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Summary

This topic of this thesis is MMSE signal estimation for hearing aids when only
one microphone is available. The research is relevant for noise reduction systems
in hearing aids. To fully benefit from the amplification provided by a hearing aid,
noise reduction functionality is important as hearing-impaired persons in some
noisy situations need a higher signal to noise ratio for speech to be intelligible
when compared to normal-hearing persons.

In this thesis two different methods to approach the MMSE signal estimation
problem is examined. The methods differ in the way that models for the signal
and noise are expressed and in the way the estimator is approximated. The
starting point of the first method is prior probability density functions for both
signal and noise and it is assumed that their Laplace transforms (moment gen-
erating functions) are available. The corresponding posterior mean integral that
defines the MMSE estimator is rewritten into an inverse Laplace transform inte-
gral over an integrand involving the moment generating functions. This integral
is approximated using saddlepoint approximation. It is found that the saddle-
point approximation becomes inaccurate when two saddlepoints coalesce and a
saddlepoint approximation based on two coalescing saddlepoints is derived. For
practical reasons the method is limited to low dimensional problems and the
results are not easily extended to the multivariate case.

In the second approach signal and noise are specified by generative models and
approximate inference is performed by particle filtering. The speech model is
a time-varying auto-regressive model reparameterized by formant frequencies
and bandwidths. The noise is assumed non-stationary and white. Compared
to the case of using the AR coefficients directly then it is found very beneficial
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to perform particle filtering using the reparameterized speech model because it
is relative straightforward to exploit prior information about formant features.
A modified MMSE estimator is introduced and performance of the particle fil-
tering algorithm is compared to a state of the art hearing aid noise reduction
algorithm. Although performance of the two algorithms is found comparable
then the particle filter algorithm is doing a much better job tracking the noise.



Resumé

Emnet for denne PhD rapport er MMSE signal estimering til brug i høreapparater
som kun har én mikrofon. Emnet er relevant for støjreduktionssystemer til
høreapparater. For fuldt ud at kunne drage nytte af forstærkningen i et høreapparat
er det vigtigt med støjreduktionsfunktionalitet da hørehæmmede personer i
nogle støjfyldte situationer har brug for et højere signal-støj forhold for at kunne
forst̊a tale n̊ar der sammenlignes med normalthørende personer.

I denne rapport undersøges to forskellige metoder til MMSE signal estimer-
ingsproblemet. Metoderne benytter forskellige repræsentationer af signal og støj
og de benytter forskellige metoder til at approksimation af MMSE estimatoren.
Udgangspunktet for den første tilgang er prior sandsynlighedstæthedsfunktioner
for b̊ade signal og støj og det antages at deres Laplace transform (moment
genererende funktion) er tilgængelig. Det tilhørende posterior middelværdi inte-
gral som definerer MMSE estimatoren omskrives til et invers Laplace tranform
integral over en integrand som best̊ar at afledede af de moment genererende
funktioner. Dette integral approksimeres ved hjælp af saddelpunktsapproksi-
mation. Det fremg̊ar at saddelpunktsapproksimationen bliver upræcis n̊ar to
saddelpunkter er tæt p̊a hinanden og en saddelpunktsapproksimation baseret
p̊a to saddelpunkter tæt p̊a hinanden udledes. Af praktiske grunde er metoden
begrænset til problemer af lav dimensionalitet og resultaterne kan ikke umid-
delbart generaliseres til det flervariable tilfælde.

I den anden metode er signal og støj specificerede ved generative modeller
og inferens approksimeres ved hjælp af partikelfiltrering. Tale modellen er en
tidsvarierende autoregressiv model reparameteriseret ved formant frekvenser og
b̊andbredder. Støjen antages ustationær og hvid. Sammenlignet med tilfældet
hvor AR koefficienter benyttes direkte s̊a er det fundet fordelagtigt at lave par-
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tikelfiltrering i den reparameteriserede talemodel fordi det er relativt simpelt at
benytte forh̊andsviden omkring formant frekvenser og b̊andbredder. En mod-
ificeret MMSE estimator introduceres og performance af partikelfilteralgorit-
men sammenlignes med en støjreduktionsalgoritme some bruges i høreapparater.
Selvom performance af de to algoritmer er sammenlignelig s̊a er partikelfilteral-
goritmen meget bedre til at tracke støjen.
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Chapter 1

Introduction

A modern digital hearing aid provides DSP solutions to several challenging
problems that are of high importance in trying to help persons who suffer from
a hearing loss. One of these problems consists of reducing noise in the input
signal to the hearing aid. If there is noise in the input then the amplification
provided by the hearing aid may not help the user because persons with a
hearing loss tend to be more sensitive to noise than normal hearing persons
[10]. Therefore a user of a hearing aid can experience a situation where speech
is entirely audible but at the same time impossible to understand. This means
that for a given noisy situation where speech is understandable for a normal-
hearing person the speech may not be understandable for a hearing aid user
because a higher Signal to Noise Ratio (SNR) is necessary before the noisy
speech is intelligible. Conversely, in situations where the amplified noisy speech
is intelligible for a hearing aid user, suppressing noise is also important in order
to reduce listener fatigue and thus make it more comfortable for the user to
wear the hearing aid.

There are a number of constraints a developer faces when designing a noise re-
duction system for a hearing aid. Since the very beginning of digital hearing aids
the constraint that stands out the most is the fact the resources are very scarce
and a noise reduction algorithm therefore must be of very low complexity to be
a serious candidate for implementation. Furthermore, the noise reduction algo-
rithm must introduce a small delay in the signal path and introduce virtually



2 Introduction

no audible distortions or artifacts in the processed speech signal. Additionally,
the noise reduction algorithm should preferably operate in the frequency do-
main and work for all types of speech and noise. These constraints makes it
challenging to develop a useful noise reduction algorithm for hearing aids.

If a hearing aid has two or more microphones available then spatial information
can be used to suppress noise. The principle behind such a multi-microphone
noise reduction algorithm is to place a beam in the direction of the desired
speaker to let speech pass undisturbed and nulls in the directions of the noise
sources. Currently such algorithms tend to be more effective and useful than
single-microphone noise reduction algorithms for suppressing noise [10]. How-
ever, not all hearing aids have two or more microphones but only one micro-
phone. Hence, there is an interest in single-microphone noise reduction algo-
rithms for hearing aids.

A single-channel noise reduction algorithm can not rely on spatial information
and is thus less informed than multi-microphone approaches. In this report it is
assumed that the input to the hearing aid, x, is a sum of a signal, s, and noise,
v, which leads to the following observation model

xn = sn + vn (1.1)

where n denotes a sample/time index. The signal can for instance be thought
of as speech and the noise can be thought as ambient (broad or narrow band)
noise or a competing speaker. The nature of the problem in single-channel signal
estimation is thus that in order to estimate the signal sn, or for that matter the
noise vn, the nth input sample xn must be split into two numbers/samples
such that (1.1) is obeyed. If only xn is available (blind approach) there are an
infinite number of ways to split xn into sn and vn, such that (1.1) is obeyed.
Mathematically such a problem is called under-determined meaning that more
information is required in order to compute a unique solution.

Ways to approach a solution to the single-channel signal estimation problem
tend to be quite dependent on the situation at hand. If for instance it is known
that both signal and noise are stationary, that the signal is a sinusoid, the noise
is pink and the SNR is between 10 and 15 dB then the situation is quite differ-
ent from a competing speaker situation where both signal and noise represent
speech. In the former situation the signal can be recovered by estimating only
three parameters, the frequency, phase and amplitude of the sinusoid, whereas in
the latter situation a Computational Auditory Scene Analysis (CASA) approach
may be considered.

A systematic approach to the single-channel estimation problem can be per-
formed using Bayesian methodology. Knowledge about the signal and noise is
encapsulated in statistical models also called prior distributions (or just priors).
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Using data available, Bayes’ theorem converts the priors to posteriors. The
posteriors are attractive because they encompass all available information; both
the prior knowledge provided by the developer in the priors and the information
conveyed in the acquired data. For instance, assuming that the signal and noise
are independent then by Bayes theorem

p(sn|D)p(vn|D) =
p(D|sn, vn)ps(sn)pv(vn)

p(D)
(1.2)

where D denotes all available acquired data, D={..., xn−1, xn}. In the Bayesian
methodology inference and estimation are centered around posterior distribu-
tions. The MMSE estimator of the signal is defined as the mean of the signal
posterior and is computed by the following integral

ŝn =
∫

dsn sn p(sn|D) (1.3)

As mentioned in [15], the MMSE estimator is optimal for a large class of differ-
ence distortion measures and it tends to be the most used estimator for noise
reduction, therefore MMSE estimation is adopted in this report.

The overall problem statement for this report is: To perform MMSE estimation
of speech in a single-channel setup.

1.1 Saddlepoint Approximation

Inserting (1.2) in (1.3) and enforcing (1.1) yields

ŝn =
1

p(D)

∫
dsn sn ps(sn) pv(xn − sn) (1.4)

The MMSE estimator is thus expressed directly in terms of the priors by a
weighted convolution integral. It is thus clear that the choice of priors is what
ultimately determines the performance of the corresponding MMSE estimator
and they are parameters under control of the developer. In principle, (1.4) rep-
resents an attractive ’plug-and-play’ framework in which signal and noise models
can be inserted and (1.4) provides the MMSE estimator for the signal. For a
developer of noise reduction algorithms such a setup could be very beneficial.
Choose models (priors) for the signal and noise, choose a noisy signal and (1.4)
provides the MMSE estimate of the signal for listening. In this way a devel-
oper can spend most of the time extending and enhancing models for the signal
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and noise and thus increase the chance of developing an improved noise reduc-
tion algorithm. However, in reality a developer is quite limited in the choice of
models because of inferential difficulties. There is no straightforward way to do
the integral in (1.4) for all but the simplest models. The integral in (1.4) thus
represents a bottleneck for a developer who will spend most of the time dealing
with the integration instead of concentrating on improving the signal and noise
models.

The topic of chapter 2 is approximation of the integral in (1.4) by the method
of Saddlepoint Approximation (SPA). The idea has been motivated by work
done by Albert H. Nuttall in obtaining accurate approximations to tail prob-
abilities for a number of useful statistics (see e.g. [29, 30]) which has been an
important method in developing the class-specific approach [3, 4]. A number of
observations made SPA an interesting topic for further investigation; the SPA
provided excellent tail probability approximations, the SPA was developed for
statistics consisting of a linear combination of independent random variables
(note that the observation model in (1.1) is a linear combination of two in-
dependent random variables) and the SPA was computed by searching for a
unique real saddlepoint. Thus the prospect was an accurate approximation of
the integral in (1.4) where the problem of evaluating the integral in (1.4) could
be replaced by the simpler problem of searching for a unique real saddlepoint,
hence closing in on a ’plug-and-play’ setup.

Problem statement 1: Approximate the integral in (1.4) by means of saddlepoint
approximation for general priors.

1.2 Particle Filtering

As mentioned in section 1.1 the choice of priors for the signal and noise is crucial
for the resulting performance of the corresponding MMSE estimator. The start-
ing point of the approach described in section 1.1 is the availability of the models
in terms of the prior PDFs, ps(sn) and pv(vn) or their Laplace transforms as
it will appear in chapter 2. Alternatively, priors can be specified by genera-
tive models which explicitly states how the data (observations) are assumed to
have been generated. For instance, speech is often modeled as a time-varying
auto-regressive process driven by white Gaussian noise where AR coefficients
and innovation noise variance can change from sample to sample. Using such
a model for speech it may be cumbersome and difficult to try and derive an
expression for ps(sn) because parameters are unknown and must be integrated
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out. If instead the noisy speech is formulated as a state-space model where
clean speech enters as a hidden variable a number of methods for approximate
inference can be used. One such method is particle filtering.

The idea of investigating particle filter inference in a time-varying auto-regressive
model for speech was initially inspired by work done by Hermansen et al. in
[22, 20] where the model based speech spectrum (the speech spectrum envelope)
was parameterized by formant features; frequencies, bandwidths and gains. The
prospect of using such features instead of AR coefficients directly is to facilitate
incorporation of prior knowledge of the formant features in the MMSE esti-
mation. Inference by particle filtering in a time-varying auto-regressive speech
model was performed by Vermaak et al. in [39] and has been adopted in this
report and modified to work with formant features.

Problem statement 2: Perform particle filter inference in a time-varying auto-
regressive generative model for speech parameterized by formant features.

1.3 Reading Guideline

The main body of this report consists of two self-contained independent chap-
ters, one chapter on MMSE estimation using saddlepoint approximation and
the other chapter on MMSE estimation using particle filtering. The purpose of
these two chapters is primarily to introduce the basic ideas behind the methods
of saddlepoint approximation and particle filtering but the intent is also that
they can serve as background reading for the three papers found in appendices
E-G. Although the two main chapters in this report are self-contained the pa-
pers should be read together with the chapters as it has been an aim to minimize
the overlap between the chapters and the papers. As such the papers constitute
an important part of this report. Also the results in the papers will be referred
to in chapter 4.
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Chapter 2

Saddlepoint Approximation
for MMSE Estimation

This chapter describes work done on Minimum Mean-Square Error (MMSE) es-
timator approximation using SaddlePoint Approximation (SPA). Deriving the
MMSE estimator for a signal using observations from a single channel when
the mixing coefficients are known can be intractable for non-standard distribu-
tions. The derivation involves a weighted convolution between the Probability
Density Functions (PDFs) of the involved Random Variables (RVs). The idea
presented in this chapter is to make use of integral transforms of the involved
random variables instead of the PDFs and reformulate the original integral into
an inverse transform integral. The applied integral transform is the Laplace
transform. The inverse transform integral will in general also be intractable,
however, by transforming the path of integration to go through a SaddlePoint
(SP) of the integrand, the inverse integral transform can be approximated by
using information only at the SP.

The work described in this chapter was motivated by a desire to extend the work
in [5] where separation of two speakers was performed in a two-step procedure:
Maximum Likelihood (ML) estimation of mixing coefficients and MMSE esti-
mation of the sources conditional on the mixing coefficients. As a result of this
work the question arose as to what kind of source PDFs would result in excellent
separation performance given that the mixing coefficients are known and that
MMSE estimation is performed. One obstacle in extending the work in [5] is
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the derivation of the MMSE estimator. Considering for example Class-specific
PDFs or multivariate sparse distributions the derivation of an exact analytic
expression for the MMSE estimator looks like a daunting task.

The work described in this chapter is inspired by work done by Albert H. Nuttall
in obtaining accurate tail probability evaluations using SPA for a number of
useful statistics see e.g. [29][30]. The author is indebted to Albert H. Nuttall
without whom this work would not have been possible. He has acted as both a
mentor and a collaborator.

The purpose of this chapter is to explain or describe background theory that
may be useful when reading the paper ”Use and Subtleties of Saddlepoint Ap-
proximation for Minimum Mean-Square Error Estimation” in appendix. Espe-
cially section 2.2.4 may be helpful. Perhaps ”theory” is not the correct word
to use because the chapter emphasizes intuitive explanations/descriptions over
mathematical rigor. The contributions of the work done on MMSE estimator
approximation are the derivation and use of the inverse transform integral for-
mulation based on Moment Generating Functions (MGFs) and the derivation of
the SPA for two close or coalesced SPs. The formulation based on MGFs seems
new. When two SPs are close or coalesce the normal SPA based on a single SP
does not work which motivated the derivation of the SPA for two close or coa-
lesced SPs. This chapter also extends some of the ideas to the M-dimensional
case and finally points out some problems in applying SPA for MMSE signal
estimation.

2.1 Introduction to the model and the estimator

The mixing model under consideration is

y = ax1 + bx2 , a > 0, b > 0 (2.1)

where the scalars a and b are referred to as mixing coefficients. The observations
are contained in y and x1 and x2 denote the two sources which are mixed
together. The model is a linear underdetermined noise-free two-in-one model.
In the following it is assumed that the mixing coefficients are known. It’s the
estimation of the sources that is under consideration. To be specific, it is the
MMSE estimator of the sources that is under consideration. Let the M-variate
RV xk = [xk,1, . . . , xk,M ]T have PDF pk(x) then the MMSE estimator for x1 is
given by the following weighted convolution integral

E{x1|y} =
1

p(y)
1
b

∫
dx x p1(x) p2

(
y − ax

b

)
(2.2)
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or alternatively by

E{x1|y} =
[

∂

∂h
ln

∫
dx p1(x) p2

(
y − ax

b

)
exp(hT x)

1
b

]∣∣∣∣
h=0

(2.3)

These integrals are in general intractable except for a few special cases. For
univariate RVs the integrals can be computed for various sparse distributions
such as the Laplace and Cauchy distributions. For multivariate distributions the
integrals can be computed analytically to obtain closed form expressions for e.g.
Gaussian RVs or RVs having Gaussian mixture distributions. The integral in
(2.2) can be reformulated into a complex contour integral where the integrand
is derived from the Laplace transforms of p1(x) and p2(x). Let multivariate
RV xk = [xk,1, . . . , xk,M ]T have MGF µk(λ) where the Region Of Analyticity
(ROA) of the MGF is Rk in the multidimensional complex λ-space and k = 1, 2.
Let contour Ck lie in ROA Rk for k = 1, 2. The estimator is then given by

E{x1|y} =
1

(i 2π)Mp(y)

∫

C

dz exp(−yT z) µ′1(az)µ2 (bz) (2.4)

The derivation is found in appendix A. One benefit of rewriting (2.2) into (2.4)
is connected to properties of integral transforms of RVs. As argued in [37], then
algebraic operations on RVs are many times most conveniently handled by the
use of integral transforms. For instance, if the RV xk can be written as a linear
combination of independent RVs then the Laplace transform of the PDF of xk

is the product of the Laplace transforms of the PDFs of the RVs in the linear
combination. Another potential extension is for the case that the sources have
models on the form xk = gksk, where gk is a univariate positive RV independent
of sk. For models of this form the mixing model in (2.1) turns into a sum of
products of RVs. Products between RVs are conveniently handled using Mellin
transforms if they are available, however two issues limit the usefulness of using
Mellin transforms. The Mellin transform is defined for non-negative RVs. It is
possible to work with RVs not everywhere positive but that gets quite involved
rather quickly (example of computing the Mellin transform of a bivariate RV
not everywhere positive is given in [37] page 153). For use in (2.4) the resultant
Mellin transforms will have to be transformed to Laplace transforms which
in the univariate case involves a complex contour integral (details are found
in Appendix C in [37]). The relation between the Mellin transform and the
bilaterial Laplace transform for the multidimensional case is given in [8] page
197.

The situation is thus that two different integrals for the MMSE estimator are at
hand, one via PDFs and the other via MGFs. SPAs can be developed in either
domain. As will be explained in sections 2.2.3 and 2.2.4 then close SPs have
implications when applying the SPA. Maybe the PDF integral won’t have close
SPs, or maybe close SPs will happen at different values of the parameters [31].
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Although the PDF integral starts out along the real axis, that contour can be
modified and extended into another complex plane, if found fruitful. There is
a chance that one would get two different SPAs, in general. This idea is not
pursued in this chapter.

2.2 SPA

The history of SPA goes back almost two centuries. The SPA was used for the
first time in statistics in a 1954 paper by Daniels [9] but [9] ascribes the physicist
Peter Debye for first having used the method of steepest descent systematically
in 1909 for studying Bessel functions. However, the authors in [33] point out that
Debye himself borrowed the idea of the method from a 1863 unpublished paper
of Bernhard Riemann. The paper further shows that elements of the method
was used even earlier in 1827 by Cauchy and that a Russian Mathematician P.
A. Nekrasov had given a very general and detailed exposition of the method 25
years before the work of Debye.

In [9] it is shown how the SPA represents the leading term in a proper asymptotic
expansion by using the method of steepest descent in which the path of integra-
tion is the curve of steepest descent through an appropriate saddlepoint. The
method of steepest descent, also known as the saddle-point method, is a natural
development of Laplace’s method applied to the asymptotic estimate of integrals
of analytic functions [33]. As such, this section begins by briefly reviewing the
principles in Laplace’s method (Laplace approximation). Thereafter some im-
portant fundamental properties of analytic functions are enumerated and briefly
explained. Next, the concepts of SPs and Monkey saddles will be explained and
finally in section 2.2.4 an explanation of the SPA is given.

2.2.1 Laplace approximation

Let’s say that the following (real) integral poses a problem

F =
∫

f(x)dx (2.5)

where f(x) is a positive function, f(x) > 0. One approach would be to expand
the integrand in a Taylor series truncated to the first few terms and integrate.
A slightly different approach will be used here. The integral is written in the
following way

F =
∫

eφ(x)dx (2.6)
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where φ(x) = ln f(x). The point is to expand the exponent, φ(x), in a truncated
Taylor series. The Taylor expansion of φ(x) around a point x0 is

φ(x) ≈ φ(x0) + φ′(x0)(x− x0) +
1
2
φ′′(x0)(x− x0)2 (2.7)

A key point now is to choose x0 wisely. The point x0 is chosen such that
φ′(x0) = 0 (it is assumed that φ′′(x0) 6= 0). This means that (2.7) reduces to

φ(x) ≈ φ(x0) +
1
2
φ′′(x0)(x− x0)2 (2.8)

Inserting (2.8) into (2.6) it is clear that the integral is over a gaussian kernel
with mean x0 and variance −1/φ′′(x0) provided that x0 is a maximum of the
function so that the second derivative evaluated in x0 is negative. Thus,

F =
∫

eφ(x)dx (2.9)

'
∫

eφ(x0)+
1
2 φ′′(x0)(x−x0)

2
dx (2.10)

= eφ(x0)

(
− 2π

φ′′(x0)

)1/2

(2.11)

This approximation is for instance useful for normalizing a PDF [25]. There is a
two-page chapter about this approximation in [25] called ’Laplace’s Method’.
There it is written ”Physicists also call this widely-used approximation the
saddle-point approximation.”. In the view of this chapter it may be misleading
to call Laplace’s Method for saddlepoint approximation. In [25] the generaliza-
tion of (2.11) to a function of many variables is shown. As an aside, [33] notes
that originally Laplace estimated an integral on the form

Fn =
∫ b

a

fn(x)g(x)dx =
∫ b

a

enu(x)g(x)dx, f(x) > 0, (2.12)

as n → ∞. Even though this integrand is different from the integrand in (2.5)
then the approximation principle is the same.

The same type of approximation can also be used for approximating a function
that is written as an integral [19]

f(x) =
∫

m(x, t)dt =
∫

ek(x,t)dt (2.13)

where k(x, t) = ln m(x, t). Expanding k(x, t) around a stationary point, t̂(x),
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gives

f(x) '
∫

e
k(x,t̂(x))+

(t−t̂(x))2

2
∂2k(x,t)

∂t2

����
t̂(x)dt (2.14)

= ek(x,t̂(x))


− 2π

∂2k(x,t)
∂t2

∣∣∣
t̂(x)




1/2

(2.15)

The key thing to note about this approximation is that the stationary point t̂(x)
depends on x so that for each x there is a new integrated Taylor series expansion.
The stationary point t̂(x) is a maximum and the second-order partial derivative
satisfies ∂2k(x, t)/∂t2 < 0. As also noted in [19] then because the integral is
being centralized there is hope that the approximation is ’accurate’ and the
price to pay is that for each x the stationary point t̂(x) must be found and the
functions k(x, t) and ∂2k(x, t)/∂t2 must be evaluated at that point.

2.2.2 Results from Calculus of Complex Variables

The concept of an analytic function is important for the understanding and
application of the SPA. This section briefly summarizes a few of the most central
properties of analytic functions and explains the role of the properties in the
context of SPA. It will appear that analyticity of a function imposes some quite
strong restrictions on the function. Two quick definitions taken from [7] are ”An
entire function is a function that is analytic at each point in the entire finite
plane. Since the derivative of a polynomial exists everywhere, it follows that
every polynomial is an analytic function.” and ”A Singular point of a function
f is a point where f fails to be analytic.”

