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Abstract

The work presented in this thesis is based on density functional theory (DFT)
applied mainly to calculate conductance properties of nano-scale systems.

A full charecterization of Ag-oxygen chains between Ag contacts has been
performed. Using spin DFT the electronic and magnetic properties of atomically
thin, suspended chains containing silver and oxygen atoms in an alternating se-
quence has been studied. The conductances of the chains exhibit weak even-odd
oscillations around an anomalously low value of 0.1G0 (G0 = 2e2/h) in agree-
ment with experiments [1] in the long chain limit. These unusual conductance
properties are explained in terms of a resonating-chain model, which takes the
reflection probability and phase-shift of a single bulk-chain interface as the only
input. The stability of silver-oxygen chains was studied with a thermodynamic
model. This model has been developed in this work to describe tip-suspended
atomically thin chains between macroscopic size electrodes. It has been tested
with the use of DFT calculations on metal chains for which good agreement with
experiments was obtained.

To ensure the correctness of the DFT based transport calculations presented
here, and in more general in the literature, a set of benchmark calculations for
the Kohn-Sham elastic transmission function of representative single-molecule
junctions has been performed. The transmission functions are calculated using
two different density functional theory methods, namely an ultrasoft pseudopo-
tential plane-wave code Dacapo [2] in combination with maximally localized
Wannier functions and the norm-conserving pseudopotential code Siesta [3]
which applies an atomic orbital basis set. For the systems studied we find that
the Siesta transmission functions converge toward the plane-wave result as the
Siesta basis is enlarged. Overall, we find that a double zeta polarized atomic
basis is generally sufficient, and in some cases necessary, to ensure quantitative
agreement with the plane-wave calculation.

In a detailed DFT study of the carbon monoxide molecule between Pt elec-
trodes, a particularly stable tilted bridge configuration is found, with a conduc-
tance of 0.5G0 over a wide range of electrode displacements. This is in agreement
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with the observed peak at 0.5G0 in the experimentally obtained conductance his-
togram for Pt/CO [4]. Also, for homogenous Pt point contacts and short chains
good agreement with experiments is obtained. A study of CO in Au, Cu and Ni,
reveals that the conductance for CO in the tilted bridge configuration for Ni is
0.5G0, in agreement with experiments [5]. For Au/CO and Cu/CO we find the
effect of CO compared to the homogenous metal contacts is much smaller, in
qualitative agreement with the experimental findings [5]. The observed conduc-
tance properties of Metal/CO are shown to be determined by the local d-band
at the Metal apex atoms.

For carbon nanotubes it is shown that the conductance may be controlled by
site selective adsorption of molecules. A model to explain this behavior is verified
by direct visualization of Kohn-Sham eigenchannel states. The possibility of
non-carbon based nanotubes is also discussed. Both calculations of the strain
energy of infinite PtO2 nanotubes that this material could be a candidate for
non-carbon based nanotubes, as was recently suggested [6].



Resumé

I denne Ph.D afhandling bliver tæhedsfunktional teori (DFT) anvendt i en række
studier af systemers strukturer og elektriske ledningsegenskaber p̊a nanometer-
skala.

En fuldstændig karakterisering af atomare sølv-ilt kæder udspændt imellem
sølv elektroder er blevet udført. Baseret p̊a spin-DFT er de elektriske og mag-
netiske egenskaber af alternerende sølv-ilt kæder blevet studeret. Ledningsevnen
af kæderne viser sig at oscillere som funktion af kædelængden med en lille am-
plitude omkring en usædvanlig lav konduktans p̊a 0.1G0 (G0 = 2e2/h). Dette
er i overenstemmelse med eksperimenter [1] i grænsen for lange kæder. De
specielle ledningsegenskaber forklares ved hjælp af en resonans model for atomare
kæder. Modellen afhænger kun af reflektionssandsynligheden og faseskiftet af en
elektron, som bliver tilbagespredt p̊a en kæde-elektrode overgang. Stabiliteten
af sølv-ilt kæderne er blevet undersøgt p̊a baggrund af en model udviklet til
generelt at beskrive strengspændingen af atomare kæder imellem makroskopiske
metal elektroder. Modellen viser, at sølv-ilt kæder har et lokalt minimum i
strengspændingen, der indikerer, at de er specielt stabile. Et s̊adant lokalt min-
imum i strengspændingen blev desuden kun fundet for de rene metaller, som
eksperimentelt er vist at danne kæder.

Dels for at sikre, at de DFT baserede elektrontransport-beregninger er ko-
rrekte og konvergerede i denne afhandling, og for at afdække de noget uov-
erensstemmende resultater i litteraturen, er et benchmark studie af den elastiske
Kohn-Sham transmissionsfunktion blevet udført. Transmissionsfunktionen er
blevet beregnet med to forskellige og uafhængige DFT koder: (i) En præcis
DFT kode baseret p̊a et planbølge basisst og ultrabløde pseudopotentialer [7]
kombineret med maksimalt lokaliserede Wannier funktioner [8, 9], og (ii) en
normbevarende pseudopotential kode Siesta [3] der anvender atomare orbitaler
som basisfunktioner. For de studerede systemer bliver det vist, at beregningerne
af transmissionsfunktionerne med Siesta koden konvergerer mod resultatet af
den præcise planbølge baserede kode, og at et dobbelt zeta polariseret basissæt
generelt er nødvendigt.
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I et detaljeret DFT studie af et kuldioxid molekyle imellem Pt elektroder
bliver en ”tiltet-bro” identificeret som værende en specielt stabil konfigura-
tion, der desuden har en konduktans p̊a 0.5G0 i overenstemmelse med eksper-
imenter [5, 4]. Det vises ogs̊a, at der er god overenstemmelse med ledning-
sevneberegningerne og etablerede eksperimenter for rene Pt kontakter [10]. Yderligere
vises det, at de generelle trends af transportegenskaberne for CO i Pt, Ni, Au
og Cu kontakter kan forklares af en simpel model for ledningsevnen. Modellen
afdækker, at metal apex atomernes d-tilstande hovedsagligt bestemmer trans-
portegenskaberne.

Desuden demonstreres det, at transportegenskaberne af et kulstofnanorør
kan kontrolleres ved at adsorbere molekyler p̊a bestemte sites. Muligheden for
at lave små nanorør af andre materialer end kulstof er ogs̊a diskutteret. Nanorør
baseret p̊a PtO2 kunne være en mulighed, da de har en forholdsvis lav krumn-
ingsenergi, hvorimod nanorør af MoS2 har en væsentlig højere krumningsenergi.
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Chapter 1

Introduction

The work presented in this thesis is concerned with the physics of systems at
the nanometer length scale and, in particular, the theoretical modeling of the
electronic properties of such systems.

Thanks to advances in experimental techniques for manipulating and con-
tacting atoms and molecules, it is today possible to form stable structures con-
sisting of a nano-scale object, such as an organic molecule, a nanotube, or a
suspended string of atoms, in contact with metallic electrodes. In this way the
electrical properties, i.e. the conductance or more generally the IV character-
istics, of nano structures can be directly measured. Molecular electronics could
be the next step, if the incessant downscaling of semiconductor devices is to
continue to the ultimate limit [11]. At this length scale quantum effects such as
conductance quantization, interference of electron waves, Coulomb blockade, and
Kondo effects become dominant. This demonstrates that the current description
of the semiconductor based electronic devices in terms of semi-classical physics
will no longer apply at such small scales [12, 13, 14]. Nano sized contacts require
a new framework of ideas, representing an important scientific challenge, which
has been taken up in a variety of fields. Chemists may combine their knowledge
of molecules and electrochemistry with a solid state physicist’s expertise in metal
bulk and surface properties.

Experiments on molecular junctions are far from trivial. This is seen in
the rather large variation in results obtained within a given experimental setup
between different experiments. Part of the problem arises from the extreme
sensitivity of the junction’s electrical properties to the detailed atomic arrange-
ment of the contacts, which is beyond experimental control. This is particularly
pronounced at the nano-scale, where the electrons often travel phase-coherently
through the junction. This means that interference effects are directly observable
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2 Introduction

in macroscopic quantities, such as the conductance. One example of this is the
phenomena where the conductance oscillates as a function of wire length [14, 15].

The above discussion demonstrates that experiments on nano-scale junctions
are quite indirect and subject to statistical fluctuations. This means that they
cannot stand alone, but must be complemented by theoretical models. These
models may quantify the effect of the various parameters involved, e.g. atomic
geometries, electron-phonon coupling, and polarization effects of the surround-
ing medium. The development of such models is a great challenge, as not only
the quantum nature of the electrons, but also the atomistic details of the junc-
tion must be accounted for. This calls for combining traditional first-principles
electronic structure methods with the transport formalisms developed for meso-
scopic systems, i.e. micro-meter sized semi-conductor structures. Indeed, the
most popular approach to quantum transport in molecular junctions is based
on a combination of density functional theory (DFT) [16, 17] and nonequilib-
rium Green’s function (NEGF) techniques [18]. This method has been success-
ful for strongly coupled systems such as homogeneous metal point contacts and
monatomic wires. Here, both the size of the conductance, the number of conduc-
tance channels, and conductance oscillations are well reproduced by calculations.
The same good agreement between theory and experiment has been found for a
heterogeneous molecular junction consisting of a single hydrogen molecule cap-
tured between Pt electrodes [10, 19]. However, the DFT-transport method has
been found to systematically overestimate the conductance of weakly coupled
junctions such as benzene-dithiolate between Au electrodes [20, 21, 22]. The
latter could be due to the exchange-correlation functionals, which are known
to underestimate the band gap. Alternatively, the DFT-transport method may
simply not be adequate, due to the underlying single-particle approximation.
Finally, the experiments could be in error or the molecule may not be attached
to the electrode as expected [20, 23].

The DFT-based transport calculations - which occupy the main part of this
thesis - are not trivial. This is mainly because of the open boundary conditions
which are required to simulate transport. Thus, a detailed atomistic description
of the central nanostructure is required. At the same time the coupling to the
infinite leads must also be invoked. In practice, this requires a localized basis set.
However, this is incompatible with the fact that electronic wave functions tend
to delocalize. One option is to transform to Wannier-like functions [9, 24, 8]
to obtain a minimal and accurate basis. Another is to use atomic-like basis
functions from the outset [18]. Both approaches have pros and cons which will
be addressed in this thesis.

Transport calculations are very sensitive to changes in the scattering po-
tential due to the interference effects. In fact, there are several examples in
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the literature where different transmission functions have been reported for the
same or very similar systems. Regardless of the validity of the DFT-transport
approach in principle, and given the fact that it seems to perform well in prac-
tice for strongly coupled systems, it is important to remove such confusions and
establish some benchmarks. This requires a detailed study and comparisons of
independent computation schemes. Such a benchmark study has been performed
in this work by comparing results from a scheme using Wannier-like orbitals ob-
tained from accurate plane-wave calculations with results from an atomic-like
basis set code.

Monatomic wires have been found to exhibit peculiar and unexpected chem-
ical and electrical properties [25]. In recent break junction experiments it was
observed that silver exposed to oxygen could form unusually long wires [26].
Also, the average conductance as a function of wire lengths was rather surpris-
ing. An initial exponential-like decrease transitioned into a constant value for
long wires. In this thesis work, a full characterization of silver-oxygen monatomic
chains between silver electrodes has been performed based on standard DFT and
the DFT-transport method. The calculated electrical and energetic properties
are both in good agreement with experiments. The former reveals the mecha-
nism behind the unusual conductance observed for a silver contact exposed to
oxygen.

As another part of this project, we studied a carbon monoxide (CO) molecule
between Pt, Ni, Au and Cu electrodes. In agreement with experiments [5] a con-
ductance of half a quantum conductance unit 0.5G0, G0 = 2e2/h, is observed in
the calculation. This is found to be related to a special CO bridge configuration.

Finally, a project on nanotubes showed that the conductance of carbon nan-
otubes can be controlled by site selective adsorption of molecules. Also, ma-
terials other than carbon may be envisioned forming nanotubes having special
electronic and mechanical properties. A limited study of the stability of such
non-carbon nanotubes has been conducted.

Outline of the thesis

Chapter 2 is an overview of density functional theory and some aspects
related to its numerical implementation.

Chapter 3 introduces a theoretical framework based on Green’s functions for
calculating the current through a general quantum contact.

Chapter 4 provides details on how the general Green’s function transport
scheme may be connected with DFT.

Chapter 5 presents a benchmark study of the DFT transport method and is a



4 Introduction

summary of Paper II.

Chapter 5 describes a thermodynamic model for tip-suspended chains, and
presents DFT calculations for metal chains.

Chapter 6 reviews an experiment on a silver/oxygen contact with silver
electrodes, and presents DFT calculations to fully characterize the
experimental results. This chapter is based on Paper III and V.

Chapter 7 presents the work on CO in Pt, Ni, Au and Cu nano-contacts and
is primarily based on Paper I.

Chapter 8 presents work on both carbon and non-carbon nanotubes. The
former is based on Paper IV.



Chapter 2

Electronic Structure
Calculations

Electronic structure theory deals with the quantum mechanical description of
electrons in atoms, molecules and condensed phases. The main goal of electronic
structure methods is to evaluate total energies, forces, response functions and
other quantities of interest. Due to increasing computer power, ab-initio elec-
tronic structure calculations have become a valuable tool for studying a variety
of systems, including surfaces, nanotubes and nanocontacts.

After a brief introduction to the many-body problem, a description of the
main concepts of DFT follows. The construction of explicit exchange-correlation
functionals is then discussed, and finally the important aspects of the numerical
implementation of DFT are outlined. Atomic units will be assumed throughout
this chapter, e2 = ~ = me = 1, unless stated otherwise.

2.1 The many-body Hamiltonian

A system composed of negatively charged electrons and positively charged nuclei
constitute matter and may be described quantum mechanically by an electronic
and nuclear dependent wave function The dynamics of the wave function is gov-
erned by a self-adjoint operator on a Hilbert space: The many-body Hamiltonian.
The large difference in mass between electrons and ions (me/MI ≈ 10−3−10−6)
suggests that the electron and ionic parts of the Hamiltonian may be decou-
pled. This decoupling is known as the Born-Oppenheimer approximation, and
constitutes a major simplification of the many-body Hamiltonian. Here, elec-
trons may be viewed as responding instantaneously to changes in the nuclear
positions, which in turn are kept fixed. The Hamiltonian describing N electrons
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6 Electronic Structure Calculations

moving in the field of M fixed nuclei with charges Za is the sum of the electron
kinetic energy T , the attractive Coulumb interactions between the electrons and
the fixed nuclei Ven, the repulsive Coulomb interaction among the electrons and
nuclei, termed Vee and Vnn, respectively, so that

Ĥ = T̂ + V̂en + V̂ee + V̂nn. (2.1)

A more explicit form may be obtained by replacing V̂nn by a static external
potential V̂ext. In the position representation the Hamiltonian in Eq. 2.1 takes
the form

H = −1
2

N∑

i=1

∇2
i −

∑

i,a

Za

|ri −Ra| +
∑

i<j

1
|ri − rj | +

∑

a<b

ZaZb

|Ra −Rb| , (2.2)

and acts on the Hilbert space of complex, square integrable and anti-symmetric
functions Ψ(r1, r2, ..., rN ).

Finding a ground state Ψ0 and possible excited states Ψn is one of the main
problems in condensed matter physics and quantum chemistry. A ground state
and the corresponding energy E0 satisfies the eigenvalue equation HΨ0 = E0Ψ0.
The variational theorem for the ground state E0 ≤ 〈Ψ|H|Ψ〉/〈Ψ|Ψ〉 directly
suggests an approximate scheme where the groundstate is searched for with the
help of a finite set of trial functions. Many methods in the field of quantum
chemistry are based on this scheme, and one of the earliest methods along this
line is the Hartree-Fock (HF) approximation.

Here, the trial functions are taken as a set of N -particle Slater determinants.
The energy not accounted for in HF is generally referred to as the correlation
energy EHF

c = E0 − EHF
0 . The HF energy usually accounts for 99% of the

exact total energy but the remaining 1% turns out to be very important for
describing chemical phenomena. For example,the cohesive energy of the noble
metals such as Au, Cu and Ag are underestimated by a factor of 3[27] and some
alkali metals are unstable at the level of HF theory [27]. To include correlation,
the set of HF trial functions should obviously be extended and the question of
how to accomplish this naturally arises. In configuration interaction (CI) the
single Slater determinant trial function is replaced by a linear combination of
Slater determinants. The Slater determinants in CI are sometimes generated by
low-energy particle-hole excitations of a reference Slater determinant.

A different variational scheme is offered by the variational Quantum Monte
Carlo method, where a trial function consists of a HF determinant multiplied
by a tunable Jastrow factor. The Jastrow factor is designed to increase the
correlation between opposite spin electrons, which is totally neglected in HF,
and thereby keep them apart.
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Methods based on many body perturbation theory have also been devel-
oped, such as Møller-Plesset perturbation (MP) theory [28], which take a sum
of Fock operators as the unperturbed Hamiltonian. Also, single particle Green’s
functions may be used to obtain the ground state energy. Here, standard di-
agrammatic techniques may be used to sum a part of the perturbation series
to infinite order. One such method is the GW approximation to Hedin’s equa-
tions [29]. Regardless of the details in improving on the HF method mentioned
above, all the methods share the common feature of a high computational cost.

An alternative scheme focusing on ground state properties is provided by
density functional theory (DFT) [16, 17]. The electron density, which only de-
pends on a single position r, replaces the more complex objects, such as the
wave functions and green’s functions, which depend on the positions of all N
electrons, rN , as the central object. DFT is presently the most powerful method
for calculating ground state properties of atomic-scale systems. The next section
is devoted to a general introduction to DFT.

