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Summary

X-ray powder diffraction (XRPD) is an excellent tool for characterising the
bulk structure of crystalline materials. Along with the growing interest in
exploiting materials with decreasing particle sizes and increasing number of
defects, factors that complicate the traditional interpretation of the experi-
mental XRPD patterns, the need for new interpretation methods has arisen.
The method described in the present thesis is by no means new, in fact it
was developed by Debye in 1915. However, the Debye method it is rather
computationally heavy, so in practise it is only applicable to the X-ray char-
acterisation of nanostructured materials because of modern computers.

The Debye equation was implemented into a general GUI based program
which is not custom-made to characterise a specific type of material as op-
posed to many earlier implementations. The Debye program is able to read a
Crystallographic Information File (CIF), simulate the XRPD pattern given
information about the nature of the sample and the experimental setup, and
finally fit the simulated diffractogram to experimental XRPD data.

Three very different materials were studied using the Debye approach:
1) Cellulose, an organic polymer with a nanofibrous structure. The study
was initiated based on the need for a reliable crystallinity determination
from XRPD. It was shown that for future crystallinity determinations a new
method based on Rietveld refinements should be preferred. If additional in-
formation about particle shape, size or size distribution is required, this can
be obtained from Debye simulations. 2) Nitrogen expanded austenite,
a highly defective material. Debye simulations confirmed that this material
contains deformation stacking faults and that screw dislocations are abun-
dant. A combined XRPD/EXAFS characterisation of nitrogen expanded
austenite produced using a novel method showed that CrN formed even at
temperatures below 450◦ where the mobility of Cr is very low. 3) Carbon
nanotubes, a non-crystalline material with a periodic structure. It was
shown that the mean bulk structural properties of the nanotubes can be
obtained from XRPD using a combination of Debye simulations and param-
eterised Principal Component Analysis (PCA).



Røntgenkarakterisering af nanostrukturerede materialer

Man har traditionelt og med stor succes anvendt røntgendiffraktion til studiet
af krystallinske materialer, men som partikelstørrelsen bliver mindre og inter-
essen for at udnytte materialer med defekter større, bliver behovet for en god
beskrivelse af disse effekters indvirkning p̊a røntgendiffraktionseksperimentet
stadig mere presserende. Metoden som er anvendt til fortolkning røntgen-
diffraktionsdata i indeværende afhandling blev oprindelig udviklet af Debye
i 1915, men den er temmelig regnetung, s̊a det er først med udviklingen af
moderne computere at den er blevet praktisk anvendelig til karakterisering
af nanostrukturerede materialer.

Debye’s ligning er blevet implementeret i et generelt Debye-program.
Programmet har en grafisk brugerflade og er i modsætning til mange af
sine forgængere ikke er skræddersyet til en specifik materialetype. Debye-
programmet kan læse en krystallografisk informationsfil (CIF), simulere dif-
fraktogrammet ud fra information om de eksperimentelle forhold, partik-
lernes facon, størrelse og størrelsesfordeling, og endelig tilpasse det simulerede
diffraktogram til eksperimentelle data.

Tre meget forskellige materialer er blevet studeret vha. Debye-metoden:
1) Cellulose, en molekylær krystal med en nanofibrøs struktur. Studiet blev
initieret p̊a baggrund af et behov for en troværdig krystallinitetsbestemmelse
fra røntgendiffraktionsdata. Det blev vist at en ny metode baseret p̊a Rietveld-
forfininger er at foretrække til fremtidige krystallinitetsbestemmelser, og at
det er muligt at opn̊a yderligere information om partiklernes facon, størrelse
og størrelsesfordeling fra Debye-simuleringer. 2) Nitrogen-ekspanderet
austenit, et materiale med mange defekter. Debye-simuleringer har bekræftet
at dette materiale indeholder deformationsstakningsfejl og at forekomsten af
skruedislokationer er udbredt. Et kombineret EXAFS og røntgendiffraktions-
studie af nitrogen-ekspanderet austenit fremstillet p̊a en ny måde viste at der
blev dannet CrN selv ved temperaturer under 450◦C hvor mobiliteten af Cr
er meget lav. 3) Kulstof nanorør, et ikke-krystallinsk materiale med en
periodisk struktur. Det blev vist at det er muligt at bestemme gennemsnits-
strukturen af nanorør i en prøve ud fra røntgendiffraktion vha. en kombi-
nation af Debye-simuleringer og parametriseret principal komponent analyse
(PCA).
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Chapter 1

Introduction

Nanotechnology, nanoscience, nanomedicine, nanomaterials, nanostructures,
nanodevices. . . The list is long and new items can be added every week, but
it all boils down to the one same thing: The study and design of objects
on the nanometer (10−9m) length scale. Since the atomic radius is of the
order 1Å (10−10m), this is essentially on the atomic level. In connection with
nanotechnology the terms top-down and bottom-up are frequently used. The
top-down approach refers to the situation where the nanosized objects are
constructed by breaking up larger entities, for instance with the motivation to
improve the applicability of certain properties. It is not obvious whether the
new nanoobjects will inherit the properties of their “parent” rendering them
superior for the application. Taking on the bottom-up approach, the nano-
objects are built from smaller entities, in principle atom by atom. In reality
the building blocks are somewhat larger, for instance surfactant molecules
self-assembling into micelles. The nanosystems built in this way show prop-
erties without counterparts in the macroscopic world, and their nanoscopic
size enables applications in places that have been inaccessible so far.

Irrespective of different motivations, interests and approaches to the field,
every nanoscientist seeks to understand and characterise the very finest struc-
tural details of his or her specific nanoobject in order to explain, improve and
exploit its properties. Many different characterisation techniques have been
developed over the years, especially the different types of scanning probe
microscopy as well as (High Resolution) Transmission Electron Microscopy
((HR)TEM) have proven most useful, not only for characterisation purposes
but also to device design. These microscopy techniques are able to give
detailed information on the structure of a limited number of nanoobjects,
thus they are excellent local probes. As opposed to this, a number of more
global probes exist: Extended X-ray Absorption Fine Structure (EXAFS),
X-ray Absorption Near Edge Structure (XANES), Small Angle X-ray Scat-
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tering (SAXS), and X-ray Powder Diffraction (XRPD) to mention some of
the most important ones. Generally speaking these techniques give infor-
mation on the average structure in a sample containing a large number of
nanoparticles. The experiments still render information on the atomic ar-
rangement (including defects), shape and size of the particles, but the inter-
pretation is complicated by the inevitable presence of impurities and the fact
that each structural parameter is distributed around the mean. The comple-
mentarity of the different characterisation techniques can be exploited to get
a differentiated understanding of the material at hand.

This thesis will focus on the methods used to interpret XRPD patterns
from nanostructured materials, the factors that complicate the interpretation
and how to possibly improve interpretations in the future. Before going into
this Chapter 2 is a short introduction to another X-ray based characterisa-
tion technique, namely EXAFS. Then Chapter 3 introduces the traditional
methods for interpretation of XRPD data such as line profile analysis and
Rietveld refinement, methods that roughly speaking treat the nanostructural
details as perturbations of the infinitely periodic crystal structure. As op-
posed to this the Debye equation, and hence the possibility to calculate the
diffraction from any collection of atoms, is introduced and a review of the
relevant literature using this approach is presented. A description of how the
Debye approach was implemented into the general Debye program is given
in Chapter 4. Here some of the considerations made and problems encoun-
tered during the program design are described. In Chapter 5 the structure
of cellulose is used as a test case for many of the basic features of the Debye
program; crystallite shape, size, and size distribution. The study of cellu-
lose was initiated based on the need for a reliable crystallinity determination
from XRPD, and as a result two new methods based on Rietveld refinements
and Debye simulations are suggested and evaluated. However, the real po-
tential of the Debye method lies in the characterisation of defective and/or
non-crystalline materials. Chapter 6 illustrates how Debye simulations can
be used to characterise the structure of homogeneous and stress-free samples
of nitrogen expanded austenite with large interstitial nitrogen occupancies, a
material containing both deformation stacking faults and screw dislocations
according to the simulations. In this chapter a combined XRPD/EXAFS
characterisation of expanded austenite produced via a new synthesis route
is also presented. As an example of the applicability towards non-crystalline
materials with a periodic structure, Debye simulations for multiwall carbon
nanotubes (MWCNTs) are presented in Chapter 7. Here a description of how
parameterised Principal Component Analysis (PCA) can be used to keep
track of how the various structural properties of the tubes affect the XRPD
patterns is given. Finally Chapter 8 contains some concluding remarks.
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Chapter 2

Principles of EXAFS

In the following the principles of X-ray absorption spectroscopy will be de-
rived assuming the effects of diffraction to be negligible (Teo and Joy, 1981;
Koningsberger and Prins, 1988; Jalilehvand, 2000). If a X-ray beam of intensity
I0 passes through a material of thickness x and linear absorption coefficient
µ the intensity will be reduced to I by means of:

ln(
I0

I
) = µx (2.1)

The value of µ depends on the concentration and the atomic number of
the absorbing atom and on the energy of the X-ray beam. At certain en-
ergies the value of µ increases drastically. These energies correspond to the
binding energies of the inner electrons (typically in the K- and L-shells) and
are referred to as the atomic absorption edges. For iron the K-edge is situ-
ated at E=7.112keV. When scanning over the absorption edge of a particular
atom the corresponding µ(E) function can be determined, and from this in-
formation about the chemical surroundings of the atom can be deduced. For
energies above the absorption edge E0 the electronic excitation caused by
the X-ray absorption is coupled with the ejection of a photoelectron. This
outgoing photoelectron will be backscattered by the surrounding atoms, and
the interference between the outgoing and backscattered waves gives rise to
the Extended X-ray Absorption Fine Structure (EXAFS). Single backscat-
tering is the main reason for the EXAFS, but multiple scattering paths may
also contribute.

The EXAFS function is defined as the modulation in the absorbance as
a function of the energy, thus:

χ(E) =
µ(E)− µ0(E)

µ0(E)
(2.2)
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where µ(E) is the measured quantity and µ0(E) is the atomic background
absorption. µ0(E) is obtained by spline fitting of the experimental data
after these have been corrected for background effects, normalised, energy
calibrated and converted to k-space. The choice of a good spline function
is essential to the data analysis. In Figure 2.1 the Fe K-edge data of the
as-nitrided sample described in detail in Section 6.2 is shown just before the
k-space conversion, and in Figure 2.2 the k3χ(k) which results after the spline
fitting is given.

Figure 2.1 Fe K-edge absorption data for the as-nitrided sample described in
Section 6.2 subjected to background subtraction and normalisation
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The EXAFS function of the central atom i can now be modelled in terms
of the structure of the surrounding shells j responsible for the backscattering:

χi(k) =
∑

j

NjS
2
0(k)

kr2
j

|f eff
j (k)| e−2k2σ2

j e
− 2rj

Λ(k) sin(2krj + φij(k)) (2.3)

where Nj is the number of backscatterers in the jth shell, rj is the dis-
tance between the the central atom and the atoms in the jth shell for single
backscattering and half of the total path length for multiple scattering, S2

0(k)
is the amplitude reduction factor, f eff

j (k) is the effective amplitude function
for each path, σ2

j is the Debye-Waller parameter, Λ(K) is the photoelectron
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mean free path, and φij is the phase shift due to the Coulomb potentials of
atoms i and j.

A Fourier Transform of k3χ(k) gives the pseudo radial distribution func-
tion which can be used to determine the values of rj, see Figure 2.3. The k3

weighting is frequently used to avoid information loss at high k-values be-
cause both χi(k) and f eff

j (k) goes as k−1. Given the types and coordinates of
all atoms within a certain distance of the central atom, the values of f eff

j (k),
Λ(K) and φij for the possible scattering paths can be calculated ab initio by
the FEFF7 program (Zabinsky et al., 1995). The WinXAS program (Ressler,
2004) can then be used to fit (2.3) to the experimental EXAFS by choosing
the paths with the largest values of |f eff

j (k)| and refining the corresponding
values of Nj, rj and σ2

j . The fitting can be performed in either k-space or R-
space. The S2

0(k) factor arising mainly because of inelastic scattering events
can also be refined, but it is proportional to Nj and correlates strongly with
σ2

j , so usually it is fixed to a value determined for a standard compound,
or simply set to unity. Finally the energy scale offset ∆E0, which of course
correlates strongly with rj, can be refined. As a measure of the quality of
the fit the residual is often given:

R =

∑
i |yexp

i − ytheo
i |∑

i y
exp
i

(2.4)

where yi is either χ(k) or the FT, in which case the summation is over r.
Because of the limited amount of data only a limited number of paths

and corresponding independent variables can be added and refined. Here the
introduction of constraints into the refinement, for instance crystallographic
symmetry between the different values of rj, can be of help. The large corre-
lations between the different parameters result in rather large standard de-
viations, for rj this is at best 0.01Å while Nj is normally not refined because
the determined values can only be trusted to within 25%. The Debye-Waller
parameter contains contributions from both thermal vibrations and static
disorder such that σ2 = σ2

TV + σ2
SD.

The EXAFS data can be collected either in transmission or as fluores-
cence. In transmission the intensities I0 and I of (2.1) are measured by
absorption in two ion chambers placed before and after the sample respec-
tively. The fluorescent signal corresponds to the Kα or Lα emission lines of
the absorbing atom arising when the core hole in the inner shell is filled by
an electron from a higher shell. The intensity of the fluorescence If can be

measured, and the absorption µ is proportional to
If

I0
.
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Figure 2.2 The k3-weighted EXAFS function indicating that only the data
between k=4.2Å−1 and k=13.0Å−1 were used to produce the FT in Figure 2.3
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Chapter 3

X-ray powder diffraction from
nanostructured materials

The Bragg intensity (Ihkl) measured for reflection hkl with scattering angle
2θhkl in a XRPD experiment carried out on a crystalline sample is propor-
tional to the Lorentz (Lθhkl

), polarisation (Pθhkl
) and reflection multiplicity

(mhkl) factors as well as to the square of the structure factor (|Fhkl|2):

Ihkl = C Lθhkl
Pθhkl

mhkl |Fhkl|2 (3.1)

where the structure factor Fhkl corresponding to the scattering from one unit
cell is given by:

Fhkl =
∑

j=1...n

gj fj(θhkl) e−Bj sin2 θhkl/λ2
e2πi(hxj+kyj+lzj) (3.2)

Here the sum runs over the n atoms in the unit cell, gj is the site occupancy,
fj the atomic scattering factor, and Bj the atomic temperature factor of the
jth atom (Bish and Post, 1989; Giacovazzo, 1992; Young, 1993; Langford and
Louër, 1996).

The diffraction pattern calculated according to the above equations has
zero background and the peaks have no width, a situation that is very far
from that which can be observed experimentally. Background will always
occur due to the presence of impurities, the experimental setup and peak
overlap. A number of different factors, both related to the crystal structure
and to factors such as the instrumentation and preferred orientation, con-
tribute to the peak width. The shape and finite size of the crystals give
rise to an order independent broadening, the size broadening, which also in-
cludes dislocation effects. Another type of broadening originating from the
structure of the sample, the strain broadening, is order dependent and arises
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because of variations in the d-spacing throughout the crystals. To conclude:
the nanostructural details of the sample, both the infinitely ordered crystal
structure and the nanoscale deviations from this, are reflected in the XRPD
experiment, and the challenge is to extract the information.

3.1 Line profile analysis

Line profile analysis is the discipline of extracting information about the
crystal structure from the line profiles of the experimental XRPD peaks.
The experimentally determined peak profile is modelled as a convolution of
structure related (due to particle size and strain) and instrument related
peak broadening.

3.1.1 The Scherrer equation

The reciprocal relationship between the mean crystallite dimension (Dhkl)
perpendicular to the {hkl} planes and the particle size induced integral
breadth of the corresponding diffraction peak (βS

hkl) was first rationalised by
Scherrer in 1918 and is today best known as the Scherrer equation (Scherrer,
1918):

βS
hkl =

K λ

Dhkl cos θhkl

(3.3)

where βS
hkl is measured in radians on the 2θ-scale and can be obtained from

the Full Width at Half Maximum (FWHM) of the diffraction peak, and K is
the crystallite shape factor. K depends on the crystallite shape, but for all
practical purposes K=1 can be applied (Klug and Alexander, 1974; Guinier,
1963; Warren, 1990). The Scherrer equation can be used to estimate the
mean crystallite dimension D by averaging over a number of reflections, but
it is not sufficiently accurate to determine the different dimensions of an
anisotropically shaped crystal. Besides the approximation of K=1, this is
mainly due to the fact that it is difficult to unambiguously determine βS

hkl

from the experimentally determined FWHM of the peaks without a model
to describe the broadening arising from strain and instrumental effects.

3.1.2 Williamson-Hall plot

In 1944 Stokes and Wilson gave an expression for the strain (distortion)
induced integral breadth (βD

hkl) of reflection hkl (Stokes and Wilson, 1944):

βD
hkl = η tan θhkl (3.4)
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where η is the apparent strain parameter. Assuming that the profiles are
Lorentzian so that peak widths combine linearly, the total integral breadth
arising from the crystal structure is given as:

βhkl = βS
hkl + βD

hkl (3.5)

Substituting (3.3) and (3.4) into (3.5) and rearranging under the assumption
that K=1 and Dhkl=D for all hkl, one arrives at:

βhkl cos θhkl =
λ

D
+ η sin θhkl (3.6)

A plot of the left-hand-side as a function of sin θhkl for a number of reflec-
tions, known as a Williamson-Hall plot, offers the opportunity to estimate
the crystallite size and strain from the intercept and slope of the best line
through the points (Williamson and Hall, 1953). Again it can be no more than
an estimate because of the assumptions made in the derivation of (3.6) con-
cerning the Lorentzian peak shape and the isotropic crystallite size as well
as the problems in deconvoluting the instrumental contributions from the
FWHM of the experimental XRPD peaks.

3.1.3 Warren-Averbach analysis

The only information about the peak profiles utilised both in the Scherrer
equation and in the Williamson-Hall plot is the integral breadths or FWHM
of the peaks, hence these two methods are often referred to as integral breadth
methods. However, much information about the crystal structure can be
gained if the entire peak profiles are used. This philosophy is the basis of
Fourier methods such as the Warren-Averbach analysis (Warren and Averbach,
1950; Warren and Averbach, 1952; Warren, 1990). Here the entire peak profile
is expressed in terms of a Fourier series and the symmetric cosine terms (An)
are then assumed to be the simple product of size (AS

n) and strain (AD
n )

coefficients:
An(l) = AS

n AD
n (l) (3.7)

Recall that only the strain broadening depends on the order l of the reflection.
Rewriting (3.7) and introducing the expression for AD

n assuming that n and
l are small one arrives at:

ln An(l) = ln AS
n − 2π2n2l2 < e2

n > (3.8)

where < e2
n > is the mean-square strain. Thus a plot of ln An(l) versus l2

offers the opportunity to estimate the crystallite size and strain from the in-
tercept and slope of the best line through the points. The Warren-Averbach
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method is more sensitive to peak overlap than the integral breadth methods
because it is more difficult to obtain the entire peak profiles than simply the
FWHM for overlapping peaks. Furthermore the number of applied reflec-
tions is usually limited since at least two and preferably more orders of the
reflection need to be measured.

3.1.4 Recent progress in line profile analysis

Ungár and coworkers have modified both the Williamson-Hall plot and the
Warren-Averbach analysis to the situation where the strain is caused by dis-
locations. The modification includes the introduction of new scaling factors,
and results in the determination of the dislocation density (Ungar and Bor-
bely, 1996). However, none of the above outlined methods used in classical
line profile analysis can handle severely overlapping peaks. Furthermore,
the methods all suffer from the fact that no actual information about the
crystal structure except the hkl indices of the reflections is used in the in-
terpretation. Methods of this type are often called pattern decomposition
methods, as opposed to pattern modelling methods which aim at modelling
all the peaks in the XRPD pattern based on physical parameters related
to the structure of the sample. The most well-known pattern modelling
method is no doubt the Rietveld approach which is discussed in the next
section. Recently Scardi and Leoni have developed a whole powder pattern
fitting/modelling approach and implemented it into the program PM2K. The
approach is basically an extended Rietveld refinement procedure including
a number of refinable physical parameters (e.g. domain shape, size and size
distribution, lattice distortions, dislocations and faulting) that are not ac-
counted for in the original Rietveld approach (Scardi and Leoni, 2002; Scardi
and Leoni, 2003; Leoni et al., 2006). The method is rather computationally
heavy and for a while it was only fully developed for FCC, BCC and HCP
materials. However, recently a subroutine to handle dislocation effect for
materials of any crystallographic symmetry was added (Leoni et al., 2007).

3.2 Rietveld refinement

Rietveld refinement is without comparison the most widely applied method to
refine structural parameters from an experimental XRPD pattern. The for-
malism was devised by Rietveld in the 1960ies and states that the diffracted
intensity at a the ith step in 2θ can be calculated in the following way (Riet-
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veld, 1967; Rietveld, 1969):

I(2θi) = s
∑

hkl

Lθhkl
Pθhkl

mhkl |Fhkl|2 POhkl Φ(2θi−2θhkl) + Ibg(2θi) (3.9)

Here s is the scale factor, POhkl is the preferred orientation function, Φ(2θi−
2θhkl) is the reflection profile function, Ibg(2θi) is the background intensity
at the ith step and the remaining terms are defined as in (3.1) and (3.2).
If the sample contains more than one phase, (3.9) can be extended to in-
clude a summation over the Bragg intensities originating from the different
phases, and the relative contents of the phases can be calculated from the
corresponding scale factors. Refinements are carried out by least squares
minimisation of the residual:

S =
∑

i

wi (Iexp(2θi) − Icalc(2θi))
2 (3.10)

where wi is an experimentally determined weight, often wi = 1/Iexp(2θi). Re-
finable parameters for each phase include: atomic coordinates, temperature
factors and site occupancies for each atom in the unit cell, lattice param-
eters, a scale factor, a preferred orientation parameter, and a number of
structure related profile parameters. The background function is a contin-
uous function in 2θ, typically a polynomial, giving rise to several globally
refinable parameters. Other globally refinable parameters include: a 2θ zero
offset, the wavelength, and a number of peak profile parameters to describe
instrumental broadening and peak asymmetry (Giacovazzo, 1992; Young, 1993;
Langford and Louër, 1996).

Recalling that the peak profile must be modelled as a convolution of
profile functions relating to different types of broadening it is not surprising
that both Gaussian and Lorentzian forms and several different combination
of these have been used to model the peak profiles (Young and Wiles, 1982).
The Voigt peak profile function (Langford, 1978), which is the convolution of
m Gaussian and n Lorentzian functions, offers the opportunity to interpret
the refined profile parameters in terms of structure related physical quantities
as outlined below. The reason for this is basically that the convolution of two
Voigt functions is also Voigtian, thus the functional properties are conserved
when the profiles relating to different types of peak broadening are combined.
In reality the evaluation of the Voigt function is rather computationally heavy
since it involves the complex error function, and the use of more easy-to-
calculate functions such as the pseudo-Voigt (Wertheim et al., 1974) has proven
useful despite the fact that the convolution of two pseudo-Voigt functions is
no longer a pseudo-Voigt.
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In 1958 Caglioti et al. suggested to model the instrumental peak broad-
ening of an angle-dispersive neutron powder diffractometer as a Gaussian
with a FWHM given according to (Caglioti et al., 1958):

ΓG =
√

U tan2 θ + V tan θ + W (3.11)

Because of its simplicity and fair performance, this expression (or varia-
tions of it) has since been adopted for the description of instrumental peak
broadening in most Rietveld refinement programs, not only for neutrons and
Gaussian peak profiles, but also for XRPD and a variety of different profile
functions. Keeping with the derivations of section 3.1.2, it is often chosen to
model the structure related peak broadening as a Lorentzian with a FWHM
given as (Attfield and Cheetham, 1988):

ΓL =
X

cos θ
+ Y tan θ (3.12)

Here X can be interpreted in terms of isotropic particle size and Y can be
directly related to strain. The description of both size and strain accord-
ing to (3.12) can be extended to the anisotropic case by replacing X with
X+Xe cos φ and Y with Y +Ye cos φ, where φ is the angle between the scat-
tering vector and the specified anisotropic direction, and the anisotropic size
and strain coefficients are named Xe and Ye, respectively (Larson and von
Dreele, 2004).

The basis of the Rietveld approach is the structure factor giving the
scattering from one unit cell, and the assumption that the entire crystal is
built by a 3D repetition of a these where the total number of unit cells is
so large that it can be considered infinite for all practical purposes. The
diffraction effects arising from the finer nanostructural details such as finite
crystal size and disorder are then handled via the introduction of analytical
peak shape functions. The Rietveld approach offer the opportunity to apply
a large number of different analytical peak shape functions and refine the
corresponding parameters, however, not all of these can be directly related
to either the structure or the experimental conditions, for instance the pa-
rameters U , V , and W of the Caglioti expression for the instrumental peak
broadening (3.11) are merely empirical. The Rietveld interpretation of ex-
perimental XRPD data, where the nanostructural details of the sample are
seen as a perturbation of the bulk crystal structure, is a typical top-down ap-
proach. It is not difficult to imagine a scenario where important information
about the nanostructure of a highly disordered or even non-crystalline mate-
rial could be gained from an XRPD experiment, and this is not possible by
means of Rietveld refinement. For this purpose a bottom-up approach where

12



the structure is built atom by atom before the resulting XRPD pattern is
calculated would be desirable, and such an approach does in fact exist.

3.3 The Debye equation

The desired bottom-up approach is by no means new, in fact the formal-
ism which can be reached by averaging out the spatial dependence in (3.1)
was presented by Debye in 1915. The statement, today known as the Debye
formula/function/equation, is that the diffracted intensity from a powder
sample (random spatial orientation) consisting of identical scattering objects
(N scatterers each) can be calculated as a sum over all the interatomic dis-
tances (rij) without any assumption about crystallographic ordering (Debye,
1915):

I(Q) =
∑

i,j=1...N

fi(Q) fj(Q)
sin(Qrij)

Qrij

where Q = 4π sin θ/λ (3.13)

So very simple and elegant, yet it is easily seen that the computational cost
goes as the number of atoms squared.

The first application of the Debye formula to obtain information on par-
ticle size and structure was performed in 1941 (Germer and White, 1941) on
spherical FCC Cu clusters of 13, 55 and 379 (only approximately) atoms and
compared with ED experiments. In 1964 it was possible to explicitly calcu-
late the diffraction from a 35Å cube of diamond (8000 atoms) with the aid of
a computer (Tiensuu et al., 1964), and in 1993 the calculation of a spherical
crystallite of SiC involving 10000 atoms was feasible (Bondars et al., 1993).
Today a calculation for a box shaped crystallite of austenite including a par-
ticle size distribution (edge length between 10nm and 40nm and a maximum
of 6.4·106 atoms, Table 4.2) can be done within a minute on a 2.8GHz/1GB
RAM PC! With the computer power now at hand it is possible to perform
the summation in (3.13) and obtain the diffractograms for structures large
enough, complex enough and numerous enough to be of interest to the inter-
pretation of experimental XRPD patterns, something that was not possible
ten years ago.

3.3.1 Debye Function Analysis

The standard application of the Debye equation gives the diffraction pat-
tern from a sample containing uniform particles with respect to structure,
shape and size, but one TEM picture of any powder sample is enough to
ascertain that a grain size distribution is always present in the real world.
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An educated guess on the average particle size can be obtained by fitting a
series of diffraction patterns simulated for different sizes to the experimental
pattern, even if a combination of the different sizes would be a more correct
description of the true sample.

In 1989 Hall and co-workers suggested the use of a new method called
Debye Function Analysis (DFA) to describe the size and structure variations
observed in experimental electron diffraction patterns of unsupported silver
nanoparticles (Hall et al., 1989; Hall et al., 1991; Hall, 2000). The bulk structure
of silver is FCC, but when the size is reduced to the nanoregime, icosahedral
and decahedral multiply twinned particles are found along with the expected
FCC cubeoctahedra, see Figure 3.1. The basic idea in DFA is to create
a basis of simulated diffraction patterns for a range of different sizes and
particle structures/shapes. The best fit to the experimental diffractogram
is then sought as a linear combination (weights≥0) of the basis functions,
and the resulting weights are used to calculate the relative abundance of
different particle types and the particle size distribution(s). It is important
to emphasise that DFA gives the best fit to the distribution of interatomic
distances in the sample within the chosen basis, thus it is not guarantied
that the structure types used to set up the basis are actually present in
the sample. In a recent review article (Hall, 2000) the discriminating powers
of DFA were tested. A basis of seven different sizes of each of the three
structure types shown in Figure 3.1 was used, and the “experimental data”
were linear combinations of simulated diffraction patterns added a certain
level of random noise, either simply the basis functions or patterns simulated
after relaxing the basis structures with the aid of molecular dynamics. The
results were good, especially with respect to estimating the mean diameter
of the particles.

Figure 3.1 Ball models of multiply twinned particles: cubeoctahedron (A),
decahedron (B), and icosahedron (C) (Mohr et al., 2003).
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Vogel and co-workers have used DFA to obtain information about the
active metal particles from in situ XRPD data of catalysts (Gnutzmann and
Vogel, 1990; Vogel, 1998). The systems studied include: Pt/SiO2 (Gnutz-
mann and Vogel, 1990; Hartmann et al., 1994), Au/alumina (Vogel et al., 1995),
Au/Mg(OH)2 (Vogel et al., 1996), PtRu[N(Oct)4Cl]5 and PtRu[N(Oct)4Cl]5/silica
(Vogel et al., 1997), Pd/zeoliteY (Vogel et al., 1998b), Pd-Pt[N(Oct)4Cl]5 /C
(Bönnemann et al., 1998a), Pt3Sn[surfactant]/silica (Bönnemann et al., 1998b),
Au/TiO2 (Cunningham et al., 1999), and Pt-Ni/C (Yang et al., 2004).
Common to all of these is that the bulk metals/alloys display FCC structures,
but like Ag the nanosized active particles present in the catalysts show mul-
tiple twinning. Knowing which active metal structure types and particle size
distribution(s) are present in the catalysts and how these parameters change
during reaction is important for the understanding of the catalytic activity
and stability. It is by no means trivial to interpret XRPD data of supported
and/or surfactant stabilised metal particles. When the catalyst loading is in
the order of percent, the contribution from the support material and/or sur-
factants (which can be considered as background in this respect) constitutes
by far the largest part of the diffraction pattern. However, if no epitaxial
growth of the active nanoparticles onto the support is present, the experi-
mental diffraction from the “free” metal particles can simply be obtained by
subtracting the diffraction measured for the pure support material under the
same experimental conditions (Gnutzmann and Vogel, 1990).

Despite the fact that DFA is rather sensitive to the choice of basis func-
tions and background subtraction, the method offers important information
on structure types and particle size distributions in nanostructured materials.
It is therefore not surprising that a number of recent studies have employed
DFA as a routine tool along with other techniques such as (HR)TEM, EXAFS
and SAXS to study complex problems involving nanoparticles in the fields of
catalysis and size-selective synthesis (Vogel et al., 1998a; Zanchet et al., 2000;
Reetz et al., 2001; Mohr et al., 2003).

3.3.2 Applications of the Debye approach

The execution of the Debye equation (3.13) is greatly simplified if the system
under study contains only one type of atoms. In the light of this it is hardly
coincidental that the systems studied using DFA are all metals or at most
binary alloys. This is also the case in other studies applying the Debye
approach.

An extensive investigation of the nanostructure of SiC has been carried
out by Palozs and coworkers. The studies include the effects of random
layer stacking and surface reconstruction in small grains. The concept of an
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apparent lattice parameter is introduced in order to account for the deviation
from the bulk lattice parameter that are observed in Rietveld refinements on
nanosized crystallites. Using simulated diffractograms as input for Rietveld
refinements, the effects of crystallite size, surface relaxation and strain on the
apparent lattice parameter are studied (Bondars et al., 1993; Pielaszek et al.,
2002; Palosz et al., 2002; Palosz et al., 2003).

Cervellino, Giannini and Guagliardi have devised a whole pattern profile
fitting procedure for mixtures of monatomic FCC-type materials (c.f. Figure
3.1) based on the Debye equation (Cervellino et al., 2003). Refinable are:
background parameters (6th order Young polynomial), a thermal parameter
common to all structure types, and fractions, log-normal size distributions,
and size related strain functions (uniform isotropic scaling of distances) for
each structure type. The method was tested on simulated diffractograms
added noise and applied to study thiol-capped Au-nanoparticles (Cervellino
et al., 2004).

A similar fitting procedure has been developed by Kumpf and coworkers
to study the structure of 1–5nm CdS, ZnS and ZnO nanoparticles by means
of XRPD and Debye simulations. A reasonable starting set of parameters
such as stacking fault probability, particle size and shape is first obtained
by single particle modelling (Kumpf et al., 2005). From this parameter set
40 related sets are then created, and a diffractogram corresponding to each
set is calculated by ensemble averaging over 50 single particles assuming
that the parameters are distributed around the mean values given by the
set in question. Finally an evolutionary algorithm is used to construct a
new generation of 40 diffractograms, each being an ensemble average over
50 single particles, which fit the experimental data better than the previous
generation, a step that can be repeated until convergence is reached (Kumpf,
2006).

A great advantage of the Debye approach as compared to Rietveld re-
finements is that the material under investigation need not be crystalline as
long as it contains enough long range order to give rise to distinct diffraction
peaks. Multiwalled carbon nanotubes are an excellent example of such a
material, and the interpretation of the corresponding XRPD patterns with
the aid of the Debye equation is thoroughly discussed in Chapter 7. Other
samples of this type are layered structures such as: graphite (Andreev and
Lundström, 1995; Yang and Frindt, 1996a; Andreev and Bruce, 2001), MoS2 (Yang
and Frindt, 1996a), or MnO2/Li (Andreev and Bruce, 2001) with a turbostratic
(random) stacking, and even single layers of MoS2 or WS2 (Yang and Frindt,
1996b).
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Chapter 4

Implementation of the Debye
equation

To facilitate the interpretation of the XRPD originating from any type of
nanocrystalline material a simple, general and user-friendly implementation
of the Debye equation was done. The idea was that the Debye program
should focus on the effects of particle shape, size and size distribution and
that it should be able to read and exploit the crystallographic information
from a CIF. This of course limits the applications to crystalline samples con-
taining neither strain nor defects, a rather idealised situation when consider-
ing nanostructured materials. On the other hand, it is important to have a
firm grasp of the basic concepts before attacking more complicated matters.
Therefore it was decided that the program should calculate the diffraction
originating from crystals built up by a collection of entire and identical unit
cells. The reason for this is obvious; by building the crystals in this way the
3D translational symmetry is unbroken and can thus be exploited during the
execution of the program. Of course some crystals may offer the possibility
to exploit an even higher symmetry, but as mentioned at the beginning it
was intended to keep the program as simple and general as possible, and this
also means using the same program for all compounds irrespective of space
group.

The Debye program is written in Fortran and special attention has been
made in order to ensure that the crystallographic parts of the program are
correct. The choices made with respect to performance, CPU usage, input/
output, etc. may not always be the most efficient ones, although the authors
programming ability has improved significantly during the course of this
work. The latest version of the Debye program can be downloaded from:
http://struktur.kemi.dtu.dk/kenny/powder programs.html
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4.1 Computational cost

One of the main issues in devising the Debye program – as for any computer
program – is the computational cost. In order to understand the choices made
for the present implementation, it is important to first review the different
approaches taken by others.

4.1.1 Literature survey of Debye implementations

Recall the Debye equation as stated earlier:

I(Q) =
∑

i,j=1...N

fi(Q) fj(Q)
sin(Qrij)

Qrij

(4.1)

By introducing the distance multiplicity function, giving the multiplicity
m(rij) for each interatomic distance, the Debye equation can be rewritten as:

I(s) =
∑

m(rij)6=0

m(rij)fi(Q) fj(Q)
sin(Qrij)

Qrij

(4.2)

Now it is easily seen that the calculation of the diffracted intensity according
to (4.2) is performed in two steps: 1) The setup of the distance multiplicity
function, and 2) The summation over distinct distances for every value of Q
needed to give a diffractogram of the desired accuracy.

Step 1) can actually be seen as two steps: 1a) The N(N−1)/2 distance
calculations, a number which is less, the higher symmetry the system contains
(Bondars et al., 1993; Grover and McKenzie, 2001), and 1b) The storage of
the distinct distances and the corresponding multiplicities into an array. It
should be noted that the distance multiplicity function is exact, however
the performance of step 1b) will inevitably introduce round-off errors. Time
spent to reduce the dimensionality of the array in step 1b) may very well be a
good investment, since the computational cost in step 2) is proportional to the
size of the array. One way to perform step 1b) is to choose a certain distance
calculation accuracy (e.g. 0.01Å) and then round-off the actual distances
according to this, a process often referred to as binning (Hall and Monot, 1991;
Cervellino et al., 2006). An alternative and more accurate way to perform
step 1b) is via Gaussian sampling (Cervellino et al., 2003; Cervellino et al.,
2006), where a continuous atomic pair distance distribution is obtained after
convolution of the distance multiplicity function with a Gaussian of a given
width. The continuous pair distance distribution is then sampled on a grid
with fixed step size to carry out the summation in step 2). An extensive
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discussion on how to choose the width of the Gaussian and the size of the
sampling step was published recently along with a method to estimate the
error introduced in the calculated diffractogram depending on the choice of
these parameters (Cervellino et al., 2006). A number of faster alternatives to
the explicit summation in step 2) were also evaluated.

Another way to circumvent step 1) without explicitly calculating the
N(N−1)/2 distances in step 1a) was described in a recent thesis (Kring,
2006). The approach is stochastic and the idea is to pick out nN atom pair
at random (n ¿ N) and assume that the corresponding interatomic distances
are representative of the entire distance multiplicity function. Obviously this
method performs much faster than the traditional route via step 1a), and
tests have shown that it gives a fair estimate of the true diffraction pattern
if Q is not too small.

Palosz and co-workers have devised a totally different calculation scheme
to set up the pair correlation function which is their name for the distance
multiplicity function (Marciniak et al., 1996; Pielaszek et al., 2002). The pair
correlation function is calculated as the product of a radial distribution func-
tion and a shape distribution function. The radial distribution function de-
scribes the average electron density distribution around a reference atom as
a function of the distance to this atom, while the shape distribution func-
tion gives the probability of finding a given interatomic distance within the
crystal. Contrary to the calculation of the distance multiplicity function,
which requires N(N−1)/2 operations, the calculation of the radial distribu-
tion function requires 23N operations only. (The term 23 arises because all
positions of the reference atom must be considered.) The shape distribution
function can only be given explicitly for spherical particles; expressions for
other crystal shapes have to be calculated by means of Monte Carlo methods.
Size and shape distributions can easily be included in the expression for the
shape distribution function. The final addition, or rather integration since
both the radial and shape distribution functions are continuous, is easily
performed by Fast Fourier Transform.
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4.1.2 The Debye program

In the present implementation the distance multiplicity function is a 106×15
array. The number of different atoms in the unit cell is limited to 5, giving
a maximum of 15 different atom pairs. The number of different distances is
limited to 106 and the multiplicities are stored using the binning principle,
so the distance calculation accuracy is at most 10−6 times the maximum
distance in the crystal. For nanoparticles with a diameter below 200nm this
means a distance calculation accuracy no poorer than 0.002Å, and tests have
shown that this does not introduce significant round-off errors.

