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Abstract

Antenna Diagnostics for Spherical Near-Field Antenna Measurements

A new antenna diagnostics technique for spherical near-field antenna measure-
ments is presented. The technique is based on the transformation of the Spherical
Wave Expansion (SWE) to the Plane Wave Expansion (PWE), and allows an ac-
curate computation of the extreme near-field of the antenna under test.

The relation between the SWE and the PWE is first investigated. It is shown
that the plane wave spectrum (PWS) can be computed from the coefficients of the
SWE through a rigorous transformation, in the visible as well as in the invisible
region of the spectral domain.

The antenna diagnostics technique is then developed on the basis of the SWE-
to-PWE transformation and the necessary additional steps to obtain the extreme
near-field from a spherical near-field measurement are taken into account. The fun-
damental properties of the transformation are discussed, with emphasis on their
theoretical as well as practical implications. In particular, the convergence mech-
anism of the series expressing the PWS is studied. It is shown that the infinite
series can be truncated at a finite value N, which depends on the size of the an-
tenna, the origin of the measurement coordinate system and the part of spectral
domain where the PWS is computed. When convergence of the series is reached
in part of the invisible region, a resolution higher than the traditional value of half
a wavelength can be obtained in the extreme near-field.

The computation of the extreme near-field from the plane wave spectrum is de-
scribed. It is recalled that the PWS generally possesses a singularity at the border
between the visible and invisible regions. Though the singularity is integrable,
a straightforward application of the Fast Fourier Transform does not normally
provide accurate results. A singularity extraction technique for computation of
antenna extreme near-fields from singular plane wave spectra is thus developed
and presented. Next, the effects of finite measurement accuracy on the proposed
antenna diagnostics technique are studied through numerical simulations. It is
concluded that, in practice, electrical inaccuracies, and in particular amplitude
noise, limit the spectral region where the PWS reaches convergence. Under typi-
cal measurement conditions the recovery of the PWS is generally obtained in the
visible region and at the border where the singularity exists. For electrically small
antennas a part of the invisible region of the PWS can be reconstructed, but for
electrically large antennas the entire invisible region must normally be disregarded.
The SWE-to-PWE antenna diagnostics technique is finally verified by two experi-
mental test cases employing real measurements data. Measurements are conducted
at the DTU-ESA Spherical Near-Field Antenna Test Facility located at the Tech-
nical University of Denmark (DTU). First, a commercially available offset reflector
antenna is considered. Three mechanical errors are intentionally introduced and
the ability and accuracy of the diagnostics technique to identify them are tested.
Second, the antenna system of the satellite-based Soil Moisture and Ocean Salin-
ity (SMOS) radiometer is investigated, in particular the diagnostics technique is
used to successfully identify the sources of the anomalies detected in 2 of the 138
measured antenna far-field patterns.
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Resumé
Antenne-Diagnose for Sfaeriske Neerfelts-Malinger af Antenner

En ny antenne-diagnoseteknik for sfeeriske naerfelts-malinger af antenner praesen-
teres. Teknikken er baseret pa transformationen af den sfeeriske vektorbglge-
udvikling til den plane vektorbglge-udvikling, og den tillader en ngjagtig beregning
af det ekstreme neerfelt af testantennen.

Forst undersgges relationen mellem den sfeeriske vektorbglge-udvikling og den
plane vektorbglge-udvikling. Det vises, at planbglge-spektret kan beregnes udfra
koefficienterne til den sfaeriske udvikling gennem en eksakt transformation, bade i
det synlige og usynlige omrade af det spektrale domzne.

Derefter udvikles antenne-diagnoseteknikken pa basis af transformationen fra den
sfeeris-ke til den plane udvikling, og de ngdvendige trin for at beregne det ek-
streme neerfelt fra en sfaerisk naerfelts-maling undersgges. Grundlaeggende egensk-
aber ved transformationen undersgges med vaegt pa deres teoretiske savel som
praktiske konsekvenser. Konvergens-forholdene ved udviklingen som beskriver
planbglge-spektret, bliver iseer undersggt. Det vises, at den uendelige rackke kan
afsluttes for en bestemt veerdi N, som afhaenger af antenne stgrrelsen, origo for
male-koordinatsystemet og den del af det spektrale domaene, hvor spektret gnskes
beregnet. En oplgsning hgjere end den traditionelle halve bglgeleengde kan opnéas
i det ekstreme neerfelt, hvis konvergensen af raekken bliver naet i en del af det
usynlige omrade.

Beregningen af det ekstreme naerfelt fra planbglge-udviklingen bliver dernast besk-
revet. Planbglge-spektret har normalt en singularitet pa greensen mellem det
synlige og usynlige omrade. Selvom singulariteten kan integreres, giver almin-
delig brug af Fast Fourier Transform ikke ngjagtige resultater. En singularitet-
ekstraktions-teknik for beregningen af antennens ekstreme nzerfelt fra singulaere
planebglge-spektra udvikles og diskuteres. Til sidst undersgges effekten af male-
ngjagtigheden pa antenne-diagnoseteknikken gennem numeriske beregninger. Det
konkluderes, at elektriske ungjagtigheder, iseer amplitudestgj, i praksis begraenser
det spektrale omrade, hvor planbglge-spektret opnar konvergens. Under typiske
malinger bliver planbglge-spektret generelt rekonstrueret i det synlige omrade og
pa graensen, hvor singulariteten findes. En del af det usynlige omrade af planbglge-
spektret bliver normalt rekonstrueret for elektrisk sma antenner, men hele det
usynlige omrade ma ignoreres for elektrisk store antenner.
Antenne-diagnoseteknikken baseret pa transformationen fra den sfaeriske vektor-
bglge-udvikling til den plane vektorbglge-udvikling bliver afslutningsvis verificeret
med to eksperimentelle test, hvor rigtige maledata bliver anvendt. Malingerne
er udfgrt i DTU-ESA Spherical Near-Field Antenna Test Facility pa Danmarks
Tekniske Universitet (DTU). Fgrst undersgges en kommerciel offsetreflektoran-
tenne. Tre mekaniske fejl er forsaetligt introduceret og anvendeligheden og ng-
jagtigheden af antenne-diagnoseteknik-ken til at identificere disse afprgves. Derefter
bliver antennesystemet i radiometret for den satellitbaserede Soil Moisture and
Ocean Salinity (SMOS) mission undersggt. Specielt bliver diagnoseteknikken brugt
til succesfuldt at identificere kilderne til uregelmaessigheder, der blev pavist i 2 af
de 138 malte antenne-diagrammer.
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Chapter 1

Introduction

Accurate and advanced antenna measurements techniques have in recent years at-
tracted the interest of the antenna community due to considerable improvements
in computational methods and antenna design, in particular within space applica-
tions. It may happen, however, that the measured radiation pattern differs from
the designed one, for the presence of some anomalies, the causes of which can
often not be explained immediately. The need to perform an accurate diagnos-
tics of the antenna under test has thus grown in parallel. While the presence of
electrical or mechanical errors in an antenna, is detected in the measured far-field,
their identification is normally possible only through an inspection of the extreme
near-field, or equivalently called aperture field, of the antenna. Examples of such
errors, which can originate from the manufacturing as well as the operation of the
antenna, are excitation of higher-order modes in a waveguide antenna, malfunction
of microwave components in the feed network of an array and surface distortions
in a reflector antenna. A plot of the near-field amplitude on a plane in front of the
antenna can help identifying higher-order waveguide modes, while a plot of the
near-field phase can reveal feed network malfunctions and reflector surface devia-
tions.

The most widely used antenna diagnostics technique is based on the well-established
relation that allows the computation of the visible region of the plane wave spec-
trum (PWS) from the antenna far-field pattern, see Booker and Clemmow [1].
Through the inverse Fourier transform of the plane wave spectrum, the antenna
extreme near-field is obtained. The technique is called backward transformation
method (BTM), see Bucci et al. [2], is applicable to general antennas, it provides
satisfactory results and is simple and computationally very efficient due to the
use of the inverse Fast Fourier Transform. When applied to diagnostics of planar
arrays, the BTM provides not only the extreme near-field but, with few additional
steps, also the array excitations, see Lee et al. [3] and Langsford et al. [4]. How-
ever, in this case the accuracy is limited since the mutual coupling between the
antenna elements is neglected and the a priori knowledge of the element factor
is assumed. An alternative technique to reconstruct the elements’ excitation has
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been recently proposed by Bucci et al. [2] for non planar arrays, by solving the
linear system that relates the excitation coefficients to the field at the measure-
ment points.

The inverse Fourier transform also expresses the relation between the far-field and
the current distribution on the surface of large reflectors, under some mathemati-
cal and geometrical assumptions. From the phase of the inverse Fourier transform
of the far-field, the deviation of the reflector surface from its ideal geometry can be
obtained if the reflector antenna is a paraboloid of known focus, and if the surface
distortion is small with respect to the wavelength, as done by Rochblatt [5][6] and
by Rahmat-Samii [7][8].

Generally, the far-field pattern is measured in amplitude and phase directly in the
far-field region or is obtained from a near-field measurement. Alternatively, several
numerical techniques are available to retrieve the phase of the far-field pattern from
measurements of only amplitude. A good review is given by Taylor in [9], while
specific algorithms are described by Yaccarino and Rahmat-Samii in [10] and by
Smith et al. in [11]. Once the far-field pattern is known in amplitude and phase, all
authors employ a traditional BTM to compute the antenna extreme near-field for
diagnostics purposes. If measurements are done at a compact range or spherical
near-field range, the complex far-field pattern is known in the entire half sphere.
This provides information of the plane wave spectrum in the entire visible region
and thus a spatial resolution of theoretically half a wavelength in the reconstructed
near-field. Interpolation from the spherical to the rectangular coordinates system
is however needed in order to use the inverse Fast Fourier Transform. If planar
near-field measurements are used, Hanfling et al. [12], interpolation is not nec-
essary but the spatial resolution is smaller, since the obtained far-field is reliable
only within the angular region determined by the finite dimensions of the scan
plane and the antenna aperture, see Yaghjian [13].

Particular interest has been shown in the past thirty years in methods to extend
the reliable region of far-field patterns obtained from truncated measurements, in
order to increase the spatial resolution of the aperture field computed with the
BTM. The most successful is based on the iterative technique discussed by Ger-
chberg [14] and Papoulis [15] for a bandlimited scalar signal. The technique was
extended to the electromagnetic vectorial case by Rahmat-Samii [7] and tested
with simulated far-field patterns. The same iterative algorithm was used for array
synthesis by Narasimhan and Kumar [16] with simulated data, and for array diag-
nostics by Johansson and Svensson [17] with real measurements data, to compute
the array excitations with the assumption of knowing the element factor and ne-
glecting the mutual coupling between the elements. It has been shown that, while
the iterative technique converges very fast and to the correct solution when work-
ing with simulated data, the algorithm becomes less robust in presence of noise.
A promising technique that deals with noisy data has been recently proposed by
Martini et al. [18] by combining the iterative algorithm with the a priori knowl-
edge of the antenna geometry and by working at the same time on the electric
and magnetic fields. The idea of using the iterative technique of Gerchberg and
Papoulis to recover, from the visible region of the plane wave spectrum, part of the
invisible region has been taken into consideration by Sanchez-Escuderos et al. [19]



using simulated data and very simple antenna configurations. Results are however
preliminary and following investigations are necessary.

A resolution higher than half a wavelength requires a measurement of propagating
as well as evanescent plane waves in order to recover part of the invisible region of
the plane wave spectrum. Since evanescent waves decrease exponentially with in-
creasing distance from the antenna, an accurate measurement can only be realized
at a distance less than approximately one wavelength from the source, see Wang
[20]. At this distance, multiple reflections between the antenna and the probe
strongly limit the measurement accuracy. Even in the case of measuring some of
the evanescent waves, the back-propagation process of the BTM is anyway delicate
since measurement errors increase exponentially and corrupt the invisible region
of the plane wave spectrum and the useful information which can be deduced from
it, Hanfling et al. [12] and Joy and Guler [21].

The only case of resolution higher than half a wavelength with real measurements
data was reported by Joy et al. [22] using an antenna diagnostics technique called
spherical microwave holography (SMH) developed and extensively studied at the
Georgia Institute of Technology. The technique uses spherical near-field measure-
ments and is based on the spherical wave expansion (SWE) of the radiated field.
From the SWE of the field on the measurement sphere, the field is evaluated on
a smaller and concentric spherical surface closer to the antenna. The method was
applied to detect anomalies in radomes of spherical shape, like wall thickness vari-
ations and dielectric constant changes. The relation between the spatial resolution
on the evaluation sphere, normally coinciding with the radome surface, and the
number of spherical modes contained in the SWE was also studied. In order to do
that, a constant phase or amplitude perturbation, modeled as a two-dimensional
rectangular function, of a known field was considered over a disk-shaped region of
the evaluation sphere. Resolution was defined as the diameter of the perturbation
region, measured along the circumference of the evaluation sphere, for which a
maximum mode N in the SWE produces a perturbation with height exactly half
of the actual perturbation. With r. being the radius of the evaluation sphere and
€ the resolution, the authors found that N = 3.04r./e. A resolution of 0.33\ was
obtained by increasing the dynamic range of the measurement system with a spe-
cially designed small aperture probe, and by using a separation distance between
the radome surface and the measurement surface of 0.7A. The technique provides
satisfactory results for spherical radomes but it is strongly limited by the smallest
sphere centered at the origin of the measurement coordinate system and enclosing
the entire antenna, the so called minimum sphere, since the SWE is valid only
outside that sphere.

Finally, it is worth mentioning a last diagnostics approach, which on the basis of
the electromagnetic field on a certain measurement surface computes the equiva-
lent currents on the surface of the antenna or radome under test. The technique
is based on a Method of Moments algorithm and is less immediate than the men-
tioned BTM or SMH. It has been applied by Sarkar, Las-Heras and Taaghol to
spherical near-field measurements [23] [24], and by Persson et al. to cylindrical
near-field measurements for the scalar case [25].

In summary, it is seen that all the proposed techniques are well suited to certain
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types of antennas and errors but less for others. Furthermore, some are limited in
the accuracy that they can provide either because of the algorithm or the antenna
measurement techniques on which they are based.

The purpose of the present work is to develop a new antenna diagnostics tech-
nique that applies to general types of antennas, that is intrinsically accurate, and
that takes advantage of the high accuracy that can be provided by the spheri-
cal near-field antenna measurement technique, see Hansen [26]. The technique
will be implemented at the DTU-ESA Spherical Near-Field Antenna Test Facility
[27], to provide an extra capability in addition to the antenna measurement itself.
Furthermore, its implementation into a commercial TICRA software can also be
considered.

The central idea behind the new antenna diagnostics technique is the transfor-
mation between two different representations of the field radiated by an antenna.
The first of these is the SWE, expressing the electric field as a sum of spherical
waves weighted by coefficients, the second is the plane wave expansion (PWE),
expressing the field as a spectrum of plane waves. A spherical near-field measure-
ment provides the coefficients of the SWE and these are then normally used to
calculate the antenna far-field pattern. They cannot be used directly to calculate
the extreme near-field of the antenna since the SWE is valid only outside the an-
tenna minimum sphere. On the other hand, the PWE is valid at an arbitrarily
close distance in front of the antenna, thus also in the extreme near-field region of
interest for antenna diagnostics. While it is well-known that the visible region of
the plane wave spectrum can be obtained from the far-field [1], Devaney and Wolf
[28] showed that a rigorous transformation from the SWE to the PWE allows the
determination of the plane wave spectrum in both the visible and invisible regions
from the coefficients of the SWE. This provides, once the PWS is inverse Fourier
transformed, a spatial resolution in the calculated extreme near-field higher than
the traditional half a wavelength and thus a more accurate identification of the
errors affecting the antenna.

While the results presented in [28] were of extraordinary mathematical value, their
use in practical applications was never investigated. For this purpose, the trans-
formation from the SWE to the PWE must first be clarified in order to use the
S.I. rationalized system of units and the spherical vector wave functions of [26].
Next, its fundamental properties and the influence of implementation aspects on
the accuracy of the computed extreme near-field should be examined. These are
aspects such as truncation to a finite number of spherical modes, use of the inverse
discrete Fourier transform to calculate the extreme near-field, and obtainable spa-
tial resolution. This will lead to guidelines and specifications for the parameters to
be employed in the operational implementation of the new technique. Further, the
effect of non-ideal measurements aspects, such as measurement noise and receiver
drift for example, on the accuracy of the antenna diagnostics technique must be
studied. Finally, the developed technique should be experimentally verified. A se-
ries of measurements at the DTU-ESA Facility should be conducted with different
antennas where errors have intentionally been introduced, and the ability of the
diagnostics technique to identify them must be tested.



The present thesis documents the development of the new antenna diagnostics
technique. The thesis is based on six included papers, [J1] [J2] and [C3]-[C6], in
this order and according to the list of publications on page iv, which constitute the
main outcome of the Ph.D. study. While the general overview summarizes the main
results presented in the papers, it also contains concepts and discussions which are
assumed, but not covered, in the manuscripts. Specifically, Chapter 2 provides the
necessary theoretical background for the following chapters and the mathematical
foundation for the diagnostics technique. The theory of the spherical wave expan-
sion and plane wave expansion is reviewed with attention on definitions, domains
of validity, properties, and use in antenna measurements. Later, the transforma-
tion from the SWE to the PWE is described. Chapter 3 deals with the necessary
additional steps to obtain the antenna aperture field from a spherical near-field
measurement. First, the fundamental properties of the SWE-to-PWE transforma-
tion are studied, emphasizing their theoretical as well as practical implications.
The computation of the extreme near-field from the plane wave spectrum is then
considered, taking into account the numerical difficulties that arise in case of a
singular spectrum. A technique to extract the singularity and obtain accurate
field results is developed and proposed. Further, the concept of resolution is dis-
cussed by studying the factors that determine what the human eye can observe
and distinguish in a near-field plot. The chapter ends with an investigation on the
effects of finite measurement accuracy on the SWE-to-PWE diagnostics technique.
Chapter 4 presents the experimental verification of the technique, summarizing the
results of two test cases using real measurements data. A commercially available
offset reflector antenna is the subject of the first part of the chapter, while the
antenna system of the satellite-based Soil Moisture and Ocean Salinity (SMOS)
radiometer is investigated in the second part. Finally, conclusions are drawn in
Chapter 5 where also recommendations and suggestions for further work are given.

Throughout the present report the S.I. rationalized system and the suppressed
e~ ! time dependence are used.



Chapter 2

SWE-to-PWE transformation

The Spherical Wave Expansion (SWE) and the Plane Wave Expansion (PWE)
are two well-known techniques to express time-harmonic electromagnetic fields in
source-free regions of space. The choice of employing the SWE or the PWE is de-
termined by the geometry of the source configuration, the spatial region of interest,
and the available information about the radiated fields. While the mathematical
formulations of the PWE and SWE are very different, as are their respective re-
gions of validity, it is possible to derive one expansion from the other through a
rigorous transformation. The SWE-to-PWE transformation constitutes the theo-
retical basis for the proposed antenna diagnostics technique.

After a general review of the SWE and PWE in Sections 2.1-2.2, the transforma-
tion from one expansion to the other is described in Section 2.3. A linear, isotropic
and homogeneous medium is always assumed in all sections and chapters. Though
the derivation presented in Section 2.3 is based on the results of Devaney and Wolf
[28], it has been extended in order to use the power-normalized spherical vector
wave functions, the k,k,-PWE, and the S.I. rationalized system of units.

2.1 Spherical wave expansion

The SWE expresses the electromagnetic field in a source-free region of space as
an infinite series of discrete spherical waves weighted by coefficients. The original
form of the SWE was introduced by W. W. Hansen [29], while the theory was
popularized a few years later by Stratton [30]. A more recent treatment was given
by J. E. Hansen [26] in relation to spherical near-field antenna measurements; his
notation is used in this section and throughout this work, as it is also employed at
the DTU-ESA Facility.
The expression of the SWE can be derived by solving in spherical coordinates, see
Fig. 2.1, the vector wave equation for the electric field E in a source-free region of
space [30]

V2E +k*E =0 (2.1)
where k is the wave number given by k = w,/e1, with € and p being respectively
the permittivity and permeability of the medium.
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Figure 2.1: Rectangular and spherical coordinate systems.