2.2 Density functional theory

The Hohenberg-Kohn (HK) theorems [16] states that for a system with a non-
degenerate ground state the ground state density n(r) uniquely determines the
external potential Vext(r) within an additive constant. Since the external po-
tential in turn defines the Hamiltonian in Eq. 2.1, the electron density also
determines the ground state wave function, n0 → Ψ0[n0]. Consequently, the
correspondence n0 → 〈Ψ[n0]|Â|Ψ0[n0]〉 shows that all ground state properties
are determined by the ground state density, including the ground state energy.

The second HK theorem provide an energy variational principle E0 ≤ Ev[ñ],
where ñ is the trial electron density. In fact, the set of trial densities {ñ}
may be associated with the ground state wave function of the Hamiltonian in
Eq. 2.1 with some external potential vext(r). The difficulty in mathematically
characterizing this set of densities has become known as the v-representability
problem. However, a more general and useful formulation of the HK theorems
is known as the constrained search

Ev[n] = min
n→N

{
min
Ψ→n

〈Ψ|T̂ + V̂ee|Ψ〉+
∫
drvext(r)n(r)

}
(2.3)

where the search is over non-negative densities which are termedN -representable.
The first term F [n] = minΨ→n

〈
Ψ|T̂ + V̂ee|Ψ

〉
does not depend on the external

potential, and is in this sense a universal functional. The exact form of F [n] is
not known, and the constrained search approach is therefore not of practical use.
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The Kohn-Sham (KS) scheme deals with this problem in a indirect but formally
exact way [17].

2.3 Kohn-Sham theory

Kohn and Sham assumed that for a given interacting ground state density
n(r) there exists a potential vs such that the ground state density of the non-
interacting Hamiltonian hs = T + vs is equal to the interacting ground state
density n(r). The potential vs is in turn uniquely determined by n(r) such that
we get the energy density functional

Es[n] = Ts[n] +
∫
vs(r)n(r)dr. (2.4)

Now, the energy in Eq. (2.3) may be rewritten on the form

Ev[n] = Ts[n] + EH [n] + Exc[n] +
∫
drvext(r)n(r), (2.5)

where EH is the classical Hartree energy and the exchange-correlation (xc) func-
tional is defined by

Exc[n] = F [n]− Ts[n]− EH [n]. (2.6)

From this definition it is clear that the xc-functional will contain the correlation
contribution to the kinetic energy and the electron-electron interaction energy
beyond the classical Hartree term. The principle behind introducing the xc-
functional in this way is to extract as much energy as possible such that Exc is
a (possibly) small correction. In order to determine the potential vs, we note
that both Ev[n] and Es[n] are minimized by the ground state density n0. The
variational densities should integrate to N . The minimization of Ev/s[n] under
the constraint that the variational densities should integrate to the total particle
number N may be expressed in terms of functional derivatives as

δ

δn(r)
(Ev/s[n]− µ

∫
n(r)dr)) = 0, (2.7)

where µ is a Lagrange multiplier and leads to the potential vs

vs(r)[n] = vext(r) +
∫
dr′

n(r′)
|r − r′| + vxc(r)[n], (2.8)

where vxc(r) is the exchange correlation potential defined by δExc[n]/δn(r). The
potential vs defines a single particle Hamiltonian: The Kohn Sham Hamilton.
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The ground state density is obtained from the N lowest Kohn Sham eigenstates.
However, since vs is dependent on the density, the solution must be obtained
self-consitently, i.e. until the density defining vs is equal to the density obtained
from the corresponding Kohn Sham eigenstates.

2.4 Exchange-correlation functional

The Kohn-Sham scheme is in principle exact, but the expression for the exchange
correlation functional Exc is not known, and includes many body effects. In order
to make the underlying physics clear, Exc may be written in the form [30]

Exc[n] =
∫
drn(r)

∫
du

n̄xc(r, r + u)
|u| , (2.9)

where n̄xc(r, r +u) =
∫ 1
0 n

λ
xc(r, r+u) is the so-called system averaged exchange

correlation hole. The coupling constant λ = 0 represents a non-interacting
system, while λ = 1 corresponds to the fully interacting electron system. n̄xc

is a consequence of the depletion of electrons around a single electron, since an
electron at position r reduces the probability of finding another electron near
this point. Integrating nλ

xc over all space gives −1, implying nλ
xc has the same

charge as a proton.

2.4.1 Explicit exchange-correlation functionals

The simplest approximation to the exchange-correlation is obtained by assuming
that the exchange-correlation hole resembles the hole in a uniform interacting
electron gas with the same density. This is the local density approximation
(LDA)

ELDA
xc =

∫
n(r)εhom

ex (r)dr. (2.10)

The function εhom
xc is an xc-energy density which in practice is represented by an

analytic function fitted to calculations [31]. The LDA has been rather successful,
despite that it is only valid for slowly varying densities. An improvement to the
LDA is the so-called Generalized Gradient Approximation (GGA), where also
the gradient of the density is considered

EGGA
xc =

∫
f(n(r),∇n(r))dr. (2.11)

However, the function f must be chosen with care, and conditions such as the
xc-hole sum rule, must be imposed by hand. The xc functional used for most
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of the calculations in this work is the GGA of Perdew, Burke and Ernzerhof
(PBE) [32] or the closely related PW91 GGA [33].

2.5 Numerical implementation of DFT

This section describes a selection of important aspects of the numerical imple-
mentation of a DFT code. A number of approximations are introduced and the
associated error size is often a compromise between computational time and ac-
curacy. A criteria for a reasonable error size is the requirement of being smaller
than the uncertainty related to the employed approximative exchange-correlation
functional. The DFT codes used throughout this work are: (i) Dacapo [2]
based on plane waves, and ultrasoft pseudopotentials [7], and (ii) Siesta [3]
based on atomic orbitals and norm conserving pseudopotentials. The real space
code Gpaw [34] based on the projector augmented wave methods has been used
occasionally.

2.5.1 Boundary conditions

The KS Hamiltonian operator is a second order partial differential operator in
the position representation. To this end, a specification of certain boundary
conditions is required in solving for the eigenfunctions and spectrum of the KS
Hamiltonian. The choice of boundary conditions may significantly influence the
spectrum and eigenfunctions. For electronic structure calculations, two types
are usually employed: periodic and vanishing boundary conditions. The latter
is often encountered in quantum chemistry codes, reflecting the focus on finite
systems such as atoms and molecules, for which they are well-suited.

Periodic boundary conditions may be used to efficiently treat infinite periodic
systems such as bulk crystals. Also, infinite systems with helical symmetry,
such as nanotubes and DNA strings, may be treated using a generalized form
of periodic boundary conditions where screw-operators are introduced. These
are simply translational operators augmented by a rotation about the tube axis.
When considering periodic systems, one may decompose the total one electron
Hilbert space into k-subspaces with the wave vector k in the first Brillouin
zone. The Hamiltonian leaves each k-subspace invariant and thus allows for the
diagonalizing of each subspace separately resulting in a spectrum εnk and wave
functions in Bloch’s form [35]

ψnk(r) = eik·runkr, (2.12)

where unk(r) is a function with the periodicity of the underlying lattice.
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By forming supercells, it is possible to model a much larger class of non-
periodic structures using periodic boundary conditions. Within the supercell
approach, the system of interest is modeled within a finite cell which is repeated
in all directions to form a super-lattice. In this way, molecules may be modeled
by including an appropriate amount of vacuum regions in the supercell such that
molecules in the superlattice do not interact. Also, surfaces may be modeled in
this way by introducing a surface slab. The ground state expectation value of a
one particle operator R is to be calculated as an integral over the first Brillouin
zone

〈R〉 =
1
VBZ

∫

BZ
R(k)dk, (2.13)

where VBZ is the volume of the first Brillouin zone andR(k) =
∑

n∈occ〈ψnk|R|ψnk〉.
In practice the Brillouin zone integral is approximated by a finite sum, 1

VBZ

∫ →∑
kwk, where wk are appropriate weights. Effective methods has been devised

to construct special k-point sets [36] for the approximated Brillouin zone integra-
tion. Supercells are always applied in the Dacapo, Siesta and Gpaw program
for this work. However, Gpaw may also use vanishing boundary conditions.

2.5.2 Description of the ions

Solving the non-interacting KS-equations is a much more manageable task than
solving for the many-body Hamiltonian directly. However, the KS-equation
still poses substantial numerical difficulties: (i) In the the atomic region near
the nucleus the kinetic energy of the electrons is large and the wave functions
oscillate rapidly so that a very fine grid is required for an accurate numerical
representation. The large kinetic energy makes the KS-equations stiff in the
sense that a change in the chemical environment will only have a small effect
on the shape of the wave functions in the atomic-region. This suggests that the
wave-function in the atomic-region can be well represented by a small basis set.
(ii) In the bonding region between atoms the situation is reversed. The kinetic
energy is small and the wave-functions are smooth. The latter thus respond
strongly to a change in the environment, which in turn requires a large and
flexible basis set.

The combination of the two requirements (i) and (ii) is a non-trivial task,
and different strategies have been developed which may broadly be divided into
three groups.

Atomic like orbitals have traditionally been most appealing to quantum chemists.
The wave function is well represented in the atomic region by a few atomic
like orbitals, and the bonding is then to be described by the overlapping
tails.
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Pseudopotentials aim at representing the bonding part of the wave function
between the atoms in an numerically accurate way. To this end, it is
exploited that bonding to a large extent is determined by the outermost
valence electrons of the individual atoms. Consequently, the chemically
inert core electrons are assumed to be frozen in the atomic core states,
and are in turn neglected in the self-consistent solution of the KS problem.
This leads to a major reduction in the number of wave functions which
must be handled. However, the remaining wave functions are still required
to be orthogonal to the core states, which introduces rapid oscillations in
the atomic region. In order to use a coarse grid to accurately represent the
valence wave functions, the strong field from the nucleus is replaced by a
softer pseudopotential.

Augmented wave methods use a composed basis of the localized atom like
basis functions in the atomic region and a set of so-called envelope functions
in the interfacial region appropriate for describing the bonding between the
atoms.

A general and in principle exact framework, for which the pseudopotential
method may be seen as an approximations, is offered by the projector aug-
mented wave method (PAW) [37, 38]. The PAW method is based on the simple
principle of a defining a linear transformation τ from smooth easily numerical
representable wave functions {φ̃n} to the exact KS all electron wave functions
{φn}

ψn = τψ̃n, (2.14)

where the operator τ has to modify the smooth pseudowave function in each
atomic region so that the resulting wave function has the correct all electron
nodal structure. The general form of a pseudopotential for ion a follows directly
from the PAW formalism. It may be written as [38]

va
NL = va(r) +

∑

ij

|βa
i 〉V a

ij〈βa
j |, (2.15)

where va(r) is a local part and {βi(r)} are projector functions localized in the
core region. If the pseudopotentials are constructred such that the integrated
charge of the pseudo wave functions is equal to the all electron wave function in
the atomic (core), they are refered to as norm-conserving. For some elements,
such as Ni and O, the high amplitude of the valence state around the nucleus
are still retained in norm-conversing pseudopotentials and in return an accurate
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description of the atomic region is still required. However, relaxing the con-
straint of norm-conservation may alleviate this problem as was first shown by
Vanderbilt [7]. The resulting pseudopotentials are termed ultrasoft. In return
for an improved smoothness in the atomic region, the pseudo wave functions
{ψ̃n} now satisfy a generalized orthonormality relation 〈ψ̃n|S|ψ̃m〉 = δnm, where
S = 1+

∑
ija |βa

i 〉Qa
ij〈betaa

i | is a generalized overlap operator [7]. It is related to
the linear transformation in PAW by S = τ †τ [37].

In this work both ultrasoft and normconserving pseudopotentials have been
used.
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Chapter 3

Quantum Electron Transport

This chapter provides an introduction to the basic theoretical concepts and
framework concerning the conductance from contacts of mesoscopic size to junc-
tions consisting of a only a single atom or molecule.

3.1 Calculating the current

This section begins with a description of a rather general framework to describe
the flow of electrons from one electron reservoir through a quantum conductor
and into a second reservoir. The introduction of nonequilibrium Green’s function
may then lead to a compact expression for the calculating the current.

To this end, we introduce a model where a quantum conductor (C) is con-
nected to a left (L) and right (R) lead. For time t < t0 we consider the three
regions to be disconnected, each being in local equilibrium with the chemical
potentials µL, µC and µR as shown schematically in Fig. 3.1. The three systems
are connected at time t = t0 and electrons will start to flow from the lead with
higher chemical potential through the conductor and into the lead with a lower
chemical potential. The initial discharge from one lead will give a transient cur-
rent. However, in this work we shall only be concerned with the steady state
current.

We now introduce an orthonormal set of orbitals {φi} and the single particle
Hilbert space H spanned by {φi}. To limit the technical details, in this section
the discussion of the general case of a non-orthogonal basis is postponed to the
description of the implementation using DFT in Sec. 4.1.

The orbitals φi are assumed to be localized in such a way that H may be
decomposed into three orthogonal subspaces H = HL +HC +HR, where each
subspace is associated with one of the three subsystems L, C and R, respectively.

15
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The noninteracting part of the Hamiltonian for the three connected regions is

Lµ µR

(C)

µC

ConductorLeft lead
(L)

Right lead
(R)

Left lead
(L)

Lµ µR

Right lead
(R)

Before coupling

After coupling

(C)

µC

Conductor

I

Figure 3.1: The subsystems are held in thermodynamic equilibrium at, in general, tree
different chemical potentials µL, µC , and µR. After coupling is made electrons will
discharge from the lead with highest chemical potential through the central conductor
and into the other lead.

written as
ĥ =

∑

i,j,σ

hijc
†
iσcjσ, (3.1)

where the sum is over basis functions for the entire system. To describe the
system before connection is made we introduce

ĥ0 = ĥLL + ĥCC + ĥRR, (3.2)

where ĥαα is obtained by restricting i, j to α ∈ L,C,R. To allow for two-
body interactions in the central region the interacting part of the Hamiltonian
is denoted by V̂ and the full Hamiltonian describing the system may be written
as
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Ĥ(t) =
{
Ĥ0 = ĥ0 + V̂ , t < t0
Ĥ = ĥ+ V̂ , t ≥ t0.

(3.3)

Before the connection is made, all three subsystems are in local thermal
equilibrium and are described by their respective equilibrium state operator.
For the central region it is

ρC =
1
ZC

e−β(ĥCC+V̂−µα), (3.4)

where ZC is the partition function and beta = kBT
−1, where kB is Boltzmann’s

constant and T is the temperature. The state operators for lead α may be
obtained by replacing C with α and removing V̂ , since two-body interactions
are only included in C. The state of the decoupled system is ρ̂ = ρ̂Lρ̂C ρ̂R and
the time evolution of ρ at times t ≥ t0 is

ρ̂(t) = Û(t)ρ̂Û †(t), t ≥ t0, (3.5)

where Û(t) is the solution of i∂tÛ(t) = Ĥ(t)Û(t). By using the equation of
motion technique for ˆρ(t) the Kubo formula can be derived, which in turn may
be used to calculate the linear-response conductance [39]. In this work a different
approach is taken, where the current is calculated in terms of single particle
nonequlibrium Green’s functions [40]. This is a method explored by Meir and
Wingreen [41].

The particle current from lead α may be calculated as the time derivative of
the expectation value of the lead α number operator

Iα(t) = −i〈[H,Nα]〉0 (3.6)

= i
∑

iα,jc

hiα,jc〈c†iα(t)cjc(t)〉0 − h∗iα,jc
〈c†jc

(t)ciα(t)〉0, (3.7)

where iα and jc refers to basis functions in lead α and the central region, respec-
tively. The matrix elements hiα,jc = 〈φiα |ĥ|φjc〉 describes the coupling between
lead α and the central region. Time evolution in Eq. 3.6 is governed by the full
Hamiltonian, while the expectation values are with respect to ρ0, hence the sub-
script 0. The lesser Green’s function is defined by G<

iα,jC
(t, t′) = i〈c†iα(t)cjC (t′)〉0

and thus the two terms in Eq. (3.6) can be recognized as the equal time lesser
Green’s function. The machinery of nonequilibrium Green’s functions [42] may
at this point be applied to obtain expressions for the lesser Green’s functions.
This results in the compact expression for the particle current from lead α
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Iα =
∫

dε

2π
Tr[Σ<

α G>
C −Σ>

α G<
C ], (3.8)

where the trace is over central region basis functions and the bold face indicate
matrices. In the next section explicit expressions for the self-energies and Green’s
functions will be given for the case of non-interacting electrons.

3.2 Phase-coherent transport

For non-interacting electrons the self-energy for the central region GF is only
composed of lead contributions, Σ = ΣL + ΣR. Furthermore the lesser and
greater GF now take a particular simple form [42]

G<
C(ε) = Gr

C(ε)[fL(ε)ΓL + fR(ε)ΓR]Ga
C(ε), (3.9)

G>
C(ε) = Gr

C(ε)[(fL(ε)− 1)ΓL + (fR(ε)− 1)ΓR]Ga
C(ε), (3.10)

where fα(ε) is the Fermi function of lead α and Γα is given by

Γα = i(Σr
α −Σa

α). (3.11)

Inserting these expressions into the current formula (3.8) I = (IL − IR)/2 leads
to the simple expression

I =
2e2

h

∫
(fL(ε)− fR(ε))T (ε)dε, (3.12)

where the transmission function is defined by

T (ε) = Tr
[
Gr

S(ε)ΓL(ε)Ga
S(ε)ΓR(ε)

]
. (3.13)

Note units have been introduced in Eq. (3.12). In this work we shall only be
concerned with the low bias and low temperature for which the conductance
G = I/V becomes

G = G0T (εF ), (3.14)

where the quantum conductance unit is given by G0 = 2e2/h. The transmission
coefficient matrix, t(ε), as defined within Landauer-Büttiker theory, is related
to the GFs by t(ε) = [ΓR(ε)]1/2 GR

S (ε) [ΓL(ε)]1/2, showing the equivalence of
Eq. (3.14) to the Landauer formula [43].

