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Abstra
tThis work is motivated by the observation that large amplitude wind �u
-tuations on temporal s
ales of 1 to 10 hours present 
hallenges for the powermanagement of large o�shore wind farms. Wind �u
tuations on these s
ales areanalyzed at a meteorologi
al measurement mast in the Danish North Sea usinga 4 year time series of 10 minute wind speed observations.An adaptive spe
tral analysis method 
alled the Hilbert-Huang transformis 
hosen for the analysis, be
ause the non-stationarity of time series of windspeed observations means that they are not well des
ribed by a global spe
tralanalysis method su
h as the Fourier transform. The Hilbert-Huang transform isa lo
al method based on a non-parametri
 and empiri
al de
omposition of thedata followed by 
al
ulation of instantaneous amplitudes and frequen
ies usingthe Hilbert transform.The Hilbert-Huang transformed 4-year time series is averaged and summa-rized to show 
limatologi
al patterns in the relationship between wind variabilityand time of day. Firstly, by integrating the Hilbert spe
trum along the frequen
yaxis, a s
alar time series representing the total variability within a given fre-quen
y range is 
al
ulated. Se
ondly, by 
al
ulating average spe
tra 
onditionalto time of day, the time axis of the Hilbert spe
trum is �remapped� to show
limatologi
al patterns. Finally, the daily pattern in wind variability and windspeed are 
ompared for the four seasons of the year. It is found that the mostintense wind variability o

urs in Autumn even though the strongest observedwind speeds o

ur in Winter. 1



1. Introdu
tionWith wind power now a

ounting for around 20% of Denmark's annual ele
tri
ity 
on-sumption, there are 
hallenges in managing the variable power supply arising from �u
tuat-ing wind speeds. On land, �u
tuations from individual wind farms tend to be un
orrelateddue to both the spatial distribution of the turbines and the de-
orrelating e�e
t of surfa
eroughness and topography, leading to an overall smoothing in the regional power produ
tion(Fo
ken et al. 2002; Giebel 2007). For o�shore wind farms, however, the power supply isparti
ularly sus
eptible to intense �u
tuations due to the uniform surfa
e 
onditions and thelarge number of turbines lo
ated within a small geographi
al area. For example, Akhamatovet al. (2007) dis
ussed power �u
tuations from the 160 MW o�shore wind farm at HornsRev, near the west 
oast of Denmark, whi
h are more intense than those experien
ed for ge-ographi
ally distributed turbines on land. The power output from the Horns Rev wind farmwas shown to �u
tuate with an amplitude of up to 100 MW in 15�20 min. The 
onstru
tionof the se
ond Horns Rev wind farm, with a 
apa
ity of more than 200 MW in 
lose proximityto the existing turbines (as shown in �gure 1) is expe
ted to exa
erbate these problems.The aim of this work is to apply a statisti
al method 
alled the Hilbert-Huang transformto des
ribe the time evolving variability information in wind speed time series. The appli-
ability of the method to studying the seasonal and diurnal patterns in wind variability willbe demonstrated by investigating the diurnal 
y
le in wind variability on temporal s
alesof 1 to 10 hours at the Horns Rev wind farm. The problem of fore
asting wind variabilitywill not be addressed here, but it is suggested that de�ning a quantitative des
riptor ofwind variability and determining some 
hara
teristi
 seasonal and diurnal trends in wind2



variability are fundamental building blo
ks to developing statisti
al or physi
al fore
astingtools. A
tually, by extra
ting time series of variability for di�erent temporal s
ales (i.e.non-overlapping ranges of frequen
ies), one 
ould develop fore
asting methodologies in amultivariate time series framework, for example based on Ve
tor Auto-Regressive models asre
ently proposed in (Kim et al. 2008). Understanding wind variability on all s
ales is notonly of s
ienti�
 interest, but also has very pra
ti
al engineering appli
ations for modeling,simulation and fore
asting of power �u
tuations and wind farm dynami
s. For example, ina study by Sørensen et al. (2008), knowledge of the sto
hasti
 properties of wind speed wasused as an input to a model for simulating wind farm power �u
tuations. In another studyby Akhamatov (2007), �u
tuations in 10 minute power observations from the Horns Revwind farm were studied, and were shown to be strongly dependent on wind dire
tion.The 
omplexity of analyzing time series of wind data is that it is di�
ult to de�ne anytime s
ale on whi
h the data 
ould be 
onsidered stationary. Sudden 
hanges in mean windare observed, but more importantly there are sudden 
hanges in the type, amplitude andfrequen
y of �u
tuations (Pinson et al. 2008). There are some philosophi
al di�
ulties in
hoosing a time s
ale on whi
h to 
onsider the stationarity of atmospheri
 time series, asdis
ussed in se
tion 2 of this paper, but for the purposes of this study we assume that timeseries of 10 minute wind observations are non-stationary.There are both physi
al and statisti
al reasons for believing that time series of wind speedobservations are not simply random �u
tuations about a slow trend. For example, Brownet al. (1984) showed that a statisti
al distribution is insu�
ient to des
ribe the stru
tures inhourly wind measurements, and Ailliot et al. (2006) showed that the movement of larger s
alemeteorologi
al stru
tures was fundamental to statisti
al fore
asts of wind speed. In (Pinson3



