4, = 0.01D = 0.005ε, β = 0.15, ρ0 = 
1012/m2). Full/ dashed lines: effect of dislocation sweeping on matrix clusters neglected/ 
included.
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                                  (d)                                                   (e) 

Fig. A1.1: Energy of the interaction between a loop and dislocation with [110]/2 Burgers vector 
and (1 11) -glide plane as a function of their mutual distance: lines of equal energy (equipotential 

lines) in a plane perpendicular to the dislocation line; energy and distance in units of nμΩ/2π and 
b, respectively, Poisson’s ratio ν = 1/3; (a) [110] and [011]/[10 1]  loops parallel to glide plane of 

edge dislocation, (b) [1 10]  loops with BV perpendicular to BV of edge dislocation, (c) [101] 

loops with BV oblique to glide plane of edge dislocation (for [01 1] -loops E[01 1] (x) = E[101](-

x)), (d) [011] loops parallel to glide plane of screw dislocation (for [10 1] -loops E[10 1] = - 

E[011]),  (e) [101] loops with BV oblique to glide plane of screw dislocation (for [01 1] -loops 

E[01 1] (x) = - E[101](-x)). Note that (e) corresponds to a rotation of (d) around the screw 
dislocation by the angle of 70° between two glide planes. 
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Fig. A1.2: Interaction energies and the corresponding forces acting on a loop passing a 
dislocation with [110]/2 Burgers vector at unit minimum distance as a function of the loop 
coordinate s; energy, force  and loop coordinate in units of nμΩ/2π, nμΩ/2πb, and b, 
respectively, Poisson’s ratio ν = 1/3; (a) [110] and [011]/ [10 1]  loops passing edge dislocation, 

(b) [1 10]  loops passing edge dislocation, (c) [101] and [01 1]  loops passing edge dislocation 

(E[01 1] (s) = E[101](-s) , F[01 1] (s) = - F[101](-s)), (d) [011] and [10 1]  loops passing screw 

dislocation (E[10 1] (s) = - E[011](-s), F[10 1] [10 1] (s) = - F[011](-s)),   (e) [101] and [01 1]  

loops passing screw dislocation (E[01 1] (s) = - E[101](-s), F[01 1]  (s) = - F[101] (-s)). Since (e) 
follows from (d) by a rotation, the curves in (e) and (d) are equal.  
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 (a)                                                (b)                                 (c) 

Fig. A1.3: Interaction energies of two loops in units of mnμΩ/4π as a function of their mutual 
distance in units of b measured from the point of closest approach (a) 2 parallel loops, (b) 2 loops 
with 60° inclination, (c) 2 loops with 90° inclination. 

 

 

 
Fig. A1.4: Geometry used to describe the interaction of two loops 1and 2 in the field of a 
dislocation. Horizontal and vertical straight lines: glide paths of loops 1 and 2; small circles: 
points of closest approach of the loop paths; r12: distance between these points; s1 and s2: actual 
distance of the loops from these points; small crosses: points of closest approach of the loop 
paths to the dislocation line; rd1 and rd2: distances of these points from the dislocation line; sd1, 
sd2: actual distances of the loops from these points. Oblique lines are meant to be perpendicular to 
the drawing plane (perspective view). 
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Figure A2.1: Simple coalescence model for the evolution of loops in the 2D space of decoration: 
normalised 2D number density, N* = mA0N (number of loops per area of incoming loop) and 
normalised loop size, n/m (number of incoming to existing loops) as functions of coverage α. At 
the limit α = 100%, N* reaches a state close to percolation. 
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