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Abstract--This paper presents a hybrid particle swarm 

optimization algorithm (HPSO) to solve the day-ahead self-
scheduling for thermal power producer in competitive electricity 
market. The objective functions considered to model the self-
scheduling problem are: 1) to maximize the profit from selling 
energy in day-ahead energy market subject to operational 
constraints and 2) at the same time, to minimize the risk due to 
uncertainty in price forecast. Therefore, it is a conflicting bi-
objective optimization problem which has both binary and 
continuous optimization variables considered as constrained 
mixed integer nonlinear programming. To demonstrate the 
effectiveness of the proposed method for self-scheduling in a day-
ahead energy market, the locational margin price (LMP) forecast 
uncertainty in PJM electricity market is considered. An adaptive 
wavelet neural network (AWNN) is used to forecast the day-
ahead LMPs. The effect of risk is explicitly modeled by taking 
into account the estimated variance of the day-ahead LMPs.  
 

Index Terms--Day-ahead self-scheduling, Hybrid particle 
swarm optimization, LMP forecast, Electricity market. 

I.  INTRODUCTION 
N a traditional power system, the unit commitment (UC) 
problem is solved based on the cost minimization objective 

while satisfying the demand and generators’ operating 
constraints. But in a competitive electricity market, the sole 
objective of power producers is to maximize their profit by 
participating in the day-ahead and hour-ahead energy markets. 
Within a power pool trading, producers submit their bid 
(quantity with price) to the system operator (SO). For 
developing successful bidding strategy, power producers have 
to derive an optimal schedule of their generator outputs based 
on forecasted market clearing price. Therefore, in competitive 
power market environment, the conventional UC is redefined 
as price or profit based unit commitment (PBUC) and reported 
in [1]-[3]. As electrical energy price is highly volatile, future 
electricity prices are the main source of uncertainty faced by 
the producers while deriving the profit based scheduling of 
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their generators. Therefore, the self-scheduling for power 
producers is a conflicting bi-objective optimization problem 
where producer wishes to maximize his profit and to minimize 
the risk associated with forecasted price uncertainty while 
satisfying all operational constraints simultaneously. 

The generation self-scheduling problem needs to determine 
two types of decision variables. The unit operating status 
(on/off), which is binary variable (1/0) and the power 
generated by the unit, is a continuous variable. Therefore, it 
can be considered as two kinds of combined constraint 
optimization problems, namely optimal commitment (on/off) 
and economic generation dispatch of the units during the 
scheduling period (one day –one week).  

Thus, generation self-scheduling problem belongs to the 
class of nonlinear programming-hard problem and is very 
complex. A new category of heuristic optimization tools has 
emerged to cope with some of the traditional optimization 
algorithms’ shortcomings. The main heuristic optimization 
techniques are genetic algorithm (GA), evolutionary 
programming (EP), and particle swarm optimizer (PSO). 
These have been successfully applied to a wide range of 
power system optimization problems in which the 
conventional optimization is not applicable or difficult to find 
the global optimal solution. Compared to other heuristic 
optimization techniques, PSO has been found to be robust for 
solving problem featuring non-linearity, non-differentiability, 
multiple optima and high dimensionality through adaptation. 

Within the context of the day-ahead self-scheduling for 
thermal power producer, the problem has been formulated as 
mixed integer quadratic programming (MIQP) problem [4]-
[5]. The hybrid techniques that combine lagrangian relaxation 
(LR) and other heuristic optimization techniques such as GA, 
EP and PSO, to solve the lagrangian augmented objective 
function for the risk based self-scheduling problem has been 
proposed in [6].  

This paper proposes hybrid PSO (HPSO) to handle both 
types of decision variables (continuous and binary), through 
combination of original PSO and binary PSO. The locational 
marginal price (LMP) forecast uncertainty in PJM electricity 
market is considered to implicitly include the uncertainty 
related to congestions. The adaptive wavelet neural network 
(AWNN) model [7] is used to forecast the day-ahead LMPs. 
The power producer considered in this paper is assumed to be 
a price-taker; therefore, the self-scheduling of each generator 

Day-Ahead Self-Scheduling of Thermal 
Generator in Competitive Electricity Market 

Using Hybrid PSO 
N. M. Pindoriya, Student Member, IEEE, S. N. Singh, Senior Member, IEEE, and J. Østergaard, Member, IEEE 

I



 2

is independent of the self-scheduling of the others. For 
simplicity, a power producer having a single generator is 
considered in this paper. However, the proposed approach can 
be extended for several generators also. 

