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Abstract—New and renewable energy sources are being explored 
and utilized due to the rise of environmental concerns and 
progressive extinction of traditional fossil energy sources. Wind 
power generation is one of such sources and is extensively 
integrated in the existing power systems. Development of better 
wind-thermal coordination algorithm is necessary to determine 
the optimal proportion of wind and thermal generator capacity 
that can be integrated into the system. In this paper, four 
versions of Particle Swarm Optimization (PSO) techniques are 
proposed for solving wind-thermal coordination problem. A 
pseudo code based algorithm is suggested to deal with the 
equality constraints of the problem for accelerating the 
optimization process. The simulation results show that the 
proposed PSO methods are capable of obtaining higher quality 
solutions efficiently in wind-thermal coordination problems. 

 

Index Terms-- Economic dispatch, Particle Swarm 
optimization, Wind-thermal coordination 

I.  NOMENCLATURE           

iii cba ,,  Cost coefficients 
C , w  Constriction and inertia weight factors. 

21,cc          Cognitive and social coefficients 
d  Percentage of maximum unit capacity 

max
iDR , 
max
iDS  

Maximum ramp-down rate and down reserve 
contribution of thi thermal unit 

DRW  Down spinning reserve requirement 
considering  
wind power generation. 

)(tDSi  Down reserve contribution of thi thermal unit at   
hour t 

TF  Total operation cost during period T 
gbest  Global best position 

)(tIi  Schedule state of thi thermal unit for hour t 
i , j  Index for thermal and wind units, respectively 
NT, NW Number of thermal and wind units, respectively 
pbest  Local best position 

)(tPi  Generation of thi thermal unit at hour t 
max
,riP  Upper generation limit of thi thermal unit 

                                                           
S.N. Singh (email: sns@iitk.ac.in) and J.  Ostergaard (email: 

joe@elektro.dtu.dk) are with the Department of Electrical Engineering, 
Denmark Technical University, Denmark. J. Yadagiri is with the department 
of Electrical Engineering, IIT Kanpur, India.  Dr SN Singh is on leave from 
Indian Institute of Technology Kanpur-208016, India. 

)(max tPi  

)(min tPi  

Maximum and minimum generation, 
respectively of thi thermal unit at hour t 

min
,riP  Lower generation limit of thi thermal unit 

)(tPL  System load demand at hour t 
max

WjP  Upper generation limit of jth wind unit 

)(tPWj  Actual generation of jth wind unit at hour t 

)(* tPWj  Available generation of jth wind unit at hour t 

)(tPWT  Total actual wind generation at hour t 

)(* tPWT  Total available wind generation at hour t 

2

1,
rand
rand

 
 
Random numbers between 0 and 1 

iSR  Startup ramp rate limit of thi thermal unit 
iSTC  Startup cost of thi thermal unit 

T Number of time intervals (hours) 
)(tTDR  System ramping down capacity at hour t 
)(, tt iOFF  Down period of thi thermal unit till time t 

iOFFT ,  Minimum down time of thi thermal unit 

iONT ,  Minimum up time of thi thermal unit 
)(, tT iON  Up period of thi thermal unit at time t 
)(tTUR  System ramping up capacity at hour t 

max
iUR  Maximum ramp-up rate of thi thermal unit 

URW  Up spinning reserve requirement considering  
wind power generation. 

)(tUSi  Up reserve contribution of thi thermal unit at t 
max
iUS  Maximum up reserve contribution of    

thi thermal unit 
BUSR  System up spinning reserve requirements not       

considering wind power generation 
iv  Velocity of the i th particle 

)(tv  Wind speed at hour t 

jIv . , jov .  Cut-in and cut-out wind speed of jth wind unit 

jRv .  Rated wind speed of jth wind unit 

ix  Position of the i th particle 
βα ,  Coefficients of additional up (or down) reserve    

requirement (second-order model). 
γ Coefficient of additional up/ down reserve           

requirement (linear model) 
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II.  INTRODUCTION 
ITH the increase in fuel prices, environmental concerns, 
and reduction in wind-turbine generating system cost, 

the integration of wind power generation  in the power system 
having conventional power generators is increasing. Due to 
intermittency and unpredictable nature of wind, the wind 
power generation is not reliable and also it creates difficulty in 
the control of frequency and scheduling of generation. 
Therefore, the determination of optimal wind power 
generation, which can be integrated in to the emerging power 
system, is very important. Electricity generated from wind 
power can be highly variable at several different timescales: 
from hour to hour, daily, and seasonally. Annual variation also 
exists, but it is not very significant. Because of instantaneous 
electrical generation and consumption must remain in balance 
to maintain grid stability, this variability presents substantial 
challenge to incorporating large amounts of wind power into a 
grid system.  