In order to solve (2.1), the solution in spherical coordinates of the corresponding
scalar equation

(V2 +k*)f=0 (2.2)
is used. It can be shown in fact [30], that the solution of (2.2), called generating
function, allows one to define two functions, Fy and Fh, which satisfy (2.1) and
form an orthogonal and complete basis on Wthh the electromagnetic field in any
spherical source-free region of space can be decomposed. They are given by

=Vfxr (2.3)
Fy =k 'V x F (2.4)

and are known in literature as spherical vector wave functions.
To obtain the expression of the generating function, we write f as product of
independent terms,

f(r,0,0) = f1(r) f2(0) f3(9), (2.5)

and solve (2.2) by separation of variables, obtaining

m
r m (- [ml]
according to [26], with n = 1,2,3,..., m = —n,—n + 1,...,0,1,2,..n and with
R',ml (cos 0) being the normalized associated Legendre function related to the Legen-

1L9(r,0,¢) = )mz,(f)(kr)P,Lml(cos 0)e'™m (2.6)

dre function P,llml(cos 6) through

oot = 2 O ) 7

The upper index c¢ specifies the radial function zﬁf)(kr) as one among



8 SWE-to-PWE transformation

zy(Ll)(kr) = jn(kr) spherical Bessel function of first kind,
zy(?)(k;r) = ny(kr) spherical Neumann function of first kind,

ZT(LB)(]W“) = h%l)(k;r) spherical Hankel function of the first kind,
zy(;l)(kr) = hg)(k;r) spherical Hankel function of the second kind,

with h%l)(kr) = jn(kr) 4+ in,(kr) and S (kr) = jn(kr) — iny(kr). The index ¢
indicates standing waves which are finite at the origin of the coordinate system for
¢ =1, standing waves which are infinite at the origin of the coordinate system for
¢ = 2, outward traveling waves for ¢ = 3 and inward traveling waves for ¢ = 4.
From (2.3), (2.4) and (2.6), the spherical vector wave functions defined by [26] and
used throughout this work become

Fl(rcrzn(rvov(b) = fo,f%(?‘,@,d)) X T =

1 1 m\m imPim (cosb) ;. .un
— - () (fop) —— L pimeg 2.
Vo n(n+1)( |m|) |24 o) == e (2:8)

plm| R
. Z,ELC)(]{;T) dpn d(gCOS 0) elm¢¢:|

and
By (r,0,0) = k™'Y x {7 (r,0,¢) =

= 7* — ﬂ " M (e) D|m| ime
V2m \/n(n+1) ( |m| { kr on (k) Py (cos 0)e™ 7 + (2.9)
1 d dplml(cos 0) ,on
— (¢) Zin \MP V) ime
kr d(kr) (km” UW)) 40 e +

d imPm! (cosO) .44
— () e n \TRY pime
kr d(kr) (Wn U“”) sinf © 4 '

The final SWE valid by proper choice of the index ¢ in any source-free region of
space limited by spherical surfaces and centered at the origin of the coordinate
system, see Fig. 2.2, is thus given by

cmn

for the electric field, and by

H(T) = =ik Y Qi Fo () + Q55 Pl (), (2.11)

cmn

for the magnetic field, with n = y/¢/u being the intrinsic admittance of the

medium, and ng,)m and Qan being the coefficients. For the example depicted

in Fig. 2.2 of an antenna radiating in presence of a scatterer, ¢ = 1 is used in
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region 2

source

region 3

Figure 2.2: Source-free regions 1, 2 and 3, where the SWE of the electromagnetic
field is valid.

region 1, ¢ = 1,2 or equivalently ¢ = 3,4 in region 2 and ¢ = 3 in region 3.

The expression obtained by [26] in (2.6) is slightly different from the one intro-
duced by [30]. The choice of defining the generating function like in (2.6) turns
out to be computationally convenient when the SWE is obtained from a spherical
near-field measurement, i.e., from the samples of the radiated field on a sphere
centered at the origin of the coordinate system and circumscribing the antenna.
An overview of the theory of spherical near-field measurements is besides the scope
of the present section, however, it is worth mentioning that the fundamentals of
the spherical near-field technique were established in the Seventies by a joint ef-
fort between TICRA, DTU and the National Bureau of Standards [31], resulting
in a textbook [26] and in a commercial software, SNIFTD [32], which are today
regarded as the de facto standards within spherical near-field antenna testing.

We now restrict our attention to the case of a single antenna radiating in free-
space, i.e., we remove the scatterer in Fig. 2.2, and consider the source-free region
defined by r > r,, with r, being the radius of the smallest sphere centered at the
origin of the coordinate system and circumscribing the antenna, see Fig. 2.2, the
so called antenna minimum sphere. Unless otherwise stated, this is the antenna
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configuration treated in the rest of the thesis. For this source only modes with
¢ = 3 exist and (2.10) becomes

- 3 3 - (3 -
T Z Z Qg ) Fl(’r‘rzn T ) + Qan 27r2n(r ) r>To (212)

n 1m=—n

which constitutes the definition of SWE introduced by [26] that will be used in the
present report.

It is noted that the generating function of (2.6) introduces in (2.12) a power-
normalization, such that any single ¢ = 3 spherical wave with amplitude 1 radiates
a power of 1/2 watt. Moreover, the factors in front of the summation signs in
(2.12) allow one to derive a simple relation for the total power in watts radiated
by the antenna, according to [26]

rad Z |Q1mn|2 + ‘Qan = Z Prad(”)v (2'13)
with P.,q4(n) being the power spectrum
Z QS+ 1RSI (2.14)

which will be widely used in the following sections.

The series of (2.12) is in principle infinite, however some observations can be
made. It is noted that the space outside the antenna minimum sphere can be
viewed as a spherical waveguide, with radius from r, to infinity, where spherical
waves propagate in the radial direction with modes Fl(nzn(r ) and FQ(f’,zn(r ). For
increasing r the cross-section of the spherical waveguide increases, while the cut-off
frequency decreases, allowing in principle an infinite number of spherical modes
to propagate along the guide. Every mode presents however a transition between
propagation and evanescence around a radial distance r, = n/k, since the mode
decays rapidly with increasing r for r << r,,, corresponding to an evanescent wave,
while it decays as r—! for 7 >> r,, corresponding to a propagating wave. This
can easily be visualized by plo‘r‘ring ‘rhe amplitudes of the two radial functions
for ¢ = 3, h(l)(kr) and 7 d(kr
Fig. 2.3 according to [26]. Though all modes are propagating in the far-field, the
transition property implies that, for an antenna with a minimum sphere radius
T, modes with n > kr, are highly suppressed outside the minimum sphere and
only modes with n < kr, contribute with not negligible amplitude to the far-field
and at the distance where a near-field measurement is usually taken. Thus, for an
antenna with minimum sphere r,, the SWE of the radiated field can in practice be
truncated at some n = N. The value of N, which ensures the convergence of the
series of (2.12) can be found by applying the following empirical rule introduced
by [26]

(krh (k‘r)), in respect of kr for different n, see

N = |kro| +nq, (2.15)



2.1 Spherical wave expansion 11

T Ls
60 - % II]i. ‘ {ﬂ)

Amplitude (dB)

=100 -

=120

Amplitude (dB8)
> & o
2 o
T T N
T
S

—B0 - nw :5‘"""-‘_,“
-80
=10 | e 1
7 nom B
=120 v ~
1 10 100 1000

Figure 2.3: Amplitude of (a) the function h%l)(kr) and (b) the function

& s b (), for m = 5,10,15, 20 normalized to 0 dB at kr = kr, = 10.

where n; depends on the position of the source in the coordinate system and on the
desired accuracy in the measurement. In particular, if the antenna is centered at
the coordinate system so that 7, is as small as possible, if the measurement sphere
is more than 5 wavelengths from the minimum sphere and if 4 correct digits in the
field computation are sufficient, n; can be set equal to 10, obtaining

N = |kro] + 10. (2.16)
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If the measurement sphere is closer, a larger nq has to be chosen [26]. A more
accurate value of N has been recently proposed by Jensen and Frandsen [33] by
studying the effect of the truncation of the spherical nm-modes in (2.12) with the
storage capacity and computational speed of today’s computers. They found that
the value of ny is generally not a constant but depends on the radius of the antenna
minimum sphere and the amount of truncated power P,

N
Py = Pryg — Z Prad(n)a (217)
n=1

where the power spectrum is computed with (2.14) and a total radiated power
Prqq =1 is assumed. The new expression of N to be used in (2.12) is given by

N = |kro] +0.045/kro(—Pyy). (2.18)

If for example a truncated power of P;,. =-80 dB is allowed, (2.18) becomes

N = |kro| + 3.63/kr,. (2.19)

The truncation value N determines the sampling in 6 and ¢ which allows the SWE
to be obtained from the discrete values of the electric field measured on a sphere
centered at the origin of the measurement coordinate system and concentric with
the minimum sphere, according to

2N +1

Al Adg. (2.20)
If the smallest cylinder parallel to the measurement z-axis and enclosing the an-
tenna under test has a radius p. < r,, a different sampling can be used in ¢

2T

Ap= gt (2.21)

with M being
M = |kpc| + 10. (2.22)

2.2 Plane wave expansion

The PWE expresses the electromagnetic field in a source-free region of space as
an infinite continuous spectrum of plane waves, of different complex amplitudes
and different wave propagation vectors. The original PWE was introduced by
Whittaker and Watson [34], reformulated by Stratton [30] and employed for the
first time by Kerns [35] in planar near-field antenna measurements. A more re-
cent treatment can be found in [36]. Since the proposed definitions do not show
substantial differences or computational advantages, the notation used in [36] is
chosen and used throughout this report.

The expression of the PWE can be derived by solving Maxwell’s equations in
cartesian coordinates [37]. For this purpose, we consider the electromagnetic field
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radiated by a source distribution in the cartesian coordinate system of Fig. 2.4,
with 2, being the largest z-coordinate of the source on the positive z-axis. Unless
otherwise stated, this will be the case considered in the entire thesis. We then
write in the source-free region of space z > z, the vector wave equation for the
electric field E

(V2+EEF)=0 (2.23)

and the divergence of E .
V-E()=0. (2.24)

Next, we decompose the position vector 7 and the electric field E along the carte-

yi %

Figure 2.4: Spatial domain of validity z > z, of the PWE of Egs. (2.35) and (2.36).

sian unit vectors and substitute them into (2.23) and (2.24), obtaining respectively

0? 9? 0? 5\ =
OE.(z,y,z) n OEy(z,y,2) n OFE,(z,y, z)
ox dy 0z

We then introduce the two-dimensional Fourier transform of the electric field in
respect of the z- and y-spatial variables according to [36]' as

=0. (2.26)

- 1 [t phoe )
ks, by, 2) = o / / E(z,y,z)e” =) dady, (2.27)

with f(k‘x, ky, z) being the plane wave spectrum (PWS) of the electric field on the
z-plane of interest, and kgk, being the spectral variables. If both (2.25) and (2.26)

!The authors’ relations, valid for the time Fourier transform of the electric and magnetic field,
can be applied also to the phasors of the fields, since phasors and time domain Fourier quantities
satisfy the same set of Maxwell’s equations
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are Fourier transformed with respect to x and y they become respectively

82

[—ki—k§+@+k2 T(ky, ky, 2) = 0 (2.28)
.0
ko Ty(ky, by, 2) + kyTy(ks, by, 2) — Z&Tz(lﬂw, ky,z) =0, (2.29)
where the PWS is the unknown.
By defining
k2 =k — k2 —k, (2.30)

and substituting (2.30) into (2.28) we then obtain

T (ky, ky, 2)

s + E2T (kg ky, 2) = 0, (2.31)

whose solution is of the form f(kgg, k,)e=*_ Since we are considering the source-
free region z > z,, only outgoing waves propagating along the positive z-axis
described by e?*:# have physical meaning.
The expression of the PWS thus becomes

Tk, by, 2) = Tk, ky)et=>, (2.32)

It is important to note, looking at (2.32), that the particular z-dependence of
the PWS allows the computation of T'(k, ky,z) on any z-plane z > z, by simply

varying the value of z once the function f(k‘z, k) is known.
By substituting (2.32) into (2.29) we find

ko Ty (ko ky) + kyTy(ke, ky) + kT, (kzy ky) = 0, (2.33)

which, being equal to Lo
k-T(kg, ky) =0, (2.34)

indicates that from the knowledge of two components of the spectrum T (kg ky)
the third one can be obtained. Normally T, and T}, are considered independent
and T, is derived.

From (2.32), (2.27) can thus be rewritten as

R ) 1 [Foo ptoo
T(ky, ky)e™* = —
( y)e 2T /_OO _

E(z,y, z)e vkt dady. z>2z, (2.35)

oo

which once reversed provides
. 1 +oo  ptoo | ) )
B(z,y,2) = o / / T(ky, ky)er==etFeotbu gl dle, 2> 2,  (2.36)

which is the PWE in the k,k,-domain of the electric field E(x, y, z) valid for every
z > z, which will be used in the entire thesis. Equivalently, (2.36) is the inverse
Fourier transform of the PWS T'(k;, ky, z), while (2.35) constitutes the Fourier
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transform of the electric field E(z,y, z).
In an similar way we can write for the magnetic field

- 1 [t gt .
H(z,y,2) = o / / TH (ky, ket Feothoyth2) g dle, 2> 2, (2.37)
with TH (k,, k,) given by

TH (ky, ky) = \/jk X Tk, ky). (2.38)

The variables k;,ky, k. are the cartesian components of the wave propagation
vector E, ie., k= ky? + kyg+ k.2 = klAc, and divide the spectral domain in two
regions, the visible region for k2 + k; < k?, and the invisible region for k2 + k; >
k* see Fig. 2.5. While the spectral variables k, and k, are real everywhere,

k. is real in the visible region, k, = ,/k? — k2 — k2, and purely imaginary with

a positive imaginary part in the invisible region, k. = iy/kZ +kZ — k2. Real
values of k. correspond to propagating plane waves, while imaginary values of k,
correspond to evanescent plane waves that are exponentially attenuated with z.

Their contribution is usually negligible at distances larger than one wavelength
from the antenna, [38] and [20].

Invisible

Visible

Figure 2.5: Visible and invisible regions of the spectral k,k,-domain.

An alternative expression of the spectrum, which will be used in the following
sections, can be found from the triple Fourier transform of the volume current

source J(7) [36]

. 1 Y . .
Tk, ky) = 47Tkkz\/gk x (k: x /VJ(F)e—“kw“kmedv). (2.39)

It is finally recalled that a simple relation exists between the far-field and the
visible region of the plane wave spectrum, according to [36] and [1],
. eikr
lim E(r,0,¢) = —

kr—o0 T

ik cos 0T (k sin 6 cos ¢, k sin @'sin ¢) (2.40)
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= Efar(ra 9’ (b) NS [Oa 7T/2] ¢ € [07 271—]

The PWS is an analytic function on the entire spectral domain except at the bor-
der between the visible and invisible region where k., = 0 and a singularity of the
type 1/k, is usually present in at least one of its components [36]. This consti-
tutes the only possible singularity and the necessary but not sufficient condition
to prevent it is a null in the antenna far-field pattern in the xy-plane (0 = 7/2).
While the singularity does not appear explicitly in (2.35), the 1/k.-term is seen
when T'(ks, k) is written in terms of the volume current source, (2.39), and when
the visible region of f(km, k,) is expressed in terms of the far-field pattern, (2.40),
by noticing that kcos = k,. In practice, the k;- and ky-integrals are truncated
at finite values £kzmaz and kymq, respectively. In some cases, e.g. when the
PWE is determined from a planar near-field measurement over a finite scan plan,
the PWE is reliable only over the central part of the visible region of the spec-
tral domain [13], while the part of the domain where the singularity exists must
be disregarded. In other cases however, i.e., when the PWE is determined from
a far-field measurement, a compact range measurement or a spherical near-field
measurement, the PWE at, or close to, the border between the visible and invis-
ible regions can be determined and the singularity is thus known. A very good
overview of planar near-field antenna measurements, discussing sampling theorems
and efficient computational methods, is given in [38].

In contradiction with (2.40), several scientists claimed that evanescent waves con-
tribute to any direction of the far-field [39]-[40]-[41]. This statement was strongly
contested by Wolf and Foley in [42]-[43] by using some of the general results re-
ported in [44]. As stated in [44], it can be shown by the use of the theorem of
stationary phase that the far-field is given in any direction by the contribution of
the stationary point belonging to the visible region, (2.40). However, when the
far-field E g4, () is written by Erer(F) = Efarvis(T) + Efarinvis(T), With Efqppis(7)
and EfaTinvis(F) being the asymptotic approximation of the inverse Fourier trans-
form of the spectrum, see (2.36), respectively performed over the only visible and
only invisible region, three regions of space need then to be defined. In the region
0 < 6 < /2, equivalent to 0 < k, < 1, it can be proved that Efar(ﬂ ~ Efarvis(ﬁ,
since Efarinvis (7) only provides terms of order higher than (kr)~! which can be
neglected in the asymptotic region. However, for § = 0 and 6 = 7/2, corresponding
respectively to k, = 1 and k, = 0, E}Mimis (7) generally provides a term of order
(kr)~! which needs to be considered in the asymptotic region. These terms have
an opposite sign compared to the terms of the same order provided by Efarvis(F)
for # = 0 and 6§ = 7/2, and thus cancel in the final expression of E'far(f'). This has
led to the conclusion that only on the two particular directions § = 0, 7/2 the con-
tribution of the evanescent waves is in general not negligible, and that errors are in
principle introduced in considering the inverse Fourier transform of the spectrum
on the visible region alone, E farvis(T), as correct approximation of the far-field.
However, the two special directions where the evanescent waves contribute to the
far-field form a set of measure zero, i.e. they are removable points, and thus can
be disregarded in the computation of the far-field with practically no consequences
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for the far-field accuracy [43].

2.3 From the spherical wave expansion to the plane
wave expansion

Though the SWE and the PWE can both be derived from the homogeneous vector
wave equation, their regions of validity are fundamentally different. Employing a
cartesian xyz-coordinate system and the associated spherical rf¢-coordinate sys-
tem, the SWE is valid for r > r,, while the PWE is valid for z > z,, see Fig. 2.6.
Since r, is always larger than or equal to z,, 7, > |2,|, the PWE can, by a proper
orientation of the coordinate system, be valid in the extreme near-field region of a
planar source, while this will not be the case for the SWE. It is possible however to
derive the PWE from the SWE, and vice-versa, through a rigorous transformation.

SR e AEhnEEEE PR

SN

Figure 2.6: Spatial domains of validity of the SWE and PWE for a general source
distribution: the PWE is valid for z > z,, the SWE for r > r,.

It will here be shown how the SWE of (2.12) can be transformed into the PWE of
(2.36). The following derivation is based on [28], but it has been extended in order
to use the power-normalized spherical vector wave functions of Eqs. (2.8)-(2.9),
the k;k,-PWE of Eq. (2.36), and the S.I. system of units. This turns out to be
particularly advantageous since these are the functions employed in the textbook
[26] and in the software SNIFTD [32] used at the DTU-ESA Facility. An alter-
native derivation of the SWE-to-PWE transformation is given in Appendix A of
Paper 1.

The transformation is derived in 3 steps.
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The first step consists of introducing the PWE of the spherical vector wave func-
tions, which in the spectral af8-domain are given by

n+1 N
p3) (= ptkk T
F T sina do d 2.41
() = 277\/71 n+1) [ﬂ/ ' o ( )
B(3) (= — " 7. - m ikk-7 .
F. r)= ——FA— ExY™a,B)|e sina da d 2.42

with k = E/k: = sin awcos BZ +sin asin f§+cosaZ, § € [, 7] and « € B, see Fig.
2.7. Real values of « correspond to propagating waves, while complex values of
« correspond to evanescent waves. The function 1_/;?“(04, () is the vector spherical
harmonics which can be expressed as

—1 m\™/ d
ym , _ (_ 7) ( P|m| imf3 3 P|m| img 92 4
e, B) Wors il o (cosa)e'™ 5 — oo (cosa)e 3)
with & = cos a cos B + cos asin Gy — sin aZ and B = —sin B2 + cos (9.
Im{a}?
/2
0 >
Re{a}
1
1
1B
1

Figure 2.7: Domain of the variable o on contour B.