• An analytic function obeys the Cauchy-Riemann equations

Let f be a function of a complex variable z = x + iy such that f(x + iy) =
u(x, y) + iv(x, y). Also let ux and uy denote the first-order derivatives with
respect to x and y of the function u. Then the Cauchy-Riemann equations can
be written as

ux = vy, uy = −vx (2.16)

• If a function f(z) is analytic in a Domain D, then its component functions
u and v are harmonic in D.
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That the component functions are harmonic means that they obey Laplace’s
equation, that is,

uxx + uyy = 0 and vxx + vyy = 0 (2.17)

This property of analytic functions can be derived directly from the Cauchy-
Riemann equations and implies that stationary points (points where f(z)/dz =
0) where the second-order partial derivatives are non-zero are SPs of u and v
because the second-order partial derivatives have opposite signs.

• For an analytic function the level curves of u and v are orthogonal

If f(z) is analytic then the families of level curves u(x, y) = c1 and v(x, y) = c2,
where c1 and c2 are arbitrary real constants, are orthogonal. This result follows
directly from the Cauchy-Riemann equations. This property implies that when
following a Path Of Steepest Descent (POSD) of the real component u then
on the same path the imaginary component, v, is constant. The orthogonality
of the level curves of u and v is illustrated in figures 2.1 to 2.3 for the case of
f(z) = z2. Level curves for the component functions through a stationary point
of f(z) are not orthogonal. For instance, the curves u(x, y) = 0 and v(x, y) = 0
for the z2 example intersect at the origin but are not orthogonal to each other.

• The path of integration can be changed for an analytic function

This property is also referred to as the principle of deformation of path. It says
that the original contour of integration, C, can be deformed into (an equivalent)
contour C1 as long as only points where the integrand is analytic are passed and
the value of the contour integral remains the same. A physical interpretation
of an equivalent contour can be given [31]: At every singularity (poles, essential
stationary points, branch points) in the (horizontal) complex plane, erect a tall
stick. Consider C to be an infinitely flexible string lying on the complex plane.
If the string is moved around arbitrarily in the plane, but never lifting it over
a stick , the new contour C1 is equivalent to C. That is, one will get the same
value for the integral, using C or C1.

In approximating a contour integral it is often of interest to deform the contour
of integration to go through a SP of the integrand. It is for instance often desired
to deform the original contour into a new equivalent contour that goes through a
useful SP of the integrand because the neighborhood around the SP will provide
a major contribution to the value of the integral. If numerical evaluation of a
contour integral is performed then it is very desirable to deform the original
contour such that integration along the POSDs out of a SP is performed because
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Figure 2.1: Level curves of real part of f(z) = z2 (x2 − y2 = c1).
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Figure 2.2: Level curves of imaginary part of f(z) = z2 (xy = c2).
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Figure 2.3: Level curves of both real and imaginary part of f(z) = z2.

the magnitude of the integrand rapidly goes to zero along this path (there are
no oscillations) and will give the most accurate answer for the integral.

• An analytic function may be subjected to analytic continuation thereby
extending the domain of definition of the analytic function

Generally, even if an integrand does not have a SP in a desired region, it may be
possible to use analytic continuation to extend the integrand outside its ROA,
where there could very well be a SP. Complexities can arise with multivalued
functions and the presence of zeros of the function f(z), which, unfortunately,
act like ”black holes” to paths of steepest descent [31].

2.2.3 Saddlepoints

Consider a general contour integral

I =
∫

C

f(z) dz =
∫

C

exp ( φ(z) ) dz (2.18)
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Figure 2.4: Illustration of Monkey SP for the integrand f(z) = z exp(−2 q z +
z2/2) when q = 1.

where φ(z) = ln f(z). The real and imaginary parts of the exponent, φ(z)
determines the magnitude and phase of the integrand, respectively. This means
that the location of SPs of φ(z) specify the location of SPs of the magnitude of
the integrand, f(z). The location of SPs of the magnitude of the integrand are
thus found by solving φ′(z) = f ′(z)/f(z) = 0. As simple examples it can easily
be verified that f(z) = z2 does not have any SPs whereas f(z) = exp

(
z2

)
has

a SP at the origin.

If at a location not only the first-order derivative of φ(z) vanishes but also the
second-order derivative vanishes this indicates the location of a monkey SP.
When two SPs coalesce the second-order derivative of φ(z) vanishes. The case
when two SPs are close or coalesce have implications in performing SPA, this
will be explained further in section 2.2.4. More information on SPs can be found
in [6] section 7.1. Illustrations of a monkey SP and two close SPs are shown in
figures 2.4 and 2.5, respectively.

2.2.4 Integration Through a SP

This section is based entirely on emails from Albert H. Nuttall [31] (only slightly
edited).



2.2 SPA 17

x

y

Two close SPs

 

 

0.5 1 1.5 2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.19

0.2

0.21

0.22

0.23

0.24

Figure 2.5: Illustration of two close SPs for the integrand f(z) = z exp(−2 q z +
z2/2) when q = 1.05.

That a SP makes a major contribution to a contour integral can be illustrated
using the following physical explanation. Think of the vertical Bromwich con-
tour as being a road trip through the mountains. You see a mountain range
ahead and you want to minimize the strain on your car. Scan the horizon and
head for the lowest point P on the mountain range. As you cross over this point
P , the road drops off, both behind you and in front of you. On the other hand,
the mountain height is larger on your right and left, as you pass through P. This
is similar to passing over the saddle of a horse, perpendicular to the direction
that the horse is facing. Integration is a summation process. If you can find
a contour on which the maximum magnitude of the integrand is as small as
possible, say the POSD through a SP, you will not have to deal with oscilla-
tions in the integrand (remember that the level curves of the real and imaginary
parts of an analytic function are orthogonal meaning that on the POSD the
phase is constant and therefore contributions along the POSD are in-phase).
This contour yields the most accurate numerical answer for the integral. But
if you pass through a point higher in magnitude, then the integrand must de-
velop oscillations somewhere along this alternative path because the value of the
integral is independent of the path taken (within the limits of the ROA). So,
large positive values at the passover point must be cancelled by large negative
values somewhere else. A nice property of the POSD through a SP, in addition
to the most rapid decay of the magnitude of the integrand, is that the angle of
the integrand remains absolutely constant on the POSD. That is, there are no
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oscillations in the complex values of the integrand. It is therefore of interest to
move the contour of integration to go through a SP of the integrand.

Moving the original contour, so as to pass through a SP of the integrand, does
not in itself constitute an approximation. The new integral will give exactly the
same result as the original integral. It is only when we decide to approximate
the integrand by a Gaussian function, as we go through the mountain pass, that
the SPA is utilized. In fact, the shape of |f(z)| in the neighborhood of a SP is
not Gaussian, but is rather like a saddle. It is only the behavior of |f(z)| on
the contour of steepest descent that is Gaussian-like. A Gaussian mountain is
placed at the peak of the magnitude of the integrand, and the curvatures at the
SP are made to match. For complex SPs, all the same comments apply. We
may have to use two SPs to connect the two valleys at ±i∞ and then we have
to evaluate two SPAs as we pass over both mountain passes. Alternatively, the
integral passing through the two SPs is still exact until we make the Gaussian
approximations to the integrands as they go through the SPs themselves.

If one wants a very accurate numerical evaluation of a contour integral (which
cannot be done analytically), the POSD is very attractive because the magni-
tude of the integrand, |f(z)|, decays the fastest on such a path, thereby allowing
for a quick termination of the contour when |f(z)| has gone below some desired
tolerance level, relative to its value at the SP. And one can get a very accu-
rate numerical value for the integral. Of course, one doesn’t have to use the
POSD. According to Cauchy’s theorem, any equivalent path will give the same
numerical result for the integral, if carried out to ±i∞. But the POSD allows
for the quickest termination of the contour, because all numerical integrations
must stop at a finite limit. On the other hand, if one is willing to settle for a
simple approximate result, one can resort to a SPA, which just mimics f(z) near
the SP. To get this SPA, the POSD, as it passes through the SP, is the initial
pertinent path of integration. However, the precise detailed POSD is not of
interest or used; only the initial direction of the POSD near the SP is relevant,
as far as the SPA is concerned. To be more precise, |f(z)| is not necessarily
Gaussian-like as we depart from the SP on the POSD. However, we compute
φ(z), φ′(z), φ′′(z) at the SP and pretend that |f(z)| is Gaussian all the way out
to infinity, so that we can do the resulting integral analytically. Then, some-
times, we also compute φ′′′ and φ′′′′ and put in a first-order correction term.
In both approaches, the extension is made all the way out to infinity, to get a
closed-form result.

For two close SP locations, z1 and z2, the simple Gaussian approximations will
not suffice, and a cubic approximation may then be used. Again, until the
approximation near the peak(s) is made, the integral on the modified contour
is still exact, no matter how close the SPs are or how many there are. Along
the POSD leading from the SP, the shape of |f(z)| behaves like the Gaussian
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function exp(−b d2), where d is the distance away from the SP. With that in
mind, and with a contour that passes through 2 SPs, if the Gaussian function
approximation about SP1 has decayed significantly by the distance that SP2 is
reached, then a decent approximation can be expected from the two SPAs. But
if the Gaussian function approximation about SP1 has not decayed significantly
by the distance to SP2, then one have to switch to a cubic approximation for
the argument of the exponential approximation near the two close SPs. On the
POSD out of one SP at z1, a Gaussian approximation based on the behavior
right at the peak location z1 is made. Then, when we start integrating along
that POSD out of z1, before we can get to a region of small magnitude of the
integrand, |f(z)|, we run into another POSD coming from another close SP at
z2, and we then have to ascend up that path toward the other SP at z2. A Gaus-
sian mountain is placed at the peak of the magnitude of the integrand, and the
curvatures at the SP are made to match. These two mountains intersect and
interfere with each other, and a different function of z must be used near these
two close peaks, to approximate their interacting behavior. A quadratic approx-
imation to φ′(z) does just that, by being zero at the two SPs; that behavior is
perfect near the two close SPs. The integral of the quadratic function gives a
cubic function of z that does a good job of approximating the true behavior of
φ(z) in the neighborhood of the two close SPs, which are the major points and
region of interest. We will then integrate on this approximate function to get
our SPA.

When the two close SPs z1, z2 are complex conjugates, they are both locations
of peaks of the magnitude of integrand f(z). The contour C could be moved to
pass through both of these points. But when the two close SPs are both real
(and still close), C can pass through only one of these SPs, namely, the one
which has a minimum of f(z) as z is varied along the real axis (The other close
real SP has a local maximum along the real axis). In the direction perpendicular
to the real axis (i.e., along the Bromwich contour), the function f(z) then has a
maximum at the SP used. Once the replacement of φ(z) by the approximating
cubic function of z is made, the exact crossing point of the real axis in the
complex plane is irrelevant because the new function of z is entire and has no
singularities anywhere. This allows for considerable freedom of path movement,
the real important thing is which valleys do the ends of the contours end up in
as the new path must end up in the same valley(s) as beforehand.

2.3 Laplace-Gauss Example

The intent of including this example is to give an impression of the difficulties in
applying SPA for a multivariate example where both variables are not Gaussian.
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The example could represent a speech enhancement scenario (see [17][18]) where
speech is modeled by a multivariate Laplace distribution and noise is modeled
by multivariate Gaussian distribution. In the end of this section a number of
points will be mentioned that have to be understood before this example can
be completed.

The zero-mean multivariate Laplace distribution, as computed from a multi-
variate scale mixture of Gaussians [14], is

p(x) =
1

(2π)d/2

2
λ

K(d/2)−1

(√
q(x) 2/λ

)

(√
q(x) 2/λ

)(d/2)−1
(2.19)

where d denotes the dimensionality of the RV x, Km(x) denotes the modified
Bessel function of the second kind and order m, λ denotes a positive scalar and
q(x) = xT Γ x, where Γ is a positive definite matrix with detΓ = 1. The
covariance matrix of RV x is Σx = λΓ. In (2.1), let RV x1 be Laplacian and
RV x2 be Gaussian. The MGF of the multivariate Laplace distribution and its
first-order derivative (see appendix C), is

µx(ω) =
1

1− λ
2 ωT Γω

, µ′x(ω) =
λΓω(

1− λ
2 ωT Γω

)2 (2.20)

Inserting (2.20) into (2.4) then

E{x1|y} =
1

(i 2π)Mp(y)

∫

C

dz e−yT z aλ1Γ1z(
1− a2λ1

2 zT Γ1z
)2 e

1
2 b2zT Σz (2.21)

Substituting z̃ = bΣ1/2z in (2.21) yields

E{x1|y} =
aλ1Γ1

b2 (i 2π)Mp(y)

∫

C

dz̃ e−pT z̃+ 1
2 z̃T z̃ z̃

(1− z̃T Az̃)2
(2.22)

where

pT = yT Σ−1/2 1
b

, A =
a2λ1

b2 2

(
Σ−1/2

)T

Γ1Σ−1/2 (2.23)

The fundamental integral is then

I =
1

(i 2π)M

∫

C

dz e−pT z+ 1
2zT z z

(1− zT Az)2
(2.24)

It may not be possible to evaluate the integral for M > 2. For the particular
case M = 2, we have

I1 =
1

(i 2π)2

∫

C1

∫

C2

dz1dz2 z1 e−p1z1−p2z2+
1
2 z2

1+ 1
2 z2

2
1

(1− a11z2
1 − a22z2

2 − 2a12z1z2)
2

(2.25)
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It may be possible to evaluate this integral analytically (see e.g. section 18 in
[1]) using a multidimensional residue theorem. Solving for the SPs the Matlab
function solve returns 8 SPs. In order to complete this example, the bound-
ary on allowed values of the z vector in the 2-dimensional z-plane need to be
established. It also needs to be established which of the 8 SPs is the useful SP
(possibly 2 complex conjugate SPs). It also needs to be determined if there are
close SPs, and if so, how a SPA for two close SPs for the multivariate case can
be developed. It is not straight forward to extend the results in the paper in
appendix E to this example and it seems much harder to apply SPA for MMSE
estimator approximation for multivariate problems.

2.4 Discussion

For the univariate case it has been demonstrated in two examples in the paper
found in appendix E how SPA represents a viable method for approximating the
MMSE estimator when using MGFs. Excellent approximations were obtained.
It was also demonstrated that when two SPs are close the normal SPA based on
a single SP becomes very inaccurate and how a SPA based on two close SPAs
should be used instead to obtain accurate approximations for this case. All in
all, the paper in appendix E provides a quite complete account of applying SPA
for MMSE estimator approximation for the univariate case and as the examples
in the paper illustrate it is relative straight forward to apply the results.

In extending the ideas to the M-variate case the situation gets rather involved
rather quickly. Finding a useful SP may be difficult. In general, one has to
solve a set of coupled non-linear equations, numerically. When SPA is used for
obtaining tail probabilities the search can be restricted to finding a real unique
SP in the ROA, however, such a restriction is, in general, not valid when SPA
is used for MMSE approximation. A SPA for coalescing or close SPs in the
multidimensional case may also be needed. Therefore, SPA does not look useful
for approximating a MMSE estimator in the multidimensional case, especially
not for higher dimensions.



22 Saddlepoint Approximation for MMSE Estimation



Chapter 3

Particle Filtering for MMSE
Estimation

The purpose of this chapter is to demystify particle filtering (PF) and demon-
strate in a couple of examples how PF can be used. This chapter also serves
as an introduction to the two papers applying PF found in appendices F and
G. The intent is to describe the fundamental ideas behind PF and not focus on
theoretical aspects.

PF is a technique used for approximate inference that is suitable for online
applications. In the literature PF is also referred to as Sequential Monte Carlo.
From a Bayesian point of view a fundamental idea of PF is that of representing a
posterior PDF of interest by a number of samples where we can think of a sample
as a number that is returned by a Random Number Generator (RNG) with a
distribution equal to that of the posterior PDF. Herein lies an approximation
but the more samples that are used to represent the posterior PDF the better
the approximation becomes and in the limit the representation becomes exact
(see e.g. [12] ch. 2). Given a number of samples from a posterior PDF of
interest it is possible to estimate properties of the posterior PDF such as for
instance the location of a maximum or the mean value. The mean value is the
main quantity of interest in Minimum Mean-Square Error (MMSE) estimation
which will be considered later in the examples. The idea is thus to replace the
functional representation of the posterior PDF by samples. In [36], it is written
”..we note the essential duality between a sample and the density (distribution)
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from which it is generated. Clearly, the density generates the sample; conversely,
given a sample we can approximately recreate the density (as a histogram, a
kernel density estimate, an empirical cdf, or whatever).”

Another key idea in PF is to obtain samples from a posterior PDF that are
”important” such that useful approximations can be made by a manageable
number of samples. This is done by attaching a weight to each sample which
tells how important a particular sample is. Samples with low weight can then be
discarded and replaced by samples with higher weight in a process referred to as
resampling. A particle consists of a sample and its weight. It is described later
how the weights are computed. The weights are needed because samples will
be produced by a RNG which is considerably simpler than the desired target
RNG. By attaching weights to the samples generated by the simpler RNG these
weighted samples constitutes a representation of the posterior PDF that is just
as valid as samples drawn from the complex target RNG. The combination of
using a simple RNG and weighted samples is the concept behind Importance
Sampling (IS) which plays a fundamental role in PF.

A crucial idea behind PF is that of propagating the particles sequentially in
time making PF suitable for online applications. PF processes a sequence one
sample at a time by propagating particles (samples and weights) recursively.
The process of propagating particles recursively in time is called Sequential
Importance Sampling (SIS). The combination of SIS and the above mentioned
resampling constitutes the main body of a particle filter.

In section 3.1 a class of useful models will be introduced and it will appear that
PF in this class of models is very convenient. The following sections go into
details of PF by first briefly explaining the principle behind the Monte Carlo
method in section 3.2, then describing the idea of IS in section 3.3 and outlining
the procedure of SIS in section 3.4. Next, the purpose of resampling is described
in section 3.5, followed by three examples in sections 3.6-3.8 that all have some
relevance to signal processing for hearing aids. Finally this chapter is concluded
with a discussion in section 3.9.

3.1 Introduction to the models

The starting point of a class of useful and convenient discrete system models
is the assumption that the z-transform representation of the model, the system
function H(z), is a rational function of polynomials in z;

H(z) =
Y (z)
X(z)

, (3.1)
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where Y (z) and X(z) are polynomials in z. Most often, however, H(z) is ex-
pressed as a ratio of polynomials in z−1, see e.g. [32] ch. 6; i.e.,

H(z) =
∑M

k=0 bk z−k

1−∑N
k=1 ak z−k

, (3.2)

with the corresponding difference equation

yn =
N∑

k=1

ak yn−k +
M∑

k=0

bk xn−k . (3.3)

If zero-mean white Gaussian noise with variance σ2 is added to the right hand
side of (3.3) the difference equation can be written in a direct form II matrix
formulation with the following state and observation equations

wn = Awn−1 + Bxn (3.4)

yn = Cwn + D dn , dn
iid∼ N (0, 1) , (3.5)

where wn = [ wn, · · · , wn−N+1 ]T is a state vector, xn = [ xn, · · · , xn−N+1 ]T

the input vector and

A =
[

aT

I(N−1) 0(N−1)×1

]
(3.6)

B =
[

1
0(N−1)×1

]
(3.7)

C =
[

bT
]

(3.8)

D =
[

σ
]

(3.9)

where a = [ a1, · · · , aN ]T and b = [ b0, · · · , bM ]T are coefficient vectors. The
matrix IN denotes the eye matrix of dimensions N × N and 0N×M denotes a
zero matrix of dimensions N ×M . If the objective is to estimate the coefficient
vectors a and b and prior knowledge of the system to model is available then
it may be difficult to relate that knowledge to behavior of the coefficients in a
and b. That is, it may be difficult to make use of the prior knowledge when
estimating a and b. If, for instance, it is known that the system to model has a
spectral peak in the frequency interval from say 1000 Hz to 2000 Hz then it is
not obvious how to constrain the coefficients in a and b to take this information
into account. However, as will be explained next then it is possible to find other,
perhaps more useful, parameterizations of the system described by (3.4)-(3.9).

If information is available about the magnitude spectrum of the system then
the roots of the polynomials Y (z) and X(z), referred to as zeros and poles
respectively, play an important role. Given a set of zeros and poles it is relative
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straightforward to visualize the shape of the magnitude spectrum, see e.g. [32]
section 5.3 and [28]. It is also possible to roughly determine locations of zeros
and poles from a sketch of a magnitude response. This will be illustrated with an
example using babble noise (fs = 16 kHz). A babble noise sound is analyzed in
frames using a Hamming window of 25 ms duration and shifted in time in steps
of 1.5 ms. For each frame a power spectrum is computed. The power spectra
are averaged in intervals of 500 ms and a 10th order LPC analysis is performed
on each of the averaged power spectra. Finally, roots (poles) are computed
from the denominator polynomial in the system function. The poles computed
from one of the averaged power spectra are seen in the plot in figure 3.1. The
magnitude and phase response of the corresponding all-pole system function are
shown in figure 3.2. As can be seen in figure 3.1 then the poles occur in complex
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Figure 3.1: Figure shows unit circle in the complex z-plane and the location
of poles obtained by a 10th order LPC analysis of a smoothed babble power
spectrum.

conjugate pairs, 5 in total, all inside the unit circle. Each complex conjugate
pole pair forms a resonance whose frequency is determined by the angles of the
poles and whose sharpness (bandwidth) is determined by the distance of the
poles to the unit circle. There is 500 Hz between each of the concentric green
circles and 500 Hz between each of the red lines coming radially out of the
origin. Each peak in the magnitude spectrum in the upper plot in figure 3.2
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Figure 3.2: Magnitude and phase spectrum corresponding to a 10thorder all-pole
model with pole locations as shown in figure 3.1.

can be ascribed to a complex conjugate pole pair in figure 3.1. In figure 3.3 the
same poles are shown in a plot where the pole regions for speech are also shown.
The pole regions for speech have been established by minimum and maximum
frequencies and bandwidths for the first four formants. It is apparent that by
using poles, represented by their real and imaginary parts or by radii and angles,
instead of the corresponding AR coefficients then the relation to the magnitude
spectrum is more intuitive and easier to visualize. A complex conjugate pole
pair can also be represented uniquely by a center frequency and a bandwidth
parameter which may be the most convenient and intuitive representation to
make use of if information on the magnitude spectrum involves location and
sharpness of peaks and valleys. There are several additional parameterizations
that may be useful for a particular problem e.g. reflection coefficients, log-area
ratio coefficients or line-spectral frequency coefficients.

From the above description it is apparent that complex conjugate roots (zeros
or poles) play an important role in re-parameterizing the coefficient vectors a
and b. When the coefficients in a and b are real, complex-valued roots come
in conjugate pairs. By factorizing the numerator and denominator polynomials
in (3.2) the system function can be expressed on the form, see e.g. [32] p. 303,
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Figure 3.3: Figure shows the unit circle and the poles from figure 3.1. The figure
also shows the pole regions for speech corresponding to the first four formants.