Due to uncertain nature of wind power, it is widely believed 
that large wind power penetration would put an increased 
burden on the system operation. In general, the largest 
proportion of the emergency reserve is carried to cover the 
loss of the largest generation unit in the system. However, 
with increasing wind power penetrations in power systems, 
scheduling of additional emergency reserve will be needed to 
maintain an adequate level of supply security. Apart from the 
up spinning reserve requirements, there are strong demand for 
enough down spinning reserve requirements to satisfy the 
sudden rise of wind power generation during low system load 
requirement to avoid the forced shutdown of thermal 
generating units. Therefore, taking all these considerations, 
more advanced algorithms are needed for solving the wind-
thermal coordination problem. 

The unit commitment is one of the key functions of modern 
energy management system and this problem is formulated as 
a constrained optimization problem with the objective of 
generation allocation to the power generators to minimize the 
total cost with satisfaction of all operating constraints. This 
problem is further complicated by the wind-thermal 
coordination scheduling imposed by the adding of additional 
reserve requirements. Because of strong coupling between 
system spinning reserve requirements and the total actual wind 
power generation, both of them should be consider at the same 
time, it is very difficult to solve the wind-thermal coordination 
problem 

Conventional methods [1-4] usually assume the input-
output characteristics of power generators, known as cost 
curves to be quadratic or piecewise quadratic, monotonically 
increasing functions. But modern generating units have a 
variety of non-linearities in their cost curves due to valve point 
loading and other effects, which make this assumption 
inaccurate and resulting approximate solutions cause a lot of 
revenue loss overtime. On the other hand, evolutionary 
methods such as Genetic Algorithms (GA) [5] and Particle 
Swarm Optimization (PSO) are free from convexity 
assumptions and perform better due to their excellent parallel 
search capability. Hence, they are particularly popular for 
solving such nonlinear, non-convex, discontinuous 
optimization problems.  

The wind-thermal unit commitment solution methods 
reported in the literature include Simulated Annealing [6], 
Hybrid Dynamic Programming [7], and Fuzzy Mixed Integer 
Linear programming [8] techniques. In this paper, four 
modified versions of particle swarm optimization techniques 
are used to find the optimal proportion of wind generation 
capacity that can be integrated into the existing power system 
and the results of the proposed algorithm for a test system are 
reported. A new pseudo code based algorithm is developed, in 
this paper, for equality constraints other than the penalty 
function methods [9-12]. 

III.  PROBLEM FORMULATION 
The main objective of wind-thermal scheduling problem is 

to minimize the total fuel cost of thermal generating units with 
optimal integration of wind energy into existing power 
system, while simultaneously satisfying all constraints. The 
problem formulation is the same as reported in the literature 
[7]. 

( )∑∑
= =

×=
T

t
i

NT

i
iiT tPFtIFMinimize

1 1

)()([                                       

                                    ])1(1()( iii STCtItI ×−−×+   (1) 
Subject to following constraints: 
1) System constraints 
a) Power balance constraint (losses are neglected) 

         ∑
=

=+×
NT

i
LWTii tPtPtPtI

1

)()()()(                      (2) 

 

b) System up/down spinning reserve requirements 

             ∑
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c) Minimum/maximum thermal plant output constraints 

     ))(()()( tPDRWtPtP WTWTL ≥− ∑
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×+
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i
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1
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1
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i
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             ))(()( tPURWUSRtP WTBL ++≥        (6) 
2) Thermal generator constraints 
a) Unit’s maximum up/down reserve contribution 

constraints 
max
.

max
i riPdUS ×=   and max

.
max
i riPdDS ×=               (7) 

b) Unit’s up/down reserve contribution constraints: 
            ))(,min()( max

.
max
ii tPPUStUS iri −=                            (8) 

            ))(,min()( min
.

max
ii rii PtPDStDS −=                          (9) 

c) Unit’s ramping up/down capacity constraints: 
            ))(,min()( max

.
max
ii tPPURtUR iri −=                          (10) 