II.  PROBLEM FORMULATION 
The objective of self-scheduling problem for power 

producer is to maximize his expected profit and to minimize 
the risk simultaneously, while satisfying all generating unit 
constraints over the scheduling period. The profit of the 
producer for the scheduling period, T, is the expected revenue 
minus total operating cost. The expected revenue from the 
sales of energy in a day-ahead market is the forecasted market 
price times the actual power production in each hourly time 
period. The total operating cost includes the production cost of 
the scheduled combination units and the transition cost. The 
production cost at any given time interval is assumed to be 
quadratic function of generator power output. The transition 
cost is the sum of the start-up cost and shut-down cost, which 
is associated with unit on/off to off/on transitions. It is a 
complex mathematical optimization problem with both integer 
and continuous variables. The self-scheduling optimization 
problem for single generator can be formulated as [8]: 
 
(1) Maximize the expected profit 
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(2) Minimize the risk 
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where,  
for

tλ  forecasted price at hour t  
estV  estimated covariance matrix 

,G tP  power generated at hour t  

tu  schedule state of thermal unit at hour t  
(1: unit is on and 0: unit is off) 

tSUC  start-up cost at hour t  

tSDC  shut down cost at hour t  
, ,a b c  generating unit cost coefficients 

 
The start-up cost for restarting a decommited generating 

unit depends on the off time of unit prior to start-up, OFFT . 

This paper considered the exponential cost curve (3) for the 
detailed modeling of start-up cost, and the fixed shut-down 
cost.  

, 11 exp OFF t
t

T
SUC χ δ

γ
−⎡ ⎤−⎛ ⎞

= + −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

                                    (3) 

where, 
χ hot start-up cost 
δ  cold start-up cost 
γ unit cooling time constant 

, ,ON t OFF tT T continuously on/off time of unit up to hour t  
 
The most common measure of risk is variance or its square 

root i.e., standard deviation. The effect of risk is explicitly 
modeled by taking into account the estimated variance of the 
LMPs. In (2), the covariance matrix, estV , is T×T matrix and it 
can be estimated based on available actual and forecasted 
price for the last D days, using the following exponentially 
weighted moving average equation [9].  
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In (4), the parameter α (0 < α < 1) is decay factor, D is 
greater than or equal to 24 to ensure the covariance matrix 

positive definite, and [ ]′=Λ Tλλ ,...,1 . This paper considered 
the generation schedule for next day to participate in day-
ahead energy market, therefore the scheduling period, T = 24.  

 
The self-scheduling problem using these two conflicting 

objective functions (F1 and F2) is converted to a single 
objective function with the help of risk tolerance parameter β. 
The resulting problem formulation becomes 

( ) ( )1 , 2 ,Maximize , , , ,for est
G t t t G t tF P u F P u Vλ β⎡ ⎤− ×⎣ ⎦              (5) 

while satisfying the following constraints: 
 

• Generator operating limit: 
min max ; 1,2,...,G t G G tP u P P u t T≤ ≤ =                                      (6) 

• Ramp up/down limit: 
Because of physical restriction on thermal generating unit, the 
generation may increase or decrease with corresponding ramp-
up and ramp-down rate limits. So unit is constrained due to the 
ramp rate limit as mentioned below. 
If power generation increases, RUPP tGtG ≤− −1,,  

If power generation decreases, RDPP tGtG ≤−− ,1,  
Therefore, the generating unit output is limited by ramp-

up/down rate at each hour and hence, the operating limits 
given in (6) are modified as follow: 

( )
( )

min
, 1 ,

max
, 1 ,

max ,

min ,
G G t G t

G G t G t

P P RD P

P P RU P
−

−

⎫⎡ ⎤− ≤ ⎪⎣ ⎦ ⎬⎡ ⎤+ ≥ ⎪⎣ ⎦ ⎭
                                        (7) 



 3

• Minimum up/down-time limit: 
Once the unit is committed/decommitted, there must be a 
minimum time before it can be decommitted/committed. 
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where, the time counter for which a unit has been on/off at 
hour t, , ,ON t OFF tT T can be expressed as: 
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where,  
min max

G GP P  minimum and maximum generation limits 
RU RD  ramp up/down limits 
MUT MDT  minimum up/down time limits 

 

Satisfying the load demand is no longer an obligation in 
self-scheduling for power producer in the competitive 
electricity market, therefore, it is not considered, in this paper, 
as a constraint. The risk tolerance parameter, β, depends on the 
preference of the power producer. The risk seeking producer 
looking for higher profit chooses low (close to zero) value for 
β; on the contrary, risk adverse producer chooses large value 
for β to increase the risk measure in (5). 