The distance multiplicities are calculated and stored into the distance
multiplicity array in the following way: For every possible vector v between
two unit cells, the number of times this vector is found within the crystal is
calculated. Only one of the vectors v and −v are considered, so unless v=0,
the resulting multiplicity is doubled. The distances between all atom pairs
situated in different unit cells separated by v are then calculated, and the
atom pair types are determined. Finally the multiplicity is added into the
corresponding positions of the distance multiplicity array. Assuming that the
the crystal is built from entire and identical unit cells, the outlined procedure
offers a significant reduction in the computational cost as compared to setting
up an array of atomic coordinates and calculating all pairwise distances.

A distance multiplicity array built as described above is very easy to
comprehend, but obviously it is not the best way to exploit the computers
memory, considering that in most cases a large majority of the array simply
contains the value 0. However, some tricks can be made in order not to read a
larger part of it than necessary for the calculation of step 2). Once the array
has been set up it is read once to determine the minimum and maximum
distances, and for every distance in between these containing an entire row
of 0’s the entry in the first column is set to −1. Now when the addition
in step 2) is performed by reading the distance multiplicity array for every
value of Q, it is only done from the minimum to the maximum distance and
rows starting with −1 are ignored.

The choice of exploiting the crystal symmetry to calculate the distance
multiplicity function and storing this information into an array according
to the binning principle before carrying out the explicit addition by means
of (4.2) is in line with keeping it simple. For a majority of the compounds
studied, the calculation time of step 2) is insignificant compared to the time
spent in step 1), and if this is not the case then the entire calculation is
extremely fast (c.f. Table 4.2), so it was deemed irrelevant to implement a
faster and less comprehensible alternative.
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4.2 Particle shape and size

Three different particle shapes are allowed by the Debye program: box, cylin-
der, and ellipsoid. When specifying which shape to use, the size must also be
input. All three types are built from entire unit cells, rendering the curved
crystallite surfaces in the case of cylinders and ellipsoids somewhat terraced.
It should be noted that the cylinder axis and ellipsoid parameters must re-
fer to the orthogonal coordinate system spanned by a∗, b and a∗ × b. This
untraditional choice of coordinate system was made to leave both the unique
b-axis of the monoclinic cell setting and the unique c-axis of the hexagonal
cell setting unchanged.

Box

The box shape is the simplest of the three. The particle consists of a repeti-
tion of na× nb× nc unit cells along the a-, b- and c- axes respectively, so if
either α, β or γ are different from 90◦, the particle will be a parallelepiped
instead of a box. The input values are na, nb and nc, so one must have an
eye on the unit cell dimensions to get the desired particle size.

Cylinder

For a cylinder the direction of the cylinder axis as well as the length and
radius must be given. A box of unit cells large enough to contain the cylinder
is then constructed, and each cell is marked to determine whether or not it
is part of the cylinder. This box of marked unit cells is then used when
calculating the multiplicities as described in section 4.1.2.

Ellipsoid

The distance multiplicity calculations in the ellipsoid case runs in the same
way as for the cylinder. The lengths of the ellipsoid axes along a∗, b and
a∗ × b must be given, and it is noted that the special case of a sphere arises
if these are set equal.
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4.3 Particle size distribution

For the design of the Debye program it was chosen to go with a particle size
distribution with a fixed aspect ratio, i.e. a fixed crystallite shape, assuming
that the crystal growth starting from a given shape is proportional rather
than linear. Having settled this, the problem of modelling a particle size dis-
tribution can be solved by explicit addition of powder patterns for a number
of equally shaped crystallites of different size. This program feature applies
to all particle shapes. Specifying the desired mass distribution function and
an integer m ∈ {1, 2, . . . , 9}, patterns for 2m+1 crystals with dimensions of
1.0−0.1m, 1.0−0.1(m−1),. . ., 1.0+0.1m times the input size (rin) are added
applying a set of weights corresponding to the distribution. The integer m
thus defines how widely the mass distribution function should be sampled.

The mass distribution function can be either a uniform distribution (equal
mass of all crystallite sizes), a Gaussian distribution (with the input dimen-
sion as mean and a spread of half the mean), a Weibull distribution or user-
defined. The cumulative Weibull function has the form:

p(r) = 1− exp (−( r−µ
α

)γ) (4.3)

where p is the probability, r is the crystallite dimension, µ is the location
parameter, α is the scale parameter and γ is the shape parameter. This func-
tion was chosen because by setting µ = 0.05rin, α = 1.1rin and γ = 2.4, a
good fit to the mass distributions of the two NIST Standard Reference Mate-
rials (www.nist.gov/srm) Lanthanum Hexaboride (660a) and Silicon (640c)
was achieved, see Figure 4.1. The mass distributions of these materials were
determined by laser scattering, and the dimensions given in Figure 4.1 were
divided by the particle size corresponding to p=0.5 (8.78µm for LaB6 and
4.95µm for Si) to bring them on the same scale. The cumulative Weibull dis-
tribution with the specified parameters has a mean of µ+α Γ(γ+1

γ
)=1.025rin,

p(0.1rin)=0.0006 and p(1.9rin)=0.97.

From Figure 4.1 it seems that the very simple uniform distribution is
not a very good approximation to the mass distribution observed in real
powders, a Gaussian is considerably better but not as good as the Weibull
distribution, especially for the fraction of low mass crystallites. If the particle
size distribution is suspected to be very skew or displays several maxima, the
program offers the possibility to design and test any such user-defined mass
distribution function.
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Figure 4.1 Cumulative crystallite mass percentages of NIST LaB6 and Si shown
along with the possible mass distribution functions of the Debye program. The
value on the x-axis is the actual crystallite size r divided by the mean size rin.
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4.4 Benchmarks

The explicit addition of diffraction patterns to model a particle size distri-
bution is obviously rather time consuming because the diffraction from a
crystallite 1.0+0.1m times larger than the input size must be calculated.
A benchmark study was set up to examine how the performance of the De-
bye program depends on the width of the particle size distribution. Two
different materials that will be studied in more detail later, namely cellu-
lose (Chapter 5) and austenite (Chapter 6), were chosen as model systems.
As can be seen in Table 4.1 these two compounds have roughly the same
density of atoms, so particles of similar volume contain the same number
of atoms, and the calculation of the corresponding diffraction patterns by
means of the Debye formula should in principle require comparable calcu-
lation times. However, because of the way the Debye program calculates
the distance multiplicities this is certainly not the case. Diffractograms were
simulated for box shaped, cylindrical and spherical particles with a size of
25–30nm as specified in Table 4.1 to test what the shape of the particles and
the unit cell volume means for the calculation times of crystals with equal
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amounts of atoms. 25–30nm is a fair size for many materials, so the calcula-
tion times of Table 4.2 may be taken as an indication of what to expect for
other nanostructured materials.

First is should be noted that the calculation times given in Table 4.2
are split up so that the time it takes to calculates the distance multiplicity
and the time it takes to do the actual summation of (4.2) are separated.
The summation time is proportional to the following parameters: 1) The
number of different atom pairs, 2) The maximum distance, 3) The distance
calculation accuracy, and 4) The number of 2θ steps. 3) and 4) were kept
equal for all simulations in the benchmark study. For cellulose the number of
different atoms pairs is 6 while it is only 1 for austenite. However, it can be
seen that for crystallites of the same shape and size, the summation times for
cellulose are more like a factor of 10 times those of austenite. This is probably
because cellulose is a molecular crystal with a continuous pair distribution,
whereas austenite is a metal for which the pair distribution function is more
discrete. The decrease in the maximum distance when going from a box
shaped crystal over a cylinder to a sphere with equal volumes is reflected
in the decreasing summation times. Finally the summation time goes as
the maximum size 1.0+0.1m when applying a particle size distribution as
expected.

The most interesting thing to be deduced from Table 4.2 is how the mul-
tiplicity calculation time depends on: 1) The sampling width of the particle
size distribution, 2) The particle shape, and 3) The size of the unit cell. The
calculation scheme applied to set up the distance multiplicity array for box
shaped crystals where the limits of the crystal coincide with the surrounding
box is very different from the cylinder and ellipsoid case where each unit
cell in the surrounding box must be marked to determine whether or not
it is part of the crystal. These differences are also reflected in how the dif-
ferent parameters influence the calculation times. From Table 4.2 it can be
seen that for box shaped crystals the calculations performed for small unit
cells containing a limited number of atoms (austenite) are much faster than
those performed for large unit cell with many atoms (cellulose). The size
dependence of the calculation time when applying a particle size distribution
is (1.0+0.1m)5 for crystals with small unit cells while it is (1.0+0.1m)3 for
larger unit cell materials.

For cylinders and ellipsoids it was immediately realized that the total
number of unit cells needed to surround the shape of the crystal have a great
impact on the time it takes to set up the distance multiplicity array, and
therefore this number is also given for each calculation in Table 4.2. Here it
seems that for cylinders and ellipsoids the multiplicity calculation time de-
pends on the number of unit cells to a power of around 2.4. Considering that
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Table 4.1 Structural data of the compounds used for the Debye benchmarks

cellulose austenite
space group P 21 F -4 3 m
unit cell volume [Å3] 658 40
atoms in unit cell 72 4
atomic density [Å−3] 0.11 0.10
atom types 3 1
atoms in box with 25nm edge 1.66·106 1.56·106

atoms in cylinder of l=25nm and r=14nm 1.68·106 1.53·106

atoms in sphere with r=15.5nm 1.66·106 1.55·106

2θ steps 2501 2501
distance calculation accuracy [Å] 0.002 0.002

Table 4.2 Performance of the Debye program on a 2.8GHz/1GB RAM PC:
multiplicity calculation time / intensity calculation time / number of unit cells in
surrounding box

cellulose austenite austenitea

shape m multi/sum/103uc multi/sum/103uc multi/sum/103uc

box 0 1min/189s/ 23 2s/ 13s/ 389 18s/ 18s/ 47
3 2min/249s/ 51 8s/ 22s/ 857 41s/ 28s/104
6 3min/307s/ 93 20s/ 31s/1602 79s/ 40s/195
9 6min/365s/160 41s/ 43s/2686 128s/ 55s/314

cylinder 0 1min/171s/ 32 4h/ 11s/ 479 2min/ 17s/ 62
3 3min/221s/ 66 27h/ 17s/1088 10min/ 25s/132
6 10min/265s/122 / / 36min/ 26s/249
9 30min/282s/211 / / 2h/ 32s/409

sphere 0 2min/133s/ 46 12h/ 8s/ 754 5min/ 14s/ 91
3 6min/172s/101 63h/ 13s/1602 24min/ 13s/275
6 19min/208s/186 / / 2h/ 19s/389
9 91min/234s/320 / / 8h/ 23s/857

a Calculated for unit cells with an 8-fold volume
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the number of unit cells goes as (1.0+0.1m)3, this means that the calculation
time when applying a particle size distribution to cylinders or ellipsoids goes
roughly as (1.0+0.1m)7.

In fact, because the austenite unit cell volume is so small, the number
of unit cells needed to enclose a crystal with a diameter of 25–30nm is so
large that the calculations applying a particle shape distribution take more
than 24h. Therefore not all of these austenite calculations were performed.
Instead the austenite unit cell was doubled in all 3 directions such that it
contained 32 atoms rather than 4 atoms, hereby reducing the calculation
times by a factor of around 82.4∼150. The improved calculation time is
obtained at the expense of the crystal surface, which becomes slightly more
terraced for the larger unit cells, but the difference is not detectable in the
simulated diffraction patterns in the case of austenite.

It should be noted that every time 1 unit cell is needed to enclose a box
shaped crystal, 1.3 unit cells are needed for the cylinder and 2.0 for the el-
lipsoid of similar volume, so if the box shape does not suffice, the cylinder
should be tested before the ellipsoid to save calculation time. The benchmark
study proves that in case of cylinders and ellipsoids it is worth considering
a system with larger unit cells. Finally, before applying a particle size dis-
tribution, take a good look at Figure 4.1 and realize that a value of m=5
(r∈[0.5rin;1.5rin]) or m=6 (r∈[0.4rin;1.6rin]) covers most of the distribution.
For the benchmark test cases there was virtually no difference in the diffrac-
tograms obtained for m=6 and m=9 besides the fact that the calculation
time in the case of m=9 is more than doubled!

4.5 Instrumental corrections

This section is devoted to the corrections made by the program after the
execution of the Debye equation (4.2). All of these are essentially convolu-
tions of the intensity with a correction function, so the order in which they
are performed is irrelevant. As explained in Appendix A the Lorentz factor
is inherent to the Debye equation and therefore this correction need not be
performed.

4.5.1 α2 addition

When comparing with diffraction data measured with conventional X-rays
using an experimental set-up where the α2 contribution is not eliminated by
the monochromator, the α2 component should of course also be added in the
simulations. This means that the α1 and α2 wavelengths and the popula-
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tion of α2 relative to α1 must be given as input to the program. The most
straightforward way to include the α2 contribution would of be to perform
the addition in (4.2) twice, once for each wavelength, and then add the re-
sulting diffractograms using the input relative populations. However, this is
rather time consuming, so instead (4.2) is only performed for the α1 wave-
length, and the α2 contribution is then constructed from this. The result is
a reduction in the number of steps to be performed for each value of 2θ from
at most 15·106 (the number of entries in the distance multiplicity array) to
around a handful (construct the α2 contribution from the α1 diffractogram,
run a spline and resample to get the same step size).

4.5.2 Polarisation correction

If the Debye simulations are to be compared with experimental diffraction
data collected using an unpolarised incident beam, that is conventional X-
rays, the polarisation factor (Klug and Alexander, 1974):

Pθ =
1 + cos2 2θ

2
(4.4)

must be used to correct the calculated intensities (c.f. (3.1)). This is chosen
by turning on the polarisation correction in the Debye program. On the other
hand, synchrotron radiation is linearly polarised in the plane of the ring, so
if the diffraction experiment is carried out in the vertical plane, as is the
case for the Huber G670 camera on beamline I711 at MAX-lab (St̊ahl, 2000;
Cerenius et al., 2000) where all synchrotron diffraction experiments described
in the present thesis were performed, then Pθ=1 corresponding to no polar-
isation correction. If instead the experiment is performed in the horizontal
plane of the synchrotron, then Pθ = cos2 2θ (Als-Nielsen and McMorrow, 2000).
This possibility is not currently implemented in the Debye program, so for
experimental diffraction data of this type the polarisation correction must be
performed on the raw data before comparing with simulations.

4.5.3 Instrumental broadening

A pseudo-Voigt instrumental peak broadening can be added in the Debye pro-
gram. The pseudo-Voigt function is a linear combination of a Lorentzian and
a Gaussian, ηL + (1− η)G, where the mixing parameter η ∈ [0, 1] (Wertheim
et al., 1974). The Lorentzian and the Gaussian share the same FWHM (Cagli-
oti et al., 1958, c.f. (3.11)):

Γ =
√

U tan2 θ + V tan θ + W (4.5)
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while the mixing parameter is a polynomial in 2θ (Hill and Howard, 1985):

η = η1 + η2(2θ) + η3(2θ)
2 (4.6)

The six parameters: U , V , W , η1, η2, and η3 can be input in the Debye
program to describe the instrumental peak broadening. Every conventional
X-ray diffractometer has its own instrumental peak profile that may change
over time, and for synchrotron radiation the parameters must be determined
anew at every visit (along with a wavelength calibration). This is done by
measuring the diffraction from a standard reference material such as LaB6

or Si with very accurately determined cell parameters (so the peak positions
depend only on the wavelength and the 2θ zero off-set) and particle sizes of
the order 1–10µm (which, according to the Scherrer equation (3.3), corre-
sponds to a particle size broadening less than 0.02◦ in 2θ for λ=1.5Å and
2θ ≤ 120◦). Since the instrumental broadening is at least 0.08◦ in 2θ at low
angles for state-of-the-art equipment at the same wavelength, it is reasonable
to assume that the entire peak broadening of the standard reference mate-
rial is instrumental in origin. Typical values of the instrumental parameters
as determined from a Si standard for the Huber G670 camera on beamline
I711 at MAX-lab in November 2005 (in connection with the collection of
the expanded austenite data) are: U=0.023, V =−0.007, W=0.011, η1=0.55,
η2=0.00, and η3=0.00, which for λ=1.186Å corresponds to an instrumental
peak broadening of 0.105◦ at 2θ=20◦ and 0.18◦ at 2θ=100◦ (the limits of the
expanded austenite data).

4.5.4 Absorption correction

For comparison with diffraction data measured in transmission geometry on
a sample mounted in a capillary of radius R it may be necessary to correct
for absorption. This is done by interpolation in Table 5.3.5B of International
Tables for X-ray Crystallography II (Kasper and Lonsdale, 1959) specifying
the value of µR, where µ is the linear absorption coefficient of the material
multiplied by some factor (typically around 0.5) to account for the packing
inefficiency.

4.5.5 Guinier tangent angle correction

For the Guinier camera a correction term taking into account the variable
sample to detector distance must be applied. The term takes on the form
(Sas and de Wolff, 1966):

Gθ =
1

cos(2θ − ψ)
(4.7)
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where ψ is the angle between between the specimen normal and crystal-
reflected primary beam. The possibility to apply this correction is imple-
mented into the Debye program for ψ=45◦.

4.5.6 Auto-divergence slit

If the experimental diffraction pattern is measured with a Bragg-Brentano
diffractometer equipped with an auto-diverge slit which keeps the illuminated
length (A) of the sample fixed, then a correction term must be added to
account for the variation in intensity due to the variable opening of the auto-
divergence slit. The fixed illuminated length is given as (Philips Analytical
X-ray Customer Support, 1992):

A =
r tan δθ

sin θ
(4.8)

where r is the goniometer radius and δθ is the divergence angle. Because
the measured intensity must be proportional to δθ, the auto-divergence slit
correction factor takes on the form:

δθ = arctan(
A sin θ

r
) (4.9)

This correction can be applied in the Debye program with A=12.5mm and
r=173mm. For other values of A and r it is recommended that the exper-
imental diffraction data are divided by δθ before they are compared with
simulations.

4.6 GUI

To make the program as user-friendly as possible a Windows Graphical User
Interface (GUI) was constructed. As stated in DebyeHelp.txt (Appendix B),
which can be accessed via the GUI, the input instructions for the Debye
program must be placed in an ascii file with the extension rec. The following
will be a short introduction on how to get started with the program when a
CIF containing the relevant crystallographic information exists. If this is not
the case it is recommended to start from an existing rec file with the correct
format and then perform the necessary corrections.
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4.6.1 Simulations

Choose to start a new project from a CIF, give the name of the rec file
to be created and the location where it should be placed along with the
output files from the simulations and fitting. After browsing to the location
of the CIF and selecting the correct file, the edit files menu appears (Figure
4.2). Here a project title and the format and name of the file containing
the experimental XRPD pattern (optional, only required for fitting) can be
given, and the names of the output files can be changed from the defaults
given in DebyeHelp.txt. For the present demonstration of the program the
experimental diffraction pattern of expanded austenite with an interstitial
nitrogen occupancy of yN=0.61 collected with a Guinier camera (capillary
transmission) at MAX-lab was used along with the CIF of austenite (Häglund
et al., 1993).

Figure 4.2 Project, edit files
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Then the edit structure menu containing the information obtained from
the CIF appears (Figure 4.3). Because the imported CIF is for austenite,
while the compound under study is expanded austenite, the lattice constant
must be altered from 3.43Å to 4.0022Å. Furthermore the isotropic thermal
parameter of the imported Fe atom must be changed to BFe=1Å2, and the
interstitial N atom with a site occupancy of gN=0.61 and an isotropic thermal
parameter of BN=1Å2 must be added. The thermal vibrations and site occu-
pancies are included in the simulations by multiplying the atomic scattering
factor fj(θ) by gj e−Bj sin2 θ/λ2

(c.f. (3.2)).

Figure 4.3 Project, edit structure

Finally the edit instructions menu (Figure 4.4), which is really the main
menu of the Debye program, appears. Here all the important information
for the specific simulation, both relating to the experimental conditions and
to the nature of the sample, must be input. For the present example the
experimental parameters described in Chapter 6 have been input: λ=1.186Å,
2θ limits, no polarisation correction (synchrotron data), Guinier geometry,
absorption in cylindrical sample with µR=1.5, and instrumental peak profile
parameters.

31



Figure 4.4 Project, edit instructions

Based on the large differences in calculation times observed in the bench-
mark study the following general approach has been suggested to get a quick
impression about the structure of a new material: 1) Always start by mod-
elling the particles as box shaped to get an idea of the size and possible shape
anisotropies, 2) Reduce the distance calculation accuracy and the number of
2θ steps to a minimum because the majority of the calculation time for the
preliminary box simulations will be spent in the summation step, 3) If the box
shape does not suffice, test the cylinder before the ellipsoid, 4) The Weibull
mass distribution and m=3 (default values) serve as a good starting point
for testing various particle size distributions, and 5) For the final simulation
the distance calculation accuracy should be increased as much as possible
and the 2θ step size should be set equal to the value of the experimental
diffraction pattern used for comparison.

Finally a note on the intensity scale, Isca, which is an integer. If Isca<0
the intensity output in the simulated xy file will be scaled so that Imax=−Isca,
if Isca=0 the intensity per unit cell will be output, and if Isca>0 the intensity
per unit cell will be multiplied by Isca. If a value of Isca less than 1 is desired
this can be achieved by reducing the site occupancy factors.
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4.6.2 Fitting

After having set all the parameters for the simulation it is time to choose
project, calculate (F3). The progress of the simulation can now be followed
in the lower text window. Once the simulation is done the resulting XRPD
pattern is shown in the upper graphical window. If an experimental pattern
was imported, the simulated pattern is scaled to have the same maximum in-
tensity (only for the view, not for the output xy file). Now choose pattern, fit
pattern (F4) and a fit using the standard number of parameters: a scale fac-
tor, an overall temperature factor and 8 Chebyshev background parameters,
is performed. Pressing F4 again leads to the fit patterns menu (Figure 4.5).
Here it is possible to give the number of Chebyshev parameters to be refined
(0–14) and indicated whether the scale factor, the overall temperature factor
or both should be included in the refinements or simply set to some fixed
value. It is also possible to change the value of the 2θ zero shift, but to avoid
correlations it is not possible to refine this parameter. Every time a fit is
performed, the graphical window is updated and the R-values and GooF are
printed in the text window.

Figure 4.5 Patterns, fit pattern
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The example in Figure 4.5 is the fitting of the data simulated in Section
4.6.1 performed for: 8, 14, 9, and 10 Chebyshev background parameters. The
2θ zero shift was set to −0.66◦ as determined for a Si-standard along with
the other instrument parameters. The results of the simulations and fitting
are written to a tabulated summary file which can be viewed by choosing
patterns, table output. The tab file corresponding to the above example is
given on page 35. From the R-values and the estimated standard deviations of
the background parameters which are given in the tab file it can be concluded
that 10 Chebyshev background parameters are sufficient. Furthermore, the
refined value of the overall temperature factor strongly suggests that the
input value of µR and/or the thermal parameters are too large. As will be
shown in Chapter 6 the structure of expanded austenite contains deformation
stacking faults that give rise to peak shifts, and screw dislocations which
result in anisotropic peak broadening, so it is not surprising that the fit to
a simulated pattern which does not take these effects into account is rather
poor. However, taking into consideration that the preparation for a new
project can be done within 10min and that the simulation itself only took
2s, a large amount of information about the structure can be gained within
an hour by playing around with parameters such as: the site occupancy of
nitrogen, the thermal parameters, the particles size, the size distributions,
and the absorption correction.

It is also possible to determine the crystallinity, the fraction of intensity
resulting from the simulated crystalline part of the sample, between any two
values of 2θ and have this value output in the tab file. The crystallinity
calculation feature is only valid if nothing but the amorphous scattering
from the sample contributes to the background. The feature was developed
for the cellulose study described in the next chapter, for the present example
of expanded austenite it is irrelevant.

4.7 Upcoming features

The Debye program should be seen as a developing framework with the
possibility to add new features in order to solve specific needs that appear
during the study of real nanostructured materials. This section is devoted
to some of the features that have been suggested and discussed as potential
additions to the Debye program.
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yN61 2007-11-26 Page 1

Wavelength(s) : 1.186000 A
Two-theta range : 20.000000 - 100.000000 deg.

in steps of : 0.050000 deg.

Space group : F M 3 M

Unit cell : 4.002200(.000000) 4.002200(.000000) 4.002200(.000000) A
90.00000(0.00000) 90.00000(0.00000) 90.00000(0.00000) deg.

Volume : 64.106( 0.000) A**3

*10**4 x/a y/b z/c SOF B(A**2)

Fe1 0 0 0 1.000 1.0
N1 5000 5000 5000 0.610 1.0

Crystallite type: Box

25 by 25 by 25 unit cells

Distance accuracy: 0.100E-01

No particle size distribution
Guinier correction performed
Absorption correction performed. MuR: 1.500
Peak function added:

Halfwidth parameters : 0.02300 -0.00700 0.01100
Lorentzian parametrs : 0.55000 0.00000 0.00000

Rp = 0.07 Rwp = 0.12 GOF = 8.13 12 parameters, 1601 observations

Parameter file : yN61.rec
Raw data file : yN61_MAX.gdf

Scale factor : 0.26422000(0.00720570)
Overall temp. fact. coeff. : -1.7090( 0.2020) A**2

Two-theta zero : -0.6600

Background parameters (Chebyshev type i) :

-4095( 20) -16( 35) -347( 31) 706( 30) -123( 29)
250( 28) -50( 26) 88( 26) -50( 22) 263( 22)
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As of present, the routines for modelling stacking faults and screw dislo-
cations in FCC nitrogen expanded austenite described in Chapter 6 are only
found in a modified non-GUI version of the Debye program. The intention
is that these should be generalised and made applicable to other materials,
but so far no steps have been made in this direction.

The possibility to choose the cylinder axis along the cubic [111] direction
would be of interest to many materials. Based on the performance tests in
Section 4.4 it has been proposed to let the program work internally with
a hexagonal cell with the cubic [111] along the hexagonal [001] and a cell
volume 3 times that of the cubic cell.

For the mass distribution functions shown in Figure 4.1 it has already
been argued that the probability density below r=0.5rin and above r=1.5rin

is very low. Therefore it has been suggested that it should be possible to
work with user-defined particle sizes and an unequal amount of sampling
steps on either side of the mean, as opposed to the current system where the
sampling width of the mass distribution function is defined by the integer
m and the corresponding sizes are given as 1.0−0.1m, 1.0−0.1(m−1),. . .,
1.0+0.1m. This would offer the opportunity to sample crystallite sizes for
equal steps in p, e.g. p(r1)=0.05, p(r2)=0.10, p(r3)=0.15, etc. . . The structure
of the program has already been prepared for this feature, but some details
like whether the standard mass distribution functions should refer to equal
steps in r (old) or in p (new) and whether more standard mass distribution
functions should be implemented are still to be decided upon.

A correction for axial divergence, which is observed as a low angle peak
asymmetry for some experimental XRPD patterns, is another possible feature
that has been discussed. Different empirical convolution functions have been
suggested (Finger et al., 1994), but it would be desirable if the applied function
can be traced back to the geometry of the diffractometer.

Preferred orientation is one of the most problematic effects in the ex-
perimental XRPD patterns which is not taken into account in any way in
the Debye program, in fact the derivation of the Debye equation assumes
that no preferred orientation is present. Since the diffraction patterns sim-
ulated using the Debye formula contain no information about the indices
or positions of the diffraction peaks, a subsequent correction for preferred
orientation cannot be performed. The only possible way to perform a cor-
rection for preferred orientation is thus to derive a new variant of the Debye
formula which includes the effects of preferred orientation, but the fact that
no reports about any such attempt can be found in the literature strongly
suggests that if the task is possible, it is difficult and it does not result in a
simple expression such as the Debye formula.
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Chapter 5

Cellulose — determining the
crystallinity of a
nanocrystalline material

The crystallinity of a plant fibre sample is defined as the mass fraction of
crystalline cellulose in the dry matter. This measure is important for indus-
trial applications of the plant fibres, for instance in the production of paper,
pulp, strong composite materials or bioethanol. In the paper and pulp in-
dustry the crystallinity is closely monitored; a low crystallinity is desirable
to avoid paper stiffness, because whereas the crystalline regions of cellulose
are ordered and rigid the amorphous regions are random and flexible (van der
Reyden, 1992). A fast and reliable measure of the crystallinity at the differ-
ent stages of the composite fibre processing is vital because of the expected
correlation between the cellulose crystallinity and the tensile strength of the
fibres. During the production of bioethanol the cellulose in the plant fibres
is enzymatically hydrolysed into monosaccharides, but different enzymes are
used for crystalline and amorphous cellulose, so in order to tailor the best
enzymatic mixture the crystallinity must be known.

XRPD has been used for crystallinity determinations for many years (Se-
gal et al., 1959; Ruland, 1961; Vonk, 1973). Since cellulose is the only crys-
talline component in plant fibres, the problem of determining the crystallinity
boils down to separating the amorphous and crystalline components of the
XRPD patterns. This is, however, rather challenging for several reasons:
1) Compton and air scattering add to the amorphous background resulting
in an underestimation of the crystallinity, so a good data collection strategy
minimising these effects is needed, 2) Cellulose is a fibrous material, and
the crystallites are needles along the fibre axis, so preferred orientation is
unavoidable, and 3) The crystallites are nanosized, typically below 50Å in
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diameter, so the diffraction peaks are severely broadened and overlap.
Traditional methods for crystallinity determinations in plant fibres such

as the peak height ratio method (Segal et al., 1959) and the amorphous stan-
dard method (Ruland, 1961; Vonk, 1973) are straightforward and fast to use,
but they tend to underestimate the crystallinity because they assume that
the amorphous scattering curve touches the total diffractogram at one or
more scattering angles. This assumption is wrong; the methods fail to ac-
count for the severe peak broadening and overlap that arises because of the
small crystallite size and results in an amorphous scattering curve that lies
below the total diffractogram at all scattering angles, c.f. Figure 5.3.

The crystalline component in higher plants is that of cellulose Iβ, and
with the recent publication of the cellulose Iβ crystal structure (Nishiyama
et al., 2002, see Table 5.1) it has become possible to use Rietveld refinements
or Debye simulations for the crystallinity determinations. The application of
these methods with the aim to determine the crystallinity in plant fibres has
not been seen before and will therefore be the focus of the present chapter. In
connection with this some comments on specific crystallographic challenges
encountered during both the acquisition and the analysis of the diffraction
data are in order. The study of cellulose crystallinity in plant fibre samples
came about as a collaboration with scientists from Risø National Laboratory,
and the entire publication which resulted from the project is attached in
Appendix C.1 (Thygesen et al., 2005).

Table 5.1 Crystallographic data of cellulose Iβ (Nishiyama et al., 2002)

chemical formula C12H20O10

cell setting, space group monoclinic, P21 (c unique)
a [Å] 7.784(8)
b [Å] 8.201(8)
c [Å] 10.380(10)
γ [◦] 96.5
V [Å3] 658.3(11)
Z 2

Figure 5.1 Data collection geometries, filter paper
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5.1 Data collection, sample preparation and

preferred orientation

To determine the best experimental set-up for the crystallinity determi-
nations, XRPD data of filter paper sheets (Frisenette ApS 165-70) were
collected in both transmission (Huber G670 Guinier camera, CuKα1 ra-
diation, 2θ=1.4–100◦, 0.005◦ step size, 30h) and reflection mode (Philips
PW1820/3711 Bragg-Brentano geometry, auto-divergence slit, CuKα radia-
tion, 2θ=5–60◦, 0.02◦ step size, 15h), see Figure 5.1. Even though the mea-
suring time of the transmission data is twice that of the reflection data, the
signal-to-noise ratio is much poorer. Furthermore, it is impossible to separate
the amorphous sample diffraction from the large air scattering component if
the diffraction data are collected in transmission geometry, thus diffraction
data for determining the crystallinity in plant fibres must be measured in
reflection geometry.

As already mentioned the cellulose crystallites are needles, and in Bragg-
Brentano geometry crystals of this shape tend to align with the preferred
orientation vector (the growth direction) in the sample plane perpendicular
to the scattering vector. Cellulose Iβ crystallises in space group P21 with the
growth direction along the unique c-axis, so the 00l peaks will be severely
suppressed compared to the hk0 peaks in reflection geometry, see Figure 5.1B.

To obtain a more random orientation of the cellulose crystallites a sample
preparation procedure where the plant fibres were side loaded into a custom-
made sample holder was devised. The sample holder shown in Figure 5.2
is made of 38mm×38mm×4mm stainless steel with a 20mm×15mm×2mm
embrasure for the sample. The lid is made of 5mm plexiglas and can be
mounted with 4 screws so that it can stand the pressure needed to prepare
the sample while still enabling a visual inspection of the packing progress.
Prior to packing the plant fibres were run through a knife mill with a 0.5mm
sieve and wetted with distilled water. The fibre slurry was then pressed side-
ways into the sample holder using the piston, and excess water was removed
through the oppositely situated drains. The pressed samples were allowed
to air dry overnight before the diffractograms were recorded. The result of
the new sample preparation procedure was a significant reduction but not a
complete removal of the preferred orientation effects, see the diffractogram
in Figure 5.1C.

In Rietveld refinements it is possible to correct for preferred orientation
effects (c.f. (3.9)). One of the models most widely used is the March-Dollase
preferred orientation function (March, 1932; Dollase, 1986):

POhkl = (r2 cos2 α + r−1 sin2 α)−3/2 (5.1)
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Figure 5.2 Bragg-Brentano sample holder for side loading plant fibre samples
to minimise preferred orientation effects

where α is the angle between the scattering vector and the preferred orien-
tation vector, and r is the preferred orientation parameter. r=1 corresponds
to no preferred orientation. To account for the experimentally observed peak
intensities in the case of Bragg-Brentano diffraction from cellulose needles,
reflections where sin2 α dominates over cos2 α should be given relatively more
weight. This is done by increasing r.

A Debye simulation, however, assumes no preferred orientation since the
derivation of the Debye equation includes an average over all orientations in
space, thus it is not possible to quantify the extent of preferred orientation
or obtain a perfect fit to the experimental diffraction data using the Debye
approach.
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5.2 Crystallinity determinations

The strategy for both the Rietveld refinements and the Debye approach is to
obtain as good a fit to the crystalline part of the diffractograms as possible
with the parameters at hand and then model the amorphous part – the
background – as a Chebyshev polynomial of a given order. The crystallinity
is then obtained as:

xCR =

∫ sp

s0

ICR(s) · s2ds/

∫ sp

s0

I(s) · s2ds (5.2)

where s=2 sin θ
λ

and the integration limits were chosen to include only the parts

of the diffractograms containing visible crystalline intensity; s0=0.11Å−1

(2θ=10◦), and sp=0.99Å−1 (2θ=50◦).
Before giving detailed records of the two new methods for crystallinity

determinations in samples containing cellulose – Rietveld refinements and
Debye simulations – a more thorough description of the traditional meth-
ods and their pitfalls is in order. In Figure 5.3 the performance of all four
methods is illustrated for a hemp sample and the resulting crystallinities are
given. These should be compared to the fraction of cellulose in the samples;
0.63(3)g cellulose per g dry matter as determined by the method of strong
acid hydrolysis (Kaar et al., 1991; Thygesen et al., 2005).

5.2.1 Peak height ratio

The mass fraction of crystalline cellulose in dry matter has frequently been
determined by means of (5.3) using the height of the 200 peak (I200, 2θ≈22.7◦)
and the minimum between the 200 and 110 peaks (IAM, 2θ≈18◦), see Figure
5.3A.

xCR =
I200 − IAM

I200

(5.3)

I200 represents both crystalline and amorphous material while IAM represents
amorphous material only. The expression requires that the amorphous ma-
terial diffracts with the same intensity at 2θ≈18◦ and 2θ≈22.7◦, and that
the crystalline cellulose does not contribute to the intensity at 2θ≈18◦ (Segal
et al., 1959).

Figure 5.3 Hemp crystallinity determinations
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The low computational cost of the peak height ratio method is probably
the reason for its extensive use up to this day (Alexander, 1969; Buschle-Diller
and Zeronian, 1992; Mwaikambo and Ansell, 1999; De Souza et al., 2002). How-
ever, because of the small crystallite sizes, the tails of the diffraction peaks
extend far from the peak positions as illustrated in Figure 5.3A. Thus the
actual background level is well below the diffraction curve of the partly crys-
talline cellulose sample, especially around 2θ≈18◦, so IAM is overestimated.
The same goes for I200 because of preferred orientation effects. There is also
the effect that both the apparent cell parameters and the crystallite sizes
vary considerably from species to species. This results in large variations in
the IAM levels, making the peak height ratio method very unreliable when
comparing crystallinities, especially if the plant fibre samples have different
origins. None of these points were mentioned in the original work (Segal
et al., 1959), where the method was only used for differently purified cellulose
samples all originating from cotton.

5.2.2 Amorphous standard

A way to separate the amorphous and crystalline contributions to the diffracted
intensity and estimate the crystallinity was outlined by Ruland and Vonk
(Ruland, 1961; Vonk, 1973). Here it is assumed that the Bragg peaks are
sharp, i.e. the crystallites are large enough for the intensity between the
diffraction peaks to be negligible. The amorphous part of the intensity is
obtained by measuring the scattering of the compound on amorphous form.
This amorphous diffractogram is then scaled by a factor c(s) to bring it be-
low the diffractogram of the partly crystalline compound. The scale factor
c(s) is allowed to vary continuously throughout the s-interval to meet the
requirement that the crystalline diffraction intensity should be zero between
some of the diffraction peaks (the diffractograms touch at several points).
The use of a continuously varying scale factor seems incorrect in the light of
Figure 5.3A, so for Figure 5.3B it was chosen to use a constant scale factor c
to make the background touch the diffractogram in one point/interval only.
Lignin was used as the amorphous standard, and finally the crystallinity was
calculated from (5.2).

The amorphous standard method has the great advantage that it is a
purely experimental approach. For more than a decade it has been widely
accepted as one of the best ways to determine the crystallinity in cellulose
samples (Fink and Walenta, 1994; Sao et al., 1994; Sao et al., 1997). However, the
scaled amorphous background meets the diffractogram in the low angle region
where the intensity is most poorly determined due to the fine adjustment
of slits and the effects of axial divergence. This means that, besides the
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fact that the definition of when the scale factor is correct for the curves
to actually touch is rather subjective, the amorphous standard method is
also very sensitive to instrumental inaccuracies. It should be added that
the amorphous standard material must be chosen so that it resembles the
amorphous component of the samples as closely as possible. Therefore the
method can only be used to compare crystallinities of samples where the
amorphous compositions can be assumed to be similar.