Finally, we mention that phase-coherent transport refers to the situation
where electrons are behaving as weakly interacting quasi-particles with a life
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time greater than the time it takes the electrons to traverse the central scat-
tering region. The central region Hamiltonian may then be approximated with
an effective single particle Hamiltonian leading to the simplified conductance
formula in Eq. (3.13)

3.3 Transport through a single level

To illustrate and develop a physical understanding of the general formalism
developed above, transport through a single level contacted to a left and right
lead is considered. As we shall see later in this work, this model is well-suited
for analyzing the electron transport properties of more complicated molecular
junctions. For a more detailed description of the model we refer to Paper I and
VI.

We consider the Newns Anderson model [44] and introduce a single molecular
state φc associated with the central region subspaceHC and an orthonormal basis
φαi associated with the α lead subspace Hα. The molecular state is coupled to
infinite leads via tαi = 〈φc|H|φαi〉. The GF for the molecular state is

Gc(ε) =
1

ε− εc − ΣL(ε)− ΣR(ε)
, (3.15)

and the α lead self-energy is given by

Σc(ω) =
∑

ij

tαi(g0
α)ijt

∗
αj . (3.16)

A particularly elegant representation is obtained by introducing the group orbital
of lead α as

γα =
1
Vα

∑

i

tαiφαi, (3.17)

where the normalization factor Vα = (
∑

i |tαi|2)1/2. The group orbital is a linear
combination of α lead basis functions with the weights given by the coupling
strength. The group orbital may therefore be expected to be localized near the
molecular state at on the level-lead interface. It can be shown that the coupling
between |φc〉 and any state in the lead orthogonal to |γα〉 is zero. Using this
shows that the molecular state is only coupled to the lead via the group orbital.
The relations between the diagonal elements of the Green’s functions and the
projected density of states (ρ = −π−1Im[Gii]) it may be shown that in the case
of a symmetric coupling the transmission function in (3.13) takes the simple
form

T (ε) = 2π2|V |2ρc(ε)ρ0
γ(ε). (3.18)
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In the case of strong asymmetric coupling where R is the “weak” side such that
VL >> VR we obtain

T (ε) = 4π2|V |2ρc(ε)ρ0
γ(ε), (3.19)

The later two equations are particular appealing. The first says that the trans-
mission is determined by three parameters: The level density of states ρc, the
coupling strength V = (VL = VR) and the density of states of the group orbital
ρ0

γ for the isolated leads, i.e. without the coupling V . The second says the
transmission is determined by the same quantities, but now the lead quantities
only refers to the weakly coupled side. This is reminiscent of scanning tunneling
microscopy theory, where the current is determined by the density of states of
the surface being scanned, i.e. the “weak side”.

3.4 Transport through a chain

The single level method developed above may also be applied to bulk-chain-bulk
systems, such as the one shown in Fig. 3.2. However, this requires both the
transmission resonance overlaps and interference effects between the levels are
small. In order to overcome these restrictions we introduce a simple resonating-
chain model. The model is particular well suited to study transport in not only
atomic chains but in general systems where a periodic potential is sandwiched
between two electrodes and has been applied in the study of nanotubes [45, 46].
In fact the model is exact for coherent transport for chains above a certain
chain length. The model is based on the Landauer Büttiker formalism for con-
ductance [47, 48, 49] where scattering states, instead of Green’s function is the
central object. Scattering states are the eigenstates of the open system imposed
with scattering boundary conditions. In the following we will consider eigen-
channel states, which are a obtained by the unitary rotation of the scattering
states that diagonalized the transmission probability amplitude matrix t [50].

Now, consider an electron approaching the chain from the left lead. It will
have a certain transmission probability T1 for entering into the chain. Inside
the chain the electron can propagate back and forth between the two (identical)
contacts, so that every time the electron impinges on one of the contacts it is
reflected with a probability R1 = 1 − T1 and it furthermore picks up a phase
shift φ1 = arg(r), see Fig. 3.2. We furthermore assume that the electron in
the infinite chain is characterized by a single Fermi Block wave vector k. The
interference between all the reflected waves then leads to a total transmission
probability T through the chain system of
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L

ψ+k

R 1

ψ−kr

Figure 3.2: The resonating-chain model for a chain of length L. The parameters
describing the resonant transport is extracted from a chain-bulk contact.

T =
1

1 + 4 R1
(1−R1)2

sin2(kL+ φ1)
(3.20)

where L denotes the distance between the two contacts. This expression is exact
for coherent transmission in the limit where the reflections at the two ends can
be considered independent, i.e. it is required that the potential in the central
part of the chain is unaffected by the two contacts. It should be noted that
there is a certain arbitrariness in the definition of the distance L between the
two contacts, however, different choices for L also gives different results for the
phase shift φ1 [51] so that Eq. 3.20 still holds.
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Chapter 4

Conductance Calculations

The purpose of this chapter is to provide details of how the general transport
formalism described in chapter 3 can be combined with Kohh-Sham density
functional theory to give a fully atomistic description of phase-coherent electron
transport in nano-structures.

A number of different first principles methods have been developed to de-
scribe the phase-coherent transport properties of realistic atomic-sized junctions.
Most of these methods are based on either a direct calculation of the scatter-
ing wave-functions or a calculation of the single-particle Green’s function. The
method in the present work is based on the latter which provides a numerically
efficient scheme. Further, this method may be extended to include other in-
teractions , such as electron-electron and electron-phonon interactions. On the
other hand, scattering states can sometimes provide an alternative and useful
view of the electron transport properties of a nano-junction. However, it was
recently shown that one may calculate scattering states efficiently and directly
from central region single-particle Green’s functions [52]. Thus combining the
advantages of both approaches. An application of this approach can be found
in Paper V.

Although the Kohn-Sham Hamiltonian may provide the exact electron den-
sity, there is no obvious reason why it should also give the correct current.
Moreover, it is not easy to estimate the effect of using approximate xc-functionals
such as the LDA or GGA. We mention here that more sophisticated methods for
quantum transport based on configuration interaction, the GW method, time-
dependent DFT, and the Kubo formula have recently been proposed [53, 54,
55, 56, 57]. However, these schemes are very computationally demanding when
compared to the method presented in this chapter. Further, these schemesare
no a realistic choice for atomistic nanojunctions. Besides this more fundamental

23
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issue concerning Kohn-Sham DFT for transport, a number of numerical approx-
imations involved in actual implementations. These include choice of exchange-
correlation potential, pseudopotentials, basis functions and boundary conditions.

This chapter is organized as follows: First the general setup for phase coher-
ent transport is described, providing a more technical discussion of the formal-
ism introduced in the preceding chapter. This is followed by a discussion of the
boundary conditions, i.e. how to go from a supercell with periodic boundary
conditions in all directions, to a system with open boundary conditions in the
transport direction. In particular, the choices made in the method implemented
in this work are discussed. Finally, the basis sets applied are briefly discussed,
together with their respective advantages and disadvantages in connection with
the methods used to perform conductance calculation in this work.

4.1 General setup

The conductance formula given in Eq. 3.13,

G = G0Tr[Gr
CΓLGa

CΓR], (4.1)

constitute the starting point for numerical calculations. This is valid for non-
interacting electrons moving phase-coherently trough a central conductor region
(C) connected to a left (L) and right (R) lead. We make the additional assump-
tion that the potential in the leads are periodic with the underlying lattice in
the transport direction. In return, a very efficient computational scheme can be
developed. The KS-Hamiltonian defining our system is given by

H = −1
2
∇2 + vs(r) + VNL, (4.2)

where vs is the local part of the effective potential and VNL is the non local
part associated with the pseudopotential. The Hamiltonian in terms of a basis
set {φi} with the desired property of being localized in the transport direction,
takes the (matrix) form

H =




HL H†
CL 0

HCL HS HCR

0 H†
CR HR


 , (4.3)

where the zeros reflect the vanishing coupling between the leads. In order to
deal with nonorthogonal basis functions, we introduce the overlap matrix Sij =
〈φi|φj〉.
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The transmission function is to be determined from the Green’s functions
(GFs) in the presence of the leads. The retarded GF matrix for the entire
system is defined by

(zS −H)Gr(ε) = I, (4.4)

where z = ε + i0+. It is important to recognize that Gr differs from 〈φi|(zŜ −
Ĥ)−1|φj〉. In fact, Gr corresponds to (zŜ− Ĥ)−1 in the dual basis, and the two
are related by

〈φi|(zŜ − Ĥ)−1|φj〉 = [SGr(ε)S]ij . (4.5)

The division into three regions (L), (C) and (R) can be used to write Eq. (4.4)
explicit as




zSL −HL zS†CL −H†
CL 0

zSCL −HCL zSC −HC zSCR −HCR

0 zS†CR −H†
CR zSR −HR


×




Gr
L Gr

LC Gr
LR

Gr
CL Gr

C Gr
CR

Gr
RL Gr

RC Gr
R


 =




IL 0 0
0 IC 0
0 0 IR


 , (4.6)

The GFs of the central region are determined by the matrix equations

Gr
C(ε) = (zSC −HC −Σr

L(ε)−Σr
R(ε))−1 , (4.7a)

Σr
α(ε) = (zSCα −HCα) g0,r

α (ε)(zS†Cα −H†
Cα) (4.7b)

g0,r
α (ε) = (zSα −Hα)−1 , (4.7c)

where Σr
α is the self energy of the α lead, g0,r

α is the uncoupled lead GFs.

4.2 Coupling to leads

The important quantity to calculate in order to obtain the self energy in Eq. 4.7b
is the uncoupled α lead Green’s function g0,r

α . The assumption of a periodic
potential in the leads means that they may be divided into principal layers con-
taining an integer number of potential periods. The localization of the functions
in the transport direction allows us to choose a principal layer size such that only
nearest neighboring layers will couple. This allows us to write the Hamiltonian
in the block-tridiagonal form



26 Conductance Calculations

HL =




. . .
...

...
...

. . . h0 h1 0

. . . h†1 h0 h1

. . . 0 h†1 h0


 (4.8)

where h0 is the Hamiltonian matrix within a single layer and h1 is the near-
est neighbor layer coupling. The assumption of a periodic lead can in principle
always be fulfilled by enlarging the central region until all perturbations are
screened. In practice the mobile metal electrons screen such perturbations ef-
fectively and the potential converges to its bulk value after a few atomic layers.
The devision of the leads into principal layers with nearest neighbor coupling
implies that the central region only couples to the first principal layer. Also
from the form of Eq. (4.7b), it follows that only the lead Green’s function of
the first layer is needed, the so-called surface Green’s function, to obtain the
self-energy. Due to the periodic nature of the leads the surface Green’s function
can be calculated iteratively using a particularly efficient scheme known as the
decimation technique [58]. However, it could also be calculated using a “simple”
iterative scheme, starting from some initial surface Green’s function. This has
the advantage of not being restricted to periodic leads. In fact, combining a
simple iterative scheme with an initial surface Green’s function, calculated using
the decimation technique results in a linear scaling algorithm for calculating the
conductance.

4.3 Boundary conditions

In this section we describe the transport formalism resulting from calculations
using supercells with periodic boundary conditions. The DFT calculation for
the supercell modeling the central region is performed with periodic boundary
conditions in all directions. In order to “open up” the system the potential, at
the end planes perpendicular to the transport direction of the supercell should
be extended by appropriate semi-infinite lead potentials. In the case where the
localized basis set is fixed, i.e. atomic orbitals, we choose the lead potential
extension with in the following way. First, periodic boundary conditions in the
transport direction are removed by setting all coupling matrix elements in the
Hamiltonian and overlap matrix to zero if the basis function centers are are more
than L/2 away. Here, L is the length of the supercell in the transport direction.
Second, because the KS potential to the left and right of C as by definition
converged to the value in the leads, we may take the coupling between central
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region and lead α, HCα, from the infinite lead calculation. In practice the intra-
lead coupling matrix elements (Hαα) in HCα, can be controlled by including a
larger portion of the lead in C. In practice we find that 3-4 atomic layers must
be included in C on both sides of the junction to obtain converged conductances.

Since the scattering region of the system is still periodic in the transverse
direction, all matrices entering the transmission formula Eq. 4.1 are infinite in
size. However, the periodicity from the use of a supercell implies the wave
vector k⊥ of the first Brillouin zone (BZ) of the transverse supercell gives good
quantum numbers. All matrices are therefore diagonal with respect to k⊥. The
total transmission function can thus be decomposed into transverse wave vector
dependent transmissions

T (k⊥; ε) = Tr [Gr
S(k⊥; ε)ΓL(k⊥; ε)Ga

S(k⊥; ε)ΓR(k⊥; ε)] . (4.9)

Consequently, the transmission per supercell is to be evaluated over an inte-
gral of the two dimensional transverse or surface BZ

T (ε) =
1
A

∫
dk⊥T (k⊥), (4.10)

where A is the area of the first transverse supercell BZ. However, in practice the
integral is approximated by a finite sum: T (ε) =

∑
k⊥ wk⊥T (k⊥), where wk⊥

are symmetry determined weight factors which add up to 1. The importance
of sufficiently large number of k⊥ is illustrated in Paper II and a more detailed
discussion can be found in Ref. [59].

4.4 Basis set

The conductance calculations and transport analysis presented in this work have
all been performed using one of two type of basis sets, (i) Pseudo atomic orbitals
(PAO) [60, 61] or (ii) Wannier functions (WFs) [9, 8].

Neither the PAO nor the WFs can be directly used as basis functions, since
they are not associated with a specific wave vector in the first BZ of the trans-
verse plane. Thus they do not comply with the periodic boundary conditions
used in these directions. In this section it is explained how appropriate Bloch-
like basis functions can be constructed from localized functions. The various
advantages and drawbacks associated with each of the two types of basis sets
used in relation to conductance calculations are also discussed.

The imposed periodic boundary conditions in the surface plane directions
means that we are in fact considering the conductance of a periodic array of
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junctions instead of a single junction. Instead of the localized basis functions
φn(r) (these could be a WF or a PAO) we consider the Bloch function

χnk⊥ =
1√
NR⊥

∑

R⊥

eik⊥·R⊥φn(r−R⊥), (4.11)

where R⊥ runs over supercells in the surface plane and k⊥ is a wave-vector in
the corresponding two-dimensional BZ. Since k⊥ gives a good quantum number,
we can construct the Hamiltonian, H(k⊥) and overlap matrix S(k⊥) for each
k-point separately.

4.4.1 Pseudo atomic orbitals basis

The use of pseudo atomic orbitals in DFT calculations was introduced by Sankey
and co-workers [60] and is also the “standard” basis set used in the Siesta-
code citesiesta and the conductance calculations based on PAO in this work. The
PAO are defined as the product of a numerical radial function and a spherical
harmonic

φlmn(r) = r(r)lnYlm. (4.12)

Orbitals with the same angular dependence, but different radial dependence is
refered to as a multiple-ζ basis. In order to accurately account for deformation
induced by bond formation so-called polarization functions is often required.
These can be generated by applying a small constant electric field [3, 61]. The
PAO are excited orbitals of a free atom as described by a pseudopotential, and
are obtained by requiring the orbital to be zero at a certain radial cutoff. This
augments the pseudo potential with a certain confining potential, such as an
infinite wall at the cutoff radius.

In order to obtain H(k⊥) and S(k⊥) a simple scheme has been implemented.
We use Siesta to calculate the “real space“ Hamiltonian H(R) and overlap
matrix S(R) and subsequently perform the transformation

H(k⊥) =
∑

R

eik·RH(R), (4.13)

where H(R)ij = 〈φi(r)|H|φj(r −R)〉. The same holds for S(R).

4.4.2 Wannier function basis

Thygesen et al. introduced the expansion of partly localized Wannier functions
(WFs) in terms of the M lowest lying eigenstates {ψm} and L extra degrees of
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freedom (EDF) {φl}

ωj =
M∑

n=1

ψnUnj +
L∑

l=1

φlUl+M,j , (4.14)

where EDF in turn are expanded in terms of the remaining N −M unoccupied
eigenstates

φl =
N−M∑

n=1

ψn+Mcnl. (4.15)

The (N − M × L) matrix c will in general be a rectangular matrix and the
transformation in Eq. 4.15 can bee viewed as “down-folding” the unoccupied
space. Instead of the number of lowest lying eigenstates M it can be convenient
to specify a cutoff-off energy E0 instead, such that all states below E0 can
be reproduced exactly by the Wannier functions. In order to obtain localized
functions a measure of the localization of an orbital have to be defined. Following
the the work of Mazari et al. [24] the spread for WFs was defined as sum of local
second moments

S =
Nw∑

n=1

(〈ωn|r2|ωn〉 − 〈ωn|r|ωn〉2) (4.16)

By varying U and c, the spread S may be be minimized, and leads to localized
functions. For more details and the extension to periodic systems we refer to
Ref. [8, 62]. A detailed discussion of the construction of basis functions and
Hamiltonian matrices can be found in Ref. [63].

4.5 Two methods

In this section, we describe the two specific nonequilibrium (NEGF)-DFT imple-
mentations applied in the present work and their key parameters are discussed.
Also the advantages and disadvantages of the two methods is discussed.

4.5.1 Method 1: Wannier functions from plane-wave DFT

In method 1 the Kohn-Sham Hamiltonian is obtained from an accurate plane-
wave pseudopotential DFT code [2]. The ion cores are replaced by ultrasoft
pseudopotentials [7] and we use an energy cutoff of 25 Ry for the plane wave
expansion. The Kohn-Sham eigenstates are transformed into partly occupied
Wannier functions (WFs) [8] which are used to obtain a tight-binding like repre-
sentation of the Hamiltonian. The WFs are constructed such that any eigenstate
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below a selected energy, E0, can be exactly represented by a linear combination
of WFs. In the applications we have chosen, E0 is in the range of 2-4 eV above
the Fermi level. In this way the accuracy of the plane-wave calculation is carried
over to the WF basis for all energies relevant for transport.