III.  PARTICLE SWARM OPTIMIZATION (PSO) 

A.  Original PSO 
Particle swarm optimization (PSO), first, proposed by 

Kennedy and Eberhart [10] is a population-based stochastic 
optimization technique inspired by social behavior of 
organisms such as bird flocking and/or fish schooling.  
Particle swarm algorithm starts with the random initialization 
of a population of potential solutions called particles in the 
multidimensional search space and particles fly around in a 
search space to approach the optima. During flight, the 
individual particles are attracted stochastically toward the 
positions of their own best fitness achieved so far and the best 
fitness achieved so far by any of their neighbours. Thus, a 
PSO technique controls the balance between local and global 
exploration of the problem space and that helps to overcome 
premature convergence and also enhanced the searching 
ability. Compared to other optimization techniques, a PSO has 
been found to be robust for solving problem featuring non-
linearity, non-differentiability, multiple optima and high 
dimensionality through adaptation. 

Suppose that the search space is D-dimensional, then the i-
th particle of the population (i.e. position) can be represented 
by a D-dimensional vector, [ ]1 2, ,...,i i i iDX x x x= . The velocity 
(position change) of this particle can be represented by another 
D-dimensional vector, [ ]1 2, ,...,i i i iDV v v v= . Each particle 
keeps track of its coordinates in the search space which are 
associated with the best solution achieved so far and is called 

pbest . The best previous position of i-th particle is recorded 
and represented as pbest . Defining the index of the best 
particle among all the particles in the swarm is represented by 
the gbest. The modified velocity and position of each particle 
can be calculated using the current velocity and the distance 
from pbest  to gbest as shown in the following equations:  

( ) ( )k
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k
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where, Dd ,...,2,1= , Ni ,...,2,1= and N is the size of the 
swarm; c1 and c2 are two positive acceleration coefficients 
which keep balance between the particle’s individual and 
social behavior. R1 and R2 are uniformly distributed random 
numbers in [0, 1] added in the model to introduce stochastic 
nature. The inertia weight of the particle, w, is suitably 
selected to control the exploration properties of the algorithm. 
Exploration requires bigger step size at the beginning of the 
optimization process to determine the most promising area 
(global search) then the step size is reduced to focus only on 
that area (local search). Therefore, w, is linearly decreasing 
function of the iteration index, iter as given in (12). 

iter
iter

wwww ×−−=
max

minmax
max                                            (12) 

where, wmax and wmin are the initial and final weights, 
respectively, whereas, itermax and iter is the maximum number 
of iterations and the current iteration number, respectively. 

Besides, a maximum allowable velocity vector, maxv , 
clamps velocities of particles on each dimension. If the 
acceleration causes the velocity on that dimension to exceed 

maxv  specified by the user, then the velocity on that dimension 
will be limited to maxv . Generally, Vmax is set at 10-20% of 
the dynamic range of the variable on each dimension. 

B.  Binary PSO 
The original version of PSO discussed in Section III.A 

basically developed for continuous optimization problems. 
The binary PSO [11] is made possible with a simple 
modification to original version of PSO. This BPSO solve the 
binary problems similar to those traditionally optimized by 
genetic algorithms. In BPSO, xi and pbest  can take on value 
of 1 or 0 only. The velocity vi will determine a probability of 
threshold using logistic functions as follows: 

( )
)exp(1

1Pr
i

i v
v

−+
=                                                           (13) 

A random number (drawn from a uniform distribution in 
[0.0, 1.0]) is then generated, whereby xi is set to 1 if the 
random number is less than the value from the sigmoid 
function (13) as illustrated below: 

( ) ( )
⎩
⎨
⎧ <= otherwise

vrandifx i
i ,0

Pr,1                                       (14) 



 4

Thus real velocity is digitized (1/0) by logistic functions 
(13 and 14) for binary space. 