and Madsen 2008), the appli
ation of adaptive Markov-swit
hing autoregressive models towind power produ
tion, where the �regime state� of the wind is 
onsidered as an unobservedpro
ess, implies an underlying stru
ture to the 
hanges in wind speed. Further, it is wellknown that meteorologi
al time series 
ontain periodi
ities and stru
ture on several s
ales,in
luding the 
limati
, synopti
, diurnal and semi-diurnal s
ales, and mesos
ale features su
has 
onve
tive roll 
louds or the intermittent passage of showers. It is therefore expe
ted thatthe analysis of wind variability should un
over interesting trends and patterns on a numberof time s
ales.Analyzing variability in time series lends itself to treatment in the spe
tral domain.For example, the well-known Fourier transform is useful in un
overing the set of globalharmoni
s whi
h dominate the os
illatory behavior of the time series. However, sin
e it isassumed that the wind speed time series are non-stationary, a lo
al adaptive method whi
h
an 
apture the instantaneous �u
tuations in the data without in�uen
e of global harmoni
sfrom statisti
ally distin
t parts of the time series is required. Candidate methods for su
hanalysis are reviewed in se
tion 4 where it is argued that due to its ability to rea
t qui
klyto 
hanges in the time series, and due to its adaptive, non-parametri
 de
omposition, theHilbert-Huang transform is most appropriate for the analysis of non-stationary wind speeddata.In se
tion 2, several arguments for the non-stationarity of wind speed data are reviewed.In se
tion 3, the data 
olle
tion and site des
ription for this study are dis
ussed. In se
-tion 4, three methods of adaptive spe
tral analysis (the wavelets transform, data-adaptivewavelets based on singular spe
trum analysis, and the Hilbert-Huang transform) are re-viewed, followed by a brief theoreti
al summary of the Hilbert-Huang transform. In se
tions4



5 and 6, the appli
ation of the Hilbert-Huang transform to wind speed data is dis
ussed anddemonstrated, and 
on
luding remarks are given in se
tion 7.
2. Stationarity of wind dataThe need to explore non-parametri
 and/or adaptive statisti
al te
hniques for the anal-ysis of wind data is motivated by the assumption that wind speed data is non-stationary.The de�nition of a stationary time series is one where all �nite-dimensional distributions areinvariant for 
hanges in time (Madsen 2007). In the analysis of wind data for wind farmfore
asting, we are interested in se
ond order stationarity, whi
h means that both the meanand the varian
e are time invariant. Although there are many statisti
al tests for station-arity, testing wind data for stationarity is problemati
 be
ause the de�nition of stationaritydepends on the time s
ale upon whi
h the data is 
onsidered.A 
ommon 
lass of tests for �rst order stationarity are based on sear
hing for unit rootsin an autoregressive model, sin
e the existen
e of a root outside the unit 
ir
le means thattime series will wander from its mean (Di
key et al. 1984). This method may be suitable fortime series whi
h vary slowly, but it is unsuitable for time series su
h as wind speeds whi
hmay undergo sudden 
hanges in both mean and varian
e. Methods whi
h may be appliedto data with more 
omplex dynami
s in
lude making 
ross-
omparisons of the time seriesin temporal or spe
tral spa
e. For example, Von Sa
hs and Neumann (2000) developed awavelet-based test for stationarity whi
h entails dividing the time series into segments ofdi�erent lengths, 
al
ulating the periodogram for ea
h segment, and then making 
ross-
omparisons of pairs of segments in the frequen
y domain. Witt et al. (1998) proposed a5



stationarity test where 
omparisons of both the probability density fun
tion and the spe
traldensity fun
tion over segments of the time series are used to establish strong stationarity. Inthe time domain, S
hreiber (1997) divided the time series into segments, and then used pairsof segments as explanatory variables for ea
h other. These methods have the short
omingthat it is ne
essary to 
hoose some time s
ale over whi
h to segment the data, and althoughWitt et al. (1998) argues that the removal of slow 
omponents by appli
ation of a high-pass�lter 
ould alleviate this problem, it is still evident that stationarity depends on the windowlength. For example, a window 
ontaining single transition from stable no
turnal to day-time 
onve
tive 
onditions will be 
onsidered di�erently from a longer window in whi
h su
htransitions 
ould be seen as part of a stationary periodi
 pro
ess.In a further method proposed by Andreas et al. (2008) the issue of window length wasnavigated by expli
itly de�ning the time s
ales over whi
h to 
ompare adja
ent se
tions ofthe time series based on physi
al arguments. They 
al
ulated a �memory� period basedon the de
orrelation time for ea
h point in the time series, and used this to determine thenumber of points to in
lude in ea
h segment. Finally, they used standard statisti
al tests toassess the di�eren
es in the mean and varian
e of adja
ent segments.The methods of Andreas et al. (2008) are of most relevan
e to this study be
ause theyapplied their test to soni
 thermometer data and water vapor density data, and showedthat the measurements were non-stationary as a result of passing 
louds altering the surfa
e�uxes over land. They do not test the stationarity of wind data dire
tly, but it is 
lear thatnon-stationarity in temperature would drive non-stationarity in wind data due to 
hanges inthermal stability. Even though the measurement site in this study is o�shore, it is expe
tedthat areas of spatial non-stationarity will be adve
ted over the sea.6



Further to the results from Andreas et al. (2008), there are physi
al arguments why winddata should be non-stationary. The large s
ale Rossby waves whi
h determine the sequen
e ofhigh pressure ridges and low pressure troughs means that on a synopti
 s
ale the atmosphere
hanges from general 
onditions of subsiden
e, stability, and 
lear skies, to general 
onditionsof 
onve
tive instability, pre
ipitation and 
loudiness. On mi
ro- and meso-s
ales, a di�erentset of dynami
s 
an dominate depending on the atmospheri
 
onditions. For example, ina stable atmosphere, pro
esses su
h as inertial os
illations, low level jets and gravity wavesmay dominate the varian
e of the wind. In a thermally unstable atmosphere, 
onve
tion andupdrafts and downdrafts of 
onve
tive 
ells may be of great importan
e in determining thevarian
e of the wind, and in strongly sheared environment turbulen
e and Kelvin-Helmholtzinstability may be dominating fa
tors (Stull 1988).
3. Site des
ription and data preparationThe analysis is based on measurements from a meteorologi
al mast of height 62 m lo
atedto the north west of the Horns Rev wind farm in the Danish North Sea. The position ofthe mast, relative to the wind farm and the west 
oast of Denmark, is shown in �gure 1.The meteorologi
al mast is exposed to easterly se
tor wind whi
h 
omes from the land,and westerly se
tor wind whi
h 
omes from the North Sea. Flow from the southeasterlydire
tion is in the wake of the wind farm. A des
ription of the site and the meteorologi
almeasurement mast is found in (Peña and Gryning 2008).The results presented here used a 4 year time series of wind speed observations from a 
upanemometer mounted at the top of the meteorologi
al measurement mast. The measurement7