Second, the PWEs of (2.41)-(2.42) are substituted into the SWE of (2.12) and the
order of integration and summation is interchanged, obtaining the PWE of the
electric field in the spectral af-domain

=5 /_ﬂ/ (k)e™* " sin ov dex d, (2.44)

where the spectrum complex amplitude E(/%) is given by

By =3 Y il e 0+ Q< V0, 0)] (29
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(3) (3)

Imn> ¥ 2mn*
, is translated into

and can thus be calculated from the knowledge of the coefficients @
Third, the spectrum in the spectral aS-domain, E(k)ek coso=
the k;k,-domain obtaining T(kq, k,)e*=*. Tt can in fact be shown, by applying a
change of integration variables in (2.44), i.e., k; = ksinacos 3, ky, = ksinasin 3, k,
k cos a, and by identifying the obtained result with (2.36), that

T(ky, ky)e™=* = —E(k)ett sz (2.46)

1
k.
where a and 3 on the right hand side are expressed as functions of the spectral
variables k, and k, according to

k’%—l—k%)

a = arcsm( 2

8= arctan(:—y). (2.47)

The arcsin and arctan functions must be implemented to ensure the correct contour
B for the angle o and the interval [—7, 7] for the angle 5. With (2.47), the a-
and (-values corresponding to the chosen k- and k,-values can be calculated
exactly without any interpolation. By combining (2.45)-(2.46)-(2.47), the PWS
T (k. ky)eth== = T(ky, ky,z) can finally be written as

oo n

Tlharky2) =Y > QU T ko kyr 2) + QS Tomn (ko by ) (248)

n=1m=-—n

where ) ik ( )n+1 .
zkr z _A\n
men(km; kya Z) ( Z) }_}m( 6) (250)

b A

It is emphasized that (2.41), (2.42) and (2.45) are of fundamental importance in
the theory of modal expansions and provide the theoretical justification for the
SWE-to-PWE transformation. In particular we note that the spectrum complex
amplitude E(k) defined by (2.44) is an analytic function in its complex domain
of definition, since it can be expressed by the spatial Fourier transform of a finite
source distribution, [28] and [14] Moreover, E(k) is a vector function which is
normal to the unit vector k, i.e., k- E(k:) = 0. Since the vector spherical harmonics
Y™(a, B) and k x Y™ (av, ) constltute a complete orthogonal basis for all analyti-
cal vector functions normal to the unit vector k [28], it is possible to express E(l%)
through (2.45). It is finally recalled that though we begin with a SWE that is only
valid outside the minimum sphere, r > r,, the obtained PWE, whose spectrum is
expressed by (2. 48) is valid for z > z,, thus also inside the minimum sphere, see

Fig. 2.6, since E(k) does not depend on .

To calculate the plane wave spectrum T'(k,, ky, z) of (2.36) from the SWE of (2.12),
we can thus summarize the required steps as follows:
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1. Choose a certain k;ky-spectral domain.

2. For every point in the k;k,-spectral domain determine the corresponding o
and (-values with (2.47).

3. Calculate the PWS with (2.48) on a z-plane z > z,.

2.4 Summary

The SWE and PWE were both derived from the vector Helmholtz equation and
their definitions, domains of validity, properties, and use in antenna measurements
were discussed. By employing a cartesian xyz-coordinate system and the asso-
ciated spherical rf¢-coordinate system, it was shown that for an antenna with
minimum sphere of radius r, and radiating in free-space, the SWE of the radiated
field is valid for r > r,, while the PWE of the same field is valid for z > z,, with
2o being the largest z-coordinate of the antenna and |z,| < 7,. For source regions
identified by a planar aperture, the PWE allows the computation of the extreme
near-field, which can not be directly computed from the SWE.

Though the domains of validity of the SWE and PWE are fundamentally differ-
ent, the PWE can be obtained from the SWE with a rigorous transformation.
The transformation from the SWE to the PWE was then described, providing
the mathematical foundation for the proposed antenna diagnostics technique. In
particular it was shown that the plane wave spectrum can be calculated from the
coefficients of the SWE, in the visible as well as in the invisible regions of the
spectral domain, at any z-plane z > z,.



Chapter 3

SWE-to-PWE antenna
diagnostics technique

From the analysis conducted in Chapter 2 it was concluded that the SWE-to-PWE
transformation is a promising way to develop an antenna diagnostics technique for
spherical near-field measurements. The transformation allows the computation of
the extreme near-field of the antenna under test, which can not be directly com-
puted from the SWE, see Fig. 3.1. Moreover, the transformation is of general
validity and can be applied to every antenna of which we know, or can measure,
the SWE of the radiated field.

Though the SWE-to-PWE transformation constitutes the theoretical foundation
for the proposed diagnostics technique, several additional steps and observations
are necessary to obtain the antenna aperture field from a spherical near-field mea-
surement. Section 3.1 describes the fundamental properties of the SWE-to-PWE
transformation, underlying their theoretical as well as practical implications for
the diagnostics technique. All considerations are exposed in detail in Paper I,
and some numerical aspects are given in Appendix C. Section 3.2 deals with the
computation of the aperture field from the PWS: here only a brief summary is
provided, but a complete analysis can be found in Paper II. Section 3.3 discusses
the concept of resolution and the information contained in a near-field plot. Sec-
tion 3.4 applies the SWE-to-PWE diagnostics technique to a simple antenna test
case, which is presented in Paper ITI. Section 3.5 summarizes the effects of finite
measurement accuracy, on the basis of the results contained in Paper IV.

3.1 Properties of the SWE-to-PWE transforma-
tion

Though several works on the SWE-to-PWE transformation have been presented
over the years, see for example Stratton [30], Morse and Feshbach [45] and Devaney
and Wolf [28], such concepts as convergence mechanism, truncation of the series
and integrals involved as well as numerical implementation have been dealt with
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Figure 3.1: Scheme of a spherical near-field facility: the AUT to be measured on
the tower, the probe, the measurement sphere of radius R, the antenna minimum
sphere of radius r,, the z-plane in the source-free region where the PWE is valid.

to a lesser degree. It is thus the purpose of the present section to investigate these
aspects.

We start by recalling that the PWS f(kw, k,,z) can be computed on every z-plane
z > z, from the @ coefficients of the SWE by use of (2.48). The computation
provides values of the PWS in the visible as well as in the invisible region of the
spectral domain, however, values in the invisible region might not give a con-
verged /accurate result, as it will be shown below. The spatial resolution J, J,, see
Section 3.3, of the aperture field obtained from (2.36) is given by

6w = 7T/k/izmaw 6y = 7T/k'yﬂ%aa:a (31)

with kzmazKkymaee being the maximum values of the spectral kg ky-domain where
the PWS is different from zero and has reached convergence. Eq. (3.1) indicates
that the value of A/2, which is the resolution obtained from the knowledge of the
only visible region of the PWS, can be exceeded if a part of the invisible region
is taken into account, since either k;, k, or both are larger than the wavenumber
k=2m/\
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We can then observe that
}7”:1(&,6) X leTL(a7ﬂ) ]; X )_}7?1(045/6) X K2mn(a7ﬂ) (32)

with I?Mm and [?an being the asymptotic approximations with respect to r of
the spherical vector wave functions Fl(f’,zn and FQ(;O’,ZTL
(3.2) with the spectrum complex amplitude E(k) given in (2.45), it is concluded
that E(k) is equivalent to the SWE of the far-field. This indicates that all infor-
mation about the visible and invisible spectral regions of the PWS is in principle
contained in the far-field and not only in the extreme near-field as it is usually
believed.

However, while the traditional truncation value N = kr, 4+ 10, or N = |kr,| +
3.6/kr,, provides an accurate evaluation of the SWE of the electric far-field [26]
and thus of the PWS T'(k,, ky,z) computed by (2.48) in the visible region, the
same truncation value is in general not sufficient in the invisible region.

There are two reasons why convergence rates are different in the two regions. The
first lies in the fact that each spherical wave, for a given n and m mode, contributes
to the visible as well as to the invisible region, and thus provides at the same time
information on the propagating as well as evanescent waves of the PWE, see Pa-
per I. The second one is given by an inherent mathematical property. While the
trigonometric functions necessary for the computation of the spherical harmonics
used in (2.49) and (2.50) are finite in the visible region, where the af-angles are
real and given by « € [0,7/2] and 3 € [0, 27], they become in theory unbounded in
the invisible region, where « is pure imaginary according to Fig. 2.7. In practice,
due to the finite extents of the spectral k;k,-domain, the amplitude reached by
the spherical harmonics is limited there, though very large.

Therefore, while the infinite series of (2.48) reaches convergence with N = kr,+10
terms in the visible region, a larger value of N is necessary in the invisible region,
where only extremely low values of Q1,,, and Q2y,n, corresponding to high n and
m modes, can compensate the exponential growth of the spherical harmonics and
make the series of (2.48) reach convergence. The truncation number N required
to reach convergence in the entire [—2k,2k] k;k,-domain depends on 7, and it
was found that N = kr, 4+ 4kr, was necessary for an array of Hertzian dipoles,
see Section 3.4 and Paper I, for which the @ coefficients were computed analyti-
cally, and for a rectangular aperture in free-space, see Paper III. Though such a
relation may not be generally valid, it was used as a rule-of-thumb also for more
complicated antenna cases, to get an idea of the spectral region where the PWS
could reach convergence when the ) coefficients were obtained from a spherical
near-field measurement. It was noted that the intermediate values encountered
in the points of the invisible region in reaching convergence can be very large, in
some cases of the order of several hundreds of dB on the z-plane of interest for the
diagnostics, while the value to which they converge is normally much lower.

It is underlined that particular attention has to be given in computing the trigono-
metric functions in the invisible region, already for moderate values of n and m.
For this purpose, the embedding of the factor e?*=* can help controlling the expo-
nential growth. Details about that are given in Paper I and in Appendix C.

It is finally noted that the coordinate system of the SWE coincides with the co-

respectively. By comparing
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ordinate system in which the extreme near-field is computed. In some cases the
coordinate system used in a spherical near-field measurement is not the most nat-
ural for the antenna, but only the most practical, determined by geometrical and
mechanical considerations. However, since antenna errors manifest themselves dif-
ferently in different coordinate systems, a clever choice of the coordinate system
in which the extreme near-field is computed can significantly help the errors’ iden-
tification. For this purpose it is recalled that it is possible to rotate the measured
SWE to a new coordinate system [26], and that this operation is implemented at
the DTU-ESA Facility and can easily be performed by ROSCOE, a package of
SNIFTD [32]. Once the measured SWE is rotated to a new coordinate system,
(2.48) allows the immediate computation of the corresponding extreme near-field.
This is of fundamental importance for the purpose of antenna diagnostics. For an
application of rotation of coordinate systems, see Paper V for the case of an offset
reflector antenna measured at the DTU-ESA Facility.

3.2 Aperture field computation

After having computed the plane wave spectrum f(km, ky,z) on the z-plane of
interest through (2.48), we can calculate the aperture field with (2.36). Since
the PWS and the aperture field constitute an inverse Fourier transform pair, the
inverse Fast Fourier Transform (IFFT) is the most natural choice of computation.
We have pointed out, however, that the PWS normally contains a singularity at
k, = 0. Though such a singularity is integrable, a straightforward use of the
IFFT provides inaccurate results, unless the singularity is sampled very densely.
While on one hand a very dense sampling can in principle be possible, on the
other hand it can not be located only in the vicinity of £, = 0 but is necessary
over the entire k;k,-domain, in order to provide the uniform sampling required by
the IFFT algorithm. This becomes difficult when the PWS is obtained through
measurements, since a very dense spatial sampling in ¢ or xy, is then requested.
In the present case, i.e., by calculating the PWS through (2.48), a dense spectral
sampling is in principle possible, but at the expense of a long computation time.
In order to take properly into account the singularity at k£, = 0, and ensure the
accuracy of the aperture field, we propose to defactorize the spectrum f(kz, ky,z)
into a product of two functions, the finite T} (k,, ky, z) and the singular 1/k,. Since
the inverse Fourier transform (IFT) of a product of two spectral functions is equal
to the convolution in the spatial domain of the IFT’s of the two separated functions
[46], the integral of (2.36) can effectively be solved. The IFT of the finite T} is
computed numerically by the IFFT and the IFT of the singular 1/k, is computed
analytically using the Weyl identity [36]

eikr 1 +oo

“+o0
/ kieikzzei(kmx%yy)dkxdky z2>0 (3.3)

2mr  2n )

This allows us to write

- 1 +oo +oo . ) )
Bays) =g [ [ Tlhuk)etectertin g, ar,



3.3 Aperture field analysis and resolution 25

+oo

1 —+o0 +oo
27/ / kl,k' ) 1k z 7.(k z+k1/y)dk dk’
T J o0 S k.

1 [t

T J—c0

1 +oo +oo
®7/ / zk z1 z(k m+k7/y)dk_ dk‘

27 —o00 0o

) 7.kz(z—zl)ei(km:c+kyy) dkmdk‘y

— 0o

which finally becomes
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E(z,y,2) = E1(z,y,2 — - 3.4
(@.9.2) = Ealaz = 21) 0 £ (3.9
with r; being r1 = /22 + y? + 27. As it seen in (3.4), the quantity z has to be

split in two, i.e., 2 = (z — 21) + 21, in order to have an exponential factor of the
type of €?*=% on both terms, which is necessary for the validity of the Weyl identity
of (3.3) and for a correct implementation of the convolution.

A deeper analysis of the technique with some numerical examples can be found in
Paper II. Here we only recall that the use of the singularity extraction technique
of (3.4) to compute the inverse Fourier transform of the PWS of (2.36) ensures
accurate values for the aperture field, and allows the recovery of very weak sources,
which are otherwise not detectable when the IFFT is applied to a singular PWS.
The implementation of the convolution can be optimized by reducing the zy-
domain on which the two functions are calculated, see Paper II, because of some
physical and mathematical considerations. It is finally recalled that (3.4) can also
be used to inverse Fourier transform spectral components which do not present
the singularity. The singularity extraction technique of (3.4) will be used in the
following sections and chapters to compute the aperture field from the plane wave
spectrum.

3.3 Aperture field analysis and resolution

Up to this point, we have seen how to compute the PWS from the SWE and how
from the spectrum to arrive at the requested aperture field. We still have not
clarified what an aperture field plot is able to reveal.

We can start by saying that generally an antenna diagnostics technique provides
information about the extreme near-field radiated by the antenna under test. In
most cases, as it is also for the SWE-to-PWE technique so far described, such
information is constituted by amplitude and phase plots for every cartesian com-
ponent of the field on the selected z-plane of observation. In some other cases,
other quantities can be computed, like for example the surface distortion of a re-
flector [7]. No matter which technique is used, the identification of the electrical
and mechanical errors which affect the antenna under test is normally possible
only if the expected field, i.e., the field that would exist if no errors were present,
is known. While the expected field is in practice not known by a measurement,
unless for didactic purposes, its distribution can sometimes be provided by the
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software used for the antenna design. Most of the times, however, experience and
knowledge of the electromagnetic phenomena are the only available tools to inter-
pret the near-field plots.

Of fundamental importance for the quality and accuracy of a near-field plot is
the concept of resolution. The word resolution is used in many different fields,
from optics to imaging techniques, and its definition can vary depending on the
particular application. Though the following discussion is not attempting to be
complete, an overview and some general conclusions can be drawn.

A traditional field where resolution is a fundamental concept is optics. At optical
frequencies resolution is defined as the ability to distinguish the images of objects
in close proximity. Since the images are obtained by a system, we normally talk
about resolution, or equivalently resolving power, of the optical system. Optical
systems are generally defined by an aperture, a lens for example, through which
light is transmitted and focused on a given screen to provide the final image that
we observe. Since such an aperture is always of dimensions which are finite and

(d)

Figure 3.2: Diffraction images of two point sources through an aperture of finite
dimensions: (a) and (b) well resolved, (c) just resolved, (d) not resolved.

comparable with the wavelength of the coming ray, the resolution of the system
is limited by the diffraction of the light trough the aperture. This means that
the image of an ideal point source at infinite distance from the aperture is always
a point spread function (PSF) on the screen [47], which in case of a rectangular
aperture is given by a sinc function. If the images of two point sources at infinite
distance from the aperture overlap such that the peaks of the PSFs are closer than
the distance A between the peak and the first minimum of the single PSF, the
images are considered unresolved, see Fig. 3.2. For geometrical construction, the
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distance a of the images on the screen coincides with the angular separation of the
two point sources. For a rectangular aperture of width D, the minimum angular
distance two point sources can have in order to be resolved is given by Af = %,

while for a circular aperture of diameter D it becomes Af ~ 1.22%.

In the field of holography and antenna diagnostics, resolution is defined in a slightly
different way. Since the object of interest is the radiation from sources, the con-
cept of plane wave expansion is used. Resolution is defined as the distance between
the zeros of the fastest oscillating wave contained in the PWEL. If for example the
fastest oscillating wave is given by e”*® = cos kx + isin kz with k being the wave
number, see Fig. 3.3(a) for a plot of the imaginary part, the obtainable resolution
is equal to half a wavelength. This is also the distance that allows one to distin-
guish a positive amplitude from a negative amplitude. The definition can easily
be extended to the two-dimensional case obtaining a resolution in the z- and one
in the y- dimension.

é (@) é (b)
K= .E
[0} o
0 X 0 X
A A

Figure 3.3: Imaginary part of the wave e’**: (a) Resolution (b) Reconstruction
interval from a zero-padded spectrum.

Equivalently, resolution can be defined with the help of a concept always related to
the PWE but more close to signal processing theory. Knowing that the spectral ex-
tent of a certain signal determines the spatial sampling necessary to reconstruct the
original signal from its samples, according to Ax = /K, for a one-dimensional
signal with spectrum different from zero over [—kpmaz, Kmaz], resolution is then
defined as the sampling interval Azx. If k4 = k, we thus obtain a resolution of
Az = A/2, like in the previous case. The interval Az is also called reconstruc-
tion interval. It is pointed out that the sampling, or reconstruction, interval can
be increased by zero-padding the available spectrum to a larger spectral domain,
for example over the entire [—4k,4k] domain. However, zeropadding does not in-
crease at the same time resolution, since the spatial function obtained from the
zero-padded spectrum is the same function of before, only oversampled, see Fig.
3.3(b). As long as the spectrum is different from zero over the only [—k, k] domain,
resolution remains equal to half a wavelength. Resolution is thus only determined
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by the part of the plane wave spectrum which is different from zero.

Though the definitions and observations given above are correct, we still do not
know what the human eye can see in practice in a near-field plot with the aim
of making an antenna diagnostics. Is the spectral region where the spectrum is
different from zero the only factor that determines when two close sources can be
distinguished?

To investigate this issue, we consider an array of three y-oriented electric Hertzian
dipoles displaced on the zy-plane and separated by a distance d from each other,
according to Fig. 3.4. By exciting each dipole with a dipole moment P, the PWS
of the array is computed through (2.39) on the entire [—5k, 5k] k;k,-domain. The

y

m—)

Figure 3.4: Three y-oriented Hertzian dipoles at a distance d from each other.

PWS is then gradually reduced in spectral extent until reaching the visible region,
while maintaining the [—5k, 5k] domain, thus zero-padding the remaining domain.
The radiated field is finally computed on different z-planes analytically and by
inverse Fourier transforming the spectrum with (3.4). While the sampling interval
in the near-field plots is always given by Az = Ay = A/10, resolution varies
according to the part of the PWS which is different from zero, i.e., from the value
of A/10 when the PWS is non-zero on [—5k,5k] to the value of A\/2 when the
PWS is non-zero only on the visible region. By varying the distance d according
to d = 2\, A, 3/4X, A/2, we can understand if what resolution in theory ensures is
what in practice happens. To make the investigation as accurate as possible, no
interpolation in the plots is performed.

First, by looking at the cartesian components of the analytical field in dB on
different z-planes, we note that for d = X,3/4\ \/2 the single dipoles can be
distinguished only on z = 0.1, since for larger z’s the radiation from the dipoles
becomes broader preventing the reconstruction of the three sources, see Figs. 3.5-
3.6. For d = 2\ the dipoles are distinguishable until z = 0.4 ).

Second, pictures can be more clear, i.e., the contrast is higher and the single
dipoles are better identified, when the linear scale is used, or when the color scale
is properly adjusted, see Fig. 3.6, in particular Fig. 3.6(a).



3.3 Aperture field analysis and resolution 29

E an z=0.2A E an z=0.3A

= T mmnn:
2 NHEEEEEESEE:

Figure 3.5: Amplitude of E, analytical in dB scale on different z-planes for the
dipole configuration of Fig. 3.4, with d = A, and a spatial interval of Az = Ay =
A/10.
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Figure 3.6: Amplitude of E, analytical in linear scale on different z-planes for the
dipole configuration of Fig. 3.4, with d = A, and a spatial interval of Az = Ay =
A/10.

On the z = 0.1\ plane and for every d, the analytical field is thus compared with
the field obtained through (3.4) by varying the region where the PWS is different
from zero, see Figs. 3.7-3.9. We note that while the use of non-zero values of the
PWS on the entire [—5k, 5k] domain provides field results in very good agreement
with the analytical for every value of d, the accuracy clearly diminishes when a
smaller region of the PWS is considered. In particular, when the PWS is non-zero
only on the visible region, though the resolution is in principle equal to A/2, the
three dipoles are clearly distinguished only for d = 2, see Fig. 3.7. Though the
field provided by the visible region of the PWS gives the correct position of the
dipoles on the zy-plane, the field distribution is generally wider than the analytical,
and the radiation from the single dipoles overlaps earlier than expected. For d = A
the sources are distinguished on the horizontal axis, but not on the vertical axis,
Fig. 3.8, while for d = A/2 the dipoles can not be resolved, see Fig. 3.9. It is
noted that the three dipoles are however better distinguished in the y-component
than in the z-component.