After performing separate DFT calculations for the (periodic) leads and the
central region C we obtain a set of WFs for each region. Note, that C always
contains a few buffer layers of the lead material on both sides of the nano-contact
to ensure that the KS potential at the end planes of C has converged to its value
in the leads. Since the WFs in the lead will in general differ from those in the
outermost lead unit cells of the central region, care must be taken to evaluate the
coupling and overlap matrices HCα and SCα. Also note that although the WFs
by construction are orthogonal within each region, WFs belonging to different
regions will in general be non-orthogonal. For more details on the construction
of the WFs and the calculations of the Hamiltonian matrix for the combined
L − C − R system we refer to Ref. [63]. Here, we shall refer to the results
obtained from method 1 as the WF results.

The main advantages of method 1 are: (i) The accuracy of the plane wave
calculation carries over to the WF basis set. (ii) The WFs basis set is truly
minimal and often results in even fewer basis functions than a single zeta basis.
The WF basis thus combines high accuracy with high efficiency. The price one
has to pay is that the actual construction of well localized WFs is not always
straightforward, and requires some user interaction, particularly for metallic
systems. Also the lack of finite support of the WFs is unwanted in the context of
transport, although in practice it is not a serious problem since the WFs are well
localized. Finally, as already explained above, the risk of obtaining different WFs
for two similar but non-identical systems renders it less straightforward to patch
the parts together using Hamiltonians obtained from the separate calculations.

4.5.2 Method 2: PAO Siesta basis

Method 2 is based on the DFT code Siesta [3] which uses finite range pseu-
doatomic orbitals (PAO) [60, 61] as basis functions and Troullier-Martins norm
conserving pseudopotentials [64]. As in method 1, the Hamiltonians for the
leads and the central region are obtained from separate calculations. Because
the KS potential to the left and right of C, by definition has converged to the
value in the leads, we can take the coupling between central region and lead α,
HCα, from the pure lead calculation. Note that this is in contrast to method
1, where the different shape of the WFs in the periodic lead and the lead part
of the central region makes it essential to evaluate the coupling matrix directly.
Note also that this approximation, i.e. the use of the intra-lead coupling matrix
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elements (Hαα) in HCα, can be controlled by including a larger portion of the
lead in C. In practice we find that 3-4 atomic layers must be included in C on
both sides of the junction to obtain converged conductances.

We take the Fermi level of the bulk lead as the common Fermi level of the
combined system by shifting the levels in the central region by a constant. This
is done by adding to HC the matrix δSc, where δ = [HL]0,0 − [HC ]0,0 and the
(0, 0) element corresponds to the onsite energy of a basis function located near
the interface between L and C.

In the present study we restrict ourselves to the standard PAOs for Siesta:
single zeta (SZ), SZ polarized (SZP) and double ZP (DZP). For the confinement
energy, determining the range of the PAOs, we use 0.01 Ry and use a meshcutoff
of 200 Ry, unless otherwise stated.

Most disadvantages of the WF basis are resolved by the PAO basis set. By
construction they have finite support and are identical as long as the atomic
species on which they are located are the same. This renders it straightfor-
ward to patch together Hamiltonians for separate subsystems as long as the KS
potential can be smoothly matched at the interfaces. On the other hand, to
obtain an accuracy matching the WFs results, one needs to use a significantly
larger number of orbitals and thus longer computation times for the transport
calculation as compared to the WF method.
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Chapter 5

Benchmark calculations

First-principles calculations of electrical conductance in nano-scale contacts rep-
resents a main challenge in computational nanophysics. The interest for this
type of calculations began in the mid-nineties where advances in experimen-
tal techniques made it possible to contact individual molecules thereby making
it possible to study the transport of electrons through true nano-scale struc-
tures [65, 66]. Apart from the scientific interest, the development of reliable
simulation tools for nano-scale quantum transport is relevant in relation to the
continued miniaturization of conventional semi-conductor electronics, but also
for the introduction of a new generation of molecule based electronics.

It has by now become standard to calculate conductance in nano-scale con-
tacts by employing a combination of non-equilibrium Green’s function theory
(NEGF) and ground state density functional theory (DFT) as described in the
preceding chapter. It has been applied extensively to a number of different
systems ranging from pure metallic contacts, over organic molecules to carbon
nanotubes suspended between metallic electrodes. Overall the approach has
been successful in describing qualitative features and trends [67, 20], however,
quantitative agreement with experiments has mainly been obtained for strongly
coupled systems such as metallic point contacts, monatomic chains, as well as
junctions containing small chemisorbed molecules [68, 19].

The NEGF-DFT method provided only an approximation to the true con-
ductance - even if the exact exchange-correlation xc-functional where to be used.

Irrespective of the validity of the NEGF-DFT approach and the role played
by the approximate functionals, it remains important to establish a general
consensus concerning the exact result of a NEGF-DFT calculation for a given
xc-functional and specified system geometry: a benchmark. Although this might
seem trivial, the present situation is in fact rather unsatisfactory. A variety of

33
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different results have been published by different groups for the same or very
similar systems. As good example is provided by benzene di-thiolate trapped
between gold contacts where the calculated conductance vary with up to two
orders of magnitude for similar geometries [22, 21, 20, 69, 70, 71].

This chapter is organized as follows. First the main part of the work is sum-
marized. Then three selected reference systems will be discussed in order to
higlight the importance of, (i) treating the coupling between the central region
and the leads in a coherent fashion, (ii) oerforming a sufficient k-point sam-
pling, and finally (iii) the effect of the transverse dimensions of the supercell in
comparing to cluster based transport calculations.

This chapter is a review of Paper II.

5.1 Reference systems

The main results of the benchmark study is summarized in Fig. 5.1 where we
show the overall deviation

∆ =
1

E0 − E1

∫ εF +E0

εF +E1

|TWF(ε)− TPAO(ε)|dε, (5.1)

between the transmission functions calculated using the WF and PAO basis sets,
respectively. The energy E1 is taken as the lowest lying band edge in the lead
while the cutoff energy E0 is taken to be the energy above which the WFs are
no longer able to reproduce the exact KS eigenstates of the system which is
typically ∼ 3 eV above the Fermi level. For all the systems we find that the
deviation ∆ decreases as the Siesta basis is enlarged meaning that the Siesta
transmission functions converge toward the WF result. We take this as evidence
for the correctness of the WF results and the justification for the use of the term
benchmark calculation.

The next three sections will discuss will discuss the systems, Au-CO, Pt-H2

and Au-C6H4S2 in more detail.

5.1.1 Au chain with CO

In this section conductance properties of an infinite gold chain with a single
CO molecule adsorbed is studied. Scanning tunneling microscope (STM) exper-
iments suggest that CO strongly depresses the transport of electrons through 1d
gold wires [72] supported by a Ni surface. This has been supported by NEGF-
DFT calculations [73] which show that the transmission function indeed drops
to zero at the Fermi level. The use of infinite gold chains as leads is clearly an
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Figure 5.1: Deviation between the WF and Siesta transmission functions for for the
five reference systems studied. The dashed line indicate zero deviation from the WF
transmission. Notice that the Siesta results converge toward the WF result as the PAO
basis is enlarged.

oversimplification of the real situation, however, the model seems to capture the
essential physics, i.e. the suppression of the conductance, and furthermore is
well suited as a benchmark system due to its simplicity.

The geometry of the system is shown in Fig. 5.2(a). and is is modeled using
a supercell with transverse dimensions 12Å × 12Å. All bond lengths are taken
from Ref. [73]: dAu-Au = 2.9 Å, dAu-C = 1.96 Å, and dC-O = 1.15 Å. The Au
atom holding the CO is shifted towards CO by 0.2 Å. In method 1 we obtain
six WFs per Au atom and seven WFs for the CO molecular states. The WFs
spans all the CO molecular states including the two degenerate LUMO’s (2π∗

orbitals).
Due to the elongated bond length of the Au-wire, we found it necessary in

method 2 to increase the range of the Au PAOs in order to converge the band-
structure of the Au-wire. The confinement energy was therefore in this case set
to 10−4Ry.

In Fig. 5.2(b) the calculated transmission function using the PAO basis sets
and the WF basis set is compared. Overall, the PAO result approaches the WF
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Figure 5.2: (a) Central region used to describe a single CO molecule adsorbed on a
monatomic Au wire.(b) Transmission functions for the Au wire CO system calculated
using method 1 (WF) and method 2 for three different PAO basis sets. The transmission
function at the Fermi level is indicated in the parenthesis following the legends.

result as the basis set is enlarged. For the largest PAO basis (DZP) the agree-
ment is in fact very satisfactory given the differences in the underlying DFT
methods, e.g. ultrasoft- versus norm-conserving pseudo potentials. The remain-
ing difference can be further reduced by a rigid shift of the DZP transmission
by about 0.15 eV.

All transmission functions feature an anti-resonance near the Fermi level.
However, upon enlarging the PAO basis the position of the anti-resonance shifts
towards the WFs obtained postion, see table 5.1. Note that the position of
the anti-resonance obtained with the WFs is approached as the PAO basis set is
increased. Also, the curvature of the anti-resonance is improved as the PAO basis
set is enlarged. The improvement in these features are, however, not directly
reflected in the conductanses listed in table 5.1 The reason for the this apparent
disagreement is clearly the rigid shift between the PAO and WF transmission
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SZ SZP DZP WF
G (G0) 0.16 0.09 0.02 0.08
εa (eV) -0.27 -0.16 -0.06 0.12

Table 5.1: Conductance G and position of the anti-ressonace εa. The anti-
resonance position with increasing PAO basis is converging towards the WFs
position. The conductance does not show the same convergence since the anti-
resonance position actually never crosses the Fermi level using the PAO basis.

functions.
We observe that our results differ from the calculation in Ref. [73]: While the

latter finds two peaks in the energy range 0− 2 eV our converged transmission
function shows a single broad peak. In general, both our PAO and WF based
transmission functions present less structure than the transmission function re-
ported in Ref. [73]. We suspect that these differences are related to the way the
coupling HαC is calculated in Ref. [73].

5.1.2 Pt(111)-H2 contact

In this section we consider on of the simplest possible molecular junctions,
namely a single hydrogen molecule between metallic Pt contacts. Like the metal-
lic point contacts, the Pt-H2-Pt junction shows stable and reproducible behavior
in conductance measurements. In particular, a very pronounced peak close to
1G0 appears in the conductance histogram obtained when a Pt contact is bro-
ken in a hydrogen atmosphere [10]. Although reported conductance calculations
show significant variation (see below), there have been given substantial evidence
that the structure responsible for the peak consists of a single hydrogen molecule
bridging the Pt contacts [10, 74].

Several groups have published NEGF-DFT calculations for the transmission
function of the Pt-H2-Pt system. Most find a conductance of (0.9 − 1.0)G0

[10, 19, 75, 67], but also much lower values of (0.2− 0.5)G0 have been reported
in Ref. [76].

In Fig. 5.3(a) we show the supercell used to model the scattering region of the
Pt/H2 contact. The Pt contact is modeled by two four-atom pyramids attached
to (111) surfaces containing 3 × 3 atoms in the surface plane. The hydrogen
molecule is in a bridge position between the two pyramid tips. The relevant
bond length determining the structure after relaxation of the Pt pyramids and
the hydrogen atoms are dPt-H = 1.7 Å and dH-H = 1.0 Å.

In order to ensure that the effective KS potential has converged to its bulk
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value at the end planes of the supercell we include 3-4 atomic layers (ABC-CABC
stacking) on either side of the pyramids

In Fig. 5.3(b) we show the calculated transmission functions. The agreement
between the different calculations is striking, especially in the important region
around the Fermi level. The SZ basis set reproduces the qualitative features of
the larger basis sets, but introduces a considerable down shift of the low-lying
peaks. The conductances are summarized in Table 5.2
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Figure 5.3: (a) Supercell used to model the central region of the Pt−H2−Pt junction.
(b) Transmission function for the Pt Hydrogen bridge. The transmission function at
the Fermi level is indicated in the parenthesis following the legends.

The very good agreement between the two methods indicates that the trans-
mission function for this system is rather insensitive to the basis set. We stress,
however, that a proper k⊥-point sampling of the transmission function is cru-
cial to obtain meaningful results independently of the quality of the basis set.
Restricting the calculation to the Γ point yields a transmission function with a
(unphysical) peak at the Fermi level. In Fig. 5.4 we show the k-point dependence
of the transmission function.
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SZ SZP DZP WF
G (G0) 0.91 1.02 1.02 0.96

Table 5.2: Conductance of the Pt-H2-Pt for different basis sets
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Figure 5.4: The transmission function for the Pt-H2-Pt junction calculated using dif-
ferent k− point samplings. The Γ point calculation shows an unphysical peak near the
Fermi level

We note in passing that such a peak is present in the transmission function
reported in Ref. [67]. Such unphysical features resulting from an insufficient k⊥-
point sampling are not properties of the molecular junction, but are rather due
to van Hove singularities in the quasi one-dimensional leads [59]. The results
reported in Ref. [75] are based on Siesta DFT code and show good agreement
with our results. The conductance obtained in one of the early theoretical cal-
culations [76] on the hydrogen molecular bridge are considerably lower than our
and most other results.
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5.1.3 Au(111)-benzene dithiolate contact

The Benzene-1,4-dithiol (BDT) molecule suspended between gold electrodes
was among the first single-molecule junctions to be studied and has become
the standard reference for calculations of nano-scale conductance. Depending
on the experimental setup, measured conductances vary between 10−4 G0 and
10−1 G0 [77, 78, 79, 80, 81], while the calculated values typically lie in the
range (0.05 − 0.4) G0 [82, 83, 20, 70, 21, 22, 71, 84]. In general it has been
found that the transmission function is strongly dependent on the bonding site
of the S atom [83, 71], while variations in the Au-S bond length only affects the
transmission function weakly [82].

As our objective is to establish a computational benchmark for the Au-BDT
system we choose the simple junction geometry shown in Fig. 5.5(a). The S
atoms are placed at the minimum energy positions in the fcc hollow sites of the
Au(111) surface and the molecule has been relaxed while keeping the Au atoms
fixed in the bulk crystal structure. We use an Au lattice constant of 4.18 Å, and
a distance between the Au(111) surfaces of 9.68 Å. With these constrains the
relevant bond lengths are: dAu-S=2.45 Å, dS-C=1.73 Å, and dC-H=1.09 Å.

In Fig. 5.5(b) we show the calculated transmission functions (the SZ result
has been omitted for clarity). Notice that we plot the transmission function
only up to 2 eV above the Fermi level. This is because the the WF transmission
at larger energies is sensitive to the parameters used in the construction of the
WFs, in particular the cutoff energy E0, and thus we cannot be sure about the
WF result above 2 eV + εF .

The three transmission functions agree very well in the energy range from
2 eV below the Fermi level to 1 eV above the Fermi level, while only the DZP
result agrees quantitatively with the WF result in the entire energy range. We
again notice the down shift of the PAO transmission functions relative to the
WF result.

The presence of a broad transmission peak positioned∼ 1 eV below the Fermi
level is in qualitative agreement with previous results [83, 82, 70, 20, 85, 86]. For
more stretched configurations, i.e. for larger values of the S-C bond length, than
the one used in the present study, the broad peak splits into two more narrow
peaks [63].

The transmission function presented in Ref. [20] was obtained using a method
very similar to our method 2, however, the reported conductance of 0.4 G0 is
almost twice as high as our DZP results of 0.24 G0. The large conductance
arises because the transmission peak closest to the Fermi level is considerably
broader than what we find. If, however, we restrict the k⊥ to the Γ-point we find
the same broadening as in Ref. [20] and a very similar conductance of 0.37 G0.
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Figure 5.5: (a) Supercell used to model the central region of the Au(111)-BDT-Au(111)
system with S at the fcc hollow site. (b) The calculated transmission functions. Note,
that the SZ transmission function has been omitted for clarity. The transmission func-
tion at the Fermi level is indicated in the parenthesis following the legends.

Another feature of the Γ-point only transmission function is that the second
peak positioned at ∼ 3 eV below the Fermi level separates into a number of
more narrow peaks.

In Ref. [70] the transmission function is calculated from the LMTO-ASA
method and averaged over 36 irreducible k⊥-points. Both the width and the
position of the two peaks in the transmission function at 1 eV and 3 eV below
the Fermi level, are in good agreement with our results. The height of the former
peak is, however, lower than in our calculation and this reduces the conductance
to a value of 0.07 G0. We suspect that this difference could be due to differences
in the adopted contact geometries.

When comparing a supercell approach to quantum transport with a cluster
based calculation as the one in Ref. [82] it is essential that: (i) The cluster size
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is converged, and (ii) the number of k⊥-points and supercell size are converged.
In the supercell approach a N × N Monkhorst-Pack sampling of the surface
Brillouin zone corresponds to a Γ-point calculation for a supercell consisting of
the original supercell repeated N ×N in the surface plane [8, 62].

-6 -5 -4 -3 -2 -1 0 1 2
ε−εF (eV)

0

0.4

0.8

1.2

1.6

T
ra

ns
m

is
si

on

5x5 (0.19)
4x4 (0.19)
3x3 (0.20)
2x2 (0.21)

Figure 5.6: The transmission function of Au(111)-BDT-Au(111) for supercells con-
taining a single BDT molecule and with the number of Au(111) surface atoms varying
from 2x2 atoms to 5x5 atoms, as indicated in the legends. All the calculations apply
the SZP basis set, and have been converged with respect to the number of k⊥-points.
The transmission function at the Fermi level is indicated in the parenthesis following
the legends.