resolution was 10 minutes, and data availability was good, with only 203 missing observations(less than 0.05%) for the four years.The implementation of most spe
tral analysis te
hniques requires a time series withoutgaps, sin
e a missing data point in�uen
es not only that point, but introdu
es bias into theanalysis. For data with longer or more frequent gaps, several methods for analyzing unevenlyspa
ed time series data exist (for example, as des
ribed in (Ho
ke and Kämpfer 2008), wherethe Lomb-S
argle spe
trum was estimated, and then inverse Fourier-transformed to obtainan approximation of the missing data). Sin
e the gaps in the data analyzed here were shortand infrequent, it was su�
ient to simply �ll them by interpolation for the short gaps, or bymat
hing a pie
e of data from the time series itself for longer gaps. A bene�t of the Hilbert-Huang analysis is that gap-a�e
ted parts of the time evolving spe
trum 
an be removed priorto post-pro
essing or drawing 
on
lusions from it.A histogram and wind rose of the 62 m wind speed at Horns Rev Mast 2 for the period2000�2003 are shown in �gures 2 and 3. The wind rose shows three preferred dire
tion ranges� between 200 and 250 degrees, between 290 and 310 degrees, and around 110 degrees. Themost frequent strong winds above 15 m s−1 o

ur in the southwest to northwest se
tor, whilethe wind speed is greatly suppressed for the north easterly se
tor.
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4. The Hilbert-Huang Transforma. Spe
tral analysis of non-stationary time seriesOther than the Fourier transform, several spe
tral analysis te
hniques exist and havebeen applied to geophysi
al time series. For example, Ghil et al. (2002) applied SingularSpe
trum Analysis (SSA) to a time series of the Southern Os
illation Index (SOI). SSAinvolves splitting the time series into segments a

ording to some 
hoi
e of an embeddingdimension, �nding the empiri
al orthogonal fun
tions (EOFs) from the segments, and pro-je
ting the time series onto the EOFs to de�ne the Prin
ipal Components. The method isgood for analyzing non-linear time series, but assumes an underlying periodi
ity in the data.For example, a signi�
ant di�eren
e in statisti
al properties between the segments of thetime series undermines the relevan
e of proje
ting the time series onto the set of globallyde�ned EOFs.Another adaptive spe
tral analysis method is wavelet analysis, where a wavelet fun
tionwhi
h 
an be stret
hed or dilated is proje
ted onto the data to �nd the most importantfrequen
ies at ea
h time step (Labat 2005). Wavelet transforms have been used e�e
tivelyto study geophysi
al time series su
h as turbulen
e measurements (eg Barthlott et al. (2007)),and are able to 
apture the 
hanging spe
tral behavior in non-stationary data. Disadvantagesof the method are that some a priori de
ision must be made about the shape of the waveletfun
tion. This problem was addressed by Yiou et al. (2000) by applying SSA to su

essivese
tions of the data de�ned by a moving window su
h that a `data adaptive wavelet' 
ould be
onstru
ted. Their method was e�e
tive in un
overing a 
hange in the frequen
y of the SOI,but has obvious problems with the length of time series that is required to divide it �rstly9



into window fun
tions, and se
ondly into segments a

ording to the embedding dimensionof the SSA.A further method in whi
h there has been re
ent interest is the Hilbert-Huang transform,and its extension the normalized Hilbert-Huang transform. The Hilbert-Huang transform,whi
h was �rst introdu
ed by Huang et al. (1998), 
onsists of an empiri
al �lter whi
h de-
omposes the data into a linear 
ombination of a set of basis fun
tions 
alled Intrinsi
 ModeFun
tions (IMFs), followed by extra
tion of the instantaneous amplitudes and frequen
ies ofea
h 
omponent using the Hilbert transform. In an extension to the Hilbert-Huang trans-form, Huang (2005a) proposed normalization of the IMFs prior to extra
tion of instantaneousfrequen
ies. Huang et al. (1998) built on work of Boashash (1992) and Cohen (1989) andothers who de�ned the 
on
ept of instantaneous frequen
y and laid down the 
onditionsthat must be satis�ed if a time series is to have a meaningful instantaneous frequen
y that
an be 
al
ulated using the Hilbert transform. Huang's major 
ontribution was to developa te
hnique for de
omposing a time series into a set of time evolving basis fun
tions, ea
h ofwhi
h satis�ed the 
onditions for 
al
ulation of a meaningful instantaneous frequen
y usingthe Hilbert Transform. The de
omposition te
hnique is fully data adaptive, and is 
alledthe `Empiri
al Mode De
omposition' (EMD).Like wavelet analysis, the Hilbert-Huang transform fa
ilitates the 
al
ulation of an adap-tive spe
trum where amplitude is expressed as a fun
tion of frequen
y and time. Unlikewavelet analysis, the de
omposition of the time series is empiri
al and non-parametri
, anddoes not require any a priori de
ision about the 
hoi
e of a suitable wavelet fun
tion. Huanget al. (1998) systemati
ally 
ompared it to the wavelet transform and illustrated its potentialin 
apturing time evolving frequen
y information in time series in
luding wind speeds, wave10



height and earthquake vibrations. The advantage of the Hilbert-Huang transform over SSAis that it is an entirely lo
al method whi
h 
an des
ribe the 
hanging statisti
al properties ofa non-stationary time series. Disadvantages of the method are the di�
ulty in 
onstru
ting atheoreti
al des
ription of the empiri
al de
omposition, in 
on
lusively showing that the basisis orthogonal, and the problem of mode mixing, where os
illations of similar frequen
ies aresplit between several IMFs. These issues will be dis
ussed below when introdu
ing the theoryof the Hilbert-Huang transform. Sin
e wind speed time series are subje
t to sudden 
hangesin statisti
al properties, and we are interested in expressing the time evolving nature of theos
illatory behavior of the time series, the Hilbert Huang transform is an obvious 
andidatefor the study of wind speed �u
tuations.Sin
e its introdu
tion in 1998, the Hilbert-Huang transform has been su