This leads us to the conclusion that resolution perceived by the human eye in
observing a near-field plot can not be defined by a specific formula and it might be
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E, analytical E, from 5k E, from visible region
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Figure 3.7: Amplitude of E, and E, in linear scale on the z = 0.1\ plane for the

dipole configuration of Fig. 3.4, with d = 2\, and a spatial interval of Ax = Ay =
A/10.
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Figure 3.8: Amplitude of E, and E, in linear scale on the z = 0.1\ plane for the

dipole configuration of Fig. 3.4, with d = A, and a spatial interval of Az = Ay =
A/10.
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Figure 3.9: Amplitude of E, and E, in linear scale on the z = 0.1\ plane for
the dipole configuration of Fig. 3.4, with d = A\/2, and a spatial interval of
Az = Ay = \/10.

lower than the expected one, since even at very short distances from the aperture
the electromagnetic field is not a point function but has a spatial extent. While the
perception of the eye can be improved by choosing between a dB scale or a linear
scale, and by properly setting the color scale in order to highlight certain differences
and increase the contrast, the nature of the electromagnetic field radiated by the
sources influences what the eye perceives. In particular it was noted that what the
eye distinguishes generally depends on the polarization of the source, the z-plane
of interest, and the component of the field.

3.4 Numerical test case

To validate the SWE-to-PWE transformation and the above theoretical consid-
erations, we now consider a test case constituted by an array of five z-oriented
electric Hertzian dipoles on the zy-plane, four equally displaced from the origin
with a distance d = 7, = 2X\ and one at the center, see Fig. 3.10. There are
several factors that motivate the choice of such a configuration. First, since any
source distribution can in principle be constructed from a combination of prop-
erly positioned, oriented, and excited Hertzian dipoles, the present case can be
considered a general example of an electrically small antenna. Second, as it will
be seen in (3.8)-(3.9), the array of electric Hertzian dipoles possesses an infinite
SWE, which thus allows us to study the truncation of (2.48) to finite N-values.
Third, an exact PWS which provides the necessary reference to investigate such
a truncation can be derived from the dipole excitations, see (2.39). Fourth, the
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Figure 3.10: Five z-oriented electric Hertzian dipoles displaced on the xy-plane
with minimum sphere of radius r,.

analytical expression of the radiated field is known and can be used as a reference.
It is finally noted that since the array is located on the xy-plane, its PWE is valid
for z > 0, while its SWE is valid for » > r,. Though the present section is mostly
based on the first test case of Paper III, other source configurations can be found
in the second part of Paper III and in Paper I, showing all the same qualitative

properties.
We can thus start by writing the reference PWS in cartesian components as given
by (2.39)
P /1 1\ k2 —k?
Trefo = 27Tk\/;(cos(km?"o) + cos(kyro) + 5) ””kz (3.5)
P /1 1\ ki k
Trepy = 27rk\/;(cos(kmro) + cos(kyro) + 5) zzy (3.6)
P /1 1
Trefz = 271_k\/;(cos(lcggro) + cos(kyr,) + i)km (3.7)

with P being the dipole moment and n the admittance of the free-space. It can
be seen that Tyesy and Tyep, show the singularity 1/k,.

The @ coefficients are then calculated analytically from the results contained in
Appendix A1 of [26], for the case of a sampled z-polarized planar current ring on
the zy-plane, obtaining
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and thus containing arbitrarily high-order modes in n and m.

The spectral components are then computed with (2.48) for different truncation
values N and compared to the reference spectrum of (3.5)-(3.7) on the [—2k, 2k]
kyky-domain. The results for N = kr, = 12, N = kr, +10 = 22 and N = kr, +
40 = 52 are shown in dB in Fig. 3.11 for the z-component on the z = 0.2\ plane,
normalized to the value of T, at the origin. We notice that the region where
the spectrum reaches convergence in the k;k,-domain increases gradually with
increasing N. For N = kr, the visible region is still not completely reconstructed
but the convergence is reached with N = kr, + 10. For N > kr, 4+ 10 only
changes in the invisible region are noted until the complete picture is obtained by
N = kr, + 40 = 52. The singularity for k, = 0 is perfectly identified already by
N = kr,+10. The convergence mechanism can also be understood by considering
the n-mode power spectrum of Fig. 3.12. Extremely low values of power, and
thus of @ coefficients, are contained in the high order n-modes, but, due to these
low values, the product with the diverging spherical vector wave functions is kept
finite, providing the necessary terms for the series of (2.48) to reach convergence. A
plot of the z-component of the spectrum in function of N for different points of the
spectral domain is given in Fig. 3.13. Points belonging to the visible region reach
convergence with N = kr, + 10 (blue and red lines), while additional N terms are
needed for points in the invisible region (N = 38 for the green line and N = 50 for
the black line). It is interesting to note that though the amplitude of T, reaches,
in points belonging to the invisible region, very high values for intermediate values
of N, in some cases even larger than 80 dB, it finally converges to much lower
values, close to -18 dB.

We can then inverse Fourier transform the PWS by use of singularity extraction
technique of (3.4) and compare the result with the analytical field. To understand
the influence of the invisible region, we consider the spectrum computed with
N = kr,, N = kr, +10 and N = kr, + 40. Only the part of the spectrum
where convergence has been reached is used in these cases, while the remaining
part is replaced by zeros. Since the spectral domain has an extent of [—2k, 2k], the
sampling interval in the zy-domain is equal to A/4, while resolution depends on the
extent of the PWS where convergence has been reached. Results are shown in Fig.
3.14 for the x-component on z = 0.2\. Figures are normalized to the value on axis
of the analytical field and plotted in linear scale: we can distinguish the five dipoles
on the zy-plane in all pictures. However the result provided by N = kr, is not
quantitatively satisfactory in determining the dipoles contribution. On the other
hand, already with N = kr, + 10 an accurate aperture field is computed. This
probably indicates that the most important part of the spectrum to be recovered
is constituted by the visible region, the border at k, = 0, and a little part of the
invisible region.
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T, reference T, N=kr,

Figure 3.11: Amplitude of the z-component of the PWS of the five dipoles with
ro = 2\, on z = 0.2\ in dB: the reference T, and the ones from (2.48) with
N =kr,, N =kr,+ 10 and N = kr, + 40.
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Figure 3.12: Power spectrum for the five dipoles configuration.
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T, convergence in function of N
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Figure 3.13: Amplitude of the z-component of the PWS of the five dipoles with
ro = 2\, on z = 0.2 in dB, in function of N, for different points of the spectral
domain.

3.5 Influence of finite measurement accuracy

While so far we have described the fundamental properties of the SWE-to-PWE
transformation and the necessary steps to calculate the extreme near-field from the
PWS, we now need to investigate how non-ideal measurements aspects influence
the SWE-to-PWE diagnostics technique. In order to isolate and control different
measurement inaccuracies, the investigation is based on simulations. A model of
a Standard Gain Horn (SGH) is first developed by use of electric and magnetic
Hertzian dipoles. The near-field radiated by the SGH is computed analytically on
a sphere of radius 10 A, and different measurement electrical inaccuracies are then
added to it. From the field distribution on the sphere, the @ coefficients of the
SWE are obtained. This allows one to calculate the plane spectrum with (2.48).
The extreme near-field is finally computed from the PWS with the singularity ex-
traction technique of (3.4). The present discussion is based on Paper IV, where
additional results can also be found.

The antenna model represents a pyramidal horn working at f = 3 GHz with an
aperture of a = 4\ and b = 3\ located on the zy-plane, and with the lengths of
the flared section in the zz- and yz-planes being Rs = Ry = 5\ respectively, see
Fig. 3.15. The horn is excited by a rectangular waveguide in which the y-polarized
TE10 mode is dominant and has amplitude 1. In addition, the z-polarized TEO1
mode is present and excited by C = 10~2e/4, to provide a typical cross-polar
component in the radiated far-field. From the equivalence theorem, the equivalent
magnetic co-polar currents are computed from the electric field given by the mode
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Figure 3.14: Amplitude of the z-component of the field of the five dipoles for
ro = 2A, on z = 0.2\ in linear scale: the analytical and the ones obtained from
(3.4) with N = kr,, N = kr, + 10 and N = kr, + 40.
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Figure 3.15: Aperture of the SGH model excited by the TE10 and TE01 modes,
and the reference coordinate system.

TE10 on the aperture of the horn,

Moo = cos (75 ) 52/t el (3.11)
a



3.5 Influence of finite measurement accuracy 37

where a quadratic phase variation is assumed over the aperture, while the electric
are computed from the magnetic imposing a Huygens source dependence

J.o = —1 COS (%)eig(xZ/R1+y2/Rz)g (3.12)

with & € [—a/2,a/2] and y € [-b/2,b/2]. The cross-polar equivalent currents are
computed from the electric field given by the mode TEO1 and are equal to

My = —C cos (%)eig(ﬁ/RﬁyQ/RQ)@ (3.13)

Joro = —Chcos (%) i3/ Raty?/Ra) g (3.14)

The current distributions of (3.11)-(3.14) are then sampled every A/4 on the SGH
aperture providing the excitations of a set of electric and magnetic Hertzian dipoles
located on the sampling points. The field radiated by this set of dipoles is then
calculated and the directivity is found, see Fig. 3.16, providing a typical SGH

Directivity

20

-150 -100 -50 0 50 100 150

Figure 3.16: Directivity of the SGH model, co-polar (continuous lines), cross-polar
(dashed lines).

pattern both in the co-polar as well as in the cross-polar components, according
to Ludwig’s 3rd definition [26],

ieo = Ocos(p — ¢p) — dsin(p — ¢,)  0<O<m (3.15)

'zcro = éSin(¢ - (bo) + (ﬁCOS((ﬁ - ¢)0)
with ¢o = 7/2.
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Several sources of errors affect a spherical near-field measurement. These are gener-
ally divided into the two general categories of mechanical inaccuracies and electrical
inaccuracies, see for an extensive discussion [26]. Examples of the first category are
errors in the axes intersection, antenna tower pointing and measurement distance.
They are closely related to the precision of the mechanical alignment performed
before a measurement. If present, they introduce errors in the measured field, and
thus in the obtained SWE. The second category is normally considered as arising
in the receiver only. Their effect is of introducing errors in the SWE and, most
importantly, of limiting the dynamic range of the measured field. It was decided
to study only the effect of electrical inaccuracies on the SWE-to-PWE diagnostics
technique, assuming that a good mechanical alignment was performed in the first
place.

Drift and noise, in amplitude and in phase, have been chosen to represent the most
frequent and important measurement electrical inaccuracies. Drift during a spheri-
cal scan was modeled as a linear function of the time ¢ given by drifte,ror = d-t/T,
with d being the value of the drift, see Tab. 3.1 in amplitude or in phase, and T
the duration of a scan, set equal to 3 hours. Noise was considered random and
uniformly distributed. By indicating with X = |X|ei£X the 6- and ¢-components
of the field radiated by the SGH on the sphere with radius » = 10\ with respect
to the origin of the measurement coordinate system, we thus obtain

Xiot = ([X|(1+ driftersor))e X (3.16)

when the field is affected by amplitude drift,
Xy = ‘XleiZX(1+dm'ftarmr) (3.17)

when the field is affected by phase drift,

Xior = (|X| + n0is€error e’ (3.18)

when the field is affected by amplitude noise,
Xpor = | X |ei(£X Hnoiseerron) (3.19)
when the field is affected by phase noise, with noisee,.o, being the value of the

noise, in amplitude or phase, of Tab. 3.1. The @ coefficients were then computed
from the field of the SGH on the sphere with radius » = 10\, with and without

Amplitude drift | -0.015 dB
Amplitude noise | -60 dB
Phase drift 0.25 deg
Phase noise 0.15 deg

Table 3.1: Values of measurement electrical inaccuracies for a frequency of 3 GHz
and a scan speed of 3 deg/sec.
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Figure 3.17: SGH power spectrum for different electrical inaccuracies and for the
ideal case.

electrical inaccuracies, by the software SNIFTD [32], and the power spectrum was
found, according to (2.14), see Fig. 3.17. The plot shows that the major and most
evident effect given by the considered electrical inaccuracies is a truncation of the
available n-modes. Among all truncations, the most limiting, N = 18 = kr, + 3,
is given by the presence of amplitude noise, see the yellow dots, where its value
of -60 dB also coincides with the noise floor observed in the power spectrum. It
can be noted that numerical noise anyway affects the computation, limiting the
n-modes to N = 28 = kr, + 13 | as it is seen for the ideal case. Since all types of
measurement errors manifest themselves as a constant level of the power spectrum
after a certain mode number, it was decided to continue the investigation with the
amplitude noise alone, and then investigate different values of this.

The PWS is then computed through (2.48) by using the @ coefficients obtained
from the case with amplitude noise equal to -60 dB. The truncation in n is set equal
to NV = 18, and a plane equal to z = 0.2 is selected. The y- and z- components
are shown in Fig. 3.18 in dB scale with the values normalized to T}, at the origin,
and compared to the ones calculated through the ideal case with a truncation value
of N = 28. In both cases the visible region is recovered, and the singularity for
k. = 0 is identified. The spectral region where convergence was not reached yet is
clearly indicated by the dark red zone, corresponding to values equal to or larger
than 20 dB. The extra ten n-modes, which are given by an improvement of 80
dB in the dynamic range for the ideal case, allow the reconstruction of a small
part of the invisible region with radius 1.1k, which is reduced for the noisy case
to a radius of 1.03k. The invisible region of the spectrum where convergence was
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Figure 3.18: Amplitude of T}, and T, on z = 0.2), for the SGH with a noise
amplitude of -60dB (upper) and for the ideal case (lower).

not reached is then replaced by zeros and the entire spectrum is finally inverse
Fourier transformed with the singularity extraction technique of (3.4), see Fig.
3.19. Fields are in dB scale and normalized to the value of E, at the origin when
affected by amplitude noise. They are compared to the components given by the

E, noise -60 dB E, ideal E, analytical

Figure 3.19: Amplitude of £, on z = 0.2, for the SGH with a noise amplitude of
-60dB (left), for the ideal case (middle) and for the analytical case (right).

ideal case, and to the ones provided by the superposition of the analytical dipole
contribution. In white the aperture dimension of the SGH is indicated. The results
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affected by amplitude noise are satisfactory and in good agreement with the ideal
and the analytical ones, both for the y- as well as for the z-component. Very
accurate results are provided by the ideal case, where the convergent region has a
radius of 1.1k. We can again conclude that the recovery of the border for k, = 0
and of small part of the invisible region are important and essential to accurately
reconstruct the aperture field.

3.6 Summary

The additional steps necessary to obtain the antenna extreme near-field once the
PWS is computed from a spherical near-field measurement were addressed. First,
the fundamental properties of the SWE-to-PWE transformation were studied, un-
derlying their theoretical as well as practical implications for the antenna diagnos-
tics technique. In particular, it was shown that the infinite series of (2.48) can be
truncated at a finite value N, but, while the traditional N = kr, + 10 is sufficient
to reach convergence in the visible region, a larger N is necessary in the invisible
region. Second, the computation of the aperture field from a singular PWS was
discussed, presenting a singularity extraction technique that takes advantage of the
IFFT algorithm and the Weyl identity. Third, the concept of resolution and sam-
pling interval were defined. It was noted that resolution perceived by the human
eye can be lower than the expected one, and generally depends on the polarization
of the source, the z-plane of interest, and the component of the field.

The developed SWE-to-PWE antenna diagnostics technique was then applied to
an array of electric Hertzian dipoles in ideal conditions, and to the model of a SGH
where the presence of electrical measurement inaccuracies was simulated. It was
found that measurement inaccuracy, and in particular amplitude noise, truncate
the available n-modes and thus the measured ) coefficients. The truncation of the
available n-modes limits the spectral region where the PWS reaches convergence.
However, it was shown that, for a SGH under typical measurement conditions, the
available @ coefficients were sufficient to reconstruct the visible region of the PWS,
the border for k., = 0, and a small part of the invisible region, providing accurate
results in the computed aperture field.

We can thus summarize the steps of the SWE-to-PWE antenna diagnostics tech-
nique as follows:

1. Obtain the @ coefficients of the SWE from a spherical near-field measure-
ment.

2. Find, from a plot of the power spectrum or an analysis of the values of the
@ coefficients, the available n- and m-modes and thus the truncation values
N and M.

3. Choose a certain k,k,-spectral domain according to the desired sampling
interval, see Section 3.3.

4. Calculate the plane wave spectrum T (k,, ky,z) with (2.47) and (2.48) in the
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visible and invisible regions, on the z-plane of interest or on a larger z-plane
as determined by the guidelines of Appendix C.3.

. Back-propagate, if necessary, the PWS on the desired z-plane suitable for

diagnostics, see Appendix C.3.

. Replace with zero the region where the spectrum has not reached conver-

gence, and if necessary zeropad the spectrum to a larger k;k,-domain.

. Compute the extreme-near field with the singularity extraction technique of

(3.4) where T} = T - k., see Section 3.2.

. Analyze the extreme-near field in cartesian components, or a combination of

these, in amplitude and phase. If necessary, rotate the coordinate system,
calculate the corresponding new set of @) coefficients, and repeat steps 1-8.



Chapter 4

Experimental validation

The SWE-to-PWE antenna diagnostics technique presented in the previous chap-
ters is now verified by two experimental test cases employing real measurements
data. Section 4.1 deals with an offset reflector antenna while Section 4.2 presents a
real diagnostics case. In particular, Section 4.1.1 summarizes the results of a pre-
liminary investigation on the effects of typical mechanical errors on the far-field of
a general offset reflector antenna. The three most interesting errors studied in Sec-
tion 4.1.1 are then used in Section 4.1.2, where a commercially available TRIAX
TD64 offset reflector antenna is considered. The selected mechanical errors are
intentionally introduced in the TRIAX antenna and the ability and accuracy of
the diagnostics technique to identify them are tested. Section 4.2 deals with the
antenna system of the Microwave Imaging Radiometer using Aperture Synthesis
(MIRAS) for ESA’s Soil Moisture and Ocean Salinity (SMOS) mission. The diag-
nostics technique is used to identify the sources of the anomalies detected in 2 of
138 MIRAS antenna far-field patterns, that were measured during the on-ground
calibration at the DTU-ESA Spherical Near-Field Antenna Test Facility in 2006.
Finally, in Section 4.2.1 a brief review of the most used windowing techniques is
provided and their application to the MIRAS units is described, to limit the trun-
cation error observed in the extreme near-field. Some of the results presented in
this chapter are contained in Paper V and VI. Additional information and plots
can be found in Appendix A and B.

4.1 Offset reflector test case

4.1.1 Effects of mechanical errors on the far-field

Before the measurements of the TRIAX antenna could take place, a preliminary
parametric investigation was conducted to analyze the effects of typical mechanical
errors on the far-field of a reflector antenna, and identify the three most significant
and interesting to be used in the TRIAX experimental test case. Tilts and defo-
cusing of the feed, and several surface distortions were taken into account. From
that, three errors were selected and used in the TRIAX experimental test case de-
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scribed in Section 4.1.2. Though some interesting observations can be found in the
literature, Rusch [48] and Olver and Syed [49], about the effect of a feed defocusing
and a surface distortion, it was decided to base the study on simulations, to isolate
the various errors and consider different values of them. The software GRASP9
was used to build the model of a generic reflector, simulate the mechanical errors
and compute the radiated far-field.

The antenna model consists of a 15 GHz (A = 2 cm) offset parabolic reflector,
defined in the xyz-coordinate system (CS) of Fig. 4.1 by a circular projected aper-
ture of diameter D = 24 cm, a focal length f = 19.2 cm and a clearance d’ = 7.2
cm. The feed is modeled by a Gaussian beam with -12dB taper and £28° taper
angle, and it is linearly polarized along x ¢, where xsyszy is the feed CS, with its
origin at the focus and with z; pointing towards the center point of the reflector.
The radiated far-field is computed in the cut CS, TcutyeutZeut, with origin at the
center of the reflector surface, and axis parallel to the ones of the zyz CS. It is
noted that z.,: coincides with the direction of the main beam of the reflector and
that the feed is perfectly linearly polarized along xf. Since in principle an offset

Figure 4.1: Model of the offset reflector, geometry and coordinate systems.

reflector avoids blockage, it was decided to neglect in the simulations the arm sup-
porting the feed. In the analysis, Physical Optics (PO) and Physical Theory of
Diffraction (PTD) were used.