            ))(,min()( min
.

max
ii rii PtPDRtDR −=                         (11) 

d) Unit generation limits 

W 
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 )()()()()( maxmin tItPtPtItP iiiii ×≤≤×                           (12)     

})1(,min{)( maxmax
.

max
iirii URtPPtP +−=  

  if 1)1()( =−= tItI ii     

                  })1(,min{ max
. iiri SRtPP +−=  ,        

                                           if  0)1()( =−= tItI ii               (13) 

    })1(,max{)( maxmin
.

min
iirii DRtPPtP −−= ,    if         

                                                       1)1()( =−= tItI ii  

                    min
.riP=  ,    if     0)1()( =−= tItI ii        (14)                                                                                                                    

e) Minimum up/down time constraints: 
             0)()1(])1([ ,, ≥−−×−− tItITtt iiiONiON                 (15) 
             0)()1(])1([ ,, ≥−−×−− tItITtt iiiOFFiOFF             (16) 
3)  Wind generator constraints: 
a) Wind generation fluctuation constraints:             

      ).()1()( tTDRtPtP WTWT ≤−−  )()1( tPtPif WTWT ≤−   (17) 
      ).()()1( tTURtPtP WTWT ≤−− )()1( tPtPif WTWT ≥−    (18) 
b)  Wind power curve constraints: 

         jojIjW vtvorvtvtP ..
*

. )()(,0)( >≤=  

                     jRjIj vtvvtv .. )()),(( <≤= ϕ  

                 jOjRjW vtvvP ..
max

. )(, <≤=                           (19) 

c) Total available wind generation 

        ∑
=

=
NW

j
jWWT tPtP

1

*
.

* )()(                                                   (20) 

d) Total actual wind generation limit: 
          )()(0 * tPtP WTWT ≤≤                                                  (21) 

IV.  WIND-THERMAL COORDINATION SCHEDULING 
ALGORITHM 

The time horizon is divided into smaller time stages, 
normally of one hour each. The wind-thermal coordination 
algorithm proposed in this paper is divided in three modules. 

A.  Wind Module 
In this module, the maximum wind power generation and 

the spinning reserve requirements for wind power generation 
is calculated. The maximum wind power penetration level will 
be given by applying the following equations 

    )}(),(),(),(min{)( 321
* tPtPtPtPtP WTWTWTWTWT =          (22) 

where 
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However, the wind power generation of a state using (22) 
will be invalid if the increase in WTG’s power output is 
greater than the system ramping capacity, i.e. 

 

    )()1()( tTDRtPtP WTWT +−=                                       (26) 
Since, there is no other means of increasing the output of 

WTG’s, the infeasible state will be eliminated. When the 
system ramping up capacity cannot absorb the WTG’s power 
output then the power output of wind turbine generator will 
decrease. 

The uncertainty posed by wind-power generation requires 
the scheduling of additional generation reserve to compensate 
for possible fluctuations in output, both up and down. Because 
of the relationship between the system spinning reserve 
requirements and total actual wind power generation, both of 
them should be considered at the same time. In this paper, for 
modeling up/down spinning reserve requirements the same 
models are considered [7]. 

 

1) Linear Model: 
   )())(( tPtPURW WTWT ×= γ                                      (27) 
   )())(( tPtPDRW WTWT ×= γ                                      (28) 

  2) Second-Order model 
      )()())(( 2 tPtPtPURW WTWTWT ×+×= βα                   (29) 

      )()())(( 2 tPtPtPDRW WTWTWT ×+×= βα                   (30) 

B.  Pseudo Code Algorithm for Equality Constraints 
A pseudo code based algorithm is developed to deal with 

equality constraints other than penalty function methods. The 
main disadvantage of penalty function methods is, when the 
problem is highly constrained, the search space reduces and 
algorithm will spend a lot of time to find feasible solutions, 
whereas in proposed method, a repairing process is carried on 
in which an infeasible solution is repaired and converted to a 
feasible solution there by search space increases. The 
computation method of proposed scheme is show as follows. 
Step 1: Prepare the list for thermal units which are committed 

and not hitting their upper limit and total number of such 
unites are UCN  

Step 2: Prepare the list for thermal units which are committed 
and not hitting their lower limit and total number of such 
unites are LCN  

Step 3: Calculate the generation gap                       

                            ∑
=

−−=
NT

i
iWTLgap PPPP

1

                          (31) 