5.2.3 Rietveld refinements

To illustrate how the Rietveld method can be used to determine the crys-
tallinity, refinements were carried out with a modified LHMP1 Rietveld pro-
gram (Hill and Howard, 1986) for 2θ=5◦–60◦. The cellulose Iβ CIF was used
as input and in the final model the following 16 parameters were refined
(Thygesen et al., 2005 in Appendix C.1 states 17 parameters, this is a misprint):
a scale factor, 10 Chebyshev background parameters, 2 Voigt peak profile pa-
rameters, 2 cell dimensions (a and b), and a preferred orientation parameter
(along <0k0>, for unknown reasons this gave a superior fit to the expected
<00l> direction). Due to the remaining preferred orientation effects the 00l
reflections are still severely suppressed; in fact the diffraction pattern only
contains three strong diffraction peaks that are all of the hk0 type. Therefore
it was impossible to refine γ and c, the latter of which correlates strongly
with the preferred orientation parameter. Neither could the 2θ zero shift be
refined because of strong correlations to the cell parameters a and b. Instead
c=10.35Å and γ=96.5◦ were fixed to average values given in the literature
(Sarko and Muggli, 1974; Woodcock and Sarko, 1980; Simon et al., 1988; Sugiyama
et al., 1991; Koyama et al., 1997; Finkenstadt and Millane, 1998; Nishiyama et al.,
2002), and the 2θ zero shift was set to 0.0◦. The crystallinity was calculated
according to (5.2) based on the final fit shown in Figure 5.3C.

5.2.4 Debye simulations

For the crystallinity determination based on the Debye approach, the cell
parameters and particle size estimations obtained from the Rietveld refine-
ments (see Section 5.3.1) were used as input for the simulations along with
the cellulose Iβ CIF. The values of c=10.35Å and γ=96.5◦ were used as for
the Rietveld refinements, and the instrumental peak broadening parameters
(U , V , W and η) were fixed at values obtained for a LaB6 standard on the
same diffractometer. A number of simulations varying the structural pa-
rameters (a and b as well as the particle shape, size and size distribution)
stepwise one at the time as described in Section 5.3.2 were performed un-
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til the values offering the best fit to the experimental diffractograms were
achieved. The fitting procedure comprised of varying the scale factor of the
simulated diffractogram and the coefficients of a 9th order Chebyshev back-
ground polynomial for 2θ=10◦–60◦. The final fit is shown in Figure 5.3D.

As expected the amorphous standard method underestimates the crys-
tallinity, whereas the value determined by the peak height ratio method is
unreliable. Both the Rietveld refinements and the Debye simulations offer
a good fit to the experimental diffractograms (c.f. Figure 5.3), the obtained
crystallinities are consistent to within 15% for five different samples of very
diverse origin, no systematic deviations are observed, and the determined
crystallinities are all reasonable compared to the total cellulose contents in
the plant fibre samples. Due to this consistency there is absolutely no reason
to prefer one method over the other, so a recommendation can only be based
on factors such as speed of calculation and user-friendliness.

Rietveld refinements of cellulose are by no means trivial. As for many
other nanocrystalline materials with severe peak broadening and overlap the
number of refinable parameters is limited, strong correlations among these
are observed, and interpretation of the obtained parameters as physical quan-
tities is questionable. Most importantly in connection to the present appli-
cation, the background level is greatly affected by the choice of peak shape
function since the different functions have very different tail shapes. However,
bearing all this in mind it was still possible to find a satisfactory set of min-
imal refinement parameters. Having settled on a common set of refinement
parameters, the Rietveld refinement procedure for crystallinity determina-
tion in plant fibres is very straightforward and fast to use and can be carried
out using any Rietveld refinement program.

As opposed to this the Debye simulation procedure for the crystallinity
determinations is rather complicated and time consuming, especially for the
new user. Even though each simulation only takes about a minute on a stan-
dard PC, it still requires a lot of experience and effort to systematically vary
the structural parameters and fit every resulting diffractogram to the exper-
imental patterns. However, all of the involved parameters can be directly
related to the physical structure of the sample, rendering Debye simulations
an excellent reference procedure for a combined determination of the cellulose
nanostructure and crystallinity in plant fibre samples.

In conclusion: Rietveld refinement is to be the preferred standard proce-
dure for future determinations of the crystallinity in plant fibres due to the
speed and straightforwardness of the method, while Debye simulations are
to be preferred if time is not the issue and a more detailed understanding of
the structure is required.
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5.3 Particle shape, size and size distribution

Besides the application for determining the crystallinity, Debye simulations
of cellulose Iβ are interesting for a number of other reasons: 1) As men-
tioned in Section 3.3.2 not many studies of organic compounds have been
performed using the Debye approach, and 2) The cellulose crystallites are
of a very anisotropic shape, yet they are small enough to make simulations
fast, thus they may serve as an excellent test case for illustrating the effects
of particle shape, size and size distribution. Before a presentation of some
of the simulations varying these structural parameters, a description of how
a set of starting values can be estimated from the Rietveld refinements is
given.

From the transmission geometry XRPD data of filter paper shown in
Figure 5.1A it is obvious that the cellulose Iβ particles are elongated, pre-
sumably cylindrical, along the unique c-axis of the P21 unit cell. This is
confirmed by the preferred orientation effects observed for the reflection ge-
ometry XRPD data, and it agrees nicely with the crystal packing where the
molecules are connected by strong covalent bonds in the c-direction while
hydrogen bonds comprise the perpendicular interactions. For the filter pa-
per transmission data in Figure 5.1A both Rietveld refinements and Debye
simulations estimate the cylinder diameter to be 50(2)Å and the length to be
300(20)Å. These dimensions are a lot more realistic than the ones which can
be obtained from reflection data, mainly because the transmission data are
much less affected by preferred orientation. However, the following analysis
serves to illustrate how much extra information about particle shape, size
and size distribution can be obtained from reflection mode XRPD data when
a good crystallinity determination is the top priority.

5.3.1 Rietveld refinements

During the Rietveld refinements the instrumental peak broadening was de-
scribed by a Caglioti type expression (Caglioti et al., 1958, (3.11)) where U , V
and W were fixed at diffractometer specific values as for the Debye simula-
tions, while the particle size broadening was refined by means of two Voigt
peak profile parameters, X and Xe. In addition to the Voigt parameters a
direction is given, in this case the c-axis which is the fibre growth direction,
making it possible to estimate the particle dimensions along and perpendic-
ular to this (c.f. Section 3.2).

For the hemp samples Rietveld refinements estimated the crystallites to
be 24Å cylinders with a diameter of 43Å, thus the term cylindrical hardly ap-
plies. There are several reasons for these poor particle size estimates: 1) The
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Scherrer-type relationship between the Voigt peak profile parameters and the
particle dimensions becomes inaccurate if the peaks are broadened and over-
lapping because the particles are nanosized, 2) The diffraction peaks needed
to determine the dimension along the fibre axis are severely suppressed due to
remaining preferred orientation effects, making an estimate of this dimension
highly unreliable, and 3) The cylinder length determined by X-ray diffraction
is the coherence length, which may be orders of magnitude shorter than the
actual length of the fibres due to the presence of defects or bending.

5.3.2 Debye simulations

The working hypothesis for the Debye simulations is that the cellulose Iβ
particles are cylindrical in shape. Once the length and diameter have been
determined, simulations for box and ellipsoid shaped particle of similar size
are presented for comparison. As mention in Section 5.1 it is not possible to
take the remaining preferred orientation effects into account in any way dur-
ing the Debye simulations, so the apparent cylinder length, giving the best
fit between experiment and simulation, is underestimated as was observed
for the Rietveld refinements. Since the values of the structural parameters
are only varied systematically and not refined to give a minimum discrep-
ancy between experiment and simulation, it is very likely that the suggested
structure does not represent the global nor even a local minimum. The pro-
cedure of educated guessing by stepwise variation of the parameters one at
the time is demonstrated in the following. Note that all the tabulated R-
values used to determine the particle shape and size are determined with a
9th order Chebyshev background polynomial in the fitting procedure, and
that all the depicted diffractograms are given along with the experimental
pattern of hemp for comparison and therefore are scaled accordingly.

Cylinder length

Fixing the cylinder diameter to the reasonable value of 43Å estimated from
the Rietveld refinements, the cylinder length in the case of hemp was varied
from 3 (31.05Å) to 7 (72.45Å) unit cells. The diffractograms only differ in
the shape of the 004 and 102 peaks which, as expected, become more narrow
the longer the cylinders (c.f. Figure 5.4 which is calculated for the optimal
cylinder diameter of 38Å determined in the following section). Table 5.2 gives
the obtained R-values describing the discrepancy between experiment and
simulation. This is an excellent example demonstrating that the minimum
R-value does not always point at the best structure. Visual inspection of the
fits along with a genuine knowledge of the problem at hand (in this case the
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Table 5.2 Hemp cylinder length

number of unit cells 3 4 5 6 7
cylinder length [Å] 31.05 41.40 51.75 62.10 72.45
R-value 0.0582 0.0603 0.0610 0.0641 0.0667

Figure 5.4 Hemp cylinder length
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fact that the experimental diffractograms are severely affected by preferred
orientation) led to the conclusion that a cylinder length of 5 unit cells is the
best compromise.

Cylinder diameter

Having settled on a cylinder length of 5 unit cells, a series of simulations
varying only the cylinder diameter was carried out and the resulting diffrac-
tograms were fitted to the experimental diffraction pattern giving the R-
values of Table 5.3. Because the crystallites are built from entire unit cells in
the Debye program, there is no difference between a diameter of 40Å and one
of 43Å, and the same holds for 44Å and 46Å. The diffractograms correspond-
ing to the different diameters given in Table 5.3 are depicted in Figure 5.5.
It is immediately evident that the crystallite diameter has a great impact on
the relative intensities of the 110 and 110 peaks. Furthermore it should be
noted that the intensity of the 200 peak increases with increasing diameters
as would be expected. From both the R-values and a visual inspection of
the 110/110 doublet it is not difficult to conclude that the optimal diame-
ter is 38Å. A new round of simulations varying the cylinder length with the
diameter fixed at 38Å gave no reason to change the length from 5 unit cells.

Other particle shapes

The cylindrical nanoparticles giving the diffractogram that offers the best
fit to the experimental diffraction pattern of hemp fibres are 52Å long, 38Å
in diameter and consist of 95 entire unit cells of cellulose Iβ. The best
way to mimic these dimensions for box or ellipsoid shapes crystallites are
summarised in Table 5.4 along with the R-values resulting when fitting to
the experiment. The corresponding diffractograms are shown in Figure 5.6
and again it is evident that the cylindrical crystallites offer the best fit around
the 110/110 doublet, a fact that is also reflected in the lowest R-value.

Particle size distribution

The only particle size distribution applied for the Debye simulations in the
final publication (Thygesen et al., 2005, Appendix C.1) was a manual addi-
tion of diffractograms calculated for particles with the same length and a
radius of ±1Å. The reason for this very crude way of applying a particle
size distribution is that the project was terminated before the particle size
distribution routine was implemented into the Debye program. The analyses
presented in this section were therefore performed later. It should be noted
that the conclusions drawn in the following regarding how to choose a mass
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Table 5.3 Hemp cylinder diameter

cylinder diameter [Å] 34 36 38 40–43 44–46
R-value 0.0654 0.0639 0.0607 0.0610 0.0627

Figure 5.5 Hemp cylinder diameter
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Table 5.4 Hemp particle shapes

particle shape cylinder box ellipsoid
length along c-axis [Å] 52 52 66a

perpendicular dimension [Å] 38 40×33 44a

number of entire unit cells 95 100 93
R-value 0.0607 0.0632 0.0648

a The ellipsoid dimensions correspond to the maximum diameters.

Figure 5.6 Hemp particle shapes
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distribution function and how widely it should be sampled apply only to the
particular type of nanocrystalline plant fibre samples presently under study,
but the line of thoughts leading to the conclusions can be transferred to other
studies.

In general the effects of adding a particle size distribution to the simulated
diffractograms are mainly seen in the peak shapes, which become more nar-
row at the peak positions due to the presence of larger particles and broader
at the bases due to the presence of smaller particles. This trend in peak shape
change is hard to observe in the diffractograms of nanocrystalline cellulose
Iβ simulated for different particle size distribution widths shown in Figure
5.7 because it drowns in the extreme particle size induced peak broadening.
However, it can be seen that the relative intensities of the 110/110 doublet
depend on the width of the particle size distribution. This is not surprising
taking into consideration how even a small difference in the diameter affects
the diffraction patterns in Figure 5.5.

As described in Section 4.3 the Debye program applies a particle size dis-
tribution by explicitly adding 2m+1 diffractograms of sizes between 1.0−0.1m
and 1.0+0.1m times the input size, where m is an integer between 1 and 9.
Before the addition the diffractograms are scaled by a factor correspond-
ing to one of the three mass distribution functions depicted in Figure 4.1.
For nanosized particles as those of cellulose Iβ in the plant fibre samples it
makes no sense to go beyond m=5 because this would correspond to crys-
tallites with a volume less than 1

8
of the input size, particles consisting of so

few unit cells that they hardly deserve to be called crystalline, and as stated
in the beginning of Section 5.2 the whole point of the Debye simulations is
to model the crystalline part of the diffraction pattern in order to determine
the crystallinity.

A number of simulations using the three possible mass distribution func-
tions and varying m between 0 (no particle size distribution) and 5 were
performed to determine the type of distribution and the value of m that give
the best fit to the experimental hemp XRPD pattern. The corresponding
R-values are given in Table 5.5. From this it can be seen that m=4 is supe-
rior for all distributions. Furthermore, Table 5.5 shows that the type of mass
distribution function chosen is irrelevant for all practical purposes; applying
different distributions result in diffractograms that are virtually identical.
This is not entirely surprising considering that the distributions in Figure
4.1 are only sampled in a very limited number of points (2m+1) and dif-
fer very little between r=0.5 and r=1.5 (corresponding to m=5). Since the
diffractograms simulated applying a uniform mass distribution function seem
to give a marginally better fit to the experimental XRPD pattern these are
the ones depicted in Figure 5.7.
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Table 5.5 R-values for comparison hemp diffractograms, experimental and sim-
ulated using different particle size distributions

m Uniform Gaussian Weibull
0 – 0.0607 –
1 0.0601 0.0597 0.0596
2 0.0589 0.0593 0.0595
3 0.0597 0.0585 0.0588
4 0.0574 0.0577 0.0578
5 0.0585 0.0583 0.0585

Figure 5.7 Hemp uniform particle size distribution
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To check what happens with the apparent particle size when the peak
profiles change as a result of applying a particle size distribution, Rietveld
refinements on all the diffractograms simulated for various particle size distri-
butions were carried out refining the same 16 parameters as described for the
experimental diffractograms in Section 5.2.3. The particle dimensions esti-
mated from the Voigt peak profile parameters during the Rietveld refinement
are given in Table 5.6. Here it can be seen that the estimated dimensions are
independent of m as they should be. The diameter estimates are excellent
(perhaps except for the m=0 case where no particle size distribution is ap-
plied), whereas the lengths are consistently overestimated by more than 40%
for all values of m. This is a good indication of how much (or how little) one
can trust the Rietveld dimension estimates for nanosized particles. In this
particular case the “experimental data” are even free of preferred orienta-
tion effects complicating the data analysis. However, it should be noted that
in the Rietveld refinements the preferred orientation parameter refines to a
value around 1.2 for all values of m, thus significantly different from the value
of 1 which corresponds to no preferred orientation. The value of the b cell pa-
rameter also differs significantly from the true value used in the simulations,
undoubtedly because of the severe peak overlap. The a cell parameter, on the
other hand, refines nicely to the input value of 8.00Å, presumably because
200 is by far the strongest diffraction peak and thereby not as sensitive to
either broadening or overlap as the remaining peaks.

Table 5.6 Cylinder diameters and lengths estimated from Rietveld refinements
of the hemp diffractograms simulated using different particle size distributions

Uniform Gaussian Weibull
m d [Å] l [Å] d [Å] l [Å] d [Å] l [Å]

Inputa 38 52
0 – – 46(1) 74(3) – –
1 41(1) 80(3) 41(1) 78(3) 41(1) 78(3)
2 39(1) 76(2) 39(1) 77(2) 39(1) 77(2)
3 37(1) 76(2) 39(1) 79(2) 38(1) 79(2)
4 39(1) 79(2) 39(1) 80(2) 39(1) 78(2)
5 39(1) 83(2) 40(1) 84(2) 39(1) 80(2)

a Mean values used as input for the simulations
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In the light of Table 5.5, the very crude particle size distribution used in
the publication (corresponding roughly to the uniform m=1 model adding
three diffractograms, but using factors more like 0.95, 1.0, and 1.05 times
the input dimensions instead of 0.9, 1.0, and 1.1 as for m=1) was not the
best choice. This is also confirmed by the crystallinity of 0.69(2)g crystalline
cellulose per g dry matter determined for hemp using the Debye approach
with the crude particle size distribution. Recalling that the hemp sample
contained only 0.63(3)g cellulose per g dry matter, this value is unrealistic.
The particle size distribution offering the best fit to the experimental hemp
diffractograms employs the uniform m=4 model, for which the crystallinity
can be determined to be 0.64(2)g crystalline cellulose per g dry matter. This
is in much better accordance with both the Rietveld refinements and the
cellulose contents of the hemp samples, and thus serves to demonstrate the
importance of taking the time to apply a proper particle size distribution.

5.4 Final conclusions

The ability to determine the crystalline fraction of cellulose in an efficient
and reliable manner is essential for industrial applications of plant fibres.
Considering that cellulose is the only crystalline component in the plant fi-
bres, XRPD is an excellent tool for crystallinity determinations. It was shown
that the diffraction data must be collected in reflection geometry to minimise
unwanted air scattering contributions to the amorphous background. Cellu-
lose is a fibrous material, so special attention must be made when preparing
the samples for XRPD in order to minimise preferred orientation effects.
An operational procedure for a custom-made sample holder was devised.
The cellulose fibres are very thin, typically with diameters below 50Å, so the
diffraction peaks are broadened and overlap. Traditional methods for crys-
tallinity determinations (Segal et al., 1959; Ruland, 1961; Vonk, 1973) tend to
underestimate the background contributions arising because of the nanosized
particles and thus also the crystallinity. With the publication of the cellulose
Iβ crystal structure (Nishiyama et al., 2002) Rietveld refinements taking full
account of the broadened and overlapping peaks have become feasible. It was
argued that this should be the preferred method for standard crystallinity
determinations in the future because it can be performed using any readily
available Rietveld refinement program with speed, ease and consistency.
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Additional information about particle shape, size and size distribution can
be obtained if time and effort is invested to do Debye simulations. The dia-
meters of the cylindrical crystallites obtained from the Debye simulations are
comparable with the microfibril diameters obtained in TEM studies (Bardage
et al., 2004), while the lengths of the fibres are orders of magnitude smaller.
Debye simulations of XRPD data collected in transmission geometry where
the preferred orientation effects are almost negligible showed that remaining
preferred orientation can only partly explain this length discrepancy, most
likely the entire fibres do not scatter coherently due to the presence of bends
and/or defects.
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Chapter 6

Nitrogen expanded austenite

The surface hardness as well as wear and corrosion resistance of stainless
steel can be significantly improved by nitriding or carburising the material at
low temperature using a number of different techniques. This brings about a
transformation of the surface adjacent region into so-called expanded austen-
ite. The question of how to interpret the XRPD pattern of the resulting phase
to extract the structural characteristics has been a matter of dispute for sev-
eral years (Williamson et al., 1994; Sun et al., 1999; Marchev et al., 1999; Blawert
et al., 1999; Menthe and Rie, 1999; Larisch et al., 1999; Bazaleeva, 2005; Borgioli
et al., 2006; Fewell and Priest, 2007).

Hitherto, structural investigations of expanded austenite have relied on
samples consisting of compositionally heterogeneous expanded austenite “lay-
ers” on bulk stainless steel substrates prepared by the use of plasma-based
techniques. Unavoidably, samples of this type contain high compositionally
induced compressive stresses which strongly affect the diffraction patterns.
The diffraction patterns roughly correspond to that of FCC austenite with an
expanded lattice due to the presence of interstitials, hence the name expanded
austenite or γX where X is N or C depending on the nature of the intersti-
tials. The peak positions, however, do no fit an ideal FCC lattice. This has
led to the suggestion of two inherently different structural models: 1) The
m-phase of tetragonal rather than cubic symmetry, and 2) Expanded austen-
ite where the observed peak shifts are due to the presence of deformation
stacking faults and/or residual stresses in the FCC lattice. The designation
S-phase has also been used and usually refers to structural model 2.

Recently stress-free and homogeneous samples of nitrogen expanded austen-
ite, a supersaturated solid solution of nitrogen in stainless steel with a homo-
geneity range of yN=0.18 to yN=0.61, were synthesised by gaseous nitriding
of AISI316 stainless steel coupons under para-equilibrium conditions at low
temperature (Christiansen and Somers, 2006).
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Analysis of the corresponding XRPD patterns unambiguously confirmed
the structure to be FCC with a deformation stacking fault probability be-
tween 0.01 and 0.04 to account for the peak shifts (Christiansen and Somers,
2004). Deformation stacking faults in a FCC lattice give rise to both peak
shifts and peak broadening (Warren, 1990), but none of the traditional meth-
ods for XRPD analysis are able to take into account how the entire diffraction
profile is affected. However, the Debye approach offers the possibility to simu-
late diffraction patterns of expanded austenite containing any combination of
defects. In Section 6.1 it is analysed how the XRPD patterns are affected by
the presence of screw dislocations, deformation and/or twin stacking faults,
and finally the knowledge gained from the previous simulation studies is
utilised to fit experimental diffraction data. The results of the simulation
study were recently submitted to Journal of Applied Crystallography, see
Appendix C.4.

Nitrogen contents as high as those observed in expanded austenite are
obtained due to the high affinity between nitrogen and chromium, where ni-
trogen is believed to reside in the close vicinity of the supposed randomly
distributed chromium atoms, i.e. short range order of N occurs. The thermo-
dynamically more stable CrN does not form due to the low mobility of
chromium at the nitriding temperature, only nitrogen is able to diffuse at
a significant rate; thus nitrogen contents many times higher than the equi-
librium solubility can be obtained. A fraction of the nitrogen content in ex-
panded austenite, corresponding to yN=0.18, is more tightly bound than the
fraction between yN=0.18 and yN=0.61, and there are strong indications that
the tightly bound nitrogen interacts with chromium, i.e. nitrogen trapping
(Christiansen and Somers, 2006). EXAFS is a proficient tool for probing the
local environment around each atom type in the metal lattice of nitrided or
carburised steels. In particular the local structure of the chromium atoms is
of interest in this respect, since it may shed a light on the actual occurrence
of short range ordering of nitrogen atoms. The basic concepts of EXAFS
are given in Chapter 2. The information that can be obtained comprises
bond length, disorder (thermal and/or static) and the number of nearest
neighbours. These parameters can be related to the presence/absence of in-
terstitially dissolved elements in the immediate surroundings of the probed
metal atom.

Hitherto, EXAFS investigations of short range order of nitrogen in stain-
less steel have been scarce (Oda et al., 1990; Kizler et al., 1994; Muñoz-Páez
et al., 2002). The investigation by Oda et al. addressed nitrogen bearing 15Ni–
15Cr austenitic stainless steel, i.e. nitrogen contents many time lower than
for expanded austenite. The nitrogen atoms were found to form interstitial-
substitutional complexes with chromium atoms. Kizler et al. investigated
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conventionally salt bath nitrided foils of stainless steel AISI304 and AISI316.
Unfortunately, neither nitriding temperature nor duration of nitriding is
stated in this work. However, conventional nitriding is carried out at tem-
peratures above 763K, i.e. in a temperature range where precipitation of
CrN occurs. In this work it was reported that a strong lattice distortion was
found around the Cr and Mo atoms, whereas only small lattice distortions
could be observed in the neighbourhood of the Fe and Ni atoms. This ob-
servation was interpreted to indicate that dissolved nitrogen would prefer Cr
and Mo as nearest neighbours, which would be consistent with the higher
affinity of nitrogen towards Cr and Mo as compared to Fe and Ni. A re-
cent investigation was carried out by Muñoz-Páez et al. on nitrided Cr, Mo,
Mn and V alloyed ferritic steels. The authors state the occurrence of “new
non-crystalline domains involving nitrogen”, although there appears to be a
striking resemblance to older work by Jack and co-workers on mixed cluster
formation in low-alloyed ferritic steels (Jones et al., 1979). Cr, V and Mn were
found to form austenitic FCC structures with the nitrogen atoms residing in
the octahedral interstices upon nitriding, but in all cases a small fraction (1

4
to

1
3
) of the metal centers were found to retain the ferritic BCC structure. The

investigation presented in Section 6.2 is a combined XRPD and EXAFS (Cr
and Fe K-edge) characterisation of homogenously low temperature nitrided
micrometer-sized AISI316 stainless steel flakes.

6.1 Debye simulations of expanded austenite

In the present study it was chosen to focus on how a variation of the particle
size, the deformation and twin stacking fault probabilities, α and β, the screw
dislocation density, ρ, and the interstitial nitrogen occupancy, yN, affects the
XRPD patterns of nitrogen expanded austenite. These variables describe the
deviations from the overall periodic FCC structure, so it was necessary to
substantially modify the original Debye program which is not able to handle
any type of defects. Before describing how the atomic array that leads to the
diffracted intensities is set up in the modified Debye program, a description
of the global parameters describing the underlying FCC structure is in order.
These were fixed to be identical for all simulations to limit the number of
parameters and facilitate comparisons.

Global parameters

From Table 6.1 the weighted average atomic number of AISI316 stainless
steel is 25.9, making it a reasonable first approximation to model all atoms
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in the FCC lattice as Fe. The ‘fault free’ lattice parameters a0 (one parame-
ter for each value of yN , c.f. Table 6.3) obtained in the conventional way were
used as standard input for the simulations along with a thermal parameter
set of BFe=BN=1Å2 which is reasonable at room temperature and agrees well
with values obtained from Rietveld refinements. The anomalous dispersion
corrections f ′ and f ′′ for both Fe and N at the relevant wavelengths were ob-
tained via http://skuld.bmsc.washington.edu/scatter/. Finally instrumental
peak broadening parameters of the pseudo-Voigt type were added (Caglioti
et al., 1958; Wertheim et al., 1974).

Table 6.1 Chemical composition of AISI316 stainless steel

atomic name Fe Cr Ni Mn Si Mo
atomic number 26 24 28 25 14 42
atomic % 63.60 19.11 12.70 1.74 1.45 1.40

6.1.1 Building the structure atom by atom

The coordinate system chosen to model the nitrogen expanded austenite FCC
structure is directed with the z-axis perpendicular to the (111) close packed
layers which are situated in the xy-plane, thus a hexagonal cell setting.

Particle size in the simulations is realised by letting the atomic array be
made up by m close packed layers each consisting of m×m Fe atoms. Hence
a crystallite of size m=120 contains 1203=1728000 Fe atoms and has a mean
diameter of roughly 120·3Å=360Å. One parameter was deemed enough to
describe the particle size since there is no reason to assume an anisotropic
particle shape for a compound with a FCC structure.

Deformation stacking faults in a FCC structure are realised by chang-
ing the stacking sequence of the (111) close packed layers from ABCABCA
to ABCACAB. In the program the atomic array is built up one close packed
layer at the time, and each time a new layer is added a random number
between 0 and 1 is generated. If the number is smaller than the input
deformation stacking fault probability, αin, a deformation stacking fault is
introduced. The final deformation stacking fault probability, α, is defined
as the number of deformation stacking faults in the atomic array divided by
m−1, the number of new layers added. To get a physically realistic model
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an average over several (typically 10) diffractograms simulated for the same
value of αin is used.

Twin or growth faults refer to the stacking sequence ABCACBA of the
FCC (111) close packed layers as opposed to the normal ABCABCA order,
thus a mirror plane is introduced and the stacking is reversed. After deter-
mining the stacking sequence of the (111) layers taking possible deformation
stacking faults into account, the program reconsiders each layer, generates
a random number between 0 and 1 and introduces a twin stacking fault by
reversing the stacking of all subsequent layers if this random number is less
than the input twin fault probability, βin. Finally the twin fault probability,
β, is calculated as an average over several simulations.

Screw dislocations with (111) slip planes, screw axes along [110] and
one interatomic distance in displacement can be added to the structure after
building the atomic array as described above. The desired screw dislocation
density, ρin, typically in the order of 1015–1016m−2, is input and the number
of dislocations to which this corresponds for the given crystallite size is calcu-
lated. The number is then rounded off at random to one of the two nearest
integers in a way that an average over several diffractograms should yield
the desired real number. For a m=120 crystallite a dislocation density of
1015m−2 corresponds roughly to one screw dislocation. A distance threshold
to limit the dislocations from being placed too close to one another is cal-
culated based on ρin, and the dislocations are then placed at random within
the part of the crystallite that has the full thickness using the calculated dis-
tance threshold. The shortest distance between screw dislocations is printed
in the output file along with the actual screw dislocation density, ρ. In order
to keep the high symmetry of the atomic array (identical layers perpendic-
ular to the screw dislocation axis) and thereby the high performance of the
Debye calculations, no relaxation of the structure or removal of Fe atoms in
the vicinity of the screw axes or slip planes is performed by the program. It
should be noted that it was chosen to model the screw dislocations with slip
planes extending to either side of the crystallite at random, see Figure 6.1.
However, because screw dislocations appear when a stress is applied in a
given direction, these were all modelled with the same chirality.

Interstitial nitrogen atoms can be placed at random in the octahedral
interstices of the Fe FCC structure while building the atomic array. For every
octahedral interstice a random number between 0 and 1 is generated, and
if the number is less than yN, a nitrogen atom is added. It was chosen
not to place any nitrogen atoms at the crystallite surface or at stacking
fault positions, the latter to avoid unrealistically short N–N distances or
nitrogen atoms with tetrahedral coordination. Interstitial nitrogen atoms in
the vicinity of screw dislocation axes and slip planes are removed during the
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Figure 6.1 Section of a m=20 crystallite with yN=0.6 viewed along the screw
dislocation axis [110] with [111] directed upwards. Fe light gray, N dark gray. Note
the stacking fault in the bottom of the picture (missing N layer) and the two screw
dislocations with (111) slip planes.

generation of the axes to avoid clashes.

Approach

The way the Fe FCC lattice is built makes it possible to exploit the symmetry
of the atomic array to speed up the calculation of all the Fe–Fe interatomic
distances. However, the interstitial nitrogen atoms are only introduced into a
fraction of the octahedral interstices in the Fe FCC lattice, so the symmetry
is broken and the Fe–N and N–N distances must be calculated for every atom
pair, resulting in a substantial increase in calculation time. The reciprocal
relationship between particle size and peak width is given by the Scherrer
equation (3.3). Like the particle size, the presence of stacking faults and/or
dislocations has great impact on the diffraction peak widths, but none of
these parameters affect the integrated intensities. On the other hand, the
introduction of nitrogen into the octahedral interstices alters the relative
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intensities of the diffraction peaks, but has no impact on the peak widths.
Based on these observations it was chosen to do a series of simulations of the
Fe FCC lattice to analyse and possibly parameterise the effects of stacking
faults, screw dislocations and a combination of these on the peak widths.
The nitrogen atoms were left out because they do not contribute to the peak
widths and because simulations without them are much faster as just argued.

6.1.2 Peak width analysis

In the following section the effects on the peak widths of varying α, β and ρ,
both isolated and in combination, are analysed and parameterised. All the
specified peak widths, βpeak, are integral breadths measured in degrees on the
2θ-scale for CoKα radiation. It is assumed that the individual contributions
to the peak width add up in a Gaussian manner, thus:

β2
peak = β2

size + β2
instr + β2

sf + β2
twin + β2

sd + . . . (6.1)

The β2
size + β2

instr terms are simply taken as the squared integral breadths of
the diffractogram simulated for the same size and instrumental parameters,
but they can easily be parameterised using the Scherrer equation (βsize) and
the pseudo-Voigt type instrument broadening (βinstr) as described previously.

Table 6.2 Stacking fault parameters

hkl 111 200 220 311 222
Ghkl

1
4 −1

2
1
4 − 1

11 −1
8

Deformation stacking faults in a FCC lattice give rise to minor peak
broadening effects as well as peak shifts of the type (Warren, 1990):

∆(2θhkl) = 0.2756 · α ·Ghkl · tan θ (6.2)

where the deformation stacking fault parameter Ghkl is given according to
Table 6.2. Since none of the other structural variables give rise to peak
shifts, α can be determined from these. However, it is also necessary to
parameterise the deformation stacking fault peak width contribution, β2

sf,
in order to fully understand the interplay between the different structural
components. Figure 6.2 shows β2

sf for α between 0.01 and 0.04 (the relevant
interval for the experiments (Christiansen and Somers, 2004)). Each point in

65



the figure represents an average over 10 simulated diffractograms. For every
value of α the peak width contributions are calculated for five different values
of m, namely: 100, 200, 300, 400, and 500. Considering that the points group
nicely around the trend lines, β2

sf seems to be independent of particle size.

Figure 6.2 Calculated peak width contributions for different deformation stack-
ing fault probabilities
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Twin faults in a FCC lattice result in asymmetric peak broadening
(Warren, 1990). Simulations were performed for β between 0.01 and 0.04
since there was no reason to suspect a larger frequency of twin faults than
of deformation stacking faults. For β in this interval the asymmetry was
limited, so it was decided to focus only on the symmetric peak broadening
effects, β2

twin, depicted in Figure 6.3. As for the deformation stacking faults,
each point represents an average over 10 simulated diffractograms and for
every twin fault probability, β2

twin is calculated for the same five values of m.
From the figure it can be seen that β2

twin is independent of particle size and
only significantly different from zero for the 200 peak.

Screw dislocations of the type described above give rise to anisotropic
peak broadening effects as seen from Figure 6.4. Note that the screw dislo-
cation contribution, β2

sd, to the 111 peak is significantly smaller than for the
remaining peaks (except for 220), an effect that could potentially explain the
large peak width anisotropies observed in the experimental diffractograms of
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Figure 6.3 Calculated peak width contributions for different twin fault proba-
bilities

0

0.5

1.0

0.01 0.02 0.03 0.04

β t
w

in
2

β

111
200
220
311
222

nitrogen expanded austenite (Figure 6.6 and Figure 6.7). The diffractograms
used to construct Figure 6.4 are simulated for m=120 crystallites, so the
labels on the x-axis correspond roughly to the number of screw dislocations
in the crystallite, and each point represents an average over 10 simulated
diffractograms. It can be seen that β2

sd is almost proportional to the screw
dislocation density at low densities (trend lines forced through origo) and
that it reaches a saturation level/maximum around 6·1015m−2 which cor-
responds to a minimum distance between the individual screw dislocations
around 65Å. The saturation/maximum could be the result of a shadowing
effect where the addition of each new screw dislocation contributes less and
less to the structure. If the shadowing effect is a function of the number of
screw dislocations rather than the screw dislocation density, then β2

sd for a
given screw dislocation density would be less the larger the crystallite. This
effect was in fact observed and it is the reason why Figure 6.4, as opposed
to Figure 6.2 and Figure 6.3, contains data for one value of m only.

Combining deformation stacking faults and screw dislocations
it is not obvious whether the peak width contributions simply add up as
β2

sf + β2
sd, or whether the structural modifications correlate so strongly that
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Figure 6.4 Calculated peak width contributions versus screw dislocation densi-
ties for m=120 crystallites
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the resulting peak widths differ significantly from predictions based on the
above analysis. The β2

twin term was not considered because it only adds to the
width of the 200 peak, which is also substantially broadened by the presence
of both deformation stacking faults and screw dislocations. According to
experimental XRPD patterns the 200 peak is no wider than the 220, 311
and 222 peaks, so twin faulting is bound to play a very minor part in the
structure of nitrogen expanded austenite.

A number of diffractograms for m=120 crystallites with α≈0.03 and dif-
ferent values of ρ were simulated to test how well it is possible to predict the
peak widths of diffractograms simulated for expanded austenite containing
both deformation stacking faults and screw dislocations. For each value of ρ,
Figure 6.5 shows the differences between the simulated peak widths β2

peak

and the peak widths predicted from parameterisation of size, instrumental
broadening, deformation stacking faults (Figures 6.2) and screw dislocations
(Figure 6.4). Each point in Figure 6.5 represents an average over 10 simu-
lated diffractograms, and it should be noted that the differences are roughly
constant and only differ significantly from 0 for the 200 (proportional to
ρ) and 220 (constant) peaks. These extra peak width contributions, aris-
ing because of structural correlations between deformation stacking faults
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and screw dislocations, are taken into account in the next section, where
the parameterisation of the peak width contributions from different struc-
tural aspects derived in the present section is used to determine the model
variables for Debye simulations that gives the best fit to the experimental
diffractograms.

Figure 6.5 The difference between simulated and predicted peak widths for
m=120 crystallites with α≈0.03 for various screw dislocation densities
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6.1.3 Experimental

XRPD data for expanded austenite samples with yN=0.36, yN=0.40 and
yN=0.58 were recorded using a Bruker D8 AXS diffractometer equipped
with a Co anode (λ(CoKα1)=1.78890Å, λ(CoKα2)=1.79279Å) operating in
Bragg-Brentano mode. The instrumental pseudo-Voigt peak profile param-
eters were obtained from a peak fit of a austenitised nitrogen-free AISI316
foil using the same diffractometer settings, assuming that the particle size
in this sample is so large that the only significant contribution to the peak
broadening is of instrumental origin.

Additionally synchrotron diffraction data for yN=0.61 were collected in
transmission mode with a HUBER G670 Guinier camera (λ=1.18608Å) at
MAX-lab beamline I711 (St̊ahl, 2000; Cerenius et al., 2000) with the sam-
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ple mounted in a Ø=0.3mm capillary and Al-foils placed between sample
and detector to reduce fluorescence. The short wavelength gives access to
more diffraction peaks, and a much better signal to noise ratio can be ob-
tained within minutes because of the high intensity of the synchrotron beam.
The synchrotron data were corrected for 2θ zero shift (determined for a Si-
standard along with the actual wavelength and the instrumental broadening),
for the intensity profile related to the 45◦ Guinier tangent angle, and for ab-
sorption in a cylindrical sample with µR=1.5.