essfully appliedto many problems involving non-stationary time series. For example, Velt
heva and GuedesSoares (2004) and Velt
heva and Guedes Soares (2007) used the method to study abnormalo
ean waves, and Peng et al. (2005) found it to be a useful strategy for analyzing vibrationsgenerated by industrial ma
hinery. Shen et al. (2005) used the Hilbert-Huang transform toanalyze 55 year time series of air temperature and sea surfa
e temperature data, and showedthat the annual 
y
le, 3�7 year 
y
les, multide
adal 
y
les and a long term trend were 
learlydi�erentiated by the te
hnique. Of 
lose relevan
e to the 
urrent work was a re
ent study byRao and Hsu (2008) who applied the method to a series of hydrologi
al and meteorologi
altime series and systemati
ally demonstrated the di�eren
es between Fourier analysis andHilbert-Huang analysis.
11



b. Theory of the Hilbert Huang transformThe theory of the normalized Hilbert-Huang transform, and its implementation, will bereviewed brie�y here. Several detailed des
riptions of the method already exist, in
luding(Huang 2005b) and (Huang and Wu 2008). As dis
ussed above, the normalized Hilbert-Huang transform 
onsists of three steps: EMD of the time series into IMFs, normalization ofthe IMFs and extra
tion of instantaneous amplitudes, and �nally extra
tion of instantaneousfrequen
ies from the normalized IMFs using the Hilbert transform.The EMD begins by de�ning two 
ubi
 splines. One passes through all the lo
al maximaof the data, and the other passes through all the lo
al minima. The average of the twosplines is 
onsidered the lo
al mean of the data, and is subtra
ted from the original timeseries. The result now has zero mean, but does not ne
essarily form an IMF sin
e it 
an still
ontain introdu
ed lo
al extrema. The pro
esses is repeated until 
onvergen
e is obtained,at whi
h point it satis�es the 
onditions of being an IMF as de�ned by Huang et al. (1998).In pra
ti
e, 
onvergen
e is de�ned as in (Huang et al. 2003), as the point where every lo
almaximum�minimum pair is separated by a zero 
rossing, and when the number of zero
rossings stays 
onstant for S iterations. S is termed the stoppage, and is re
ommended tobe a small number between 3 and 8.When the �rst IMF, x1(t), has been 
al
ulated using the above pro
edure, it is subtra
tedfrom the original signal:
U1(t) = U(t) − x1(t). (1)

U1(t) is the same as U(t), but has had the highest frequen
y �u
tuations �ltered from it.
12



The next IMF is then extra
ted from U1(t) using the same pro
ess, so that:
U2(t) = U1(t) − x2(t). (2)When the signal, U(t), has been de
omposed into its 
onstituent IMFs, xi(t), it may bewritten as:
U(t) =

N
∑

i=1

xi(t) + ε(t) (3)where N is the number of IMFs that have been extra
ted from the signal and ε(t) is the lowfrequen
y trend, 
ontaining zero or one extrema.Corre
t treatment of end e�e
ts in the de
omposition is an ongoing question, sin
e itinvolves making a reasonable predi
tion of the spline from the last extremum to the end ofthe time series (Huang and Wu 2008). In this work, however, the time series are very longand we are interested in average variability 
onditions, so the end e�e
ts do not present anysigni�
ant problem.In a re
ent modi�
ation to the Hilbert-Huang transform, Huang (2005a) proposes nor-malizing the IMFs so that their amplitude is always unity and they 
ontain only frequen
ymodulations. The normalized Hilbert-Huang transform avoids the potential problem that ifthe spe
trum of os
illations within the IMF and that of their low frequen
y envelope over-lap, then the instantaneous frequen
y will not be meaningful a

ording to the Bedrosiantheorem (Huang and Wu 2008). Ea
h IMF is normalized by dividing it by the 
ubi
 splinethat passes through the absolute value of all its extrema. The normalization should be re-peated iteratively until all amplitudes are equal to unity, be
ause the spline 
an o

asionallypass through values less than the IMF. Ea
h IMF, xi(t) may then be divided into a fre-quen
y modulation part, Fi(t) and an amplitude modulation part, Ai(t), where Fi(t) is the13



normalized IMF with amplitude of unity, and
Ai(t) =

xi(t)

Fi(t)
(4)The normalised IMFs satisfy the spe
ial property that they ea
h 
ontain only one fre-quen
y at ea
h time, so that instantaneous frequen
ies 
an be 
al
ulated using the Hilberttransform. The meaning of instantaneous frequen
y is not immediately obvious. Con
eptu-ally, it 
ould be regarded as the inverse of the time taken for one 
omplete os
illation, but asargued by Huang et al. (2009), there is no reason to expe
t that the frequen
y should remain
onstant throughout an entire os
illation. The appropriate de�nition of the lo
al frequen
yis as the derivative of the phase angle, where the phase angle 
an be found by adding someproperly 
hosen imaginary part to the time series.

f(t) = xi(t) + ig(t) (5)su
h that
xi(t) = Re [f(t)] . (6)Clearly, any fun
tion g(t) satis�es Eqs. (5) and (6). In general, however, the 
omplexsignal f(t) will 
ontain both positive and negative frequen
ies, and the frequen
ies will nothave physi
al meaning. As dis
ussed by Cohen (1989), a breakthrough in the idea of de�ningan instantaneous frequen
y was made by Gabor (1946) when a spe
ial fun
tion g(t) was usedwhi
h �ltered out the negative frequen
y 
omponents and doubled the positive frequen
y
omponents. This fun
tion was equivalent to the Hilbert transform, and is given as

Hi(t) = xi(t) + i
1

π
PV

∫ +∞

−∞

xi(τ)