First, three different tilts of the feed were taken into account: the feed was tilted
around each of the three axis which identify the feed CS. Each tilt had the value
of £1°, +3°, +5° and £10°. While under ideal conditions the polarization of the
electric field radiated by the feed, and impinging on the reflector, is parallel to the
xz plane, which coincides with the plane of incidence, the insertion of a feed tilt
modifies the configuration. In particular, a tilt of the feed around x; introduces
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spillover, since the feed does not point towards the center of the reflector, and
changes the plane of incidence, while the polarization of the feed remains parallel
to the xz-plane. A tilt around y; provides only spillover, while a tilt around z
changes the direction of polarization of the feed, keeps the plane of incidence coin-
ciding with xz and does not introduce spillover. It was noted that the effect of the
spillover could be noticed in the 6-component of the radiated field in the ¢ = 0°
cut by a slightly lower main lobe and higher side-lobes than in the ideal case, while
a non parallel incidence of the electric field radiated from the feed could be seen
in the ¢-component in the ¢ = 0° cut, already for small values of feed tilt, see Fig.
4.2,

E,,, 9=0, feed tilt around X
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Figure 4.2: Amplitude of the #- and ¢-components, upper and lower respectively,
in the cut ¢ = 0°, of the reflector far-field for a tilt of the feed around x.

Next, a defocusing of the feed was considered. The feed was moved along the three
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axis of the feed CS, by a distance of £1 mm, +3 mm and £5 mm. A squint of
the main beam was observed at ¢ = 0° for the #-component and at ¢ = 90° for
the 6- and ¢-components, for a defocusing along z and ys respectively, see Fig.
4.3. While these were effects easily recognizable, a defocusing along z; did not
show substantial variations in the far-field, when compared to the ideal case. It
was however reported by [49] that a defocused distance along z¢ of the order of A
causes a broadening of the main beam, with corresponding reduction of the gain,
and modifications in the nulls of the radiation pattern.

E, Ep}:, ¢=90, feed defocusing alolng Y
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Figure 4.3: Amplitude of the 8- and ¢-components, in the cut ¢ = 90°, of the
reflector far-field for a feed defocusing along yy.

Later, different surface distortions were studied. A single and localized bump at-
tached on the reflector was modeled like a Gaussian function, with peak of 1 cm
and standard deviation o equal to 0.5 cm and 1 cm. It was seen that in the two
planes ¢ = 0° and ¢ = 90° the main beam almost coincided with the ideal case,
except for a slightly lower peak, while sidelobes were definitely higher, see Fig.
4.4. The effects were more evident when the bump was located along, or close to,
the axis of symmetry of the reflector. The ¢-component which arises at ¢ = 0°
is now broad and very different from the one noticed for the feed tilt case of Fig.
4.2. For a fixed peak and position of the bump on the reflector surface, a larger
sigma provides higher sidelobes, but almost does not affect the main lobe, see Fig.
4.4 (lower).

Finally, a slow and a fast surface distortion were modeled by adding to the z-
coordinates of the reflector surface a random error uniformly distributed between
the values of £0.05A = 1 mm and +0.1\ = 2 mm, see Fig. 4.5. The random error
was defined on the nodes of a rectangular grid equi-spaced located on the zy-plane
and including the entire circular reflector rim. Between the nodes, a cubic inter-
polation was used. A slow surface distortion is supposed to represent distortions
given by thermal variations, a fast surface distortion is thought to model man-
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Figure 4.4: Amplitude of the #-component, in the cut ¢ = 0°, of the reflector
far-field with a localized bump at © = 19 cm and y = -5 cm with peak = 1 cm and
o = 0.5 cm (upper), and peak = 1 cm and 0 = 1 cm (lower).

ufacturing tolerances. A total number of nodes, equal to 25 and 625, was used
to model the slow and fast distortion, respectively. It was observed that a slow
surface distortion does not change the width of the main lobe considerably, but
it reduces its peak. It also provides values of the first two sidelobes considerably
higher than the ideal ones, but it does not affect the remaining ones, see Fig. 4.6
(upper). A fast surface distortion generally modifies in a similar way the main
beam, but affects considerably all sidelobes, see Fig. 4.6 (lower). The effects of
a distributed surface distortion are thus similar to the ones given by a localized
bump.

It can be concluded that, while a defocusing of the feed can be immediately iden-
tified by a beamsquint of the far-field pattern, the other mechanical errors are



48 Experimental validation

Figure 4.5: Model of the spatial error distribution on the xy-plane for a slow
surface distortion (left) and a fast surface distortion (right): above £0.05), below
£0.1).

more difficult to be diagnosed by an analysis of the far-field. Sidelobes higher than
expected but a main lobe that meets the beamwidth antenna specifications can
be considered a good test case for antenna diagnostics, and at the same time an
interesting error to be corrected in a link-to-link communication.

It was thus decided to study in the TRIAX experimental test case, summarized
in Section 4.1.2, a tilt of the feed around zy, a localized bump, and a slow surface
distortion. It is reminded that what is observed in a real test case is however more
complicated than what the present simulations have shown, since several non-ideal
factors need to be considered. In practice, the feed is never perfectly linearly po-
larized and it can be tilted and/or displaced from the focus. There exists a strut
supporting the feed; the reflector surface can differ from a perfect paraboloid and
the entire antenna sits on the tower of the measurement facility.

4.1.2 TRIAX offset reflector case

The present section reports the diagnostics results obtained for a TRIAX TD64
parabolic offset reflector. The antenna is first measured in its nominal configura-
tion and, from the @ coefficients of the measured SWE, the reference near-field is
computed by using the 8 steps of Section 3.6. Later, a tilt of the feed, a localized
bump and a global surface distortion are introduced. After observing their effects
in the corresponding measured far-fields, the near-fields are computed in two co-
ordinate systems, for each error case, in order to better highlight and identify the
errors. While the discussion is mostly based on Paper V, additional material is
contained in Appendix A, where the equation of the TRIAX TD64 reflector is ex-
perimentally derived, a collection of all measurements results is provided, and an
investigation of the non-ideal characteristics of the antenna is performed, through
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Figure 4.6: Amplitude of the §-component, in the cut ¢ = 0°, of the reflector far-
field with slow surface distortion between +0.1\ (upper) and fast surface distortion
between £0.1\ (lower).

numerical simulations realized with the commercial software GRASP9 [50].

The TRIAX TD64 antenna is a 12 GHz offset parabolic reflector, defined in the
xyz-coordinate system by a circular projected aperture of diameter Dy;.,; = 60 cm,
a focal length f = 39 ¢cm and a clearance d’ = 9 cm, see Fig. 4.7 and Appendix
A.1. The feed is linearly polarized along x ¢, where z;yszs is the feed coordinate
system, with its origin at the focus and with z; pointing towards the center point of
the reflector. Two coordinate systems (CS) are introduced: the measurement CS,
TmeasYmeasZmeas, With its origin on the reflector aperture plane and the z,¢qs-axis
normal to that and coinciding with the horizontal rotation axis of the measure-
ment system, and the cut CS, T utYcutZeut, Obtained by rotating TeqsYmeasZmeas
26.5° around Ymeqs, and with 2., thus aligned to the main beam direction. The
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Figure 4.7: TRIAX offset reflector, geometry and coordinate systems: on the left
the model, on the right the real antenna on the measurement tower.

measurement set-up of the antenna in its nominal configuration is shown in Fig.
4.7 on the right. By simply rotating the @ coefficients of the SWE of the electric
field measured in the measurement CS, the @) coefficients of the SWE in the cut
CS are obtained [26].

The amplitude of the measured far-field pattern in the cut CS, of the antenna
in its nominal configuration, is plotted in dB in Fig. 4.8, showing co- and cross-
polar components according to Ludwig’s 3rd definition (3.15) with ¢, = 0°, in
the uv-space, normalized to the maximum value of the co-polar component. The
behavior is as expected: the main beam is aligned to the z-axis of the cut CS,
and the cross-polar component is symmetric with respect to v = 0. From the @

E,, reference measurement E_, reference measurement

Figure 4.8: Amplitude of co- and cross-polar components in dB of the antenna
far-field in its nominal configuration in the cut CS.

coefficients the power spectrum is found, see Fig. 4.9, and the truncation values
N =135 = kr, + 22 and M = 120, which will be used in all the analyzed cases,
are obtained. These n- and m-truncations in the series of (2.48) allow one to reach
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Figure 4.9: Power spectrum in the cut CS of the antenna in the nominal configu-
ration and the truncation numbers N — 135 and M — 120.

convergence only in the visible part of the PWS and on the border for k, = 0,
providing a resolution in the computed near-field equal to A\/2. After computing
the PWS from the measured @ coefficients with (2.48) on the [—3k, 3k] spectral
domain in the cut CS on the z — 17 cm — 6.8\ plane, the aperture field on the
same z-plane is obtained with the singularity extraction technique of (3.4), with a
sampling interval equal to Az = Ay = A/6. It is noted that the selected z-plane
is not located in the extreme near-field region of the reflector, but it simply is the
smallest allowed by the cut CS in order to remain in the source-free region and do
not, touch the reflector. Plots of the amplitude of the x- and y-components of the
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Figure 4.10: Amplitude of F, and E, and phase of £, on z = 17 cm, in the cut
CS for the nominal configuration.

electric field in dB scale and normalized to the maximum of E,, are shown in Fig.
4.10 together with the phase of the xz-component in radians, and the projected
circular rim of the reflector. While the amplitude field distributions of F, and E,
are almost symmetric around the y = 0 axis, as expected, the phase distribution
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is not constant, as would be the case for an ideal parabolic reflector antenna, but
shows a variation from the center of the aperture to the edge that reaches the max-
imum value of 2.4 rad. The reflector antenna - even in its nominal configuration
- is thus far from ideal, see Appendix A.4. By looking at the left side of the pro-
jected circular rim, we clearly distinguish the effect of the diffraction from the strut.

Three mechanical errors are then introduced: a feed tilt of 5° and 10° around the
x y-axis, a localized bump and a global surface distortion, see Fig. 4.11. The tilt

Figure 4.11: Offset reflector with a feed tilt (left), a Gaussian bump (middle) and
surface distortion (right).

of the feed causes an asymmetry of the cross-polar far-field which is detectable
already for the 5° case but becomes more evident for the 10° case. Following the
same procedure of the nominal case, the aperture field is computed on the plane
z — 17 cm, see Fig. 4.12, for the amplitudes of the z- and y-components. Both,
as expected, show a tilt of the feed illumination towards the negative y-axis, when
compared to Fig. 4.10.

Y (cm)
Y (cm)

0
X (cm)

Figure 4.12: Amplitude of E, and E, on z = 17 cm, in the cut CS for the 10° feed
tilt case.

The metallic bump has the shape of a two-dimensional Gaussian function with
peak and sigma both of 1 cm. The co- and cross-polar components of the far-field
pattern in the cut CS for this configuration maintain the shape of the main beam
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of the nominal case, while the structure of the side-lobes changes significantly. The
aperture field is then calculated on the z = 17 cm plane in the cut CS, see Fig.
4.13 (left). Though the aperture illumination is now almost symmetric, a circular
structure of different amplitude is noticed for x =~ 0 cm and y = —20 cm. The pic-
ture becomes more clear when the aperture field is computed in the measurement
CS on z — 0.5 cm, see Fig. 4.13 (right), where the projected elliptical rim of the
reflector is also indicated.
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Figure 4.13: Amplitude of E, on z = 17 cm in the cut CS (left), and on z = 0.5
cm in the measurement CS (right) for the Gaussian bump case.

The surface distortion is finally modeled by randomly placing 21 dishes of alu-
minum each with a diameter of 5 cm and thicknesses of 2.5 mm, 1.5 mm and 1
mm (A = 2.5 cm) on the entire reflector surface. While the main beam region of
the co-polar component remains almost the same as for the nominal configuration,
side-lobes of high amplitude appear. The z-component of the aperture field is
shown in Fig. 4.14, on the left at z = 17 cm in the cut CS, and on the right at 2
= 0.5 cm in the measurement CS. As for the Gaussian bump case, the distortion
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Figure 4.14: Amplitude of E, on z = 17 cm in the cut CS (left), and on z = 0.5

3

cm in the measurement CS (right) for the surface distortion case.
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becomes more distinguishable on a plane closer to the reflector surface, in partic-
ular all 21 dishes, the thicker clearly, the thinner less strongly, are identified.

To conclude, the SWE-to-PWE antenna diagnostics technique was applied to a
simple commercially available offset reflector antenna for satellite TV reception.
The diagnostics showed the non-ideal characteristics of the antenna in its nominal
configuration, and, even in the presence of these, a correct and accurate iden-
tification of a feed tilt and two types of surface distortions. The investigation
highlighted the importance of applying different coordinate systems and projected
aperture planes.

4.2 SMOS radiometer antenna system test case

The antenna system of the Microwave Imaging Radiometer using Aperture Syn-
thesis (MIRAS) for ESA’s Soil Moisture and Ocean Salinity (SMOS) mission is
here considered. The present section is based on Paper VI, while a summary of all
results can be found in Appendix B. The MIRAS radiometer consists of 69 inde-
pendent dual-polarized receivers working in the frequency band from 1.404 GHz
to 1.423 GHz (L-band) and positioned on an 8 meter diameter Y-shaped support
structure, that is folded during launch and un-folded once the satellite is in or-
bit, see Fig. 4.15. Each receiver includes a dual linearly polarized circular patch
antenna. The entire structure is then covered by a Kapton-Germanium thermal
protection layer. To accurately determine the soil moisture and ocean salinity,
the radiometric signal processing requires an accurate measurement of the far-field
patterns of each of the 69 antennas for each of the two polarizations. Thus, 138
independent measurements were performed, exciting one port and one element at
a time.

During the measurements of the MIRAS hub, anomalies were discovered in the
far-field patterns of two receivers:

1) Port 1 of the receiver unit BC03 showed a high cross-polarization in the ¢ = 90°
plane.

2) Port 1 of the receiver unit A05 exhibited a noticeable frequency variation in the
co- and/or cross-polar components in all ¢ planes.

In order to identify the sources of those anomalies, the SWE-to-PWE diagnos-
tics technique was applied and the aperture fields for these two receivers were
computed on the z-plane placed on the surface of the Kapton-Germanium layer,
located at z — -5mm in the measurement coordinate system. To have a reference
aperture field, the diagnostics was also applied to port 1 of the unit A01 which did
not present any anomalies. The co- and cross-polar far-field patterns, according
to Ludwig’s 3rd definition (3.15) with ¢, = 0°, are shown in Fig. 4.16 for port 1
in the ¢ = 90° plane.

From the @ coefficients of the SWE of the field radiated by each element the power
spectra were found. Though each unit had its own power spectrum distribution,
the finite dynamic range of the measurement system provided a truncation value in
n and m which was the same for every unit, N = 58 = kr, +2 = M, see Fig. 4.17
for the power spectrum of the unit BC03. With this n-truncation in the series of
(2.48), it was expected, and it was later confirmed, to recover only the visible part
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Figure 4.15: The MIRAS antenna system in the measurement coordinate system
with the faulty units A05 and BC03 and the correct unit A01 indicated.
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Figure 4.16: Far-field patterns of the unit A01 (left), BC03 (middle), A05 (right),
for port 1 in the ¢ = 90° plane.

of the PWS and the border at k, = 0. The convergence in points belonging to the
invisible region could not be reached. The PWS was thus calculated with (2.48)
on the [—4k, 4k] spectral domain, zeropadding the invisible region. The aperture
fields were then computed with the singularity extraction technique of (3.4).
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Figure 4.17: Power spectrum of the unit BC0O3 at f = 1.423 GHz and the truncation
value N = 58.

In Fig. 4.18 the amplitudes of the cross-polar components E, and E_ of the refer-
ence unit A0l are plotted in dB, normalized to the maximum of the z-component.
It is possible to distinguish the radiation from the circular patch as well as the
diffraction from the edges of the hub. The y-component shows four symmetric
lobes, while the z-component is symmetric with respect to the axis parallel to the
y-axis and passing through the center of the patch. The same was observed in the
corresponding phase plots. The field distribution is however larger than expected,
when compared to the extent of the white circle indicating the average dimensions
of the circular patch, since only the visible part of the PWS is known, as it was
also observed in Section 3.3.

In Fig. 4.19 the amplitudes of the E, and E, components of the unit BC03 are
shown in dB. Though the diffraction from the edges of the hub is evident, the radi-
ation from the patch presents asymmetries in both components. It was concluded
that the anomalies of the pattern in Fig. 4.16 were due to an error in the patch ex-
citation, i.e., in the patch feed network. The unit BC03 was subsequently replaced
by a new one and, after a new spherical near-field measurement, the aperture fields
were calculated, see Fig. 4.20. The patch excitation is now totally symmetric and
the diffraction from the edges has decreased slightly with respect to the faulty
element case shown in Fig. 4.19.

The cartesian components of the aperture field of the faulty unit A05 were then
compared to the corresponding components of the correct unit A01 for the three
frequencies of interest, f = 1.404 GHz, 1.413 GHz and 1.423 GHz. While the
behavior of the unit A0l remains constant with frequency, the unit A05 shows
some changes. In particular, it was noticed that the y- and z-components of the
field were asymmetric and changed slightly with frequency, while the diffraction
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from the hub edges decreased with increasing frequency, see Fig. 4.21 for a plot of
the y-component. The effect was less evident for the co-polar z-component. The
same asymmetries were noticed also in the phase plots. Again, it was concluded
that the anomalies detected in the far-field pattern were due to errors in the feed
network. The presence of such errors was later confirmed by an inspection of the
antenna hardware. A summary of the aperture field results for the three units is
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Figure 4.18: Amplitude of £, and E, in dB on the z = -5mm plane, for the correct
unit AOT.
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Figure 4.19: Amplitude of £, and £, in dB on the z = -5mm plane, for the faulty
unit BCO03.

given in Appendix B. It is noted that the near-fields plots of Figs. 4.18-4.21 are all
affected by significant circular ripples, which modify the radiation from the unit
element and the diffraction from the edges of the structure.

To conclude, a diagnostics of two units of the MIRAS antenna system was pre-
sented. The diagnostics showed that the anomalies observed in the far-field pat-
tern could be traced back to asymmetries and frequency variations in the extreme
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Figure 4.20: Amplitude of £, and E, in dB on the z = -5mm plane, for the unit
BCO03 replaced.
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Figure 4.21: Amplitude of Ey in dB on the z — -5mm plane, for the unit A05, at
f =1.404 GHz (left) and f = 1.423 GHz (right).

near-field of the antenna elements. In both cases, it was concluded that errors
were present in the feed networks of the units. It was noticed that the calculated
aperture fields showed not only the field radiated directly by the antenna unit, but
also quite clearly the diffraction from the edges and other structural components of
the support structure. The investigation underlined the importance of the analysis
of the cross-polar components, in amplitude as well as in phase.

4.2.1 Windowing techniques

The present section provides an overview of the possible windowing techniques
that can be used to limit the circular ripples in the near-field plots of Section 4.2,
but it is not intended to be complete. A brief discussion on linear and non-linear
methods is presented, and some of the proposed solutions are applied to the units
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of the MIRAS antenna system. A complete collection of plots can be found in
Appendix B.

The circular ripples in the near-fields plots of Figs. 4.18-4.21 are artifacts caused
by the zero-padding of the PWS in the invisible region. This is equivalent to the
product of the PWS on the entire [—4k, 4k| k,k,-domain with a spectral function
defined on the same k;ky-domain and having amplitude equal to 1 on the circular
region of radius k, and amplitude 0 outside, (uniform weighting function). In the
transformed spatial domain, this corresponds to a convolution between the IFT
of the original PWS and a sinc function with circular symmetry on the zy-plane.
From the convolution process, the information contained in the IFT of the original
PWS is spread out across the mainlobe and sidelobes of the sinc function. Thus
the arising of circular ripples of significant amplitude.

For high directive antennas, i.e., when the PWS is highly concentrated inside the
visible region and has low values at the border of the visible region, as for the
TRIAX antenna of Section 4.1.2, this ripple effect is negligible. For low directive
antennas, i.e., when the PWS is distributed on the entire visible region, as for
the units of the MIRAS antenna system, see Paper VI, this ripple effect becomes
evident, in particular in regions of the zy-domain far from the source. It is noted
that for the Hertzian dipoles of Chapter 3 the effect was in principle present, but
it was in practice negligible on the finite extent of the selected zy-plane.