Fitting the experimental data

The modelling strategy to obtain the simulated diffractograms that best fit
the experimental data consists of considering and including the already men-
tioned model variables — particle size, deformation and twin stacking fault
probabilities, screw dislocation density, and interstitial nitrogen occupancy
— one at the time. For the more advanced structural models the values of α,

Table 6.3 Fit parameters

ya
N aa

0 αa bgb m α ρ yN R
[Å] [1015m−2]

0.36 3.8616 0.0142 3 120 0.0566
3 120 0.014(8) 0.0567
3 120 0.014(5) 0.3599(3) 0.0499

0.40 3.8848 0.0097 2 120 0.0615
2 120 0.010(6) 0.0633
2 120 0.010(9) 0.4000(2) 0.0553

0.58 3.9823 0.0274 3 120 0.0887
3 120 0.027(9) 0.0879
3 120 0.027(10) 2.1(3) 0.0871
3 120 0.027(19) 2.0(4) 0.5799(3) 0.0681

0.61 4.0022 0.0362 12 120 0.0865
12 120 0.036(12) 0.0731
12 120 0.036(12) 3.9(5) 0.0711
12 120 0.036(12) 3.9(5) 0.6100(3) 0.0551

a (Christiansen and Somers, 2004)
b Number of Chebyshev background parameters used for the background fit
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ρ and yN reported in Table 6.3 are mean values and estimated standard devi-
ations obtained by averaging 10 simulated diffractograms. Table 6.3 also con-
tains the final R-values obtained when fitting the simulated diffractograms
to the experimental XRPD patterns using a scale factor and a number of
Chebyshev background parameters.

The particle size can be estimated for the experimental diffractograms
using the Scherrer equation. This yields particle sizes around 500Å perpen-
dicular to {111} and around 200Å in all other directions, thus a large peak
broadening anisotropy that cannot be correlated to particle size anisotropy
because the {111} planes are found in four different orientations throughout
the crystal due to the cubic space group symmetry. As a compromise it was
decided to use m=120 crystallites corresponding to a particle size around
360Å, see Figure 6.6 for a fit to the synchrotron data. Considering that it
is more than difficult to even estimate the mean particle size, it was deemed
unnecessary to spend extra computer time on modelling the particle size
distribution that will inevitably be present in the samples.

The deformation stacking fault probabilities were previously deter-
mined in the conventional way from the peak shifts (Christiansen and Somers,
2004). Simulations using a number of α values close to these were tested for
each sample, but in each case the value of α leading to the best fit with the
experimental data lay within the estimated standard deviation. Therefore it
was decided simply to use the conventional α values as input for the final sim-
ulations. From Table 6.3 it can be seen that the models improved when the
deformation stacking faults were taken into account; the R-values dropped as
compared to the α=0 models, especially for the yN=0.61 synchrotron data.

The twin fault probabilities were found to be zero for all samples.
With the choice of m=120 and the conventional α values as described above,
the 200 peaks of the simulated diffractograms for yN=0.36 and yN=0.40 are
already wider than experimentally observed, so twin faulting which only adds
to the 200 peak width (Figure 6.3) cannot be an issue. For the yN=0.58
and yN=0.61 samples the experimentally observed peak widths are better
described by the presence of screw dislocations.

The screw dislocation densities were determined by least squares
minimisation of the difference between the experimentally determined peak
widths and the peak widths predicted using the parameterisation of peak
broadening effects outlined above. According to this approach the model did
not improve by adding screw dislocations to the simulations of the yN=0.36
and yN=0.40 samples. For the yN=0.58 sample a dislocation density of
2·1015m−2 refined, while ρ=4·1015m−2 was estimated for the yN=0.61 sample.
The R-values of Table 6.3 confirm that the models did in fact improve when
screw dislocations were added to the structural models of the samples with
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Figure 6.6 m=120, R=0.0865
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Figure 6.7 m=120, α=0.036(12), ρ=3.9(5)·1015m−2, yN=0.6100(3), R=0.0551
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the highest nitrogen contents.
The interstitial nitrogen occupancies of the samples were determined

using thermogravimetry, and these values were simply used as input for the
simulations. As could be expected this lead to significant model improve-
ments for all experiments, see Table 6.3 for R-values and Figure 6.7 for the
final fit to the yN=0.61 synchrotron data. It has long been known that the
interstitial nitrogen atoms have a higher affinity towards Cr than towards Fe
(Oda et al., 1990; Grujicic and Owen, 1995; Shankar et al., 1998; Bazaleeva, 2005).
To test whether XRPD can be used to observe possible clustering of nitro-
gen around chromium, a model placing the nitrogen atoms in small clusters
(55 atom cubeoctahedra) was tested. The resulting diffractogram was no
different from the random nitrogen case, leading to the conclusion that it is
impossible to detect nitrogen clustering by the use of XRPD.

6.1.4 Discussion

The first conclusion to be made is that the “fault free” lattice parameters
are correct and that the structural models improve with the inclusion of
deformation stacking faults. One of the main objectives for taking on the
Debye approach was to check whether the numerical value of the traditionally
determined α parameter actually corresponds to the deformation stacking
fault probability, and based on the good correspondence between the two
parameters this was found to be the case.

The experimentally determined XRPD patterns show extremely narrow
111 peaks corresponding to an unlikely particle size anisotropy since the
{111} planes are oriented in four different directions throughout a crystal
of FCC symmetry. The observed peak width anisotropies can be partly
explained by the presence of screw dislocations in the atomic lattice since
it was shown that the width of the 111 peak is affected much less by the
presence of screw dislocations than most of the remaining peak widths.

From the widths of the 111 peaks in the experimental XRPD patterns
it is obvious that the mean particle size of nitrogen expanded austenite is
larger than the 360Å used for the simulations in the present study. Most
likely a better fit would be obtained if the mean particle size was doubled
and the peak width anisotropy was enhanced by increasing the screw dis-
location density. However, calculation time is another non-negligible aspect
in the choice of particle size; a m=120 simulation with yN=0.6 can be per-
formed within 48h on a 3GHz/1GHz standard PC, while doubling the mean
particle size will increase the calculation time by a factor of 26=64. Hence
it would no longer be feasible to test different parameters or average several
diffractograms to obtain a distribution of α, ρ or yN.
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It is an approximation to model all atoms in the FCC framework as Fe,
c.f. Table 6.1. Different atoms have different atomic radii which inevitably
will result in local distortions of the FCC framework, distortions that were
not considered in the simulations, but they are likely to be small if the atomic
composition is random. The variations in scattering amplitudes and more
importantly anomalous scattering contributions among the different atom
types are other aspects that need to be considered. In order to quantify their
importance, Rietveld refinements were carried out both modelling all atoms
as Fe and using the correct atomic composition for AISI316 stainless steel.
For the Co-data the refined thermal parameters increased by 20% in going
from the Fe to the correct model, while the increase for the synchrotron data
is hardly significant (2%). This agrees well with the observation that for the
Co-data a better fit between simulations and experiments can be obtained if
the thermal parameters are reduced. It was, however, decided to stay with
the physically sound values of BFe=BN=1Å2 for all simulations.

If computational cost was not an issue it would be interesting to do an-
other round of Debye simulations and test structural aspects such as: 1) In-
creasing the crystallite size along with the screw dislocation density to get a
better fit to the anisotropic peaks widths, 2) Adding a particle size distribu-
tion, 3) Varying α, yN and especially ρ in the search for a better fit to the
experimental data, and 4) Modelling the FCC framework with the correct
atomic composition to get the correct atomic radii, scattering factors and
anomalous scattering contributions.

Taking all of these considerations into account the Debye approach, de-
spite of the structural simplifications in order to make modelling feasible,
offers valuable information about the structure of nitrogen expanded austen-
ite that cannot be gained in any other way at present.
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6.2 Combined XRPD and EXAFS character-

isation

Whereas the nitrogen expanded austenite samples investigated in Section 6.1
were produced from foils, the following characterisation was performed for
nitrided stainless steel flakes.

6.2.1 Nitriding of flakes

The stainless steel AISI316 flakes with thickness 0.4–1.2µm (325 mesh) were
austenitised prior to nitriding by heating them at a rate of 30K/min to 1363K
in an atmosphere of flowing H2 (99.999%) followed by immediate cooling at
a rate of 50K/min to the nitriding temperature. This annealing procedure
ensured a full transformation of the cold worked flakes into austenite. Fur-
thermore, the reducing hydrogen atmosphere removes the passive layer, con-
sisting mainly of chromium(hydr)oxide, thus enabling subsequent nitriding of
the flakes. Nitriding was carried out in a Netzsch STA449 simultaneous ther-
mal analyzer for continuous monitoring of the sample weight. The nitriding
temperature was 718K and nitriding was continued until a stationary weight
gain was reached, suggesting that a para-equilibrium between nitrogen in
the gas phase and in the stainless steel had been reached for the adjusted
gas composition. The gas consisted of 9 vol.% N2 and 91 vol.% NH3, which
corresponds to an infinitely high nitrogen activity (according to the dissocia-
tion equilibrium of ammonia). The flakes had to be exposed to the nitriding
gas for 24h before a stationary weight was obtained. As compared to nitrid-
ing of stainless steel foils, where the surface can be activated by chemical
dissolution of the passive chromium(hydr)oxide film followed by subsequent
deposition of a Ni film of a few nanometers (Christiansen and Somers, 2006),
the nitriding of the present samples proceeds rather sluggish. The reason for
this could be that the H2 activation at high temperature used in the present
investigation is sensitive to the surface pollution, which will slow down the
kinetics of nitrogen uptake. Furthermore, the flakes are produced by a ball
milling method using organic lubricants, which can pollute the surface and
make surface activation more difficult.

Nitriding under the above described conditions should give rise to a full
transformation of austenite into nitrogen expanded austenite having an in-
terstitial occupancy of yN=0.61 (Christiansen and Somers, 2006). However,
the overall nitrogen content in the as-nitrided sample (stationary nitrogen
uptake) corresponded to yN=0.51. Part of the batch of as-nitrided flakes
was exposed to flowing hydrogen at 718K for 3h. This so-called denitriding
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resulted in removal of the dissolved nitrogen atoms to yN=0.18. During ther-
mal exposure at 1363K the (de)nitrided flakes were partly sintered together
in the crucibles, which necessitated some degree of mechanical processing in
order to obtain a homogenous batch of powdered flakes for characterisation.

6.2.2 Characterisation methods

XRPD and Rietveld refinements

The XRPD data were collected using a Bruker D8 AXS diffractometer equipped
with a Cr anode (λ(CrKα1)=2.28962Å, λ(CrKα2)=2.29352Å) operating in
Bragg-Brentano mode. The different phases in the XRPD patterns were
identified by means of search-match. In the subsequent Rietveld refinements
the following parameters were refined: a scale factor, a Voigt peak profile pa-
rameter and lattice constants for each phase besides an overall 2θ zero shift
and 3 Chebyshev background parameters. This gave a total of 18 parameters
for both samples. The thermal parameters were set to BCr=BFe=BN=1.0Å2

for all phases.
For the expanded austenite phase an extra Voigt peak profile parame-

ter coupled to the <111> direction was refined to account for the observed
peak width anisotropy. This peak width anisotropy cannot be the result
of anisotropic particle shapes because the {111} planes are found in four
different orientations throughout the crystal due to the cubic space group
symmetry. Rather it has been argued to result from the presence of defor-
mation stacking faults and screw dislocations in the structure.

It should be noted that the nitrogen contents of the expanded austenite
phases have not been refined, but rather calculated from the lattice parameter
a (Christiansen and Somers, 2006). This was done to limit the number of
parameters. For the denitrided sample the lattice parameter was outside the
interval for which the linear relationship between a and yN was determined,
so the value of yN=0.12 was estimated from an extrapolation towards the
(yN, a) pairs determined for yN below 0.10. Finally the nitrogen contents of
the martensite phase in the denitrided sample was set to 2 N atoms per 100
Fe atoms based on the c/a ratio (Cheng et al., 1990).
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EXAFS

Cr and Fe K-edge EXAFS data were collected in transmission mode at MAX-
lab beamline I811 equipped with a Si[111] double crystal monochromator
(Carlson et al., 2006). Detuning to remove higher harmonics was performed.
The samples were mounted on two pieces of tape, and the acquisition time
was 70min per scan.

The analysis of the EXAFS data was performed in the WinXAS program
(Ressler, 2004). For each sample 2–5 scans were averaged after energy cali-
brations performed using the E0 values tabulated for Cr and Fe. Standard
procedures were then used for the background subtraction, normalisation and
spline fitting. The k-ranges used for the spline fittings and for the Fourier
Transforms of k3χ(k) are given in Table 6.4 and 6.5.

The phase and amplitude parameters used for the modelling of the EXAFS,
which was performed in R-space, were obtained by FEFF7 ab initio calcula-
tions (Zabinsky et al., 1995). All samples were assumed to consist of a single
cubic phase. In this way the crystallographic symmetry could be used to
constrain the values of rj together so that only one parameter, namely the
cell constant which can easily be compared with tabulated values, was re-
fined. Letting M denote either Cr or Fe, only paths corresponding to the first
M–N shell (if present) and the first four M–M distances were added during
the modelling. If a 3 atom multiple scattering path of the same rj as the
M–M path and a much higher value of |f eff

j | was found, this path was used
on behalf of the M–M path to improve the fits significantly. Besides the
cubic lattice constant, ∆E0 and the values of σ2

j were refined. The ampli-
tude reduction factor was maintained at S2

0=1 for all refinements, because
no literature values for similar systems were found.

The above described refinement procedure gave between 6 and 8 free
variables (Table 6.4 and 6.5). It should be noted that both small deviations
from the assumed cubic symmetry and the presence of additional phases
with a similar local structure will result in increased values of σ2

j , and that
large values of σ2

j are in fact observed for all EXAFS refinements (Table 6.4
and 6.5). Information of additional phases obtained from other sources such
as XRPD can be exploited to do a multi-phase refinement of the EXAFS
data. The quality of the data is sufficient to justify the addition of more free
variables, but the interpretation will be blurred by increasing correlations
between the obtained parameters. From this point of view, and because the
applied single cubic phase models are simple and easy to interpret, while the
obtained residuals and fits (Figure 6.12) are as good as can be expected even
from a multi-phase refinement, it hardly seems reasonable to engage in such.
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Table 6.4 Cr EXAFS refinement data

as-nitrided chromium nitride CrN F−4 3 m
path Nj rj [Å] σ2

j [Å2] ∆E0[eV] S2
0 R

Cr–N 6 2.06 0.0071 −0.35 1 10.0
Cr–Cr 12 2.91 0.0129
Cr–Cr–N 12 4.12 0.0197
Cr–Cr 24 5.05 0.0197 spline: 0.5–13.8Å−1

Cr–Cr–Cr 24 5.95 0.0209 FT: 3.0–11.0Å−1

denitrided chromium nitride CrN F−4 3 m
path Nj rj [Å] σ2

j [Å2] ∆E0[eV] S2
0 R

Cr–N 6 2.07 0.0080 −0.25 1 12.0
Cr–Cr 12 2.92 0.0138
Cr–Cr–N 12 4.13 0.0181
Cr–Cr 24 5.06 0.0168 spline: 0.5–13.8Å−1

Cr–Cr–Cr 24 5.96 0.0183 FT: 3.0–11.0Å−1

Table 6.5 Fe EXAFS refinement data

as-nitrided expanded austenite γ-FeN0.32 F−4 3 m
path Nj rj [Å] σ2

j [Å2] ∆E0[eV] S2
0 R

Fe–N 1.9 1.93 0.0064 6.54 1 11.9
Fe–Fe 12 2.73 0.0192
Fe–Fe–N 3.8 3.86 0.0173
Fe–Fe 24 4.73 0.0281 spline: 0.2–16.0Å−1

Fe–Fe–Fe 24 5.45 0.0368 FT: 4.2–13.0Å−1

denitrided ferrite α-Fe I m 3 m
path Nj rj [Å] σ2

j [Å2] ∆E0[eV] S2
0 R

Fe–Fe 8 2.51 0.0104 7.39 1 12.5
Fe–Fe 6 2.90 0.0277
Fe–Fe 12 4.10 0.0178 spline: 0.2–16.0Å−1

Fe–Fe 24 4.80 0.0140 FT: 3.3–14.9Å−1
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6.2.3 Results

XRPD and Rietveld refinements

The recorded diffractograms are shown in Figure 6.8 and 6.9 along with the
diffraction patterns of the different phases from the Rietveld refinements.
For each sample four different phases were identified. The mass percentages
of the different phases that can be derived from the scale factors are given
along with the refined cell constants and final Rp values of the Rietveld
refinements in Table 6.6. The corresponding nitrogen balances of the entire
samples, determined from the mass fractions, are given in Table 6.7. For both
of the investigated samples it should be noted that the diffraction peaks are
generally were broad except for the 111 peak of expanded austenite. As
illustrated in Section 6.1 many factors besides the particle size are likely to
contribute to this observed broadening, for instance composition or stress
variations, i.e. microstresses, as well as the presence of deformation stacking
faults and screw dislocations.

The major component of the as-nitrided sample was determined to be
an expanded austenite phase with yN=0.50, as followed from the lattice pa-
rameter dependence on nitrogen content (Christiansen and Somers, 2006). CrN
was found to be present in the as-nitrided sample with a mass fraction of 0.11,
while the formation of CrN incorporating all of the chromium atoms would
lead to a CrN mass fraction of 0.19. However, these two phases only comprise
half of the total mass. The other half of the sample was found to consist of
two different iron nitrides; FCC γ’-Fe4N, and HCP ε-Fe3N.

For the denitrided sample the phase with the largest mass fraction was
found to be BCT martensite. Mechanical deformation of expanded austen-
ite with a relatively low interstitial nitrogen content is known to result in
martensite upon deformation (Venables, 1962). Mechanical deformation was
introduced on removing the samples from the thermal analyzer, and was nec-
essary because the flakes had sintered together during nitriding. In addition
to martensite two austenite phases were identified. Judging from the lat-
tice constants one phase is nitrogen-free austenite and the other is nitrogen
expanded austenite with yN=0.12. The final phase is CrN with a lattice con-
stant slightly smaller than a=4.1480(5)Å (Nasr Eddine et al., 1977), suggesting
that the nitrogen sublattice is not fully occupied. The mass fraction of CrN
was determined to be 0.14, while the theoretical mass fraction corresponding
to a total formation of CrN is 0.21.
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Figure 6.8 Rietveld refinement of the as-nitrided sample
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Figure 6.9 Rietveld refinement of the denitrided sample
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Table 6.6 Rietveld refinements

as-nitrided Rp = 0.0883
chromium expanded iron iron

phase nitride austenite nitride nitride
abbreviation CrN γ-FeN0.5 γ’-Fe4N ε-Fe3N
structure FCC FCC FCC HCP
space group F−4 3 m F−4 3 m P m −3 m P 3 1 2
a [Å] 4.1356(8) 3.9425(2) 3.7892(7) 4.7784(13)
c [Å] 4.4141(8)
mass fraction 0.112(3) 0.388(3) 0.137(3) 0.363(4)

denitrided Rp = 0.0912
chromium expanded

phase nitride austenite austenite martensite
abbreviation CrN γ-FeN0.12 γ-Fe α’-FeN0.02

structure FCC FCC FCC BCT
space group F−4 3 m F−4 3 m F−4 3 m I 4/m m m
a [Å] 4.1100(15) 3.6796(3) 3.5944(6) 2.8635(6)
c [Å] 2.8933(13)
mass fraction 0.135(4) 0.301(4) 0.199(5) 0.366(5)

Table 6.7 Nitrogen atoms per metal atom in the entire samples determined by
various methods.

thermo- Rietveld EXAFS
balance refinement

as-nitrided 0.51 0.46 0.45
denitrided 0.18 0.17 0.19
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EXAFS

From Figure 6.10 it can be seen that the chemical surroundings of Cr are
identical for the as-nitrided and denitrided samples, while the environment
of the Fe atoms is found to vary substantially with the nitrogen contents
as illustrated in Figure 6.11. From the FT of the EXAFS data in Figure
6.12 it can be seen that the Fe atoms in the denitrided sample are found
in nitrogen-free surroundings, whereas the octahedral interstices around the
Fe atoms in the as-nitrided sample are partly occupied. As opposed to this
the Cr atoms are found in nitrogen saturated surroundings for both samples.
Thus the EXAFS data confirms that the nitrogen atoms have a much higher
affinity towards Cr than towards Fe.

The single cubic phase fits to the Cr EXAFS data (Figure 6.12A and
6.12B) strongly suggest that the majority of the chromium atoms are present
as CrN in both samples. The lattice constant refines to 4.12–4.13Å as com-
pared to the literature value of 4.1480(5)Å (Nasr Eddine et al., 1977), while
the refined values of σ2

j are all on the large side of the acceptable level. This
indicates that a (small) fraction of the chromium atoms are found in chem-
ical surroundings that are different from those of CrN; possibly within the
expanded austenite, in the interface adjacent regions of the extremely small
CrN particles or in the ε-Fe3N of the as-nitrided sample. These findings
are consistent with the Rietveld refinement which gave CrN mass fractions
corresponding to trapping 2

3
of the chromium atoms in CrN. The observed

first neighbour Cr–N distances in the FT of the Cr EXAFS data (Figure
6.12A and 6.12B) are shorter than the expected first neighbour distances of
both CrN (2.07Å), γ-FeN0.5 (1.97Å, as-nitrided) and γ-FeN0.12 (1.84Å, de-
nitrided) because the phase shift φij was not taken into account during the
FT. If rj of the outmost shell was constrained to the CrN lattice constant,
the corresponding value of σ2

j became extremely large and the quality of the
fit decreased dramatically. This value of rj was therefore refined freely.

The local structure of Fe in the as-nitrided sample is found to be that
of expanded austenite (Figure 6.12C). Refining the coordination number of
N around the central Fe atom and constraining Nj of the Fe–Fe–N multiple
scattering path to follow, the residual dropped from 14.5 to the final value
of 11.9. For the Fe–N path the value of Nj=1.9, corresponding to yN=0.32,
resulted. However, the values of Nj, rj and σ2

j determined by EXAFS do
not correspond exclusively to the expanded austenite phase, they also reflect
the two iron nitride phases that were identified from the XRPD analysis.
This is the reason why the values of σ2

j are very large, except for the paths
containing N where they correlate with the low occupancy.
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Figure 6.10 Cr EXAFS
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Figure 6.11 Fe EXAFS
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Figure 6.12 Modelling of EXAFS Fourier Transforms

The FT of the Fe data for the denitrided sample (Figure 6.12D) does not
contain the first Fe–N peak and it does not fit the FCC austenitic structure.
Instead an acceptable identity can be found with the BCC structure of ferrite.
As already argued the actual structure of the major phase is martensite,
tetragonally distorted ferrite, but according to the Rietveld refinements the
tetragonal distortion is almost negligible (c/a=1.01). For this reason, and
because the process of constraining distances is more straightforward for
cubic structures, ferrite was used for fitting the EXAFS data. The Rietveld
refinements of the denitrided sample gave a mass fraction of austenitic phases
of 0.50, while the mass fraction of martensite was determined to be 0.37. The
fact that the fit to the EXAFS data is much poorer for the austenite FCC
structure than for the ferrite BCC structure suggests that the sample used for
EXAFS analysis was subjected to additional mechanical deformation during
the preparation procedure. The coexistence of the martensite and austenite
phases are reflected in the large values of σ2

j obtained from the fitting.

6.2.4 Discussion

Nitriding of thin stainless steel flakes for 24h results in the development
of several phases. In addition to nitrogen expanded austenite also CrN,
γ’-Fe4N and ε-Fe3N develop, yielding a total nitrogen content in the as-
nitrided sample of 0.45–0.51 nitrogen atoms per metal atom (Table 6.7). This
is significantly lower than the maximum solubility of yN=0.61 for nitrogen
expanded austenite, and it is a consequence of the formation of nitride phases
during nitriding. CrN is expected to form prior to the iron based nitrides
γ’-Fe4N and ε-Fe3N. The CrN development observed in the present samples
could be associated with the relatively large surface area of the flakes, because
CrN will most probably start to develop at the surface, where no strain energy
effects are experienced upon nucleation. In the centre of the flakes expanded
austenite is present. The development of CrN retracts Cr from solid solution
in the austenite phase and effectively yields an austenitic structure rich in Fe
and Ni. The iron based nitrides γ’-Fe4N and ε-Fe3N subsequently develop in
the Cr denuded austenite as nitriding is carried out under conditions resulting
in a high nitriding potential. Consequently, the mass fraction of nitrogen
expanded austenite is lowered to 0.39.
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After denitriding, the nitrogen content in expanded austenite is signif-
icantly lowered, resulting in a yN of approximately 0.12 provided that the
known linear relationship between nitrogen content and lattice parameter
of expanded austenite (Christiansen and Somers, 2006) can be assumed valid
in this (extrapolated) concentration range. This means that loosely bound
nitrogen has been retracted and only tightly bound nitrogen resides in the
expanded austenite; ostensibly the lower content of chromium in solid so-
lution is responsible for the lower nitrogen content of tightly bound nitro-
gen, as compared to expanded austenite without CrN precipitates. The iron
based nitrides γ’-Fe4N and ε-Fe3N present in the as-nitrided sample have
disappeared and instead a nitrogen free austenite phase has developed. This
change is reflected in the Fe EXAFS data where the chemical surroundings
of the Fe atoms are found to change after denitriding, which for a large part
can be attributed to the reduction of the formed iron nitrides. The presence
of both expanded austenite and virtually nitrogen-free austenite is an im-
mediate consequence of the precipitation of CrN, which obviously proceeds
inhomogeneously. In the surrounding matrix the chromium content is low-
ered and no enhanced nitrogen content is dissolved. As a consequence of
mechanical processing for sample preparation a large fraction of the sam-
ple is converted into martensite with relatively low nitrogen contents. The
formation of martensite is more likely to occur in regions with low nitrogen
content. Disregarding the presence of nitrides, a large fraction of nitrogen in
the expanded austenite can be retracted and nitrogen residing in Fe-based
nitrides in the as-nitrided sample can be fully retracted. The fraction of ni-
trogen bound as CrN and the fraction remaining in the expanded austenite
after denitriding are not retractable in flowing hydrogen.

Rietveld refinements indicate that the mass fractions of CrN by XRPD
are 0.11 and 0.14 for the as-nitrided and denitrided samples, respectively,
while the corresponding theoretical values for the mass fractions of CrN if
all chromium atoms should reside in the precipitates are 0.19 and 0.21. This
implies that only 2

3
of the chromium atoms in both samples are associated

with CrN precipitates that display coherent XRPD. The remainder of the
chromium atoms is associated with other phases. For the as-nitrided sample
a fraction of the chromium atoms is expected to be found in the expanded
austenite phase and in the ε-Fe3N nitride. For the denitrided sample the
remaining fraction of chromium should be found in the expanded austenite
and in the deformation induced martensite phase. However, according to
EXAFS the majority of the chromium atoms are associated with a Cr–N
bond distance closely related to that of the chemical compound CrN in both
the as-nitrided and denitrided sample. Hence, it is likely that more than 2

3
of

the chromium atoms should be bound as CrN. This implies that a fraction
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of the formed CrN does not diffract coherently and cannot be detected with
XRPD, only with short-range-order techniques such as EXAFS. The fact
that almost all chromium atoms are associated with CrN is in opposition to
the traditional interpretation of the formation of expanded austenite, which
assumes that chromium is available in the austenite lattice for “trapping” of
nitrogen without forming (chromium)nitrides. It is evident that expanded
austenite still forms with high nitrogen contents even though the austenite
matrix is seemingly denuded of chromium. An explanation to these observa-
tions is hypothesised in the following.

Nitriding of ferritic steels alloyed with a low contents of strong nitride
formers viz. Cr, V, Ti, Mo, etc. can give rise to a significant hardening effect
and abnormal nitrogen/metal ratios, higher than what can be accounted for
by equilibrium metal nitride precipitates. This is due to formation of so-
called mixed substitutional-interstitial clusters (MSIC), which are coherent
platelets or clusters (GP zones) of nitrogen and strong nitride formers analo-
gously to the GP zone formation in aluminium alloys (Jack, 1975; Jones et al.,
1979). A matrix containing MSIC, i.e. a non-random solid solution, has the
same unit cell as a random solid solution of the same concentration and only
when precipitation occurs does the lattice parameter change to that of the
depleted solid solution (Jones et al., 1979). Hence XRPD does not reveal the
presence of the MSIC, only an increased lattice parameter. The prerequisite
for this phenomenon is a large difference in the diffusivities of the intersti-
tial and substitutional atoms. The same phenomenon possibly also occurs in
nitrided austenitic Fe-35Ni-V,Nb alloys at 600–700◦C (Driver et al., 1972).

In the present investigation the analogy to MSIC formation is straight-
forward; nitrogen in stainless steel at temperature lower than 723K diffuses
many times faster than the substitutional elements viz. Cr. XRPD can only
account for a part of the chromium atoms as CrN, whereas the remaining part
does not give coherent diffraction. This could suggest the presence of mixed
substitutional-interstitial solute-atoms clustering in austenitic stainless steel,
thus leading to an enhanced solubility of nitrogen. MSIC of Cr and N could
lead to abnormal solubility nitrogen in austenite (Fe surroundings). The
ratio of N to Cr and Mo is approximately 3:1 in expanded austenite (Chris-
tiansen and Somers, 2006), which is somewhat similar to the ratios found for
low-alloyed ferritic and austenitic alloys (Driver et al., 1972; Jones et al., 1979).
Unfortunately, the present data are flawed by the fact the expanded austenite
was not obtained homogeneously, but is influenced by the presence of both
nitrides and mechanically induced martensite phases. Thus in order to verify
or discard the above hypothesis further work is necessary; such work is under
way.
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6.3 Final conclusions

Debye simulations offer the opportunity to test how the XRPD patterns of ni-
trogen expanded austenite are affected by the presence of stacking faults and
screw dislocations in combination, structural aspects that cannot be mod-
elled using traditional XRPD analysis methods such as Rietveld refinements.
The method is, however, limited by the particle size because the computa-
tional cost goes as the 6th power of the average dimension. In the present
case a mean diameter of 360Å was the limit. The simulations confirm the
proposed presence of deformation stacking faults in homogeneous stress-free
samples of nitrogen expanded austenite (Christiansen and Somers, 2004). The
deformation stacking fault probability giving the best fit to the experimen-
tal XRPD pattern corresponds to the value conventionally determined from
the peak shifts within the estimated standard deviation. There is no evi-
dence to suggest that the structure of nitrogen expanded austenite contains
twin or growth faults. Modelling screw dislocations into the structure of
nitrogen expanded austenite results in diffraction patterns with peak width
anisotropies that resemble the experimentally observed anisotropies. The fits
to the experimental XRPD patterns show that the screw dislocation density
increases with increasing interstitial nitrogen occupancy. The actual value
of the screw dislocation density correlates strongly with the particle size and
a better fit can probably be obtained if both are increased. Simulations of
different ways to distribute the interstitial nitrogen atoms have shown that
it is impossible to distinguish between clustering and a random distribution
by means of XRPD.

Low temperature homogenously nitrided and denitrided micrometer-sized
AISI316 stainless steel flakes were characterised by XRPD and EXAFS. Ni-
trogen expanded austenite was obtained in both the as-nitrided and de-
nitrided samples, together with several other phases including CrN. The local
structure of the Cr atoms was largely unaffected by denitriding in flowing hy-
drogen, whereas the Fe atoms experienced a change in chemical surroundings.
Furthermore the local structure of the majority of Cr atoms was found to
conform to the bond length of the chemical compound CrN, although only a
fraction of the Cr atoms could be detected as CrN with XRPD. A possible
explanation for this observation could be a phenomenon generally related
to low-alloyed ferritic steel i.e. formation of mixed substitutional-interstitial
clusters.
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Chapter 7

Multiwall carbon nanotubes

The multiwall carbon nanotube (MWCNT) is no doubt the superstar molecule
of nanoscience and nanotechnology. The tubes have a nanoscopic diameter
(typically 1–50nm) and a microscopic length (up to 1mm), they are extremely
strong and flexible, and they may act as either semiconductors or conductors
depending on type. The suggested applications are numerous and include as
different uses as: hydrogen storage, nanoelectronics, controlled drug deliv-
ery, and artificial muscles to mention a few. More than 25 years have passed
since the discovery of MWCNTs was first reported along with a preliminary
structural characteristic based on TEM and electron diffraction (Iijima, 1991).
Ever since that time it has been obvious that the properties of MWCNTs are
intimately linked to their structure, thus the ability to characterise a sample
in a fast, cheap and reliable manner before taking further action is of vital
importance for all applications.

Structural studies using TEM are relatively fast and very illustrative be-
cause they give an actual image of the structure. However, the technique
suffers from the fact that it is a local probe and therefore unable to address
the structure of the bulk. XRPD is the obvious choice of a global probe;
even though the tubes are non-crystalline they display a periodic structure
and thus give rise to distinct diffraction peaks. The interpretation of the
diffraction pattern in terms of the relevant MWCNT structural properties
is, however, not straightforward because of the non-crystalline nature of the
samples.

Debye simulations have the potential to overcome this barrier consid-
ering that the XRPD pattern can be calculated for any scattering object
irrespective of (lack of) symmetry. Even though MWCNTs are nanosized
and powerful computers are easily accessible, it is too time consuming to
perform simulations varying all relevant properties until a satisfactory fit is
found for every new sample. Therefore the idea came about to construct a
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large library of simulated MWCNT diffraction patterns covering a wide range
of structural properties and then refer all experimental patterns to this.

During the construction of the library a number of challenges were en-
countered. First of all it was necessary to write a new version of the Debye
program because the standard program described thus far can only be used
for crystalline samples. For the design of the program it had to be defined
which properties were of importance, both obvious things such as the dimen-
sions of the tubes (length, diameter and wall thickness – both number of
layers and interlayer spacing), but also more complex matters like chirality
and the question of whether the MWCNTs are scrolls or built from con-
centric cylinders. Experimental XRPD patterns of MWCNT samples with
variable purity and size specifications were collected in order to get an idea of
the range of peak widths and asymmetries to be covered by the simulations.
A thorough analysis of the effects of the various structural properties on the
diffractograms was performed and the conclusions made from this study were
used in a fitting approach to determine the structure of the MWCNT sam-
ples from the experimental XRPD patterns. The analysis and fitting results
were presented as a poster at EPDIC-9 in Prague 2004 and summarised in
the proceeding given in Appendix C.2 (Oddershede and St̊ahl, 2006).

Based on the above described simulations and the MWCNT structural
properties estimated from the XRPD patterns it was chosen to construct a
library consisting of a total of 750 diffractograms (5 different radii, number of
layers and interlayer spacings and 6 different lengths). As the analysis of the
structural properties revealed that it is difficult to separate the diffraction ef-
fects arising from different properties, especially the diameter and the length,
it was decided to perform a Principal Component Analysis (PCA) on the li-
brary. The hope was that the PCA method would be able to differentiate
between the effects arising from the different properties, and eventually be of
use in the determination of structural properties for real MWCNT samples.
The findings of the PCA study were published in a special issue of Zeitschrift
für Kristallographie devoted to State of the Art of Powder Diffraction, see
Appendix C.3 (Oddershede et al., 2007). The contribution was invited based
on the EPDIC-9 proceeding and it even made the front cover.
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7.1 X-ray characterisation of MWCNTs

The idea of using Debye simulations to characterise the bulk structure of
MWCNTs is not new, several studies of this type have already been re-
ported (Koloczek et al., 2001; Koloczek and Burian, 2004; Koloczek et al., 2004;
Koloczek et al., 2005). The simulated XRPD patterns have been compared to
derive the effects of the different structural properties, to synchrotron XRPD
data collected at λ=0.1067Å (Szczygielska et al., 2000) and λ=0.13Å (Hawelek
et al., 2005), and to wide angle pulsed neutron data extending to Qmax=60Å−1

(Burian et al., 2004). Furthermore, molecular dynamics simulations at differ-
ent temperatures and defect concentrations have been combined with both
Debye simulations and radial distribution function analysis, and comparisons
with experimental neutron and XRPD data have been performed (Bródka
et al., 2006; Bródka et al., 2007).

All of the experimental MWCNT diffraction data previously compared
to Debye simulated XRPD patterns were originally collected to be used for
radial distribution function analysis. The reduced radial distribution function
(often also referred to as the pair distribution function or simply the PDF)
is given as the Fourier Transform of the isotropically averaged scattering
function:

4πr [ρ(r)− ρ0] =
2

π

∫ Qmax

0

Q [
I(Q)− f 2(Q)

f 2(Q)
] sin(Qr) W (Q) dQ (7.1)

where W (Q) is the Lorch window function which reduces termination ripples
and Qmax must be as large as possible to avoid spurious ripples (Burian et al.,
1999a; Burian et al., 1999b; Dore et al., 2000; Szczygielska et al., 2000; Burian
et al., 2004; Burian et al., 2005; Hawelek et al., 2005). The MWCNT PDFs were
shown to be intermediate between the PDFs of graphite and turbostratic
carbon. For small values of r the MWCNT PDF closely resembles that of
graphite, indicating that the short range order (stacking of perfect graphene
sheets) of the two compound is similar. For larger values of r a progressive
deviation between the two PDFs is observed, presumably because the inter-
layer correlations in the MWCNTs are only preserved over a few layers due
to the curvature of the graphene sheets.

When diffraction data are available beyond Q=20Å−1 it is natural to use
the entire Q-range for comparisons with Debye simulated XRPD patterns.
However, the statement of the present investigation is that the standard
crystallographic Q-range between 1Å−1 and 6Å−1, accessible with a wave-
length of λ≈1.5Å which in general gives better resolved diffraction peaks,
carries sufficient information to enable a characterisation of the MWCNT
bulk structure.
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7.2 MWCNT structure

Both graphite and MWCNTs consist of honeycomb graphene sheets, but
whereas the sheets are stacked along the c-axis in graphite (Table 7.1), they
are rolled to build the carbon nanotubes (Figure 7.4). The term multiwall
refers the situation where the tube walls consist of several graphene lay-
ers, as opposed to singlewall carbon nanotubes, SWCNTs. The MWCNT
diffractograms closely resemble that of graphite and are therefore indexed
accordingly, c.f. Figure 7.1 which shows the preliminary MWCNT diffrac-
togram recorded at λ=1.509Å on an unspecified MWCNT sample to de-
termine the experimental conditions (Section 7.5.2) and the Debye simu-
lated diffractogram for a graphite crystal consisting of 20 graphene layers
of 500Å×500Å. Many different models have been suggested to explain the
course of the XRPD patterns, the simplest of which have been of the dis-
ordered graphite type refining structural properties such as the interlayer
spacing, the crystallite size and the ordering within a single graphene layer
(Shi et al., 1993; Reznik et al., 1995; Pasqualini, 1997).