IV.  HYBRID PSO (HPSO) FOR SELF-SCHEDULING 
In this section implementation of HPSO to solve self- 

scheduling problem for thermal generator is explained.  The 
generation scheduling problem needs to determine two types 
of decision variables. The unit operating status (on/off), u 
which is a binary variable (1/0) and the power generated by 
the unit, PG which is a continuous variable. Therefore, it can 
be considered as two kinds of combined constraint 
optimization problems, namely optimal commitment (on/off) 
and economic generation dispatch of the units during the 
scheduling period, T. Among these two, first is non-linear 
optimization problem and second is binary optimization 
problem. This paper considered original PSO along with 
BPSO to solve generation scheduling optimization problem. 

A.  Particle Formulation 
Before applying PSO to solve generation scheduling 

problem, the representation of a particle must be formulated. 
Since, this paper considered the generation schedule for next 
day to participate in day-ahead energy market, there are 24 
continuous variables representing power generation and 24 
binary variables for operating status (on/off) of the unit, for 
each hours of the next day. The continuous variables are 
initialized with uniformly distributed pseudorandom numbers 
that take the range of these variables, i.e., 

min max,G G GP rand P P⎡ ⎤= ⎣ ⎦ . However, in the case of the binary 

variables, an additional operator is needed to account for the 
distinct nature of these variables and those are initialized using 
(13 and 14) from randomly initialized velocity. Once the 
binary variables are initialized, those should check for the 
feasibility (the minimum up-down constraints). Hence, finally, 
each string having the first twenty four are real valued 
particles and next twenty four (i.e., 25-48) are binary particles, 
and can be represented as 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

Binary
T

Continuous

TGGGi uuuPPPP ,...,,,,...,, 11,2,1,                               (15) 

For example, if power producer having a single generator 
and population size in PSO is L, then dimension of population 
is equal to be 48×L . 

B.  Function Evaluation and Constraints Handling 
The quality of an individual of the population is found 

using fitness function evaluation. After formulating and 
randomly initializing the particles in a feasible solution space, 
each individual string will be evaluated using evaluation 
function (5). Based on fitness values, pbest  and gbest will be 
calculated. The velocity of whole string is updated using (10) 
and if any updated velocity is violating its upper and lower 
limits ( maxv  and minv ) then the velocity is set to the violated 
limit. Then, the position of particles corresponding to 
continuous variables and binary variables are modified using 

(11) and (14), respectively. After that all variables should go 
through a feasibility check to satisfy the all operational 
constraints. Handling the constraints relating to the problem is 
a major factor in the application of PSO approaches to the self 
scheduling optimization.   

There are different ways to handle constraints in heuristic 
optimization algorithms just like in the case of the PSO. The 
following constraint handling methods are the most commonly 
used ones [12]. 

1. Preserving feasible solution method: In this method, 
solutions are initially placed in a feasible search space 
and remain within by adapting an update mechanism that 
generates only feasible solutions. 

2. Infeasible solution rejection method: This approach 
rejects any solution that violates the feasible search space. 

3. Penalty function method: Here, a penalty factor is added 
to the objective once any constraint violation occurs. 

4. Solution repair method: This approach converts the 
infeasible solution to a feasible one by performing special 
operations. 

 
Within the context of PSO applications to the self-

scheduling, inequality constraints representing the permissible 
power generation, PG, variables are typically handled through 
set to limit approach (SLA). If PG violates its upper or lower 
bound, obtained from (7), the value of this variable is set to 
the violated limit. By this way, the non-linear constraints 
corresponding to generator operating limits including ramp 
limits have been handled. The minimum up/down time 
constraints (8), also require the enforcement of condition 
usually formulated as nonlinear constraints. These constraints 
may be violated from the obtained generation schedule in the 
each iteration. Therefore, these will be checked and repaired if 
the violations occur. The process of fixing a solution is done 
by evaluating the state of unit ,ON tT  and ,OFF tT . For the first 

hour of the scheduling period (at t = 1), unit is assumed to be 
ON for last MUT-1 hours and therefore, it has to be ON at this 
hour to satisfy the minimum up time constraint. The procedure 
for minimum up-and down time repair method suggested in 
[13] has been used in this paper. 