Extrapolating our converged calculations for 3× 3 atoms within the surface
plane of the supercell and 4× 4 k⊥-point to a Γ-point calculation gives a super-
cell consisting of ∼ 1000 atoms. We speculate, that clusters of similar sizes are
needed to reach the same level of convergence. However, the repeated supercell
introduces a periodic array of molecules on the surface, which could give rise
to interference effects blurring the comparision to single molecule cluster calcu-
lations. To quantify this inter-molecule interference effect we show in Fig. 5.6
the SZP transmission function for the Au(111)-BDT-Au(111) system where the
number of Au atoms in the surface plane is varied from 2 × 2 atoms to 5 × 5
atoms. Each calculation has been converged with respect to the number of k⊥-
points by a 4 × 4 Monkhorst-Pack sampling for all the supercells, except the
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smallest supercell for which 8× 8 k⊥-points was needed.
It is evident that the transmission function is well converged with 3 × 3

atoms in the surface plane. This shows that our calculations should be directly
comparable to fully converged single molecule cluster calculations.
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Chapter 6

Chain formation

The thinnest nanocontact between two metal bodies often takes the shape of
regular atomically thin suspended nano wires. Due to the low coordination
number of the involved atoms, these ultimate one-dimensional quantum wires
may exhibit high mechanical stability and are chemically far more reactive than
their bulk counterparts [25, 13, 87, 88, 89, 90]. This, combined with their ability
to sustain extremely large current densities, makes atomic chains interesting
from both a fundamental and a technological point of view.

Freely suspended homogeneous atomic chains of up to ten atoms may be
formed by breaking a nano-contact under cryogenic conditions using a mechani-
cally controllable break junction or a scanning tunneling microscope [91, 13, 92,
15]. Although spontaneous chain formation of homogeneous systems is observed
only for certain transition metals (Au, Pt and Ir) [93, 94], the incorporation
of impurity atoms, such as oxygen, have recently been found to act as chain
formation promoters for Ag and Cu [26, 1], which are not themselves among
the chain-forming metals [90, 95]. Alternative experimental techniques, such as
deposition onto an insulating substrate, might also be used to produce atomic
chains or wires for a larger range of metals [96, 97].

Concerning the stability and formation of atomic chains the general ques-
tion naturally arises: What is the physical mechanism guiding the formation
of chains? As key parameters determining the chain formation ability, both
the ratio of the bulk to chain breaking force [94] and the resistance of a free
standing chain against clustering [98] have been proposed. Interestingly, chain
formation ability has been linked to the reconstruction of surfaces of the in-
volved atoms [93, 1]. As will be demonstrated in the present chapter, metals for
which chain formation may be observed experimentally and theoretically through
elaborate calculations such as molecular dynamic simulations [93, 94, 90] can be
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characterized by having a local minimum in the tip suspended chain string ten-
sion. The string tension is based on a simple thermodynamic model. This model
provides an extreme simplicity of both calculation and understanding. The fo-
cus of this chapter is simple homogeneous metal contacts. However, this method
may also be applied to the study of complex systems involving molecule and im-
purity atoms. An example of this will be given in Sec. 7.1 for oxygen atoms
incorporated into silver chains.

The chapter is organized as follows. First, a thermodynamic model for study-
ing chain formation is developed. This is followed by the result of DFT energy
calculations of the needed parameters for a variety of homogeneous metallic
chains. The results are found to be in excellent agreement with experiments and
more elaborate molecular dynamics simulations [94].

6.1 String tension model

In order to theoretically describe the evolution of a nanocontact from the initial
formation of a rather thick wire towards a monatomic chain, a proper thermo-
dynamic potential governing the evolution should in principle be identified. To
this end, we consider two options.

(i) Both the tip and nano wire are included in the description and the evolu-
tion at temperature T is governed by the canonical free energy F (N,T ) of a large
number of atoms N . This is the more fundamental approach, but it will have a
very high first-principle computational cost. Studies performed along this line
have been based on a more approximate description of the interaction between
the atoms, such as tight-binding and effective-medium-theory potentials [99],
combined with molecular dynamics simulations [94, 90].

(ii) Here we propose a simplified alternative following the work of Tosatti et
al. [100] on the thinning and observation of magic (long lived) suspended silver
and gold nanotubes. The equilibrium state of an N atom free chain minimizes
the free energy F . However, the aim here is not to describe a free chain, but
rather a tip-suspended chain contacted with two bulk-like tips with which it
can exchange atoms. To this end, we approximate the tips as bulk-like atom
reservoirs, and introduce the grand canonical potential

G = F − µN, (6.1)

which may be regarded as the positive work done in drawing a chain out of the
tips [100]. This setup is illustrated in Fig. 6.1. Now the free energy F refers
to an isolated chain, while the two tips and contacts enter only through the
bulk chemical potential µ. In this simplified picture, important complications,
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L

µ µ

Figure 6.1: The full structure consisting of both the chain and the bulk-like tip shown
above is replaced by a simpler model system shown below. The model system consist of
a finite piece of wire with length L for which periodic boundary conditions are applied.
The wire may exchange atoms with two bulk reservoirs. The exchange of atoms with
the bulk reservoirs is in affect the linear atomic density n.

such as the nature of tip-chain junction, are completely neglected. In return, a
significant simplicity in both calculations and understanding is obtained. The
most stable tip-suspended chain will minimizeG. At this point we mention that a
general methodology exists for obtaining free energy estimates from experimental
tunable parameters using zero temperature ground state DFT calculations [101,
102, 103]. However, we shall focus on chain formation trends and therefore
simplify things by assuming a zero temperature, T = 0. Consequently, the chain
free energy F and the chemical potential µ may be approximated directly by
the relevant zero temperature DFT calculated energies, i.e. for metal atoms the
chemical potential can be taken as the bulk binding energy per atom.

We now consider now a N atom chain of length L suspended between two
tips (included through the chemical potentials) and described by

G0(N) = E(N)−Nµ, (6.2)

where E(N) is the binding energy of the N atom chain.
In order to calculate E(N), a reference model system for the chain must be

chosen. Here, we consider the N atom chain of length L to be a finite piece of an
infinite periodic wire, see Fig. 6.1, and make the approximation E(N) ' NE1,
where E1 is the chain binding energy per atom. By introducing the linear atom
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density n = N/L we obtain

G0(n) = nL(E1(n)− µ). (6.3)

The length L is a constant that will determine the allowed discretized values of
the atom density, i.e n = N × L−1. However, the linear density dependence of
G0 is not affected by L and we might just as well consider G0/L. We shall refer
to this as the string tension γ [100] expressed as

γ(n) = f(n)− nµ, (6.4)

where f = nE1(n). In the low atom density limit γ(n) ∼ −nµ, since the atoms
are no longer bonding, i.e E1 ' 0.

The linear atom density can all ways be lowered by donating atoms from the
chain to the bulk reservoirs and the global minimum of γ will in turn correspond
to a n = 0 atom chain, e.g. all the atoms are in the bulk. This is clearly a broken
chain. But how can chains then be observed? To address this question, consider
first the case where γ is monotonically decreasing towards the low density limit.
In this case the chain is unstable, since it is always advantageous to move a
single or a few atoms from the chain and into the bulk. However, if the string
tension has a local minimum, a situation may arise where both the donation
and extraction of atoms from the bulk will increase the string tension (energy
per length) signifying a meta-stable state. This implies that a criteria for chain
formation is related to f ′(n) = df(n)/dn = µ. In the case where f ′(n) 6= µ,
for any relevant n, then the chain is unstable. On the other hand, if f ′(n) = µ
for some n, which additionally corresponds to a minimum, the model implies a
stable chain.

From Eq. (6.4) it is clear that the only quantity to calculate besides the
chemical potential µ of a bulk atom is the binding energy per atom E1 of an
infinite chain as a function of the linear atom density n.

6.2 Atomic metal chains

We consider a range of atomic metallic chains: Ir, Pt, Au, Co, Ni, Pd, Cu,
Ag, Al and Na. All calculations have been performed using the plane wave code
Dacapo with a plane wave cutoff and density cutoff of 25 Ry and 35 Ry, respec-
tively. Exchange and correlation was included through the PBE functional [32]
and 32 k-points was used to sample the chain Brillouin zone. Calculations of
the bulk properties were performed using a 12× 12× 12 Monkhorstpack k-point
grid. Spin polarized calculations were performed for Co and Ni.
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We note that various instabilities, including zig-zag and Peirls dimeriza-
tions, are often invoked for monatomic chains. The former indicates that chains
spontaneously collapse into zig-zag or “double” chain structures [104]. A Peirls
dimerization is also theoretically expected for half-filled 1D bands ,which would
introduce an energy gap in the spectrum. Based on this, a two atom super-cell
which can describe these mechanisms is selected as the reference chain model
system.

In order to avoid interactions between the repeated cells in the plane per-
pendicular to the chain, a supercell with transverse dimensions of 12Å × 12Å
was used. The chemical potentials for each of the metals was calculated as the
bulk binding energy of an atom in a relaxed fcc crystal. The binding energy per
atom of chains E1(n) was obtained by fully relaxing each structure for a large
range of linear atom densities. Note, the approximation E(N) ' NE1 is in fact
exact for the model chain system used here.

An example of such a calculated binding energy curve is shown in Fig. 6.2
for the case of Al. Here, the binding energy is with respect to the spin-paired
isolated Al atom. The binding energy at the (local) minimum is E1 = −1.84 eV,
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Figure 6.2: The binding energy per atom as a function of the linear atom density. The
insets show the relaxed chain structures corresponding to a low and high linear atom
density, respectively.

in good agreement with previous calculations [105]. The inset shows the relaxed
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structures at a low and high linear atom density corresponding to a linear and
zig-zag chain, respectively. We note in passing that the Al chain binding energy
curve has a local minimum such that the chain does not suffer from a zig-zag
instability. Consequently, according to the condition proposed in Ref. [98], Al
chain formation should be possible.

In Fig. 6.3 we show the calculated string tension for a range of metals. The
metals (Ir, Pt and Au) for which a local minimum is visible are shown in the
left panel. The right panel contains the metals for which the string tension
clearly shows no, or only very weak, local minima (Co, Pd and Na) or a flat
plateau/tiny string tension “barrier” (Ni, Ag, Al and Cu). These results are
in good agreement with the experimental observations that only Ir, Pt and Au
readily form long tip suspended chains [93]. We take this as an indication of the
model’s ability to describe chain formation trends.
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Figure 6.3: Calculated string tension for different chain geometries characterized by
the linear atom density n. The left panel contains the metals for which a local minimum
is visible, while the right panel contains metals for which the string tension barrier is
either absent or very small.

Concerning the zig-zag instability we observe a general trend of high string
tension for linear densities corresponding to zig-zag chains. In other words,
the zig-zag instability observed for most of the free atomic chains is removed
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when tip-suspended. The physical mechanism included in the model, which is
responsible for this behavior, is that the energy gained per atom associated with
the restructuring to a zig-zag conformation is out weighed by the energy cost of
extracting atoms from the two bulk reservoirs of the tips. This indicates that
the zig-zag instability criteria is less crucial in determining which metals can
form tip-suspended chains.

Furthermore, the lowest string tension “barrier” is at lower densities, and
is related to the stretching and finally breaking of bonds. This is in agreement
with the proposed bulk/chain breaking force ratio as a key determining factor
for chain formation [94]. We stress that for the results in Fig. 6.3 the chemical
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Figure 6.4: Left: An intersection of f ′(n) and a chemical potential signifies a possible
meta-stable tip-suspended chain (see the discussion after Eq. (6.4)). Right: String
tension for Pd for two chemical potentials.

potentials were all taken as the binding energy of an atom in a fcc crystal,
in order to study chain formation trends. However, the chemical potential of
the bulk-like tip atoms for a particular element can influence the string tension
behavior and thus the chain formation properties.

As an example, consider the string tension for Pd atomic chains. In Fig. 6.4(right)
the string tension obtained using either the bulk binding energy µ = −3.71 eV
(solid line) or µ1 = µ + 0.71 eV (dashed line) is shown. The change in the
chemical potential from µ to µ1 clearly has an effect on the string tension and in
fact local minima may now be observed. This behavior may be understood by
considering f ′(n) and the chemical potentials (see the discussion after Eq. (6.4))
shown in Fig. 6.4(left). For the chemical potential µ, there is no intersection
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with f ′(n) and no local minimum exists. However, changing the chemical po-
tential to µ1 leads to several intersections, and results in the observed extrema
in the string tension.

Finally, we address the role of the discrete nature of n for a chain of finite
length. To this end, we consider a (5-10) atom chain, which in the meta-stable
state will corresponds to a length of 12 Å . L . 25 Å. The allowed values of
n are therefore equidistantly spaced, with 0.04 Å−1 . n . 0.08 Å−1, which in
turn implies that the local minima may be “resolved”.



Chapter 7

Characterization of an Atomic
Chain Junction:
Ag-O chains in Ag

At sufficiently low temperatures the conduction electrons in a metal may of-
ten travel hundreds of nanometers without losing their quantum mechanical
phase [65]. Under such conditions, the wave nature of electrons becomes impor-
tant and manifests itself directly in macroscopic quantities such as the electrical
conductivity. A remarkable result first predicted by DFT calculations is that
the conductances of suspended atomic chains of elements such as C, Na, and
Au oscillate with a period of two as the number of atoms in the chain is var-
ied [14, 106]. In fact, calculations on the monovalent metals Na, Cs, Cu, Ag and
Au have all shown period two or “even-odd” oscillations in the conductance.
This behavior may be understood from a local charge neutrality condition. This
implies that the Fermi level must be aligned with the center of a resonance for
odd N and lie directly inbetween two resonances for even N . Deviations from
these even-odd oscillations naturally occur for metals with more complex va-
lence configurations such as Al and Pt [107, 108]. Common to the oscillations
observed for all the homogeneous metal chains is that the conductance maximum
(per contributing channel) is always close to 1G0, while the oscillation amplitude
varies significantly from ∼ 0.05G0 in the case of Au [108, 109] to 0.5G0 in the
case of Al and C chains [107, 21]. As discussed in Chapter 6, only certain metals
(Ir, Pt and Au) have been found to form tip-suspended chains. Consequently,
the theoredical prediction of conductance behavouir of long chains formed from
other metals cannot at present be tested experimentally.

A striking deviation from this situation was observed in a recent experiment

53



54 Characterization of an Atomic Chain Junction

by Thijssen et al. [26]. Firstly, the presence of oxygen was shown to greatly
enhance chain formation when a Ag or Cu contact is broken at low temperature
in a mechanically controlled break junction. Secondly, the conductance for the
oxygen exposed Ag contact averaged over many chains and plotted as a function
of chain length showed an exponential-like decrease from 1G0 to 0.1G0. Upon
further extension, the conductance stayed constant over almost 1 nm. Similar
features were observed for the O exposed Cu contact.

This is indeed an interesting result. The initial decrease in conductance sug-
gests a chain with a band gap. However, this is not in line with the saturation at
a finite conductance for longer chains. On the other hand, a length-independent
conductance of 0.1G0 does not comply with the results for metallic chains dis-
cussed above, which exhibit conductance oscillations with a maximum on the
order of 1G0. Prevous theoredical studies of the conductance properties of metal
contacts (Ag, Au and Ni) exposed to oxygen have considered only one or two
oxygen atoms [88, 110, 111, 112, 113]. Consequently, the studied structures were
considerably shorter than the ones observed by Thijssen et al., and cannot be
related to the perculiar features of Ag chains exposed to oxygen.

In this chapter, we begin with a review of the main results of the experiments
on Ag/O nano-contacts. This is followed by a discussion of the atomic structure
of the tip suspended Ag/O chains based on the model introduced in Chapter 6.
Finally, we present the results of the conductance calculations which are in good
agreement with the experiments. It is shown that the conductance properties of
Ag/O, as well as other metal chains, may be understood in terms of the reflection
probability and phase shift at a single bulk-chain interface. The origin of the
unexpectedly low conductance oscillations around 0.1G0 found for Ag/O may
be traced to an additional phase picked up by an electron being reflected at the
end of an alternating Ag-O chain. Furthermore, this Ag-O chain is found to be
half-metallic, meaning that only electrons with a given spin direction may pass
through the chain, making it a perfect spin-valve.

All DFT calculations for energies and structure relaxations have been per-
formed with the Dacapo code [2]. A plane wave cutoff and density cutoff of
25 Ry and 35 Ry was used, respectively. Exchange and correlation effects were
included through the PBE functional [32] and the ion cores were replaced by
ultrasoft pseudopotentials [7]. The surface Brilluin zone was sampled by 4 × 4
k-points, and the system was allowed to spin-polarize.

The spin-polarized conductance calculations were in turn performed for the
fully relaxed structures using method 2, and the same k-point sampling as for
the structure relaxations. A SZP polarized basis set used in the transport calcu-
lations was found be sufficient and give results in good agreement with a Wannier
function calculation. Consequently, a SZP has been used for all the transport
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calculations in the present chapter.
The majority of the material presented in this chapter is a summary of Paper

III and Paper V. However, the results on the stability of Ag/O chains in Sec. 7.1
have not yet been published.

7.0.1 Break junctions experiments on Ag/O contacts

The measurements on Ag/O contacts were performed using the mechanically
controlled break junction technique (MCBJ) introduced in 1985 by Moreland
and Ekin [114] and further developed by Muller et al. [115].

Figure 7.1: Working principle of the mechanically controlled break-junction technique.
A notched metal wire is fixed by two drops of epoxy adhesive (illustrated as bolts) and
can be stretched in a three point bending configuration by means of a piezo electric
element.

The working principle of the technique is illustrated in Fig. 7.1. First, a
surgical knife is used to make a notch in a metal wire which is then glued onto an
elastic insulating substrate by two drops of epoxy adhesive. The elastic substrate
is then mounted in a three-point bending configuration and the whole setup is
placed in a vacuum chamber and cooled down to around 4.2K. The wire may
be stretched with subatomic precisicion by moving the piezo-element forward.
During the pulling and subsequent thinning of the contact, the atoms reconfigure
causing sudden jumps in the conductance. An example of this behavior is seen in
the conductance traces in Fig. 7.2 for Au, Ag and Cu before and after exposure
to oxygen shown in the top and bottom panel, respectively. Due to the large
number of atoms involved, even in the last stages where atomic thin chains
can form, it is nearly impossible to predict beforehand the exact evolution and
thinning of the contact, and thus the conductance trace. By repeatedly breaking
and remaking the contact, and recording the conductane at a fixed time-interval,
the common features shared by many individually prepared contacts may be
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Figure 7.2: Typical conductance traces for Au, Ag and Cu before and after exposure
to oxygen are shown in the top and bottom panels, respectively.

revealed through analysis of the statistical data, such as average values and
histograms.