In the MWCNT diffractograms peaks of hk0 (within a layer) and 00l (be-
tween layers) type dominate due to the limited correlation between different
graphene sheets also referred to as turbostratic disorder (Reznik et al., 1995;
Burian et al., 1999b; Lambin et al., 2002). The graphite 100 (2.95Å−1) and
110 (5.11Å−1) peaks are found in more saw-toothed versions due to the tur-
bostratic stacking (Zhou et al., 1994; Maniwa et al., 2001) and/or the curvature
of the graphene sheets (Lambin et al., 2002), whereas the peaks corresponding
to the interlayer spacing, 200 (1.85Å−1), 400 (3.70Å−1), etc. are shifted to
slightly lower Q-values than for graphite, reflecting the fact that the spacing
between the multiple walls of the tubes is slightly larger (3.40Å) than the
interlayer spacing of graphite (3.35Å).

Table 7.1 Crystallographic data of graphite (Wyckoff, 1963; Wikipedia)

chemical formula Cgraphite

cell setting, space group hexagonal, P63/mmc
a [Å] 2.456
c [Å] 6.696
V [Å3] 35.0
Z 2
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Figure 7.1 MWCNT and graphite diffractograms showing the graphite indices
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In the following the two main features that distinguish the MWCNT
structure from that of graphite, namely the rolling direction determining
the chirality of the tubes and the stacking of subsequent walls, either as
concentric tubes or as scrolls, are described in detail.
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7.2.1 Chirality

In order to construct a seamless cylinder from a graphene sheet the circum-
ference of the cylinder must be chosen to correspond to a distance between
two symmetry equivalent atoms in the graphene honeycomb lattice (White
et al., 1993; Reznik et al., 1995; Lucas et al., 1996; Lambin and Lucas, 1997;
Pasqualini, 1997; Amelinckx et al., 1999), c.f. Figure 7.2. The circumference
vector C is defined by the pair (L,M) where L is the number of graphite
unit cell lengths a in the horisontal direction and M is the number of a’s in
the direction making a 60◦ angle with the first. Thus the vector C given in
Figure 7.2 corresponds to (L,M)=(10,4).

Figure 7.2 Definition of the MWCNT chiral angle α (Lambin and Lucas, 1997)

Figure 7.3 MWCNT sections for various chiral angles

α=0◦ zigzag (achiral) α=15◦ (chiral) α=30◦ armchair (achiral)
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The chiral angle α is defined as the angle from (L,0) to (L,M), where
0 ≤ M ≤ L, because these values of M are the only non-degenerate ones.
This means that 0◦ ≤ α ≤ 30◦. The two extremes M=0 (α=0◦) and M=L
(α=30◦) correspond to lines of inflection in the graphene sheets and the
resulting nanotubes contain the same type of mirror planes perpendicular
to the cylinder axis, c.f. Figure 7.3. These tubes are achiral and have for
obvious reasons been given the nicknames zigzag and armchair, respectively.
For comparison a chiral or helical tube with α=15◦ is also given in Figure 7.3.

7.2.2 Concentric or scroll

The question of whether MWCNTs are built from concentric cylindrical tubes
(Figure 7.4A) or as scrolls (Figure 7.4B) is still a matter of dispute. A variety
of different approaches have been taken, among these also Debye simulations
as shown later, but it has not been possible to draw any definitive conclusions
as to the rolling characteristics (Zhou et al., 1994; Reznik et al., 1995; Bandow,
1997; Cumings and Zettl, 2000; Maniwa et al., 2001; Xu et al., 2001).

Figure 7.4 Rolling characteristics of MWCNTs, concentric (A) or scroll (B)

A B

95



7.3 Program design

The program written to calculate the diffracted intensities for the MWCNTs
by means of the Debye equation takes as input a number of the structural
properties that will be defined in the following and calculates all the atomic
positions corresponding to these structural specifications. No symmetry re-
lations are used when calculating the interatomic distances and their multi-
plicities before the diffractogram calculation is performed according to (4.2),
so for larger structures the program performs quite slowly. However, when
the tubes are helical and the walls consist of several graphene layers (as is
in principle always the case), the repeat distance along the cylinder axis can
become extremely long and of variable length from layer to layer, so actually
there is not much – if anything – to be gained from symmetry.

The C–C distance was taken to be 1.42Å as for graphite, while the thermal
displacement parameter was set to BC=2Å2 as for C60 fullerenes at room
temperature (Chow et al., 1992; Bürgi et al., 1993; Chen et al., 2002). To define
the dimensions of the tubes the following properties were chosen as input for
the program: The tube length l, the inner radius r, the number of graphene
layers comprising the walls n, and the interlayer spacing between these d.
From these properties the outer diameter od can easily be calculated for
comparison with TEM observations.

If the tubes are scrolls a pair of (L,M) defining the rolling direction
and the chiral angle must also be input, whereas in the case of concentric
cylinders the desired n values of (L,M) are determined as those giving the
best agreement with the radii {r, r+d, . . ., r+(n−1)d}. From this it is
obvious that in the case of concentric cylinders it is impossible to control
the values of both the chiral angle and the wall spacing. If it is chosen only
to accept a small deviation in d as in the present implementation, one can
of course start to search for the correct length of the circumference vector
(L,M) around the desired value of α, but in the end a substantially different
value of α is often needed to obtain an desired accuracy in d, and vice versa
(Kociak et al., 2003).

In the coordinate system chosen to describe the MWCNT the z-axis runs
through the centre of the tubes and the atomic coordinates referring to this
axis range from 0 to l. The program offers the opportunity to model the tube
as being bent into some input fraction of an entire circle. The corresponding
radius of curvature rc is then calculated and compared to the outer radius
of the tube. To make sense rc must be substantially larger than the tube
radius, here a factor of 3 was chosen as the limit. The tube is then wrapped
around the line (x,rc,0) so that the x-coordinates are unchanged whereas the
y- and z-coordinates are modified.
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The Debye program was equipped with a routine for writing all atomic
coordinates into an input file for the molecular graphics program ATOMS
(Dowty, 2000). In this way it was possible to check that all the structural
properties of the MWCNTs were interpreted correctly before concentrating
on the resulting diffractograms. Figure 7.3 and 7.4 are produced in this way.

7.4 Simulations

In the following it is described how the diffraction patterns change when
the different MWCNT structural properties are varied one at the time. A
relatively small standard size was chosen for the simulations to save CPU
time: l=100Å, r=10Å, n=6, and d=3.40Å. For all simulations λ=1.509Å
was used because this was the synchrotron wavelength at which the first
experimental XRPD data were collected. All diffractograms are scaled to
account for the different number of atoms and shown as a function of Q to
facilitate comparison of simulations and experiments performed at different
wavelengths.

7.4.1 Chirality

As noted previously it is only possible to test the effects of varying the chiral
angle with a fixed interlayer spacing in the case of scroll type MWCNTs.
From Figure 7.5A it is clear that the value of the chiral angle greatly affects
the appearance of the diffractogram when the diameter of the tube is small;
peaks corresponding to honeycomb lattice repeat distances directed along the
length of the cylinder are extremely narrow (c.f. in particular the zigzag 100
and armchair 110 peaks), whereas peaks corresponding to lattice directions
that are curved along the surface of the scroll are substantially broadened.
Figure 7.5B shows that the effect is less pronounced for tubes with larger
diameter (same values of l, n and d), but nevertheless still present contrary
to the statement (Koloczek and Burian, 2004): “. . . for wider carbon nanotubes
no conclusion about chirality can be drawn from analysis of their diffraction
patterns”. This conclusion was reached by comparing diffractograms for
SWCNTs with diameters of 7Å and 70Å for three different values of α over
the full Q-range up to Qmax=24Å−1, but Figure 7.5 unambiguously shows
that the differences are in fact visible for even larger diameters if a more
limited Q-range is consulted.

97



Considering that it is impossible to control the chiral angle during syn-
thesis at the moment, as opposed to the dimensions, which to some extent
can be controlled via the choice of catalysts (Liu et al., 2004; Zhang et al.,
2005), α=15.3◦ corresponding to a tube circumference along (8,3) for scroll
type MWCNTs was chosen as a reasonable average value for all simulations.
Comparisons with the experimental diffractograms in Figure 7.11 support
this choice.

Figure 7.5 Simulations showing the effects of varying (L,M) and thus the chiral
angle α for scroll type MWCNTs with outer diameters of 55Å (A) and 135Å (B)
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7.4.2 Concentric or scroll

In Figure 7.6 the PDF of a concentric and a scroll MWCNT with identical
dimensions are shown. It is evident that the ripples in the PDF of the
concentric tube arise because certain distances (2(r+md), m∈{0,1,. . .,n−1})
are overrepresented compared to others (2(r+(m+1

2
)d)). The ripples in the

concentric PDF are in line with the previous observation that concentric
cylinders with a very constant spacing d between adjacent cylinders give rise
to a splitting of the interlayer 00l diffraction peaks (Koloczek and Burian,
2004). In Figure 7.7 the diffractograms corresponding to the PDFs are given,
and the presence of the concentric cylinder ripples can be verified in the lower
diffractogram.

Figure 7.6 Pair distribution function of concentric and scroll MWCNTs
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However, it can easily be shown that the positions of the ripples depend
on the value of r, the inner radius, and that these splittings average out if a
continuous distribution of different radii (a very realistic model of a true sam-
ple) is applied. The diffractogram corresponding to the concentric average is
also shown and must be compared to the diffractogram simulated for a sin-
gle scroll type MWCNT with a radius equal to the mean of the distribution
used for the concentric average. As there is hardly any difference between
these two, the conclusion must be that it is not possible to distinguish be-
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tween averaged concentric cylinders and scrolls from a standard diffraction
experiment.

Figure 7.7 Concentric or scroll type MWCNTs?
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Since the scroll type simulations are much faster to perform because no
average is required, and since only this type of simulations offer the oppor-
tunity to control the chirality, it was decided that all simulations performed
in the present study should be for scroll type MWCNTs.

7.4.3 Length and diameter

The effects of varying the outer dimensions, the length or the diameter of the
tubes, for fixed values of α, n and d have already been extensively described
(Koloczek and Burian, 2004), but a short summary will be given here. Elon-
gation of the tubes give sharper hk0 in-plane peaks as a simple size effect,
c.f. the Scherrer equation (3.3) and Figure 7.8. Increasing the diameter has
roughly the same effect, so from a visual inspection of the diffractograms only
one size parameter corresponding roughly to the total number of scatterers
can be determined. The length to diameter ratio must be calculated after
assigning a reasonable value to one of the dimensions, typically the diameter
since this is most easily estimated using TEM.
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Figure 7.8 Simulations of bent MWCNTs
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According to TEM the diameter of the MWCNTs is in the nanoregime
while the length is of the order 1µm, but interpretation of the XRPD ex-
periments inevitably leads to the conclusion that for the diameter to be
nanoscopic the length must be of the order 100Å (Zhou et al., 1994; Koloczek
et al., 2004) or even as short as 12Å (Koloczek et al., 2005). Based on anal-
ysis of TEM images a high concentration of defects has been suggested as
the explanation to this discrepancy between physical dimension and coherent
scattering length (Zhou et al., 1994). However, bending of the tubes is another
possible explanation as seen from the simulations in Figure 7.8. Here it is
illustrated how the diffraction pattern from a tube with a length of 1000Å
resembles that of a tube with a length of only 100Å if the longer tube is bent
into one tenth of a circle (corresponding to rc=1600Å, c.f. for instance the
nano15 TEM image in Figure 7.10), thus bending of a MWCNT makes it
appear shorter in a XRPD experiment.

7.4.4 Wall structure

The term wall structure covers the effects giving rise to broadening of the 00l
interlayer peaks. These have previously been characterised as falling into two
distinct categories (Reznik et al., 1995; Burian et al., 1999a; Maniwa et al., 2001;
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Lambin et al., 2002): size (arising from the wall thickness, thus the number
of layers n) and strain (due to a distribution of interlayer spacings d). It
is obvious that a finite number of layers n will lead to a broadening of the
00l peaks. Figure 7.9 illustrates the peak widths for different n, but it also
shows that an average over several values of n leads to a cancellation of the
low angle ripples, thus not surprisingly it can be concluded that a distribution
of different wall thicknesses must be present in real samples. According to
the Scherrer equation (3.3), the peaks are expected to be symmetric with
widths inversely proportional to n for all orders of 00l if size is the only
effect leading to a broadening of the 00l peaks. One look at the experimental
diffractograms in Figure 7.11 is enough to conclude that the 004 peak is much
wider than the 002 peak and that both peaks are asymmetric, thus strain
broadening of the 00l peaks is indecisively present. The asymmetry can be
modelled via a weighted average over diffractograms simulated for values of
d between 3.35Å (the interlayer spacing in graphite) and 3.60Å using higher
weights for the smaller spacings. This effect will cause a certain amount of
order dependent broadening which must be compensated for by increasing
the number of walls n.

Figure 7.9 Simulations showing the effect of varying the number of walls n
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7.5 Experimental

The bulk structures of a number of MWCNT samples with different pu-
rity and dimensional specifications were characterised by means of XRPD
and Debye simulations. The sample specifications and origin are given in
Table 7.2.

Table 7.2 Specifications and origin of MWCNT samples

name diameter length purity amount price provider
[Å] [µm] [%] [g] [US$]

sunnano 100–300 1–10 >90 10 30 www.sunnano.com
nano15 150±50 1–5 95 0.05 – nano-lab.com
nano30 300±150 1–5 >95 0.05 – nano-lab.com
bamboo 300±100 1–5 >95 0.05 – nano-lab.com

7.5.1 TEM

TEM images of the samples described in Table 7.2 were recorded and a
selection of these are shown in Figure 7.10. From the TEM images it seems
that the diameter specified for the sunnano sample is reasonable. The images
indicate that the sample contains impurity particles with a diameter around
100Å and a higher density than the MWCNTs, probably catalyst remnants.
TEM, however, does not offer the opportunity to determine the nature or
the concentration of these impurities as opposed to XRPD. Judging from
Figure 7.10 the diameters of the nano15 and nano30 samples look alike, both
samples contain MWCNTs with outer diameters of both 150Å and 300Å.
The name bamboo is evident from the TEM images showing the sectioned
MWCNTs, a structural characteristic that is also found for some of the other
samples, but not to the same extent. Again the diameter specification for this
sample seems reasonable, and the images suggest a non-negligible contents
of catalyst particles. For all of the samples bending of the tubes seem to be
more the rule than the exception, c.f. the discussion in Section 7.4.3 on how
the tubes appear shorter in XRPD experiments if they are bent.
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Figure 7.10 TEM images of MWCNT samples. Scale bar 500Å

7.5.2 XRPD

Collecting good experimental XRPD data of MWCNTs is not an easy task
because of the low density and the poor scattering power of the samples.
To obtain a high density sample the MWCNTs were pressed into tablets.
These consisted of 50mg MWCNTs and were approximately 0.4mm thick
yielding a density around 0.85gcm−3 compared to 2.1–2.2gcm−3 for graphite.
Potential problems for this type of sample treatment are breaking of the tubes
due to the pressure used to produce the tablets, and preferred orientation
because the tube axes tends to orient perpendicular to the applied pressure.
Preferred orientation affects the XRPD patterns much less if data collection
is performed in transmission mode.

Besides this measuring times of more than 24h are needed to collect suffi-
ciently good data if conventional X-rays are used. Therefore the experimental
diffraction patterns were collected in transmission geometry using a HUBER
G670 Guinier camera at MAX-lab beamline I711 (St̊ahl, 2000; Cerenius et al.,
2000). Preliminary tests to determine how to mount the tablets (with tape
outside the illuminated area) and the exposure time (3min) were performed at
λ=1.509Å. The actual data collections for the samples in Table 7.2 were per-
formed later at λ=1.087Å. Both the wavelength, the 2θ zero shift of −0.085◦

and the instrumental broadening parameters of the particular experimental
setup, all parameters needed during the simulation and fitting procedures,
were determined for a Si standard. The counting statistics of the MWCNT
data were improved by adding 2 diffractogram for every sample.

Considering that a fast, cheap and reliable method for bulk structure
characterisation of MWCNTs is sought, it is of course rather unfortunate
that synchrotron radiation is needed to obtain sufficiently good experimental
diffraction data to enable analysis. However, with the current development
in the field of table-top synchrotrons, namely the compact light source of
Lyncean Technologies Inc. (www.lynceantech.com), the concept of in-house
routine characterisation for every new MWCNT batch may be possible in
the near future.
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Figure 7.11 Fit between experiments and simulations according to Table 7.3

7.5.3 Fitting

The experimental diffractograms for the MWCNT samples in Table 7.2 were
corrected for the intensity abberations related to the 45◦ Guinier tangent
angle and for the 2θ zero shift of the current experimental setup. For fitting
purposes the diffraction peaks clearly not related to MWCNT diffraction in
the sunnano and bamboo samples were replaced by a smooth background
curve. This was done to avoid mimicking of these false peaks in the subse-
quent fitting procedure where the simulated diffractograms were fitted to the
experimental XRPD patterns by means of a scale factor and a Chebyshev
polynomial to describe the background.

Taking advantage of the experience gained through the property studies,
diffractograms covering a reasonable span in structural properties were simu-
lated. As noted in Section 7.4.3 it is only possible to determine either l or r,
so r=60Å was simply assigned based on the diameters observed in TEM. The
structural characteristics of the samples were then determined as the property
values used to simulate the diffractograms that, when fitted to the experi-
ments, gave the lowest RI-values (RI =

∑
i |Iexp

i − Isim
i |/ ∑

i I
exp
i ). The mean

and spread of the structural properties leading to the best fits between exper-
iments and simulations are given in Table 7.3 and the quality of the fit can be
inspected in Figure 7.11. Considering that the experimental diffractograms
for samples nano15 and nano30 are virtually identical, c.f. Figure 7.14, only
one of these is shown. The fits in Figure 7.11 are excellent except for the
low Q side of the 002 peak (perhaps even larger d-spacings than 3.60Å are
present in the samples) and the high Q side of the 100 peak (possibly arising
because the stacking of graphene layers is not completely turbostratic giving
rise to a low intensity graphite 101 peak at 3.1Å−1, c.f. Figure 7.1).

Besides the characteristics of the MWCNTs in terms of the mean and
spread of the various structural properties, a XRPD analysis also offers the
opportunity to detect and possibly identify impurities, especially crystalline
components. In the sunnano sample a search-match indicates the presence
of metallic alloys containing Ni, Al and/or Fe, elements all of which should
be expected to be found in small amounts according to the provider. No
crystalline impurities were detected in the nano15 and nano30 samples, but
catalyst containing byproducts in the form of carbides of Fe, Co and/or Ni
were found in the bamboo sample. Transmission geometry XRPD data are
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Table 7.3 Structural characteristics of the MWCNT samples from fits of exper-
imental XRPD patterns with Debye simulations

name l [Å] r [Å] n d [Å] od [Å] bga

sunnano 75 60 10–14 3.35–3.60 180–210 4
nano15 75 60 10–14 3.35–3.60 180–210 4
nano30 75 60 10–14 3.35–3.60 180–210 4
bamboo 100 60 16–20 3.35–3.60 220–250 4

a Number of Chebyshev background parameters used in the fitting procedure

not the best when trying to estimate the concentration of different compo-
nents in a sample, because this type of scattering geometry gives rise to a
significant amount of air scattering besides the sample related scattering.

7.6 Library of MWCNT diffractograms

The MWCNT structural properties that are of importance for most applica-
tions are the dimensions: The length l, the inner radius r (or alternatively
and probably more accurately the outer diameter od), the number of con-
centric tubes n, and the spacing between these d. Based on the analysis of
how these properties affect the simulated diffraction patterns and how sim-
ulated diffractograms compare with experimental XRPD pattern, a library
of simulated MWCNT diffractograms with different dimensions designed to
cover the size span typically found from experimental data was generated.
The property values were varied according to Table 7.4, giving a total of
6·53=750 simulated diffractograms. Note that the outer diameter, which can
be calculated as od=2(r+(n−1)d), ranges from 53.5Å to 192Å.

All simulations for the library were performed for scroll type MWCNTs
with a chiral angle of α=15.3◦. Numerous arguments for this choice have
already been presented during the analysis of how the rolling characteristics
affect the simulated diffractograms. No instrumental broadening was added
in the simulations, this can always be added afterwards if it is deemed nec-
essary. The diffractograms in the library give the intensity as a function
of 2θ between 10◦ and 100◦ in steps of 0.02◦. The wavelength used for the
construction of the library was λ=1.509Å, the wavelength at which the first
experimental data were obtained and the simulations to analyse the property
effects were performed. This means that both experimental and simulated
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Table 7.4 Property values used in the simulations

l [Å] r[Å] n d[Å]

25 10 6 3.35
100 20 8 3.40
200 30 10 3.45
300 40 12 3.50
500 50 14 3.55

1000

diffractograms were readily available for comparisons and testing. However,
MAX-lab beamline I711 where the data was collected is a variable wavelength
beamline, so the procedure of comparing experimental diffraction data with
the library will in principle always include a wavelength conversion as well
as a 2θ zero shift.

7.7 PCA

To analyse the differences between the 750 simulated diffractograms PCA
was applied. The PCA was carried out on the 2θ-scale (λ=1.509Å) from 22◦

to 88◦ since tests proved the simulated background outside these limits to
be a disturbing factor. There are two main reasons for using PCA. Firstly,
the dimension of the problem will be strongly reduced, and secondly, it will
be much easier to identify the effects of the nanotube properties. However,
if this kind of analysis should be of any practical use, some kind of normali-
sation must be performed on the diffractograms; otherwise the experimental
data must be brought to an absolute scale. PCA results in an orthogonal and
optimal coordinate system, where orthonormal basis functions constitute the
axes. The coordinate system is optimal in the sense that the best approxi-
mation of the 750 diffractograms in an m-dimensional subspace is found by
linear combinations of the basis functions belonging to the m highest eigen-
values. If D is a matrix with elements Dji proportional to the intensity at 2θj

for sample i, then DtD is a symmetric matrix with non-negative eigenvalues.
PCA then consists of solving the eigenvalue problem DtDU = UΛ, where
each column of U contains an eigenvector and Λ is the diagonal eigenvalue
matrix with the eigenvalues sorted in a decreasing sequence. The orthonor-

mal basis function matrix, B, is then B = DUΛ−1
2 . Obviously, the number
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Figure 7.12 The basis functions from the PCA with the largest linear correlation
coefficients to the four properties. b7 is the basis function with the 7th highest
eigenvalue and so on.

of basis functions is limited to the number of eigenvalues with significant
non-zero values.

In the present case it was chosen to normalise the diffractograms such
that the diagonal elements of DtD are equal to one. Furthermore, in order
to enhance the discriminative power of the PCA, a slightly different approach
was used. Before performing the PCA, the matrix D is replaced by D−M,
where M is a matrix of the same rank and dimensions as D with identical
columns each containing the average of the normalised diffractograms. With
this setup the diagonal elements, ((D−M)t(D−M))ii, contain the sum of
squared deviation between the average and the ith diffractogram, and since
the trace is invariant to any orthonormal transformation it is equal to the
sum of eigenvalues. This means that it is possible to select an optimal num-
ber of basis functions, including the average, to account for any percentage
of the total sum of squared deviations. Subsequently, the average diffrac-
togram is orthogonalised and normalised and added to the number of basis
functions. However, the normalisation destroys information, especially on
the tube length. This implies that in order to be able to describe the effect
of different tube lengths, basis functions of very little importance must be
included. Tentatively, the 80 most important basis functions, including the
average were chosen. These 80 basis functions account for 99.9994% of the to-
tal sum of squared deviations, and an approximation of the diffractograms by
a linear combination of these basis functions leads to a maximum RI2-value(
RI2 =

√∑
i(I

obs
i − Icalc

i )2/
∑

i(I
obs
i )2

)
of 0.0014. The expansion coefficient

or coordinate matrix, C, is equal to DtB. These coefficients should be re-
lated to the four nanotube properties, the values of which have been scaled
to the interval between 0 and 1 to avoid that the properties are weighted
differently.

To get an idea about the importance of the basis functions, the linear
correlation coefficient between the coordinates and the tube properties were
calculated for each basis function and each tube property. The four most
important basis functions are shown in Figure 7.12. Whereas 7.12B is difficult
to interpret, the basis functions in the 100 (Q: 2.8–3.2Å−1) and 110 (Q: 5.1–
5.4Å−1) regions of 7.12A and in the 002 (Q: 1.8–2.2Å−1) region of 7.12C have
almost symmetrical shapes that are typical for changes in peak width. In
7.12D the shape in the 002 region is typical for a shift in peak position. This
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agrees nicely with the observations made in the study of how the MWCNT
properties affect the diffractograms; the width of the 100 and 110 in-plane
peaks can be varied by altering the tube length, the width of the 00l peaks
are controlled by varying the number of tubes walls, and a variation of the
spacing between adjacent walls result in a shift of the 00l peak positions.

7.7.1 MWCNT properties from PCA

Since the basis functions given in Figure 7.12 are not the only ones with
non-negligible correlation to the properties, it is obvious that some linear
combination of the basis functions will lead to a better linear correlation,
i.e. for each property it is possible to find the direction in the 80D space
that maximises the linear correlation between the tube property and the
coordinate in this direction. Any unit vector, v, in the 80D space can be
parameterised by 79 angles, αj, j=1...79 (α80 = 0):

v1 = cos(α1) vj = cos(αj)

j−1∏
i=1

sin(αi), j=2...80 (7.2)

A subspace omitting the mth basis function is obtained by putting αm=π
2
.

With 80 dimensions, the number of angular parameters amounts to 316,
and with a total number of tube properties of 4·750=3000, this leads to
an observation-to-parameter-ratio of less than 10. With excess parameters
there is a risk that deficiencies in the model may be compensated for by
these parameters, e.g. the large gap in length between 500 and 1000Å may
be modelled correctly at 500 and 1000Å, but show an oscillatory behaviour
in between, which may result in a very dubious prediction of the tube prop-
erties in this region. In an attempt to avoid these problems, the observation-
to-parameter-ratio was fixed to at least 10. Consequently, the number of
dimensions has to be reduced. Tentatively, 65 basis functions were selected
for each direction. This gives a total of 256 angular parameters, leaving
at most 44 parameters to describe the functional relationships between the
properties and the coordinates. With a linear model only 8 of these are
used. However, the necessity of using 80 basis functions in order to de-
scribe all diffractograms with a sufficient accuracy suggests that the problem
is highly non-linear. Therefore, the 65 basis functions were selected in fol-
lowing way: For each basis function, the linear correlation coefficients were
calculated between the property in question and the 1st, 2nd and 3rd power of
the coordinate, and the 65 basis functions with the highest sum of squared
correlation coefficients were selected. The search for directions with maxi-
mum linear correlation was performed by numerical methods, and the linear
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correlation coefficients obtained were: −0.9110, 0.9946, 0.9987, and 0.9998,
for l, r, n, and d, respectively. Although some correlations seem very good,
the estimated properties lie too far away from the true values used in the
simulations.

It was chosen to use the four linearly optimised vk, k=1...4 vectors and
the projections dki of the ith diffractogram onto these as the starting point
for the new model and then expand the linear description to include mixed
higher order terms in dki. By trial and error a suitable model for property k
of diffractogram i, pki, was obtained as a 4th order polynomial of the type:

pki = ak0 + ak1d1i + ak2d
2
1i + ak3d

3
1i + ak4d

4
1i + ak5d

3
1id2i + . . .

=
∑
nk

aknk

4∏

h=1

d
mhnk
hi (7.3)

where nk runs over the non-zero terms in the polynomial expansion for prop-
erty k, mhnk

∈ {0, 1, 2, 3, 4} and Σ4
h=1mhnk

≤ 4. The only exception was
found for the length, here it was necessary to include a term proportional to
d5

li, where dli denotes the projection of the ith diffractogram onto the length
vector.

The procedure to improve the model is then as follows: 1) For the present
values of dki, determine the a1n1 coefficients of (7.3) using least squares re-
finement, 2) Optimise the set of angles α1j, j=1...79 used to define v1 in (7.2)
to get the best estimate of p1i. For every change in α1j, d1i will change, so
a new set of a1n1 must be determined, thus the optimisation procedure is
rather time consuming, 3) In the same way optimise the α-angles for the
other values of k, and 4) If the estimates of pki are not satisfactory, add more
terms to the polynomials and repeat 1)–3).

Table 7.5 Fit quality for the final polynomial model

l [Å] r [Å] n d [Å]

max. deviation −110.8 2.63 0.21 −0.0028
RMS deviation 30.2 0.66 0.06 0.0007
step size 75–500 10.00 2.00 0.0500

In Table 7.5 the maximum and root-mean-square (RMS) deviations taken
over all diffractograms for each property are given. It can be seen that, ex-
cept for the length, the maximum deviations are at the most 25% of the
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step size between the values used to build the PCA library of diffractograms.
Table 7.6 shows which terms are included in the polynomial expansions for
each of the four properties, thus it gives an idea of which properties corre-
late the strongest. Looking at the large number of terms necessary to model
the length it is not surprising that the maximum deviation of this prop-
erty is much poorer. Contrary to what would be expected by comparing
Figure 7.12C and D, hardly any correlation is found between the effects aris-
ing from the number of turns and the d-spacing. In fact these two properties
are much easier to model than the length and inner radius, which correlate
strongly, both internally and to the other properties. Figure 7.13 shows the
final vectors vk for each property. Even though these refined diffractograms
are very complex in nature and offer no interpretation as was the case for
the basis functions in Figure 7.12, some similarities between the two figures
can still be found.

Table 7.6 Non-zero terms in the 4th order polynomials of (7.3)

l r n d
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Figure 7.13 The optimised functions for the final model.
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7.7.2 Applying PCA to estimate MWCNT properties
from experimental XRPD data of bulk samples

The first 80 basis functions from the model calculations contain enough infor-
mation to fit the 750 error-free simulated diffractograms with an acceptable
accuracy. The large reduction in dimensionality indicates that the basis
functions map the general features for error-free MWCNT diffractograms.
However, the prediction of MWCNT structural properties from experimen-
tal diffractograms is carried out by fitting on the 2θ-scale (λ=1.509Å). Thus
a number of problems can potentially complicate the analysis: Thermal dis-
placement parameters differing from the B-factor of 2Å2 used in the sim-
ulations, an experimental 2θ zero offset, diffractograms recorded at other
wavelengths than the 1.509Å of the simulations, incorrect background cor-
rection, sample impurities, and/or structural parameters falling outside the
intervals chosen for the PCA. In order to overcome some of these problems
a separate algorithm was applied to modify the B-factor, 2θ zero shift and
wavelength of the experimental diffractogram to obtain the best possible fit
within the PCA basis. The method was tested on the four diffractograms
given in Figure 7.14 and the predicted properties are given in Table 7.7.

Table 7.7 Predicted values for the diffractograms in Figure 7.14

l r n d od B-factor 2θ offset RI2-value
[Å] [Å] [Å] [Å] [Å2] [◦]

A 56 40.7 5.85 3.399 61 −0.003 0.40 0.0014
Aa 100 40.0 6.00 3.400 60 0.000 0.40
B 18 7.6 7.55 3.414 67 0.68 0.49 0.0384
C −7 7.7 8.41 3.403 72 2.07 0.25 0.0384
D 18 7.5 8.48 3.410 73 1.97 0.14 0.0406

a True values for the simulated diffractogram A.

Figure 7.14 Predicting structural properties using PCA. The experimental
diffractograms corrected for B-factor, 2θ offset and wavelength differences are
shown along with the difference curves.
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Diffractogram A is simulated for λ=1.509Å with a set of structural prop-
erties within the simulation limits. A B-factor of 0.000Å2 was used in the
simulation and the simulated diffractogram was offset by 0.40◦ before the
prediction procedure. Since this diffractogram does not contain an exper-
imental background or other instrumental abberations it is expected that
a low RI2-value and a good property prediction should be obtained, which
is indeed the case. This test case shows that the zero point and B-factor
altering algorithm works satisfactorily.

Diffractogram B is recorded at λ=1.509Å and was subjected to an empir-
ical background subtraction before the analysis. The quality of the fit and
the reasonable predicted properties confirm that the PCA method can in
fact be used to characterise MWCNT structural properties from experimen-
tal diffractograms and that an empirical background correction is sufficient.

Diffractograms C and D are recorded at λ=1.087Å on samples nano15
and nano30, respectively, and again empirical background corrections are
performed. Despite the wavelength difference the fits to these diffractograms
are of the same quality as for B, so the fact that it is almost impossible
to obtain synchrotron diffraction data with no 2θ offset at the exact same
wavelength as the one used to set up the PCA library seems to be a minor
problem. Neither a TEM investigation of the samples (Figure 7.10) nor a
XRPD and Debye fitting analysis (Table 7.3) suggest that the samples have
different properties, despite the fact that the outer diameters specified by
the provider were 150±50Å (nano15) and 300±150Å (nano30), respectively.
The properties predicted from the PCA analysis are identical within one RMS
deviation (except for d for which the difference is undoubtedly correlated to
the erroneous difference in 2θ offset), so it is fair to say that the nano15 and
nano30 samples are indistinguishable to the PCA method, as to the other
MWCNT characterisation methods described.

Finally the bamboo diffractogram (Figure 7.11C) was also tested as an
example of a sample containing impurities. This was more than the present
implementation of the PCA was able to handle; all of the properties were
predicted to unphysical values much larger than the upper limits used to
set up the PCA library, and the 2θ offset refined to 1.18◦. The reason for
this is undoubtedly that the fitting algorithm tries to describe the diffraction
arising from the crystalline impurities as MWCNT diffraction. Potential
ways to overcome this problem could be to restrict the 2θ offset to 0◦ and to
add a number of diffraction patterns for the most common impurities to the
PCA library.
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7.7.3 Concluding remarks on PCA

The above test cases have demonstrated that it is difficult to get a physi-
cally meaningful estimate of the average tube length from an experimental
MWCNT diffractogram using the PCA method. The values determined fall
below the lower limit used to set up the PCA library and are of the same size
as the maximum and RMS deviations given in Table 7.5, which are rather
poor despite the fact that they are obtained purely from error-free simulated
diffractograms. The predicted inner diameters are also below the lower limit
of the PCA library, so even though they are not physically unreasonable, they
must be considered unreliable. A possible way to solve this problem would be
to extend the PCA library to include smaller values of r. However, it is likely
that more would be gained by improving the functional relationship between
MWCNT properties and PCA basis functions, because the large number of
terms needed to model l and r (Table 7.6) indicate that the polynomial model
may be inadequate for modelling the correlation between these properties.
Another manner in which to improve the model would be to select different,
not necessarily connected, regions of the diffractograms for different proper-
ties to potentially reduce the loss of information on normalisation.

As mentioned earlier the broadening of the 00l peaks can be caused both
by size (n) and strain (distribution of d). In a bulk sample the MWCNT
structural properties are distributed around a mean, but the present PCA
method can only estimate the mean and not the width of the distribution.
Thus the potential strain broadening of the 00l peaks can only be modelled as
a size broadening, leading to an underestimation of both the number of turns
and the thermal displacement parameter. In Section 7.4.4 it was argued that
strain broadening cannot be neglected, so the predicted values of n for all
experiments are probably too low. To solve this problem it will be necessary
to extend the library to include diffractograms simulated for larger values of
n and to introduce distributions of properties. Since the PCA basis functions
model all simulated diffractograms, a distribution of tube properties may be
achieved by optimising distributions in the four property dimensions.

The performance of the PCA with regards to the distribution of chiral
angles in the sample should also be tested. This implies that the PCA library
must be substantially extended. In Table 7.8 a set of 5 values for each of l,
r, n, d, and α are suggested, leaving a total of 55=3125 diffractograms to be
simulated. However, with a maximum value of l=150Å which was shown to
be sufficient, the time needed to set up the new library is probably compara-
ble to the time spent to construct the present library of 750 diffractograms
extending to l=1000Å. The intervals of n and d have been altered to include
larger values to enable modelling of strain broadening. Judging from expe-
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rience it could also be necessary to include diffraction patterns of the most
common crystalline impurities in the PCA library.

Table 7.8 Suggested property values for a new PCA library containing 55=3125
diffractograms

l [Å] r[Å] n d[Å] α [◦]

50 10 5 3.35 0.0
75 20 10 3.45 7.5

100 30 15 3.55 15.0
125 40 20 3.65 22.5
150 50 25 3.75 30.0

Applying this new library with property values carefully tailored based on
experience and extending the analysis to include distributions of the proper-
ties it is likely that an even better understanding of the characteristics of bulk
MWCNT samples can be reached. Furthermore, the increased number of li-
brary diffractograms makes it possible to improve the functional relationship
between MWCNT properties and PCA basis functions without jeopardising
the observation-to-parameter-ratio.

7.8 Final conclusions

To characterise the bulk structure of MWCNTs a global probe and a way
to interpret the obtained data is needed. XRPD may serve as the probe
due to the periodic but non-crystalline nature of the tubes. Furthermore
XRPD makes it possible to detect and identify crystalline impurities. The
local atomic structure and thus information about the nearest neighbour C–C
distances, as well as the spacing and correlations between the graphene sheets
can be determined from a PDF analysis of the XRPD data. Complementary
to this the Debye formula is an excellent tool to simulate XRPD patterns
of MWCNTs, and comparisons of simulated diffractograms have proven that
the MWCNT structural properties affect the resulting XRPD patterns in a
way that makes it possible to determine the structural properties of a bulk
sample from an experimental diffractogram.
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For the present Debye simulations the following properties were consid-
ered: The rolling type (concentric cylinders or scrolls), the chiral angle, the
length, the inner radius, the number of walls and the spacing between these.
Visual inspection and comparison of the diffractograms, both simulated and
experimental, confirmed that all of the structural properties of the MWCNT
bulk samples should be determined as distributions rather than as single val-
ues, and that some of the properties correlate strongly, especially the length
and the diameter. The simulations proved that XRPD is not able to dis-
tinguish a sample consisting of concentric cylinders with a distribution of
diameters from a scroll type sample. Modelling the MWCNTs as scrolls is
fast and makes it possible to simultaneously control both the d-spacing and
the chiral angle. A chiral angle of α=15.3◦, a reasonable average value, was
found to fit the experimental data well. It was shown that the Q-range from
1Å−1 to 6Å−1 accessible with a standard wavelength around λ=1.5Å is suffi-
cient to extract the desired structural information. In the case of determining
the chiral angle for large diameter MWCNTs the limited Q-range was even
found to be superior. Finally it was shown that if the tubes are bent, as
can often be seen in TEM images, the length will appear much shorter in an
XRPD experiment.