(by a theorem known as the fundamental theorem of algebra [28] p. 24)

H(z) = A

∏M1
k=1(1− gk z−1)

∏M2
k=1(1− hk z−1)(1− h∗k z−1)∏N1

k=1(1− ck z−1)
∏N2

k=1(1− dk z−1)(1− d∗k z−1)
(3.10)

where M = M1 + 2M2 and N = N1 + 2N2. In this factorization there are M2

pairs of complex conjugate zeros and N2 pairs of complex conjugate poles. A
pair of complex conjugate roots corresponds to a Second-Order Section (SOS)
on the form

HSOS(z) = 1− a1z
−1 − a2z

−2 (3.11)

where a1 and a2 are real coefficients. As an example, consider a pair of complex
conjugate roots, z1 and z∗1 . They can be related directly to the coefficients in
(3.11) in the following way

HSOS(z) = (1− z1z
−1)(1− z∗1z−1) = 1− (z1 + z∗1)z−1 + z1z

∗
1z−2 (3.12)

Thus,
a1 = z1 + z∗1 , a2 = −z1z

∗
1 . (3.13)

Given the zeros and poles of a system function it is now possible to compute the
corresponding coefficients in a and b by first mapping the complex conjugate
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roots to coefficients in a SOS on the form given by (3.11). Note that real
roots correspond directly to the coefficient in a first-order section. Finally, the
coefficient vectors corresponding to first and second-order sections are convolved.
If the complex conjugate roots are represented in polar form as z1 = Rejω and
z∗1 = Re−jω and inserted in equation (3.12) one obtains

HSOS(z) = 1− (Rejω + Re−jω)z−1 + RejωRe−jωz−2 (3.14)
= 1− 2R cos(ω)z−1 + R2z−2 . (3.15)

The SOS coefficients expressed in terms of the radius and angle of a complex
conjugate root pair are thus

a1 = 2R cos(ω) , a2 = −R2 . (3.16)

Given a formant frequency, f , and formant bandwidth, b, (both in Hz) then the
corresponding complex root is given by

z1 = e−π b
fs

+j2π f
fs . (3.17)

This relation is explained in [26] and [35] and is based on transforming from
s-plane to z-plane. The mapping from f and b to the coefficients in (3.11) are
thus given by

a1 = 2e−π b
fs cos

(
2π

f

fs

)
, a2 = −e−2π b

fs (3.18)

The mappings in (3.18) are non-linear. Reasonable approximations can be found
for the mappings in (3.18) when modeling speech because the bandwidth of the
resonances created in the vocal tract typically will be less than say 500 Hz. This
means that e−π b

fs and e−2π b
fs may be approximated by first-order Taylor series

expansions. That is

e−π b
fs ≈ 1− π

b

fs
, e−2π b

fs ≈ 1− 2π
b

fs
. (3.19)

In figure 3.4 the accuracy of the approximations are shown for fs = 16 kHz

To summarize, motivated by the usefulness of discrete linear time-invariant sys-
tems a linear state-space model has been introduced in (3.4)-(3.9). The model
is parameterized by the coefficient vectors a and b and an observation noise
variance. When estimating the coefficients in the a and b vectors it has been
argued that different parameterizations may be more advantageous. The basis
of these representations is the factorization of the corresponding numerator and
denominator polynomials in terms of first and second-order sections. The co-
efficients in the second-order sections can be represented by a pair of complex
conjugate roots. The roots can be specified by their real and imaginary parts
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Figure 3.4: Figure shows that accuracy of the approximations in (3.19). The
accuracy is presented by computing the ratio between the approximation and
the expression to be approximated.

as in (3.13), by their radii and angles as in (3.16) or by center frequency and
bandwidth parameters as in (3.18).

Many systems of interest are time-variant and to take this into account the
parameters in the state-space model given by (3.4)-(3.9) have to be adapted
over time. As such the parameters should have a time index. For instance,
the vocal tract changes characteristics when producing speech. An often used
model for the vocal tract is an all-pole model and speech is often modeled as
the being the output of an all-pole model excited by white Gaussian noise. The
state-space model in (3.4)-(3.9) can be modified slightly to form a time-varying
all-pole model for speech to obtain

wn = An wn−1 + Bn xn , xn
iid∼ N (0, 1) (3.20)

yn = Cwn + Dn dn , dn
iid∼ N (0, 1), (3.21)

where

An =
[

aT
n

I(N−1) 0(N−1)×1

]
(3.22)

Bn =
[

σxn

0(N−1)×1

]
(3.23)
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C =
[

1 01×(N−1)

]
(3.24)

Dn =
[

σdn

]
(3.25)

Noise reduction can be performed by MMSE estimation of the state-vector wn.
MMSE estimates of the model parameters are also of interest. In the following
sections, a method is described that can be used for approximate inference in
the models specified by (3.4)-(3.9) and (3.20)-(3.25).

3.2 Monte Carlo

The basic idea behind the Monte Carlo method is to repeat an experiment a
number of times and use the outcomes of the experiments to estimate a quantity
of interest. For instance, the task of computing the probability that a given
solitaire game will succeed may be very difficult. The Monte Carlo approach to
estimate this probability is to play (simulate) a number of games (say 1, 000, 000)
and take the ratio between the number of successful games and the total number
of games as the probability estimate. The same way probabilities of interest in
poker or blackjack may be approximated; simulate many games and compute
an estimate of the probability of winning given a particular setup.

The history of the Monte Carlo method is quite fascinating. It began in 1945
when physicists at Los Alamos were studying the feasibility of a thermonuclear
weapon. It’s beginning is also closely connected to the development of the
first electrical computers. In [27] it is written ”The spirit of Monte Carlo is
best conveyed by an example discussed in von Neumann’s letter to Richtmeyer.
Consider a spherical core of fissionable material surrounded by a shell of tamper
material. Assume some initial distribution of neutrons in space and in velocity
but ignore radiative and hydrodynamic effects. The idea is to now follow the
development of a large number of individual neutron chains as a consequence
of scattering, absorption, fission, and escape....Thus, a genealogical history of
an individual neutron is developed. The process is repeated for other neutrons
until a statistically valid picture is generated.”

For the case of performing MMSE estimation the Monte Carlo approach is to
generate samples from the posterior PDF and average the value of the samples.
However, although it sounds simple it is typically not realistic to draw samples
directly from the posterior PDF. It is not as easy as simulating a game of poker.
There are several ways to generate samples from a given distribution see e.g. [23]
pp. 23− 31. Some of these methods are not very practical for high-dimensional
problems or suitable for on-line applications. IS, however, is a promising method
and is explained in the next section.
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3.3 Importance Sampling

Importance sampling is a method for generating samples from a distribution. It
works by generating samples from a simpler proposal or importance distribution
and correcting the bias by attaching importance weights to the drawn samples.
To motivate the use of IS we will introduce an example adapted from [23] p.
31− 34. The goal is to evaluate the integral

I =
∫ 1

−1

∫ 1

−1

dx dy f(x, y) , (3.26)

where

f(x, y) = 0.5e−90(x−0.5)2−45(y+0.1)4 + e−45(x+0.4)2−60(y−0.5)2 . (3.27)

The function f(x, y) is shown to the left in figure 3.5. The integral in (3.26)
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Figure 3.5: Plot to the left shows the function f(x, y) and the plot to the right
shows the importance distribution g(x, y).

can be approximated using a Riemann sum by discretizing the domain [−1, 1]×
[−1, 1] on a regular grid. Thus, the integral can be approximated as

ÎRiemann = ∆x∆y
∑

i

∑

j

f(xi, yj) , (3.28)

where ∆x and ∆y are the spacings in the x and y directions, respectively. If a
regular grid with a spacing of 0.02 is used in both the x and y directions then
approximately 16 percent of the points are above the threshold 0.01. If only
points above this threshold are used then it produces a 1% relative difference
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in the result. A regular grid thus uses many computations on points where
f(x, y) is negligible. Another disadvantage of the regular grid approach is that
the complexity of evaluating an integral scales exponentially with the number of
dimensions. For instance, in the regular grid example 101 points is used on the
interval [−1, 1] on both the x and y-axis giving a total of 1012 = 10201 points.
However, if the example is extended with a third z-axis (using same interval and
grid spacing) we would have to use 1013 = 1030301 points. It is thus obvious
that the regular grid approach becomes rather involved rather quickly as the
number of dimensions increase.

A different approach is to uniformly sample the domain [−1, 1] × [−1, 1]. The
integral in (3.26) can be written

I =
∫ 1

−1

∫ 1

−1

dx dy f(x, y)
p(x, y)
p(x, y)

(3.29)

=
1
P

∫ 1

−1

∫ 1

−1

dx dy f(x, y)p(x, y) (3.30)

=
1
P

Ep(x,y){f(x, y)} , (3.31)

where P = p(x, y) = 1/4 and it is understood that f(x, y) is zero outside the
domain [−1, 1] × [−1, 1]. Because p(x, y) is a PDF, an approximation to the
expectation in (3.31) and thus the integral in (3.26) can be obtained by drawing
N samples from p(x, y) and approximate p(x, y) by a sum of delta functions
(with equal weighting 1/N). The approximation based on uniform sampling
thus becomes

ÎUniform =
1

N P

∑
n

f(xn, yn) . (3.32)

Figure 3.6 shows drawn samples for the case N = 1000. Because the approxi-
mation is based on a sample of random samples then a new value of Îuniform

is obtained for each new experiment. That is, accuracy of the approximation
has to be measured statistically. One way to measure the accuracy of the ap-
proximation is to perform K experiments and compute the mean and standard
deviation of the K results. As is evident from figure 3.6 then uniform sampling
is also very inefficient because many samples are placed in regions where f(x, y)
is negligible. The idea in IS is that instead of sampling the domain uniformly we
could find a different distribution to sample from that is more likely to produce
samples in the areas where f(x, y) is non-negligible and thus improve efficiency
of the samples significantly. Samples could be generated from a distribution on
the form

g(x, y) ∝ 0.5e−90(x−0.5)2−45(y+0.1)2 + e−45(x+0.4)2−60(y−0.5)2 , (3.33)

with (x, y) ∈ [−1, 1] × [−1, 1]. This corresponds to a truncated mixture of
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Figure 3.6: Figure shows contours of the integrand f(x, y) and 1000 samples
obtained by uniformly sampling the domain [−1, 1]× [−1, 1].

Gaussian distribution from which samples can be drawn, that is,

g(x, y) = 0.46N
([

0.5
−0.1

]
,

[
1

180 0
0 1

20

])
+0.54N

([ −0.4
0.5

]
,

[
1
90 0
0 1

120

])

(3.34)
This distribution is shown to the right in figure 3.5. When sampling from g(x, y),
samples will be located as shown in figure 3.7 where 1000 samples have been
generated. Now, consider the integral in (3.26) one more time.

I =
∫ 1

−1

∫ 1

−1

dx dy g(x, y)
f(x, y)
g(x, y)

(3.35)

=
∫ 1

−1

∫ 1

−1

dx dy g(x, y)w(x, y) (3.36)

= Eg(x,y){w(x, y)} . (3.37)

The original integral has be reformulated into a statistical expectation of a
weight-function, w(x, y), with respect to the distribution g(x, y). If samples are
drawn from g(x, y) the integral in (3.26) or equivalently the expectation in (3.36)
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Figure 3.7: Figure shows contours of the integrand f(x, y) and 1000 samples
obtained by sampling from the importance distribution g(x, y) in (3.34).

can be approximated using the following expression

ÎImportance =
1
N

∑
n

w(xn, yn) . (3.38)

This approximation reduces to the approximation in (3.32) when g(x, y) is a
uniform distribution. The expression in (3.38) is the IS approach to approximate
the integral in (3.26). It is clear that if a good proposal distribution g(x, y)
is used less resources are wasted on regions with low probability that do not
contribute significantly to the value of the integral. In [23] p. 33 it is written
”...the idea of biasing toward ’importance’ regions of the sample space becomes
essential for Monte Carlo computation with high-dimensional models... In high-
dimensional problems, the region in which the target function is meaningfully
nonzero compared with the whole space χ is just like a needle compared with
a haystack.” and in [11] they write ”Choice of importance function is of course
crucial and one obtains poor performance when the importance function is not
well chosen.”

In summary, as the example has illustrated, then IS represents an attractive
approach to evaluate an integral as it makes efficient use of particles which is
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important for practical use. It has also been indicated that IS is a method that
can work for high-dimensional problems. The example also demonstrated how
IS works by drawing samples from a simpler importance distribution and how
a weight for each sample is computed.

As this chapter is about MMSE estimation the IS procedure is now repeated for
a general MMSE-type integral. The pertinent integral is

IMMSE =
∫

dx x p(x) . (3.39)

If N independent samples are drawn from p(x) then the integral in (3.39) can
be approximated by

ÎMMSE =
1
N

∑

i

xi . (3.40)

Generally, it is impossible to draw independent samples directly from the pos-
terior distribution of interest. However, the integral in (3.39) can be written

IMMSE =
∫

dx x
p(x)
π(x)

π(x) , (3.41)

and if N independent samples are generated from the importance distribution,
π(x), then the integral can be approximated by

ÎMMSE =
1
N

N∑

i=1

xi p(xi)
π(xi)

=
1
N

∑

i

xi w(xi) . (3.42)

The approximation in (3.42) is dependent on the choice of importance distribu-
tion π(x). If the vector x can be divided into two parts x = [x1,x2]T such that
integration over x1 conditional on x2 can be performed analytically the integral
in (3.41) can be subjected to the principle of Rao-Blackwellization. Rewriting
the integral in (3.41) into

IMMSE =
∫

dx1

∫
dx2 [x1,x2] p(x1|x2)

p(x2)
π(x2)

π(x2) (3.43)

=
∫

dx2 Ep(x1|x2) {[x1,x2]} w(x2)π(x2) (3.44)

then if N independent samples are drawn from the importance distribution
π(x2), the integral in (3.39) can be approximated by

ÎRao−MMSE =
1
N

N∑

i=1

Ep(x1|x2)

{[
x1,xi

2

]}
w(xi

2) . (3.45)

In [23] p.27 it says ”Rao-Blackwellization. This method reflects a basic principle
(or rule of thumb) in Monte Carlo computation: One should carry out analytical
computation as much as possible.” This principle will be used in section 3.4.
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Finally, another important issue in IS is weight normalization. In MMSE es-
timation the density p(x) in (3.39) represents a posterior PDF which may be
known up to a constant, that is, p(x) = ṗ(x)/c where c =

∫
dx ṗ(x). The integral

in (3.41) can thus be written

IMMSE =
∫

dx x
ṗ(x)
π(x)

π(x)
/ ∫

dx
ṗ(x)
π(x)

π(x) . (3.46)

If N independent samples are generated from the importance distribution, π(x),
then the integral can be approximated by

ÎNorm−MMSE =
∑

i x
i ẇ(xi)∑

i ẇ(xi)
=

∑

i

xi w̄(xi) , w̄(xi) =
ẇ(xi)∑
i ẇ(xi)

. (3.47)

Weight normalization is used in all subsequent examples.

3.4 Sequential Importance Sampling

Sequential Importance Sampling (SIS) refers to the task of sequentially gener-
ating samples from the importance distribution and recursively computing the
accompanying weights. This idea is e.g. important for practical use of IS to
state estimation in dynamical systems as can be understood from the following
excerpt from [2] ”For many problems an estimate is required every time that a
measurement is received. In this case a recursive filter is a convenient solution.
A recursive filtering approach means that the received data can be processed
sequentially rather than as a batch, so that it is not necessary to store the
complete data set nor to reprocess existing data if a new measurement becomes
available.”

A common way to introduce SIS is to the problem of state estimation in a
nonlinear state-space model with known parameters. Because the model is non-
linear direct Kalman filtering is not possible. However, in this chapter a slightly
different approach is taken because SIS is introduced for inference in the models
(3.4)-(3.9) and (3.20)-(3.25) which are both linear given the parameters in the
models and parameters are assumed unknown. For the model (3.4)-(3.9) param-
eter estimation is of interest and for the model (3.4)-(3.9) joint estimation of
the state and the parameters are of interest. Because the model in (3.20)-(3.25)
is linear given the parameters the principle of Rao-Blackwellization (see section
3.3) can be used whereby the problem of MMSE estimator approximation is
reduced to the problem of sampling from the posterior PDF of the parameters.

Now a general derivation of the recursive weight-update equation is given. The
derivation largely follows the derivation provided in [11]. The starting point of
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the derivation is a sequence of PDFs {p(x1:n)} where n represents a time index.
The goal is to derive a method for sampling sequentially from {p(x1:n)}; that is,
first obtain samples and their weights from p(x1), then p(x1:2) and so on. The
importance weights at time n are given by

wn =
p(x1:n)
π(x1:n)

, (3.48)

where π(x1:n) denotes the importance distribution. The importance distribution
is decomposed into π(x1:n) = π(xn|x1:n−1)π(x1:n−1). This decomposition is
crucial because it means that if a path x(i)

0:n−1 is available (superscript i denotes
an index into a set of paths) at time n this path can be augmented with a
sample, x(i)

n , drawn from π(xn|x(i)
1:n−1) to obtain the path x(i)

0:n, thus the path
x(i)

0:n−1 is not modified. Inserting the decomposed importance distribution into
(3.48), yields

wn =
p(x1:n−1)
π(x1:n−1)

· p(x1:n)
p(x1:n−1)π(xn|x1:n−1)

(3.49)

= wn−1 · p(x1:n)
p(x1:n−1)π(xn|x1:n−1)

(3.50)

= wn−1 · p(xn|x1:n−1)
π(xn|x1:n−1)︸ ︷︷ ︸

wupdate

. (3.51)

In going from (3.50) to (3.51) an implicit assumption has been made that
PDF p(x1:n−1) at times n−1 and n are equal. As noted in [11], the densities
{π(xn|x1:n−1)} are parameters to be selected by the user. At each time-step
the SIS procedure consists of propagating the particles at the previous time-
step by a sampling step and a weight-update step performed for each particle.
That is, at time n the SIS procedure completes, for each particle indexed by a
superscript i, the steps

1. Sample x(i)
n ∼ π(xn|x(i)

1:n−1)

2. Update weight using (3.51) to get w
(i)
n .

3. Normalize weights.

To summarize SIS, when the objective is to apply IS for state-estimation in a dy-
namical system or for parameter estimation in a model whose parameters change
over time we have to draw samples from a sequence of posterior PDFs denoted
by e.g. {p(x1:n)} and compute weights given by the ratio p(x1:n)/π(x1:n). The
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problem is that the raw IS procedure requires us to draw paths whose length
increase over time which means that the number of computations and memory
consumption increase with time. The key idea in arriving at the SIS procedure
was that of decomposing the importance distribution in such a way that samples
from the sequence of PDFs of interest, {p(x1:n)}, could be generated recursively.
The decomposition could also be used to derive an expression for the weights
such that they can be recursively propagated in time. Thus, SIS eliminates the
increase in the number of computations and memory consumption over time.

Considering the speech model in (3.20)-(3.25) the sequence of PDFs of interest
is the sequence of posterior PDFs {p(w0:n,a0:n, σx0:n , σd0:n |y1:n)}. Now a no-
tational context switch is made in order to comply with the notation common
to SIS literature. The state vector is renamed from w to x and all parame-
ters are stacked in the parameter vector θ. That is, the sequence of posterior
PDFs is denoted {p(x0:n,θ0:n|y1:n)}. The nth element in the sequence can be
decomposed into p(x0:n, θ0:n|y1:n) = p(x0:n|θ0:n, y1:n)p(θ0:n|y1:n). The point is
to realize that p(x0:n|θ0:n, y1:n) is Gaussian because the model in (3.20)-(3.25)
reduces to a linear Gaussian state-space model (see also [39]). Integration over
the state vector can thus be performed analytically. This process is referred to
as Rao-Blackwellization as explained in section 3.3. The MMSE estimator for
the state vector and parameter vector is given by the following expression

< xn, θn >=
∫

dx0:n

∫
dθ0:n [xn, θn] p(x0:n, θ0:n|y1:n) . (3.52)

As a consequence of the Rao-Blackwellization, approximating this MMSE es-
timator is depending on generating samples from the sequence {p(θ0:n|y1:n)}.
If N independent samples are drawn from the importance distribution π(θ0:n)
then (3.52) can be approximated by

̂< xn, θn > =
1
N

N∑

i=1

Ep(x0:n|θi
0:n,y1:n){[xn,θi

n]} w(θi
0:n|y1:n) (3.53)

The factor wupdate in (3.51) is given by

wupdate =
p(θn|θ0:n−1, y1:n)
π(θn|θ0:n−1, y1:n)

(3.54)

∝ p(yn|θ0:n, y1:n−1)p(θn|θ1:n−1)
π(θn|θ0:n−1, y1:n)

(3.55)

At time n the SIS procedure for MMSE estimation of state and parameter vector
completes, for each particle indexed by a superscript i, the steps

1. Sample θ(i)
n ∼ π(θn|θ(i)

1:n−1) .
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2. Perform Rao-Blackwellization to get x(i)
n .

3. Update weight using (3.55) to get w
(i)
n .

4. Normalize weights to get w̄
(i)
n .

5. Estimate state and parameter vector by
∑

i[x
(i)
n ,θ(i)

n ]w̄(i)
n .

For the model in (3.4)-(3.9) the SIS procedure is very similar. However, when the
input is not assumed stochastic which is the case for the model (3.4)-(3.9) used
in the examples in sections 3.6-3.8, only the parameters need to be estimated
and the Rao-Blackwellization step disappears.

In the examples in sections 3.6-3.8 it is assumed that the parameters evolve
according to first-order Markov processes such that p(θn|θ1:n−1) = p(θn|θn−1).
Furthermore the importance distribution is set equal to p(θn|θn−1) which means
that drawing samples is simple and that the weight update factor in (3.55)
reduces to wupdate ∝ p(yn|θ0:n, y1:n−1). This choice of importance distribution
is discussed in the next section.

3.5 Importance Distribution and Resampling

Now the SIS procedure is applied to the example of estimating the mean of
the un-normalized PDF given by (3.27). That is, the mean value of the PDF
p(x, y) = f(x, y)/c where c is a constant will be approximated by applying the
SIS procedure outlined in section 3.4. This example is a little different in that
p(x, y) is ’static’ and does not necessarily represent a posterior PDF. Particles
are adapted by choosing independent and equal first-order Markov processes,
also called Random Walks (RWs), as the importance distributions for x and
y. The RW variance (reminiscent of a step-size parameter) is set to 0.01 and
initially particles are distributed uniformly in the region [−1, 1]× [−1, 1]. That
is, if θn = [xn, yn]T then

p(θ0) = U ([−1,−1], [1, 1]) (3.56)
p(θn|θn−1) = Ñ (02×1, 0.01I2×2) (3.57)

where U (a,b) denotes the uniform distribution on the interval given by [a,b]
and Ñ (µ,Σ) denotes a Gaussian distribution with mean µ and covariance ma-
trix Σ that in this case is truncated to the region [−1, 1]× [−1, 1].

Figure 3.8 and 3.9 show particle paths and weights, respectively, after one it-
eration. For this example thirty particles are used. Figure 3.10 and 3.11 show
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particle paths and weights after six iterations. From this example it is clear
that only few particles contribute to the mean estimation because many par-
ticle weights are insignificant. The whole idea of IS is to make efficient use
of particles. For this example it is clear that inefficient use of the particles is
the result of a non-optimal importance distribution which places particles in re-
gions where f(x, y) is negligible. This leads to the question of what the optimal
importance distribution for SIS is?
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Figure 3.8: Figure shows contours of f(x, y) and the 30 particle paths after one
iteration of SIS.

In [13] the optimal importance function is found under the criterion of minimum
variance of the importance weights. However, use of the optimal importance
function is made difficult by two issues 1) sampling from it and 2) evaluation
of the importance weights. As mentioned in both [13] and [11] then the SIS
procedure is not guaranteed to be efficient even though the optimal importance
function can be used. Furthermore, it can even be shown that the variance of
the importance weights increases over time even though the optimal importance
function is used. In [13] it says ”Thus, it is impossible to avoid a degeneracy
phenomenon. In practice, after a few iterations of the algorithm, all but one of
the normalized importance weights are very close to zero and a large computa-
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Figure 3.9: Figure shows particle weights after one iteration of SIS.

tional effort is devoted to updating trajectories whose distribution to the final
estimate is almost zero.” This phenomenon is referred to as degeneration of the
particles.

In order to reduce the effect of the degeneracy, particle filters adds a resam-
pling step (also called selection step in some literature) to the SIS procedure.
The fundamental idea behind the resampling is to eliminate particles with low
importance weights and move them to regions with higher importance weights.
The way this is done is to duplicate some particles a number of times. In [34]
it is written ”A selection scheme associates to each particle x(i)

0:t a number of
’children’, say Ni ∈ N, such that

∑N
i=1 Ni = N” where N denotes the number

of particles. After resampling all particles (original and duplicated) have equal
weights 1/N . The example is now continued to demonstrate how this works.

The example is repeated but now with a resampling step in each iteration. In
figure 3.12 those particles after first iteration (see figure 3.8) to be deleted are
marked by a red cross. In figure 3.13 those particles marked by a cross in
figure 3.12 have been removed and the four particles left after the deletion have
been duplicated a number of times and adapted with one step of a Gaussian
RW. In figure 3.14 this procedure has been repeated six times and we see that
all thirty particles are more or less placed in ’important’ regions and thereby
increasing efficiency of the particles. However, the example also do illustrate
that in this particular case the particle filter is not ’capturing’ the presence of
the weaker second mode of the PDF which makes the estimate of the mean value
quite inaccurate. Eventually, even when using thousands of particles then after
enough iterations the particles will all be placed around the ’stronger’ mode.