V.  CASE STUDY 
To demonstrate the effectiveness of the proposed HPSO 

based technique for day-ahead generation scheduling, this 
paper considers the case study of power producer owning a 
single generating unit in PECO control zone of PJM electricity 
market [14]. The generator data are given in Tables I and II. 
The shut-down cost for the generator is assumed to be zero. 
The AWNN based price forecasting model [7] has been used 
to forecast the day-ahead LMPs in the same control zone of 
PJM market for the year 2007. The AWNN is a new class of 
feed-forward neural network having continuous wavelet 
function as activation functions of the hidden layer nodes. 
Therefore, it combines the time-frequency localization 
characteristic of wavelet and learning ability of feed-forward 
neural network into a single unit. The forecasted prices are 
provided in Table III. The covariance matrix is estimated 
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using (4) based on actual and forecasted LMP data for the last 
24 days just prior to the day of the estimation day. This paper 
takes α = 0.99 and D = 24 for the covariance matrix 
estimation.  
 

TABLE I 
GENERATOR TECHNICAL PARAMETERS 

 

min
GP  

(MW) 

max
GP

(MW) 
RU 

(MW/h) 
RD 

(MW/h) 
MUT 

(hours) 
MDT 

(hours) 

150 455 130 130 4 4 
 

TABLE II 
GENERATOR COST CHARACTERISTIC 

 

Fuel cost Start-up cost 
a b c χ δ γ 

1000 16.19 0.00048 4500 4500 4 
 

TABLE III 
FORECASTED LMP  

 

Hour LMP 
($/MWh) Hour LMP 

($/MWh) Hour LMP 
($/MWh) 

1 21.48 9 49.26 17 73.12 
2 19.53 10 57.46 18 72.48 
3 19.56 11 60.02 19 67.76 
4 19.44 12 68.98 20 62.92 
5 21.09 13 69.17 21 69.97 
6 23.46 14 72.45 22 69.50 
7 28.47 15 71.43 23 43.64 
8 42.11 16 68.63 24 32.70 

 
Although the HPSO method seems to be sensitive to the 

tuning of some weights and/or parameters, after number of 
simulation trails, the HPSO parameters of proposed method 
are set as follows: 

• Population size = 40; 
• Initial inertia weight (wmax) = 0.9; 
• Final inertia weight (wmin ) = 0.4; 
• Maximum Iterations = 2000; 
• Acceleration constant c1 = 2 and c2 = 2; 
• maxv = 2.0 and minv = - 2.0; 

In order to overcome the stochastic nature of the HPSO for 
obtaining better result, 10 runs are averaged, starting with 
different random initial population particles. 

The self-scheduling problem given by (5) is solved for 
different values of the risk tolerance parameter, β, which 
allows assigning the different risk level of the power producer 
in self-scheduling. The efficient frontier which depicts 
expected profit versus risk of the power producer is illustrated 
in Fig. 1. It is observed that expected profit increases as risk 
level of the generator increases. Fig. 2 shows the generation 
schedule of power producer for the case of maximum risk (β = 
0) and minimum risk (β = 0.05). It can be seen from Fig. 2 
that, the generating unit of risk-seeking power producer with 
maximum risk (β = 0) is ON for the entire scheduling period, 
whereas risk-averse producer (β = 0.05) is ON for fewer hours 
than risk seeking generator.  

It is also noted that the risk seeking generator is ON for 
entire scheduling period with maximum power output of the 
unit (i.e., 455 MW) except hours 1-3, where the profit is less 
because of low LMP for that period. In hour 1, although the 
profit of risk-averse generator is very less (because low LMP), 
unit cannot be shut-down due to the minimum up time 
constraints, because it is assumed that unit to be ON for last 
MUT-1 hours. It should also be noted that for risk-averse 
generator with minimum risk (β = 0.05), there is reduction in 
power output during on-peak period (hours 14-19). This power 
output reduction because of the generator is facing high risk in 
that period due to price forecast uncertainty. 
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Fig. 1. Efficient frontier 
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Fig. 2. Hourly generation schedule 

VI.  CONCLUSION 
Self-scheduling of power producer in a day-ahead energy 

market is a conflicting bi-objective optimization problem 
which has both binary and continuous optimization variables 
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considered as constrained mixed integer nonlinear 
programming. The self-scheduling problem for thermal 
generator is addressed, in this paper, considering maximizing 
the profit and at the same time, minimizing the risk due to 
uncertainty in price forecast. The hybrid particle swarm 
optimization (HPSO), which is the combination of the original 
PSO and binary PSO, has been applied to solve the 
constrained mixed integer nonlinear problem. The self-
scheduling results for the different risk levels of power 
producer in PJM electricity market have been reported in this 
paper. It is found that expected profit increases as risk level of 
the generator increases. 
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