To facilitate the determination of MWCNT bulk properties from exper-
imental XRPD data, a library of diffractograms simulated for scroll type
MWCNTs with α=15.3◦ and various values of l, r, n and d was constructed.
The library was subjected to a PCA to limit the number of variables and
identify the effects of the properties. Initial tests using a combination of
PCA and basis function transformations showed that it is possible to di-
rectly obtain bulk structural properties from XRPD data of MWCNTs. The
average values of inner radius, number of turns and d-spacing are well esti-
mated with limited correlations, while the tube length cannot be estimated
due to large correlations and the present type of samples largely affected by
tube bending and defects. Experimental abberations like different thermal
displacement parameters, 2θ offset, wavelength differences and experimen-
tal background can be effectively handled within the PCA approach. There
is room for several improvements, especially the method performance with
regards to varying the chiral angle and introducing distributions of the de-
termined properties should be tested. This requires a substantial extension
of the library of simulated diffractograms.
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Chapter 8

Conclusions

The finer nanostructural details of a material are reflected in the XRPD
pattern, but traditional interpretation methods such as Rietveld refinement
are unable to extract the information. The general Debye program based on
the Debye equation (Debye, 1915) was written to facilitate the characterisation
of a special class of nanostructured materials, namely the nanocrystalline
compounds. The program is able to read crystallographic information from
a CIF, simulate the XRPD pattern given information about experimental
setup, particle shape, size and size distribution, and finally fit the simulated
diffractogram to experimental XRPD data. Traditionally the bottleneck of
Debye simulations has been the computational cost, but with the present
implementation which exploits the crystallographic symmetry to perform the
summation over all interatomic distances, the diffractogram for a crystal
containing 6 million atoms can be calculated within a minute on a standard
PC. The Debye program should be seen as a developing framework for XRPD
characterisation of nanostructured materials, a framework that can be added
new features or modified more thoroughly in order to solve specific needs that
appear during the study of real materials.

Three very different nanostructured materials have been studied in the
present thesis using XRPD and the Debye approach in combination with
complementary techniques such as Rietveld refinements, EXAFS and TEM.
Except for the case of cellulose, this has been done using material-specific
modifications of of the Debye program.

The study of cellulose, an organic polymer with a nanofibrous structure,
was initiated because industrial applications of plant fibres require efficient
and reliable crystallinity determinations. This can be done from XRPD, but
the diffraction data must be collected in reflection geometry (to minimise
unwanted air scattering contributions to the amorphous background) using
a custom-made sample holder (to minimise preferred orientation of the cel-
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lulose fibres). It was shown that Rietveld refinements taking full account
of the broadened and overlapping diffraction peaks should be the preferred
method for standard crystallinity determinations in the future because it can
be performed using any readily available Rietveld refinement program with
speed, ease and consistency. Additional information about particle shape,
size and size distribution can be obtained if time and effort is invested to
do Debye simulations, but because of remaining preferred orientation effects
XRPD data collected in transmission geometry should be used if an accurate
particle size determination is desired.

Debye simulations offer the opportunity to test how the XRPD patterns
of stress-free and homogeneous nitrogen expanded austenite, a highly
defective material with a large interstitial nitrogen occupancy, are affected
by the presence of stacking faults and screw dislocations in combination. Be-
cause of the computational cost the Debye method is limited by the particle
size, in the present case to a mean diameter of around 360Å. Comparisons
with experimental XRPD patterns gave no evidence of twin or growth stack-
ing faults, while both deformation stacking faults and screw dislocations were
found to be abundant, the density of the latter increasing with the interstitial
nitrogen occupancy. A XRPD characterisation of nitrogen expanded austen-
ite produced using a novel method demonstrated that both the as-nitrided
(yN=0.51) and denitrided (yN=0.18) samples consist of several phases, among
these CrN even though the synthesis was performed below 450◦C where the
mobility of the Cr atoms is very limited. EXAFS data showed that the
Fe atoms in the denitrided sample are found in nitrogen-free surroundings,
whereas the octahedral interstices around the Fe atoms in the as-nitrided
sample are partly occupied. As opposed to this the majority of the Cr atoms
are found in nitrogen saturated surroundings corresponding to the chemical
compound CrN in both samples, although only a fraction of the Cr atoms
could be detected as CrN with XRPD. A possible explanation for this obser-
vation could be a phenomenon generally related to low-alloyed ferritic steel
i.e. formation of mixed substitutional-interstitial clusters. The nitrogen ex-
panded austenite samples produced in the traditional way only display one
phase in the XRPD patterns. Performing Cr, Fe and Ni K-edge EXAFS on a
number of these samples with various nitrogen contents would therefore offer
valuable information about the distribution of nitrogen atoms in nitrogen
expanded austenite without observable precipitation of coherent CrN.

To characterise the bulk structure of multiwall carbon nanotubes, a
non-crystalline material with a periodic structure, the combination of XRPD
and Debye simulations was found to be the ideal approach. It was shown
that the Q-range from 1Å−1 to 6Å−1 accessible with a standard wavelength
around λ=1.5Å is sufficient to extract the desired structural information.
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For the present Debye simulations the following properties were considered:
The rolling type (concentric cylinders or scrolls), the chiral angle, the length,
the inner radius, the number of walls and the spacing between these. It was
confirmed that all of the bulk structural properties should be determined as
distributions rather than as single values, and the simulations proved XRPD
unable to distinguish a sample consisting of concentric cylinders with a dis-
tribution of diameters from a scroll type sample. Finally it was shown that
if the tubes are bent, as can often be seen in TEM images, the length will
appear much shorter in an XRPD experiment. To facilitate the bulk char-
acterisation of the MWCNTs from experimental XRPD data, a library of
diffractograms simulated for various values of the above mentioned proper-
ties was constructed. The library was subjected to a principal component
analysis to limit the number of variables and identify the effects of the corre-
lating properties. Initial tests using a combination of PCA and basis function
transformations showed that it is possible to directly obtain mean bulk struc-
tural properties from XRPD data of MWCNTs, but the method should be
improved by adding the distributions of the determined properties.

The above described case studies performed using the Debye approach
serve to illustrate that the method can be used to characterise nanostructured
materials of technological importance. The general Debye program was writ-
ten as an alternative to Rietveld refinements for nanocrystalline materials,
and as such it has proven its purpose.
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Appendix A

The Debye equation and the
Lorentz correction

The Lorentz correction term Lθhkl
is an angle-dependent term used to correct

the squared scattering amplitudes |Fhkl|2 in order to obtain the measured
intensity Ihkl, c.f. (3.1). In an ideal world the reciprocal lattice consists of
points which cross the infinitely thin surface of the Ewald sphere to give
diffraction into a point detector. In reality the reciprocal lattice points have
a small non-negligible volume due to the finite size of the crystals, the Ewald
sphere has a thickness because the wavelength is not truly monochromatic,
and the detector covers an area defined by the slit system. All of these
deviations from ideality are the basis of the Lorentz correction. For XRPD
data measured on a diffractometer with a fixed sample-to-detector-distance
the Lorentz correction is given as:

Lθ =
1

sin 2θ sin θ
(A.1)

The Lorentz correction can be split up into two contributions; one arising be-
cause of the variation in time it takes the different reciprocal lattice “points”
to cross the Ewald sphere, this is the so-called single crystal term, and one
arising because the fraction of the scattering from a random powder that
reaches the detector depends on the scattering angle, referred to as the pow-
der diffraction term. The expressions for these contributions are derived in
the following, assuming that the sample-to-detector-distance is kept constant.
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A.1 Single crystal Lorentz correction

The Lorentz correction in the case of a single crystal diffraction experiment
can be explained by means of the Ewald construction in Figure A.1. The
crystal is placed at point A and rotated counterclockwise around an axis
through A perpendicular to the plane of the paper with a constant angular
velocity ω. This means that the reciprocal lattice is rotated with the same
angular velocity around the origo O and that the reciprocal lattice point
P with the scattering vector r∗ and squared scattering amplitude |F (r∗)|2
crosses the Ewald sphere. The intensity reaching the detector is proportional
to the time it takes P to cross the Ewald sphere. Thus the Lorentz correction
can be calculated as the constant velocity by which the Ewald sphere is
rotated (ω 1

λ
, where 1

λ
is the radius of the Ewald sphere) divided by the

angular dependent velocity component of point P along the radius of the
Ewald sphere (ω |r∗| cos θ, where |r∗|=2 sin θ

λ
):

Lθ =
ω 1

λ

ω|r∗| cos θ
=

1

2 sin θ cos θ
=

1

sin 2θ
(A.2)

Figure A.1 The Lorentz correction in the single crystal case (Giacovazzo, 1992)
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A.2 Lorentz correction for powder data

The scattering incident described above refers to a reciprocal lattice con-
sisting of single points distributed in space dependent on the orientation of
a single scattering crystal. For powder diffraction the scattering originates
from a random powder consisting of an – in principle – infinite number of
crystals with a random orientation. Therefore the reciprocal lattice points
are smeared over the entire reciprocal lattice sphere of radius |r∗|. The nature
of the Lorentz correction factor in this case can be explained by Figure A.2.
Circle R′R′ is the intersection of the Ewald and reciprocal lattice spheres
where the diffracted intensity is detected. Circle NN is where the normals
to the diffraction planes giving rise to diffraction on the circle R′R′ fall, thus
circle NN is a measure of the fraction of crystallites in the correct diffraction
position. Using a point detector the measured intensity must be proportional
to the circumference of circle NN (the larger the circle the more crystallites
contribute to the scattering incident) and inversely proportional to the cir-
cumference of circle R′R′ (the detector and slit system has a fixed opening
no matter the size of the scattering circle), thus:

Lθ =
2πR sin(90− θ)

2πR sin 2θ
=

cos θ

sin 2θ
=

1

2 sin θ
(A.3)

Figure A.2 Lorentz correction for powder diffraction data (Lonsdale, 1948)
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A.3 Lorentz correction for Debye simulations

To determine Lθ for Debye simulated data it is important to realise that the
geometry of the scattering is the same as in section A.2, thus the squared
scattering amplitude |F (r∗)|2 which can be calculated by means of the Debye
summation is smeared evenly over the entire surface of the reciprocal lattice
sphere of radius |r∗|.

For a diffractometer with with a fixed sample-to-detector-distance con-
sider a detector and slit system with a fixed angular opening of α by β radians;
α on the 2θ scale corresponding to rotating the sample by α

2
in Figure A.1,

and β in the direction corresponding to a rotation around the incoming beam
as in Figure A.2. Expressions for the fraction of crystallites in the correct
diffraction position and for the fraction of the intensity actually hitting the
detector must be determined for every scattering angle as in the derivation
of (A.3). In each case it will be assumed that the fractions of the Ewald and
reciprocal lattice spheres covered by the detector are so small that they can
be taken to be rectangular without any loss of accuracy.

The fraction of crystallites in diffraction position is given by:

xX
θ =

2π 1
λ

α
2
· 2π 1

λ
cos θβ

4π( 1
λ
)2

= 1
2
παβ cos θ (A.4)

where denominator 4π( 1
λ
)2 is the surface area of the Ewald sphere, and the

numerator is the area of the rectangle covered by the normals to the scattering
planes for which the scattered intensity hits the detector. It is assumed that
α∼0 so that cos θ∼cos(θ+α

2
).

The fraction of the intensity measured is:

xI
θ =

2π 2 sin θ
λ

α
2
· 2π sin 2θ

λ
β

4π(2 sin θ
λ

)2
= 1

4
παβ cos θ (A.5)

where denominator 4π(2 sin θ
λ

)2 is the surface area of the reciprocal lattice
sphere, and the numerator arises because a certain rotation of the Ewald
sphere around an axis through the sample position corresponds to the same
rotation of the reciprocal lattice sphere around a parallel axis through the
origo of the reciprocal lattice. Again it is assumed that α∼0 so that sin 2θ∼
sin(2θ+α).

Seing that the fraction of the crystallites in diffraction position is propor-
tional to the fraction of the intensity measured, the Lorentz factor for Debye
simulated data simply becomes unity.
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Appendix B

DebyeHelp.txt

2007-11-26
DEBYE

Simulation program for powder diffraction
Jette Oddershede and Kenny Stahl
Department of Chemistry
Technical University of Denmark
DK-2800 Lyngby, Denmark
kenny@kemi.dtu.dk

General:
The Debye simulation program calculates the XRPD pattern from a crystalline
sample by summing over all interatomic distances as stated by the Debye
equation (Debye, 1915, Ann. Phys. 46: 809). The crystallographic information
can be imported from a cif and modified if necessary. Additional information
about particle shape, size and size distribution can be supplied. The min,
max and step in 2theta as well as the wavelength can be altered to agree with
experimental XRPD data. Finally the simulated data can be convoluted with a
polarisation function, a pseudo-Voigt type instrument profile (Wertheim et al.,
1974, Rev. Sci. Instrum. 45(11): 1369) and functions related to the Guinier
diffraction geometry and absorption in cylindrical samples.

Limitations:
The program is presently limited to five different atom types.

Thermal parameters:
The program only works with isotropic thermal parameters, and these are
averaged to one per atom type. If the crystallographic information read from a
cif does not contain a Biso, it will be calculated from the anisotropic thermal
parameters in case these are given, otherwise the program defaults to Biso=0.
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GUI:
The Windows GUI for the Debye program offers the opportunity to open an experi-
mental XRPD pattern, simulate or open an earlier simulated diffractogram for
comparison, and do a fit. The progress of the simulation and fitting can be
followed in the lower text window while the diffraction patterns are shown in
the upper graphical window. It is possible to zoom in the graphical window by
holding down the left mouse button and dragging a window of the desired size.

Fitting:
During the fitting procedure the simulated diffractogram is scaled using either
an ordinary scale factor, an overall temperature factor, or both. The background
is modelled as a Chebyshev polynomial with a user-specified number of parameters
(between 0 and 14). A 2theta zero shift can be manually added during the fitting
procedure. The fitted parameters and their standard deviations are written on
the rec file (see files below) and can be viewed via patterns, table output.
Based on the fitted background it is possible to calculate the crystallinity,
the fraction of intensity resulting from the simulated crystalline part of the
sample, between any two values of 2theta. N.B. The crystallinity calculation is
only valid if the background represents amorphous scattering from the sample only.

How to install:
Copy debye.exe, winpow.ini and DebyeHelp.txt (this file) into a common directory
and make the appropriate correction to the winpow.ini file to define the default
directory and the path leading to notepad.exe or some other text editor.

Files:
To do the simulations a name.rec input file in ascii format is needed. The
input file can be constructed from scratch using the commands listed below.
It is, however, much easier to import the crystallographic information from
a cif and define the desired structural parameters via the GUI menus. If an
experimental diffraction pattern is imported for fitting it is possible to
obtain the following output files:

%name.out List file summarising the simulation
%name.tab Tabulated summary of simulation and fitting
%name.xy Simulated diffractogram
%name.sum 2theta, experimental pattern, simulated and

fitted pattern, difference, background.

Multiple simulations:
For more time-consuming calculations the Debye program offers the opportunity
to run a series of simulations without having to start each simulation manually
in the GUI. For this purpose all the rec files must first be constructed along
with a file called anything.mlt containing the names of all the rec files to
run, one name per line, eg:
name1.rec
name2.rec
name3.rec
Under file, open project choose the mlt file and select project, calculation.
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Shortcut keys:
up arrow Zoom out in graphical window
down " Zoom in "
left " Move zoom window left
right " Move zoom window right
F1 Return graphical window to full view
F2 Return graphical and text windows to original size
F3 Project, calculate
F4 Patterns, fit pattern
F5 File, save project as
F6 Project, edit files
F7 Project, edit structure
F8 Project, edit instructions
ctrl-I Soft interupt of calculation
ctrl-T Patterns, table output

List of records in the name.rec input file for the Debye simulations:

Required records:

SPGR Space group symbol in the old Hermann-Mauguin notation with
inversion centre at origo, e.g. P 21 21 21, P -3, P 63/M, F d d d.
For rhombohedral space groups use the hexagonal setting.

CELL Cell dimensions
11-20 cell(1) a [A]
21-30 cell(2) b [A]
31-40 cell(3) c [A]
41-50 cell(4) alpha [deg]
51-60 cell(5) beta [deg]
61-70 cell(6) gamma [deg]

XYZ Atomic coordinates
11-14 atomname Atom identifier
18-20 atype Atomic number
21-30 x Fractional coordinates
31-40 y
41-50 z
51-60 sof Site occupancy factor
61-70 Biso Isotropic temperature factor coefficient B=U8PI**2

Optional records:

TITL 11-78 Title of the job

PWDT 11-70 Name of experimental diffraction pattern file
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FRMT Input data format (optional)
11-15 1 gdf (Huber)

2 - txt (Bruker)
3 - udf (Philips)
4 - xrdml (PANalytical)
5 - xy (general)
6 - std (general)

ELAM Wavelengths (default: 1.54059, 0, 0 - CuKalpha1)
11-20 lambda(1) [A]
21-30 lambda(2) [A]
31-40 lambda(3) lambda2/lambda1 intensity ratio

ANOM Anomalous dispersion corrections (defaults to MoKalpha, CuKalpha
or CoKalpha depending on which wavelength is closest)
11-14 atomname Atom identifier
21-30 fp f’
31-40 fpp f’’

DDIS Distance calculation accuracy (default: 100)
11-20 disacc Reciprocal of the distance calculation accuracy [A-1]

DSHA Particle shape (default: 1, 3)
11-15 crysttype 1 box

2 cylinder
3 - ellipsoid

16-20 cylaxis 1 a*
2 b
3 a*xb

DABC Particle size
If crysttype = 1: number of cells along the a-, b- and c-axis
(default: 10, 10, 10)
If crysttype = 2: cylinder dimensions [A]
(default: 100., 50.)
If crysttype = 3: ellipsoid dimension [A]
(default: 50., 50., 50.)
11-20 ncella/cyllen/ellips1
21-30 ncellb/cylrad/ellips2
31-40 ncellc/ellips3

DPSD Particle size distribution (PSD) (default: 0, 3, 1)
11-15 ptype 0 do not apply PSD

1 apply PSD
16-20 psample number of sizes sampled on

either side of the mean (max 9)
NB! Only sizes 1.0+-0.1 psample,
eg. 0.8, 0.9, 1.0, 1.1 and 1.2
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times the input size (psample=2)
21-25 distype 1 Weibull mass distribution

2 Gaussian "
3 Uniform "
4 User defined "

DUS1 User defined mass distribution coefficients
required for distype=4 (default: 0.,...,0.)
11-20 puser(-9) mass fraction of particles
21-30 puser(-8) with a size defined as
31-40 puser(-7) 0.1, 0.2, 0.3, 0.4 etc times the input size
41-50 puser(-6)
51-60 puser(-5)
61-70 puser(-4)
71-80 puser(-3)

DUS2 User defined mass distribution coefficients
11-20 puser(-2)
21-30 puser(-1)
31-40 puser(0)
41-50 puser(1)
51-60 puser(2)
61-70 puser(3)
71-80 puser(4)

DUS3 User defined mass distribution coefficients
11-20 puser(5)
21-30 puser(6)
31-40 puser(7)
41-50 puser(8)
51-60 puser(9)

DTTH 2theta interval information and scale factor
(default: 5., 50., 0.02, 0)
11-20 ttmin 2thetamin [deg]
21-30 ttmax 2thetamax [deg]
31-40 ttdif 2thetastep [deg]
41-50 ttsca =0 intensity per unit cell is output

>0 intensity output for ttsca unit cells
<0 simulated pattern will be scaled to Imax=-ttsca

DCOR Intensity corrections (default: 1, 0, 0, 0, 0, 1.)
11-15 corrpol 0 no polarisation correction

1 polarisation correction
16-20 corrpeak 0 no instrument profile

1 pseudo-Voigt instrument peak profile correction
21-25 corrabs 0 no absorption correction

1 correct for absorption in cylindrical sample
26-30 corrguin 0 no guinier correction
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1 correct for 45 deg Guinier tangent angle
31-35 corrauto 0 - no auto divergence slit

1 - auto divergence slit correction
36-45 corrmur value of muR for absorption correction

DPRO pseudo-Voigt peak profile parameters (gL+(1-g)G)
(default: 0., 0., 0.01, 0.5, 0., 0.)
11-20 uu FWHM
21-30 vv (Caglioti et al., 1958, Nucl. Instrum.
31-40 ww Methods 3(4): 223)
41-50 g1 pseudo-Voigt mixing parameter
51-60 g2 g = g1+g2(2theta)+g3(2theta)2
61-70 g3 (Hill and Howard, 1985, J. Appl. Cryst. 18(3): 173)

Records added by the fitting routine:

SCAL Scale factors (default: 1., 0.)
11-22 scal scale factor from fitting
23-32 ovrl overall temperature factor

ZETT 2theta zero shift (default: 0.) NB! Not refined
11-20 zett 2theta zero shift

BKGR Chebyshev background parameters (default: 0.,...,0.)
NB! Three records, 0-14 Chebyshev parameters
11-20 bkg1/bkg6/bkg11
21-30 bkg2/bkg7/bkg12
31-40 bkg3/bkg8/bkg13
41-50 bkg4/bkg9/bkg14
51-60 bkg5/bkg10

DCRY Crystallinity (default: 5., 50., 0.)
11-20 crystttmin [deg]
21-30 crystttmax [deg]
31-40 xtallinity Crystallinity calculated

between crystttmin and crystttmax

DVAL Fitting results
11-20 fitpatrval Pattern R-value from fit
21-30 fitpatwrval Weighted pattern R-value
31-40 fitpatgof GooF from fit
41-47 fitpatnpar Number of fitted parameters
48-54 nstep Number of 2theta steps
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Abstract

A comparative study of cellulose crystallinity based on the sample crystallinity and the cellulose content in
plant fibres was performed for samples of different origin. Strong acid hydrolysis was found superior to
agricultural fibre analysis and comprehensive plant fibre analysis for a consistent determination of the
cellulose content. Crystallinity determinations were based on X-ray powder diffraction methods using side-
loaded samples in reflection (Bragg-Brentano) mode. Rietveld refinements based on the recently published
crystal structure of cellulose Ib followed by integration of the crystalline and amorphous (background)
parts were performed. This was shown to be straightforward to use and in many ways advantageous to
traditional crystallinity determinations using the Segal or the Ruland –Vonk methods. The determined
cellulose crystallinities were 90 –100 g/100 g cellulose in plant-based fibres and 60 –70 g/100 g cellulose in
wood based fibres. These findings are significant in relation to strong fibre composites and bio-ethanol
production.

Abbreviations: HPLC – High pressure liquid chromatography; DM – Dry matter

Introduction

Cellulose is technically a very interesting material.
Plant fibres, as for instance hemp fibres, have high
strength, low density and high sustainability,
which can supplement glass fibres in composites
(Hepworth et al. 2000; Madsen and Lilholt 2003).
It has been shown empirically that the fibre tensile
strength and elastic modulus depend on the cellu-
lose content squared (Klinke et al. 2001). Due to

the expected correlation between the tensile
strength of the fibres and the cellulose crystallinity,
it is of interest to find effective and reliable
methods to determine the sample crystallinity of
cellulose containing materials at different stages of
processing. Plant fibre waste materials like corn
stover and wheat straw have not proved useful for
high performance composite materials due to their
low cellulose content and bigger cell lumen
resulting in low tensile strength. However, these

Cellulose (2005) 12:563–576 � Springer 2005

DOI 10.1007/s10570-005-9001-8



materials are useful for bioethanol production
after pre-treatment and enzymatic hydrolysis of
the cellulose and hemicellulose to monosaccha-
rides (Felby et al. 2003; Varga et al. 2004). The
enzymatic hydrolysis for converting cellulose to
glucose substrate is mainly performed with exo-
glucanase for crystalline cellulose and endoglu-
canase for amorphous cellulose. Hence, it is
valuable to know the amount of crystalline cellu-
lose and amorphous cellulose, in the sample to
develop enzyme mixtures optimized for the
hydrolysis (Teeri and Koivula 1995; Thygesen
et al. 2003).

Plant fibres are built essentially of cellulose,
hemicellulose, lignin, pectin and minerals. Cellu-
lose consists of both amorphous and crystalline
regions. To determine the cellulose crystallinity in
plant fibres, accurate determination of the cellu-
lose content is needed, as cellulose is expected to be

the only crystalline constituent. Cellulose consists
of linear chains of poly[b-1,4-D-anhydrogluco-
pyranose] (C6nH10n+2O5n+1 (n=degree of poly-
merisation of glucose)), which crystallize through
hydrogen bonding between the chains and has
cellobiose as repeated unit (Figure 1a). The crystal
structure of cellulose in higher plants is that of
cellulose Ib (Sarko and Muggli 1974; Nishiyama
et al. 2002), which is monoclinic, space group P21,
with the cellulose chains arranged along the un-
ique c-axis (Figure 1b).

X-ray powder diffraction is an obvious method
to study the sample crystallinity due to the dif-
fraction peaks from cellulose crystals (Figure 2).
However, all materials give rise to X-ray scatter-
ing, also the amorphous part of a sample. It is
measured that hemicellulose and lignin have dif-
fractograms similar to amorphous cellulose giving
wide unspecific peaks (unpublished data). The

Figure 1. (a) The repeated cellobiose unit in cellulose as compared to the c-axis length. (b) The cellulose Ib structure viewed along the

unique c-axis of the P21 unit cell with the a- and b-axis in the paper plane (5 molecule chain ends are thereby shown).
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amorphous scattering will show up as a softly
rising and decreasing background. Determination
of the sample crystallinity is thus a problem of
separating the amorphous from the pure crystal-
line part of a powder diffraction pattern. With
well-crystallized samples, i.e. with large enough
crystallites, this is rather simple as such crystallites
give sharp diffraction peaks, which can be easily
separated from the amorphous background. In the
case of cellulose, the crystallites are very small,
typically 20 –50 Å in diameter, which will cause
considerable peak broadening and serious peak
overlap. Consequently, the separation of crystal-
line from amorphous scattering is no longer trivial.
The crystallite diameter can be determined with
X-ray diffraction based on the width of peaks
representing directions perpendicular to the fibre
axis (indices: 110, 1�10 and 200), while the crystal-
lite length can be determined based on the width of
peaks representing directions parallel with the fi-
bre axis (index: 004) (Figure 2).

The scope of this paper is twofold. Firstly, we
want to compare four different methods to assess
the crystalline part of a cellulose diffraction pat-
tern in order to determine the sample crystallinity:
(1) Segal method, based on the intensity measured
at two points in the diffractogram (Segal et al.
1959); (2) Ruland –Vonk method, based on a
separate measurement of an amorphous standard
scaled to the diffraction pattern (Ruland 1961;
Vonk 1973); (3) Rietveld refinement method,
based on refinements of the crystal structure, peak
parameters and background (Rietveld 1967, 1969);
and (4) Debye calculation method, where the
crystalline scattering is calculated based on the
crystal structure and crystallite size (Debye 1915).
Secondly, we want to determine the cellulose
content in plant fibres. For this purpose an accu-
rate plant fibre analysis procedure is needed. The
three most well known methods were compared:
(1) Comprehensive plant fibre analysis (Browning
1967), (2) Agricultural fibre analysis (Goering and
Van Soest 1970), and (3) Strong acid hydrolysis
(Kaar et al. 1991). The samples used in the present
study were purified cellulose (filter paper and
Avicel cellulose), hemp fibres, Norway spruce and
corn stover, which were chosen to cover a wide
range of cellulose contents and biomass types. The
samples were used without prior cellulose purifi-
cation in the X-ray diffraction experiments to
avoid modification of the cellulose structure.

Experimental

Materials

Organosolv lignin, (Aldrich 37, 101 –7) was used as
amorphous reference material. Filter paper (Fris-
enette ApS 165 –70) and microcrystalline Avicel
cellulose (Merck 2351) were used as purified cel-
lulose materials. Hemp fibres (Cannabis sativa L.,
Felina) were hand peeled from the middle section
of hemp stems (Thygesen et al., submitted). Nor-
way spruce (Picae abies) was obtained from Øl-
stykke sawmill, Denmark, as a fresh, chipped and
bark free material. The wood chips were dried at
20 �C for 7 days and ground with a hammer mill
to 5 mm size. Corn stover from maize plants (Zea
Mays L.) grown in Hungary in 2003 was recu-
perated following threshing in the combine har-
vester at grain harvest.

Chemical analysis

Before the plant fibre analyses, the samples were
milled into particles that could pass a 1 mm sieve.
The mineral content was determined by incinera-
tion of the raw samples at 550 �C for 3 h. Com-
prehensive plant fibre analysis is a gravimetric
method used for fibres from agricultural plants
and wood. Wax was extracted in chloroform,
water-soluble components in water, pectin in
EDTA solution, lignin in chlorite solution and
hemicellulose in NaOH+NaBO3 solution with
weighing in between each step (Browning 1967).
Agricultural fibre analysis is a gravimetric
method used for analysis of agricultural lignocel-
luloses (Goering and Van Soest 1970). Non cell
wall material (mainly pectin) is extracted in
natrium-auryl-sulphate+EDTA+natrium-tetrab-
orate+ Na2HPO4+ethylenglukolmonoethylether
solution, hemicellulose in 0.5 M H2SO4+cetyl-
trimethyl-ammonium-bromide solution and lig-
nin in KMnO4+Ag2SO4+Fe(NO3)3+AgNO3+
KCH3COO +CH3COOH+butyl alcohol solution
followed by filtration and treatment in oxalic
acid+70% ethanol. The amount of remaining so-
lid material was weighed in between each step.
Strong acid hydrolysis is an HPLC based method,
in which the content of sugars in the fibres was
measured after sample preparation by swelling in
12 M H2SO4 and following hydrolysis at dilute
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H2SO4 (0.42 M) at 121 �C for 1 h (Kaar et al.
1991). The excess SO4

2) was removed by Ba(OH)2
addition. Shimadzu equipment was used in the
HPLC-analysis. The column system used for
woody samples consisted of a Rezex RPM column,
a deashing cartridge and a security guard (Pb2+)
pre-column. The temperature was 80 �C, the elu-
ent was H2O and the flow rate was 0.6 ml/min.
Glucose, xylose, galactose and mannose were de-
tected refractometrically. The column system used
for non-woody samples consisted of a Rezex ROA
column and a security guard (H+) pre-column.
The temperature was 63 �C, the eluent was 4 mM
H2SO4 and the flow rate was 0.6 ml/min. Glucose,
xylose and arabinose were detected refractometri-
cally.

X-ray powder diffraction

X-ray powder diffraction experiments were per-
formed for sheets of filter paper in both trans-
mission and reflection geometry to determine the
best experimental mode. The transmission
experiment was performed with a Huber G670
Guinier camera using CuKa1 radiation. The thin
samples were placed at a 45 � angle to the pri-
mary beam and rocked during data accumula-
tion. The data was collected for 30 h and in the
2h-range 1.4 –100 � with a step size of 0.005�. For
the reflection geometry measurements a Philips
PW1820/3711 diffractometer with a symmetric h-
2h Bragg-Brentano scattering geometry, CuKa
radiation, a secondary graphite monochromator
and an automatic divergence slit was employed.
Data were collected in the 2h-range 5 –60� with a
step size of 0.02� and a counting time of 20 s per
step. The reflection mode intensities were cor-
rected for the effects of the automatic divergence
slit. No 2h-dependent absorption correction is
necessary for the symmetric Bragg-Brentano
mode with the low-absorbing samples used in
this study.

From the resulting diffractogram (Figure 2a) it
was clear that the large air scattering contribu-
tion to the background of the transmission mode
data made it very difficult to estimate the frac-
tion of intensity originating from amorphous
components in the sample. This effect was prac-
tically absent for the reflection mode diffracto-
grams. Air scattering contributions along with

Compton scattering comprise only a few percent
of the continuously varying background, so no
corrections for these effects were judged neces-
sary. Thermal diffuse scattering (TDS) will con-
tribute both to the continuous background and
to the peak intensity and thereby to a large part
cancel. However, it should be noted that the
presence of uncorrected none-sample contribu-
tions to the background to some extent will
result in reduced crystallinity values. On the
other hand, the reflection mode diffractogram
(Figure 2b) was greatly affected by preferred
orientation, because the paper sheets consisted
mainly of fibres in the lateral plane, giving too
weak 00l peaks relative to the 110, 1�10 and 200
peaks. When loading fibrous samples into the
sample holder from the top and flattening the
X-ray illuminated surface, this effect is much
enhanced. This effect could be reduced by cutting
the sample into small pieces in a knife mill with a
0.5 mm sieve, wetting 0.5 g sample with distilled
water, loading it into a sample holder from the
side with respect to X-ray illuminated surface,
and letting the 2 mm thick fibre sheet air dry
overnight before the reflection mode diffracto-
gram (Figure 2c) was recorded. To minimize
preferred orientation and air scattering effects, it
was therefore decided to perform all X-ray
powder diffraction experiments in reflection
mode on such side loaded samples. In addition,
the number of counts was higher in the reflection
diffractograms, which decreased the statistical
uncertainty. Each sample was prepared and
measured twice. The fibre sheets were dried at
105 �C after the X-ray diffraction experiments in
order to determine the sample crystallinity based
on the dry matter content.

Determination of the sample crystallinty

The sample crystallinity (g crystalline cellulose/
100 g DM) is defined as the ratio of the amount of
crystalline cellulose (cellulose Ib) to the total
amount of sample material (dry matter = DM),
including crystalline and amorphous cellulose,
lignin, hemicellulose, pectin, etc. The cellulose
crystallinity is defined as ‘g crystalline cellulose/
100 g cellulose’, and can be calculated as the ratio
of the sample crystallinity to the cellulose content
of the sample.
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Cellulose crystallinity

¼ g crystalline cellulose

g cellulose

¼ g crystalline cellulose/g DM

g cellulose/g DM

ð1Þ

Method 1: the Segal method
The sample crystallinity, xCR, has frequently been
determined by means of Equation 2 using the
height of the 200 peak (I200, 2h=22.7�) and the
minimum between the 200 and 110 peaks (IAM,
2h=18�) (Figure 3a). I200 represents both crystal-
line and amorphous material while IAM represents
amorphous material only.

xCR ¼
I200 � IAM

I200
ð2Þ

The expression requires that the amorphous
material diffracts with the same intensity at 18�
and 22.7�, and that the crystalline cellulose does
not contribute to the intensity at 18� (Segal et al.
1959).

Method 2: the Ruland –Vonk method
A way to separate the amorphous and crystalline
contributions to the diffracted intensity and esti-
mate the sample crystallinity has been outlined by
Ruland (1961) and Vonk (1973). Here, it was as-
sumed that the Bragg peaks are sharp, i.e. the
crystallites are large enough for the intensity be-
tween the diffraction peaks to be negligible. The
amorphous part of the intensity was obtained by
measuring the scattering of the compound on
amorphous form. This amorphous diffractogram
was then scaled by a factor c(s), where s=2sin h=k,
to bring it below the diffractogram of the partly
crystalline compound. The scale factor c(s) was
allowed to vary continuously throughout the
s-interval to meet the requirement that the crys-
talline diffraction intensity should be zero between
some of the diffraction peaks (the diffractograms
touch at several points).

In the present work, lignin was chosen as the
amorphous standard (c.f. Andersson et al. 2003).
Because of the small crystallite sizes, the tails of
the diffraction peaks extended far from the peak
positions as illustrated in Figure 3a. This had the

Figure 3. Determination of the crystalline cellulose contents in

the hemp fibres measured with the Segal method (a), the Ru-

land-Vonk method (b), Rietveld refinement (c) and Debye

calculation (d). For b, c and d the obtained fits for the amor-

phous and crystalline diffraction are shown.
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effect that the actual background level was well
below the diffraction curve of the partly crystalline
cellulose sample for practically all scattering an-
gles. The use of a continuously varying scale factor
seemed incorrect in the light of Figure 3a, so in
this study, it was chosen to use a constant scale
factor c to make the background touch the dif-
fractogram in one point/interval only (Figure 3b).
Assuming that the intensity I(s) at a given angle is
the sum of the crystalline ICR(s) and amorphous
IAM(s) contributions, the sample crystallinity was
calculated from:

xCR ¼
Zsp

s0

ICRðsÞ � s2ds
,Zsp

s0

IðsÞ � s2ds ð3Þ

The integration limits were in this work chosen so
only the part of the diffractogram containing vis-
ible crystalline intensity was used, i.e. s0=0.11 Å)1

(2h=10�) and sp=0.99 Å)1 (2h=50�).

Method 3: Rietveld refinement
The Rietveld method (Rietveld 1967, 1969) uses
the full diffraction pattern in a least-squares fitting
procedure to simultaneously fit unit cell, crystal
structure, peak profile parameters, background,
etc. The method requires knowledge of the crystal
structure (unit cell, space group and atomic coor-
dinates) as starting parameters. It is today the
dominant method for obtaining structural infor-
mation from powder diffraction data (Young
1993).

Refinements were performed with a modified
LHMP1 Rietveld program (Howard and Hill
1986) with the cellulose Ib crystal structure
including thermal parameters from Nishiyama
et al. (2002) as input. The best fit for all samples
was obtained by refining one scale factor, 10
Chebyshev background parameters, 2 Voigt peak
profile parameters, 2 cell dimensions (a and b) and
one preferred orientation parameter along the 0k0-
direction (Figure 3c), giving a total of 17 refined
parameters for all samples. The full-width half
maximum parameters were fixed to values corre-
sponding to those from a LaB6 standard. The use
of a Voigt profile function made it possible to
estimate the crystallite dimensions relative to a
given direction (here the fibre direction 00l), but,
because of the preferred orientation effects and the

minimal size of the crystallites the estimates be-
came quite poor, especially along the fibre direc-
tion. Finally the sample crystallinity was
calculated using Equation 3 as outlined in Method
2, assuming that the fitted background comprised
the amorphous contribution to the diffractogram.

Correct cell parameters of cellulose Ib are
essential to a proper fit. Both the Rietveld refine-
ments of the present study and former studies of
the cellulose Ib crystal structure (Sarko and
Muggli 1974; Woodcock and Sarko 1980; Simon
et al. 1988; Sugiyama et al. 1991; Koyama et al.
1997; Finkenstadt and Millane 1998; Nishiyama
et al. 2002) indicated large variations in the
apparent unit cell dimension. It is clear that the
true unit cell dimensions of cellulose Ib are con-
stant at constant temperature. The observed unit
cell dimensions, however, are sensitive to the type
of radiation (X-rays/neutrons/electrons), method
(powder/fibre diffraction) and preparation meth-
od. In particular, the recorded 2h-values depend
on the actual penetration depth of the radiation,
which directly affect the calculated/refined unit cell
dimensions and strongly correlate to the 2h zero-
shift. Due to remaining preferred orientation ef-
fects, reflections unique to the c-direction were still
severely suppressed. In fact, the cellulose diffrac-
tion patterns contained only three strong diffrac-
tion peaks, all of which have l=0 (Figure 2).
Several combinations of refined parameters were
tried with the different samples with the objective
to obtain the best possible fit of the crystalline
diffraction. The final choice was to refine the a-
and b-axis parameters and the preferred orienta-
tion parameter. The 2h zero-shift was fixed to zero,
the c-axis parameter to 10.35 Å and the gamma
angle to 96.5�, which are average values given in
the literature (Figure 1).