Step 4: If gapP is positive, continue ,otherwise go to step 6 
Step 5: Calculate Pincr=Pgap/NUC 

Step 5.1: Initialize 1=i  
Step 5.2: If UCNi ≠ continue otherwise go to step 5.7 
Step 5.3: incrii PPP +=  

Step 5.4: If max
ii PP ≥ continue otherwise go to step 5.6 
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Step 5.5: Set max
ii PP = and remove this unit from the 

increment unit list and 1−= UCUC NN  
Step 5.6: 1+= ii and go to step 5.2 
Step 5.7 Calculate the generation gap                       

                            ∑
=

−−=
NT

i
iWTLgap PPPP

1

 

Step 5.8: If gapP is less than tolerance ( 610−=ε ) go to 
step-7 otherwise go to step-4. 

Step 6: Calculate 
LC

gap
dicr N

P
P =  

Step 6.1: Initialize 1=k  
Step 6.2: If LCNk ≠ continue otherwise go to step 6.7 
Step 6.3: dicrii PPP +=  

Step 6.4: If max
ii PP ≥ continue otherwise go to step 6.6 

Step 6.5: Set min
ii PP = and remove this unit from the 

decrement unit list and 1−= LCLC NN  
Step 6.6: 1+= kk and go to step 6.2 
Step 6.7 Calculate the generation gap using (31)                   
Step 6.8: If gapP is less than tolerance ( 610−=ε ) continue 

otherwise go to step 4. 
Step 7: Stop 

C.  PSO Module 
Particle Swarm Optimization (PSO) refers to a relatively 

new family of algorithms that may be used to find optimal 
solutions to numerical and qualitative problems. PSO was 
introduced by Russell Eberhart and James Kennedy in 1995 
inspired by social behavior of birds flocking or fish schooling. 
It is easily implemented in most programming languages and 
has proven to be both very fast and effective when applied to a 
diverse set of optimization problem 

In PSO, the particles are “flown” through the problem space 
by following the current optimum particles. Each particle 
keeps tracks of its coordinates in the problem space, which are 
associated with the best solution (fitness) that it has achieved 
so far. This implies that each particle has memory, which 
allows it to remember the best position on the feasible search 
space that has ever visited. This value is commonly called 
as pbest . Another best value that is tracked by the particle 
swarm optimizer is the best value obtained so far by any 
particle in the neighborhood of the particle. This location is 
commonly called as .gbest   

The position and velocity vectors of the ith particle of a d-
dimensional search space can be represented as 

),.....,( 21 idiii xxxX =  and ),.....,( 21 idiii vvvV = respectively. 
On the basis of the value of the evaluation function, the best 
previous position of a particle is recorded and represented 
as ),......,( 21 idiii PPPpbest = . If the thg particle is the best 
among all particles in the group so far, it is represented as 

1 2( , ,.. )g g g gdgbest pbest P P P= .  The particle tries to modify its 
position using the current velocity and the distance from 
pbest  and gbest . The modified velocity and position of each 

particle for fitness evaluation in the next iteration are 
calculated using the following equations 

)(11
``1 k

idid
k
id

k
id xpbestrandcvwv −××+×=+  

                                           )(22
k
idgd xgbestrandc −××+  

      `11 ++ += k
id

k
id

k
id vxx  

where, w is the inertia weight parameter, which controls the 
global and local exploration capabilities of the particle. 

21,cc are cognitive and social coefficients and 1rand  and 

2rand are random numbers between 0 and 1. For the proposed 
method .2,2 21 == cc  A large inertia weight factor is used 
during initial exploration and its value is gradually reduced as 
the search proceeds. The concept of time-varying inertial 
weight (TVIM) is given by 

  min
max

max
minmax )( w

iter
iteriterwww +−×−=  

 4.0;9.0 minmax == ww  
where maxiter (=100) is the maximum number of iterations. 

 

1) PSO with constriction factor 
 To improve the convergence of PSO algorithm, a 
constriction factor is introduced. 

     )([ 11
``1 k

idid
k
id

k
id xpbestrandcvwCv −××+××=+  

                                   )](22
k
idgd xgbestrandc −××+  

where ,     
|42|

2
2 −−−

=
φφ

C where  2.41.4 ≤≤ φ    

As φ  increases, the factor C  decreases and convergence 
becomes slower because population diversity is reduced.  