Figure 7.3: The experimentally obtained length histogram and the average conductance
are shown in the top and bottom panel, respectively. The grey shaded area in the length
histogram is for Ag exposed to oxygen gas, while the black line is for pure Ag.
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In Fig. 7.3 the length histogram and average conductance (for Ag and Ag/O)
is shown in the top and bottom panel, respectively. The length histogram has
been constructed by recording the distance a contact may be pulled from the
point where the conductance drops below 1G0 until the contact finally breaks.
The contact rupture is identified by a sudden conductance drop into the deep
tunneling regime. For pure Ag contacts, which are denoted by the black line, a
single peak around 2.6 Å is obtained. This indicates that only relatively short
structures with a chareteristic length of a few Å are formed in the last stages
before the contact breaks. Having prepared the Ag contact admitting oxygen
gas into the chamber leads to a drastic change in the length histogram. Several
peaks may now be observed and considerably longer structures are formed with
lengths up to 20 Å. The distance between the peaks may be considered to be
the difference in length between particularly stable tip-suspended chains.

The average conductance of Ag, shown in the lower panel in Fig. 7.3, re-
veals that in the final stage of stretching a charecteristic structure appears with
a conductance close to 1G0. Similar conductance values are also observed for
homogoneous Au and Cu contacts, as shown in Fig. 7.2. On the other hand,
the Ag/O contacts show a very different behaviour. After an initial exponen-
tial like conductance decrease, a plateau extending over 1 nm is formed with a
conductance around 0.1G0. Note that in the region where the conductance is
decreasing pure Ag structures may also form.

7.0.2 Point contact spectroscopy

In order to extract information about the structure of the Ag/O contacts, the
local vibrations were measured by point contact spectroscopy (PCS) [65]. In
PCS the differential conductance is measured as a function of the bias voltage
V applied across the junction. At the point where eV exceeds the energy of
a vibration mode energy ~ω scattering events involving emission of phonons
may take place. Recently, it has been demonstrated that the correction in the
conductance of an atomic wire, for the electon-phonon interaction, depends on
the transmission of the channel [116, 117]. It was predicted that in the case
of a single fully transmitting channel the electrons are only backscattered by
interactions with local phonons. At a half-transmitting channel forward and
backscattering are the same and no correction is observed. For a less than half
transmitting channel a net of forward scattered electrons results in an increase
in the current. In Fig. 7.4 the differential conductance is shown for a 7 Å
long Ag/O chain. The transmission is clearly low and the upward steps seen
in the spectra may be interpreted as inelastic forward scattered electrons. The
observed frequency is around 100 meV which is much higher than the phonon
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Figure 7.4: dI/dV spectra obtained from low conducting Ag/O atomic chain structure
which was ∼ 7 Å long. A vibrational energy of 100 meV is observed

spectrum of bulk Ag. The associated vibrational mode must therefore involve O
in either molecular or atomic form. Calculations of the vibrational frequencies
of atomic oxygen in a silver contact are presented in Sec. 7.1.

7.1 Atomic structure and stability

In this section, the atomic structure, stability and vibrational frequencies of
Ag/O contacts are discussed.

It was noticed by Smith et al. [93] that a relation between metals showing
surface reconstruction and forming chains exists and was explained in terms of a
strong dependence of the binding energy on the coordination. This was in turn
related to relativistic effects. We note that although silver does not reconstruct,
silver (110) surfaces reconstruct in the presents of oxygen. The structure shows
rows of alternating silver oxygen chains (ASOC), e.g. —Ag-O-Ag-O—. This
could indicate that a ASOC chain is a particularly stable 1D structure of Ag
and O. Further evidence for the appearence of ASOC in the break junction
experiments by Thijssen et al. is given in Paper III, where a simple model based
on the interatomic distances of Ag-Ag and Ag-O was used to fit the experimental
length histogram shown in Fig. 7.3. A particularly frequent occuring structure
from this procedure was in fact the ASOC.

In order to investigate the local Ag/O structure in more detail, the vibra-
tional frequencies of a single oxygen atom in a silver contact have been calcu-
lated. The starting point is the structure shown in Fig. 7.5, where the oxygen
atom and the four atom Ag pyramids, as well as the surface-surface distance,
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have been relaxed. The vibrational modes are then obtained by diagonalizing
the Hessian matrix of the oxygen atom and the two apex Ag atoms defined
by ∂E/(∂un,cum,c′), where E is the DFT ground state energy and un,c is the
displacement of atom n in the direction c ∈ x, y, z, multiplied by the mass fac-
tor

√
mn. The calculations identify 3 longitunal modes with the vibrational

81.4 meV 28.5 meV 14.7 meV

Figure 7.5: The supercell used for the DFT calculations of the vibrational modes of
a single oxygen atom in a silver contact. Below: longitudinal vibration modes and the
calculated vibrational frequencies.

frequencies ω1 = 81.4, ω2 = 28.5 and ω3 = 14.7 meV. The three vibrational
modes correspond to (i) the oxygen atom moving in anti-phase with the silver
atoms, (ii) the two Ag atoms moving in anti-phase and the oxygen atom being
immobile, (iii) in phase motion of all three atoms. The relation between the
vibration-mode energies may be accounted for by a simple model as described
in Paper III. However, it is imediately clear that mode (ii) and (iii) have low
frequencies compared to mode (i), due to the large difference in mass between
Ag and O.

The high-energy mode is in good agreement with the measured vibrational
energies in the range between 80 and 100 meV. We have not considered molecular
oxygen. However, an oxygen molecule has double the mass of an oxygen atom,
which would shift the energy of the high-freqency vibrational mode down by
a factor of

√
2 to 57.6 meV, assuming a similar bond strength to Ag. This

suggests that oxygen atoms, rather than molecular oxygen are incorporated into
the chains.

Excluding molecular oxygen still leaves open the question of the composition
and structure of the Ag/O chains responsible for the anomolous conductance
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behavior for structures of with lengths up to 2 nm.
The results for homogenous metal chains in Sec. 6.2 indicated that chain

formation was related to breaking of bonds and that strong chain bonds are a
guiding factor in chain formation [94]. In Fig. 7.6 we show the calculated break-
ing force for three different Ag/O chains and their structure . The supercells
correspond to the structures shown with transverse dimensions of 12Å × 12Å.
In general, all structures were fully relaxed. The structure was stretched in in-
crements of 0.2 Å from an initial compressed structure until finally breaking.
From the DFT calculations, the breaking force was identified as the maximum
force the chain in question could sustain. The pure Ag chain was found to

0.8 

1.1

1.7

F (eV/A)

Figure 7.6: Breaking force, F , of Ag and O chains with various compositions

have a breaking force of 0.8 eV/Å, in good agreement with prevous DFT cal-
culations [94]. Incorporating atomic oxygen into a AgO1/3 chain enhances the
mechanical strength slightly to 1.1 eV/Å. However, the ASOC has a strikingly
higher breaking force of 1.7 eV/Å.

To sumarize, Ag(110) reconstructs forming ASOC, molecular oxygen may
be excluded due its proposed low vibrational frequencies, and the breaking force
of ASOC is much higher than Ag and AgO1/3 chains. This all points in the
direction of ASOC as a good candidate for further investigation.

To apply the string tension model developed in Sec. 6.1 to the system con-
sisting of an ASOC suspended between two bulk-like tips, we take as a refer-
ence chain model system the supercell containing two formula units of AgO.
This allows for the chain to zig-zag. For the tip-bulk reservoirs we use pure
bulk Ag. To approximate the chemical potential of oxygen, we have calculated
two different values: (i) The gas phase energy µO,1 = E(H2O) − E(H2), and
(ii) the gas phase energy µO,2 = 1

2E(O2). The chemical potential difference is
µO,2 − µO,1 = 2.45 eV. Using µ0,2 has recently been found to provide better
agreement with experiment for the formation energies of various metal oxides
[118].
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The string tension expression in Eq. (6.4) may now be written in terms of
the linear atom density as

γ(n) = f(n)− µ̄n, (7.1)

where f(n) = E(AgO× 2)/4 and the “average” chemical potential µ̄ = 1
2(µAg +

µO,i), for i = 1, 2.

0.4 0.6 0.8
n (1/Å)

0

0.5

1

1.5

γ 
(e

V
/Å

)

O2/2
H2O-H2

0.4 0.6 0.8
n (1/Å)

0.5

1

1.5

2

∆E
 (

eV
/a

to
m

)

Figure 7.7: Left: String tension for an ASOC chain obtained from two different oxy-
gen chemical potentials. The full and dashed line corresponds to chemical potentials
obtained from gas phase DFT energies 1

2E(O2) and E(H2O) − E(H2), respectively.
The robustness of the single string tension local minimum indicates that tip suspended
ASOC chains may form. The structure corresponding to the local minimum is a linear
ASOC chain with a Ag-O interatomic distance dAg-O between 1.9 and 2.0 Å, dependent
on the oxygen chemical potential. Right: The formation energy as a function of the
linear atom density n. The two local minima corresponds to a zig-zag structure and a
linear structure as shown by the insets.

In Fig. 7.7 the string tension and formation energy per atom (∆E = E(AgO×
2)/4− (µAg−µO,i)/2) is shown in the left and right panel, respectively. The full
line and dashed lines corresponds to µO,2 and µO,1 respectively, as indicated in
the legends. The string tension for both the oxygen chemical potentials show
only a single local minimum. The structure which minimized the string tension
is a linear ASOC shown in the inset. The destabilization of zig-zag chains is
also observed for the ASOC. In fact the free ASOC chain has two local minima
corresponding to a zig-zag and linear chain, see Fig. 7.7(right panel) . However,
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when tip-suspended, the zig-zag structure is destabilized by the increased cost
of a higher linear atom density compared to the energy gain of the chain alone,
as discussed in Sec. 6.2. Furthermore, we mention that the tip suspended ASOC
chain string tension minimum is robust since a variation of oxygen chemical
potential (with 2.45 eV) does not change the qualitative behavior. The structure
corresponding to this local minimum has an Ag-O interatomic distance between
1.9 and 2.0 eV for chemical potentials in the range between µO,1 and µO,2.

7.2 Conductance calculations

In this section we address the electron transport properties of the ASOC sus-
pended between Ag electrodes. Based on these first principles conductance cal-
culations, it will be shown that the anomolous conductance behavior of 0.1G0

for long chains may be understood in terms of a simple phase-shift model (see
Sec. 3.4). Also, Al and Au are shown to be well described by this phase-shift or
resonating-chain model.

To describe the scattering region we use the supercell shown in the inset
of Fig. 7.8. It contains the oxygen terminated ASOC suspended between four-
atom silver pyramids, which are attached to (111) silver surfaces. Both the Ag
pyramid and the ASOC chain have been fully relaxed to obtain the most stable
geometry of the linear ASOC chains found in the prevous section. Transport
calculations are performed as described in Chapter 4 and applied in chapter 5.

In Fig. 7.8 we show the calculated conductance (blue squares) of the relaxed
oxygen-terminated ASOCs as a function of the number of oxygen atoms N in the
chain. We note in passing that the calculated conductances of Ag-terminated
chains are significantly lower than the experimental value of 0.1G0 [1]. As dis-
cussed in the prevous section, these chains are probably less stable than oxygen-
terminated chains and are likely to break in the Ag–Ag bond when elongated,
see Fig. 7.5. As indicated in Fig. 7.8, we have considered relaxed chains with a
length up to 23.0 Å, with the Ag-O bond length lying in the range between 1.95
and 2.10 Å, in correspondence with the local string tension minimum.

Fig. 7.8 also contains the experimental data, which is obtained by averaging
the conductance trace of thousands of chains, so that features such as small-
amplitude conductance oscillations are not visible. For long chains, however,
there is excellent agreement between the measured and calculated (average)
conductance. The significantly larger conductances found in the experiments for
shorter chains are presumably due to contributions from pure Ag chains which
have a conductance around 1G0 (see Fig. 7.3). The calculated conductance of
a single oxygen atom, N = 1, is 0.3G0, which is in good agreement with the
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Figure 7.8: Calculated conductance as a function of chain length (blue squares). The
length of the chain is given in units of 3.8 Å corresponding to the length of a AgO
unit. The result of the resonating-chain model in Eq. 7.2 and experimental data are
also shown. Shown in the inset is the supercell used to model the suspended chains.

results calculated in Ref. [110]. For N > 1 the conductance starts to oscillate
with a period of two Ag-O units around an average value of 0.1G0. For a single
oxygen atom, N = 1, we find a non-magnetic ground state, while for N > 1 the
ferromagnetic state is energetically favored. For large N the electronic structure
of the chain converges toward that of the infinite alternating Ag-O chain. This
has a ferromagnetic (half-metallic) ground state with a magnetic moment of 1µB

per Ag-O unit mainly localized on the oxygen. The energy gain with respect to
the non-magnetic state is 0.12 eV per Ag-O unit.

To gain more insight into the nature of the conductance oscillations, we show
in Fig. 7.9a) how the energy dependent transmission functions change with N ,
which varies from N = 2 in the top panel to N = 6 in the bottom panel. The
fact that only minority spin states are present at the Fermi level means that the
current will be fully spin polarized, making the ASOC a perfect spin-valve. The
peaks in the transmission function are found to coincide approximately with
the resonances of the chain. These in turn are broadened by coupling to the
contacts.

The number of resonances increases linearly withN and their width decreases
as 1/N due to a reduction in the overlap between the levels on the chain and the
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states in the contact. The resonances on the chain have the same character as
the Bloch states forming the valence band of the infinite Ag-O chain whose band
structure is shown in Fig. 7.9b). The spin polarized valence band is two times
degenerate, with angular momentum m = ±1 and Ag(4d)-O(2p) character. The
character of the Bloch states may be identified from symmetry considerations.
However, this can also be seen clearly from the Wannier functions associated
with the anti-bonding band crossing the Fermi-level and a bonding band located
in the energy range -2.5 to -4.5 eV (not shown).

The conductance oscillations in Fig. 7.8 clearly arise because the Fermi level
intersects the nearest resonance closer to its center for even N than odd N .
However, in contrast to the situation for homogeneous chains, the transport is
never “on resonance” but always takes place via a resonance tail and cannot
be explained by charge neutrality. Indeed, from Fig. 7.9a) it can be seen that
the resonances are always almost completely empty or filled, and since each
resonance can accommodate two electrons, it seems that all chains accommodate
an even number of electrons. But each AgO unit contains an uneven number of
minority valence electrons (5), and local charge neutrality would therefore imply
a half-filled resonance for every second AgO unit added to the chain. On the
other hand, the small-amplitude oscillations around the experimental saturation
value of 0.1G0 arise exactly because the Fermi level always intersects the tail of
a resonance. The fact that the ASOC chains are periodic allow us to model the
transport of each of the two channels (due to orbital degeneracy) with a simple
resonating-chain model for symmetric coupling (see Sec. 3.4)

T =
1

1 + 4 R1
(1−R1)2

sin2(kL+ φ1)
, (7.2)

where R1 is the reflection probability for the semi-inifinte chain coupled to the
semi-infinite Ag bulk contact, as shown in Fig. 7.10. L is the length of the chain
and k is the Fermi Bloch wave vector. For a given reflection probability R1,
the total transmission will vary with the chain length between a maximum of
1 and a minimum of ((1 − R1)/(1 + R1))2. However, due to the phase shift
and the discrete nature of the length of the chain, the transmission will oscillate
over a more narrow region. We have determined the parameters R1 and φ1 for
the ASOCs as well as for chains of Al and Au. The parameters are obtained
by considering the reflection of an electron in a semi-infinite chain impinging
on a contact We determine the scattering state |ΨS〉 using the calculational
procedure described in detail in Ref. [52]. The phase shift can then be deter-
mined by projection onto the incoming (+k) and outgoing (−k) chain states as
φ1 = arg(〈ψ−k|ΨS〉/〈ψ+k|ΨS〉). Note, that there is a certain arbitrariness in the
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Figure 7.9: (a) Transmission function for the majority (red dashed line) and the mi-
nority spin (black full line) for AgO chains containing 2 − 6 oxygen atoms. (b) Band
structure of the infinite AgO chain. The valence band crossing the Fermi level, is dou-
bly degenerate, and the Bloch states have m = ±1 symmetry with respect to rotation
around the chain axis. The inset shows Wannier functions functions which can be asso-
ciated with the half filled bands. They can be identified as p and d like atomic orbitals,
each centered on O and Ag, respectively.
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System R1 φ1 kL Tmax ∆Tosc

AgO/Ag 0.64 −0.21π Nπ/2 0.12 0.05
Al/Al(111) 0.43 0.92π (N + 1)π/4 0.85 0.57
Au/Au(100) 0.004 −0.36π (N + 1)π/2 0.997 0.010

Table 7.1: Calculated chain-contact reflection parameters for a number of sys-
tems.

definition of L in Eq. (7.2) which is reflected in different results of the phase shift
φ1, so that Eq. (7.2) is in fact independent of the particular choice of L [51].

In Table 7.1 the calculated reflection parameters for the ASOCs and for
mono-atomic Al and Au chains are shown together with the obtained maximal
transmissions and the magnitudes of the oscillations. In all three cases the model
reproduces the results of full DFT calculations when varying chain lengths, as
will be shown below. Note that the values are per channel (Al and Ag both have
two eigenchannels).
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Figure 7.10: Top: Isosurface plot of an eigenchannel state at the Fermi level. Bottom:
The transmission function for the chain-bulk interface.