Method 4: Debye calculations
The basis of this method is the Debye formula
(Debye 1915), which states that the diffracted
intensity from a collection of atoms can be calcu-
lated as the sum over all interatomic distances rij:

IðsÞ ¼
X
i;j

fiðsÞfjðsÞ
sinð2ps � rijÞ
2ps � rij

ð4Þ

where s is defined as before and fi(s) is the
atomic form factor of atom i. Thus, the method
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requires a full set of atomic positions for a whole
crystal, not just for one unit cell. Consequently, the
effects from crystallite size and shape were inherent
to the calculated diffractograms. A program was
written to calculate the diffractograms for cellulose
Ib crystallites of different shapes and sizes exploit-
ing the structural parameters including thermal
parameters of Nishiyama et al. (2002). Both ellip-
tical, cylindrical and box shaped crystallites, each
consisting of an assembly of entire unit cells, were
tested. The best correspondence to the experimental
peak profiles was obtained if the diffractograms
were simulated for crystallites of cylindrical shape
with the cylinder axis along the fibre direction. To
obtain a size distribution, the diffractogram was
added to the intensities simulated for cylinders with
radii of ±1 Å. The simulated diffractograms were
then fitted to the experimentally obtained patterns
by means of a scale factor and a continuously
varying background consisting of a 9th order
Chebyshev polynomial (Figure 3d).

As with Rietveld refinements it was essential to
use correct unit cell dimensions. Therefore, a
number of simulations varying a and b simulta-
neously in steps of 0.05 Å were carried out. These
diffractograms were fitted to the experimentally
obtained diffractograms to determine the a and b
parameters that best fitted the given sample. The
length of the c-axis was fixed to 10.35 Å as argued
for the Rietveld refinements (Figure 1). The crys-
tallite size was identified from comparisons to
simulated diffractograms with known crystallite
dimensions, and the sample crystallinity was
determined from the fitted background level using
Equation 3 as outlined under Method 2.

Results

Chemical composition

The results of the chemical composition are pre-
sented in Table 1. The method that offered the
best distinction between cellulose and hemicellu-
lose, and thereby the best determination of these
components, was the strong acid hydrolysis. The
complex carbohydrates, cellulose and hemicellu-
lose were hydrolysed into monomeric sugars, cel-
lulose to glucose and hemicellulose to xylose,
arabinose, galactose and mannose, which were
subsequently determined by HPLC. Klason lignin
is the insoluble residue after the sample prepara-
tion with H2SO4. The agricultural fibre analysis
gave approximately the same cellulose and hemi-
cellulose results with a lower standard deviation
(Table 1), but the method is more laboriously
demanding and in some cases unspecific. In com-
parison, the comprehensive plant fibre analysis
gave unrealistically high contents of hemicellulose
in the purified cellulose samples (filter paper and
Avicel cellulose). Obviously, some cellulose was
extracted in the hemicellulose extraction step of
the comprehensive plant fibre analysis, a solution
of NaOH and boric acid, making this step unspe-
cific for hemicellulose. For Avicel cellulose, the
reproducibility in this step was further complicated
by the relatively small particle size of the Avicel
cellulose, which resulted in extended dissolution,
swelling and recrystallization of cellulose I into
cellulose II (confirmed by X-ray diffraction).
However, the first step in the comprehensive plant
fibre analysis is recommended also in the strong

Table 1. Chemical composition of the plant materials measured by the three methods (g/100 g dry matter) and arranged according to:

Results from comprehensive plant fibre analysis/agricultural fibre analysis/strong acid hydrolysis. The pooled standard deviations are

shown for each method and component. Numbers in bold are results from the strong acid hydrolysis.

Material Cellulose

g/100 g

Hemi-cellulose

g/100 g

Lignin

g/100 g

Pectin

g/100 g

Wax

g/100 g

Water

extractives

g/100 g

Residuala

g/100 g

Minerals

g/100 g

Corn stover 33/32/33 33/31/21 14/6/19 1/ –/ – 3/ –/ – 10/ –/ – –/24/20 7

Norway spruce 49/58/49 30/18/20 17/19/29 3/ –/ – 1/ –/ – –/5/2 0

Hemp fibres 64/68/63 14/10/10 5/3/6 5/ –/ – 0/ –/ – 8/ –/ – –/14/17 4

Filter paper 86/93/84 10/6/6 1/0/0 2/ –/ – 0/ –/ – 1/ –/ – –/1/8 0

Avicel cellulose –b/95/87 –b/4/4 1/0/0 1/ –/ – 1/ –/ – –/0/10 0

Standard deviation 1.4/0.5/3.1 0.7/0.7/2.1 0.5/0.7/0.5 1.0/ –/ – 0.1/ –/ – 1.3/ –/ – –/0.5/2.8 0.1

aResidual from agricultural fibre analysis and strong acid hydrolysis = pectin + wax + water extractives.bThe swelling of the

relatively small particles resulted in partial extraction of cellulose in the hemicellulose extraction step making the separation of these

components impossible.
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acid hydrolysis for specific extraction of wax,
water-soluble components and pectin by ethanol,
which is otherwise included in Klason lignin. The
gravimetric extraction steps in the comprehensive
plant fibre analysis resulted in consistent contents
of 0 –1 g/100 g dry matter (DM) for pectin, wax
and water extractives in the purified cellulose
samples, content levels that were within the
uncertainty limits. In the other samples, the con-
tent of pectin, wax and water extractives were 1 –
5 g pectin/100 g DM, 0 –3 g wax/100 g DM and
1 –10 g water extractives/100 g DM (Table 1).

Crystallinity determinations

The results of the crystallinity and the crystallite
dimensions are presented in Tables 2 and 3 and
shown graphically in Figure 4.

Method 1: The Segal method
The Segal method (Segal et al. 1959) was very
straightforward and fast to use, but the sample
crystallinity of 47 –83 g/100 g DM (Table 2) were
found to be higher than the cellulose contents

(Table 1) for both corn stover and hemp fibres
(Figure 4). There are several reasons for these
unrealistic results. Most importantly the cellulose
crystallites are so small that peak overlap is bound
to occur in the region around 18� for cellulose Ib,
giving too high values of IAM (Figure 3a). The fact
that I200 was overestimated due to preferred ori-
entation added another element of uncertainty to
the system. When comparing diffractograms for
cellulose samples originating from different species
there is also the effect that both the apparent cell
parameters and the crystallite sizes vary consider-
ably from species to species (Table 3). This results
in large variations in the IAM levels, making the
Segal method very unreliable when comparing
sample crystallinities in general. None of these
points have been mentioned in the original work
by Segal et al. (1959), where the method was used
only for differently purified cellulose samples all
originating from cotton. Since it is a simple
method, it has been extensively utilized up to this
day (Alexander 1969; Buschle-Diller and Zeronian
1992; Mwaikambo and Ansell 1999; De Souza
et al. 2002), but the mentioned limitations and
assumptions make it unreliable and incorrect.

Table 2. Sample crystallinity (g/100 g dry matter) with pooled standard deviations calculated for each X-ray diffraction method.

Material Peak height

ratio segal

g/100 g DM

Amorphous

standard (Ruland-Vonk)

g/100 g DM

Rietveld

refinement

g/100 g DM

Debye

calculation

g/100 g DM

Corn stover 47 39 37 32

Norway spruce 47 56 33 32

Hemp fibres 77 49 60 69

Filter paper 83 72 57 61

Avicel cellulose 62 67 41 39

Standard deviation 1.5 1.4 1.6 2.0

Table 3. Crystallite dimensions of the cellulose in the plant materials calculated by Rietveld refinement and Debye calculation (Å).

Numbers in parenthesis = standard deviations.

Material Rietveld refinement Debye calculation

Lengtha [Å] Diameter [Å] Lengtha [Å] Diameterb [Å]

Corn stover 36(4) 30(1) 100 22(2)

Norway spruce 60(6) 30(1) 150 34(2)

Hemp fibres 24(2) 43(1) 50 36(2)

Filter paper 62(2) 60(1) 150 52(2)

Avicel cellulose 64(3) 39(1) 100 38(2)

aAlong 00l. bStandard deviations arise from the ±1 Å distribution of the crystallite radii used in the simulations.

571



Method 2: Ruland –Vonk method
The Ruland –Vonk method as applied in the
present study has the great advantage that it is a
purely experimental approach to the determina-
tion of the sample crystallinity, giving values of
39 –72 g/100 g DM (Table 2). However, for all the
samples studied the scaled amorphous background
touched the diffractogram somewhere in the 2h-
interval between 7 and 13�, thus in the low angle
region, where the intensity is most poorly deter-
mined due to the fine adjustment of slits and the
effects of axial divergence (Figure 3b). Therefore,
besides the subjective definition of the scale factor,
the Ruland –Vonk method is very sensitive to
instrumental inaccuracies. It should be added that
the amorphous standard material must be chosen
so as to resemble the amorphous components in
the samples. In the light of these observations the
Ruland –Vonk method is difficult to apply to
comparative studies of samples of different origin.
Despite the problems mentioned above, the Ru-
land –Vonk method has been widely accepted as
one of the best ways to determine the sample
crystallinity in plant fibres during more than a
decade (Fink and Walenta 1994; Sao et al. 1994,
1997).

Method 3: Rietveld refinement
During the last 30 years, Rietveld refinement has
become the dominant method for refining struc-
tural information from powder diffraction when a
preliminary structural model is known. Until re-
cently such a model was not available for cellu-
lose. However, with the publication of the
cellulose Ib crystal structure (Nishiyama et al.
2002), Rietveld refinement has become a feasible
method for obtaining information about crystal-
lite size and sample crystallinity from diffraction
data. As soon as a minimum set of parameters has
been found, it is straightforward to carry out
refinements for a series of diffraction patterns with
any of the Rietveld refinement programs available
(Figure 3c).

The decision of which parameters to refine was
not trivial for cellulose, since severe peak overlap
gave very few resolved peaks (Figure 3a). The
limited number of resolved peaks restricted the
number of refinable parameters and resulted in
large correlations between some of these. As
already mentioned, the unit cell dimension in the
c-direction was intimately linked to the preferred

orientation. The unit cell lengths along the a and
the b axis correlated strongly with the 2h zero shift,
and were in average fitted to 8.01 Å and 8.21 Å,
respectively (Figure 1). Furthermore, the back-
ground level was greatly affected by the choice of
peak shape function, since the peak tails extended
very differently with different peak shape func-
tions. However, bearing these correlations in
mind, it was possible to find a common minimum
set of refinement parameters suitable to all of the
samples. That made the Rietveld refinement
method consistent and straightforward to use,
giving values of sample crystallinity in the range
33 –60 g/100 g DM (Table 2).

Method 4: Debye calculation
As for the Rietveld refinements, the Debye calcu-
lation method requires that the cellulose crystal
structure is known. While the entire Rietveld
refinement procedure was implemented into one
refinement program, the Debye calculation meth-
od required two different programs, one to simu-
late the diffractogram and one to fit the simulated
diffractogram to the experimental data and deter-
mine the quality of the fit (Figure 3d). Every time
a parameter such as the cell dimensions, the crys-
tallite size or shape was changed, a new diffrac-
togram had to be calculated by the simulation
program and imported into the fitting program.
The simulations are usually computationally hea-
vy, scaling as the number of atoms in the crystal-
lites squared. For crystallites as small as those of
cellulose (diameter = 22 –52 Å; length = 50 –
150 Å, Table 3) the simulation time was, however,
no more than 1 min per diffractogram on a stan-
dard PC, so the bottleneck lies more in finding an
appropriate set of parameters, systematically
varying them and comparing the resulting dif-
fractograms to the experimental diffraction pat-
terns. Nevertheless, the Debye calculation method
has one great advantage over the Rietveld refine-
ment approach: The crystallite dimensions are not
fitted by analytical peak profile functions but are
included explicitly in the simulations. This fact
made the Debye calculation method an excellent
reference method for sample crystallinity deter-
minations, giving values in the range 32 –69 g/
100 g DM (Table 2). It offered the most reliable
estimate of the crystalline part of the diffraction
pattern, but due to the computing efforts it is less
suited as a standard method.

572



Discussion

Many earlier studies on crystallinity excluded the
determination of the chemical fibre composition,
so in fact only the sample crystallinity was deter-
mined and not the actual cellulose crystallinity.
The strong acid hydrolysis was found superior for
determination of the cellulose content due to
chromatographic differentiation between the
monomers in cellulose and hemicellulose
(Table 1). The cellulose content in the examined
samples was used to determine the cellulose crys-
tallinity (g/100 g cellulose), which was used to
evaluate the four investigated methods for crys-
tallinity determination. However, all the three
analysis methods seemed reliable when they are
used to determine the mass balance over wet oxi-
dation experiments with for example, wheat straw
and hemp fibres as raw materials resulting in
process recoveries of cellulose in the range 90 –
110% (Thygesen et al. 2003, 2004; Thomsen et al.
2005). Enzymatic hydrolysis resulted in up to 85%
conversion of cellulose into glucose in pre-treated
corn stover and pre-treated wheat straw, which
seem reasonable. Based on these observations, the
chemical analysis methods give reasonable results
within an uncertainty interval of 10% of the mea-
sured value.

The best experimental mode in the X-ray dif-
fraction experiments was reflection geometry

during the measurements to avoid air scattering
and obtain higher intensity, since the reflected and
not the penetrated X-ray photons were counted
(Figure 2). The use of side-loaded samples resulted
in close to random orientation of the sample fibres
so the ratio between the diffraction peak intensities
was similar to the peaks in the diffractogram cal-
culated by the Debye method. Therefore, the use
of reflection mode for X-ray powder diffraction
and side loading of samples are prerequisites for a
reliable and optimal crystallinity determination.

The present comparative study showed that the
most consistent and reliable methods for sample
crystallinity determinations were the Rietveld and
Debye methods. Both methods took full account
of the overlapping and widely broadened diffrac-
tion peaks of cellulose (Figure 3a). The sample
crystallinity determined by the Rietveld refine-
ments and the Debye calculations were consistent
and corresponded to realistic cellulose crystallini-
ties below 100 g/100 g cellulose, cf. Figure 4. The
Debye method was found an excellent reference
method, but required extensive computation, and
programs are not generally available. Rietveld
refinement on cellulose was after some initial
considerations concerning the parameter set,
straightforward to carry out and gave consistent
results. Combined with the facts that the cellulose
Ib crystal structure has been established (Nishiy-
ama et al. 2002) and that Rietveld refinement
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programs are available, the Rietveld method
should be the preferred method for sample crys-
tallinity determinations of plant fibre samples. The
Segal and Ruland –Vonk methods do not consider
the effect of peak overlap contributing to the
apparent background. As a result, the Segal and
Ruland –Vonk methods will generally underesti-
mate the sample crystallinity, compared both to
the cellulose contents of the samples (Table 1 and
Figure 4) and the Debye and Rietveld methods.
However, the Ruland –Vonk method is still a ro-
bust method and if the peak overlap effect on the
apparent background is taken into consideration,
it may still be the preferred method when the true
amorphous background can be determined
experimentally.

Rietveld refinement and Debye calculations
gave in addition, an estimate of the crystallite
dimensions (Table 3). Reliable determination of
the microfibril length was not possible by the Ri-
etveld method due to the weak 004 reflection and
peak overlaps. A more reliable determination was
obtainable by the Debye method due to the man-
ual fitting of the peaks. Bardage et al. (2004) have
by transmission electron microscopy measured the
microfibril diameter to 50 Å in Norway spruce
pulp fibres, which is on the same level as deter-
mined by the Debye method in this study for filter
paper (52 Å) and higher than for raw Norway
spruce (34 Å) (Table 3). The determined crystallite
diameter was thereby comparable or smaller than
the microfibril diameter.

The results for cellulose content and crystallinity
of the five samples are presented in Table 4 and
compared in Figure 5. The corn stover and the
hemp fibres are both plant-based and showed a

high cellulose crystallinity of 90 –100 g/100 g cel-
lulose (full drawn line in Figure 5).

The Norway spruce sample had a cellulose
crystallinity of 67 g/100 g cellulose (Table 4),
which is comparable to previous findings in fresh
Norway spruce (51 –71 g/100 g cellulose) by X-ray
diffraction (Andersson et al. 2003). The cellulose
crystallinity was on the same level in filter paper
(65 g/100 g cellulose) and was also comparable to
the crystallinity of 68 g/100 g cellulose that has
been measured in pine kraft pulp by 13C-NMR by
Liitia et al. (2003). The cellulose crystallinity of
wood based materials was thereby found to be on

Table 4. Cellulose crystallinity (g/100 g cellulose) and contents (g/100 g dry matter) of cellulose, crystalline cellulose, amorphous

cellulose and residual material, measured by the optimal methods: Strong acid hydrolysis and Rietveld refinement.

Material Cellulose

crystallinity

g/100 g cellu.

Cellulose

content

g/100 g DM

Sample

crystallinity

g/100 g DM

Amorphous

cellulose content

g/100 g DM

Residual content

Corn stover 100 33 33 0 67

Norway spruce 67 49 33 16 51

Hemp fibres 96 63 60 3 37

Filter paper 68 84 57 27 16

Avicel cellulose 47 87 41 46 13

Norway sprucea 51 –71 45 23 –32 13 –22 55

Pine kraft pulpb 68 76 52 24 24

aAndersson et al. (2003): Fresh Norway spruce analysed with X-ray powder diffraction and calculated with the Ruland–Vonk

method.bLiitia et al. (2003): Norway spruce pulp analyzed with 13C-NMR.
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the same level, when determined by X-ray dif-
fraction and by 13C-NMR, and the pulping pro-
cess had only slight effect on the cellulose
crystallinity. The present data as well as the liter-
ature data are shown in Figure 5 and related by
the dotted line, indicating a cellulose crystallinity
of 60 –70 g/100 g cellulose.

The Avicel cellulose originating from unspeci-
fied plant fibres had a low cellulose crystallinity
(47 g/100 g cellulose), which shows that the very
fine milling and hydrolysis during the cellulose
purification decreased the cellulose crystallinity
(Figure 5), compared to the plant fibres.

It should be mentioned that the improved
methods for determination of cellulose content
and cellulose crystallinity are fundamental for
further investigations on how the cellulose micro-
structure affects the fibre strength and the enzy-
matic hydrolysis of cellulose to glucose. According
to this investigation, the cellulose crystallinity is
90 –100 g/100 g cellulose in plant-based fibres and
60 –70 g/100 g cellulose in wood based fibres
(Figure 5). Corn stover is a promising raw mate-
rial for ethanol production and hemp fibres are
interesting for fibre production. The high crystal-
linity in corn stover indicates that enzymatic
hydrolysis for bioethanol production requires a
high dosage of exoglucanase enzymes. The high
content of cellulose and high crystallinity in hemp
fibres indicates a high performance for strong
composites.

Conclusions

� Among the investigated techniques, the best
experimental mode was reflection geometry for
the X-ray diffraction experiments to avoid air
scattering, and using side-loaded samples to
reduce the effect of preferred orientation.

� The Rietveld method was preferred for sample
crystallinity determinations, since it took full
account of the overlapping and widely broad-
ened diffraction peaks of cellulose and gave
consistent results.

� An accurate method for determination of the
cellulose content is needed for determination of
the cellulose crystallinity (g/g cellulose) in plant
fibres. Strong acid hydrolysis followed by
chromatographic measurement of monomers
was chosen as the best of the tested methods.

� According to the novel methods, plant based
materials have cellulose crystallinity of 90 –
100 g/100 g cellulose and wood-based materials
have 60 –70 g/100 g cellulose.

� Reliable methods for the determination of
cellulose content and cellulose crystallinity are
fundamental for further investigations on how
the cellulose microstructure affects the fibre
strength and for the development of methods
for enzymatic hydrolysis of the cellulose.
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Abstract.  The bulk structural properties of multiwall carbon nanotube samples can be esti-
mated by comparing experimental X-ray powder diffractograms with simulations obtained 
using the Debye equation. Results typically indicate that the samples contain tubes with 
dimensions distributed within the following bounds: lengths of 5-15 nm, diameters of 15-25 
nm, and walls 10-20 layers thick with a spacing between adjacent layers of 3.35-3.60 Å. The 
apparent short tube lengths obtained can be explained by the observed bending of the tubes. 
Furthermore it is possible to obtain information about impurities. 

Introduction 
Multiwall carbon nanotubes (MWCNTs) consist of several layers of rolled graphene sheets. 
Since this new type of material was discovered some 15 years ago [1] it has been studied 
extensively and the suggested applications have been numerous.  Many of the studies have 
focused on the structure of the tubes because of the intimate structure/function relationship. 
Studies applying TEM and ED [2,3] are very illustrative, but both these structural probes 
suffer from the fact that they are local. The bulk properties of the sample depend on the aver-
age structure, which can only be determined in combination with a global probe. Powder 
diffraction is the obvious choice for studying the bulk structure of MWCNTs as the tubes are 
periodic in nature and give rise to distinct diffraction peaks. In addition, powder diffraction 
will detect crystalline impurities. Many different models have been suggested to explain the 
diffraction pattern arising from the MWCNTs. The simplest of these are of the disordered 
graphite type where structural parameters such as the interlayer spacing, the crystallite size 
and the ordering within a single graphene layer are refined [4-6]. Recently a more sophisti-
cated approach taking into account the actual structure of the tubes has been suggested [7-9]. 
The basis for this approach is the Debye equation (1) stating that the diffracted intensity from 
a collection of scatterers can be calculated as a sum over all the interatomic distances rij [10]. 
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Here Q = 4π sinθ / λ is the scattering vector. The method thus requires the calculation of all 
atomic positions for a given MWCNT structure followed by the application of equation (1) 
to obtain the diffractogram. The structural parameters of the MWCNTs can then be system-
atically varied and the simulated diffractograms compared to the experimental ones in order 
to obtain a qualified estimate of the bulk structure. Studies of the effects of varying different 
structural parameters have been carried out previously [7,8], but in a very wide Q-range (0-
24 Å-1). For these comparative studies a standard crystallographic Q-range (0-7 Å-1) is suffi-
cient, and using a longer wavelength will in general give higher angular resolution. The pre-
sent work has by means of the Debye equation studied the effects of varying: I) the chiral 
angle, II) the rolling characteristics, III) the structure perpendicular to the tube, and IV) the 
bending of the tubes in comparison to experimental X-ray diffraction data from bulk 
MWCNT samples. 

Simulations 
The MWCNT diffractograms closely resemble that of graphite. Peaks of the hk0 (within a 
layer) and 00l (between layers) type dominate due to the limited correlation between differ-
ent graphene sheets (turbostratic disorder) [3,5,11]. The graphite 100 (2.95 Å-1) and 110 
(5.11 Å-1) peaks are found in a more saw-toothed version due to the turbostratic stacking 
[12,13] and/or the curvature of the graphene sheets [3]. The peaks corresponding to the inter-
layer spacing, 002 (1.85 Å-1), 004 (3.70 Å-1), etc. are shifted to slightly lower Q-values, re-
flecting the fact that the spacing between the multiple walls of the tubes is slightly larger 
(3.40 Å) than the interlayer spacing in graphite (3.35 Å).  

 

Figure 1. Variation of the chiral angle for different diameters. 

I) Chiral angle. From figure 1A it is clear that the value of the chiral angle (the angle be-
tween the interatomic vector and the cylinder axis of the tube) greatly affects the appearance 
of the diffractogram when the diameter of the tube is small. Figure 1B shows that the effect 
is less pronounced for tubes with larger diameter (the tube length and wall thickness is the 
same for both diffractograms), but nevertheless it is still present contrary to the conclusions 
of Kołoczek et al.: ”...for wider carbon nanotubes no conclusion about chirality can be 
drawn from analysis of their diffraction patterns.” [8]. The reason for this conclusion is 
probably that the analyses were performed over the full Q-range of their simulated diffracto-
grams (0-24 Å-1), while the differences are better seen in the details of a more limited Q-
range. Based on the observations concerning the chiral angle and the appearance of the ex-



  

perimental diffractograms given in figure 6 it was chosen to consistently use a chiral angle of 
15° in the following. 
II) Rolling characteristics. The question of whether the MWCNTs are structured as concen-
tric cylinders or as scrolls (figure 2B) has been addressed a number of times [5,12-16] with 
very different approaches and results, without reaching a definite conclusion. It was previ-
ously noted [8] that concentric cylinders with a very constant d-spacing between adjacent 
cylinders give rise to a splitting of the interlayer diffraction peaks (figure 2A). However, it 
can easily be shown that these splittings average out if a continuous distribution of different 
tube diameters (a very realistic model of a true bulk sample) is applied. In figure 2A this 
average can be compared to the diffractogram simulated for a single scroll type MWCNT 
with a diameter corresponding to the mean of the distribution used for the concentric aver-
age. As there is hardly any difference between the concentric average and the scroll, the 
conclusion must be that it is not possible to distinguish between averaged concentric cylin-
ders and scrolls from a standard diffraction experiment. Since the latter simulations are much 
faster to perform, only simulations for scroll type MWCNTs are presented in the following. 
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Figure 2. Concentric or scroll type tubes? 

III) Structure perpendicular to the tube. Variations in the length and diameter of the 
MWCNTs affect only the hk0 peaks, and these effects have already been extensively de-
scribed [8]. Instead focus was brought into the effects causing a broadening of the 00l inter-
layer peaks. These have previously been characterized as size (arising from the wall thick-
ness) and strain (due to a distribution of d-spacings) broadening effects [3, 5, 11, 13]. 

 
 

 

 

 

 

 

 

Figure 3. Effects of varying the wall thickness of the tubes. 



  

It is obvious that a finite number of layers will lead to a broadening of the 00l peaks. In addi-
tion the simulations in figure 3 show that a true sample contains a distribution of different 
wall thicknesses, as the ripples at low Q-values disappear when an average is performed. 
From an inspection of the experimental diffractograms in figure 6 it is easily seen that a 
strain broadening of the 00l peaks is present, since the 004 peak is much wider as compared 
to the 002 peak than what would be expected if only size broadening was considered. Fur-
thermore the experimentally observed broadening is asymmetric whereas size broadening is 
purely symmetric. The asymmetry can be modelled by letting the d-spacing vary between 
3.35 Å and 3.60 Å with a higher probability of the smaller spacings.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Effects of bending the tubes. 

IV) Bending of the tubes. Figure 4 illustrates how the diffractogram from a tube with a length 
of 100 nm resembles that of a tube with a length of only 10 nm if the longer tube is bent with 
a 160 nm radius of curvature (compare with figure 5A). Defects in the tubes (figure 5) will 
have the same effect on the diffractogram; to make the tubes appear shorter than they actu-
ally are. 
 
     A                                                                                                                      B                                                                                    

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. TEM images corresponding to the experimental diffractograms in figure 6 (scale bar 50 nm). 
A purchased as: Outer diameter 15 ± 5 nm, length 1-5 µm, and purity ~ 95 %. B purchased as: Outer 
diameter 30 ± 10 nm, length 1-5 µm, and purity > 95%.. 



  

Discussion 
The simulated diffractogram in figure 6A is for a scroll type MWCNT with a chiral angle of 
15°, an isotropic temperature factor coefficient of 2 Å2 to describe the thermal motions, 10-
14 turns, a length of 7.5 nm, an inner diameter of 12 nm (outer diameter 18-21 nm), and a 
distribution of d-spacings between 3.35 Å and 3.60 Å. The background is modelled by a 6th 
order Chebyshev polynomial. The fit between experiment and simulations is excellent except 
for the low Q side of the 002 peak (perhaps even larger d-spacings than 3.60 Å are present in 
the sample) and the high Q side of the 100 peak (possibly arising because the stacking of 
graphene layers is not completely turbostratic giving rise to a low intensity graphite 101 peak 
at 3.1 Å-1). The simulated diffractogram in figure 6B is for a MWCNT with 16-20 turns, an 
outer diameter of 22-25 nm and a length of 10 nm. 

Figure 6. Experimental and simulated diffractograms corresponding to the TEM images in figure 5. 
The experimental diffractograms were recorded in transmission mode with a HUBER G670 Guinier 
camera (λ = 1.087 Å) at beam line I711 (MAXLAB, Lund, Sweden) on tablets pressed from 50 mg of 
commercial MWCNT samples. 

The experimental diffractogram of figure 6B is recorded on a sample with contaminations 
from carbides of Fe, Co and/or Ni since these metals were used as catalysts in the fabrication 
of the MWCNTs. From the corresponding TEM image (figure 5B) it is obvious that this 
sample contains more impurities than the one shown in figure 5A, but how much more and 
which type of impurities it is not possible to tell from the TEM images. The increased 
amount of impurities is also evident from the experimental diffractograms in figure 6, but as 
opposed to the TEM technique X-ray diffraction offers the opportunity to identify the impu-
rities. 
The fact that even though TEM images demonstrate that the tubes are of the order 1 µm long, 
the simulations only indicate lengths in the order of 10 nm has been noted previously [9]. In 
the light of the simulations of bent MWCNTs in figure 4 and the TEM images in figure 5, the 
most probable explanation to this discrepancy is the bent shapes of the tubes. Previous TEM 
studies [12] have suggested that a high concentration of defects in the tubes could be another 
reason for coherence lengths in the order of only 10 nm. 
 



  

Conclusions 
Comparing experimental and simulated powder diffractograms, even in the standard Q-range 
0-7 Å-1, is an excellent way to determine bulk structural parameters for MWCNTs. It is pos-
sible to detect and identify impurities and to determine the average chiral angle, while con-
centric or scroll type tubes cannot be distinguished. Good estimates of the tube dimensions, 
i.e. length, diameter, wall thickness and interlayer spacing, and more importantly the distri-
bution of these can be obtained from the comparisons. The simulations have made it evident 
that all of the structural parameters in the bulk samples should be determined as distributions 
rather than as single values.  
One considerable problem still remains: the effects of the different parameters on the appear-
ance of the diffractograms correlate strongly. A way to solve this correlation problem and 
more unambiguously quantify the experimental bulk tube dimensions is to conduct PCA 
(Principal Component Analysis) on diffractograms simulated for MWCNTs with different 
structural characteristics and extract basis functions corresponding to each parameter. It 
should then be possible to describe the experimental diffractograms as linear combinations of 
the basis functions, and to simply read the structural characteristics of the bulk samples from 
the coefficients. This development is in progress. 
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Abstract. It has been attempted to derive the structural
properties of bulk multiwall carbon nanotubes (MWCNTs)
from a combination of powder diffraction and principal
component analysis (PCA). By a transformation of the di-
rect PCA basis functions to a structural parameter set it was
possible to obtain average values of inner radius, number of
turns and d-spacing. The true tube lengths cannot be cor-
rectly estimated due to correlations to other properties, tube
bending and defects in the tubes. Improvements can be ex-
pected by including distributions of the structural properties,
further developing the functional relationships between the
PCA and parameter functions and including the chiral angle
(rolling direction) as a separate parameter.

1. Introduction

The bulk structural properties of multiwall carbon nano-
tube (MWCNT) samples can be estimated by comparing
experimental X-ray powder diffractograms with sim-
ulations obtained using the Debye equation. So far the
structural characteristics of the sample have been deter-
mined as the values used to simulate the diffractogram
that, when fitted to the experiment, gave the lowest RðIÞ-
value RðIÞ ¼

P
i
jIobs

i � Icalc
i j=

P
i

Iobs
i

� �
[1–4]. If there

are no correlations between the different properties this
procedure is straightforward, but this has been demon-
strated not to be the case [4–8].

Applying principal component analysis (PCA) on simu-
lated diffractograms a substantial reduction in dimension-
ality, typically a factor of 10, can be obtained. Further-
more, to facilitate the interpretation it would be useful to
transform the directly obtained PCA basis functions into a
coordinate set describing the MWCNT structural proper-
ties in terms of length, radius, number of turns and layer

spacing. The present paper is an attempt to explore the
use of PCA on simulated diffraction patterns combined
with a basis function transformation to directly obtain the
bulk structural properties of MWCNTs.

2. Experimental MWCNT diffractograms

The experimental diffractograms are recorded in transmis-
sion mode with a HUBER G670 Guinier camera ðl ¼
1509 �A or l ¼ 1087 �AÞ at Beamline I711, MAXLAB
(Lund, Sweden) on 50 mg MWCNT samples pressed into
tablets.

3. Simulation of MWCNT diffractograms

The basis for the simulations is the Debye equation [9]
stating that the diffracted intensity from a collection of
scatterers can be calculated as a sum over all the interatomic
distances rij:

IðQÞ ¼
X

i; j

fifi
sin ðQrijÞ

Qrij
where Q ¼ 4p sin q

l

The method thus requires the calculation of all atomic
positions for a given MWCNT structure followed by the
application of the Debye equation to obtain the diffracto-
gram.

The MWCNT structural parameters that are of impor-
tance for most applications are the dimensions: The
length, the (inner) diameter, the number of concentric
tubes, and the spacing between these. The focus of the
present work has thus been on how to determine the aver-
age of these four properties for a bulk sample. In a bulk
sample the MWCNTs display distributions of different di-
mensions, and the ultimate goal is to be able to determine
not only the average dimensions but also their distribu-
tions. Another MWCNT characteristic is the distribution
of chiral angles or rolling directions in the sample. The
chiral angle is defined relative to the hexagonal axis in a
graphene sheet and can take on values between the achiral
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extremes of 0� and 30�. However, as it is not possible to
control this parameter during synthesis at the moment (as
opposed to the dimensions, which to some extent can be
controlled via the choice of catalysts) [10, 11], the deter-
mination of chiral angles was left out for the time being.
Therefore all diffractograms simulated for the present
study have a chiral angle of 15�, a reasonable average
value [4].

A still disputed question is whether the MWCNTs are
of the scroll type where one graphene sheet is rolled up, or
built from separate concentric cylinders [5, 6, 12–15]. It
was recently shown that it is not possible to distinguish
between the diffraction patterns resulting from the two dif-
ferent structures if a distribution of different diameters is
present in the sample with concentric cylinders [4]. As
scroll type tubes are faster to simulate it was chosen to use
this model. Finally a thermal displacement parameter of
B ¼ 2�A

2
was used consistently throughout the simulations.

On the basis of the considerations described above, a
library of simulated MWCNT diffractograms with differ-
ent dimensions designed to cover the size span typically
found from experimental data was generated as the basis
for the PCA. The property values were varied according to
Table 1, giving a total of 6 � 53 ¼ 750 simulated diffracto-
grams.

4. PCA

To analyse the differences between the 750 simulated dif-
fractograms PCA is applied. There are two main reasons
for using PCA. Firstly, the dimension of the problem will
be strongly reduced, and secondly, it will be much easier
to identify the effects of the nanotube properties. However,
if this kind of analysis should be of any practical use,
some kind of normalisation must be performed on the dif-
fractograms; otherwise the experimental data must be
brought to an absolute scale. PCA results in an orthogonal
and optimal coordinate system, where orthonormal basis
functions constitute the axes. The coordinate system is
optimal in the sense that the best approximation of the
750 diffractograms in an n-dimensional subspace is found
by linear combinations of the basis functions belonging to
the n highest eigenvalues. If D is a matrix with elements
Dji proportional to the intensity at 2qj for sample i, then
DtD is a symmetric matrix with non-negative eigenvalues.
PCA then consists of solving the eigenvalue problem
DtDU ¼ UL, where each column of U contains an eigen-
vector and L is the diagonal eigenvalue matrix with the
eigenvalues sorted in a decreasing sequence. The orthonor-

mal basis function matrix, B, is then B ¼ DUL�
1=2 . Ob-

viously, the number of basis functions is limited to the
number of eigenvalues with significant non-zero values.

In the present case we have chosen a normalisation of
the diffractograms such that the diagonal elements of DtD
are equal to one. Furthermore, in order to enhance the dis-
criminative power of the PCA, we have used a slightly
different approach. Before performing the PCA, the matrix
D is replaced by D �M, where M is a matrix of the same
rank and dimensions as D with identical columns each
containing the average of the normalised diffractograms.
With this setup the diagonal elements, ((D �M)t(D �M))ii,
contain the sum of squared deviation between the average
and the i-th diffractogram, and since the trace is invariant
to any orthonormal transformation it is equal to the sum
of eigenvalues. This means that we can select an optimal
number of basis functions, including the average, to ac-
count for any percentage of the total sum of squared
deviations. Subsequently, the average diffractogram is
orthogonalised and normalised and added to the number
of basis functions. However, the normalisation destroys
information, especially on the tube length. Comparison of
a set of normalised diffractograms for fixed inner radius,
number of turns and d-spacing (Fig. 1) shows that the dif-
ferences between the diffractograms are very small. This
implies that in order to be able to describe the effect of
different tube lengths, we have to include basis functions
of very little importance. Tentatively, we have chosen the
80 most important basis functions, including the average.
These 80 basis functions account for 99.9994% of the
total sum of squared deviations, and an approximation of
the diffractograms by a linear combination of these basis
functions leads to a maximum RðI2Þ-value ðRðI2Þ ¼
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Table 1. Property values used in the simulations.

length [�A] inner radius [�A] no. of turns d-spacing [�A]

25 10 6 3.35

100 20 8 3.40

200 30 10 3.45

300 40 12 3.50

500 50 14 3.55

1000
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Fig. 1. Effects of varying the tube length for fixed inner radius
(30 �A), number of turns (10) and d-spacing (3.45 �A). The normalised
average diffractogram, which is shown at the top, has been subtracted
from the normalised diffractograms simulated for each length. The
diffraction peaks are named according to the graphite structure.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
ðIobs

i � Icalc
i Þ

2=
P

i
ðIobs

i Þ
2Þ

r
of 0.0014. The expansion

coefficient or coordinate matrix, C, is equal to DtB. These
coefficients should be related to the four nanotube proper-
ties, the values of which have been scaled to the interval
between 0 and 1 to avoid that the properties are weighted
differently.

To get an idea about the importance of the basis func-
tions, we have, for each basis function and each tube
property, calculated the linear correlation coefficient be-
tween the coordinates and the tube properties. The four
most important basis functions are shown in Fig. 2.
Whereas Fig. 2b is difficult to interpret, the basis functions
in the (100) (2q: 40–45� for l ¼ 1509 �A) and (110) (2q:
75–80�) regions of Fig. 2a and in the (002) (2q: 25–30�)
region of Fig. 2c have almost symmetrical shapes that are
typical for changes in peak width. In Fig. 2d the shape in
the (002) region is typical for a shift in peak position.

5. Modelling the tube properties

Since the basis functions given in Fig. 2 are not the only
ones with non-negligible correlation to the properties, it is
obvious that some linear combination of the basis func-
tions will lead to a better linear correlation, i.e. for each
property we can find the direction in the 80D space that
maximises the linear correlation between the tube property
and the coordinate in this direction.