To reduce the ringing effect, and thus the amplitude of the sidelobes, the spectral
function of interest can be multiplied by a non-uniform weighting function, prior
to inverse Fourier transform. This is a well known method in signal processing
and in particular in SAR imaging to avoid that sidelobes of a strong target in-
terfere and/or obscure weaker targets in the neighborhood. A good review of all
possible weighting functions is given by Harris [51] and a plot of the most used is
in Fig. 4.22 for the one-dimensional case. It is seen that while the first sidelobe
of the sinc function lies at -13.5 dB from the peak, the one of the non-uniform
functions, like Hanning and Hamming for example, lies at around -30 dB from the
peak. Moreover, their sidelobes envelopes decrease faster than the 6 dB per octave
of the sinc. However, lower sidelobes are achieved at the expense of an enlarge-
ment of the mainlobe. Thus, the result of the IFT of the PWS, once weighted
by a non-uniform function, shows much lower ringing effect, but at the same time
a field distribution on the patch larger than the one showed in Figs. 4.18-4.21.
As an example, see Fig. 4.23 where the Hanning window, chosen as compromise
between low sidelobes and large mainlobe, was applied to the PWS of the faulty
element BCO3 before inverse Fourier transforming with the singularity extraction
technique of (3.4). When compared to Fig. 4.19, the advantages of the Hanning
window are evident. Though the radiation from the antenna element is broader,
and thus artificial, the ringing effect has almost disappeared, and the details of
the structure and the diffraction from it are more clear. The anomalies of the
field components are still recognizable. If the Hanning window is applied to the
unit AQ5, the variation in frequency remains detectable, see Appendix B. When
the windowing function is used on the entire domain of the spectral function of
interest, we normally talk about linear windowing.

However, there exists a second class of techniques where a different weighting func-
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Figure 4.22: Traditional weighting functions (upper) and their Fourier transforms
(lower).

tion is used for each pixel of the spectral function. The methods which follow this
approach are called non-linear windowing techniques, since the use of non-linear
operators is necessary to weight each pixel differently, and are identified by the
adjective "spatially variant". They have the big advantage of reducing the sidelobe
levels without, or anyway negligibly, enlarging the main lobe. A very good review
of all possible variations and implementations can be found in Stankwitz et al.
[52].

The easiest non-linear spatially varying procedure to obtain an image with low
sidelobes and narrow mainlobe is called Dual Apodization (DA), borrowing a
term from optics, apodization, which refers to the suppression of diffraction side-
lobes. DA requires the computation of two versions of the image, one with uniform
weighting and one with a non-uniform weighting, Hanning for example. The two
images are then compared pixel-by-pixel and the minimum between the values of
the pixel pair is selected, forming the final image. While DA is normally used for
real functions, it can be extended to complex functions by selecting pixel-by-pixel
the complex value whose magnitude is minimum, [52].

For complex functions the comparison of the two images, obtained with a uniform
and non-uniform weighting function, can otherwise be performed on the real and
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imaginary part separately, obtaining what is called Complex Dual Apodization
(CDA). For each pixel, the real parts are compared and, depending on their sign,
the value zero (opposite sign) or the one with smallest absolute value (same sign) is
chosen. The same is done for the imaginary part [52]. From the way the algorithm
is constructed, the phase of the resulting image is not correct, while good results
can be obtained for the amplitude. In Fig. 4.24 CDA is applied to the faulty unit
BC03, choosing Hanning as non uniform weight. The level of the circular ripples is
low like when the Hanning window is used, Fig. 4.23, but the spatial extent of the
radiation from the patch is now narrower. The anomalies in the field components
are anyway maintained, see Appendix B for more results.
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Figure 4.23: Amplitude of £, and £, in dB on the z — -5mm plane, for the faulty
unit BC03 with Hanning window.
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Figure 4.24: Amplitude of £, and £, in dB on the z = -5mm plane, for the faulty
unit BC03 with CDA.

DA and CDA can be seen as variations of the most general technique called Spa-
tially Variant Apodization (SVA) [52], which allows each pixel of the image to
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receive its own spectral weighting function from a continuum of possible weighting
functions, where the uniform window, Hanning and Hamming are an example. The
SVA technique is based on the fact that all cosine-on-pedestal weighting functions
can be computed from the same generating function

A(n) =1 —2wcos(27n/N) (4.1)

by simply varying the parameter w between 0 (uniform weighting) and 0.5 (Han-
ning weighting). Eq. (4.1) refers to the discrete one-dimensional case of length
N. By employing (4.1), every pixel in the image receives the spectral weighting
function given by the value of w that minimizes the magnitude of the output pixel
value. It is possible to minimize the real and imaginary parts jointly or separately.
The last option provides better performance, as reported by Colone et al. [53].
An alternative minimization scheme has been recently proposed by Smith [54],
maintaining the computational efficiency of the general SVA technique.

4.3 Summary

The SWE-to-PWE antenna diagnostics technique was applied to two experimental
test cases using real measurements data, in the presence of typical measurement
inaccuracies and non-ideal AUTs.

First, a diagnostics of a simple commercially available offset reflector antenna for
satellite TV reception was performed. The diagnostics showed the non-ideal char-
acteristics of the antenna in its nominal configuration, and, even in the presence of
these, a correct and accurate identification of a feed tilt and two types of surface
distortions. The investigation highlighted the importance of applying different co-
ordinate systems and projected aperture planes.

Second, a diagnostics of two units of the MIRAS antenna system was presented.
The diagnostics showed that the anomalies observed in the far-field pattern could
be traced back to asymmetries and frequency variations in the extreme near-field
of the two antenna elements. In both cases, it was concluded that errors were
present in the feed networks of the units. Their existence was later confirmed by
an inspection of the antenna hardware. It was noticed that the calculated aper-
ture fields showed not only the field radiated directly by the antenna unit, but also
quite clearly the diffraction from the edges and other structural components of the
support structure. The investigation underlined the importance of the analysis of
the cross-polar components, in amplitude as well as in phase.

Finally, a brief review of the most used windowing techniques to diminish the trun-
cation effect in the aperture field of low directive antennas was provided. Linear
and non-linear methods were presented, describing their advantages and disadvan-
tages. It was concluded that their use can significantly improve the near-field plots
highlighting the effect of the weak sources.



Chapter 5

Conclusions

A new antenna diagnostics technique for spherical near-field antenna measure-
ments was presented. The technique applies to general types of antennas and is
based on the transformation of the Spherical Wave Expansion (SWE) to the Plane
Wave Expansion (PWE). The plane wave spectrum (PWS) is computed from the
coefficients of the SWE and subsequently inverse Fourier transformed, providing
the extreme near-field of the antenna under test. A spatial resolution higher than
the traditional half a wavelength can be obtained for electrically small antennas.
The computation of the extreme near-field is accurate for electrically small as well
as large antennas, since the singularity at the border between the visible and in-
visible spectral region is properly taken into account. The SWE can be obtained
from a spherical near-field measurement or be computed by a software. The plane
where the extreme near-field is calculated can be arbitrarily oriented with respect
to the measurement coordinate system in order to facilitate the identification of
the antenna errors.

Chapter 2 provided the necessary theoretical background and the mathematical
foundation for the diagnostics technique. The Spherical Wave Expansion and the
Plane Wave Expansion were both derived from the vector Helmholtz equation
[30][37] and their definitions, domains of validity, properties, and use in antenna
measurements were discussed. By employing a cartesian zyz-coordinate system
and the associated spherical rf¢-coordinate system, it was shown that, for an an-
tenna with minimum sphere of radius r, and radiating in free-space, the SWE of
the radiated field is valid for r > r,, while the PWE of the same field is valid
for z > z,, with z, being the largest z-coordinate of the antenna and z, < r,.
The relation between the SWE and PWE was then investigated. Though the do-
mains of validity of the SWE and PWE are fundamentally different, it was shown
that the plane wave spectrum can be computed from the coefficients of the SWE
through a rigorous transformation [28], in the visible as well as in the invisible
region of the spectral domain, at any z-plane z > z,. It was emphasized that
the use of the SWE-to-PWE transformation is particularly useful in antenna di-
agnostics for spherical near-field antenna measurements to calculate the extreme
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near-field, which can not be directly computed from the SWE. For this use, it
was noted that the recovery of the invisible region of the PWS from the @ coeffi-
cients of the SWE can provide a spatial resolution in the extreme near-field higher
than the traditional half a wavelength obtained from the visible region of the PWS.

Chapter 3 presented the development of the antenna diagnostics technique on
the basis of the SWE-to-PWE transformation. The necessary additional steps to
obtain the extreme near-field from a spherical near-field measurement were ad-
dressed. First the fundamental properties of the transformation were discussed,
with emphasis on their theoretical as well as practical implications. The transfor-
mation of individual spherical waves was studied in order to determine how these
contribute to different regions of the spectral domain. It was noted that each
spherical wave contributes to the visible as well as the invisible region, and thus
provides information on the propagating as well as evanescent waves of the PWE.
The convergence mechanism of the series expressing the PWS was investigated. It
was found that the infinite series can be truncated at a finite value N. While the
traditional N = kr, + 10 is sufficient to reach convergence in the visible region, a
larger N, which depends on the size of the antenna, the origin of the measurement
coordinate system and the part of spectral domain where the PWS is computed,
is necessary in the invisible region. It was also shown that the path to convergence
in the invisible region involves very large intermediate values. The exponential
growth and the resulting numerical difficulties in the computation of the PWS in
the invisible region were also addressed and a suggestion was given for a more
efficient calculation. The computation of the aperture field from the PWS was
then analyzed. It was recalled that the PWS generally possesses a singularity at
the border between the visible and invisible regions and, though the singularity
is integrable, a straightforward application of the inverse Fast Fourier Transform
does not normally provide accurate results. A singularity extraction technique for
computation of extreme near-fields of antennas from singular plane wave spectra
was thus developed and presented. The algorithm is based on the Weyl identity
and the inverse Fast Fourier Transform, and allows the accurate computation of
the aperture field when a dense sampling in the spectral domain is not possible.
Next, the concept of resolution was studied and its fundamental difference from
the concept of sampling interval was underlined. It was found that resolution
perceived by the human eye in observing a near-field plot can not be defined by a
specific formula and it might be lower than the one defined as the distance between
the zeros of the fastest oscillating wave contained in the PWE. It was noted that
what the eye distinguishes generally depends on the polarization of the source, the
z-plane of interest, and the component of the field. Finally, the effects of finite
measurement accuracy on the proposed antenna diagnostics technique were stud-
ied through numerical simulations. It was concluded that electrical inaccuracies,
and in particular amplitude noise, limit in practice the available Q) coefficients and
thus the spectral region where the PWS reaches convergence. Under typical mea-
surements conditions, the recovery of the PWS is generally obtained in the visible
region and at the border where the singularity exists. For electrically small anten-
nas a part of the invisible region of the PWS can also be reconstructed, but for
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electrically large antennas the entire invisible region must be normally discarded.

Chapter 4 dealt with the experimental verification of the SWE-to-PWE antenna di-
agnostics technique. Real measurements were performed at the DTU-ESA Spher-
ical Near-Field Antenna Test Facility [27], in presence of typical measurement
inaccuracies and complex AUTs. First, a diagnostics of a simple commercially
available offset reflector antenna for satellite TV reception was performed. The
diagnostics showed the non-ideal characteristics of the antenna in its nominal con-
figuration, and, even in the presence of these, a correct and accurate identification
of a feed tilt and two types of surface distortions. The investigation highlighted
the importance of applying different coordinate systems and projected aperture
planes. Second, the antenna system of the satellite-based Soil Moisture and Ocean
Salinity (SMOS) radiometer was investigated, in particular the diagnostics tech-
nique was used to successfully identify the sources of the anomalies detected in 2
of the 138 measured antenna far-field patterns. The diagnostics showed that the
anomalies observed in the far-field pattern could be traced back to asymmetries
and frequency variations in the extreme near-field of the two antenna elements. In
both cases, it was concluded that errors were present in the feed networks of these
units. These errors were later confirmed by an inspection of the antenna hardware.
It was noted that the calculated aperture fields showed not only the field radiated
directly by the antenna unit, but also quite clearly the diffraction from the edges
and other components of the support structure. The investigation underlined the
importance of the analysis of the cross-polar components, in amplitude as well
as in phase. Finally a brief review of some windowing techniques, to diminish
the truncation effect in the aperture field of low directive antennas, was provided.
Linear and non-linear methods were presented, describing their advantages and
disadvantages, and successfully applied to the units of the SMOS radiometer an-
tenna system.

The work presented in this thesis can be extended in many ways. First of all,
the computation of the PWS from the @ coefficients should be implemented in a
more efficient way in order to speed up the calculation. Given a certain set of Q)
coefficients, either obtained from a spherical near-field measurement or computed
by a software like GRASP9 [50] and SNIFTD [32], the truncation value N should
be immediately determined avoiding the visual inspection of the power spectrum.
Similarly, the number of points in the spectral domain, the z-plane of observation,
and the z;-plane required by the singularity extraction technique, should be auto-
matically chosen. At the moment, the antenna diagnostics software is written in
two languages, FORTRAN90 to compute the PWS, and MATLAB to calculate the
extreme near-field from the PWS and plot the obtained results. A combination
of these two programs should be made to speed up the computation. A deeper
study on linear and non-linear windowing techniques should be conducted, both
to find a proper method that can reconstruct the phase, since this is not the case
when the CDA [52] is used, and to get a better insight into the advantages and
disadvantages of the different techniques. The analysis of the magnetic extreme
near-field could also be taken into consideration, since this could be more advan-
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tageous for some types of antennas. The Poynting vector could also be analyzed.
Since it was shown that finite measurement accuracy and numerical noise limit the
region where the PWS reaches convergence to normally the visible region and the
border where the singularity exists, the possibility of extending the spectrum into
the invisible region could be investigated. This would increase the resolution in
the extreme near-field and would take full advantage of the SWE-to-PWE trans-
formation. An idea could be a variation of the iterative technique based on the
Gerchberg-Papoulis algorithm recently developed by Martini et al. [18]. The pos-
sibility of extrapolating the value of the ) coefficients for higher n- and m-modes
could also be studied.

Finally, a few recommendations for a diagnostics tool. Such a software should be
able to:

- Rotate the @ coefficients from the measurement coordinate system to a new co-
ordinate system more advantageous to perform the diagnostics.

- Automatically determine the truncation value N, the number of points in the
spectral domain, the z-plane where the extreme near-field is computed, its extent
in the zy-coordinate, and the z;-plane for such a computation.

- Compute the electric and magnetic extreme near-field and maybe also the Poynt-
ing vector.

- Plot the extreme near-field in cartesian components, or a combination of these, in
amplitude and phase. The choice between the dB scale or the linear scale should
be possible when plotting the amplitude, and the possibility of adjusting the color
scale to increase the contrast should be implemented too.

- Choose among a list of possible windowing techniques to limit the truncation
effect for low directive antennas.

- Allow the use and combination of alternative antenna diagnostics techniques, for
example the source reconstruction suggested by [24] and [25].



Appendix A

TRIAX offset reflector

A.1 Equation of the TRIAX paraboloid

When the TRIAX TD64 reflector antenna was bought, we knew from the technical
specifications that the antenna worked in the frequency range 10.7-12.75 GHz, its
overall dimensions were 60 cm x 65 cm and the paraboloid was characterized by
a f/D = 0.6. The SWE-to-PWE antenna diagnostics technique only requires the
@ coefficients of the SWE in a given coordinate system to compute the PWS and
subsequently the aperture field distribution. However, in order to identify the di-
rection of the main beam with respect to the z-axis of the measurement coordinate
system (CS) and perform the diagnostics on the most convenient aperture plane,
it was decided to derive the equation of the TRIAX paraboloid.

The derivation was not straightforward since we did not know in which coordinate
system f and D were defined, and what the quantity D represented.

We started by considering the TRIAX antenna as a general offset parabolic re-
flector defined with respect to a certain xyz-coordinate system according to [55],
see Fig. A.1. On the basis of the geometrical construction of the paraboloid and
the distances we could measure, we looked for D,,,;, d' and f. We knew that for
a point P(z,y, z) on a rotationally symmetric paraboloid with focal length f the
following equations hold

p? =2 +y? (A1)
P’ =4fz (A.2)
r=f+z (A.3)

We also knew that the edge of a paraboloid is contained in a plane which makes
the angle 0. with the z-axis,

a1 2f
0. = tan (d’ +Dproj/2), (A.4)

and that the edge curve is an ellipse with the major and minor axis being

a = (Dproj/2)/sinb, b= Dproj/2 (A.5)
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Figure A.1: TRIAX reflector paraboloid in the zyz-coordinate system (left) and
ellipse with axis a and b representing the edge of the paraboloid (right).

respectively, [55], see Fig. A.1.

We first assumed that the feed was located in the focal point F' of the paraboloid,
see Fig. A.1. We then measured the axis of the ellipse described by the edge of the
TRIAX. It is noted that every measurement of distance that we performed was
affected by non negligible measurement errors given by the non sharp reflector edge
and the difficulty of defining the phase center of the feed, where the focal point
was supposed to lie. It is estimated that the accuracy of the measured values was
approximately 0.5 cm. For the axis of the ellipse we measured a = 33 cm and
b =30 cm. From (A.5), Dpro; = 60 cm and 6. = 65.3° were thus obtained. To
verify their values and find the clearance d’ and the focal length f we did the
following.

We considered the two edges A and B of the reflector in the zz-plane, and measured
their distances from the focal point, FA = r4 — 39.5 cm and FB — rp = 69.5 cm,
see Fig. A.1. We then used the specification f = 0.6D = 39 cm, assuming D equal
to the largest dimension of the reflector, as reported in the datasheet, D = 65 cm.
For the point A, from (A.3) and (A.2), we wrote

za=ra—f=05cm (A.6)
pA=+\Afza=x4=d =9 cm (A7)
and for the point B
zp=rp — f=30.5cm (A.8)
pB =\/Afzp =d + Dproj = 69 cm (A.9)
obtaining
Dproj = pPB — PA = 60 cm. (AlO)

The value of Do in (A.10) agreed with the measured distance 2b = 60 cm
obtained from (A.5). The angle 6. was then calculated with (A.4) obtaining
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0. = 63.5°, which, once inserted in (A.5), provided a = 33.5 cm. Considering
an accuracy of £0.5 cm, the value agreed with the measured distance a = 33 cm.
By assuming 6, = 63.5°, the angle 6, between the direction of the antenna main
beam, which for geometrical construction is parallel to the z-axis, and the normal
to the plane containing the edge of the reflector is equal to 6, = 90° — 0, = 26.5°,
see Fig. A.1. This is also the angle between the antenna main beam direction and
the z-axis of the measurement CS used in Section 4.1.2.

The TRIAX TD64 offset reflector antenna is thus constituted by a 12 GHz par-
abolic offset reflector, described in the xyz-coordinate system of Fig. A.1 by

1. a circular projected rim of diameter Dy,.,; = 60 cm

2. a focal length f = 39 cm

3. a clearance d’ = 9 cm

4. an angle 0. = 63.5° between the edge of the reflector and the z-axis

5. an angle 6, = 26.5° between the antenna main beam direction and the normal
to the plane containing the edge of the reflector

6. an elliptical edge curve with major axis ¢ = 33 cm and minor axis b = 30 cm

A.2 Cut coordinate system

This section contains the far-field and aperture field results of the TRIAX antenna
in the cut CS, see Fig. 4.7 for a picture of the geometrical configuration. It is
recalled that the z-axis of the cut CS is aligned with the direction of the antenna’s
main beam. Far-field distributions are plotted in amplitude in the co- and cross-
polar components according to Ludwig’s 3rd definition (3.15) with ¢, = 0° in
the wv-plane. Results are in dB and normalized to the maximum of the co-polar
component in the nominal configuration. Aperture fields are plotted in amplitude
and phase for each of the cartesian components on the z = 17 cm plane, together
with the projected rim of the reflector (circle of radius » = 30 cm centered at
T, = 2.8 cm and y, = 0 cm in the cut CS). Amplitude results are in dB and
normalized to the maximum value of the z-component of the field in the nominal
configuration, phase results are in radians and normalized to the phase of the
corresponding cartesian component of the nominal configuration at the origin z =
y = 0. For details about the introduced mechanical errors, see Paper V or Section
4.1.2.
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A.2.1 Far-fields
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Figure A.2: Amplitude of the co- and cross-polar components in dB of the antenna
far-field, nominal configuration.
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Figure A.3: Amplitude of the co- and cross-polar components in dB of the antenna
far-field, 5° feed tilt.
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Figure A.4: Amplitude of the co- and cross-polar components in dB of the antenna
far-field, 10° feed tilt.
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Figure A.5: Amplitude of the co- and cross-polar components in dB of the antenna
far-field, Gaussian bump.
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Eco surf dist Ecro surf dist

Figure A.6: Amplitude of the co- and cross-polar components in dB of the antenna
far-field, surface distortion.
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A.2.2 Aperture fields
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Figure A.7: Amplitude in dB (upper) and phase in radians (lower) of the cartesian
components of the electric field on z = 17 em, nominal configuration.
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Figure A.8: Amplitude in dB (upper) and phase in radians (lower) of the cartesian
components of the electric field on z = 17 cm, 5° feed tilt.
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Figure A.9: Amplitude in dB (upper) and phase in radians (lower) of the cartesian
components of the electric field on z = 17 c¢m, 10° feed tilt.
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Figure A.10: Amplitude in dB (upper) and phase in radians (lower) of the cartesian
components of the electric field on z = 17 ¢m, Gaussian hat.
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Figure A.11: Amplitude in dB (upper) and phase in radians (lower) of the cartesian
components of the electric field on z = 17 c¢m, surface distortion.
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A.3 Measurement coordinate system

This section contains the aperture field results of the TRIAX antenna in the mea-
surement CS, see Fig. 4.7 for a picture of the geometrical configuration. It is
recalled that the z-axis of the measurement CS is not aligned with the direction
of the antenna main beam. Aperture fields are plotted in amplitude and phase
for each of the cartesian components on the z = 0.5 cm plane, together with the
projected rim of the reflector (ellipse of axis ¢ = 33 cm and b = 30 cm centered
at £, = 2.6 cm and y, = 0 cm in the measurement CS). Amplitude results are in
dB and normalized to the maximum value of the z-component of the field in the
nominal configuration, phase results are in radians and normalized to the phase of
the corresponding cartesian component of the nominal configuration at the origin
x = y = 0. For details about the introduced mechanical errors, see Paper V or
Section 4.1.2.