The model results for the ASOCs are shown in Fig. 7.8 to coincide with the
full calculations for chains containing two or more oxygen atoms. It should be
noted that the low conductance of about 0.1G0 comes about not so much because
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of the reduced reflection probability (R1 = 0.64) which would still allow for a
total transmission of 1 if a resonance condition could be met in the chain, but
rather it is the phase shift of φ1 = −0.21π which leads to destructive interference
within the chain. We stress that the actual size of this phase shift is expected
to depend on the electronic structure of both the chain and the contacts, and
must be obtained from a full calculation. However, we note that a phase shift of
φ1 ' −π/4 corresponds to a length of half a unit cell in the chain or equivalently
an oxygen-silver distance, and this is in good accordance with Fig. 7.10 where
the scattering state shown as a isosurface plot is seen to carry weight on the Ag
tip atom and therefore is mostly reflected off the three-atom Ag layer below.
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Figure 7.11: The minority energy dependent transmission function from the first-
principles calculations (black) and from the transmission model of Eq. 7.2 (blue). The
energy dependent transmission from the model function has been obtained by linearizing
the band structure of the Ag/O chain around the Fermi level.

To make the relation between the resonator-chain model and the first-principles
calculations of the energy dependent transmission function more obvious, we
now consider the energy dependence of Eq. (7.2). In principle this requires the
calculation of φ1 and R1 for each energy. However, we notice that the energy
dependence of T1 and thus R1 = T1 − 1 shown in the lower panel of Fig. 7.10)
is rather weak and in turn approximate it with the value at the Fermi-level. If
the phase shift is furthermore assumed energy independent, the only remaning
energy dependent quantity in Eq. 7.2 is the Bloch wave vector k, which can be
linearized around the Fermi-level.

In Fig. 7.11 we show the spin-minority channel result of these approximations
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(blue dot-dashed line) and also for comparison the full first principle result (black
line).

The resonator-chain model reproduces the energy dependence of the full
calculations very well, including the resonant structure. This implicitly resolves
the charge neutrality paradox: odd numbers of chain electrons still doubly-
occupy an integer number of resonances when the effects of the phase shift at
the boundaries are included. The approximations are in fact exact at the Fermi
energy, which explains the very good agreement between the full calculations
and the model at this point. Only for the shortest chain of N = 2 deviates
noticable, indicating that the potential of the right side is dependent on the left
side, i.e. the potential in the chain region is not yet converged.

To further investigate the applicability of the resonating-chain model, we
show the results for the conductances of Al and Au chains in Fig 7.12 together
with the results of earlier full DFT-transport calculations. The agreement is
striking, even for rather short chains. In the case of Al, the phase shift is in
agreement with the resonant-level model proposed in Ref [107]. The resonant-
level model takes as a starting point the isolated chain (of length N) which is
then coupled weakly to the leads. This boundary condition corresponds exactly
to a phase shift of π. The small deviation of the phase shift from π accounts
nicely for the fact that the conductance does not peak at 2G0 but only at 1.7G0,
where the maximum of 2G0 is due to orbital degeneracy, e.g two channels. For
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Figure 7.12: (a) Conductance for Al as a function of the number of chain atoms N .
The first-principles result (squares) is taken from Ref. [107], while the model result
(triangles) is obtained from Eq. (7.2)

Au we find the phase and amplitude of the even-odd conductance oscillations
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in agreement with the first-principles calculations in Ref. 10. We note that the
phase of the conductance oscillation is not explained by either a charge neutrality
argument or a resonant model [107]. However, the phase of the oscillation may
be related to our calculated phase shift of 0.36π, while the small oscillation
amplitude can be traced to an almost perfectly transparent chain-bulk interface
with a reflection coefficient of only 0.004.

7.3 Summary and outlook

First principles conductance calculations have been presented for alternating
AgO chains suspended between silver bulk contacts. The AgO chains are half-
metallic and can have an average conductance of 0.1G0, as was found in recent
experiments. In fact, the conductance oscillates with a small amplitude and a
period of two AgO units as the chain length is varied. The oscillations may be
understood from a resonating-chain model, and are fully characterized by only
two parameters, the reflection probability, R1, and reflection phase-shift, φ1, of
a single bulk-chain interface. By extracting these two parameters from the DFT
calculation, quantitative agreement between the full calculations and the model
is obtained. Also, previous DFT transport calculations on Au and Al could be
reproduced by the resonating-chain model.
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Chapter 8

CO in transition and noble
metal junctions

With the advent of molecular electronics, researchers have envisioned simple
organic molecules as the basic building blocks in electronic devices. This has
recently intensified the interest in electron transport in nanoscale contacts [91,
11, 119, 120]. If monanatomic chains represent the smallest possible electronic
device interconnect, a small functional molecule could be the corresponding ul-
timate miniaturization of a transistor.

Experiments on single-molecule junctions have been performed with basi-
cally the same techniques used for studying monatomic chains described in
the preceding chapter. These include mechanically controllable break junc-
tions (MCBJ) [23, 121], scanning tunneling microscopy [122], and electro migra-
tion [12]. However, molecules introduced through a solvent might often influence
the contact formation in an uncontrollable way. The organic molecules used are
often carbo-hydride rings with end groups of sulfur or nitrogen designed to form
strong bonds to the metal. These include bipyridine and benzene-dithiolate, as
discussed in chapter 5 and in Paper II.

However, experimental techniques such as the MCBJ technique are per-
formed at cryogenic temperature. This was used in the study of the Ag/O
chains, and avoids the introduction of a solvent altogether. In fact, this tech-
nique has been used to also study several small molecules such as the hydrogen
molecule [10] and carbon monoxide (CO) [4, 5] in metal junctions. For a Pt/H2

junction, excellent agreement between experiment and DFT transport calcula-
tions was found [19].

Experiments on magnetic as well as nonmagnetic metal point contacts showed
a fractional conductance of 0.5G0. This was interpreted as the lifting of a spin

71
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degenerate conductance channel. However, the latter experiments could not be
reproduced by Untiedt et al. [4]. Instead, they suggested that the reported frac-
tional conductances could result from CO contamination. In recent experiments
by Kiguchi et al. [5] the effect of bonding CO on metal contacts (Au, Pt, Ni and
Cu) on the conductance was studied. The conductance histogram for Pt and Ni
in the presence of CO indeed showed a clear peak at 0.5G0 in the conductance
histogram. Regardless of whether CO is the source of the reported fractional
conductances, the question of the physical mechanism still remains: is it a spin
effect or does it have some other origin?

The chapter is organized as follows. First, the DFT results of simulated
conductance traces of a homogeneous Pt point contact and short Pt chain are
presented, and found to be in good agreement with experiments. This is followed
by simulated conductance traces for CO in Au,Cu,Ni and Pt contacts. The
conductance property of CO is found to be determined to a large extent by the
pure metal contact, and we assign the fractional conductance peak at 0.5G0 to a
particular CO configuration. Finally, vibrational calculations are presented for
Pt/CO.

The result on Pt and Pt/CO may be found in Paper I, while the results for
Au, Ni and Cu are as yet unpublished.

8.1 Summary of experimental results

In this section a brief summery of the experimental data obtained for CO in
metal junctions by Kiguchi et al. [5] is presented.

The experiment was performed with the MCBJ technique described in Sec. 7.0.1.
In Fig. 8.1 the conductance histogram obtained by Kiguchi et al. for the four
different metals Au, Cu, Pt and Ni nanocontacts before (dotted line) and after
(thick line) admitting CO. The clear peak at 1.5G0 for both Pt and Ni and
1.0G0 for both Cu and Au indicates typical conductances of the contacts just
before breaking. Admitting a small amount of CO gas into the sample leads to
a large change for the case of Pt and Ni, where the peak at 1.5G0 disappears,
and instead new peaks appear. For both Pt and Ni a peak at 0.5G0 is observed.

8.2 Conductance calculations

In this section, the DFT simulated conductance traces are presented. We find
that the transport properties of the Metal-CO-Metal junction is to a large extent
determined by the properties of the bare metal electrodes. For this reason, we
put some emphasis on verifying the ability of our method to reproduce key
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Figure 8.1: (a) Au, (b) Cu, (c) Pt, and (d) Ni contacts before (dotted line) and after
(thick line) admitting CO. The figure is taken from Ref. [5].

characteristics of the transport properties of the pure Pt contacts and chains.
Here we also find good agreement with experiments.

All conductance calculations have been performed using a DZP basis set
and the method 2 described in Sec. 4.5.2, except the conductance calculation
involving Pt which was performed using method 1 described in Sec. 4.5.1, see
Paper I for more details. Furthermore, the conductance calculations for the Ni
contacts was performed spin-polarized. The two-dimensional Brillouin zone of
the transverse plane has been sampled by 4× 4 k-points for all calculations and
exchange and correlation effects are incorporated through the PBE functional
[32].

8.2.1 Pt point contacts and chains

Mechanically controlled break junction experiments performed at cryogenic tem-
perature on pure Pt samples show that as a Pt contact is pulled apart a structure
with a characteristic conductance of around 1.5G0 is formed in the last stages
before the contact breaks. This is inferred from conductance histograms which
show a pronounced peak at this value. In addition to the peak at 1.5G0, many
histograms on Pt contain a smaller and broader peak at around 2.1G0. The
two peaks are believed to correspond to chains and atomic point contacts, re-
spectively. The fact that the peak at 1.5G0 is higher than the peak at 2.1G0

is explained by the suppression of point contacts by the formation of chains,
in good agreement with the high stability predicted for Pt chains in Sec 6.2.
Experimental evidence for this hypothesis comes from conductance histograms
recorded as the broken contacts are brought back into contact, so-called return
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histograms. Such histograms contain no contributions from chains, and show a
single peak at 2.1G0 [123].

The study of the Pt point contacts and short chains serves a dual purpose.
First, it provides a theoretical justification for assigning the two peaks at 1.5G0

and 2.1G0 in the conductance histograms for Pt to chains and point contacts,
respectively. Secondly, it allows us to test the ability of the calculational scheme
against well established experimental results and other computer simulations
before applying it to the study of CO in Pt and other metal contacts.

(i)

(ii)

zd

Figure 8.2: Supercells used to model the two structures considered: (i) A point-contact,
and (ii) a 1-atom chain. The electrode separation dz is defined as the distance between
the (111) surfaces.

The Pt contacts are modeled using supercells with two 4-atom pyramids
oriented towards each other and attached to Pt(111) surfaces containing 3x3
atoms in the surface plane. Two different structures are considered. (i) A point
contact, where the apex atoms of the pyramids are in direct contact. (ii) A
1-atom chain, where a single Pt atom is inserted between the apex atoms of the
pyramids, as shown in Fig. 8.2.

By increasing the electrode separation dz, defined as the distance between the
fixed (111) surfaces (see Fig. 8.2), and relaxing the pyramids at each step before
calculating the conductance, we simulate the process of creating a conductance
trace. The result for the point contact and short chain is shown in Fig. 8.3,
where the triangles denote conductances and the circles denote the total energies
measured relative to the first configuration (dz = 10.9Å).

The simulated conductance trace of the point contact is in good agreement
with the experimental return histograms for Pt [123], which show a peak around
2.1G0. Moreover, both the plateau around 2G0 as well as the rate of the expo-
nential decay in the tunneling regime compare well with the calculations reported
in Ref. [68].

For the short chain Pt contact the calculated conductance trace has a plateau
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Figure 8.3: Left: Simulated conductance trace (circles) and the DFT calculated po-
tential energy as a function of the electrode separation dz. Right: The same, but for a
short Pt chain contact.

at around 1.4G0 for small dz where the chain zigzags. As the contact is stretched
further, the conductance rises to a conductance just below 2G0, before the con-
tact breaks at dz = 14.5Å. At this point the structure relaxes towards the
surfaces, and the conductance starts to decay exponentially as the tunneling
regime is entered. The correlation between structural relaxations and sharp
changes in the conductance is a characteristic feature of the contact formation
process. The effect has been observed experimentally for gold chains by mea-
suring the conductances and forces simultaneously [124, 13]. In fact, this has
also been recently shown for Pt chains [125]. Furthermore, we note that the
increase in the conductance just before the contact breaks, seen in Fig. 8.3, is
also observed experimentally [125]. We stress that in order to obtain plateaus
in a simulated conductance trace and thus predict the occurrence of peaks in a
conductance histogram, it is necessary to allow the central atoms of the contact
to relax in the elongation process.

8.2.2 CO in metal contacts

In this section we address the effect of a CO bridge on the conductance of the
metal contacts. The DFT calculations identify a certain tilted bridge configura-
tion in the last stages before rupture, which has a conductance of ∼ 0.5G0 for Pt
and Ni and is negligible for Au and Cu. This effect is explained by the position
of the metal d-band center.

As discussed in Sec. 8.1, the controlled exposure of a metal contact to a
CO gas changes the conductance histogram completely for Pt and Ni, where a
peak at 0.5G0 replaces the homogeneous contact conductance peaks at 1.5G0

and 1.0G0, respectively.
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In order to understand the physical origin of the new peaks, we have carried
out total energy and conductance calculations using the same setup as for the
pure Pt contacts, as discussed in the preceding section. For the initial contact
geometry and small dz, CO is most stable at the central metal-metal bridge of
the contact, bonding symmetrically with C to the two metal apex atoms in an
upright bridge configuration (see the inset labeled A in Fig. 8.4).

The results are summarized in Fig. 8.4, where we show the conductance as a
function of the electrode separation dz. Clearly, Pt (diamond) and Ni (triangle)
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Figure 8.4: The conductance as a function of the electrode displacement dz for
Au,Cu,Ni and Pt contacts in the presence of a single CO molecule.

show a conductance close to 0.5G0 in the last stages before the contact break.
Prior to reaching the 0.5G0 plateau a sudden jump can be observed in the
conductance, which is related to one of the C-Pt or C-Ni bonds breaking, and
the contact relaxing to a tilted bridge structure as shown in the inset labeled B.
For Au and Cu a transition to the tilted bridge configuration does not lead to
a plateau at 0.5G0 but rather a sudden jump into the tunneling regime. These
results are in qualitative agreement with the experimental results [5]. However,
we observe a suppression of the conductance for Cu, which would lead to a
peak in the conductance histogram shifted slightly down below 1G0. In the
experiments the peak for the pure contact at 1G0 is not shifted down but is
nevertheless broadened.
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Based on this, we propose that the observed fractional conductance value
0.5G0 for Pt and Ni exposed nanocontacts is due to the tilted bridge configura-
tion.

This is illustrated further below, where we study the transport mechanism
in more detail, first for Pt-CO and then more generally for Metal-CO.

Fig. 8.5a shows a typical transmission function for the upright bridge con-
figuration (dashed line) and tilted bridge configuration (full line) immediately
before and after the bridge tilts corresponding to configurations A and B in
Fig. 8.4. In both cases (A and B) there is a pronounced resonance at the Fermi
level, which clearly is responsible for the conductance of 1.5G0 and 0.5G0,
respectively. As the following analysis will show, the resonance is not due to the
CO molecule alone, but rather is a (local) band structure effect related to the
d-orbitals at the Pt apex atoms.

To address the origin of this resonance, we perform an analysis of the lo-
cal electronic structure in the contact region by diagonalizing the Hamiltonian
within the subspace spanned by the WFs located at the CO molecule. The or-
bitals and eigenvalues obtained in this way represent renormalized energy levels
of the CO molecule including the effect of the coupling to the Pt leads. For
all the considered contact geometries, we find seven WFs located at the CO
molecule, leading to seven renormalized molecular energy levels. For simplicity
we focus on the tilted CO bridge in the following analysis.

Since CO has ten valence electrons, the seven renormalized CO orbitals rep-
resent the five occupied and the two lowest unoccupied molecular orbitals. The
latter are the 2π∗ orbitals which are known to be important for the chemisorp-
tion properties of CO [126, 127, 128]. By repeating the conductance calculations
with the renormalized 2π∗ orbitals removed from the basis set, we find that the
resonance at the Fermi level is completely gone and the conductance is reduced
to ∼ 0.05G0. This allows us to focus exclusively on the 2π∗ CO orbitals when
analyzing the transport properties of the Pt-CO-Pt contacts.

In the following, we will refer to the 2π∗ states as |a〉 and |b〉. The on-
site energies of these renormalized orbitals are εa = 1.5 eV and εb = 1.6 eV,
respectively. The splitting of the levels is induced by the different couplings to
the electrodes. Each of the molecular orbitals (MO) |a〉 and |b〉 give rise to one
transmission channel through the CO molecule. If we neglect tunneling due to
direct coupling between the Pt apex atoms, and neglect interference between
the two transport channels, we can analyze the problem by considering the
transport through each MO separately. This allow us to model the contact by a
single level coupled to continuous bands (see Sec. 3.3). In the single-level model
with a strong asymmetric coupling, the transmission may be expressed as
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Figure 8.5: (a) Typical transmission function for the upright bridge (configuration A
in Fig. 8.4) and the tilted bridge (configuration B). The dotted line is the transmission
function obtained using Siesta-DZP/PBE, while the full line is for WFs. Both trans-
mission functions (A and B) have a resonance at the Fermi level which can be related
to the density of states of the group orbitals. (b) The PDOS of the 2π∗ states |a〉 and
|b〉 together with the PDOS of the group orbital in the weakly coupled right lead. The
inset shows an iso-surface plot of the MO |a〉 (transparent) and its corresponding left
and right group orbitals (solid). The PDOS for the MOs (circles and stars) is quite flat
around the Fermi level, while the the PDOS of two group orbitals (full and dashed lines)
both have a peak at the Fermi level. It is this peak that gives rise to the resonance in
the transmission function in (a).