(t − τ)
dτ = xi(t) + ihi(t) (7)14



where PV refers to the prin
ipal value of the integral, whi
h must be 
onsidered be
ause theintegrand is not de�ned at t = τ .Mathemati
ally, the Hilbert transform of the original data 
ould be 
al
ulated, but theresult would be erroneous to interpret be
ause the instantaneous frequen
y would be aresult of all the overlapping frequen
ies present in the original signal (Boashash 1992). The
onstru
tion of the normalized IMFs ensures that ea
h 
omponent satis�es the 
ondition of�mono
omponent signals� as suggested by Cohen (1995) and Boashash (1992), whi
h meansthat the spe
trum of the time varying amplitude does not overlap with the spe
trum ofthe time varying phase. In a pra
ti
al sense, ea
h normalized IMF should 
ontain only onefrequen
y at any time.By writing the real and 
omplex parts of the Hilbert transformed signal in polar 
oordi-nates, it is seen to be fun
tion of instantaneous phase and amplitude,
Hi(t) = ai(t)e

iθi(t). (8)where in the 
ase of the normalized IMFs, the amplitude will be nearly equal to unity.De�ning the instantaneous frequen
y as ωi(t) = dθi(t)
dt

, the Hilbert transform may then bewritten as
Hi(t) = ai(t)e

i
R

ωi(t)dt. (9)Sin
e the instantaneous phase may be expressed as θ(t) = Im [ln(H(t))], the instantaneousfrequen
y, de�ned as the time derivative of the instantaneous phase, 
an be written as
ω(t) =

dθ

dt
= Im

[

1

H(t)

dH(t)

dt

]

. (10)
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The data is dis
rete, so the instantaneous frequen
y is then approximated as
ω(t) ≈ Im

[

1

H(t)

∆H(t)

∆t

]

. (11)After the Hilbert transform of the N IMFs has been established, the original signal may bere
onstru
ted as
U(t) = Re

[

N
∑

i=1

ai(t)e
i

R

ωi(t)dt

]

+ ε(t). (12)where ε(t) is the low frequen
y trend in the data after the �rst N IMFs have been �lteredout.Eq. (12) shows how the signal may be de
omposed into a series of IMFs, ea
h with timevarying amplitude and phase. An example of the �rst �ve IMFs of su
h a de
omposition for a13 day sample of wind speed observations is given in �gure 4. As dis
ussed by Sweeney-Reedand Nasuto (2007) and Wu and Huang (2009), dire
t physi
al interpretation of a single IMFis not ne
essarily possible, due to the problem of mode mixing, where an IMF 
an 
ontainparts of �u
tuations belonging to di�erent s
ales. For example, part of the diurnal 
y
lemay appear at some times in the same IMF as parts of the synopti
 
y
le at other times.This problem 
an be observed in some of the IMFs shown in �gure 4. To 
reate IMFs whi
hhave a more dire
t physi
al meaning (as well as greater uniqueness), Wu and Huang (2009)developed the Ensemble Empiri
al Mode De
omposition (EEMD) methodology, where whitenoise is added to the time series to 
reate an ensemble of de
ompositions. The white noiseensures that all frequen
ies are present at all times in the time series, and removes theproblem of mode-mixing. By averaging the ensemble of de
ompositions, a true de
ompositionis found whi
h has greater physi
al meaning, but for whi
h the 
omponents may not exa
tlysatisfy the the 
onditions of being IMFs. The EEMD te
hnique has not been pursued here,16



but it would nonetheless be an important extension to the 
urrent work, parti
ularly if uniquephysi
al pro
esses (su
h as os
illations asso
iated with roll vorti
es) were to be identi�ed ina single IMF.An alternative to using the Hilbert transform for 
al
ulation of instantaneous frequen
yis to use the dire
t quadrature, as dis
ussed in (Huang et al. 2009). This method takesadvantange of the fa
t that the phase 
an be 
al
ulated dire
tly as the ar
tangent of thefrequen
y modulation part of the signal divided by its quadrature. Huang et al. (2009)argues that it is a more lo
al 
al
ulation of the instantaneous frequen
y, and that it avoidsany remaining violations of the Bedrosian theorem.One way of 
ombining all of the frequen
y and amplitude information in the set of IMFs isto bin the instantaneous amplitude information in ea
h IMF into regularly spa
ed frequen
ybins. This 
an be a
hieved by 
onsidering ea
h frequen
y bin (ω, ω + ∆ω] and equating allamplitude 
ontributions ai(t) from the N IMFs whi
h 
orrespond to ωi(t) ∈ (ω, ω + ∆ω].The sum of the total amplitude 
ontributions in ea
h frequen
y bin at ea
h time 
onstitutethe Hilbert Spe
trum, H(ω, t). Other methods for handling this step in
lude using non-parametri
 regression te
hniques to �t a 
urve through the amplitudes, whi
h also has theadvantage of smoothing the spe
trum (Du�y 2004). However, sin
e in this paper the Hilbertspe
trum is �nally averaged or 
onverted to a s
alar time series (to whi
h is it easy to applysmoothing), no smoothing was applied to the raw Hilbert spe
trum. The Hilbert spe
trumhas the same units as the original data set, as it represents amplitudes of the �u
tuations.The Hilbert spe
trum for a two week sample period in 2000 is shown in the lower panelof �gure 5. The total amplitude of �u
tuations at a given time is a 
ombination of all theamplitude 
ontributions at that time. The 
orresponding wind speed time series is shown17



in the upper panel. It is seen that the episodes of intense wind variability are re�e
ted asdarker spots or lines on the Hilbert spe
trum. The slow variability, su
h as that on days6�8, with period of around 24 hours, falls outside the frequen
y range of the spe
trum, andthe absen
e of high frequen
y variability during this time is shown by the gap in the Hilbertspe
trum.
5. Appli
ations of the Hilbert-Huang transform to theanalysis of wind speed dataThe Hilbert spe
trum as shown in �gure 5 is a useful representation of the time evolvingspe
tral information in the data. Sin
e this study is fo
used on long time series of wind speeddata, where the frequen
ies of interest are those at the high frequen
y end of the spe
trumshown, it is important to be able to summarize the Hilbert spe
trum to un
over the trendsin the data. In this regard, the Hilbert-Huang transform has great �exibility. It 
an beaveraged along the time axis to 
reate a marginal spe
trum, summed over the frequen
y axisto 
reate a s
alar time series of variability, or 
an be 
onditionally averaged on the time axis.All of these strategies 
an be employed, and ea
h one brings out a di�erent aspe
t of thetrends and patterns in the data that may not otherwise be obvious.Averaging the time evolving spe
trum along the time axis,