A.3.1 Aperture fields
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Figure A.12: Amplitude in dB (upper) and phase in radians (lower) of the cartesian
components of the electric field on z = 0.5 ¢cm, nominal configuration.
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Figure A.13: Amplitude in dB (upper) and phase in radians (lower) of the cartesian
components of the electric field on z = 0.5 cm, 5° feed tilt.
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Figure A.14: Amplitude in dB (upper) and phase in radians (lower) of the cartesian
components of the electric field on z = 0.5 cm, 10° feed tilt.
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Figure A.15: Amplitude in dB (upper) and phase in radians (lower) of the cartesian
components of the electric field on z = 0.5 cm, Gaussian hat.
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Figure A.16: Amplitude in dB (upper) and phase in radians (lower) of the cartesian
components of the electric field on z = 0.5 cm, surface distortion.
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A.4 GRASP9 simulations for the TRIAX reflector

In Section A.1 we derived the equation of the TRIAX paraboloid and determined
the angle 6, between the antenna main beam direction and the z-axis of the mea-
surement coordinate system. This allowed us to rotate the SWE defined in the
measurement CS and perform a diagnostics also in the cut CS, to better identify
the mechanical errors. After the computation of the field of the reflector in the
nominal configuration at the z=17 cm plane, see Fig. A.7, it was clear that the
antenna was not an ideal paraboloid. The non-ideal characteristics were particu-
larly evident in the phase of the x-component of the field. It was thus decided to
build a model of the TRIAX reflector with the software GRASP9, and study the
antenna more in detail.

The reflector model was designed according to the parameters derived in Section
A.1: a 12 GHz parabolic offset reflector described in the xzyz-coordinate system by
a circular projected rim of diameter Dy,,; = 60 cm, a focal length f = 39 cm and
a clearance d’ = 9 cm, see Fig. A.17. The feed, located at the focal point, was
linearly polarized along xy, where xyyszy was the feed coordinate system, with
origin at the focus and with z; pointing towards the center point of the reflector.

proj

Figure A.17: Model of the TRIAX reflector.

The real feed of the TRIAX reflector was a conical horn with aperture of diameter
4.5 cm. A full sphere measurement of the feed was performed at the DTU-ESA
Facility and the SWE of the radiated field was obtained, see Fig. A.18 for a plot
of the co- and cross-polar components of the feed far-field pattern in dB in the
¢ = 0° and ¢ = 90° cuts. It is seen that the co-polar component is similar in
the two plots, and that the cross-polar component is low though not negligible.
The measured SWE was used in the GRASP9 model to describe the radiation
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Figure A.18: Co- and cross-polar components of the far-field pattern in dB of the
feed of the TRIAX reflector in the principle planes: ¢ = 0° (upper), ¢ = 90°
(lower).

from the feed and thus the field illuminating the reflector. A strut of rectangular
cross-section 5 cm x 2 cm and length of 38 cm, according to the dimensions of the
arm supporting the feed, was finally added to the model.

The pattern given by the TRIAX model was compared with the measured pattern
for the antenna in the nominal configuration, see Figs. A.19 and A.20 (above the
entire theta range, below a zoom) in the cut coordinate system. The computa-
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tion with GRASP9 was performed by Physical Optics (PO) and Physical Theory
of Diffraction (PTD). As it is seen, patterns are quite different. In particular,
at ¢ = 0° the peak of the measured main beam is 2 dB lower than the one ob-
tained by the GRASP9 simulation. Also, its width is definitely broader with the
consequence that the first sidelobe disappears. On the other hand the remaining
sidelobes agree quite well with the designed ones. The measured ¢-component is
quite in agreement, in shape and peak, with the designed one. PO and PTD are
however not accurate in describing the radiation for 130° < 6 < 180°. For ¢ = 90°
the peak of the measured pattern is again 2 dB lower than the one computed by
GRASPY9, and also slightly shifted. A similar behavior is seen in the #-component.
In this cut PO and PTD provide quite accurate results.

From the analysis conducted in Section 4.1.1 the far-field shift in Fig. A.20 was
interpreted as given by a feed defocusing. The differences in the peak and width of
the main lobe, together with the good agreement of the majority of the sidelobes,
were instead thought as given by a slow distortion of the reflector surface. The
model was thus modified according to these observations and the method of analy-
sis was changed, using Method of Moments (MOM) for the entire scatterer given
by the reflector and the strut, to more accurately compute the diffraction from the
strut. After several experiments, it was found that the model that best fitted the
measurements results assumed the existence of several mechanical inaccuracies.
The final model of the TRIAX antenna was constituted by:

1. a 12 GHz parabolic offset reflector described in the xyz-coordinate system
by a circular projected rim of diameter D,,.,; = 60 cm, a focal length f =
39 cm and a clearance d' = 9 cm, see Fig. A.17

2. a feed, located at the focal point and linearly polarized along x, where
xryyzy was the feed coordinate system

3. a strut of rectangular cross-section 5 cm x 2 cm and length of 38 cm

4. a slow surface distortion of amplitude + 0.3 cm, randomly distributed, de-
scribed by 4 nodes in the z-direction and 3 nodes in the y-direction, for
details see Section 4.1.1 or GRASP9 technical description [55]

5. a feed tilt of 7° around zy and of 3° around yy
6. a feed defocusing of -5 mm along xy and of -9 mm along yy

Results are in Figs. A.21 and A.22. Tt is noted that MOM better describes the
radiation at large 6 values. Looking at a smaller angular region, it is evident
how the shape of the main lobe is now correctly reconstructed in peak, width
and position, though results are slightly better at ¢ = 0° than at ¢ = 90°. The
envelope of the first sidelobes is also very well represented. There are however
some differences, mostly in the ¢-component at ¢ = 0° and in the #-component
at ¢ = 90°, were results get worse with respect to the ones obtained by the ideal
model of Figs. A.19 and A.20. This is probably because the surface distortion of
the TRIAX antenna is in practice not random, like in the GRASP9 model, but
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Figure A.19: Theta- and phi-components of the far-field pattern in dB of the
TRIAX reflector at ¢ = 0°: measurements results and GRASP9 simulations for
the nominal configuration.
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Figure A.20: Theta- and phi-components of the far-field pattern in dB of the
TRIAX reflector at ¢ = 90°: measurements results and GRASP9 simulations for

the nominal configuration.



84 TRIAX offset reflector

described by a smoother and slower varying surface which less influences the cross-
polar components. The parameters used in the final model were however the ones
that best reconstructed the radiation of the 8-component at ¢ = 0° in the angular
region —30° < 0 < 30°.
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Figure A.21: Theta- and phi-components of the far-field pattern in dB of the
TRIAX reflector at ¢ = 0°: measurements results and GRASP simulations for the

nominal configuration.



86 TRIAX offset reflector

E at phi=90 cut coordinates system

40 ! ! ‘ — éth meas nor‘ninal configu‘ration
—— Eth from GRASP POPTD
L —— Eth GRASP MOM final model ||
30 —— Eph meas nom configuration
E
£\ GRASP MOM fial mode
20F \ 7
10F ‘A| ]
% oF : . ‘ \ : i
-10;/ “‘ '4 n \
1) \ w \ '
—20} ”/ p i MI f\ ‘ & ( a i
(- fie ‘l‘ “ | ‘ ‘
| h H\ ’ "‘ ‘ I ‘ ‘ i
=307, \H A
' ‘\ \ h‘
L ’ | “
_40 I I I I I I |

-150 -100 -50 0 50 100 150
theta (deg)

E at phi=90 cut coordinates system

—— Eth meas nominal configuration

—— Eth from GRASP POPTD

—— Eth GRASP MOM final model ||

—— Eph meas nom configuration
Eph from GRASP POPTD

—— Eth GRASP MOM final model

theta (deg)

Figure A.22: Theta- and phi-components of the far-field pattern in dB of the
TRIAX reflector at ¢ = 90°: measurements results and GRASP simulations for
the nominal configuration.



Appendix B

SMOS radiometer antenna
units

The diagnostics results obtained for the SMOS radiometer antenna units are re-
ported. Aperture fields are computed in cartesian components in amplitude and
phase on the z-plane placed on the surface of the Kapton-Germanium layer, lo-
cated at z = -5 mm in the measurement coordinate system. Amplitude results are
in dB and normalized to the maximum of the z-component, phase results are in
radians and are not normalized. The circle corresponding to the average dimension
of the circular patch is also drawn. Three sets of results are provided for every
unit: first the aperture field, presented also in Paper VI and showing an evident
truncation effect, second the aperture field with use of the Hanning window, third
the aperture field with use of the CDA algorithm. While amplitude and phase are
shown for the first two sets, phase results computed with CDA are shown only for
the unit BC03, to prove that the quantity can not be correctly reconstructed by
the algorithm. Only one frequency, f = 1.423 GHz, is considered for the units
BC03 and AO01, since same results were obtained for the other two frequencies of
interest. All frequencies are taken into account for the unit A05.
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B.1 BCO03 unit, f = 1.423 GHz
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Figure B.1: Amplitude in dB (upper) and phase in radians (lower) of the cartesian
components of the electric field on z = -5 mm, unit BC03.
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Figure B.2: Amplitude in dB (upper) and phase in radians (lower) of the cartesian
components of the electric field on z — -5 mm, unit BC03 with Hanning window.
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Figure B.3: Amplitude in dB (upper) and phase in radians (lower) of the cartesian
components of the electric field on z = -5 mm, unit BC03 with CDA.
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B.2 AO05 unit, f
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Figure B.4: Amplitude in dB (upper) and phase in radians (lower) of the cartesian
components of the electric field on z = -5 mm, unit A05.
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Figure B.5: Amplitude in dB (upper) and phase in radians (lower) of the cartesian
components of the electric field on z — -5 mm, unit A05 with Hanning window.
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Figure B.6: Amplitude in dB (upper) and phase in radians (lower) of the cartesian
components of the electric field on z = -5 mm, unit AQ5 with CDA.
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Figure B.7: Amplitude in dB (upper) and phase in radians (lower) of the cartesian
components of the electric field on z = -5 mm, unit A05.
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Figure B.8: Amplitude in dB (upper) and phase in radians (lower) of the cartesian
components of the electric field on z — -5 mm, unit A05 with Hanning window.
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Figure B.9: Amplitude in dB (upper) and phase in radians (lower) of the cartesian
components of the electric field on z = -5 mm, unit AQ5 with CDA.
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B.4 AO05 unit, f
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Figure B.11: Amplitude in dB (upper) and phase in radians (lower) of the cartesian

components of the electric

field on z — -5 mm, unit A05 with Hanning window.
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Appendix C

SWE-to-PWE computation

The SWE-to-PWE transformation is here analyzed from a computational point of
view. In particular, the computation of the plane wave spectrum in the invisible
region of the spectral domain as given by (2.48) is considered. In section C.1 the
series of (2.48) is rewritten in a simplified form. In section C.2 the computation
of the normalized associated Legendre functions is described. In section C.3 the
embedding of the exponential term is discussed, in order to control the exponen-
tial growth of the Legendre functions in the invisible region, and guidelines for the
selection of an appropriate z-plane are provided.

C.1 Plane wave spectrum computation

We start by considering the expression of the plane wave spectrum written in
function of the @ coefficients of the SWE, as presented in (2.48)

T(ky, ky, 2) Z Z Q) T (ks by 2) + QS Topun (ks by, 2)  (C.1)

n=1m=—-n

with . zk z ( )nJrl _'
Timhasky2) = = e P 000) (€2

. zk: z —)" R .
Tomn(ka, ky, 2) = " f\(/zziﬂ x Y ™(a, B). (C.3)

Except for the factor ei,:zz, equation (C.1) coincides with (2.45)

[ Q. V(. )+ Q5 x V(. 5)].
(C.4)

;m;n\f\/ (n+1)
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By writing the vector spherical harmonics }7,{”(047 B) in the a- and S-components,

P g) = (MmN M plml imbg 4 & piml imf
Y, (a,ﬁ)f\/ﬂ( |m|) ( sinaP" (cosa)e a+daPn (cosa)e ﬂ)

) (C.5)
=Yl (o, B)a + Y 5(a, B)5

with & = cos a cos 82 + cosasin fy — sinaZ and B = —sin 3% + cos 0y, and by
inserting it into (C.4), we obtain

;m; f\/ﬁ{( QL)Y (o, B) — Q5 Yo 5))@
(C.6)

= Ea(aaﬂ)d + Eﬁ(OZ?ﬂ)B’

where the truncation numbers N and M with M < N, for the n- and m-modes
respectively, have been used.

Since the associated Legendre functions depend on |m/|, the summation over the
indices n and m in (C.6) can be computed in a more efficient way, see Fig. C.1,
according to

-M

Bla,p)=3 3 ot Y Z +3| (C.7)

m=1n=m m=—1n=|m|
and obtaining, after a few mathematical steps,
m

mz:nlz;z f\/ﬂ [sma

d -
Q™) = Pl (cos ) Q1) €™ 4+ Q2,67 | 4 term,
(6’

and

le‘(c%a)( (3) (—1)meim5 (C.8)

Imn

n

m plm — (3) _1\ym imp
=33 L a0
(C.9)
d p 3 .
QY ™) — Pl (cos ) QU (1) 4 Q™) | 4 term,

The quantities term, and term; correspond to the contribution for m = 0 and are
given by

N .
i(=d)" (3) & 50
termy —nzl \f\/mQ%"d PY(cosa) (C.10)
S 0" oo 4 po
termy, = Z —_— —P ) (cos ). (C.11)

— Ji/2en(n + 1) Qion g,
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Figure C.1: nm-modes in the SWE.

C.2 Normalized associated Legendre functions com-
putation

In computing the series of (C.4) by use of (C.8) and (C.9), we notice that, once

. plml aplml
the Q coefficients are known, only ™ ”sin(zos 2 and " (059) o6 needed.

do
There are several computation schemes to do that, and here the approach that
makes use of the so called rotation coefficients dJj,, () is chosen. The function
d};,,(0) is normally used in the SWE rotation theory, see Appendix A.2.3 of [26].

plm| plml
For the purpose of computing the quantities %(ZOSO‘) and dp’ldigmsa), the use

of the rotations coefficients turns out, to be particularly useful since it can be shown
that [26]

mP™ (cos o n(n n
MBS (o) + oy OO D L o)
apim (cosa) n " n(n+1)2n+1) 1
T = _( lm(a) - dlm(a))\/ 2 2(—sgn(m))m (C].?))
where
() = /(n+ p)(n — p)(n+m)!(n —m)! - (C.14)
clln—m—-o)l(im+upu+o)(n—pu—o) 2

oc=max(0,—m—pu)

( o\ 2n—20—p—m
- S *)
2

It is noted that the relations hold for « real as well as for o complex and belonging
to the contour B depicted in Fig. C.2, describing the invisible region of the spectral
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kyky-domain. It is reminded that only values m > 0 are considered in computing
the series in (C.8) and (C.9).

Im{a}?

2

Re {:1}

Figure C.2: Domain of the variable o on the contour B.

C.3 Embedding of the exponential term ¢/

It is observed that the computation of the normalized associated Legendre func-
tions with (C.12) and (C.13) confines the a-dependence to the terms (cos(a/2))27 T+
and (sin(a/2))?n—20-#=—m,

While for real values of « = x + iy, corresponding to € [0,7/2] and y = 0 on the
contour B, the functions are equivalent to (cos(z/2))?*?T#+™ and (sin(z/2))?n—20—#=—m
respectively, for complex values of a, i.e., for z = 7/2 and y € (—¢, —0), the com-
putation is not straightforward but requires the use of

cos(a) = cos(x + iy) = cosxzcoshy — isinzsinhy (C.15)

sin(o) = sin(z + 4y) = sinz coshy + i cos z sinh y. (C.16)
From (C.15) and (C.16) we obtain

20+pt+m 2 20+p+m

(cos %) = [g(cosh% — ¢sinh %)] (C.17)
2n—20—pu—m 2 2n—20—pu—m

(s )™ 77" 2 T2 (cosh Y isinn 2)] 7 (.19

It is thus evident from (C.17) and (C.18) that trigonometric functions are not
limited once defined on a complex domain, due to the presence of the hyperbolic
sine and cosine.

We notice however that, in order to determine the plane wave spectrum at the given
z-plane according to (C.1) and (C.4), we do not need the calculation of E(a, 3)
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itself, but rather its product with the function e**>%, which is exponentially decay-
ing in the invisible region. The exponential growth of the complex trigonometric
functions can thus be limited by embedding the term e’*=% into the computation
of E(a, ), i.e., into (C.12) and (C.13), for complex values of o and choosing the
z-plane appropriately. This also reduces the computation time of (C.1).

We thus come back to the expression of dJ;,, () given in (C.14) and concentrate
on the product (cos(a/2))20H+m(sin(a/2))?""2°"#~™ when « is complex and
given by x = 7/2 and y € (—¢,—00). By using (C.17) and (C.18) after a few
manipulations we obtain

20+pu+m 2n—20—p—m 2\ 27 —42at (Sir‘h%) 204+
(cosg) (sin%) = (%) SN geiem) (C.19)

2n
-(cosh % + i sinh %)

We conclude that the exponential growth in the invisible region is thus governed
by the last term, which, written in amplitude and phase, becomes

sinh £

2n 2 2\n ; n % 2
(cosh%—i—isinh%) = ((cosh%) + (sinh %) ) e <C°S“§> " (C.20)

We now multiply the amplitude of (C.20) with the exponential e?*=?
eih=2 = ehzsinh(v) gince k, = kcos .

From (C.20) we then get

2 2\ n . Y —Y\n .
((cosh %) + (sinh %) ) ekzsinh(y) — (%) ek#sinh(y) (C.21)

, noticing that

If we now recall that a general binomial of the form (a + b)™ can be expressed as

(a+b)" =a" + (?) a" b+ (Z) a" 2 4 b (C.22)
where (Z) = k,(%lk), are the binomial coefficients, then, by calling a = e¥ and

b = e Y we obtain
(e +e ¥)" =€ + (?) e¥(n—De=v 4 (Z) eV =2e=2 4 p e, (C.23)

In this way we can embed the exponential e’¥=* = ¢F25"h(¥) into every term in-

volved in (C.23).
The final expression of djj,,(a)e
(C.14) and (C.19),

=% in the invisible region thus becomes, from

A ()2 = \/(n+ 1)l(n — p)!(n +m)!(n —m)! - (C.24)
min(n—m,n—p) L
(1)
Z olln—m-—o)l(m+pu+0o)(n—p—o)!

o=max(0,—m—pu)
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inh ¥
1 —i2atan (%) (204+p+m—n)
e ok 3

2% (ey + efy)nekz sinh(y)

where the last two terms can be computed through (C.23). Attention is obviously
paid while computing the factorials.

It can be seen, from (C.23)and (C.24), that the embedding of the factor e**:* into
the normalized associated Legendre functions results in a sum of exponential terms
where the largest contribution is given by

f(n,y,z) = e7nvthzsinhly), (C.25)

Eq. (C.25) shows that, for a given point in the invisible region of the plane wave
spectrum characterized by a negative value of y, and a given term in the SWE
characterized by the index n, the exponent can be kept bounded and less than a
certain value S provided that the z-coordinate is chosen according to

S+ ny

Eq. (C.26) can thus be used as a guideline to select the appropriate z-plane for a
given point in the invisible region and the maximum n = N in the series of (C.1).
It is finally noted that the z-plane given by (C.26) is normally too large for the
purpose of diagnostics, where only the extreme near-field is of interest. However,
because of the simple z-dependence of the plane wave spectrum, we are allowed to
choose with (C.26) a certain z-plane to make the computation (C.1) more efficient,
and then back-propagate the final result of (C.1) to a new zo-plane, zo < z, which
is the one of interest for the diagnostics. This can be accomplished by multiplying
the final result by e "2 with Az = 2z — 2,.
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Abstract

The transformation between the Spherical Wave Expansion (SWE) and the Plane Wave
Expansion (PWE) is investigated with respect to a range of its fundamental properties. First, the
transformation of individual spherical waves is studied in order to understand how these
contribute to the different regions of the plane wave spectrum. Second, the number of spherical
waves necessary to accurately determine the PWE over different regions of the spectral domain
is investigated. Third, numerical aspects of the transformation are addressed.