 

2) Crazy PSO 
 To handle the problem of premature convergence in PSO, 
the concept of craziness is used. The idea is to randomize the 
velocities of some of the particles, referred to as “crazy 
particles”, selected by applying a certain probability. The 
probability of craziness crρ is defined as a function of inertia 
weight, 

          )exp(
max

min w
ww

k

cr −−=ρ  

Then velocities of particles are randomized as per the 
following logic. 

     );,0( maxvrandvik =       )1,0(randif cr >ρ  

           ;ikv=                             Otherwise 
 
3) New PSO 
 Here cognitive component is split into two different 
components, pbest and pworst i.e, the particle is made to 
remember not only its previous best position but also its 
previous worst position, while calculating its new velocity. 
The knowledge about the worst position helps the particle in 
avoiding its worst position. The velocity vector computed as: 
  b

k
ididg

k
id

k
id cxpbestrandcvwCv 111

``1 )([ +−××+××=+                       
)()( 222

k
idgdid

k
id xgbestrandcpworstxrand −××+−××  

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on August 02,2010 at 13:52:20 UTC from IEEE Xplore.  Restrictions apply. 



 

The acceleration coefficient gc1 helps to accelerate the 
particle towards its previous best position while bc1  helps to 
accelerate the particle away from its worst position. This new 
feature lends additional exploration capability to the swarm. 

V.  SIMULATION RESULTS 
To examine the effectiveness of the proposed method, a 

ten-thermal unit test system is considered. The system unit 
data and load demand are given in Table-I and Table-II [6]. 
Results of hybrid dynamic programming (HDP) are compared 
with normal particle swarm optimization (PSO), particle 
swarm optimization with constriction factor (PSOC), crazy 
particle swarm optimization (CPSO) and new particle swarm 

optimization (NPSO). 
 

TABLE-I 
LOAD DEMAND (MW) FOR 24 HOURS 

 

Hour Load Hour Load Hour Load 
1 2000 9 1510 17 1260 
2 1980 10 1410 18 1380 
3 1940 11 1320 19 1560 
4 1900 12 1260 20 1700 
5 1840 13 1200 21 1820 
6 1870 14 1160 22 1900 
7 1820 15 1140 23 1950 
8 1700 16 1160 24 1990 

 
TABLE II 

 SYSTEM UNIT DATA 
 

 
Unit No ,max

,riP  

MW 

,min
,riP  

MW 

ia  
$/MW2 

ib  
$/MW 

ic  
$ 

iSTC  
$ 

iONT ,  

h 
iOFFT ,  

h 

Initial 
Status,h 

Initial Power, 
$/MW 

1 60 10 0.0051 2.2034 15 10 3 2 -20 0 
2 80 20 0.0040 1.9161 25 12 3 5 -20 0 
3 100 30 0.0039 1.8518 40 12 2 2 -10 0 
4 120 25 0.0038 1.6966 32 13 3 2 10 80 
5 150 50 0.0021 1.8015 29 11 3 2 10 100 
6 280 75 0.0026 1.5354 72 18 6 6 10 120 
7 320 120 0.0029 1.2643 49 13 8 2 10 300 
8 445 125 0.0015 1.2163 82 15 10 5 20 400 
9 520 250 0.0013 1.1954 105 14 12 7 20 500 

10 550 250 0.0014 1.1285 100 20 12 3 20 500 
 

Three different studies are conducted as follows: 
Study-1: Ramp rate of thermal units and spinning reserves of 

system are not considered. No wind generations 
(WGs) are considered. 

Study-2: Ramp rate of thermal units and spinning reserves of 
system are considered. No WGs are considered. 

Study-3: Ramp rate of thermal units and spinning reserves of 
system are considered. WG is considered. 

A.  Study-1: 
The problem formulated in section III has been solved with 

HDF and various version of PSO. Table-III shows the 
comparison of results of the proposed methods with HDP [7] 
for study-1.  It can be seen that all the method are giving the 
same cost and the time of computations are different. The 
simulation time taken by crazy PSO is less compared to HDP 
and other versions of PSO. The committed units are same for 
HDP and PSO’s.  