3.5 Importance Distribution and Resampling 43

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

f(x,y) contours and 30 particles

1

2

3

4

5

6

7

8

9
10

11 12

1314

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Figure 3.10: Figure shows contours of f(x, y) and particle paths after six itera-
tions of SIS.

The resampling procedure used in this example is called residual resampling.
This resampling procedure is used in the ReBEL (Recursive Bayesian Estimation
Library) toolbox and is described in [34].
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Figure 3.11: Figure shows particle weights after six iterations of SIS.
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Figure 3.12: The figure shows which particles are deleted after a resampling step
in first iteration. Se figure 3.8 for comparison. After resampling four particles
are retained (number 6, 11, 16, 22)
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Figure 3.13: The four particles left after the deletion have been duplicated a
number of times and adapted with one step of a Gaussian RW.
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Figure 3.14: This figure shows particles paths after six iterations of SIS with
resampling.
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3.6 Bayesian Adaptive FIR Filtering

In this section a PF approach to the adaptive FIR filtering problem is presented.
Generally, the FIR model is

yn =
M∑

k=0

bk xn−k + σun
un = bT

n xn + σun
un , un ∼ N (0, 1) (3.58)

where M denotes the order of the filter. The model in (3.58) is a special case
of the model in (3.4)-(3.9). In adaptive filtering the goal is to estimate the
coefficient vector bn given input and output data. In addition to the coefficient
vector the noise variance is also assumed unknown. The parameters are assumed
to evolve according to the following first-order Markov processes

b0 = ν , ν ∼ N (
0(M+1)×1, δ

2
b0

I(M+1)

)
bn = bn−1 + ςn , ςn ∼ N (

0(M+1)×1, δ
2
bI(M+1)

)
σ2

u0
= γ , γ ∼ U (

0, δ2
u0

)
σ2

un
= σ2

un−1
+ ψn , ψn ∼ N (

0, δ2
u

)
(3.59)

where the hyper-parameters δ2
b0

, δ2
b, δ2

u0
, δ2

u need to be tuned for the particular
problem at hand. Because samples are generated by the prior the weights are
given by

ωn ∝ p(yn|xn,bn, σ2) , p(yn|xn,bn, σ2) = N (
yn − bT

n xn, σ2
)

(3.60)

As a demonstration one thousand samples are generated using (3.58) where
M = 3, b = [0.7,−0.4, 0.2,−0.9]T and σ2

un
= 0.1. In figure 3.15 is shown the

result of using the NLMS algorithm to estimate the coefficients for two different
step-sizes. Figure 3.15 indicates that the step-size parameter can be varied to
adjust the magnitude of the fluctuations and the rate of convergence. In the
PF method the RW variances have a similar role. Furthermore, the number
of particles to use also needs to be determined. Figure 3.16 shows the results
of applying the PF method to estimate the coefficients and the noise variance.
The setting of the hyperparameters is δ2

b0
=1, δ2

u0
=1, δ2

u=5e−5 and the number
of particles used is 30. In figure 3.16a δ2

b=1e−4 and in figure 3.16b δ2
b=5e−4.

The PF method is also used to estimate the noise variance which is also shown
in figure 3.16. Computational-wise the PF method is more expensive than the
NLMS algorithm, approximately the number of particles times more expensive.
Maybe the most interesting aspect of using a PF based adaptive filter is the
opportunity to incorporate knowledge of the system into the adaptation. It is
for instance straightforward to reparameterize the model in (3.58) using one of
the parameterizations discussed in section 3.1.
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Figure 3.15: Plot to the left shows the true values of the coefficients and the
estimated values by the NLMS algorithm using step-size 0.05. Plot to the right
shows the same with step-size 0.2.

3.7 Bayesian Adaptive IIR Filtering

The PF method can also be used in the adaptive IIR filtering scenario. The IIR
model is

zn =
N∑

k=1

ak zn−k + xn (3.61)

yn =
M∑

k=0

bk zn−k + σu un , un ∼ N (0, 1) (3.62)

which is equivalent to the model in (3.4)-(3.9). Given input and output the goal
is to estimate a and b, where a = [a1, . . . , aN ]T and b = [b0, . . . , bM ]T . When
adapting the ak coefficients care must be taken to make sure that the resulting
filter remains stable. That is, the poles of the IIR system must remain within
the unit circle. One way to ensure stability in the PF approach is to model each
of the ak coefficients with a Gaussian RW and every time a set of coefficients
is generated, the roots of the corresponding polynomial is calculated. If the
roots are not all within the unit circle the coefficients are discarded and a new
set of coefficients is generated and so on. However, this approach is not very
efficient because of the need to compute the roots of a polynomial for every
set of coefficients generated. A better approach is to model the roots directly
because it is then much simpler to check for stability. As a demonstration a
complex conjugate pole pair is added to the example in section 3.6. The complex
conjugate pole pair is chosen such that a bump is introduced in the frequency
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Figure 3.16: Plot to the left shows the true values of the coefficients and the
estimated values by the PF algorithm using a RW variance of 1e−4 for the
coefficient. Plot to the right shows the same with a RW variance of 5e−4.

response of the filter at a digital frequency of 0.125π and with a bandwidth of
0.0625π which results in a = [1.675,−0.8217]T . If a sample rate of 16 kHz is
assumed then the center frequency of the resonance occurs at 1000 Hz and the
bandwidth corresponds to 500 Hz. It is assumed that the center frequency and
bandwidth of the resonance evolve according to first-order Markov processes
specified by

f0 = ε , ε ∼ U (flow, fhigh)
fn = fn−1 + λn , λn ∼ N

(
0, δ2

f

)

b0 = β , β ∼ U (blow, bhigh)
bn = bn−1 + αn , αn ∼ N (

0, δ2
b

)
(3.63)

with flow = 200 Hz, fhigh = 4000 Hz, blow = 20 Hz, bhigh = 1000 Hz, δ2
f =

δ2
b = 20. The setting for the bk coefficients and noise variance is the same as in

section 3.6 and the RW variance for the bk coefficients is δ2
b=1e−4. The result

of one simulation is shown in figure 3.17.

3.8 Bayesian Periodic Signal Modeling

A time-series, fn, is periodic with period N if fn+N = fn. An N-periodic
time-series can be represented by a Fourier series

fn = a0 +
N−1∑

k=1

( ak cos(k 2πn/N) + bk sin(k 2πn/N) ) (3.64)
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Figure 3.17: (a) True and estimated bk coefficients (b) true and estimated noise
variance (c) true and estimated resonance frequency and bandwidth (d) paths
from (c) converted to ak coefficients.

For the example in this section a zero-mean signal will be modeled which means
that a0=0 and the Fourier series is truncated to L components (the fundamental
and L− 1 harmonics) such that the following model is used

f̂n =
L∑

k=1

( ak cos(k 2πn/N) + bk sin(k 2πn/N) ) (3.65)

A model for a noisy periodic signal is thus

yn = cT
nxn + σu un , un ∼ N (0, 1) (3.66)

where (omitting time index) cT = [a1, b1, . . . , aL, bL]T and

xn = [cos(2πn/N), sin(2πn/N), . . . , cos(L 2πn/N), sin(L 2πn/N)]T (3.67)

Here, (3.65) is used to model a synthetic periodic signal. The periodic sig-
nal is generated using the Liljencrants-Fant (LF) model which models the har-
monic component present in the signal exciting the vocal tract when producing
voiced speech. The waveform was generated using the settings t0=99ts, te =
0.7t0, tp=0.6t0, ta=0.05t0, Ee=3, where ts denotes the sampling period. See
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Appendix D for an introduction to the LF model and its parameters. Figure
3.18 shows one period of the generated excitation signal. The figure also shows
the Fourier series coefficients of the waveform and the waveform which results
when retaining only six components in the Fourier series. The waveform shown
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Figure 3.18: Upper plot shows one period of the derivative glottal flow waveform
generated using the LF model. The period is 100 samples and fs = 16 kHz. The
plot also shows the approximation to this periodic signal (black dashed line) by
retaining the first L components in the Fourier series of the waveform, that is,
L = 6 in (3.65). Lower plot shows the Fourier series coefficients of the periodic
waveform (blue: ak coefficients, red: bk coefficients).

in the upper plot of figure 3.18 was repeated 80 times such that an 8000-samples
sequence was obtained. White Gaussian noise with variance 3.7e−2 was added
to the periodic signal which resulted in a SNR of approximately 12 dB. Each
Fourier coefficient was adapted using a Gaussian RW with variance 1e−3. The
pitch period is adapted using a discrete uniform RW. If N denotes the pitch
period then,

N0 = δ , δ ∼ UD (70, 130)

Nn =
{

Nn−1 , , if mod(n,Nn−1) == 0
Nn−1 + φn , φn ∼ UD (−4, 4) , else

(3.68)
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where UD (a, b) denotes the discrete uniform distribution on the interval from
a to b which is the set {a, a + 1, . . . , b}. If c denotes a Fourier coefficient then

c0 = δ , δ ∼ N (0, 0.2)

cn =
{

cn−1 , , if mod(n,Nn−1) == 0
cn−1 + ηn , ηn ∼ N (0, 1e−3) , else

(3.69)
The noise variance was adapted using a Gaussian RW with variance 1e−5 limited
to positive values. The particle filter used 200 particles. One simulation was
made and figure 3.19 shows the pitch period estimates. Figure 3.20 shows the
last 1000 samples of the clean period signal and the estimated periodic signal.
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Figure 3.19: Figure shows the estimated pitch period. The true pitch period is
100 samples.

3.9 Discussion

Particle filtering was introduced by first explaining properties of IS before mov-
ing on to SIS and the necessity of resampling. Particle filtering inference is based
on random numbers. This has the side-effect that the output of the particle filter
will be different every time a new experiment is performed unless the sequence
of random numbers used are exactly the same. This aspect of particle filtering
may represent a significant disadvantage because it complicates quantification
of the performance of a given particle filter. However, on the other hand particle
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Figure 3.20: Figure shows a number of periods of the clean period signal and
the estimated signal for an SNR of approximately 12 dB.

filtering represents a quite flexible method for approximate Bayesian inference
as it can be modified to work with reparameterizations or changes in a model
in a relative straightforward manner as demonstrated by the examples.

Particle filtering was demonstrated in sections 3.6-3.8 by applying the method
to three problems of relevance to hearing aids. In appendices F and G parti-
cle filtering was applied to the problem of reducing noise in speech. Especially
the results in the paper in appendix G seem promising. The paper examines
the usefulness of particle filter inference in three different speech models for the
application of non-stationary noise reduction. The most promising candidate
speech model consists of a cascade-coupling of second-order IIR resonance filters
parameterized by formant frequencies and formant bandwidths. Next, perfor-
mance of a commercial-grade hearing aid noise reduction algorithm is compared
to the particle filter algorithm which uses the chosen candidate speech model.
Performance is compared for both stationary and non-stationary white noise
and the particle filter algorithm compares favorably to the hearing aid noise
reduction algorithm in low-SNR situations.



Chapter 4

Results & Outlook

This report has considered MMSE signal estimation in a single-channel setup
where the signal is contaminated by additive noise. This problem has been
approached in two different ways. One way in which priors for the signal and
noise have been expressed by their PDFs and the MMSE estimator is approx-
imated using saddlepoint approximation and another way in which the priors
have been provided in terms of generative models and the MMSE estimator is
approximated by particle filtering. Conclusions and recommendations for fur-
ther research will be given for both approaches.

4.1 Saddlepoint Approximation

The integral defining the MMSE estimator when expressed directly in terms of
prior PDFs consists of a weighted convolution integral between the prior PDFs,
see e.g. (1.4) or (2.2). However as has been shown in this report then for the
univariate case considered in the paper in appendix E and for the multivariate
case considered in chapter 2 then this integral can be rewritten into an inverse
Laplace transform integral with an integrand that is the product between the
Moment Generating Function (MGF) of the noise and the first-order derivative
of the MGF of the signal. The presence of the derivative of the MGF changes
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everything compared to the situation of using SPA for approximating tail prob-
abilities where there is no derivative of MGFs involved. The consequence of the
derivative is that the search for a useful saddlepoint becomes significantly more
complex as the search problem is not confined to locating a unique and real sad-
dlepoint as in the case of approximating a tail probability. Furthermore, there is
the added issue of nearby or coalescing saddlepoints as has been demonstrated
in the paper in appendix E. This means that applying SPA to approximate the
MMSE integral is far from ’plug-n-play’. It is not straightforward to extend and
apply the results of the paper in appendix E to the multivariate case. Even if
the results in appendix E is (or can be) extended to the multivariate case then
applying the results gets rather involved and will be limited to low dimensional
problems. As such,

MMSE estimation by SPA appears not as promising as we thought before we
started and we do not consider it a priority to further investigate this method.

4.2 Particle Filtering

The use of particle filtering for MMSE estimation of speech has been examined
in detail. A reparameterized time-varying auto-regressive model for speech was
used. It has been found very beneficial to reparameterize the speech model in
terms of formant feature parameters to exploit prior knowledge of these features
in the estimation task. Even though the proposed reparameterization introduced
non-linearities into the model then particle filtering turned out to be a quite
flexible and easy-to-use method for such reparameterizations. The versatility
of particle filtering for parameter estimation has also been demonstrated in the
three examples in sections 3.6-3.8, where especially the example in section 3.8
could be used to improve the speech model.

The performance of the particle filtering algorithm was compared to a state
of the art hearing aid noise reduction algorithm in the paper in appendix G.
Both stationary and non-stationary white noise were used. In order to make
a meaningful comparison a modified MMSE estimator was introduced. It al-
lowed trading off SNR improvement for increased speech intelligibility by ad-
justing one parameter. Performance of the two algorithms were measured by
two complementary objective measures, segmental SNR improvement and a sig-
nal distortion measure. The measurements indicated that the particle filtering
algorithm performs better than the hearing aid algorithm for SNR levels below
10 dB. However, informal listening tests indicated that performance of the two
algorithms was very similar. It is believed that short-comings of the used speech
model is the main reason that listening tests did not favor the particle filtering
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Figure 4.1: Wide-band spectrogram of TIMIT sound SA1 downsampled to 16
kHz.

algorithm over the hearing aid algorithm.

It was also found that the particle filtering algorithm was able to track the
noise variance better than the hearing aid algorithm for SNR levels below 10
dB. However, for SNR levels above 10 dB the noise tracking of the particle filter
algorithm became inaccurate during intervals of speech with most of the energy
concentrated at high frequencies. The used speech model does not model such
high frequency energy. To illustrate this point, figure 4.1 shows a wide-band
spectrogram of the TIMIT sound SA1 (’She had your dark suit in greasy wash-
water all year’). It is observed that at the time points 1.0 s, 1.7 s and 2.1 s bursts
with significant energy at high frequencies are present in the speech signal. If
this spectrogram is correlated with figure 11b in the paper in appendix G it is
seen that these intervals cause inaccurate estimates of the noise variance.

It is believed that performance of the particle filter algorithm can be improved
significantly by extending the speech model. Both noise tracking as well as
noise reduction capabilities and also for SNR levels above 10 dB. One short-
coming of the speech model is that it does not model speech energy above 5000
Hz because formants do not appear above approximately this frequency and
for a sampling frequency of 16 kHz it gives a high-frequency interval where
present speech energy is not modeled. The speech model could for instance be
extended such that the output is given as a mixing of the non-extended speech
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model and high-pass filtered noise. Another short-coming of the speech model
is a missing harmonic component in the excitation signal which occurs during
voiced speech. Such a harmonic component can for instance be modeled by a
Fourier series which was also used in the example in section 3.8 but even better
it could be modeled by for instance the Rosenberg-Klatt++ model described in
appendix D.

The noise tracking capabilities of the particle filtering algorithm looks inter-
esting from a hearing aid point of view. Excellent noise tracking capabilities
is important for the success of a non-stationary noise reduction algorithm and
traditional approaches to obtain a noise estimate have limited noise tracking
capabilities during periods of speech. Therefore it may be worth investigating
how the noise estimate from a particle filter algorithm can be integrated into a
hearing aid.

The approximate inference performed by the particle filtering algorithm can
also be improved by introducing more sophisticated proposal distributions such
as for instance the method developed in [11]. Such approaches will increase
efficiency of particles at the expense of increased computational complexity.

There are two primary issues that will have to be investigated further before
noise reduction by particle filtering can be considered a serious candidate for use
in hearing aids. Firstly, performance must be improved by extending the speech
model such that high-frequency speech components are modeled and such that
a harmonic excitation signal is also modeled. This should make the particle
filtering algorithm more robust in the sense that performance is not varying too
much dependent of what speech sounds are being processed and it should also
improve performance for higher SNRs. Secondly, validation and quantification of
performance is relative tedious because many experiments have to be conducted
before a solid statistical picture of the workings of the particle filtering algorithm
can been obtained. The particle filtering algorithm is reliant on random numbers
and hence performance should be measured statistically. It must be determined
whether the increased overhead of doing many experiments is not a practical
nightmare. There is also the possibility lurking that for a particular situation the
particle filter algorithm will be highly sensitive to some sets of random numbers
such that on average in one out of say thousand experiments the particle filtering
algorithm performs poorly due to for instance local maxima.

Computational complexity is not considered a primary issue. It is considered
possible to implement small particle filters with say ten to twenty particles
on next generation digital hearing aid platforms. Another point is that many
hearing aid companies are now focusing on wireless links between hearing aids
in binaural settings and at some point it is considered likely that communication
between a hearing aid and for instance a cell phones will be possible hence the
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hearing aid will have access to much more powerful processing units. Another
issue that should be investigated further on is that of extending the noise model.
In this report emphasis has been focused on developing a useful speech model
but the usefulness of the particle filtering algorithm will also be dependent on
how accurate the noise model is.

As such,

it is recommended to consider particle inference in the proposed generative model
for speech as an alternative approach to the single-channel speech estimation
problem and further work should focus on extending the speech model and on
issues related to validation and quantification as mentioned above.



58 Results & Outlook



Appendix A

Conditional Mean of Signal in
Single-Channel Additive Noise

Observation Model

Let M-variate RV xk = [xk,1, . . . , xk,M ]T have joint PDF pk(x) and joint MGF
µk(λ), where the ROA of the MGF is Rk in the M-dimensional complex λ-plane,
and k = 1, 2. Let contours Ck = {Ck,m}, m = 1 . . . M lie in the ROA Rk for
k = 1, 2. Form the sum variable

y = ax1 + bx2 , a > 0, b > 0. (A.1)

The conditional PDF of x1 given y is

pc(x1|y) =
p1(x1)p(y|x1)

p(y)
=

p1(x1)
p(y)

p2

(
y − ax1

b

)
1
b
. (A.2)
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Then, the conditional mean of interest is

E{x1|y}=
∫

dx1 x1 pc(x1|y)

=
1

p(y)

∫
dx x p1(x) p2

(
y − ax

b

)
1
b

(A.3)

=
1

p(y) b

∫
dx x p1(x)

1
(i 2π)M

∫

C2

dλ exp
(
−1

b
(y − ax)T λ

)
µ2(λ)

=
1

(i 2π)M

1
p(y) b

∫

C2

dλ µ2(λ) exp
(
−1

b
yT λ

) ∫
dx x p1(x) exp

(a

b
xT λ

)
.(A.4)

where the convenient condensed notation is made use of:
∫

dx =
∫

dx1 . . .
∫

dxM

and
∫

Ck
dλ =

∫
Ck,1

dλ1 . . .
∫

Ck,M
dλM . But MGF

µ1(λ) =
∫

dx p1(x) exp
(
xT λ

)
, µ′1(λ) =

∫
dx x p1(x) exp

(
xT λ

)
(A.5)

for λ εR1, meaning that

x p1(x) =
1

(i 2π)M

∫

C1

dλ exp
(−xT λ

)
µ′1(λ). (A.6)

The use of (A.5) in (A.4) yields

E{x1|y} =
1

(i 2π)M

1
p(y) b

∫

C

dλ exp
(
−1

b
yT λ

)
µ2(λ)µ′1

(a

b
λ

)
,

provided that contours C = {Cm}, m = 1 . . .M lies in the intersection of ROAs
R1 and R2. The substitution λ = bz yields perhaps the neatest form, namely,

E{x1|y} =
1

(i 2π)M p(y)

∫

C

dz exp
(−yT z

)
µ′1(az)µ2(bz). (A.7)

The vector differentiation in (A.5) has the following meaning

∂

∂λ
exp

(
xT λ

)
=




∂
∂λ1

exp (x1λ1 + · · ·xMλM )
...

∂
∂λ1

exp (x1λ1 + · · ·xMλM )


 (A.8)

=




x1 exp (x1λ1 + · · ·xMλM )
...

xM exp (x1λ1 + · · ·xMλM )


 (A.9)

=x exp
(
xT λ

)
(A.10)



Appendix B

SPA for Single Isolated
Saddlepoint

Consider the integral

I =
1

(i 2π)M

∫

C

dz exp [φ(z)] , (B.1)

where C = {Cm}, m = 1 . . . M are Bromwich contours. Suppose that

∂φ(z)
∂zm

∣∣∣∣
zs

= 0 for m = 1 . . . M, (B.2)

meaning that zs is the location of a saddlepoint of the integrand. Then,

φ(z) ∼= φ(zs) +
1
2
(z− zs)T Λ(zs)(z− zs) (B.3)

for z near zs. Substitution in (B.1) yields

I ∼= exp [φ(zs)]
(i 2π)M

∫

C1

dz exp
(

1
2
(z− zs)T Λ(zs)(z− zs)

)
(B.4)

where it is presumed that contours C1 are equivalent Bromwich contours to C
that passes through the point zs. Substituting z = zs + it in (B.4) then

I ∼= exp [φ(zs)]
(2π)M

∫ ∞

−∞
dt exp

(
−1

2
tT Λ(zs) t

)
=

exp [φ(zs)]
(2π)M/2|Λ(zs)|1/2

(B.5)
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where the Jacobian of the variable substitution is J = iM . This is the SPA for
an isolated saddlepoint, at which Λ(zs)6=0. Correction terms can be derived by
extending the expansion in (B.3) to higher-order terms.



Appendix C

MGF M-variate Laplace
Distribution

Let x be a zero-mean M-variate Laplace distributed RV with dimensionality M ,
then the corresponding MGF is computed from

µx(z)=
∫

dx exp
(
zT x

)
px(x) (C.1)

=
∫

dx exp
(
zT x

) ∫ ∞

0

ds pX|S(x|S = s)pS(s) (C.2)

where pX|S(x|S = s) is Gaussian with covariance matrix sΓ (detΓ = 1), thus

pX|S(x|S = s) =
1

(2π s)M/2
exp

(
− 1

2s
xT Γ−1x

)
(C.3)

and s is exponentially distributed,

pS(s) =
1
λ

exp
(
− s

λ

)
, s > 0, λ > 0. (C.4)

Interchanging the order of integration and inserting (C.4) into (C.2) yields,

µx(z) =
1
λ

∫ ∞

0

ds exp
(
− s

λ

) ∫
dx exp

(
zT x

)
pX|S(x|S = s) (C.5)
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The MD integral over x is recognized as the MGF of a Gaussian RV with PDF
as in (C.3). Hence,

µx(z)=
1
λ

∫ ∞

0

ds exp
(
−s

(
1
λ
− 1

2
zT Γz

))
(C.6)

=
1
λ

∫ ∞

0

ds exp
(

s

(
λzT Γz− 2

2λ

))
(C.7)

=− 1
λ

2λ

λzT Γz− 2
(C.8)

=
1

1− λ
2 zT Γz

(C.9)

The integral in (C.7) converges when zT Γz < 2
λ .