Any unit vector, v, in the 80D space can be parame-
terised by 79 angles, aj, j ¼ 1 . . . 79 ða80 ¼ 0Þ:

v1 ¼ cosða1Þ vj ¼ cosðajÞ
Yj�1

i¼1

sinðaiÞ; j ¼ 2 . . . 80 :

A subspace omitting the m-th basis function is obtained

by putting am ¼
p

2
. With 80 dimensions, the number of

angular parameters amounts to 316, and with a total num-
ber of tube properties of 3000, this leads to an observa-
tion-to-parameter-ratio of less than 10. With excess para-
meters there is a risk that deficiencies in the model may
be compensated for by these parameters, e.g. the large gap
in length between 500 and 1000 �A may be modelled cor-
rectly at 500 and 1000 �A, but show an oscillatory behav-
iour in between, which may result in a very dubious pre-
diction of the tube properties in this region. In an attempt
to avoid these problems, we have fixed the observation-to-
parameter-ratio to at least 10. Consequently, the number of
dimensions has to be reduced. Tentatively, we have, for
each direction, selected 65 basis functions. This gives a
total of 256 angular parameters, leaving at most 44 para-
meters to describe the functional relationships between the
properties and the coordinates. With a linear model only 8
of these are used. However, the necessity of using 80 ba-
sis functions in order to describe all diffractograms with a
sufficient accuracy suggests that the problem is highly
non-linear. Therefore, the 65 basis functions were selected
in following way: For each basis function, the linear corre-
lation coefficients were calculated between the property in
question and the 1st, 2nd and 3rd power of the coordinate,
and the 65 basis functions with the highest sum of

squared correlation coefficients were selected. The search
for directions with maximum linear correlation was per-
formed by numerical methods, and the linear correlation
coefficients obtained were: �0.9110, 0.9946, 0.9987, and
0.9998, for the length, inner radius, number of turns, and
d-spacing, respectively. Although some correlations seem
very good, the estimated properties lie too far away from
the true values used in the simulations.

It was chosen to use the four linearly optimized vk,
k ¼ 1 . . . 4 vectors and the projections dki of the i-th dif-
fractogram onto these as the starting point for the new
model and then expand the linear description to including
mixed higher order terms in dki. By trial and error a suita-
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Fig. 2. The basis functions from the PCA with the largest linear cor-
relation coefficients to the four parameters. b7 is the basis function
with the 7th highest eigenvalue and so on.
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ble model for property k of diffractogram i, pki, was ob-
tained as a 4-th order polynomial of the type:

pki ¼ ak0 þ ak1d1i þ ak2d2
1i þ ak3d3

1i þ ak4d4
1i

þ ak5d3
1id2i þ . . .

¼
X

nk

aknk

Y4

l¼1

d
mlnk
li

where nk runs over the non-zero terms in the polynomial
expansion for property k, mlnk 2 {0, 1, 2, 3, 4} andP4
l¼1

mlnk � 4. The only exception was found for the length,

here it was necessary to include a term proportional to d5
Li,

where dLi denotes the projection of the i-th diffractogram
onto the length vector.

The procedure to improve the model is then as follows:
� For the present values of dki, determine the a1n1 coef-

ficients using least squares refinement.
� Optimize the set of angles a1j, j ¼ 1 . . . 79 used to

define v1 to get the best estimate of p1i. For every
change in a1j, d1i will change, so a new set of a1n1

must be determined, thus the optimization procedure
is rather time consuming.

� In the same way optimize the a-angles for the other
values of k.

� If the estimates of pki are not satisfactory, add more
terms to the polynomials and repeat the above steps.

In Table 2 the maximum and rms deviations taken over
all diffractograms for each property are given. It can be
seen that, except for the length, the maximum deviations

are at the most 25% of the step size between the values
used to build the PCA library of diffractograms (Table 1).
Table 3 shows which terms are included in the polynomial
expansions for each of the four properties, thus it gives an
idea of which properties correlate the strongest. Looking
at the large number of terms necessary to model the
length it is not surprising that the maximum deviation of
this property is much poorer. Contrary to what would be
expected by comparing Figs. 2c and 2d, hardly any corre-
lation is found between the effects arising from the num-
ber of turns and the d-spacing. In fact these two properties
are much easier to model than the length and inner radius,
which correlate strongly, both internally and to the other
properties. Figure 3 shows the final vectors vk for each
property. Even though these refined diffractograms are very
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Table 2. Fit quality for the final polynomial model.

length
[�A]

inner radius
[�A]

no. of turns d-spacing
[�A]

max. deviation �110.8 2.63 0.206 �0.0028

RMS deviation 30.2 0.66 0.061 0.0007

Table 3. Non-zero terms in the 4-th order polynomials.

length inner radius no. of turns d-spacing
L R T D

dL dR dT dD

d2
L d2

R d2
T d3

DdR

d3
L d3

R d3
T dR dd2

Dd2
R

d4
L dT dT d3

L d2
DdRdL

d5
L dD d4

L d2
DdRdT

dLdD dRdT dLd2
R

dLdRdT d2
RdT

dLdRd2
T d2

RdD

dLdRd2
D dRdLdD

d2
Ld2

R d3
RdT

d2
Ld2

D d3
RdD

d3
LdR dRd2

LdD

d3
LdT dRd2

T dD

d2
Rd2

D

dRd3
T

d4
T
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Fig. 3. The optimized functions for the final model.
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complex in nature and offer no interpretation as was the
case for the basis functions in Fig. 2, some similarities
between the two figures can still be found.

6. Applying the method to estimate dimensions
of experimental samples

The first 80 basis functions from the model calculations
contain enough information to fit the 750 error-free simu-
lated diffractograms with an acceptable accuracy. The
large reduction in dimensionality indicates that the basis
functions map the general features for error-free MWCNT
diffractograms. However, a number of problems can poten-
tially complicate the analysis when the model is used to
predict structural properties from experimental diffracto-
grams: Thermal displacement parameters differing from

the B-factor of 2 �A
2

used in the simulations, an experi-
mental 2q zero offset, diffractograms recorded at other
wavelengths than the 1.509 �A of the simulations, incorrect
background correction, sample impurities, and/or structural
parameters falling outside the intervals chosen for the
PCA. In order to overcome some of these problems a se-
parate algorithm was applied to modify the B-factor, 2q
zero shift and wavelength of the experimental diffracto-
gram to obtain the best possible fit within the PCA basis.
The method was tested on the four diffractograms given in
Fig. 4 and the predicted properties are given in Table 4.

Diffractogram A is simulated for l ¼ 1509 �A with a set
of structural properties within the simulation limits. A B-
factor of 0.000 �A

2
was used in the simulation and the si-

mulated diffractogram was offset by 0.40� before the pre-
diction procedure. Since this diffractogram does not con-
tain an experimental background or other instrumental
abberations it is expected that a low R(I2)-value and a
good property prediction should be obtained, which is in-
deed the case. This test case shows that the zero point and
B-factor altering algorithm works satisfactorily.

Diffractogram B is recorded at 1.509 �A and was sub-
jected to an empirical background subtraction before the
analysis. The predicted properties seem reasonable, perhaps
apart from the rather short length, however one must recall
the large rms and maximum deviations of this parameter.

Diffractograms C and D are recorded at 1.087 �A and
again empirical background corrections are performed. De-
spite the wavelength difference the fits to these diffracto-
grams are of the same quality as for B, so the fact that it
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Fig. 4. Predicting structural properties using PCA. The experimental
diffractograms corrected for B-factor, 2q offset and wavelength differ-
ences are shown along with the difference curves. od: outer diameter
reported by supplier.

Table 4. Predicted values for the diffractograms in Fig. 4.

Pattern length [�A] inner radius [�A] no. of turns d-spacing [�A] outer diametera [�A] B-factor [�A2] 2q offset [�] R(I2)-value

A 56 40.7 5.85 3.399 61 0.003 0.40 0.0014

Ab 100 40.0 6.00 3.400 60 0.000 0.40

B 18 7.6 7.55 3.414 67 0.68 0.49 0.0384

C 7 7.7 8.41 3.403 72 2.07 0.25 0.0384

D 18 7.5 8.48 3.410 73 1.97 0.14 0.0406

a: Calculated as 2 � (inner radius þ no. of turns � d-spacing)
b: True values for the simulated diffractogram A



T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r. 

is almost impossible to obtain synchrotron diffraction data
at the exact same wavelength and 2q zero point as the one
used to setup the PCA library seems to be a minor prob-
lem. Furthermore it should be noted that the predicted
properties (again except for the length) seem reasonable
and for diffractogram 4C compare well to the values pre-
viously obtained by conventional comparison [4]. Neither a
visual inspection of the diffractograms nor a conventional
property fitting suggest that the two samples have different
properties, and indeed this is confirmed by the PCA ana-
lysis, despite the fact that the samples were supplied with
different outer diameter specifications (150 � 50 �A for
the sample in 4C, PCA predicts 72 �A on average, and
300 � 150 �A for the sample in 4D, PCA predicts 73 �A on
average). The TEM picture of the 300 � 150 �A sample
(Fig. 5, right) shows tubes with outer diameters of both
150 �A and 300 �A, but since TEM, as opposed to X-ray
diffraction, is only a local probe, no definite conclusions
about bulk structural properties can be drawn from this.

The above test cases have demonstrated that it is diffi-
cult to get a physically meaningful estimate of the average
tube length from an experimental MWCNT diffractogram
using the PCA method. The values determined are of the
same size as the rms and maximum deviations given in
Table 2, which are rather poor despite the fact that they
are obtained purely from error-free simulated diffracto-

grams. Furthermore, TEM images give evidence that the
typical tube lengths are of the order 1 mm rather than
around 100 �A as determined both here and in other X-ray
diffraction studies [2–4, 12]. This suggests that the values
obtained from diffraction experiments are not the actual
tube lengths, but rather the lengths of the coherent scatter-
ing domains, which are several orders of magnitude short-
er due to the presence of bends [4] and/or defects [3, 12]
in the tubes (cf. Fig. 5).

It is well-known that broadening of the (00l) peaks can
be caused both by size (number of turns) and strain (due
to a distribution of d-spacings) [5–7, 16]. As mentioned
earlier the structural parameters in a bulk sample are dis-
tributed around a mean, but the present PCA method can
only estimate the mean and not the width of the distribu-
tion. Thus the potential strain broadening of the (00l)
peaks can only be modelled as a size broadening, leading
to an underestimation of both the number of turns and the
thermal displacement parameter. For the diffractogram in
Fig. 4c it has already been shown [4] that strain broaden-
ing cannot be neglected, so the number of turns predicted
for this experiment is probably too low.

7. Conclusions

Initial tests using a combination of PCA and basis func-
tion transformations show that it is possible to directly
obtain bulk structural properties from powder diffraction
data of MWCNTs:
� The average values of inner radius, number of turns

and d-spacing are well estimated with limited corre-
lations.

� The tube length cannot be estimated due to large
correlations and the present type of samples largely
affected by tube bending and defects.

� Experimental abberations like different thermal dis-
placement parameters, 2q offset, wavelength differ-
ences and experimental background can be effec-
tively handled.

The results are promising, but there are still several
possibilities for improvements:
� Selecting different, not necessarily connected, re-

gions of the diffractograms for different properties.
This may reduce the loss of information on nor-
malisation.

� The functional relationship between MWCNT prop-
erties and PCA basis functions should be improved.
The large number of terms needed to model the
length and inner radius indicates that the polynomial
model may be inadequate for modelling the correla-
tion between these properties.

� The method performance with regards to the distri-
bution of chiral angles (or rolling directions) in the
sample should be tested.

� It will be necessary to introduce distributions of
properties. Since the PCA basis functions model all
simulated diffractograms, a distribution of tube prop-
erties may be achieved by optimising distributions in
the four property dimensions.
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a�

b�
Fig. 5. TEM pictures of the MWCNT samples of Fig. 4c ((a), outer
diameter: 150 � 50 �A, PCA predicts 72 �A) and 4d ((b), outer dia-
meter: 300 � 150 �A, PCA predicts 73 �A). Scalebar 500 �A.
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aDepartment of Chemistry, Technical University of Denmark, 2800 Lyngby, Denmark, and bDepartment of

Manufacturing Engineering, Technical University of Denmark, 2800 Lyngby, Denmark. Correspondence

e-mail: jod@kemi.dtu.dk

Stress-free and homogeneous samples of nitrogen expanded austenite, a defect-
rich FCC structure with a high interstitial nitrogen occupancy (between 0.36 and
0.61) have been studied using X-ray powder diffraction (XRPD) and Debye simu-
lations. The simulations confirm the presence of deformation stacking faults in the
structure, while twin or growth faulting can be ruled out. Screw dislocations are
abundant and the dislocation density increases with the interstitial nitrogen occu-
pancy. Whether the nitrogen atoms are clustered or distributed randomly among
the octahedral interstices was found indistinguishable to XRPD.

1. Introduction

The surface hardness as well as wear and corrosion resistance
of stainless steel can be significantly improved by nitriding or
carburising the material at low temperature using a number of
different techniques. This brings about a transformation of the
surface adjacent region into so-called expanded austenite. The
question of how to interpret the XRPD pattern of the resulting
phase to extract the structural characteristics has been a mat-
ter of dispute for several years (Williamsonet al., 1994; Sun
et al., 1999; Marchevet al., 1999; Blawertet al., 1999; Menthe
& Rie, 1999; Larischet al., 1999; Bazaleeva, 2005; Fewell &
Priest, 2007).

Hitherto, structural investigations of expanded austenite have
relied on samples consisting of compositionally heterogeneous
expanded austenite “layers” on bulk stainless steel substrates
prepared by the use of plasma-based techniques. Unavoidably,
samples of this type contain high compositionally induced com-
pressive stresses which strongly affect the diffraction patterns.
The diffraction patterns roughly correspond to that of FCC
austenite with an expanded lattice due to the presence of inter-
stitials, hence the name expanded austenite orγX whereX is
N or C depending on the nature of the interstitials. The peak
positions, however, do no fit an ideal FCC lattice. This has led
to the suggestion of two inherently different structural models:
1) The m-phase of tetragonal rather than cubic symmetry, and
2) Expanded austenite where the observed peak shifts are due
to the presence of deformation stacking faults and/or residual
stresses in the FCC lattice. The designation S-phase has also
been used and usually refers to structural model 2.

Recently stress-free and homogeneous samples of nitrogen
expanded austenite with interstitial nitrogen occupancies,yN,
between 0.18 and 0.61 were synthesized by gaseous nitriding of
AISI 316 stainless steel coupons under para-equilibrium condi-
tions at low temperature (Christiansen & Somers, 2006). Anal-
ysis of the corresponding XRPD patterns unambiguously con-
firmed the structure to be FCC with a deformation stacking
fault probability between 0.01 and 0.04 to account for the peak

shifts (Christiansen & Somers, 2004). Complementary tech-
niques such as TEM and theoretical calculations support this
structural model (Borgioliet al., 2006).

The approach taken in the present work is a whole pattern
fitting procedure based on the Debye formula (Debye, 1915),
which states that the diffracted intensity,I(s), at a given
wavevector,s = 4π sinθ

λ , can be calculated as a sum over all
interatomic distances,r jk, without any assumptions regarding
the periodic nature of the scattering object:

I(s) =
∑

j,k f j fk
sin(sr jk)

sr jk

Thus it is in principle possible to build an atomic array of
any structure and calculate the diffracted intensity. Here the
term structure covers everything from crystallographic parame-
ters like atomic composition and coordinates, thermal and lat-
tice parameters over particle shape, size and size distribution to
stacking faults, dislocations and disorder.

Whereas Rietveld refinements (Rietveld, 1967; Rietveld,
1969) and other traditional methods for XRPD analysis are not
able to interpret the diffractograms in terms of parameters such
as stacking fault probabilities and dislocation densities, Debye
simulations offer the possibility to systematically vary these and
analyse the resulting effects in the expanded austenite XRPD
patterns. The knowledge gained from studies of this type can
then be utilized to fit experimental diffraction data.

2. Experimental

XRPD data for expanded austenite samples withyN=0.36,
yN=0.40 and yN=0.58 were recorded using a Bruker
D8 AXS diffractometer equipped with a Co anode
(λ(CoKα1)=1.78890̊A, λ(CoKα2)=1.79279̊A) operating in
Bragg-Brentano mode.

Additionally synchrotron diffraction data foryN=0.61 were
collected in transmission mode with a HUBER G670 Guinier
camera (λ=1.18608̊A) at MAXLAB beamline I711 (Cerenius
et al., 2000) with the sample mounted in a Ø=0.3mm capillary
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and Al-foils placed between sample and detector to reduce flu-
orescence. The short wavelength gives access to more diffrac-
tion peaks, and a much better signal to noise ratio can be
obtained within minutes because of the high intensity of the
synchrotron beam. The synchrotron data were corrected for 2θ
zero shift (determined for a Si-standard along with the actual
wavelength and the instrumental broadening), for the intensity
profile related to the 45◦ Guinier tangent angle, and for absorp-
tion in a cylindrical sample withµR=1.5.

3. Simulations
In order to analyse how the diffractograms of expanded austen-
ite are affected by changing the different structural parameters,
a program was written based on the Debye formula. The aim
of this section is to define the parameters used to describe the
structure and explain how these are used in the program to set
up the atomic array that leads to the diffracted intensities.

3.1. Global parameters

To reduce the number of variables to a minimum it was nec-
essary to choose a set of global parameters that were fixed to be
identical for all simulations. From Table 1 the weighted average
atomic number of AISI 316 stainless steel is 25.9, making it a
reasonable first approximation to model all atoms in the FCC
lattice as Fe. The ‘fault free’ lattice parametersa0 (one param-
eter for each value ofyN, c.f. Table 3) obtained in the conven-
tional way were used as standard input for the simulations along
with a thermal parameter set ofbFe=bN=1Å2 which is reason-
able at room temperature and agrees well with values obtained
from Rietveld refinements. The anomalous dispersion correc-
tions f ′ and f ′′ for both Fe and N at the relevant wavelengths
were obtainedvia http://skuld.bmsc.washington.edu/scatter/.

In the simulations an instrumental peak broadening of the
pseudo-Voigt type was added (Cagliotiet al., 1958; Wertheim
et al., 1974). For the Co-data the parameters (u=0, v=0.0616,
w=0.0176,γ1=0.4) were obtained from a peak fit of a austeni-
tised nitrogen-free AISI 316 foil using the same diffractometer
settings assuming that the particle size in this sample is so large
that the only significant contribution to the peak broadening is
of instrumental origin. The instrument parameters for the syn-
chrotron data (u=0.02323,v=−0.00714,w=0.01147,γ1=0.55)
were obtained from a Si-standard.
Table 1
Chemical composition of AISI 316 stainless steel

atomic name Fe Cr Ni Mn Si Mo
atomic number 26 24 28 25 14 42
atomic % 63.60 19.11 12.70 1.74 1.45 1.40

3.2. Model variables

In the present study it was chosen to focus on how a varia-
tion of the particle size, the deformation and twin stacking fault
probabilities,α andβ, the screw dislocation density,ρ, and the
interstitial nitrogen occupancy,yN, affects the XRPD patterns
of nitrogen expanded austenite. Whereas the global parameters
refer to the overall periodic FCC structure, the model variables
describe the deviations from this ideal situation.

3.3. Building the structure atom by atom

The coordinate system chosen to model the nitrogen
expanded austenite FCC structure is directed with thez-axis
perpendicular to the (111) close packed layers which are sit-
uated in thexy-plane, thus a hexagonal cell setting.

Particle size in the simulations is realised by letting the
atomic array be made up bym close packed layers each con-
sisting ofm× m Fe atoms. Hence a crystallite of sizem=120
contains 1203=1728000 Fe atoms and has a mean diameter of
roughly 120·3Å=360Å. One parameter was deemed enough to
describe the particle size since there is no reason to assume an
anisotropic particle shape for a compound with a FCC structure.

Deformation stacking faults in a FCC structure are realised
by changing the stacking sequence of the (111) close packed
layers from ABCABCA to ABCACAB. In the program the
atomic array is built up one close packed layer at the time, and
each time a new layer is added a random number between 0 and
1 is generated. If the number is smaller than the input deforma-
tion stacking fault probability,αin, a deformation stacking fault
is introduced. The final deformation stacking fault probability,
α, is defined as the number of deformation stacking faults in the
atomic array divided bym−1, the number of new layers added.
To get a physically realistic model an average over several (typ-
ically 10) diffractograms simulated for the same value ofαin is
used.

Twin or growth faults refer to the stacking sequence
ABCACBA of the FCC (111) close packed layers as opposed
to the normal ABCABCA order, thus a mirror plane is intro-
duced and the stacking is reversed. After determining the stack-
ing sequence of the (111) layers taking possible deformation
stacking faults into account, the program reconsiders each layer,
generates a random number between 0 and 1 and introduces a
twin stacking fault by reversing the stacking of all subsequent
layers if this random number is less than the input twin fault
probability,βin. Finally the twin fault probability,β, is calcu-
lated as an average over several simulations.

Screw dislocationswith (111) slip planes, screw axes along
[110] and one interatomic distance in displacement can be
added to the structure after building the atomic array as
described above. The desired screw dislocation density,ρin, typ-
ically in the order of 1015–1016m−2, is input and the number of
dislocations to which this corresponds for the given crystallite
size is calculated. The number is then rounded off at random to
one of the two nearest integers in a way that an average over sev-
eral diffractograms should yield the desired real number. For a
m=120 crystallite a dislocation density of 1015m−2 corresponds
roughly to one screw dislocation. A distance threshold to limit
the dislocations from being placed too close to one another is
calculated based onρin, and the dislocations are then placed at
random within the part of the crystallite that has the full thick-
ness using the calculated distance threshold. The shortest dis-
tance between screw dislocations is printed in the output file
along with the actual screw dislocation density,ρ. In order to
keep the high symmetry of the atomic array (identical layers
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perpendicular to the screw dislocation axis) and thereby the
high performance of the Debye calculations, no relaxation of
the structure or removal of Fe atoms in the vicinity of the screw
axes or slip planes is performed by the program. It should be
noted that it was chosen to model the screw dislocations with
slip planes extending to either side of the crystallite at random,
see Figure 1. However, because screw dislocations appear when
a stress is applied in a given direction, these were all modelled
with the same chirality.

Interstitial nitrogen atoms can be placed at random in the
octahedral interstices of the Fe FCC structure while building the
atomic array. For every octahedral interstice a random number
between 0 and 1 is generated, and if the number is less thanyN, a
nitrogen atom is added. It was chosen not to place any nitrogen
atoms at the crystallite surface or at stacking fault positions, the
latter to avoid unrealistically short N–N distances or nitrogen
atoms with tetrahedral coordination. Interstitial nitrogen atoms
in the vicinity of screw dislocation axes and slip planes are
removed during the generation of the axes to avoid clashes.

Figure 1
Section of am=20 crystallite withyN=0.6 viewed along the screw dislocation
axis [110] with [111] directed upwards. Fe light gray, N dark gray. Note the
stacking fault in the bottom of the picture (missing N layer) and the two screw
dislocations with (111) slip planes.

3.4. Approach

The way the Fe FCC lattice is built makes it possible to
exploit the symmetry of the atomic array to speed up the cal-
culation of all the Fe–Fe interatomic distances. However, the
interstitial nitrogen atoms are only introduced into a fraction of
the octahedral interstices in the Fe FCC lattice, so the symmetry
is broken and the Fe–N and N–N distances must be calculated
for every atom pair, resulting in a substantial increase in calcu-
lation time.

The reciprocal relationship between particle size and peak
width is given by the Scherrer equation (Scherrer, 1918). Like
the particle size, the presence of stacking faults and/or disloca-
tions has great impact on the diffraction peak widths, but none
of these parameters affect the integrated intensities. On the other
hand, the introduction of nitrogen into the octahedral interstices
alters the relative intensities of the diffraction peaks, but has no
impact on the peak widths.

Based on these observations it was chosen to do a series
of simulations of the Fe FCC lattice to analyse and possibly
parameterise the effects of stacking faults, screw dislocations
and a combination of these on the peak widths. The nitrogen
atoms were left out because they do not contribute to the peak
widths and because simulations without them are much faster as
just argued. Finally the results of these studies were exploited
to simulate diffractograms for nitrided crystals to be compared
with experimental data.

4. Results

4.1. Peak width analysis

In the following section the effects on the peak widths of
varyingα, β andρ, both isolated and in combination, are anal-
ysed and parameterised. All the specified peak widths,βpeak, are
integral breadths measured in degrees on the2θ-scale for CoKα
radiation. It is assumed that the individual contributions to the
peak width add up in a Gaussian manner, thus:

β2
peak = β2

size+ β2
instr + β2

s f + β2
twin + β2

sd + . . .

Theβ2
size+ β2

instr terms are simply taken as the squared integral
breadths of the diffractogram simulated for the same size and
instrumental parameters, but they can easily be parameterised
using the Scherrer equation (βsize) and the pseudo-Voigt type
instrument broadening (βinstr) as described previously.
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Figure 2
Calculated peak width contributions for different deformation stacking fault
probabilities

Deformation stacking faults in a FCC lattice give rise to
minor peak broadening effects as well as peak shifts of the type
(Warren, 1990):

∆(2θhkl) = 0.2756· α ·Ghkl · tanθ

where the deformation stacking fault parameterGhkl is given
according to Table 2. Since none of the other structural vari-
ables give rise to peak shifts,α can be determined from these.
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Table 2
Stacking fault parameters

hkl 111 200 220 311 222
Ghkl

1
4 − 1

2
1
4 − 1

11 − 1
8

However, it is also necessary to parameterise the deformation
stacking fault peak width contribution,β2

s f, in order to fully
understand the interplay between the different structural com-
ponents. Figure 2 showsβ2

s f for α between 0.01 and 0.04 (the
relevant interval for the experiments according to Christiansen
& Somers (2004)). Each point in the figure represents an aver-
age over 10 diffractograms. For every value ofα the peak
width contributions are calculated for five different values of
m, namely: 100, 200, 300, 400, and 500. Seeing that the points
group nicely around the trend lines,β2

s f seems to be independent
of particle size.

Twin faults in a FCC lattice result in asymmetric peak broad-
ening according to Warren (1990). Simulations were performed
for β between 0.01 and 0.04 since there was no reason to sus-
pect a larger frequency of twin faults than of deformation stack-
ing faults. Forβ in this interval the asymmetry was limited, so
it was decided to focus only on the symmetric peak broaden-
ing effects,β2

twin, depicted in Figure 3. As for the deformation
stacking faults, each point represents an average over 10 diffrac-
tograms and for every twin fault probability,β2

twin is calculated
for the same five values ofm. From the figure it can be seen
thatβ2

twin is independent of particle size and only significantly
different from zero for the 200 peak.
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Figure 3
Calculated peak width contributions for different twin fault probabilities

Screw dislocationsof the type described above give rise to
anisotropic peak broadening effects as seen from Figure 4. Note
that the screw dislocation contribution,β2

sd, to the 111 peak
is significantly smaller than for the remaining peaks (except
for 220), an effect that could potentially explain the large
peak width anisotropies observed in the experimental diffrac-
tograms of nitrogen expanded austenite (Figure 6 and Fig-
ure 7). The diffractograms used to construct Figure 4 are sim-
ulated form=120 crystallites, so the labels on thex-axis corre-

spond roughly to the number of screw dislocations in the crys-
tallite, and each point represents an average over 10 diffrac-
tograms. It can be seen thatβ2

sd is almost proportional to the
screw dislocation density at low densities (trend lines forced
through origo) and that it reaches a saturation level/maximum
around 6·1015m−2 which corresponds to a minimum distance
between the individual screw dislocations around 65Å. The sat-
uration/maximum could be the result of a shadowing effect
where the addition of each new screw dislocation contributes
less and less to the structure. If the shadowing effect is a func-
tion of the number of screw dislocations rather than the screw
dislocation density, thenβ2

sd for a given screw dislocation den-
sity would be less the larger the crystallite. This effect was in
fact observed and it is the reason why Figure 4, as opposed to
Figure 2 and Figure 3, contains data for one value ofmonly.
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Figure 4
Calculated peak width contributions versus screw dislocation densities for
m=120 crystallites

Combining deformation stacking faults and screw dislo-
cations it is not obvious whether the peak width contributions
simply add up asβ2

s f + β2
sd, or whether the structural modifica-

tions correlate so strongly that the resulting peak widths differ
significantly from predictions based on the above analysis. The
β2

twin term was not considered because it only adds to the width
of the 200 peak, which is also substantially broadened by the
presence of both deformation stacking faults and screw disloca-
tions. According to experimental XRPD patterns the 200 peak
is no wider than the 220, 311 and 222 peaks, so twin faulting
is bound to play a very minor part in the structure of nitrogen
expanded austenite.

A number of diffractograms form=120 crystallites withα ∼
0.03 and different values ofρ were simulated to test how well
it is possible to predict the peak widths of diffractograms simu-
lated for expanded austenite containing both deformation stack-
ing faults and screw dislocations. For each value ofρ, Figure 5
shows the differences between the simulated peak widthsβ2

peak
and the peak widths predicted from parameterisation of size,
instrumental broadening, deformation stacking faults (Figures
2) and screw dislocations (Figure 4). Each point in Figure 5
represents an average over 10 diffractograms, and it should be
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noted that the differences are roughly constant and only dif-
fer significantly from 0 for the 200 (proportional toρ) and 220
(constant) peaks. These extra peak width contributions, arising
because of structural correlations between deformation stacking
faults and screw dislocations, are taken into account in the next
section, where the parameterisation of the peak width contribu-
tions from different structural aspects derived in the present sec-
tion is used to determine the model variables for Debye simula-
tions that gives the best fit to the experimental diffractograms.
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Figure 5
The difference between simulated and predicted peak widths form=120 crys-
tallites withα ≈ 0.03 for various screw dislocation densities

4.2. Fitting the experimental data

The modelling strategy to obtain the simulated diffrac-
tograms that best fit the experimental data consists of consid-
ering and including the already mentioned model variables —
particle size, deformation and twin stacking fault probabilities,
screw dislocation density, and interstitial nitrogen occupancy —
one at the time. For the more advanced structural models the
values ofα, ρ andyN reported in Table 3 are mean values and
estimated standard deviations obtained by averaging 10 simu-
lated diffractograms. Table 3 also contains the final R-values
obtained when fitting the simulated diffractograms to the exper-
imental XRPD patterns using a scale factor and a number of
Chebyshev background parameters.

The particle size can be estimated for the experimental
diffractograms using the Scherrer equation. This yields parti-
cle sizes around 500̊A perpendicular to (111) and around 200Å
in all other directions, thus a large peak broadening anisotropy
that cannot be correlated to particle size anisotropy because the
(111) planes are found in four different orientations throughout
the crystal due to the cubic space group symmetry. As a com-
promise it was decided to usem=120 crystallites correspond-
ing to a particle size around 360Å, see Figure 6 for a fit to the
synchrotron data. Seing that it is more than difficult to even esti-
mate the mean particle size, it was deemed unnecessary to spend
extra computer time on modelling the particle size distribution
that will inevitably be present in the samples.
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Figure 6
m=120, R=0.0865

The deformation stacking fault probabilities were previ-
ously determined in the conventional way from the peak shifts
(Christiansen & Somers, 2004). Simulations using a number of
α values close to these were tested for each sample, but in each
case the value ofα leading to the best fit with the experimen-
tal data lay within the estimated standard deviation. Therefore
it was decided simply to use the conventionalα values as input
for the final simulations. From Table 3 it can be seen that the
models improved when the deformation stacking faults were
taken into account; the R-values dropped as compared to the
α=0 models, especially for theyN=0.61 synchrotron data.

The twin fault probabilities were found to be zero for all
samples. With the choice ofm=120 and the conventionalα val-
ues as described above, the 200 peaks of the simulated diffrac-
tograms foryN=0.36 andyN=0.40 are already wider than exper-
imentally observed, so twin faulting which only adds to the 200
peak width (Figure 3) cannot be an issue. For theyN=0.58 and
yN=0.61 samples the experimentally observed peak widths are
better described by the presence of screw dislocations.

The screw dislocation densitieswere determined by least
squares minimisation of the difference between the experimen-
tally determined peak widths and the peak widths predicted
using the parameterisation of peak broadening effects outlined
above. According to this approach the model did not improve by
adding screw dislocations to the simulations of theyN=0.36 and
yN=0.40 samples. For theyN=0.58 sample a dislocation density
of 2·1015m−2 refined, whileρ=4·1015m−2 was estimated for the
yN=0.61 sample. The R-values of Table 3 confirm that the mod-
els did in fact improve when screw dislocations were added to
the structural models of the samples with the highest nitrogen
contents.

The interstitial nitrogen occupanciesof the samples were
determined using thermogravimetry, and these values were sim-
ply used as input for the simulations. As could be expected
this lead to significant model improvements for all experiments,
see Table 3 for R-values and Figure 7 for the final fit to the
yN=0.61 synchrotron data. It has long been known that the inter-
stitial nitrogen atoms have a higher affinity towards Cr than
towards Fe (Odaet al., 1990; Grujicic & Owen, 1995; Shankar
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et al., 1998; Bazaleeva, 2005). To test whether XRPD can be
used to observe possible clustering of N around Cr, a model
placing the nitrogen atoms in small clusters (55 atom cubeocta-
hedra) was tested. The resulting diffractogram was no different
from the random nitrogen case, leading to the conclusion that it
is impossible to detect nitrogen clustering by the use of XRPD.
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Figure 7
m=120,α=0.036(12),ρ=3.9(5)·1015m−2, yN=0.6100(3), R=0.0551

5. Discussion
The first conclusion to be made is that the ‘fault free’ lattice
parameters are correct and that the structural models improve
with the inclusion of deformation stacking faults. One of the
main objectives for taking on the Debye approach was to check
whether the numerical value of the traditionally determined
α parameter actually corresponds to the deformation stack-
ing fault probability, and based on the good correspondence
between the two parameters this was found to be the case.

The experimentally determined XRPD patterns show
extremely narrow 111 peaks corresponding to an unlikely par-
ticle size anisotropy since the (111) planes are oriented in four
different directions throughout a crystal of FCC symmetry. The
observed peak width anisotropies can be partly explained by the
presence of screw dislocations in the atomic lattice since it was
shown that the width of the 111 peak is affected much less by
the presence of screw dislocations than most of the remaining
peak widths.

From the widths of the 111 peaks in the experimental XRPD
patterns it is obvious that the mean particle size of nitrogen
expanded austenite is larger than the 360Å used for the sim-
ulations in the present study. Most likely a better fit would
be obtained if the mean particle size was doubled and the
peak width anisotropy was enhanced by increasing the screw
dislocation density. However, calculation time is another non-
negligible aspect in the choice of particle size; am=120 simula-
tion with yN=0.6 can be performed within 48h on a 3GHz/1GHz
standard PC, while doubling the mean particle size will increase
the calculation time by a factor of26=64. Hence it would no
longer be feasible to test different parameters or average several
diffractograms to obtain a distribution ofα, ρ or yN.

It is an approximation to model all atoms in the FCC frame-
work as Fe, c.f. Table 1. Different atoms have different atomic
radii which inevitably will result in local distortions of the FCC
framework, distortions that were not considered in the simula-
tions, but they are likely to be small if the atomic composition
is random. The variations in scattering amplitudes and more
importantly anomalous scattering contributions among the dif-
ferent atom types are other aspects that need to be considered.
In order to quantify their importance, Rietveld refinements were
carried out both modelling all atoms as Fe and using the cor-
rect atomic composition for AISI316 stainless steel. For the Co-
data the refined thermal parameters increased by 20% in going
from the Fe to the correct model, while the increase for the syn-
chrotron data is hardly significant (2%). This agrees well with
the observation that for the Co-data a better fit between simula-
tions and experiments can be obtained if the thermal parameters
are reduced. It was, however, decided to stay with the physically
sound value ofb=1Å2 for all simulations.

If computational cost was not an issue it would be interest-
ing to do another round of Debye simulations and test structural
aspects such as: 1) Increasing the crystallite size along with the
screw dislocation density to get a better fit to the anisotropic
peaks widths, 2) Adding a particle size distribution, 3) Varying
α, yN and especiallyρ in the search for a better fit to the experi-
mental data, 4) Modelling the FCC framework with the correct
atomic composition to get the correct atomic radii, scattering
factors and anomalous scattering contributions, and 5) Consid-
ering a nonuniform distribution of the different atom types in
the FCC lattice. Will the higher affinity of N towards Cr than
towards Fe lead to a clustering of N (or possibly CrN) resulting
in a number of local distortions in the FCC lattice to accom-
modate areas where the austenite framework is expanded more
or less? And if yes, is this detectable with XRPD? The local
structure of Cr and Fe in stress-free and homogeneous samples
of nitrogen expanded austenite with large interstitial nitrogen
occupancies is the subject of an upcoming combined XRPD and
EXAFS study (Oddershedeet al., in preparation).

Taking all of these considerations into account the Debye
approach, despite of the structural simplifications in order to
make modelling feasible, offers valuable information about the
structure of nitrogen expanded austenite that cannot be gained
in any other way at present.

6. Conclusions

• Debye simulations offer the opportunity to test how
the XRPD patterns of nitrogen expanded austenite are
affected by the presence of stacking faults and screw dis-
locations in combination, structural aspects that cannot be
modelled using traditional XRPD analysis methods such
as Rietveld refinements.

• The Debye approach has the advantage that the mod-
elled structural modifications are physically present in the
structure and not simply convolutions of the XRPD pat-
tern with empirical functions.
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• The method is, however, limited by the particle size seing
that the computational cost goes as the 6th power of the
average dimension. In the present case a mean diameter
of 360Å was the limit.

• The simulations confirm the proposed presence of defor-
mation stacking faults in homogeneous stress-free sam-
ples of nitrogen expanded austenite (Christiansen &
Somers, 2004). The deformation stacking fault probabil-
ity giving the best fit to the experimental XRPD pattern
corresponds to the value conventionally determined from
the peak shifts within the estimated standard deviation.

• There is no evidence to suggest that the structure of nitro-
gen expanded austenite contains twin or growth faults.

• Modelling screw dislocations into the structure of nitro-
gen expanded austenite results in diffraction patterns with
peak width anisotropies that resemble the experimen-
tally observed anisotropies. The fits to the experimental
XRPD patterns show that the screw dislocation density
increases with increasing interstitial nitrogen occupancy.
The actual value of the screw dislocation density corre-
lates strongly with the particle size and a better fit can
probably be obtained if both are increased.

• Simulations of different ways to distribute the interstitial
nitrogen atoms have shown that it is impossible to dis-
tinguish between clustering and a random distribution by
means of XRPD.
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Rothe, J., and Vogel, W. (1998a). Selective oxidation of glucose on bismuth-
promoted Pd-Pt/C catalysts prepared from NOct4Cl-stabilized Pd-Pt col-
loids. Inorg. Chim. Acta, 270(1–2): 95–110.
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Häglund, J., Fernández Guillermet, A., Grimvall, G., and Körling, M. (1993).
Theory of bonding in transition-metal carbides and nitrides. Phys. Rev. B,
48(16): 11685–11691.

Hall, B. D. (2000). Debye function analysis of structure in diffraction from
nanometer-sized particles. J. Appl. Phys., 87(4): 1666–1675.
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