T (ε) = 4π2V 2
R,aρ

0
R,a(ε)ρa(ε), (8.1)

where ρa(ε) is the projected density of states (PDOS) of the MO |a〉 and ρ0
R,a(ε)

is the PDOS of the group orbital of the right lead in the absence of coupling to
|a〉, i.e. calculated with VR,a = 0. The limit of strong asymmetric coupling is
relevant for the tilted bridge configuration, where V 2

R/V
2
L ≈ 0.1 for both MOs

|a〉 and |b〉. The large asymmetry in the coupling strengths indicates that the
Pt-C bond is much stronger than the Pt-O bond. To illustrate this situation, the
inset of Fig. 8.5b) shows an isosurface plot of |a〉 (transparent) together with its
left and right group orbitals (solid). The latter consists mainly of d-like orbitals
centered on the apex Pt atoms. The coupling strengths VL,a and VR,a are also
indicated.

In Fig. 8.5b) we show the calculated PDOS for the MOs |a〉 and |b〉 together
with the PDOS of the corresponding group orbitals |ga

R〉 and |gb
R〉. It is clear

that the transmission resonance at the Fermi level results from a corresponding
peak in the PDOS of the group orbitals of the right lead, or, equivalently, from
a peak in the PDOS on the d-states of the Pt apex atoms. The bare energies
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of the MOs at εa = 1.5 eV and εb = 1.6 eV, respectively, are shifted upwards
by the coupling to the Pt d-band, and can be seen as broad peaks in the PDOS
at ∼ 2.2eV. These peaks are also clearly visible in the transmission function in
Fig. 8.5a).

It is well known that the DFT calculated HOMO-LUMO gap of CO is some-
what sensitive to the applied exchange-correlation functional. [128] However,
since the transport properties of the investigated Pt-CO-Pt bridge involves only
the tails of the PDOS of the CO orbitals and is dominated by the PDOS of
the Pt leads, the exact positions of the CO energy levels are not expected to be
crucial. However, an accurate description of Pt is important, and as discussed
in Sec. 8.2.1, our results for Pt are in good agreement with experiments. The
above analysis clearly shows that the transmission at the Fermi level is caused
by the properties of the isolated Pt lead, while the role of the 2π∗ CO orbitals
is to provide a flat background.
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Figure 8.6: Transmission function (left) and apex atom’s d PDOS (right) for Au (top),
Cu (middle) and Ni (bottom) with the molecule contribution removed.

We are now ready to address the conductance behavior of Au, Cu and Ni
exposed to a CO molecule. Fig. 8.6 show the calculated transmission function
and weakly coupled apex atoms d-PDOS for Au, Cu, and Ni, obtained with the
coupling to the molecule removed (the group orbital PDOS) in the left and right
panel, respectively. Note that the Ni-CO contact spin polarizes and the current
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is almost entirely carried by the minority spin electrons (black full line), while
the majority spin channel (red dashed line) only has a minor contribution at the
Fermi level. Clearly, the d-PDOS determines the transmission. Since neither Au
nor Cu have d-states at the Fermi level, the conductance is almost zero in the
tilted bridge configuration for these metals. On other hand, as with Pt, Ni does
have d-states at the Fermi level, leading to a conductance of 0.5G0.

8.3 Vibration modes

The peak around 1.1G0 in the experimental histograms cannot be easily ex-
plained by our calculations for a single CO molecule in the Pt contact. We have
therefore also calculated the conductance of the CO bridge in the one atom chain
in search of a structure that can explain the peak at 1.1G0. However, we found
conductances quite similar to those obtained for CO in the Pt point contact.

The vibrational frequencies of the Pt/CO structure with a conductance of
1G0 has been measured using point contact spectroscopy (see Sec. 7.0.2) [129].

Figure 8.7: Vibrational mode calculations fo a 1D wire with CO upright (crosses),
Pt contact with CO tilted (open squares), Pt contact with CO upright (filled squares),
Pt(111) (open circles), Pt(111) from experiment (solid diamonds), and Pt contacts from
experiment (solid diamonds). Note the anomalous frequency at ∼ 110 meV from the
experimental results for a Pt contact.

To gain more information about the local structure we have carried out vibra-
tional mode calculations in the same way as for the Ag/O system, as discussed
in Sec. 7.1. However, the Pt atoms have been fixed due to large mass differ-
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Figure 8.8: Strain induced frequency shift in meV (top) and conductance G in G0 =
2e2/h (bottom) versus electrode separation dz in Å for an upright (left) and tilted (right)
Pt-CO-Pt contact. Insets show the internal CO frequencies for the two configurations.

ence with CO. For all the structures considered, as indicated by the legends in
Fig. 8.7, we have fully relaxed both the CO molecule and Pt atoms prior to calcu-
lating the Hessian matrix. The calculation identified Pt-CO related frequencies
are all located in the range between 0 and 60 meV, while the internal CO vi-
brational frequency is in the range between 220 and 270 meV. The calculated
vibrational frequencies are to a large extend in agreement with the experiments.
However, a striking exception is the experimentally observed frequency around
110 meV. Considering the quite similar vibration frequencies obtained for a vari-
ety of Pt/CO structures, we speculate that the vibrational frequency at 110 meV
is not directly related to CO. This will implicitly explain why we do not observe
a 1G0 conductance in our calculations. Furthermore to exclude a strain induced
frequency shift, we have also performed vibrational calculations as a function of
the electrode separation dz. The results for the upright and tilted bridge are
shown in Fig. 8.8 in the left and right panel, respectively. Also shown is the
the corresponding modes and conductances. The inset shows the internal CO
frequency. Clearly, no vibrational mode comes even close to 110 meV.

8.4 Summary and outlook

For the pure Pt contacts, we obtain conductance traces which are in good agree-
ment with experiments, as well as other recent theoretical calculations. Our
results show that Pt point contacts have a conductance in the range betwen 2.0
and 2.3G0 while that of short Pt chains is between 1.3 and 2.0)G0. This provides
a theoretical justification for assigning the peaks at ∼ 2.1G0 and ∼ 1.5G0 in the
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conductance histogram for Pt to point contacts and chains, respectively.
For the Pt-CO-Pt contact, we identify an energetically stable configuration

with the CO molecule providing a tilted bridge between two Pt apex atoms.
Based on realistic DFT simulations of the creation of a conductance trace with
the elastic response of the electrodes included, we propose that the tilted CO
bridge is responsible for the peak at 0.5G0 observed recently in the conductance
histogram for Pt-CO-Pt. We characterize and explain the main features of the
transmission function for the Pt-CO-Pt contact in terms of the properties of
the isolated CO molecule and the free Pt leads. The analysis shows that the
conductance is to a large extent determined by the local d-band of the Pt apex
atoms, and to a smaller extent by the 2π∗ CO orbitals. The same analysis was
applied to CO in the tilted bridge configuration in Au, Cu and Ni. Since Au and
Cu have filled d-bands, the group orbital density of states is zero at the Fermi
level and the conductance is essentially zero. For Ni-CO we find a conductance
of 0.5G0 in agreement with experiments. Interestingly, the transport through
Ni-CO is almost completely spin-polarized, in contrast to the homogeneous Ni
contact [130].



Chapter 9

Nanotubes

Carbon nanotubes (CNTs) were first discovered in 1991 by Iijima [131], and
have since been the subject of an ever growing interest due to their remarkable
mechanical and electronic properties. Today, light emitting diodes, transistors
and extremely sensitive sensors have all been built using CNTs.

In this chapter, the atomic and electronic structure of carbon nanotubes
will be introduced. A method of controlling the conductance of a CNT by site
selective adsorption of molecules is also shown. Nanotubes formed from the
tri-layered structures of MoS2 and PtO2 are then studied.

9.1 Structure of nanotubes

The ideal nanotube may be viewed as being obtained by rolling up a a strip of
a quasi two dimensional (2D) layered structure into a seamless cylinder [132].
The circumference of the tube may then be choosen to correspond to an edge of
the strip. To obtain a seamless tube, the strip is cutout along the chiral vector
Ch, defined by

Ch = n1a1 + n2a2, (9.1)

and a vector T = t1a1 + t2a2 perpendicular to Ch. In the case of a hexagonal
unitcell, T may be obtained from the relation

t2 = −t1 2n1 + n2

2n2 + n1
(9.2)

From Eq. 9.1 and 9.2 it may be seen that a nanotube is specified by the pair
of integers: (n1, n2). The vectors Ch and T are illustrated in Fig. 9.1b for a
graphene sheet shown in Fig. 9.1, and will yield a (4, 4) carbon nanotube.

83
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Figure 9.1: (a) Graphene layer. (b) The tranlational unit cell (shaded area) of a (4, 4)
carbon nanotube. (c) A zig-zag nanotube obtained by folding the sheet along the zig-zag
line

The generation of a nanotube may be accomplished in the three steps. (i)
The N unit cell atoms are mapped to the surface of a cylinder with radius
r = |N|. (ii) The cylinder mapped N unitcell atoms are used to locate N ×
(gcd(n1, n2)− 1) additional atoms by repeated rotation around the tube axis by
the angle 2π/gcd(n1, n2). (iii) The rest of the tube may now be generated by
a screw operation specified by a translation h and rotation by α on the tube
axis. For details about obtaining the screw operation parameters we refer to
Ref. [133].

Consider a (6, 4) PtO2 nanotube as an example (see below for more details).
In Fig. 9.2(a) we show the atoms in the unit cell which are obtained by (i) map-
ping a single PtO2 unit of α-PtO2 to a cylindrical surface, and (ii) performing
a rotation of π around the tube axis to obtain the second PtO2 unit. To obtain
the translational nanotube unit cell shown in Fig. 9.2(b) a screw operation on
the helical motif is performed successively.

9.2 Site selective adsorption on carbon nanotubes

The influence of defects and adsorption of molecules on the conductance of car-
bon nanotubes (CNTs) is of fundamental relevance for their performance in
electrical devises such as sensors. In this section, we illustrate how the conduc-
tance properties of metallic CNTs may be controlled by site selective adsorption
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(a) (b)

Figure 9.2: (a) Helical motif of a (6,4) PtO2 nanotube, which is used to generate the
tranlational unit cell shown in (b).

of molecules in a systematic fashion.

The transport calculations have been performed using method 2, as described
in Sec. 4.5.1, and structures have been relaxed with the Siesta code [3].

It is well known that an armchair CNT (n1, n2 = n1) is metallic, with two
bands crossing the Fermi-level [134]. A defect free armchair CNT therefore has
two eigenchannels [50] at the Fermi level. In Fig. 9.3(a) we show the transmis-
sion function for a (6, 6) CNT where a single molecule (COOH, H, NH2, NO2

or OH) has been chemisorbed. The anti-resonance appears, irrespective of the
particular molecular species. In fact, as the inset shows, only one of the two
eigenchannels is affected by the adsorption of a molecule. This effect is indepen-
dent of whether the molecule is adsorbed on one of the two inequilvalent sites
of the underlying graphene sheet. To gain insight into the scattering mecha-
nism, we consider a single hydrogen atom adsorbed on a (6, 6) graphene sheet,
neglecting curvature effects. In Fig 9.3(b) and 9.3(c) we show an isosurface plot
of the unaffected eigenchannel state and the nearly blocked eigenchannel state,
respectively. The eigenchannel states were calculated at the energy correspond-
ing to the position of the anti-resonance according to the method described in
Ref. [52]. Clearly, the fully transmitting eigenchannel state has almost no weight
on the site where the H atom is adsorbed (denoted by the arrow) and on a sub
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(b) (c)(a)

Figure 9.3: (a) Transmission functions for a (6,6) CNT with a single chemisorped
molecule (COOH, H, NH2 NO2 or OH) on the the on top site. Inset: Eigenchannel
resolved transmission (COOH). Channel 1 is unaffected while channel 2 is almost blocked
at the Fermi level. Channel 3 is zero in a region near the Fermi level. (b) and (c):
Isosurface plot of the unaffected and blocked eigenchannel, respectively.

lattice which may be described by the lattice vectors

r1 = a1 + a2, (9.3)
r2 = 2a1 − a2. (9.4)

The zero weight (ZW) sub lattice may also be expressed as the condtition: n1−
n2 = 3p, for some integer p. In fact, this is the same condition required for a
carbon nanotube to be (semi-)metallic [135, 134]. Since the eigenchannel state
has almost no weight on the ZW sub lattice it may be expected that adsorbing
multiple molecules on the aub lattice sites will not cause further scattering. In
Fig. 9.4 we show the result of adsorbing two H atoms on the ZW sublattice
(red full line) and two H atoms in a number of positions not belonging to the
ZW sub lattice (dashed black line). Clearly, adsorbing multiple H atoms on
the ZW sublattice does not affect the fully transmitting eigenchannel. On the
other hand, when the H atoms are adsorbed on sites not belonging to the ZW
sublattice, both eigenchannels are effected. In fact, the transmission is now
almost zero at the Fermi level. A simple tight-binding model accounting for the
observed phenomena may be found in Paper IV.

To summarize, by chemisorbing a single molecule on the wall of a metallic
carbon nanotube, one of the two eigenchannels near the Fermi level is blocked
while the other remains unaffected. This effect seems to be generally an inde-
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Figure 9.4: Transmission function for a (6, 6) CNT with hydrogen atoms placed on the
ZW sub-lattice (red full curve) and on sites not in the ZW sub-lattice (black dashed
curve). The (n1, n2) numbers indicate the position of the second H atom with respect
to the first H atom.

pendent of the species of the chemisorbed molecule. Multiple molecules may
be chemisorbed on the ZW sublattice without affecting the fully transmitting
eigenchannel. However, adsorbing multiple molecules on sites not correspond-
ing to the ZW sublattice leads to both eigenchannels being almost completely
blocked at the Fermi level.

9.3 Non-carbon based nanotubes

In the preceding section, it was illustrated how the conductance properties could
be altered by site selective control of molecules on a carbon nanotube. Another
way of designing a nanotube with a desired property could be to simply use
a material other than carbon. Chemical properties of large diameter tubes are
expected to be similar to those of the bulk phase. For this reason, small diameter
nanotubes are of the most interest. This field is still open for further reseach.
However, here we take a small step in this direction by exploring two materials
which are known to exist in a layered phase, namely MoS2 and α−PtO2. Both
consist of a metal “sandwiched” between sulfur (S-Mo-S) or oxygen (O-Pt-O).
Within a single layer the atoms are arranged in a hexagonal lattice. In the case
of MoS2, the Mo atom is in a trigonal prismatic coordination to the S atoms, so
that the S-Mo-S is stacked A-B-A. PtO2 has a similar structure, but is instead
A-B-C stacked.

DFT calculations in this section have been performed with the Dacapo
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DFT Experiment
Hexagonal lattice constant (Å) 3.21 3.160

S-Mo-S layer height (Å) 3.16 3.172

Table 9.1: Calculated values for a single-layer MoS2. Experimental structural
parameters for MoS2 are taken from Ref. [139]

code [2] using a plane wave cutoff of 25 Ry and 24 k-points to sample the first
Brillouin zone. The PBE [32] energy functional was used to treat exchange and
correlation.

We first consider MoS2. Subnanometer MoS2 nanotubes in a crystal struc-
ture were synthesized by Remskar et al. [136] and the single tube structure was
proposed to be a (3, 3) MoS2 nanotube. However, an extensive first principles
study of small diameter MoS2 structures did not reveal satisfactory agreement
with the experiments [137]. Also, a tight-binding study [138] indicated that
small diameter MoS2 nanotubes have a higher strain energy, which indicates
that they are not particularly stable.

We have performed DFT calculations for several (n, n) MoS2 nanotubes. All
structures have been relaxed until the force on any atom was below 0.035 eV/Å.
The length of the supercell in the tube direction was also optimized. In order
to charterize their stability, we define the strain energy per atom for a tube
containg N atoms per supercell as

ES = Etube/N − E0
sheet, (9.5)

where E0
sheet is the energy per atom of a single infinite MoS2 sheet. This is

where the tube energy should tend to in the limit of large tube diameters. The
calculated parameters for a single sheet of MoS2 are summarized in Table 9.1.
Experimental values are also shown.

In Fig. 9.5 we show the calculated strain energy as function of the diameter
D, defined with respect to the Mo layer. The corresponding (n, n) values are
also shown and the line is a fit to a 1/D2 curve. Note that the (4, 4) MoS2

NT is missing in Fig. 9.5, since it spontanously “disolved” and into a cluster
structure upon relaxation. We find the strain energy per atom for a MoS2 NT
is rather high when compared with a CNT. For example, at a diameter of 1 nm,
the MoS2 NT’s strain energy is an order of magnitude higher than that for the
corresponding CNT.

Next, we consider PtO2. PtO2 plays an important role as a catalyst in CO
oxidation and water splitting. It has recently been suggested that the layered
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Figure 9.5: Strain energy as function of the Mo layer tube radius. The line is a 1/D2

fit.

DFT Experiment
Hexagonal lattice constant (Å) 3.18 3.10

O-Pt-O layer height (Å) 1.95

Table 9.2: Calculated structural parameters for single layer PtO2. Experimental
data for α-PtO2 is taken from Ref. [140]

phase α-PtO2 is a good candidate for small diameter nanotubes [6].
In Table 9.2 we show the calculated parameters characterizing a single sheet

of α-PtO2. Note that the hexagonal lattice constant is similar to that of Mo2.
However, the layer thickness is considerably smaller.

In Fig. 9.6 we show the calculated strain energy as a function of the Pt-
tube diameter for (n, 0) and (n, n) nanotubes. The strain energy of (n, 0) tubes
studied in Ref. [6] is in good agreement with our results. However, we find that
the (n, n) nanotubes have a somewhat lower strain energy at small diameters
than (n, 0) tubes.

The strain energy for PtO2 is considerably lower than for MoS2, which sug-
gests PtO2 may be a better candidate material for small diameter nanotubes.
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Figure 9.6: Strain energy as a function of the Pt-tube diameter.
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[3] José M Soler, Emilio Artacho, Julian D Gale, Alberto Garćıa, Javier Jun-
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