Appendix D

Brief Introduction to
Excitation Models

D.1 The Rosenberg-Klatt Model

The continuous-time Rosenberg-Klatt model (RK model) is given by (see e.g.
[24][21])

g(t) =
{

2at− 3bt2, 0 ≤ t ≤ OQ · T0

0 , OQ · T0 < t ≤ T0
(D.1)

where

a =
27 ·AV

4 ·OQ2 · T0
, b =

27 ·AV

4 ·OQ3 · T 2
0

, a = OQ · T0 · b. (D.2)

Here, g(t) models one period of the harmonic excitation. The upper equation
in (D.1) models the open phase of the period and the lower equation models
the closed phase of the period. T0 is the period in seconds, AV is an amplitude
parameter and OQ is called the open quotient. OQ is 0 if the there is no open
phase (always closed) and it is 1 if there is no closed phase (always open). A
plot of two periods of the model waveform is plotted in figure D.1 for the setting
Fs = 16 kHz, OQ = 0.6, AV = 2.4 and T0 = 0.01 s (pitch 100 Hz). This model
is also referred to as the KLGLOTT88 model.
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Figure D.1: Two periods of the derivative glottal waveform.
D.2 The LF model

Whereas the well known all-pole model for the vocal tract (the filter) originally
was derived based on an acoustic model then the Liljencrants-Fant model (LF
model) for the residual signal is derived based on signal processing theory. The
LF model was introduced in [16] and the model can make excellent fits to com-
monly encountered derivative glottal pulse shapes with only 5 parameters. The
model is also capable of matching extreme phonations. In [16] it is given by

E(t) =
{

E0e
αt sin(ωgt) , 0 ≤ t ≤ Te

− E0
εTa

[
e−ε(t−Te) − e−ε(Tc−Te)

]
, Te ≤ t ≤ Tc

(D.3)

where the first part models the derivative glottal flow from start of the open-
phase to the GCI (Glottal Closure Instant). The second part models the return-
phase as being exponential. Instead of using the original formulation in [16] the
formulation and notation in [38] will be used.

In [38] a framework for a general description of a model of a derivative glottal
waveform with an exponential decay modeling the return-phase is presented.
The general expression for the derivative glottal waveform is given as

g′(t) =

{
f(t) , 0 ≤ t < te
f(te)

exp(−(t−te)/ta)−exp(−(t0−te)/ta)
1−exp(−(t0−te)/ta) , te ≤ t < t0

(D.4)

In the LF model

f(t) = B sin
(

π
t

tp

)
exp(αt) , (D.5)
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and by direct integration

g(t) =





∫ t

0
f(τ)dτ , 0 ≤ t < te∫ te

0
f(τ)dτ + taf(te)

1−exp(−(t−te)/ta)−((t−te)/ta) exp(−(t0−te)/ta)
1−exp(−(t0−te)/ta)

, te ≤ t < t0

=





B tp

[
π+exp(αt)

�
αtp sin(π t

tp
)−π cos(π t

tp
)
�

(αtp)2+π2

]
, 0 ≤ t < te

∫ te

0
f(τ)dτ + taf(te)

1−exp(−(t−te)/ta)−((t−te)/ta) exp(−(t0−te)/ta)
1−exp(−(t0−te)/ta)

, te ≤ t < t0

(D.6)

There are 5 parameters in the model, 4 timing parameters and one amplitude
parameter. The timing parameters are {tp,te,ta,t0} and the amplitude param-
eter is denoted Ee. The parameters are illustrated in figure D.2. The timing
parameter tp denotes the instant of the peak of the glottal flow which also corre-
sponds to when the derivative glottal flow, g′(t), crosses zero. Timing parameter
te denotes the instant when the derivative glottal flow reaches its negative peak,
Ee. This instant is also referred to as the Glottal Closure Instant (GCI). Timing
parameter t0 designates the time it takes to complete one period of the glottal
pulse, which is also the pitch period. The timing parameter ta is the time con-
stant of the exponential decay but it also designates the duration of the return
phase. After te + ta the vocal folds have reached maximum closure and the
airflow has reduced to its minimum [38]. In order to generate or synthesize a
period of the glottal-pulse the synthesis parameters {B, α} must be determined.
Especially α is not straightforward to determine. In order to determine α a con-
tinuity condition must be fulfilled. The continuity condition must be satisfied
in order to have zero leakage. To obey the continuity condition the following
must be fulfilled

∫ te

0

f(τ)dτ + taf(te)D(t0, te, ta) = 0 (D.7)

where

D(t0, te, ta) = 1− (t0 − te)/ta
exp((t0 − te)/ta)− 1

(D.8)

which is found by inserting t = t0 into (D.6). If all 4 timing parameters are
known then α is determined by solving the continuity condition in (D.7). This
can be done for instance by using Matlab’s fzero function. In [38] an iterative
procedure for computing α more suitable for implementation on a DSP is de-
scribed. After α has been determined the amplitude parameter B can be found
by inserting the point (te, Ee) into (D.5).
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Figure D.2: Glottal pulse (top) and its time derivative (bottom).

D.3 The Rosenberg++ model

The motivation for using the LF model over the Rosenberg-Klatt model is the
enhanced flexibility of the LF model and because it also models the return-
phase. In particle filtering samples will be drawn from priors of the timing
parameters and these samples will then be used to generate one period of the
derivative glottal pulse period. This can get quite complex computationally
because for every particle the continuity condition has be to solved for α every
time new values of the timing parameters are obtained. The Rosenberg++
model (R++ model) is an upgraded Rosenberg-Klatt model which makes a
good approximation to the LF model and for which the complexity of solving
the continuity condition is significantly decreased. For the R++ model

f(t) = 4At(tp − t)(tx − t) (D.9)

The continuity condition can be solved for tx analytically

tx = te

(
1−

1
2 t2e − tetp

2t2e − 3tetp + 6ta(te − tp)D(t0, te, ta)

)
(D.10)
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Use and Subtleties of Saddlepoint Approximation
for Minimum Mean-Square Error Estimation

Thomas Beierholm,Student Member, IEEE, Albert H. Nuttall, and Lars K. Hansen

Abstract— An integral representation for the minimum mean-
square error estimator for a random variable in an observation
model consisting of a linear combination of two random variables
is derived. The derivation is based on the moment-generating
functions for the random variables in the observation model. The
method generalizes so that integral representations for higher-
order moments of the posterior of interest can be easily obtained.
Two examples are presented that demonstrate how saddlepoint
approximation can be used to obtain accurate approximations
for a minimum mean-square error estimator using the derived
integral representation. However, the examples also demonstrate
that when two saddlepoints are close or coalesce, then saddlepoint
approximation based on isolated saddlepoints is not valid.A
saddlepoint approximation based on two close or coalesced
saddlepoints is derived and in the examples, the validity and
accuracy of the derivation is demonstrated.

Index Terms— Minimum mean-square error estimation
(MMSE), saddlepoint approximation, coalescing saddlepoints,
monkey saddlepoint, moment-generating functions.

I. I NTRODUCTION

T HE possibility of using SaddlePoint Approximation
(SPA) to evaluate the conditional mean for a Random

Variable (RV) in a linear combination with constant coef-
ficients of two RVs is examined. The integral defining the
conditional mean contains a weighted convolution integralof
the corresponding Probability Density Functions (PDFs). This
integral is in general intractable, ruling out analytic evaluation
of the conditional mean and therefore necessitating the use
of approximations. The conditional mean is also referred toas
the Minimum Mean-Square Error (MMSE) estimator. The idea
described in this paper is based on two observations 1) that the
weighted convolution integral defining the desired estimator
can be rewritten as a complex inversion integral involving the
Moment-Generating Functions (MGFs) of the RVs; 2) that the
complex inversion integral can be approximated by SPA.

The SPA was introduced into statistics in [2] where it
was used for approximating the mean ofn independent and
identically distributed RVs. More recently, in [3] and [4] the
SPA has proven very useful in obtaining tail probabilities
for a number of statistics. Using the SPA to obtain accurate
evaluations of a PDF, a unique real SaddlePoint (SP) in the
Region Of Analyticity (ROA) is used. In contrast, in order
for the SPA to be useful for the approximation of an MMSE
estimator, two SPs, as a complex conjugate pair, will in general
have to be made use of. This brings on the subtlety that when
the two SPs are close, a SPA based on an isolated SP becomes

T. Beierholm is with GN ReSound A/S, 2630 Taastrup, Denmark.
A. H. Nuttall, P. O. Box 401, Old Lyme, CT 06371, USA.
L. K. Hansen is with Informatics and Mathematcal Modeling, Technical

University of Denmark, DK-2800 Kgs. Lyngby, Denmark.

very inaccurate or even worse, when the two SPs coalesce, the
usual SPA becomes invalid. In two examples, it has been found
that two SPs moved towards each other on the real line as
the domain of the conditional RV in the MMSE estimator was
traversed. The two SPs finally coalesced into a monkey SP and
then moved vertically in opposite directions into the complex
plane. A SPA based on close or coalesced SPs is derived, and
the accuracy and validity of this SPA, when the two SPs are
close or coalesce, is demonstrated in two examples.

The main contributions of the paper are the derivation of
the integral representation for the MMSE estimator and the
derivation of a SPA based on two close or coalesced SPs.

In section II-A the derivation of an integral representation
for the MMSE estimator is presented. Section II-B reviews
the SPA based on an isolated SP, while section II-C derives
the SPA based on two close or coalesced SPs. Two examples
are presented in section III that demonstrate the subtlety of
coalescing SPs and the accuracy of the SPA based on two
close or coalesced SPs. Finally, in section IV a summary is
presented.

II. T HEORY

A. Conditional Mean

Let RV xk have PDFpk(x) and MGF µk(λ), where the
ROA of the MGF isRk in the complexλ-plane, andk = 1, 2.
Let contourCk lie in ROA Rk for k = 1, 2. Form the sum
variable

y = ax1 + bx2 , a > 0 , b > 0

The conditional PDF ofx1 given y is

pc(x1|y) =
p1(x1)p(y|x1)

p(y)
=

p1(x1)

p(y)
p2

(

y − ax1

b

)

1

b
(1)

Then, the conditional mean of interest is

E{x1|y}=

∫

dx1 x1pc(x1|y)

=
1

p(y)

∫

dxxp1(x)p2

(

y − ax

b

)

1

b
(2)

=
1

p(y)b

∫

dxxp1(x)
1

i2π

∫

C2

dλ e(−
y−ax

b
λ)µ2(λ)

=
1

i2πp(y)b

∫

C2

dλµ2(λ)e−
y

b
λ

∫

dxxp1(x)e
aλ
b

x(3)

But MGF

µ1(λ) =

∫

dx p1(x)eλx , µ′

1
(λ) =

∫

dx xp1(x)eλx (4)
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2

for λǫR1, meaning that

xp1(x) =
1

i2π

∫

C1

dλ e−xλµ′

1(λ) (5)

The use of (4) in (3) yields

E{x1|y} =
1

i2πp(y)b

∫

C

dλ e−
y

b
λµ2(λ)µ′

1

(a

b
λ
)

provided that contourC lies in the intersection of ROAsR1

and R2. The substitutionλ = bz yields perhaps the neatest
form, which is also the form used in the examples, namely,

E{x1|y} =
1

i2πp(y)

∫

C

dz e−yzµ′

1(az)µ2(bz) (6)

Alternatively, if p(y) is not given in closed form

E{x1|y} =
1

a

∫

Cdz e−yzµ′

1(az)µ2(bz)
∫

C
dz e−yzµ1(az)µ2(bz)

An alternative route uses (5) in (2) to get

E{x1|y}=
1

p(y)b

∫

dxxp2

(

y − ax

b

)

1

i2π

∫

C1

dλ e−xλµ′

1(λ)

=
1

i2πp(y)b

∫

C1

dλ µ′

1(λ)

∫

dx p2

(

y − ax

b

)

e−xλ

=
1

i2πp(y)a

∫

C

dλ µ′

1(λ)µ2

(

b

a
λ

)

e−
y

a
λ

where the same condition as above is required of contourC.
The substitutionλ = az leads to (6). Finally, it is straight
forward to consider higher-order moments of the conditional
PDF in (1) e.g.

E{x2
1|y} =

1

a

∫

C
dz e−yzµ′′

1(az)µ2(bz)
∫

Cdz e−yzµ1(az)µ2(bz)

B. SPA for Single Isolated Saddlepoint

Consider the integral

I =
1

i2π

∫

C

dz eφ(z) (7)

whereC is a Bromwich contour. Suppose thatφ′(zs) = 0,
meaning thatzs is the location of a SP of the integrand. Then,

φ(z) ∼= φ(zs) +
1

2
φ′′(zs)(z − zs)

2 (8)

for z nearzs. Substitution in (7) yields

I ∼=
eφ(zs)

i2π

∫

C1

dz e
1

2
φ′′(zs)(z−zs)2 (9)

where it is presumed that contourC1 is an equivalent
Bromwich contour toC that passes through the pointzs. Let

z = zs + r i/
√

φ′′(zs) , dz = dr i/
√

φ′′(zs)

Then, (9) becomes

I ∼=
eφ(zs)

2π
√

φ′′(zs)

∫

∞

−∞

dr e−
1

2
r2

=
eφ(zs)

√

2πφ′′(zs)
(10)

This is the SPA for an isolated SP, at whichφ′′(zs)6=0.
Correction terms can be derived by extending the expansion

in (8) to higher-order terms. In particular, the first-order
correction to the SPA is

I ∼=
eφ(zs)

√

2πφ′′(zs)

(

1 +
1

8

φ′′′′(zs)

[φ′′(zs)]2
−

5

24

[φ′′′(zs)]
2

[φ′′(zs)]3

)

(11)

C. SPA for Two Close Saddlepoints

Consider the integral

I =
1

i2π

∫

C

dz eφ(z) (12)

where C is a Bromwich contour in the original strip of
analyticity of the integrand, and

φ′(z1) = 0 , φ′(z2) = 0

wherez1 is near (or equal to)z2. That is, there are two close
(or coalesced) saddlepoints of the integrand of (12). Then,it
follows that

φ′(z) ∼= g (z − z1)(z − z2) = g (z2 − 2zmz + z1z2) (13)

for z nearz1 andz2, whereg is a constant to be determined,
and a midpoint is defined as

zm =
z1 + z2

2

From (13),

φ′′(z) ∼= 2g(z − zm) , φ′′′(z) ∼= 2g (14)

for z nearzm. Substitutingz = zm in the first relation yields
φ′′(zm) ∼= 0 which is useless. However, the same substitution
in the second relation leads to the selection

g ≡
1

2
φ′′′(zm)

which is well behaved, even as the two SPs approach and
coalesce with each other. It is presumed thatφ′′′(zm) 6= 0.
Integration of (13) now yields

φ(z) ∼= g

(

1

3
z3 − zmz2 + z1z2z

)

+ h (15)

for z nearz1 andz2. The constanth is determined by forcing
equality in (15) at the midpointzm, with the result that

h ≡ φ(zm) +
1

6
g zm (z2

1 − 4z1z2 + z2
2)

Integral (12) now takes the form

I ∼=
eh

i2π

∫

C1

dz e
1

3
gz3

−gzmz2+gz1z2z (16)

where it is presumed thatC1 is an equivalent Bromwich
contour toC. Let

A = g1/3 = [φ′′′(zm)/2]1/3 , z = −t/A (17)

α = zmA , β = z1z2A
2

to get

I ∼=
eh

i2πA

∫

C2

dt e−
1

3
t3−αt2+βt (18)

The minus sign indz = −dt/A has been absorbed into this
expression, by switching the direction of integration along



72 Appendix E

3

contourC2. C2 must take account of the possible complexity
of φ′′′(zm), the three possible roots forA in (17), and the
z = −t/A change of variables.

Now let t = u−α in (18) in order to eliminate the quadratic
term and get

I ∼=
eh+α(β− 2

3
α2)

i2πA

∫

C3

du e−
1

3
u3+(α2

−β)u

ContourC3 is simply a shift of contourC2. Finally, using all
the definitions above, along with some algebra, there follows

I ∼=
eφ(zm)

i2πA

∫

C3

du e−
1

3
u3+ρu (19)

where

A =

(

1

2
φ′′′(zm)

)1/3

, ρ =
1

4
A2(z1 − z2)

2 (20)

As z1 approachesz2, ρ tends to zero; however, the integral in
(19) is well-defined for all values ofρ, real or complex. Finally,
if contour C3 is arranged to start at infinity anywhere in the
angular sector of widthπ/3 centered about angle−2π/3 and
end at infinity anywhere in the angular sector of widthπ/3
centered about angle2π/3, then (19) takes the special form

I ∼=
eφ(zm)

A
Ai(ρ)

whereAi(z) is an Airy function. This is the SPA for two close
SPs under the conditions cited above.

In order to get correction terms to the SPA in (19), it
is necessary to consider additional terms in expansion (14),
namely,

φ′′′(z) ∼= 2g + φ′′′′(zm)(z − zm) +
1

2
φ′′′′′(zm)(z − zm)2

for z nearzm. Then, (15) is modified to read

φ(z) ∼=g

(

1

3
z3

− zmz2 + z1z2z

)

+ h +

1

24
φ′′′′(zm)(z − zm)4 +

1

120
φ′′′′′(zm)(z − zm)5

for z nearzm. This adds a multiplicative factor of

e
1

24
φ′′′′(zm)(z−zm)4 ∼=1 +

1

24
φ′′′′(zm)(z − zm)4 +

1

120
φ′′′′′(zm)(z − zm)5

to (16). This results in a multiplicative factor

1 +
1

24

φ′′′′(zm)

A4
(t + α)4 −

1

120

φ′′′′′(zm)

A5
(t + α)5

in (18) and the factor

1 +
1

24

φ′′′′(zm)

A4
u4

−
1

120

φ′′′′′(zm)

A5
u5

in (19), namely,

I ∼= (21)
eφ(zm)

i2πA

∫

C3

du e−
1

3
u3+ρu

(

1 +
φ′′′′(zm)

24 A4
u4

−
φ′′′′′(zm)

120 A5
u5

)

Again, if contourC3 is arranged to start at infinity anywhere in
the angular sector of widthπ/3 centered about angle−2π/3
and end at infinity anywhere in the angular sector of width
π/3 centered about angle2π/3, then (21) takes the special
form

I ∼= (22)
eφ(zm)

A

(

Ai(ρ) +
φ′′′′(zm)

24 A4
Ai′′′′(ρ) −

φ′′′′′(zm)

120 A5
Ai′′′′′(ρ)

)

This is the SPA with correction terms for two close SPs.
Contour C3 is exactly the contour that describes the Airy
function Ai(z), see [5, p.52]. The Airy functions are named
after the Royal Astronomer, Sir George Biddell Airy. The
airy functions are obtained as solutions to Airy’s differential
equation [5, p.50]

d2f

dz2
− zf = 0

They are

fn(z) =
1

i2π

∫

Ln

dt exp
(

−t3/3 + zt
)

, n = 1, 2, 3

When contourL1 is arranged to start at infinity anywhere in
the angular sector of widthπ/3 centered about angle−2π/3
and end at infinity anywhere in the angular sector of width
π/3 centered about angle2π/3, the solution is called the Airy
function of the first kind and is denoted byAi(z).

III. E XAMPLES

Two examples are described. The examples demonstrate
how the SPA based on isolated SPs becomes very inaccurate
in the region where two SPs coalesce. The examples also
demonstrate how the SPA based on nearby or coalesced SPs
improves accuracy significantly in this region. It should be
noted that for both examples, the conditional mean estimator
of interest can be derived analytically in closed form.

A. Example 1: Gaussian RVs

The MGF of a zero-mean gaussian RV with varianceσ2
x

and its first-order derivative with respect toλ is

µ(λ) = exp
(

σ2
xλ2/2

)

, µ′(λ) = σ2
xλ exp

(

σ2
xλ2/2

)

Using (6) the conditional mean for Gaussian RVs is given by

mx =
aσ2

1

i2πp(y)

∫

Cx

dz z exp
(

−yz + σ2z2/2
)

(23)

where

σ2 = a2σ2
1 + b2σ2

2 , p(y) =
1

√
2πσ

exp

(

−
1

2

y2

σ2

)

, for all y

The Bromwich contourCx can be anywhere in thez-plane
because the integrand is entire. After substitutingz̃ = σz, the
integral in (23) becomes

I =
1

σ

1

i2π

∫

Cx̃

dz̃
z̃

σ
exp(−y

z̃

σ
+

z̃2

2
) , with mx =

aσ2
1

p(y)
I

Defineq = y/(2σ) and letz = z̃; then
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I =
1

σ

1

i2π

∫

Cx̃

dz z exp(−2qz +
z2

2
)

The fundamental integral is then

Ĩ =
1

i2π

∫

C

dz z exp(−2qz +
z2

2
) (24)

which depends on only one parameter, namely,q = y/(2σ).
The integral in (24) can be calculated analytically. Makingthe
substitutionsz = ir anddz = idr, then

Ĩ=−
1

i2π

∫

∞

−∞

dr r exp(−2qir −
r2

2
)

=

√

2

π
q exp(−2q2) (25)

Continuing with the SPA to the integral in (24), the integrand,
f(z), is

f(z) = exp (φ(z)) = exp

(

−2qz +
z2

2
+ log z

)

The following functions are needed in the SPA, the correction
term or in finding the SPs

φ(z) = −2qz + log(z) + z2/2 (26)

φ′(z) = −2q +
1

z
+ z , φ′′(z) = 1 −

1

z2
(27)

φ′′′(z) =
2

z3
, φ′′′′(z) = −

6

z4
, φ′′′′′(z) =

24

z5
(28)

The SPs are found by solvingφ′(z) = 0. The integrand in
(24) will go to −∞ for negativez and will go to +∞ for
z positive. As the integrand goes through zero atz = 0 this
means that the integrand may not have real SPs. It is known
that there must be two SPs and they are found as solutions to
the equation

z2
− 2qz + 1 = 0

namely,
zs = q ±

√

q2 − 1 (29)

This means that forq2 < 1, the pair of SPs are complex
conjugate; otherwise, there are two real SPs. Forq2 < 1, the
two complex conjugate SPs are

z1 = q + i
√

1 − q2 , z2 = q − i
√

1 − q2 (30)

For q2 ≥ 1, the two real SPs are

z1 = q +
√

q2 − 1 , z2 = q −
√

q2 − 1 (31)

Figure 1 shows a trace of the SPs forq varying from−1.2
to 1.2. Initially the SPs start out on the negative real axis
and move towards each other. Whenq = −1 the two SPs
have coalesced atz = −1 into a monkey SP, an SP of
order 2, whereφ′′(zs) = 0. The SPs then move vertically
in opposite directions into the complexz-plane because the
SPs are a complex conjugate pair. Whenq = 0 the SPs are
pure imaginary. Forq becoming more positive, the SPs start
to approach each other and become nearly real. Whenq = 1
the SPs are real and have coalesced atz = 1; then they move
in opposite directions on the positive real axis.
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Fig. 1. Plot showing trace of SPs forq going from−1.2 to 1.2. The initial
locations of the SPs whenq = −1.2 are also indicated in the figure by a
small circle and cross.

For the caseq2 < 1, the SPA can be computed by summing
up the contributions to the integral for each of the two SPs.
However, because the two SPs are complex conjugates, the
contributions will be complex conjugates as well. This means
that the SPA can be computed by taking the real part of the
contribution for one of the two SPs and multiply this value
by two. So in essence, the functionsφ(z) andφ′′(z) need to
be evaluated only once. Using the SP,z1, the total SPA to the
integral in (24) is

Ĩ ∼= 2 · Re

{

exp(φ(z1)
√

2πφ′′(z1)

}

(32)

Inserting the expression forz1 in (30) into (26) and (27)

φ(z1)=−
1

2
− q2

− iq
√

1 − q2 + log
(

q + i
√

1 − q2

)

φ′′(z1)=
2(q2 + iq

√

1 − q2 − 1)

(q + i
√

1 − q2)2

It is not possible to obtain a simple analytic expression for
the SPA to the integral in (24). The ratio between the SPA in
(32) and the exact analytic expression for the integral in (24)
doesn’t lead to a simple expression either.

For the caseq2 ≥ 1, the real SP, wheref(z) is minimum on
the realz-axis, is used. The useful SP in (31) isz1. Inserting
the expression forz1 into (26) and (27)

φ(z1)=−
1

2
− q2

− q
√

q2 − 1 + log
(

q +
√

q2 − 1
)

φ′′(z1)=
2q2

√

q2 − 1 + q4 − 1

q2(1 +
√

q2 − 1)2

Using these expressions in the SPA based on isolated SPs and
in the ratio between SPA and the exact value of the integral,
simple analytical expressions are not obtained. The same is
true for the SPA with a correction term.