H(ω) =
1

L

L
∑

t=1

H(ω, t), (13)is useful �rstly be
ause it is a relationship in the same form as a Fourier spe
trum (that is, aone dimensional relationship between frequen
y and amplitude), and as su
h it 
an be used18



to show the di�eren
e between the Hilbert-Huang analysis and the Fourier analysis. Severalstudies have made 
omparisons of the Fourier spe
trum and the marginal Hilbert spe
trum,and shown that the methods produ
e similar results in 
ases of stationary or near-stationarytime series, but that the spe
tra 
an be signi�
antly di�erent in the 
ase of non-stationaryor non-linear data (for example, in the meteorologi
al and hydrologi
al time series studiedby Rao and Hsu (2008)).Although the marginal Hilbert spe
trum and the Fourier spe
trum are both expressionsof amplitude as a fun
tion of frequen
y and 
an be plotted on the same axis with the sameunits, they are not simply two di�erent ways of 
al
ulating the same spe
trum. As su
h, theyare not expe
ted to be identi
al. The Fourier transform is a de
omposition into a family ofstationary sine and 
osine fun
tions, while the Hilbert-Huang transform is a de
ompositioninto a family of amplitude modulated and frequen
y modulated 
omponents. Therefore, theHilbert-Huang transform is a lo
al method, and will show a di�erent frequen
y response forthe non-stationary os
illation 
omponents in the data. With regard to wind speed, this maybe of parti
ular importan
e for the longer wavenumber 
omponents su
h those driven bydiurnal or synopti
 times
ales, as well as for shorter wavenumber 
omponents su
h as theonset and de
ay of 
onve
tive 
onditions. The diurnal 
y
le is modulated by fa
tors in
ludingtime of year, 
loudiness and airmass 
hanges, so it is not expe
ted to be well representedby a stationary os
illation of period 24 hours. Similarly, the synopti
 
y
le is modulated bythe number and amplitude of Rossby waves, so it is also expe
ted to have a more 
omplexspe
tral representation than a single spike at two or three days.Another approa
h to summarize the information in the Hilbert spe
trum is to aggregatethe spe
trum along the frequen
y axis. In this way, a s
alar time series of variability within19



a given frequen
y range 
an be obtained, as
H(t) =

ω2
∑

ω=ω1

H(ω, t) (14)where H(t) represents the sum of all amplitudes within the frequen
y range [ω1, ω2]. Dueto the superposition of �u
tuations of di�erent phase and frequen
y, the signal will notalways be os
illating with this total amplitude. The amplitude 
an be interpreted as anupper bound on the total amplitude of �u
tuations if all 
omponents were in phase, and
ombined a

ording to linear superposition. While the assumption of linear superpositionprobably does not always hold, the value of 
reating s
alar metri
 of the degree of variabilityis 
lear. For example, a s
alar time series 
an be predi
ted using various univariate timeseries modeling tools, it 
an be predi
ted using relevant explanatory variables from NWPmodels, and further it 
ould be used as an indi
ator of an impending episode of severevariability based on analysis of model data or upstream observations.Finally, the Hilbert spe
trum 
an be summarized by binning and averaging the data alongthe time axis to 
reate 
onditional spe
tra. This is a parti
ularly interesting appli
ation ofthe method, sin
e it permits 
al
ulation of spe
tra for points whi
h do not lie 
onse
utivelyin the time series. Further, the fast adaptivity of the method means that the spe
tralinformation for an isolated point in the time series is likely to be reasonably free from thein�uen
e of the spe
tral information from nearby parts of the time series.
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6. ResultsThe four year time series of wind speed measurements was analyzed in four year-longsegments of 52560 (2001�2003) or 52704 (2000) points. The temporal resolution of the datawas doubled by 
ubi
 interpolation to improve the extent to whi
h the highest frequen
y�u
tuations were 
aptured in the �rst IMF. The interpolation obviously did not add anyhigh resolution information to the time series, but prevented the EMD from missing some ofthe existing information. The data was transformed in 4 separate years for 
omputational
onvenien
e, although the EMD took less than 400 se
onds for ea
h time series of more than52000 points on a 
urrent laptop 
omputer.The stopping 
riteria for the EMD was set at S = 3, as re
ommended in Huang et al.(2003). The instantaneous amplitudes and frequen
ies of the IMFs were binned into fre-quen
y bins of width 5e-7 Hz to 
reate the two dimensional Hilbert spe
trum. After theHilbert spe
trum was 
reated, the times 
orresponding to the gaps in the original time serieswere removed, so they were not in
luded in the subsequent analysis.Boxplots of the distributions of periods in ea
h IMF, 
al
ulated as the inverse of theinstantaneous frequen
y, are shown in �gure 6 on a semilog axis. The medians of the dis-tributions follow a straight line when plotted on a semilog axis � that is, ea
h IMF has onaverage half the frequen
y of the previous IMF. This result is 
onsistent with results pre-sented in (Wu and Huang 2004) and (Flandrin et al. 2004), where it was shown that thepro
esses of de
omposing the time series into IMFs is equivalent to lo
ally applying a �lterbank of overlapping band pass �lters.
21



a. Comparison of the Hilbert spe
trum with the Fourier spe
trum: summation of the Hilbertspe
trum over timeAveraging the Hilbert spe
trum H(ω, t) over time yields a s
alar relationship betweenamplitude and frequen
y, or the marginal Hilbert-Huang spe
trum. The marginal Hilbert-Huang spe
trum and its analogous Fourier spe
trum are shown in �gure 7. The marginalHilbert-Huang spe
trum was 
al
ulated as given in Eq. (13). The Fourier spe
trum was
al
ulated using the dis
rete fast Fourier transform and a Hanning window fun
tion witha trun
ation point of L/16, where L is the length of the time series. Applying a windowfun
tion with a suitable trun
ation point is an e�e
tive strategy to provide a 
onsistentestimate of the spe
trum for stationary data (Madsen 2007). Even in the 
ase of non-stationary data, the appli
ation of a window fun
tion to trun
ate the time series and mitigatethe end e�e
ts smooths the spe
trum and provides good de�nition for expe
ted periodi
itiessu
h as the 24 hour 
y
le, but it means that the spe
trum is fo
used on the middle of the timeseries and the data at either end is dis
arded. That is, to smooth the spe
trum, the data mustbe trun
ated so that not all of the time evolving statisti
al properties are represented equally.The trun
ation point here was 
hosen as a trade-o� between representing a reasonable portionof the time series, and giving a spe
trum that was suitably smooth for 
omparison with theHilbert spe
trum.It is not expe
ted that the spe
tra should be identi
al be
ause the integrated Hilbert-Huang spe
trum represents the time average of the instantaneous amplitude at ea
h fre-quen
y, while the amplitudes of the Fourier series 
omponents represent the best �t of 
on-stant harmoni
s to the whole data set. Huang et al. (1998) argue that the Hilbert marginal22