B.  Study-2 
In this case, the same 10-unit thermal system is considered 

with no wind generator, however, the ramp rate constraints of 
the thermal generating units are taken into account and the 
spinning reserve requirements of the system are also 
considered. The system up-spinning reserve assumed to be 
300 MW. Table III shows the comparison of results of the 
proposed methods with HDP [7] for this case. The results of 
this example show that the proposed versions of PSO give a 
better cost value and take less simulation time compared to 
HDP. Among the proposed versions of PSO the simulation 
time is less for crazy PSO.  

 

TABLE-III 
 TOTAL COST AND SIMULATION TIME OF STUDIES- 1 AND 2 

 

 
 

Algorithm 

Study-1 Study-2 
Total cost  

( $) 
Simulation 
time (sec) 

Total cost  
( $) 

Simulation  
Time (sec) 

HDP 78895.5 1  78911 2.34 
PSO 78895.5 1.3 78900 1.344 

PSOC 78895.5 0.734 78899 0.734 
CPSO 78895.5 0.75 78899 0.75 
NPSO 78895.5 1.15 78900 1.172 

C.  Study -3 
In this studied case, the ramp rate constraints of the 

generating units are taken into account along with the wind 
generation. For simplicity, the available wind power 
generation of tt he equivalent wind generator is assumed to be 
400 MW for all time periods. The system up-spinning reserve 
requirement without considering wind power generation is 
assumed to be 300 MW. The generator ramp rate and startup 
ramp rate constraints are set at 60% of its rated capacity. The 
maximum up spinning reserve of any single thermal unit could 
not contribute more than 20% of its rated capacity. For this 
study, three different cases are considered as follows: 

 
Case1:  

In this case, the first-order model for calculation of 
additional up spinning reserve requirements is considered and 
for comparison purpose wind generator constraints and down 
spinning reserve requirement constraints is relaxed. Table-IV 
depicts the comparison of results of the proposed methods 
with HDP [7] for case1. It is observed that CPSO gives least 
cost while taking less time compared to the other approaches. 
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TABLE-IV 
 TOTAL COST AND SIMULATION TIME OF CASE-1 

 
Algorithm Total cost in $ Simulation time in 

Sec 
HDP 58134 2.80 
PSO 58102 1.8 

PSOC 58100 1.2 
CPSO 58100 1.145 
NPSO 58100 1.162 

 

Case2:  
 In this studied case, the first-order model for calculation of 
additional up spinning reserve requirements and down 
spinning reserve requirement is considered and for 
comparison purpose wind generator constraints are taken in to 
account. Table-V depicts the comparison of results of the 
proposed methods with HDP [7] for case-2. Table-VI gives 
the determined commitment schedule for this case. From this 
table it can be seen that the cost with HDF is higher than the 
PSO methods. However, all the version of PSO used give the 
same cost but the time of simulation is less with CPSO. 
 

TABLE-V 
TOTAL COST AND SIMULATION TIME OF CASE 2 

 

 
 
Algorithm 

Case-2 Case-3 
Total cost  
( $) 

Simulation 
time (sec) 

Total cost  
( $) 

Simulation  
Time (sec) 

HDP 58233 6.64 58790 More than 7 
PSO 57831 4.42 58631 5.5 
PSOC 57831 3.85 58630 4.65 
CPSO 57831 3.65 58630 4.20 
NPSO 57831 4.12 58630 5.12 

 
TABLE-VI 

 DETERMINED COMMITMENT SCHEDULE FOR CASE -2 
 

Unit No. Hour (1 to 24) 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
 

Case 3:  
 In this case, the first-order model for calculation of 
additional up spinning reserve requirements and first-order 
model for calculation of down spinning reserve requirement 
are considered and for comparison purpose wind generator 
constraints are taken in to account. Table-V shows the 
comparison of results of the proposed methods with HDP [7] 
for case-3. For all the case studies, crazy PSO gives a better 
result and takes lesser simulation time compared to other 
methods.  

VI.  CONCLUSION 
This paper presents four modified versions of Particle 

Swarm Optimization (PSO) techniques to solve wind-thermal 
coordination problem and a new pseudo code based algorithm 
is developed for handling equality constraints. A ten-unit test 
system is simulated to demonstrate the effectiveness of the 
proposed methods compared with the other methods. From the 
numerical results, it is found that the proposed PSO methods 

provide a better cost and take less simulation time compared 
to Hybrid Dynamic Programming (HDP) method. Moreover, 
the crazy PSO gives better results in cost and time compared 
to the other versions of PSO tested in this paper. 
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