In figure 2, the accuraces of the SPA and the SPA with a
correction term are illustrated. This is done by computing the
ratios between the SPAs using (10) and (11) and the exact
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Fig. 2. Ratios of the SPA based on isolated SPs to the exact values of
estimator. SPA2 denotes the SPA with a correction term.

values of the integral. The figure reveals that the approxima-
tions are particularly inaccurate near the two points wherethe
SPs go from being real to complex; also note that the ratios
in figure 2 are symmetric aroundq = 0. The two originally-
distinct SPs have coalesced into a SP of order two (a monkey
SP), or are close to it. The results for the SPA based on isolated
SPs don’t apply when two SPs are very close or coalesce. The
reason is that on the Path of Steepest Descent (POSD) out
of z1, a Gaussian approximation based on the behavior right
at the peak location ofz1, is made. Then, when integrating
along that POSD out ofz1, before getting to a region of small
magnitude of the integrand, another POSD coming from the
other close SP atz2 is met, and to get to the other SP,z2, that
path of ascent has to be traversed. When the two SPs are close
the Gaussian contours from the two SPs are overlapping with
the result that the shape of the magnitude of the integrand in
the neighborhood of one of the two SPs is not Gaussian, but is
rather like a saddle. It is only the behavior of the magnitude
of the integrand on the contour of steepest descent that is
Gaussian-like.

The SPA based on two close SPs is now applied. The
midpoint iszm = q and inserting into (26)-(28), there follows

φ(zm) = log (q) −
3

2
q2 , φ′′(zm) = 1 −

1

q2
(33)

φ′′′(zm) =
2

q3
, φ′′′′(zm) = −

6

q4
, φ′′′′′(zm) =

24

q5

By reference to (20), takeA = 1/q which is real, but can be
positive or negative, depending on q. Then, using (20), (29),
there follows

ρ = 1 −
1

q2

If q > 0, thenA > 0. Bend both ends of contourC in (24)
into the right-halfz-plane so that they asymptotically approach
infinity with angles±π/3. This is contourC1 described in
(16). The substitutionz = −t/A, dz = −dt/A in (17) then
results int-plane contourC2 in (18) asymptotically starting
from infinity with angle−2π/3 and ending at infinity with

angle2π/3, which is the desired contour for theAi(z) function
representation.

If q < 0, thenA < 0. Bend both ends of contourC in (24)
into the left-halfz-plane so that they asymptotically approach
infinity with angles±2π/3. This is contourC1 described in
(16). The substitutionz = −t/A = t/|A|, dz = −dt/A =
dt/|A|, in (17) then results int-plane contourC2 in (18)
also asymptotically starting from infinity with angle−2π/3
and ending at infinity with angle2π/3, which is the desired
contour for theAi(z) function representation. However, the
factor A in the denominator in (18) is now replaced by|A|.

Both polarities ofq and A can be accommodated in this
example by replacing theA in the denominator of (18) by
A sgn(q). When the results in (29), (33) are substituted into
(22), the end result for the SPA is

I ∼ (34)

sgn(q)q2 exp

(

−
3

2
q2

) [

Ai(ρ) −
Ai′′′′(ρ)

4
−

Ai′′′′′(ρ)

5

]

The ratio between the expression in (34) and the exact value
of the integral in (25), gives, for allq,

R(q) =

√

π

2
|q| exp

(

1

2
q2

) [

Ai(ρ) −
Ai′′′′(ρ)

4
−

Ai′′′′′(ρ)

5

]

The region where this ratioR(q) is of interest is forq ∼ 1
according to (29). A plot of ratioR(q) for 0.8 < q < 1.2
reveals a maximum variation from0.992 to 1.07 from its ideal
value of1 for R(q), see figure 3. In fact, atq = 1 where the
two SPs coalesce,R(q) = 1.001. Thus, SPA (34) affords an
excellent estimate of the contour integral (24) for the situation
where the two SPs are close or have coalesced.
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Fig. 3. Ratio of the exact value to the SPAs based on close or coalesced
SPs. MSPA denotes the SPA based on two close SPs. MSPA2 denotes the
SPA based on two close SPs with a correction term. MSPA3 denotes the SPA
based on two close SPs with two correction terms.

B. Example 2: Laplace RVs

A univariate laplace distributed zero-mean RV has a PDF
given by

p(x) =
1

2βx

exp

(

−
|x|

βx

)

, βx > 0 (35)
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For this Laplace-distributed RV, the MGF is

µx(λ) = E{exp(λx)} =
1

1 − β2
xλ2

, |Re(λ)| < 1/βx

and the first-order derivative with respect toλ is

µ′

x(λ) =
2β2

xλ

(1 − β2
xλ2)2

Inserting into (6), the integrand is

f(z) = exp (φ(z)) =
2aβ2

1z exp(−yz)

(1 − b2β2

2
z2)(1 − a2β2

1
z2)2

The conditional mean is then given by

mx =
2aβ2

1

i2πp(y)

∫

Cx

dz exp(−yz)
z

(1 − z2

c2 )(1 − z2

d2 )2
(36)

wherey, c andd are real positive constants,c = 1/(bβ2) and
d = 1/(aβ1) and

p(y) =
β1β2

(

e
β1y

a β1b − e
β2y

b β2a
)

e−
y(β1b+β2a)

ab

2(β2
1
b2 − β2

2
a2)

, y > 0

After substitutingz = cz̃, the integral in (36) becomes

I =
1

i2π

∫

Cx̃

dz̃ exp(−ycz̃)
c2z̃

(1 − z̃2)(1 − c2z̃2

d2 )2
(37)

After making the substitutionsA = yc andB = c/d in (37),
the fundamental integral to approximate is

Ĩ =
1

i2π

∫

C

dz exp(−Az)
z

(1 − z2)(1 − B2z2)2
(38)

The exact value of this integral will depend on the two
fundamental parametersA and B. Therefore, the ratio of
the SPA to the exact value will depend only onA and B:
R(A, B). The integral in (38) can be evaluated analytically
using residues. For the polez = 1 the residue is

res1 = −
exp(−A)

2(B2 − 1)2

and for the double pole atz = 1/B the residue is

res2 =
exp(−A/B)

(

A + 2B − AB2
)

4B(B2 − 1)2

and the exact value for the integral is then

Ĩ = −res1 − res2 (39)

Bromwich contourC in (38) crosses the real axis of the
z-plane in the original strip of analyticity between the points
±x0, x0 = min(1, 1/B). This integrand has simple poles at
±1 and double poles at±1/B. The integrand in (38) is then
extended to the rest of thez-plane by analytic continuation
(AC). Since parameterA is positive, the two ends of contour
C can be bent to the right in thez-plane, so that the new
contour,C1, starts at infinity with angle−π/3 and ends up at
infinity with angleπ/3, still passing between the points±x0.
ContourC1 is equivalent toC.

The exp(−Az) function dominates the behavior of the
integrand for largez. For B < 1 the original contourC is
in the interior of (−1, 1) which is the original ROA. Forz

real and positive the integrand starts at a value0 for z = 0
and increases to+∞ as z → 1 from the left. Forz real and
negative, the integrand starts at a value0 and decreases to−∞
for z → −1 from the right. This means that there is no real
SP inside the ROA unlessA is large enough for the function
exp(−Az) to dominate inside the ROA so that a real and
positive SP is created inside the ROA. One way to deal with a
missing SP inside the ROA is to extend the integrand to allz
by means of AC and move the contour of integration outside
the original ROA towards+∞ in the complexz-plane because
the functionexp(−Az) decays rapidly to zero there. However,
this contour is not equivalent to the original contour because
a pole has been crossed. Another possibility is to make use of
complex SPs in the complexz-plane to obtain a SPA.

The SPA makes use of the following functions

φ(z)=−Az+log(z) − log(1 − z2) − 2 log(1 − B2z2)

φ′(z)=−A +
1

z
+

2z

1 − z2
+

4B2z

1 − B2z2

φ′′(z)=−
1

z2
+

2(1 + z2)

(z2 − 1)2
+

4B2(B2z2 + 1)

(B2z2 − 1)2

φ′′′(z)=
2

z3
−

4z(3 + z2)

(z2 − 1)3
−

8B4z(3 + B2z2)

(B2z2 − 1)3

φ′′′′(z)=−
6

z4
+

12(z4 + 6z2 + 1)

(z2 − 1)4

+
24B4(B4z4 + 6B2z2 + 1)

(B2z2 − 1)4

φ′′′′′(z)=
24

z5
−

48z(z4 + 10z2 + 5)

(z2 − 1)5

−
96B6z(B4z4 + 10B2z2 + 5)

(B2z2 − 1)5

The SPs are found by solving forz in the equation

AB2z5 + 5B2z4 −A(B2 + 1)z3 − (3B2 + 1)z2 + Az − 1=0

This polynomial of degree5 in z cannot be factored (by the
Matlab symbolic toolbox). So, analytic expressions for the
locations of the SPs in the complexz-plane cannot be found,
although we know there must be5 of them. The SPs can
be found numerically by assigning numerical values to the
parametersA and B and using Matlab’s roots routine. For
B < 1 and a large value ofA in exp(−Az), there is1 SP in
(−∞,−1/B), 1 SP in(−1/B,−1), 2 SPs in(0, 1), and1 SP
in (1, 1/B). These are all on the realz-axis. AsA decreases,
the two real SPs in(0, 1) coalesce and then separate vertically
into the complexz-plane. It is not known if their real parts
remain in(−1, 1). For B > 1 and largeA, there is1 SP in
(−∞,−1), 1 SP in(−1,−1/B), 2 SPs in(0, 1/B), and1 SP
in (1/B, 1). All are real. Again, asA decreases, they coalesce
and separate vertically and it is not known if they remain in
the original ROA. However, this analysis suggests that a SPA
can be applied by using SPs in the complexz-plane when
a real SP in the original ROA doesn’t exist. We must make
sure that the corresponding POSD through the two complex
conjugate SPs is equivalent to the Bromwich contour confined
to the original ROA.
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Figure 4 shows the POSD for the example with two complex
conjugate SPs in the ROA (see [6] for how to find POSDs).
The two crosses are the locations of the two complex conjugate
SPs in the ROA. The circles show the POSDs out of the SPs
away from the origin and the stars show the POSDs out of the
SPs towards the origin. Notice how both POSDs out of the SPs
in the first and second quadrants head directly into the zero at
the origin. This two-pieced path is an equivalent contour tothe
original Bromwich contour, and SPA or numerical integration
can be used.
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Fig. 4. POSDs out of the SPs in the complexz-plane.

The SPA is computed as in example I where two complex
conjugate SPs are used when there is no real SP in the ROA.
Plots illustrating the ratioR(A, B) for the SPA and the SPA
with a correction term (SPA2) are seen in figure 5. It is seen
that throughout theAB-plane, the ratios are close to1 as
expected, except for a ridge that identifies the values ofA and
B where two close or coalesced SPs make the SPA based on
isolated SPs inaccurate. In figure 6, the ratio is illustrated for
the caseB = 0.38.
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Fig. 5. RatioR(A, B) for the SPA and the SPA with a correction term
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Fig. 6. Comparison of ratios for the SPA and the SPA with a correction
term (SPA2) for the caseB = 0.38.

With the same setting,B = 0.38, the SPA based on two
close or coalesced SPs is computed in the interval ofA where
the SPA based on isolated SPs is particular inaccurate. The
results are seen in figure 7. From the figure it is clear that the
SPA based on two close or coalesced SPs with two correction
terms results in an excellent approximation in the region where
the SPA based on isolated SPs is particularly inaccurate.
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Fig. 7. Ratio of the exact values of the estimator to the SPAs based on close
or coalesced SPs. MSPA denotes the SPA based on two close SPs.MSPA2
denotes the SPA based on two close SPs with a correction term.MSPA3
denotes the SPA based on two close SPs with two correction terms..

IV. SUMMARY

Given a linear combination of two random variables, the
possibility of using a saddlepoint approximation for minimum
mean-square error estimation of either of the two random
variables in the linear combination, has been demonstrated.
The approach was based on a derived integral representation
for the minimum mean-square error estimator involving the
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moment-generating functions of the random variables. Further-
more, it was demonstrated that for the case of two coalescing
saddlepoints, the saddlepoint approximation based on isolated
saddlepoints became very inaccurate and if a saddlepoint
approximation based on two coalescing saddlepoints with two
correction terms was used instead, this saddlepoint approxi-
mation makes an excellent approximation.
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Particle Filter Inference in an Articulatory Based
Speech Model

Thomas Beierholm (*),Student Member, IEEE, and Ole Winther

Abstract— A speech model parameterized by formant fre-
quencies, formant bandwidths and formant gains is proposed.
Inference in the model is made by particle filtering for the ap-
plication of speech enhancement. The advantage of the proposed
parameterization over existing parameterizations based on AR
coefficients or reflection coefficients is the smooth time-varying
behavior of the parameters and their loose coupling. Experiments
confirm this advantage both in terms of parameter estimationand
SNR improvement.

Index Terms— Particle filtering, time-varying auto-regressive
speech model, formant frequency.

I. I NTRODUCTION

I N the application of speech enhancement, the speech
signal is commonly modeled as a time-varying Auto-

Regressive (AR) Gaussian process. In block-processing sys-
tems the speech signal is assumed quasi-stationary meaning
that the parameters of the AR process describing the speech
signal are assumed fixed in the duration of the block. As
described in Ref. [1] the articulators of speech, such as the
vocal tract, are continually moving, hence the assumption
of quasi-stationarity of speech can be improved upon. The
Time-Varying Auto-Regressive (TVAR) model used in Refs.
[1], [2] lets the parameters of the AR process describing the
speech signal vary from sample to sample and thus avoids the
assumption of quasi-stationarity of the speech signal.

The TVAR model facilitates a state-space formulation of
the observed noisy signal in which the problem of joint
estimation of the unknown parameters of the model and
the state sequence becomes a challenge. One approach is to
perform ML estimation using the EM algorithm. A different
approach was used in Refs. [1], [2], where sequential Bayesian
estimation of the unknown parameters and state sequence
was performed by particle filtering. Instead of using the AR
coefficients directly, then, in Ref. [2] the TVAR model was
reparameterized in terms of reflections coefficients as thislead
to a stronger physical interpretation of the model and stability
of the model could easily be verified.

In this paper a model similar to the TVAR model but with
an even stronger physical interpretation is used [3]. The model
is parameterized in terms of formant frequencies, formant
bandwidths and formant gains, called the fbg parameters in
the following. It is intended that this new parameterization
can lead to improved particle filtering by way of exploiting
known properties of the fbg parameters and thereby eventually

Manuscript received July xx, 2006; revised December xx, 2006.
T. Beierholm is with GN ReSound A/S, Lautrupbjerg 7, P.O. Box99, 2750

Ballerup, Denmark, email tbe@imm.dtu.dk.
O. Winther is with IMM, Danish Technical University, 2800 Lyngby,

Denmark.

improve quality of the estimated speech signal. As stressed
in Ref. [3] the new parameters have a slow time variation
due to the inertia of the speech producing system in contrast
to the reflection coefficients which can have a rapid time
variation. The new parameters are also loosely coupled, exhibit
smooth trajectories and the stability of the model is thus easily
ensured.

A common feature of the TVAR model [1] and the fbg
parameterized model introduced in this work is that condi-
tional on the unknown parameters of the model, the model
reduces to a linear Gaussian state-space system. In Ref. [1]
this feature was made use of in a variance reduction (Rao-
Blackwellization) step whereby the problem of sampling from
the joint posterior distribution of the states and the unknown
parameters of the model is reduced to that of sampling from
the posterior distribution of the unknown parameters only.

In short, the contributon of this paper is to introduce a
speech model with an even stronger physical interpretation
than the reflection coefficients [2] and obtain filtered estimates
of the clean speech signal with Rao-Blackwellized particle
filtering [1].

II. T IME-VARYING AUTO-REGRESSIVEMODEL

In the Time-Varying Auto-Regressive (TVAR) model a
speech signal is modeled as a non-stationary AR(p) process,
wherep denotes the order of the AR process which is assumed
fixed in the following. The coefficients of the AR(p) process
and the variance of the process noise are allowed to change
from sample to sample, i.e.

x[n] =

p
∑

i=1

ai[n]x[n − i] + σe[n]e[n] , e[n] ∼ N (0, 1) ,

whereσ2
e [n] is the variance of the innovation sequence and

N (µ,Σ) denotes a Gaussian distribution with meanµ and
covariance matrixΣ. It is assumed that the speech signal is
contaminated by non-stationary Gaussian noise

y[n] = x[n] + σd[n]d[n] , d[n] ∼ N (0, 1) ,

where σ2
d[n] denotes the variance of the observation noise.

The TVAR model is conveniently formulated as a state-space
model with the following state and observation equations

x[n] = A[n]x[n − 1] + B[n]v[n] , v[n] ∼ N (0p×1, Ip) (1)

y[n] = Cx[n] + D[n]w[n] , w[n] ∼ N (0, 1) , (2)

wherea[n] = ( a1[n], · · · , ap[n] )
T is the coefficient vector,

x[n] = (x[n], · · · , x[n − p + 1] )
T the state vector and

A[n] =

(

a
T [n]

I(p−1) 0(p−1)×1

)

, B[n] =

(

σe[n]
0(p−1)×1

)

(3)
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C =
(

1 0 · · · 0
)

, D[n] = ( σd[n] ) . (4)

The state-space formulation of the TVAR model in eqs. (1)
and (2), with the parameterization eqs. (3) and (4), is used in
Ref. [1]. The unknown parameters of the model are thep AR
coefficients ina[n] and the innovation and observation noise
variances. The AR coefficients and the two noise variance
parameters represented by their logarithms were assumed inde-
pendent and taken as evolving according to first-order Markov
random walk processes. The variance of the random walk
processes for each of the AR coefficients and the variances of
the random walk processes for the logarithms to the variance
of the innovation sequence and observation noise are denoted
δa, δe, δd, respectively.

III. A RTICULATORY-BASED SPEECHMODEL

The speech model based on the fbg parameters (which are
close to the articulators of speech [3]), is referred to as a
Parallel Formant Synthesizer(PFS) in speech synthesis. A PFS
synthesizes speech by summing the outputs of a number of
parallel connected resonance circuits. The structure of a PFS
is illustrated in Fig. 1. The resonators are driven by a common
excitation signal which is taken to be white standard normal
distributed noise. Each resonance circuit models a formant
in the spectrum of the speech signal, in the sense that the
spectrum of the excitation signal is shaped to have a peak
at the resonance frequency and the bandwidth and gain of
the ‘bump’ is determined by the resonance circuit as well.
The resonators are taken as second-order IIR filters with z-
transforms

Hk(z) =
gk

1 − ak,1(fk, bk)z−1 − ak,2(bk)z−2
, (5)

wherefk, bk andgk denotes the formant frequency, formant
bandwidth and formant gain, respectively, of thekth formant.
The mapping from these parameters to the coefficients of the
resonators is given by [4], [5]

ak,1(fk, bk) = 2 exp(−πbk/fs) cos(2πfk/fs) (6)

ak,2(bk) =− exp(−2πbk/fs) , (7)

wherefs is the sampling frequency inHz. By letting

Ak[n] =

(

ak,1(fk, bk) ak,2(bk)
1 0

)

(8)

then in state-space form, the PFS model is described by the
TVAR model in eqs. (1) and (2) with parameterization

A[n] = diag(A1, · · · ,AK) (9)

B[n] =

(

01×2K

g1[n] 0 · · · gK [n] 0

)T

(10)

C =
(

1 0 1 0 · · · 1 0
)

, D[n] = ( σd[n] ) , (11)

wherex[n] = (x1[n], x1[n − 1], · · · , xK [n], xK [n − 1])
T

is the state vector,K is the number of formants,xk[n] denotes
the output from thekth resonator (see figure 1) andv[n] ∼
N (02×1, I2). A formulation based on a cascade structure of
second-order sections can also be used. In fact the TVAR
model is equivalent to such a cascade structure hence the two

main differences between the TVAR and the PFS models are
the different structures, cascade and parallel respectively, and
the parameterization. As opposed to the cascade structure the
parallel structure also contains a zero which means that the
PFS model can improve modeling of speech sounds containing
anti-resonances. A description of the pros and cons of the
cascade and parallel structures in speech synthesis can be
found in Ref. [5]. The PFS model has3K+1 parameters. The

Formant #1x

+

+

+

f1 b1
g1

Formant #Kx

fK bK
gK

White 
noise gen.

e[n]

x1[n]

xK[n]

x[n]

Fig. 1. Block diagram of Parallel Formant Synthesizer.

fk andbk parameters and the logarithm to thegk parameters
are assumed independent and taken as evolving according to
first-order Markov random walk processes with variancesδf ,
δb andδg, respectively.

IV. PARTICLE FILTER INFERENCE

We provide a brief summary of the particle filter method
used for inference in the PFS model as it is described in detail
elsewhere [1]. Generally, filtering refers to the task of drawing
samples from thefiltering distributionp(xn, θn |y1:n) in order
to estimate the mean (the MMSE estimate) of the state vector
and the parameter vector. In the context of the PFS model

θ = (f1, b1, g1, · · · , fK , bK , gK , σd).

The joint distribution is decomposed using Bayes rule:

p(xn, θ0:n |y1:n) = p(xn |θ0:n,y1:n) p(θ0:n |y1:n) . (12)

For both models (TVAR and PFS) the state vector can be
integrated out analytically becausep(xn |θ0:n,y1:n) is Gaus-
sian. This so-called Rao-Blackwellization has the effect of
reducing the variance of the MMSE estimate of the state and
parameter vectors. The problem is then reduced to sampling
from the lower dimensional distributionp(θ0:n |y1:n) instead
of sampling fromp(x0:n, θ0:n |y1:n). In particle filtering this
distribution is approximated by a weighted sum ofδ-functions
(the particles). The importance weight of particle with history
θ0:n is given by

w(θ0:n) ∝
p(θ0:n | y1:n)

π(θ0:n | y1:n)
, (13)

whereπ(.) denotes the importance distribution where samples
are drawn from. Sequential importance sampling can be per-
formed if the importance distribution is restricted to be ofthe
general form

π(θ0:n | y1:n) = π(θ0:n−1 | y1:n−1)π(θn |θ0:n−1, y1:n) (14)

which facilitates recursive propagation of the importance
weights in time. The crucial restriction is that the time depen-
dence only goes ton−1 in the first term. Inserting eq. (14) in
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eq. (13) and expanding the numerator using Bayes’ rule and
using the assumption that the parameters evolve according to
a first-order Markov process, i.e.p(θn|θ0:n−1)=p(θn|θn−1),
then the weights obeyw(θ0:n) ∝ w(θ0:n−1)wn with

wn ∝
p(yn|θ0:n, y1:n−1)p(θn|θn−1)

π(θn |θ0:n−1, y1:n)
. (15)

This way sequential importance sampling avoids the need for
storing the pathsθ0:n−1 of the particles. Using (15) directly,
then for each time step the procedure of the particle filter is
to draw N samples from the chosen importance distribution
(the denominator in (15)) and then compute the weights
by direct evaluation of (15). However, the complexity of
computing the weights can be simplified if the importance
distribution at timen is set equal to the prior distribution,
i.e. π(θn |θ0:n−1, y1:n) = p(θn|θn−1) so that (15) reduces
to wn ∝ p(yn|θ0:n, y1:n−1). This way the procedure of the
particle filter is to drawN samples from the prior distribution
(second factor in numerator in (15)) which is relative simple
because of the first-order Markov process assumption.

Setting the importance distribution equal to the prior dis-
tribution contributes to a degeneracy whereby all weights
except one after a few time steps are very close to zero.
This happens because the importance distribution is different
from the true posterior distribution. As a remedy, a resampling
step is introduced. The resampling step duplicates particles in
proportion to their importance weights in such a way that
all particles have approximately the same weight after the
resampling step.