spe
trum therefore has a �totally di�erent meaning� to the Fourier spe
trum.Despite the problems with 
omparing the two spe
tra in �gure 7 (sin
e the full timeseries is used in the Hilbert spe
trum, while the Fourier spe
trum fo
uses on the middle ofthe time series), there are some features in 
ommon between the two spe
tra. For example,the diurnal 
y
le is expe
ted to be identi�ed by both methods. Indeed, there is a smallpeak in both spe
tra at a period 24 hours, although be
ause this site is o�-shore the diurnal
y
le is not very strong. The diurnal 
y
le in these wind speed measurements will be furtherdis
ussed in later parts of this paper. The two spe
tra also show similar spe
tral slope.The marginal Hilbert spe
trum is smoother than the Fourier spe
trum be
ause it isa
tually an average of all the spe
tral information for a year. A further di�eren
e betweenthe spe
tra is that the Fourier spe
trum 
ontains information up to the Nyquist period of
2∆t, or 20 minutes, while the Hilbert-Huang marginal spe
trum requires 4∆t, or 40 minutesto resolve spe
tral information (Huang et al. 1998), whi
h 
an be seen as a limitation of theHilbert-Huang transform methodology.b. Time series of Hilbert spe
trum derived wind variabilityThe total amplitudes of variability for the two temporal ranges 1�3 hours and 3�10 hourswere 
al
ulated, and results for the year 2000 are shown in �gure 8. Both time series werevery noisy, and were smoothed using moving average smoothing with a window length of3 hours for the 1 to 3 hour temporal s
ales, and 10 hours for the 3 to 10 hour temporals
ales. This is reasonable, be
ause the time series show the variability of the Hilbert-Huangvariability metri
. Therefore, if an episode of variability with a period of 3 hours lasted for23



less than three hours, then it would not 
onstitute an os
illation. As dis
ussed in se
tion3, there were a small number of gaps in the original data that were �lled to fa
ilitate theanalysis. In total there were 16 missing data values out of 52704 observation times in 2000.Points in the variability time series 
orresponding to these missing data were removed.The time series suggest that there are more high variability events in the Autumn andWinter months than in Spring and Summer. The highest 
on
entration of peaks in the datao

ur in the months O
tober to April. Both time series are, however, very noisy and there isno de�nite trend. Using a linear least squares regression, the two smoothed time series havea 
orrelation 
oe�
ient of 0.42 to 0.51 for the 4 years, although any relationship is likely tobe non-linear and would in fa
t be better des
ribed by a generalized 
orrelation 
oe�
ientsu
h as suggested in (Nielsen and Madsen 2001). Nonetheless, s
atter plots of the two timeseries reveal no 
lear dependen
y, and this suggests that there are partly di�erent dynami
s
ontrolling the variability on these two time s
ales, although it is not ne
essarily suggestedhere that the separation into 1�3 hour and 3�10 hour variability is a natural marker betweentwo s
ales of atmospheri
 dynami
s.
. Analysis of wind variability as a fun
tion of time of dayIt is well established that there is a diurnal 
y
le in wind speed over land (eg in (Holtslag1984)). Coelingh et al. (1998) showed that there is a well de�ned diurnal 
y
le in the windspeed at two measurement sites near the Dut
h 
oast, but that the diurnal 
y
le was almostnon-existent for three o�shore sites lo
ated in the Dut
h North Sea. In another study, Peñaand Gryning (2008) found a pronoun
ed diurnal 
y
le in temperature at the Horns Rev24



Mast 2 for easterly winds, showing the in�uen
e of the land, but very little diurnal 
y
le inwesterly winds.Here, the existen
e of a diurnal 
y
le in wind variability is investigated, where �windvariability� refers to all periods from 1 to 10 hours. The four year, two-dimensional Hilbertspe
tra were averaged for ea
h season into hourly time-of-day bins. That is, 24 
onditionalspe
tra were 
reated, one for ea
h time of day, with ea
h bin 
ontaining approximately 2190observations. The points 
orresponding to the missing data in the original time series wereremoved from the analysis. The averaged Hilbert spe
tra for the four seasons are shown in�gure 9. The spe
tra were normalized by dividing by the width of the frequen
y bins, andmultiplied by frequen
y to emphasize the higher frequen
ies. Therefore the units of the 
oloraxis are m s−1.The 4 year s
alar time series of variability for periods 1�3 hours was also averaged intohourly bins, so that the diurnal 
y
le in wind variability 
ould be dire
tly 
ompared with thediurnal 
y
le in wind speed. Note that sin
e the mean of the data is subtra
ted during theEMD pro
ess, there is no impli
it s
aling of variability di
tated by the method. Variabilityand wind speed as a fun
tion of time of day for the four seasons are shown in �gure 10, andthe two quantities are shown plotted as a s
atter plot in �gure 11. Figure 11 shows thatthe highest variability o

urs in autumn, but that the highest wind speed o

urs in winter.There is no strong 
orrelation between average wind speed and average variability. There isa weak positive 
orrelation in winter, spring and summer, and a weak negative 
orrelation inautumn. It 
an therefore be seen that the diurnal 
y
le in wind variability does not simplyfollow the diurnal 
y
le in wind speed.In spring, there is a late afternoon maximum in wind speed, whi
h is followed by a25