V. EXPERIMENTS

The performance of the PFS model is examined and com-
pared to the TVAR model examined by Vermaak et al. in
[1]. The starting point is the TIMIT speech sentences “In
simpler terms, it amounts to pointing the platform in the
proper direction.” (si1466) and “His sudden departure shocked
the cast.” (sx111) both downsampled to16 kHz. From each
sentence a0.38s (6000 samples) speech sound is extracted.
The waveforms of the extracted sounds are seen in Fig. 2.
From the wide-band spectrogram of the waveform shown in
the upper plot of Fig. 2 it was evident that by low-pass
filtering F1 (the first formant) could be separated from the
other formants. A modified speech sound was created where
frequencies above1100 Hz were suppressed and onlyF1
existed in the modified speech sound. In the same manner
a speech sound with onlyF1 andF2 was created. Those two
modified sounds were contaminated by zero-mean stationary
white Gaussian noise at0 dB SNR and subsequently used
to manually tune the random walk parameters for both the
PFS and the TVAR model so that the particle filtering gave
as high SNR improvements as possible. The particle filtering
used by Ref. [1] was modified in two respects; 1) so that
it exploited that the variance of the observation noise was
known and constant and 2) it was initialized using f and b
parameters that were then mapped to AR coefficients using
eqs. (6) and (7). In this way the initializations in the TVAR
model and the PFS model were alike. The first800 samples
were not used in the computation of the SNR improvements
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Fig. 2. Plot of the waveforms for extracted sounds from two TIMIT
sentences. Phonetic information is also shown in the plots.

in order to minimize initialization effects. The manual tuning
of the random walk parameters lead to the following setting
δa=2.5×10−5 and δe=5×10−3 in the TVAR model and the
settingδf=20, δb=7 andδg=5×10−3 in the PFS model. Both
the performance of the TVAR model and the PFS model was
found to be relative insensitive to the setting of the random
walk parameters.

With these settings and using100 particles the particle
filter was run on the sound where onlyF1 exists. As also
observed in Ref. [1] using more than100 particles produced
only small performance improvements. The experiment was
repeated7 times. The TVAR model was specified to use
2 AR coefficients and in the PFS modelK=1. The mean
SNR improvement measured for the TVAR model was6.27
dB and the SNR improvement measured for the PFS model
was 7.21 dB. The PFS model provided slightly higher but
consistent SNR improvements for this setup. Halving the value
of the random walk parametersδf and δb produced a mean
SNR improvement of7.12 dB and doubling them produced
7.16 dB. The value of these parameters could be changed
at least an order of magnitude and still produce higher SNR
improvements than that of the TVAR model which favors the
PFS model as being a better speech model than the TVAR
model.

In the particle filter the unknown parameters are augmented
to the state vector. In this way the particle filter provides esti-
mates of the unknown parameters. UsingPraat [6] the formant
frequency tracks were extracted from the clean speech. The
‘true‘ F1 formant frequency is illustrated in the upper plot of
Fig. 3 together with the estimatedF1 formant frequency tracks
using the TVAR model and the PFS model. The estimated
formant frequency tracks were obtained by averaging the
estimates from7 repeated experiments. By using the inverse
mapping in eqs. (6) and (7) the formant frequency track for
the TVAR model was computed from the estimated AR coef-
ficients. As is evident from Fig. 3a the PFS model provides a
much better estimate of the formant frequency than the TVAR
model. It is also seen from Fig. 3b that the PFS model provides
a more smooth and accurate estimate of the AR coefficients.
Next, performance was measured for the sound withF1 and
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Fig. 3. (a) EstimatedF1 formant frequency track using the TVAR and PFS
models and the ‘true‘ formant frequency extracted from clean speech. (b)
Estimated tracks of thea2 AR coefficient together with the ‘true‘ values.

F2 using the same conditions as for the sound withF1 only.
The PFS model and the TVAR model gave6.24 dB and5.41

dB mean SNR improvements, respectively. The PFS model
provided slightly higher and consistent SNR improvements for
this setup also. The estimated formant frequency tracks using
the models are seen in Fig. 4. This experiment illustrated even
more the convenience of the PFS model over the TVAR model
in that it’s much more straight forward to use the propertiesof
the PFS model to ensure reasonable behavior of particle paths.
It is for instance more cumbersome to initialize the TVAR
model so that the formant frequencies of the particle paths get
in range with the formants of the sound. It is also significantly
more cumbersome to ensure that the particle paths of the
TVAR model remain within the limits of the range ofF1 and
F2. If this is not ensured the estimated spectrum of the sound
using the TVAR model can have a low-pass characteristic or
a single peak instead of two peaks. Performance was then
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Fig. 4. EstimatedF1 andF2 formant frequency tracks using the TVAR and
PFS models and the ‘true‘ formant frequencies extracted from clean speech.
On the figure are also shown the formant frequency tracks extracted using
Praat on the noisy signal.

measured for the two fullband waveforms shown in Fig. 2.

TABLE I

MEASURED DB SNR IMPROVEMENTS FOR THETVAR AND PFSMODELS

FOR4 DIFFERENTSNRS USING THE SI1466AND SX111 TIMIT SOUNDS.

si1466 sx111
Model 0 5 10 20 0 5 10 20

TVAR 5.20 3.06 1.03 0.24 3.80 1.59 0.92 −0.02

PFS 5.69 4.54 3.07 1.43 4.82 2.92 1.62 0.42

SNR improvements were measured for4 different SNRs using
both models and same conditions as in previous experiments.
The results are seen in Table I. The PFS model produced
higher SNR improvements for both sounds and all4 SNRs. It’s
also seen that there is a negative correlation between measured
dB SNR improvement and SNR. As a last experiment particle
filtering was performed on the full length TIMIT waveforms
in order to test the quality of the enhanced speech signals. The
signals were degraded by non-stationary noise at0 dB SNR.
Only one run on each sound was made and the variance of the
noise was made time-varying and the particle filtering changed
accordingly. The listening tests revealed a significant reduction
of the noise with only minor noticeable artifacts introduced to
the speech.

VI. CONCLUSION

We have proposed a new parameterization of a time-varying
auto-regressive speech model and used particle filtering for
inference in a noise reduction set-up. The performance of the
proposed speech model was compared to that of a speech
model parameterized by auto-regressive coefficients for the
application of speech enhancement [1]. The results from
a number of experiments showed that the proposed model
provided higher SNR estimates of the speech over a large
interval of the random walk parameters of the particle filterand
more accurate and smooth estimates of the model parameters
were obtained as well which favors the proposed model as a
better model for speech.
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Non-Stationary Noise Reduction by Particle
Filtering in a Cascade Formant Synthesizer Model

Thomas Beierholm (*),Student Member, IEEE, Ole Winther and Bert de Vries

Abstract— This paper examines the usefulness of particle filter
inference in three different speech models for the application of
non-stationary noise reduction. The most promising candidate
speech model consists of a cascade-coupling of second-order
IIR resonance filters parameterized by formant frequencies
and formant bandwidths. Next, performance of a commercial-
grade hearing aid noise reduction algorithm is compared to the
particle filter algorithm which uses the chosen candidate speech
model. Performance is compared for both stationary and non-
stationary white noise and the particle filter algorithm compares
favorably to the hearing aid noise reduction algorithm in low-
SNR situations.

Index Terms— Bayesian signal processing, particle filtering,
time-varying auto-regressive speech model, formant frequencies,
noise reduction, MMSE estimation, formant synthesis.

EDICS Category: SPE-ENHA

I. I NTRODUCTION

T HE field of single-channel noise reduction (also referred
to as speech enhancement) has received much attention

and, still today, remains an active field of research. One
application of single-channel Noise Reduction (NR) is for
Hearing Instruments (HI) where potentially such an algorithm
can make a tremendous difference for the user. Typically, NR
in a HI is performed by time-varying linear filtering either in
the frequency domain or directly in the time domain based on
the concept of spectral subtraction. No matter what domain
is used for processing the noisy signal, the most common
approach is to start the analysis of the noisy signal in the
frequency domain. This is most natural as a frequency domain
representation is already available for performing the actual
amplification in an HI. The focus of the frequency analysis
is centered around obtaining a noise power estimate which is
then used for computing gains using some objective function
derived from e.g. Wiener filter theory or statistical estimation
theory. A basic limitation of this approach is to obtain an
accurate noise power estimate. During speech activity it is
difficult to obtain an accurate estimate of the noise, especially
if the noise is non-stationary. Therefore it is often assumed that
the noise is stationary or its spectrum changes slowly during
speech intervals. The dilemma is typically that if the noiseis
tracked slowly, then inaccurate noise estimates result when the
noise is non-stationary, whereas if fast tracking of the noise is
performed there is a high risk of canceling speech.

Manuscript received June xx, 2007; revised Month xx, 2007.
T. Beierholm is with GN ReSound A/S, Lautrupbjerg 7, P.O. Box99, 2750

Ballerup, Denmark, email tbe@imm.dtu.dk.
O. Winther is with IMM, Danish Technical University, 2800 Lyngby,

Denmark.
B. de Vries is with GN ReSound A/S, Algorithm R&D, Eindhoven,The

Netherlands (email: bdevries@gnresound.com).

In this work a rather different single-channel NR is pro-
posed. The approach is based on a generative model for the
noisy speech and Bayesian inference of the clean speech and
the parameters in the generative model. An important feature
of the used generative model is that speech features and the
noise variance are allowed to change from sample to sample
and hence fluctuating or non-stationary noise is built into the
model. The degree of non-stationarity of the noise is controlled
by a single scalar hyperparameter that determines how fast the
variance of the noise can change.

Three different candidate speech models are examined. One
speech model is parameterized by AR coefficients and is
called a Time-Varying Auto-Regressive (TVAR) model [1].
The other two speech models are parameterized by formant
frequencies, formant bandwidths and formant gains. These
models are called Cascade Formant Synthesizer (CFS) and
Parallel Formant Synthesizer (PFS) models in speech synthesis
[2]. All three speech models facilitate a state-space formulation
of the observed noisy signal in which the problem of joint
estimation of the unknown parameters of the model and
the state sequence becomes a challenge. One approach is to
perform ML estimation using the EM algorithm. A different
approach was used in [3], [4], where sequential Bayesian
estimation of the unknown parameters and state sequence was
performed by particle filtering. Particle filtering is suitable for
online processing and will be used for inference in this work.

Representing speech using AR coefficients was used in [3].
However, we demonstrate that by representing speech using
formant features instead will appear to be very beneficial
if known properties of the formant feature parameters are
exploited. By parameterizing the AR coefficients in terms of
formant features instead of parameterizing directly in terms
of the AR coefficients, more realistic dynamics of the AR
coefficients are ensured.

A common feature of the generative models introduced in
our work is that, conditional on the unknown parameters of
the models, the state space model becomes Gaussian. In [3],
this feature is made use of in a variance reduction step (Rao-
Blackwellization) whereby the problem of sampling from the
joint posterior distribution of the states and the unknown
parameters of the model is reduced to that of sampling from
the posterior distribution of the unknown parameters only.

Based on initial tests the CFS model is chosen for further
evaluation and comparison with a HI NR algorithm which is
based on the principle of spectral subtraction. The objective of
the HI NR algorithm is to suppress noise as much as possible
without introducing any audible speech distortion. To perform
a meaningful comparison between the particle filtering algo-
rithm and the HI NR algorithm, a modified Minimum Mean
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Square-Error (MMSE) cost function is introduced. This leads
to an estimator that can trade-off between the amount of noise
reduced and speech distortion by adjusting a single scalar
parameter. To evaluate the performance of the algorithms two
objective performance measures are used, one to measure the
amount of noise reduced and one to measure the amount of
speech distortion. The algorithms are compared using both
stationary and non-stationary white noise.

The paper is organized as follows. Sections II and III can
be considered the theory part of the paper. In section II, three
speech models are described and mathematically formulated
and probabilistic models for the parameters in the models are
specified. In section III, the basics of particle filtering are
introduced and pseudo-code for the algorithms is presented.
Section IV compares performance of the three models by
examining accuracy of parameter and speech estimates on
synthetic and real speech data. The purpose of section IV
is to choose one of the three candidate models for further
evaluation. The performance of the chosen model is compared
to the performance of a HI NR algorithm. Sections V-VII
concern the performance comparison. Section V introduces
the modified MMSE cost function and section VI introduces
the objective performance measures used. Section VII presents
the results of the performance comparison and finally section
VIII has a conclusion.

II. SPEECHMODELS

In section II-A the TVAR model is presented. The CFS
and PFS models are described in sections II-B and II-C,
respectively. Details on the state-space formulations of the
models can be found in appendix I.

A. Time-Varying Auto-Regressive Model

In the Time-Varying Auto-Regressive (TVAR) model a
speech signal is modeled as a non-stationary AR(p) process,
wherep denotes the order of the AR process which is assumed
fixed in the following. The coefficients of the AR(p) process
and the variance of the process noise are allowed to change
from sample to sample, i.e. ifxn denotes a random variable
associated with a TVAR process at timen, then

xn =

p∑

i=1

an,i xn−i + σen
en , en

iid
∼ N (0, 1) (1)

wherean,i denotes theith AR coefficient at timen, σ2

en
is the

variance of the innovation sequence andN (µ,Σ) denotes a
Gaussian distribution with meanµ and covariance matrixΣ.
As will be clear later, the parameters in (1) may not be the
most convenient to use for the purpose of particle filtering.
Instead, parameters will be used that can be mapped to the
parameters in (1). It is assumed that the TVAR process is
contaminated by non-stationary white Gaussian noise

yn = xn + σdn
dn , dn

iid
∼ N (0, 1),

where σ2

dn
denotes the variance of the observation

noise. The unknown parameter vector at timen
is θTV AR

n =[ an, φen
, φdn

]T , where φen
= log σ2

en
,

φdn
= log σ2

dn
and an= [ an,1, · · · , an,p ]

T is the coefficient
vector.

B. Cascade Formant Synthesizer Model

The Cascade Formant Synthesizer (CFS) model is a TVAR
model reparameterized by formant frequency and formant
bandwidth parameters. The CFS model synthesizes speech by
excitingK cascade-coupled resonance filters with white noise
as shown in figure 1. The resonators are taken as second-order
IIR filters with z-transforms

Hn,k(z) =
1

1 − an,2k−1z−1 − an,2kz−2
(2)

for k=1, . . . , K. The coefficients in (2) can be computed from
formant frequencies and formant bandwidths by the following
mapping [2], [5]

an,2k−1 = 2e−πbn,k/fs cos(2πfn,k/fs) (3)

an,2k = −e−2πbn,k/fs , (4)

wherefn,k andbn,k denote the formant frequency and formant
bandwidth, respectively, of thekth formant at timen and
fs is the sampling frequency inHz. By constraining the
formant frequencies and bandwidths the CFS model can be
viewed as a constrained TVAR model. As opposed to the
TVAR model in section II-A, the poles of the CFS model are
constrained to occur in complex conjugate pairs confined to
certain areas within the unit circle. Iffn=[ fn,1, . . . , fn,K ]T

and bn=[ bn,1, . . . , bn,K ]T then the unknown parameter
vector in the CFS model isθCFS

n = [ fn, bn, φen
, φdn

]T .

Formant #1x

fn,1 bn,1
gn

Formant #K

fn,K bn,K

White 
noise gen.

en xn

Fig. 1. Block diagram of Cascade Formant Synthesizer.

C. Parallel Formant Synthesizer Model

A PFS model synthesizes speech by summing the outputs
of a number of resonance circuits connected in parallel. The
structure of a PFS is illustrated in Fig. 2. The resonators are
driven by a common excitation signal which is taken to be
white noise. The PFS model is not a TVAR model because the
transfer function for the PFS model containsp − 2 zeros. A
description of the advantages and disadvantages of the cascade
and parallel structures in speech synthesis can be found in [2].
Even though the PFS model is not a TVAR model, particle
filtering inference for the PFS and CFS models are quite
similar because the models share most of their parameters
and because the PFS model can also be formulated as a state-
space model obeying (23) and (24). The resonators for the PFS
model are taken as second-order IIR filters with z-transforms

Hn,k(z) =
gn,k

1 − an,2k−1z−1 − an,2kz−2

where each resonance filter has a separate time-varying gain
gn,k. If gn=[ φgn,1

, . . . , φgn,K
]T then the unknown parameter

vector in the PFS model isθPFS
n = [ fn, bn, gn, φdn

]T where
φgn,k

= log g2

n,k.
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+

+

+

fn,1 bn,1
gn,1

Formant #Kx
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gn,K
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xn,1

xn,K
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Fig. 2. Block diagram of Parallel Formant Synthesizer.

D. Probabilistic Models for Parameters

As will be evident in section III, particle filtering dependson
statistical models for the parameters contained in the parameter
vector θ. It is important that samples can be drawn from
the parameter models, specifically because, as section III will
demonstrate particle filtering relies on samples being drawn
from the initial state distributionp(θ0) and the state-transition
distribution p(θn |θn−1). A specification of the parameter
models can be found in appendix II.

III. PARTICLE FILTER INFERENCE

Generally, filtering refers to the task of computing the
filtering distributionp(xn, θn |y1:n) and the MMSE estimate
of the state vector and the parameter vector at timen using
observationsy1:n = [y1, · · · , yn]T up to and including time
n. In the ideal case it is possible to compute a closed-
form analytic expression for the MMSE estimator of the
parameter vector and the state vector. For non-ideal cases this
is not possible, making approximations necessary. GivenN

independent samples from the filtering distribution at timen,
an approximation to the MMSE estimator can be computed as

[x̂n , θ̂n] =
1

N

N
∑

i=1

[xi
n , θ

i
n] (5)

where the superscript denotes the sample index. It is generally
not possible to draw samples directly from the filtering distri-
bution but samples can be drawn usingimportance sampling.
In this case samples are drawn from an importance distribu-
tion, π(xn, θn |y1:n), (also called a proposal distribution) and
importance weights are formed

w(xn , θn) =
p(xn, θn |y1:n)

π(xn, θn |y1:n)
(6)

Using the importance distribution the MMSE estimator can be
written

< xn , θn >= Eπ(xn,θn |y1:n) {[xn , θn] w(xn , θn)} (7)

However, the expression in (7) is just as intractable as the
original integral defining the MMSE estimator. IfN indepen-
dent samples are drawn from the importance distribution and
the weights given by (6) are evaluated for each drawn sample
then the expression for the MMSE estimator in (7) can be
approximated as

[x̂n , θ̂n] =

N
∑

i=1

[xi
n , θ

i
n] w̃(xi

n , θ
i
n) (8)

where

w̃(xi
n , θ

i
n) =

w(xi
n , θ

i
n)

∑N

i=1 w(xi
n , θ

i
n)

are the normalized importance weights. The above rea-
soning can be generalized to consider full trajectories
p(x0:n, θ0:n |y1:n) .

The posterior distribution over the full trajectories can be
decomposed into

p(x0:n, θ0:n |y1:n) = p(x0:n |θ0:n,y1:n) p(θ0:n |y1:n) (9)

Because the state variables given the parameters are Gaussian,
the state variables can be marginalized out with Kalman (Rao-
Blackwellization) leaving us with a filtering model for the
parameters. So,p(x0:n |θ0:n,y1:n) can be marginalized and
the marginalized posteriorp(xn |θ0:n,y1:n) admits a Gaussian
distribution whose mean and covariance can be computed by
Kalman filtering. Introducing a new importance distribution,
π(θ0:n|y1:n), the MMSE estimator approximation can be
computed as

[x̂n, θ̂n] =

N
∑

i=1

Ep(xn| θ0:n,y1:n)

{

[xn, θ
i
0:n]

}

w̃(θi
0:n) (10)

where

w(θ0:n) =
p(θ0:n |y1:n)

π(θ0:n |y1:n)
, w̃(θi

0:n) =
w(θi

0:n)
∑N

i=1 w(θi
0:n)

(11)

A very undesirable feature of the importance sampling
method in the general case is the need to store the trajectories
(the history) of the samples drawn from the importance
distribution and the observations. This means that storage
requirements and the computational load will grow over time.
This makes the importance sampling method impractical for
real-time applications. Fortunately, there is a way to formulate
a recursive version of the importance sampling method which
alleviates the undesirable features. This method is known as
Sequential Importance Sampling(SIS). The important step to
develop a recursive version of the approximation in (10) is
to obtain a recursion formula for the weights in (11) which
can then be used in (10). This can be done if the importance
distribution is restricted to the general form

π(θ0:n |y1:n) = π(θ0:n−1 |y1:n−1) · π(θn |θ0:n−1,y1:n)
(12)

The crucial restriction is that the time dependence only goes
to n− 1 in the first term. It can then be shown (see appendix
III) that the weights obey the recursion

w(θ0:n) ∝ w(θ0:n−1) · w(θn) (13)

with

w(θn) ∝
p(yn|y1:n−1, θ0:n) p(θn|θn−1)

π(θn|θ0:n−1,y1:n)
. (14)

In this way sequential importance sampling avoids the need
to store the pathsθ0:n−1 of the particles. The complexity of
computing the weights can be simplified if the importance
distribution at timen is set equal to the prior distribution, i.e.
π(θn |θ0:n−1, y1:n) = p(θn|θn−1) so that (14) reduces to

wn ∝ p(yn|θ0:n,y1:n−1). (15)
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However, setting the importance distribution equal to the prior
distribution contributes to a degeneracy whereby all weights
except one after a few time steps are very close to zero.
This happens because the importance distribution is different
from the true posterior distribution. As a remedy, a resampling
step is introduced. The resampling step duplicates particles in
proportion to their importance weights in such a way that
all particles have approximately the same weight after the
resampling step. Incorporating the selection step, the weights
w(θ0:n−1) will all be equal to1 andw(θ0:n) ∝ w(θn).

Putting it all together, the procedure of the particle filter
is illustrated with pseudo-code in Algorithm 1. The main
references for this summary of particle filtering are [3], [6].

Algorithm 1 Particle filter pseudo-code
1: Draw samples from initial distributions (35), (37) or (39)
2: for t = 1 to T do
3: for i = 1 to N do
4: Draw sample from state-transition distributions (36),

(38) or (40)
5: Form system matrices (25)-(28) or (30)-(33)
6: Perform a Kalman filter step according to state-space

eqns (23)-(24) (Rao-Blackwellization)
7: Compute weight using (15)
8: end for
9: Resampling

10: Compute estimates using (5)
11: end for

IV. EXPERIMENTS& D ISCUSSION OFSPEECHMODELS

In section IV-A the data used to examine and compare
performance of the three models is described. Also in section
IV-A, the setting of the hyper-parameters for the models
is specified and the measured dB SNR improvements are
presented. In sections IV-B to IV-D separate discussions of
the workings of each of the models are presented. Finally, in
section IV-E a summary of the experiments is given and one
of the three models is chosen for further evaluation.

A. Data Generation & Measured SNR Improvements

To investigate the behavior of the three models, both syn-
thetic and real speech data are used. The synthetic data is
generated from the TVAR model but the parameter values
are extracted from real speech. Formant frequencies, formant
bandwidths and formant gains are extracted from the TIMIT
sentence,sa2, containing a female speaker saying ”Don’t
ask me to carry an oily rag like that.” down-sampled to
16 kHz. Formant frequencies are extracted by finding the
location of peaks in a14th order model-based spectrum, the
formant bandwidths are extracted by computing the3 dB
down points from the location of the peaks and the formant
gains are taken as the values of the peaks in the spectrum.
The parameters are extracted from a25ms window and the
window is shifted in steps of1.25ms duration. After the raw
extraction of the parameters, the formant frequency tracksare
manually prepared by first sorting out the first four formants

and then cubic interpolation is performed on the parameter
tracks such that the rate of the parameter values is equal to the
sampling rate. The upper plot in figure 3 shows a wide-band
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Fig. 3. Upper plot shows a wide band spectrogram of the TIMIT sentence,
sa2, and the lower plot illustrates the extracted fbg parameters. The thickness
of the tracks in the lower plot indicates the estimated formant bandwidths and
the strength of the formants are indicated so that dark intervals represent strong
formants.

spectrogram of the original TIMIT speech sentence and the
lower plot illustrates the formant-bandwidth-gain parameters
extracted from the TIMIT sentence. The synthetic data used
for experiments in this section is generated using the parameter
values illustrated in the lower plot by first mapping formant
frequencies and bandwidths to AR coefficients using (3) and
(4). The noise variance was made known and constant at
unity, that is Dn(θ) = 1 for all n. The standard deviation
of the innovation noise was taken to be proportional to the
gain of the first formantσen

∝ gn,1. The standard deviation
of the innovation noise was scaled such that the SNR of
the generated noisy data was approximately5 dB. Finally,
data was generated using (23) and (24). The real speech data
consists of the TIMIT sentence with white Gaussian noise
added at an SNR of5 dB.