maximum in wind variability around 3-4 hours later. The afternoon maximum in windspeed may be 
aused by the formation of a low level jet, in 
ases where warm air fromday time heating over the land is adve
ted over the 
old North Sea, leading to very stable
onditions (Stull 1988). Building on this hypothesis, the maximum wind variability o

ursas the low level jet is diminishing in strength, and may o

ur as the low level jet 
onditionsdeteriorate to a more neutrally strati�ed no
turnal situation.In summer, a midday minimum in wind speed is observed, whi
h is likely to be part ofthe observed pattern, where a midday maximum in surfa
e wind speed is a

ompanied bya minimum in wind speed just above the surfa
e as the wind pro�le adjusts to the daytimeheating and destabilizes (Holtslag 1984; Wieringa 1989). It is interesting to note that aminimum in wind variability lags the minimum in wind speed by around 3 hours. Thismay o

ur on
e the surfa
e heating has existed for long enough for the layer of surfa
eair to be
ome well mixed; in this 
ase, turbulen
e will be at a maximum but larger s
ale�u
tuations may be equalized by the in
reasingly even distribution of momentum.In winter, two daily peaks in both wind variability and wind speed are seen, where the two
y
les are approximately in phase, while in autumn there are two daily peaks in both 
y
leswhi
h are approximately 6 hours out of phase. The two daily peaks are almost 
ertainlydue to the fa
t that we have 
ombined data from the two �ow regimes - from the land andfrom the sea - into the same analysis. The reasons for the relationship between the speedand variability 
y
les are di�
ult to des
ribe from this analysis, and are fas
inating areasfor further analysis, through data analysis or modeling.
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7. Con
lusionsThe e�e
tiveness of the Hilbert-Huang transform as a tool for analyzing non-stationarywind speed time series has been demonstrated using time series of wind observations from ameteorologi
al mast near the Horns Rev wind farm. The method is parti
ularly relevant tothe analysis of wind speed time series, whi
h are known to 
ontain 
ompli
ated statisti
alstru
ture, breakpoints and periodi
ities.The two dimensional Hilbert spe
trum gives a 
lear and intuitive representation of thes
ales of motion that are present in wind speed time series, and of their relative weighting.The Hilbert spe
trum not only shows the most variable parts of the spe
trum, but givesa 
lue about the existen
e of any 
oherent periodi
ities in the time series, sin
e there aretransient se
tions of the spe
trum that show a 
onsistently enhan
ed amplitude within agiven frequen
y range. It is not possible to de�ne the full three dimensional stru
ture ofa wave based on a single point measurement, although a interesting development would beto use the Hilbert spe
trum of several wind speed time series at nearby points to begin todevelop an over all pi
ture of the stru
tures in the boundary layer, or to employ a methodsu
h as the bivariate EMF re
ently developed by Rilling et al. (2007) to study patterns inve
tor observations of wind speed.The Hilbert spe
trum has many appli
ations that extend its utility past the two dimen-sional Hilbert spe
trum. Aggregating the spe
trum along the frequen
y axis to form timeseries of total variability gives rise to many analysis methodologies from time series analysis.For example the time series of wind variability lend themselves to modeling using autore-gressive moving average (ARMA) or more sophisti
ated univariate models, or regression27



models whi
h relate wind variability to other atmospheri
 observations or fore
asts. Forlong time series, they 
an be binned and averaged to 
reate a 
limatologi
al pi
ture of thetypes of 
onditions in whi
h severe wind variability tends to o

ur. Further, time series ofwind variability lend themselves to being used as a warning tool for wind energy appli
a-tions - for example, when peaks in wind variability are identi�ed dire
tly either in upstreamobservations, or in NWP or other fore
ast data.Using the Hilbert spe
trum to 
reate 
onditional spe
tra is a novel way to des
ribe thetotal frequen
y response of the wind speed to relevant environmental parameters su
h as timeof day. In using this method here, it was shown that the diurnal 
y
le in wind variabilityis not very strong, and 
an only be shown up as a slight trend in the binned and averagedtime series analysis. Further, it was shown that the annual 
y
le in wind variability is mu
hstronger than any diurnal 
y
le. It is possible to 
reate 
onditional spe
tra based on any setof 
riteria, and it is expe
ted that strong trends 
an be un
overed for 
riteria su
h as winddire
tion and time of year.In this study, the Hilbert-Huang analysis was used to study the diurnal 
y
le in windvariability in the four seasons of the year. The method was e�e
tive be
ause it permittedanalysis of the spe
tral properties of the wind speed at di�erent times of year. More impor-tantly, the analysis was used to 
reate average spe
tral information at ea
h time of day, fordata whi
h do not 
ome from 
onse
utive parts of the time series. The results 
on
erningthe di�erent diurnal 
y
les in wind speed and wind variability require further analysis fora full physi
al understanding, although it seems likely that the formation of a low-level jet
ontributed to the spring time pattern, and the formation of the midday minimum in windspeed above the surfa
e for �ow form the land 
ontributed to the summer time pattern.28



Extensions and new appli
ations of the Hilbert-Huang transform are still being devel-oped, and it is likely that some of these new developments will a�ord new insights into thestru
tures in wind speed data. For example, the ensemble EMD is likely to help with thephysi
al interpretation of the IMFs, sin
e it addresses the problem of mode mixing. Fur-ther, the dire
t quadrature method for 
al
ulation of instantaneous frequen
y is a more lo
almethod whi
h avoids some of the short-
omings of the Hilbert transform, and is likely to bea better strategy for future studies.The methods des
ribed here are not limited to the study of the diurnal 
y
le, or to theanalysis of wind speed. The 
onditional spe
tra and binned time series analysis 
ould justas well be applied to other 
onditions of interest, su
h as wind dire
tion, stability, or timeof year. The analysis 
ould also be applied to higher frequen
y wind speed data, whereturbulen
e rather than low frequen
y variability would be the subje
t of study. The fo
us ofthis analysis has been on the study of 
limatologi
al trends, whi
h are useful in the pro
essof developing fore
asting models (physi
al or statisti
al) be
ause they give a 
lue to theimportant explanatory fa
tors whi
h should be 
onsidered.A
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