The number of particles used in all experiments is100.
Using more particles provides only minor changes in SNR
improvement. All experiments are repeated seven times and
the measured SNR improvements and the parameter estimates
represent an average over the seven repeated experiments. All
hyper parameters were manually tuned to provide highest SNR
improvements. This resulted in the settings shown in table I
(see appendix II for a specification of the hyper parameters).
The measured dB SNR improvements are seen in table II.

B. TVAR

To better understand how the TVAR particle filter works,
model-based spectrograms were made using the true and esti-
mated AR coefficients and gains. The plot in figure 4a shows
the model-based spectrogram using the true AR coefficients
and gains and the plot in figure 4b shows the corresponding
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TABLE I

MANUALLY TUNED SETTINGS OF HYPER PARAMETERS.

Parameter Setting

δ2
a 1·10

−4

δ2
e

5·10−3

δ2
a0

0.5

δ2
e0

0.5

δ2

f
20

δ2

b
7

TABLE II

MEASURED DB SNR IMPROVEMENTS FOR THETVAR, CFSAND PFS

MODELS FOR SYNTHETIC AND REAL SPEECH DATA AT ANSNROF 5 DB.

TVAR CFS PFS

Synthetic 4.84 5.17 4.77

Real Speech 4.19 4.86 4.56

model-based spectrogram computed from AR coefficients and
gains averaged over the seven runs. Figure 5 shows four plots
comparing directly the estimated and true spectrums at four
time points. It is seen that the TVAR particle filter models
the strongest formant or the two strongest formants but that
it also uses some of its modeling capability/capacity at higher
frequencies where there are no formants. The TVAR particle
filter is not constrained to form realistic speech spectra and
as such nothing prevents the particle filter from generating
particles with spectra having formants above5000Hz. Not only
is the TVAR particle filter inefficient because of inefficient
particles but the TVAR particle filter is also computationally
inefficient because every time a particle is generated the roots
of the denominator polynomial in the system function must be
computed, as is also noted in appendix II-A.

C. CFS

The estimated model-based spectrogram created from the
averaged estimated parameters can be seen in figure 4c.
Comparing with the estimated model-based spectrograms in
figure 4b and figure 4c it is evident that the CFS particle filter
provides parameter estimates that are much more accurate and
smooth than the TVAR particle filter estimates. Figure 5 shows
true spectra and estimated spectra at four different time points
and can be compared with those obtained using the TVAR
model. Basically, the CFS particle filter improves on all the
deficiencies of the TVAR model.

Two subtleties of the CFS particle filter are demonstrated
in figure 6 which shows the true gain and the estimated gain.
It is seen that the estimated gain curve exhibits relative large
fluctuations around the true gain curve. It is also seen that in
the interval from approximately0.5s to0.8s where the speech
signal is relative weak, the estimated gain is virtually zero.
Lowering the value ofδ2

e
a more smooth estimated gain curve

is obtained but the measured SNR improvement is decreased
slightly. Figure 7 shows true formant tracks and formant tracks
estimated by the CFS particle filter. It is seen that the particle
filter provides a relatively accurate frequency estimationof
the strong first formant whereas less accurate estimates of
the frequencies of the weaker second and third formants are
obtained. By comparing figures 6 and 7 it is seen that when
the estimated gain is zero or very close to zero the particle
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(b) Estimated model−based spectrogram (TVAR)
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(c) Estimated model−based spectrogram (CFS)
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(d) Estimated model−based spectrogram (PFS)
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Fig. 4. (a) Original model-based spectrogram of the synthetic data. (b), (c)
and (d) model-based spectrograms computed from the estimated parameters
by the TVAR, CFS and PFS particle filters, respectively.

filter effectively freezes adaptation of the formant frequencies
which is particularly clear for the interval containing theweak
speech sound from approximately0.5 − 0.8 s. Even though
the SNR of the noisy signal is approximately5 dB, locally in
the interval0.5 − 0.75 s the SNR is approximately−11 dB
which is why the estimated gain is zero for this interval. By
increasing the SNR the speech gain is estimated accurately
during this interval as well.

D. PFS

The idea behind the PFS model is the same as that of
the CFS model, to constrain the spectrum of the model to
being speech-like, and this is ensured by constraining the poles
to occur in complex conjugate pairs and by constraining the
paths of the formant frequencies to certain regions and not
allowing them to cross. Another feature of the PFS model is
that fading or emerging formants are conveniently handled by
appropriately setting the formant gain parameters; at least in
principle. However, the PFS model is essentially a bank of2

nd

order IIR filters with non-linear phase. Due to the introduced
phase distortion the gains of the IIR filters do not relate directly
to the peaks in the composite frequency response in the same
way as if the filters had linear phase. This issue is illustrated
in figure 8 where the estimated gains for the real speech data
are shown. It is seen that only the gain of the first formant
follows the energy in the signal. This basically means that the
strength of the formants cannot be controlled using the gains
only.



Non-Stationary Noise Reduction by Particle Filtering in a Cascade Formant
Synthesizer Model 91

IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. X, NO. XX, NOVEMBER 2007 6

0 2000 4000 6000
−40

−20

0

20

Lo
g−

sp
ec

tr
um

 

 

t=0.24s

True TVAR CFS PFS

0 2000 4000 6000
−40

−20

0

20

t=0.99s

0 2000 4000 6000
−40

−20

0

20

t=1.62s

Frequency [Hz]

Lo
g−

sp
ec

tr
um

0 2000 4000 6000
−40

−20

0

20

t=2.04s

Frequency [Hz]

Fig. 5. The figure shows the true and estimated spectra at4 time points of
the synthetic data.
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Fig. 6. Plot shows the true gain of the synthetic data and gainestimated by
the CFS particle filter. The estimated gain is close to zero inthe interval0.5s
to 0.8s because locally the SNR is−11 dB in this interval.

E. Summary

Some deficiencies of the TVAR model have been described.
It has also been described how the CFS model is a reparame-
terized and constrained TVAR model that improves upon the
deficiencies of the TVAR model. The CFS model performs
significantly better than the TVAR model both in terms of
measured SNR improvement on synthetic and real speech data
and on accuracy of the parameter estimates. The PFS model
was also proposed as an alternative speech model but phase
distortion and performance issues makes the PFS model less
attractive for particle filtering than the CFS model. Hence
the CFS particle filter is chosen for further evaluation and
comparison with a HI NR algorithm in section VII.

V. PERCEPTUAL ESTIMATOR

A very important criterion for a single-channel NR algo-
rithm to be appropriate for use in an HI is to introduce very
little noticeable distortion to the speech signal. The HI NR
algorithm used for comparison does not have maximal SNR

0 0.5 1 1.5 2
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Time [s]

F
re

qu
en

cy
 [H

z]

Formant Tracks

 

 
True
Estimated

Fig. 7. Plot shows true formant frequencies of the syntheticdata and the
formant frequencies estimated by the CFS particle filter. Inthe original speech
data the third formant faded out in the interval from approximately 0.4s to
1.2s and an artificial frequency path was inserted in this interval.
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Fig. 8. The figure shows the estimated gain values by the PFS particle filter
processing the real speech data. Due to the introduced phasedistortion in the
PFS model there is no synchrony (common onset/offset) between the gains of
the IIR filters and the gains do not relate directly to the peaks in the composite
frequency response.

improvement as its objective function. In order to take this
knowledge into account in the particle filtering approach, the
new simple modified MMSE cost function that was proposed
in [7] is used. The modified cost function introduces a pa-
rameter that trades-off SNR improvement for reduced signal
distortion. The modified cost function is

C(x, x̂) = ((x + αn) − x̂)2 , 0 ≤ α ≤ 1 (16)

wheren denotes the noise and̂x denotes an estimate of the
signal. Theα parameter is a convenient parameter that can
trade-off between SNR improvement and signal distortion.
Minimizing the risk yields the modified MMSE estimator

x̂ = (1 − α)E {x|y} + αy (17)
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where the following observation modely = x + n has been
assumed. The modified estimator is thus expressed as a linear
interpolation between the MMSE estimator and the observed
noisy speech signal and therefore can be used directly in the
particle filtering framework.

VI. OBJECTIVE PERFORMANCEMEASURES

There is not a clear winner when it comes to objectively
evaluating speech enhancement algorithms but several studies,
see [8]–[11], indicate that separate measures for residualnoise
suppression and speech distortion provide a reasonable indica-
tion of performance. We chose to evaluate noise suppression
by the segmental-SNR metric and speech distortion by the
frequency-weighted log-spectral distance, see [8]–[11].

The HI NR algorithm processes the noisy speech block-wise
by convolving the noisy speech with a slowly time-varying
linear filter whereas the CFS particle filter processes the noisy
speech sample-wise by evaluation of a statistical estimator
function. The group delay introduced by the HI NR algorithm
must be taken into account when computing the performance
measures. Otherwise a simple delay of the input could give
substantial SNR improvement measurements even though no
noise has been removed. The same issue does not exist with
the CFS particle filter. For the CFS particle filter the segmental
SNR improvement is computed from

segSNRI =
1

M

M∑

m=1

[
10 log10

∑
t n2

in,m(t)
∑

t n2
out,m(t)

]+35

−20

(18)

wherem is the block index and the SNR is restricted to values
between−25 and+35 dB to avoid bias. For the CFS particle
filter, the output noise is given bynout = y − x̂. For the HI
NR algorithm, the segmental SNR improvement is computed
from

segSNRI = segSNRout − segSNRin (19)

where

segSNRout =
1

M

M∑

m=1

[
10 log10

∑
t x2

out,m(t)
∑

t n2
out,m(t)

]+35

−20

(20)

segSNRin =
1

M

M∑

m=1

[
10 log10

∑
t x2

in,m(t)
∑

t n2
in,m(t)

]+35

−20

(21)

In order to compute the segmental SNR at the output, the HI
NR algorithm is modified such that the clean speech and the
noise signals are separately filtered in the same way as the
noisy speech is filtered. The clean speech and noise filtered in
this way are used in (20).

The frequency-weighted log-spectral signal distortion mea-
sure indicates an Euclidian distance between short-time spectra
(in dB) of the clean speech component and the processed
speech component and is computed from

SD =
1

M

M∑

m=1

√√√√ 1

K

K∑

k=1

(
waud(k)10 log10

X̂(k, m)

X(k, m)

)2

(22)

where X̂(k, m) denotes the estimated speech-frequency
power-density spectrum in blockm, k denotes frequency
bin index andwaud(k) denotes a frequency weighting factor
giving approximately equal weight to each auditory critical
band.

VII. PERFORMANCE

The performance of the HI NR and the CFS algorithms are
tested using stationary and non-stationary white noise created
by performing a Gaussian Random Walk (RW) on the variance
of the noise using an RW variance of1e−6 truncated to
positive values. Performance is measured for four different
SNRs,0, 5, 10 and 20 dB, and six different speakers taken
from the TIMIT database, three male (SA1, SX333, SX451)
and three female (SX206, SX312, SX402) speakers.

We compared two approaches to the state transition for the
gain: Gaussian distributed in the gain and the log gain, respec-
tively. The latter has the advantage that the gain is guaranteed
to stay non-negative. However, we observed stability problems
with it because it takes unrealistically large steps for large gain
and excruciatingly small steps for small gain. We therefore
applied a Gaussian RW truncated to positive values to the
gain directly, guaranteeing a fixed step size, independent of
the value of the gain. Hence, instead of adapting the log-
variances it was chosen to adapt the standard deviations of
the noise and speech. The CFS parameter vector used is thus
θ

CFS
n = [ fn, bn, σen

, σdn
]T and δ2

d′=5e−7, δ2
e′=1e−6,

whereδd′ andδe′ denotes the RW variances forσdn
andσen

,
respectively.

We compare the performance of our algorithm to a
commercial-grade algorithm from the hearing aids industry.
GN ReSound supplied us with a version of their spectral
subtraction based noise reduction algorithm. In this algorithm,
the noise spectrum is tracked through time-varying low-pass
filtering of the signal+noise spectrum. Exact details of the
algorithm are not disclosed, but we find it important to com-
pare our method to commercial standards rather than choosing
one of the many proposed methods in the literature. We are
particularly interested in evaluating the performance of our
system for estimating the signal under low-SNR conditions,
because this is the situation that is notoriously difficult for
single-microphone systems, including our reference algorithm
that was supplied by GN ReSound.

Figures 9 and 10 show objective performance measures
obtained for stationary noise and non-stationary noise, respec-
tively. The figures show how performance vary depending
of the value of theα parameter in (17) for four different
SNR levels. Each curve represents an average performance
computed from the average performance for each of the six
speakers. As expected thesegSNRI measure decreases with
increasingα, however, at an SNR level of20 dB thesegSNRI

measure increases withα because the raw MMSE estimate
gives a negativesegSNRI score. It is also seen that the SD
measure increases with increasingα except whenα is small.
At an SNR level of20 dB the SD curve is relative flat though.
The corresponding objective measures for the HI NR are also
indicated. The grey horizontal lines in the figure show the
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corresponding segSNRI and SD values for the HI NR. Based
on figures 9 and 10 and informal listening tests a suitable
setting of theα parameter was found to be0.25. The objective
performance measurements indicate that the CFS algorithm
performs better compared to the HI NR algorithm for low SNR
levels. When the SNR level is high enough the measurements
indicate that the HI NR algorithm performs better than the
CFS algorithm. Informal listening tests indicate that there is
a slight difference in quality of the enhanced speech for the
two algorithms where the enhanced speech produced by the
HI NR algorithm is preferable. It was found that the distortion
introduced by the CFS algorithm is more noticeable than for
the HI NR algorithm. This observation can explain why the
CFS algorithm is not performing much better than the HI NR
algorithm for non-stationary noise relative to the stationary
noise case.
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Fig. 9. Plots illustrating the variation in segSNRI and SD measurements as
a function ofα at four different SNR levels for stationary white noise. The
measurements have been made by averaging performance for the six speakers.
The grey horizontal lines show the corresponding segSNRI and SD values for
the HI NR. Error bars are not shown because they were found to be visible
on the20 dB level curves only.

By converting the sub-band noise power estimates in the
HI NR algorithm to a noise variance estimate, it is possible
to compare the noise variance estimates of the CFS and HI
NR algorithms. Figure 11 shows three examples for the case
of speaker SA1 and non-stationary noise. In figure 11(a) and
(b) the non-stationary noise with RW variance is used at 0 dB
SNR and 5 dB SNR, respectively and in (c) noise where the
variance changes abruptly every500 ms and otherwise kept
constant is used. In figure 11a the CFS algorithm tracks the
noise variance much better than the HI NR algorithm which
seems to not only react slowly but also seems to underestimate
the noise variance. In figure 11b the HI NR algorithm is better
at tracking the noise, mostly because the increased SNR makes
it easier for the HI NR to track the noise. Figure 11b makes
visible some intervals where the noise variance estimated
by the CFS algorithm deviates significantly from the true
noise variance. This is caused by a short-coming of the CFS
model. The deviations occur during intervals corresponding to
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Fig. 10. Figure legend as in figure 9 but now with non-stationary white
noise.

unvoiced speech sounds where most of the speech energy is
concentrated at higher frequencies. Figure 11c demonstrates
the difference between the two algorithms reacting to sudden
changes in the noise variance. The CFS algorithms is tracking
the noise variance much faster than the HI NR algorithm for
this case.
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Fig. 11. (a) shows the true variance of the non-stationary noise with RW
variance and the noise variance estimated by the CFS and HI NRalgorithms
at an SNR level of0 dB (using speaker SA1). (b) show the noise variance
estimates for the same setup but at an SNR level of5 dB. (c) illustrates how
the two algorithms react to sudden changes in the noise variance.

VIII. C ONCLUSION

It has been found that reducing noise in speech by particle
filter inference in a TVAR model is more beneficial if prior
knowledge of the formants is exploited. This was achieved
by parameterizing the AR coefficients by formant frequencies
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and formant bandwidths instead of using the AR coefficients
directly. It was also found that conditional on the resonance
filter used to model the formants, the cascade formant synthe-
sizer model was found more useful than the parallel formant
synthesizer model. The performance of a hearing instrument
noise reduction algorithm was compared to the particle filter
algorithm for stationary and non-stationary white noise. It
was found that noise tracking capabilities of the particle filter
algorithm were superior to that of the hearing instrument noise
reduction algorithm, especially for low SNR levels. We plan
to further develop the particle filtering approach for high-
SNR situations and consider boosting low-SNR performance
for our hearing instrument set-up through integration of the
particle filter algorithm with the hearing instrument noise
reduction algorithm. We will develop the particle filtering
approach by extending the speech model to take into account
high-frequency speech components and to include a harmonic
excitation term.

APPENDIX I
STATE-SPACE FORMULATION

A. TVAR

The TVAR model is conveniently formulated as a state-
space model with the following state and observation equations

xn = An xn−1 + Bn en (23)

yn = Cxn + Dn dn, (24)

wherexn = [ xn, · · · , xn−p+1 ]
T is the state vector and

An =

[

aT
n

I(p−1) 0(p−1)×1

]

(25)

Bn =

[

σen

0(p−1)×1

]

(26)

C =
[

1 01×(p−1)

]

(27)

Dn = [ σdn
] , (28)

wherean = [ an,1, · · · , an,p ]
T is the coefficient vector. The

state-space formulation of the TVAR model in eqs. (23) and
(24), with the parameterization in (25), (26), (27) and (28), is
used in [3].

B. PFS

By letting

An,k =

[

an,2k−1 an,2k

1 0

]

(29)

then in state-space form, the PFS model is described by (23)
and (24) with system matrices

An = diag(An,1, · · · ,An,K) (30)

Bn =

[

01×2K

gn,1 0 · · · gn,K 0

]T

(31)

C =
[

1 0 1 0 · · · 1 0
]

(32)

Dn = [ σdn
] , (33)

where the state vector changes form to

xn = [xn,1, xn−1,1, · · · , xn,K , xn−1,K ]
T (34)

and the process noise becomes bivariateen ∼ N (02×1, I2).
In (34) xn,k denotes the output from thekth resonator (see
figure 2) .

APPENDIX II
PROBABILISTIC MODELS FORPARAMETERS

The initial state and state-transition distributions for the
TVAR model are factorized as in [3], that is

p(θTV AR
0 ) = p(a0)p(φe0

)p(φd0
) (35)

p(θTV AR
n |θTV AR

n−1 ) = p(an|an−1)p(φen
|φen−1

)

×p(φdn
|φdn−1

) , n > 1 . (36)

The initial state and state-transition distributions for the
parameters in the CFS model are factorized as

p(θCFS
0 ) = p(f0)p(b0)p(φe0

)p(φd0
) (37)

p(θCFS
n |θCFS

n−1 ) = p(fn|fn−1)p(bn|bn−1)p(φen
|φen−1

)

×p(φdn
|φdn−1

) , n > 1 . (38)

The initial state and state-transition distributions for the
parameters in the PFS model are factorized as

p(θPFS
0 ) = p(f0)p(b0)p(g0)p(φd0

) (39)

p(θPFS
n |θPFS

n−1 ) = p(fn|fn−1)p(bn|bn−1)p(gn|gn−1)

×p(φdn
|φdn−1

) , n > 1 . (40)

A. TVAR

The initial state distributions are taken to be Gaussian and
the parameters are assumed to evolve according to first-order
Gaussian Markov processes. As such, samples from the initial
state and state-transition distributions are generated using the
following generative expressions

a0 = v , v ∼ N
(

0p×1, δ
2
a0

Ip

)

an = an−1 + wn , wn ∼ N
(

0p×1, δ
2
a
Ip

)

φe0
= α , α ∼ N (−2, 0.25)

φen
= φen−1

+ βn , βn ∼ N
(

0, δ2
e

)

φd0
= γ , γ ∼ N

(

0, δ2
d0

)

φdn
= φdn−1

+ ǫn , ǫn ∼ N
(

0, δ2
d

)

(41)

Samples drawn from the chosen initial state and state-
transition distributions for the AR coefficients in (41) that
produce poles of the system function that reside on or outside
the unit circle are discarded. This step is a sufficient condition
to ensure stability of the TVAR process.

B. CFS

For the CFS model, samples are drawn from the initial and
state-transition distribution in the following way

f0 = ω , ω ∼ U (fl, fh)
fn = fn−1 +ψn , ψn ∼ N

(

0K×1, δ
2
f
IK

)

b0 = ν , ν ∼ U (bl,bh)
bn = bn−1 + ςn , ςn ∼ N

(

0K×1, δ
2
b
IK

)

(42)

The models for the process noise and the observation noise
variances are equivalent to those in (41). In order to exploit
known properties of the formant frequencies in the particle
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filtering the formant frequencies are constrained to the fre-
quencies rangesfn,1 ∈ [200, 1500]Hz, fn,2 ∈ [800, 2700]Hz,
fn,3 ∈ [2000, 3800]Hz and fn,4 ∈ [2800, 5600]Hz. Further-
more, the formant frequencies are constrained to be at least
200Hz apart, that is,fn,k−fn,k−1>200Hz for 1 < k ≤ K.
These constraints are similar to what was used in [12]. The
formant bandwidths are constrained to the frequency interval
bn,k ∈ [30, 500]Hz. In (42), U(a,b) denotes a multivariate
uniform distribution on the domain[a,b]. The setting used
in the following is fl = [300, 1000, 2000, 3000]T, fh =
[1000, 2000, 3000, 4000]T, bl = [30, 30, 30, 30]T and bh =
[500, 500, 500, 500]T.

C. PFS

The parameter models for the formant frequencies and
formant bandwidths in the PFS model are equivalent to those
in (42) and the observation noise model equivalent to that in
(41). The model for the formant gains are

g0 = κ , κ ∼ N (−2IK×1, 0.25IK)
gn = gn−1 + ξn , ξn ∼ N

(

0K×1, δ
2
g
IK

) (43)

APPENDIX III
DERIVATION OF (13) AND (14)

The numerator in (11) can be expanded as follows using
Bayes’ rule

p(θ0:n |y1:n) =
p(y1:n |θ0:n)p(θ0:n)

p(y1:n)

=
p(yn |y1:n−1, θ0:n)p(y1:n−1 |θ0:n)p(θn|θ0:n−1)p(θ0:n−1)

p(yn |y1:n−1)p(y1:n−1)

=
p(yn |y1:n−1, θ0:n)p(y1:n−1 |θ0:n−1)

p(yn |y1:n−1)p(y1:n−1)
(44)

×p(θn|θn−1)p(θ0:n−1)

where it has been assumed that the parameters
evolve according to a first-order Markov process, i.e.
p(θn |θ0:n−1)=p(θn |θn−1) and where the conditional
independencep(y1:n−1|θ0:n)=p(y1:n−1|θ0:n−1) has been
used. Inserting (12) and (44) into (11) then the weights obey

w(θ0:n)

∝
p(yn|y1:n−1, θ0:n)p(y1:n−1|θ0:n−1)p(θn|θn−1)p(θ0:n−1)

p(yn|y1:n−1)p(y1:n−1)π(θ0:n−1|y1:n−1)π(θn|θ0:n−1,y1:n)

∝
p(y1:n−1|θ0:n−1)p(θ0:n−1)

p(y1:n−1)π(θ0:n−1|y1:n−1)

×
p(yn|y1:n−1, θ0:n)p(θn|θn−1)

p(yn|y1:n−1)π(θn|θ0:n−1,y1:n)

∝w(θ0:n−1) ·
p(yn|y1:n−1, θ0:n) p(θn|θn−1)

p(yn|y1:n−1) π(θn|θ0:n−1,y1:n)

∝w(θ0:n−1) ·
p(yn|y1:n−1, θ0:n) p(θn|θn−1)

π(θn|θ0:n−1,y1:n)

∝w(θ0:n−1) · w(θn)

with

w(θn) ∝
p(yn|y1:n−1, θ0:n) p(θn|θn−1)

π(θn|θ0:n−1,y1:n)
.
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