1. Introduction

The Spherical Wave Expansion (SWE) and the Plane Wave Expansion (PWE) are two well-
known techniques to express time-harmonic electromagnetic fields in source-free regions of
space. While the SWE expresses the field as an infinite series of discrete spherical waves, the
PWE expresses the field as an infinite continuous spectrum of plane waves. Each of these
expansions exists in slightly different forms, e.g., with different expansion functions and
different spectral domains, but these forms are all equivalent. The original form of the SWE
was introduced by W. W. Hansen [1935], while the theory was popularized a few years later by
Stratton [1941]. A more recent treatment was given by J. E. Hansen [1988] in relation to
spherical near-field antenna measurements. The original PWE was introduced by Whittaker and
Watson [1927], reformulated by Stratton [1941], employed by Kerns [1976] for planar near-
field antenna measurements, and recently treated by T. B. Hansen and Yaghjian [1999]. One
form of the PWE employs as spectral variables the Cartesian components of the wave
propagation vector [Hansen and Yaghjian, 1999], while another form employs instead its
spherical components [Stratton, 1941]. The SWE and PWE have been extensively employed in
both the optical and microwave frequency bands in areas like propagation and diffraction
theory, imaging techniques, and antenna measurements, [Devaney, 1982], [Hansen and
Johansen, 2000], [Mehler, 1988] and [Yaghjian, 1986]. The choice of employing the SWE or
the PWE is determined by the geometry of the source configuration, the spatial region of
interest, and the available information about the radiated fields.

Though the SWE and the PWE can both be derived from the homogeneous vector Helmholtz
equation, their regions of validity are fundamentally different. Employing a Cartesian (x,Y,z) -

coordinate system and the associated spherical (r,8, @) -coordinate system, the SWE is valid

for all r > r,, where r, is the largest r-coordinate of the source and hence the radius of the so-
called minimum sphere, while the PWE is valid for all z > z, where z, is the largest z-coordinate

of the source, see Fig. 1. It is noted, for later use, that r, is obviously always larger than or
equal to z,, i.e., r,> | zo| . For source regions with a planar aperture, the PWE will, by a proper
orientation of the coordinate system, be valid in the extreme near-field of the aperture while this
will not be the case for the SWE, see Fig. 1.

While the mathematical formulations of the PWE and SWE are very different, as are their
respective regions of validity, it can be shown that it is possible to derive one expansion from
the other through a rigorous transformation. The necessary equations to perform the
transformation, i.e. the PWE of the spherical vector wave functions of the SWE, were first
presented by [Stratton, 1941, pp. 417] and later by [Morse and Feshbach, 1953, pp. 1865]. A
complete treatment of the transformation was given by [Devaney and Wolf, 1974] and recently
by [Varadan, Lakhtakia and Varadan, 1991]. These works on the SWE-to-PWE transformation
concentrate on its mathematical derivation, while such aspects as convergence mechanism and



truncation of the series and integrals involved in the transformation, as well as its numerical
implementation, have been dealt with to a lesser degree.

It is thus the primary purpose of the present work to investigate the fundamental properties of
the SWE-to-PWE transformation. The transformation of individual spherical waves will be
studied in order to understand how these contribute to the different regions of the plane wave
spectrum. Also, the number of spherical waves necessary to accurately determine the PWE
over different regions of the plane wave spectrum will be investigated. Furthermore, numerical
aspects of the transformation will be addressed.

The SWE-to-PWE transformation is particularly useful in antenna diagnostics for spherical
near-field antenna measurements [Cappellin, Frandsen and Breinbjerg, 2006][Cappellin,
Breinbjerg and Frandsen, 2006]. Electrical and mechanical errors in an antenna may seriously
affect the antenna performance, and while their presence is normally detected by anomalies in
the measured far-field pattern, often only an analysis of the extreme near-field can allow their
identification. However, the computation of the extreme near-field is generally not possible
when the field is expressed as a SWE obtained from a spherical near-field measurement, since
the SWE is valid only outside the antenna minimum sphere of radius r,. One way to overcome
this limitation is to transform the SWE into the PWE, which is valid on any z-plane z > z,, with
| zo| <r,. Once the PWE is known, the extreme near-field can be computed and subjected to the
diagnostics.  For this use, it is particularly interesting to note that the SWE-to-PWE
transformation provides the contributions of the spherical waves in the visible as well as
invisible regions of the spectral domain. The contribution of the invisible region of the PWE to
the extreme near-field can be significant at distances less than one wavelength from the
antenna, [Yaghjian, 1986] and [Wang, 1988], and it gives a spatial resolution better than the half
wavelength provided by the visible region of the PWE [Booker and Clemmow, 1950].

The present manuscript focuses on fundamental properties of the SWE-to-PWE transformation
that constitutes an essential step in this antenna diagnostics technique but does not document
the diagnostics technique as such. The fundamental properties of the SWE-to-PWE
transformation do have practical implications for the antenna diagnostics technique but this
relies also on other essential steps, see e.g. [Cappellin, Frandsen and Breinbjerg,
2006][Cappellin, Breinbjerg and Frandsen, 2006], and it is documented in more practically
oriented works [Cappellin, Frandsen and Breinbjerg, 2007][Cappellin et al., 2007].

The present manuscript is organized as follows: In Section 2 the SWE and PWE are briefly
summarized with attention to their definitions and regions of validity. In Section 3 the
derivation of the SWE-to-PWE transformation is described and its fundamental properties are
discussed in detail. In Section 4 a test case is presented for numerical investigation. All
expressions are given in the S.1. rationalized system with a suppressed €™ time convention.

2. The Spherical Wave Expansion (SWE) and Plane Wave Expansion
(PWE)

We begin by introducing the SWE of the electric field E radiated by an antenna enclosed in a
minimum sphere of radius r, [Hansen, 1988],

_ k o0 n _ _ _ _
E(r) :ﬁZ D QARSI + Qo (), T >, (1)

n=1l m=-n

with # being the medium intrinsic admittance, k the wave number, and T the position vector
expressed in spherical coordinates (r,é,¢). The expansion coefficients are denoted by Ql(ri)n



and Q2mn' while Flﬁml () and F2mn (F) are the power-normalized spherical vector wave
functions given by
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In these expressions h® (kr) is the spherical Hankel function of the first kind, PI" (cos@) the
normalized associated Legendre function of degree n and order m [Hansen, 1988, eq. A1.25],

and , 0, ¢ are the spherical unit vectors. It can be seen from Egs. 2-3 that the r-dependence of

the spherical vector wave functions is given by h{® (kr) . For each spherical mode with index n
a transition region exists around r, = n/k, since the mode decays rapidly with increasing r for
r <<r,, corresponding to an evanescent wave, while it decays as rtfor r >> r,, , corresponding
to a propagating wave. Though all modes are thus propagating in the far-field, this transition
property implies that, for an antenna with a minimum sphere radius r,, the high-order modes
with n > kr, are highly suppressed outside the minimum sphere and only modes with n < kr,
contribute to the far-field. Hence, the n-series in Eq. 1 can be truncated at N=kr, +10 while
maintaining a high accuracy of the far-field [Hansen, 1988].

The PWE of the same electric field E in the spectral k.k,-domain valid for z > z,, with z, being
the largest z-coordinate of the antenna, is given by [Hansen and Yaghjian, 1999]

E(F) =—j jT(kx,k yeke! N dk, 7> 2, 4)

—00 —00

where T is the position vector with Cartesian coordinates (X,y,z) and k, k, are the spectral
variables, which, together with k, = ,/k? —k? —k§ , constitute the Cartesian components of the
wave propagation vector k , k = K, X+ ky9+ k,Z. f(kx, ky) is the plane wave spectrum at

z = 0, while f(kx,ky)eikzzis the spectrum for a given z-coordinate. The spectral domain is

divided in two regions, the visible region for k.*+ k <k?, and the invisible region for k’+ k >
k?, see Fig. 2a. While the spectral variables k, andk are real everywhere, Kk, is real in the VISIb|e
region and purely imaginary with a positive imaginary part in the invisible region. Real values
of k, correspond to propagating plane waves, while imaginary values of k, correspond to
evanescent plane waves that are exponentially attenuated with z. Their contribution is usually
negligible at distances larger than one wavelength from the antenna [Yaghjian, 1986][Wang,



1988]. In practice, the ky- and k,-integrals in Eq. 4 are truncated at finite values +Kymaxand *kymax,
respectively. At the border between the visible and invisible regions k, =0and a singularity of
the type 1/k, is generally present in at least one component of the plane wave spectrum
T [Hansen and Yaghjian, 1999]. A necessary but not sufficient condition to avoid such a
singularity is that the antenna far-field pattern exhibits a null for 8 = /2. 1t is finally recalled
that a simple relation exists between the far-field and the visible region of the plane wave
spectrum, according to [Hansen and Yaghjian, 1999, eq. 3.133] and [Booker and Clemmow,
1950],

Efar (r.0,9) = klrig]oo E(r,0,9)

ikr _ (5)
:—e—ikcos6’T(ksin&cow,ksin@sin(p) 0<[0,7/12], ¢<[0,2r]
r

3. The SWE-to-PWE transformation and its properties
3.1 Theory

It will now be shown how the SWE of Eq. 1 can be transformed into the PWE of Eq. 4. The
following derivation is based on [Devaney and Wolf, 1974], however it has been extended
[Cappellin, Frandsen and Breinbjerg, 2006] in order to use the power-normalized spherical
vector wave functions, the kk,-PWE, and the S.I. system of units. The use of the power-
normalized spherical vector wave functions turns out to be particular advantageous since these
are employed in the textbook [Hansen, 1988] and in the software SNIFTD [homepage of
SNIFTD], which have become widely used standards for spherical near-field antenna
measurements. There are alternative derivations of the SWE-to-PWE transformation, and one
such approach is given in Appendix A. The transformation will be derived in 3 steps.

The first step consists of introducing the PWE of the spherical vector wave functions, and since
[Devaney and Wolf, 1974] employs the spectral af-domain we thus take outset in

EG ) = I)n+1 ikk-F

Funn (F) = 27[ "D _”Y (a,p)e™ ' sinadadp (6)
EG) =) _ (-=i)" sy m Kk T o
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with kK =k /k =sina cosp x +sinasing y+cosa z being the unit wave propagation vector, the

spectral variable f belonging to the interval [-x, ] and the spectral variable a belonging to the
complex contour B, see Fig. 3. Real values of a correspond to propagating waves, while

complex values of « correspond to evanescent waves. The function Y,"(«,f) is the vector
spherical harmonics which can be expressed as

[ B osee™ ™ Bl cosae ™
Y (a, ) \/_( |m|J [ P (cosar)e™ B — maP (cosar)e j (8)

with & = cosa cosBKX+cosa sing y —sina 2 and ﬁ:—sinﬂfucosﬂy.



Second, the PWEs of Egs. 6-7 are substituted into the SWE of Eq. 1 and the order of integration
and summation is interchanged, obtaining the PWE of the electric field in the spectral of-
domain

E(r):% I jé(ﬁ)e‘k*'Fsinadadﬁ )
-7 B

where the spectrum complex amplitude E(IZ) is given by

D=2 Y G W[ QIR (e, QS KV (2, ) | (10)

n=1 m=-n
Thus, the spectrum complex amplitude can be calculated from the knowledge of the SWE

coefficients Q%) and Q¥

2mn *
ikcosaz

Third, the spectrum in the spectral of-domain, E(IZ)e , Is translated into the kk,-domain

obtaining T (k,k,)e"*” , since it can be shown that

f(kx,ky)eikzz — kié(k‘)eikcosaz (11)
z

where o and $ on the right hand side are expressed as functions of the spectral variables k, and

k, according to

2 2

. kg +ky ky
a =arcsin 2 and g =arctan © (12)
X

Obviously the arcsin and arctan functions must be implemented to ensure the correct contour B
for the angle « and the interval [-z, «] for the angle p.

Eg. 11 is derived by applying to Eq. 9 a change in the integration variables
usingk, =ksinacos 3, k, =ksinasin B, k, =kcosa, and by identifying the obtained result
with Eq. 4. With Eq. 12, the - and p-values corresponding to chosen k- and k-values can be
calculated exactly without interpolation. By combining Egs. 10-11-12, the plane wave spectrum

T (ky. ky)e"* =T (k,,k,,2) can finally be written as

Ty ky,2) = Z Z QT (K Ky 2) + Q8 Ty (K K 2) (13)
n=1l m=
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In order to calculate the PWE of Eq. 4 from the known SWE of Eq. 1 we can summarize the
required steps as follows:

1. Choose a certain k.k,-spectral domain according to the desired spatial resolution (see later).
2. For every point in the kk-spectral domain determine the corresponding a- and S-values from
Eqg. 12.



3. Calculate the plane wave spectrum at the chosen z-plane with Eq. 13.

It is emphasized that Egs. 6-7-10 are of fundamental importance in the theory of modal
expansions and provide the theoretical justification for the SWE-to-PWE transformation. In

particular it is noted that the spectrum complex amplitude E(IZ) is an analytic function in its
complex domain of definition, since it can be expressed by the spatial Fourier transform of the
finite source distributions, [Devaney and Wolf, 1974] and [Gerchberg, 1974]. Second, E(IZ) isa

vector function normal to the unit vectorlz, i.e., IZ-E(IZ):O. Third, the vector spherical
harmonics Y." (e, ) and IZx\?nm (e, B) constitute a complete orthogonal basis for all analytical

vector functions normal to the unit vector k , [Devaney and Wolf, 1974]. Thus Eg. 10 becomes
the necessary intermediate step for the transformation from the SWE to the PWE, or vice- versa.
It is finally noted that though we begin with a SWE that is only valid outside the minimum
sphere, r > r,, the obtained PWE is valid also inside the minimum sphere for all points with z >

Z, since E(IZ) is independent of z.

3.2 Fundamental properties

We will now discuss some fundamental properties of the SWE-to-PWE transformation related to
resolution, exponential growth of the spherical vector wave functions, and transformation of
individual spherical modes.

First, once the plane wave spectrum f(kx,ky,z) is computed through Eg. 13, the spatial
resolution along the x- and y-directions, J, and §y , of the electric field obtained from Eq. 4 is

given by 6, =7 /Kymax Sy =7 /Kymax - A spatial resolution better than half a wavelength, /2, is

thus provided when part of the invisible region is taken into account, since either k, k, or both
are larger than the wavenumber k = 2z/]. Here, the resolution is defined as the spatial distance
between the nulls of the fastest oscillating spectral component. On the other hand, for a given
desired spatial resolution, J, and J,, the required range of the PWE is obtained from
Kymax =77/ and Ky may =7/5y, and this range will then determine the number of modes in the
SWE and thus the truncation number N (see later).

Second, from Egs. 2-3-8 we observe that

Y_nm(a,/)’) o IZlmn (05,,3)
IZXY_nm (a,B) o< KZmn (a,p)
EQ

— kr
where Kgmn (6,9) = kIim = Fsmn (r,€,0) , with s = 1, 2, is the far-field pattern function of the
r—ow €

(16)

spherical vector waves [Hansen, 1988]. Thus, the computation of E(IZ) by Eq. 10 corresponds

to the SWE of the far-field. This implies that all information about the visible and invisible
spectral regions of the plane wave spectrum is in principle contained in the far-field. However,
while the traditional truncation in the n-index at N = kr,+10 provides accurate values of the

SWE of the electric far-field [Hansen, 1988] and thus of the spectrum f(kx,ky) in the visible
region, the same truncation value will in general not be sufficient in the invisible region as it



will be shown below. The reason for different convergence rates in the two regions lies in the
fact that the invisible region is described by complex values of the spectral variable o, see Fig.
3. The trigonometric functions in « appearing in the associated Legendre functions contained in
Y."(a, B), see Egs. 8-14-15, are not limited in the complex domain described by the contour B.

This has two consequences: The first one is that computational problems appear in the
evaluation of the associated Legendre functions in the invisible region already for moderate
values of n. The second one is that the exponential growth of these functions requires Q
coefficients of extremely low values, normally provided by high n- and m-modes, in order for
the series of Eq. 13 to reach convergence. While the exponential growth of the trigonometric
functions in the invisible region is an inherent mathematical property, we notice however that
the transformation of Egs. 13-15 does not require the calculation of the vector spherical
harmonics Y,"(«,5) themselves but rather their product with the function exp(ik,z), which is

exponentially decaying in the invisible region. The exponential growth of the vector spherical
harmonics can thus be limited by embedding the term exp(ik,z) into the computation of
Y,"(a,5) for complex values of a and choosing the z-plane appropriately. The intermediate

computation of the extremely large values contained in the vector spherical harmonics is thus
avoided since the product with exp(ik,z) is automatically considered. This procedure also
reduces the computation time of Eqg. 13. If the associated Legendre functions are computed
through the rotation coefficients defined in [Hansen, 1988, egs. A2.17-18-19], it is found that
the embedding of the factor exp(ik,z) results in a sum of exponential terms where the largest
contribution is f(n, a, z) given by

f(n, a, z) =exp(—nIm{a}+k zsinh(Im{c})) 17
with a belonging to the domain B depicted in Fig. 3, and n being the degree of the associated
Legendre function I5r‘,m‘ (cosa) in Eq. 8. Hence, for a given point in the invisible region of the

plane wave spectrum characterized by a negative value of Im{«}, and a given term in the SWE

characterized by the index n, Eq. 17 shows that the exponent can be kept bounded and less than
a certain value S provided that the z-coordinate is chosen according to
S S+nim{a}
ksinh(Im{c})
Eq. 18 can thus be used as a guideline to select the appropriate z-plane for a given point in the
invisible region and the maximum n = N in the series of Eq. 13. In Fig. 4 the relation of Eq. 18
is illustrated for different values of n, z and Im{a} in the case of S = 0. For example, if
Im{a} = -1.317, corresponding to k, = 2k (light blue line), and if n = 50, the z-plane should be
selected larger than 6A. It is noted that the z-plane given by Eq. 18 is normally too large for the
purpose of diagnostics where only the extreme near-field is of interest. However, since the z-

dependence of the plane wave spectrum T is given by exp(ik,z), we are allowed to choose with
Eq. 18 a certain z-plane to make the computation of the single terms of Eqg. 13 more efficient,
and then back-propagate the result of the double summation of Eq. 13 to a new z,-plane, z,<z,
which is the one of interest for the diagnostics. This can be accomplished by simply multiplying
by exp(-ik,Az), with Az = z-z,.

In order to provide an insight into how the plane wave spectrum depends on the n- and m-
spherical modes and to better understand how a given spherical wave transforms and
contributes to the visible and invisible regions of the spectral k.k,-domain, we now concentrate

on Egs. 14-15 and study the behaviour of T, and T,,, on the z-plane z = 0 with varying n

(18)



and m. We first note that the magnitudes |-Flmn| :|T_l_mn| :|T_2mn| :|'F2_mn| and that these are

azimuthally constant since the / dependence is given by e””. We can then choose either a fixed
n-mode and vary the m-modes, |m| =0,1,..,n,or afixed m-mode and vary the n-modes, n =

max(1, |m| ), ..., N, see Fig. 2b. For a fixed n-mode, see Fig. 5 for the case of n = 3, we observe

that every m-mode with |m| #1 provides a null at k, =k, =0, and this null is surrounded by a

circular region of low magnitude with a radius that increases for increasing m, in accordance
with the well-know property that only modes with |m| =1 are nonzero on the z-axis. We also

notice that the smaller the|m| , the larger the value of |'F1mn| in the invisible region, again see

Fig. 5. For a fixed m-mode, see Fig. 6 for the case m = 0, there is an annular null inside the
visible region, with a radius that decreases for increasing n. We finally observe that for larger n,

the period of oscillation of |-|Tlmn| inside the visible region becomes smaller, and the magnitude

in the invisible region becomes larger, again see Fig. 6.

All these observations are useful in understanding the mapping of a given spherical wave into
the spectral kik,-domain. It should be kept in mind however that what happens in the general
case of a series of spherical waves is more complicated, since the spherical waves are weighted

by the coefficients Ql(,?])n and Qéﬁq)n . The influence of the expansion coefficients on Eq. 13 will

be analyzed through an extensive numerical investigation in Section 4, where the possibility of
truncating the infinite n-modes to a finite N will be also taken into account.

It is finally noticed that the number of terms contained in Eq. 13 for a given truncation in the n-
modes equal to N, is given by 2N-(N+2). If the extents of the spectral k.k,-domain are given by
2Kymax and 2kymax along the ky- and ky-axis respectively, then, for chosen sampling densities Jk;
and Jky, R = (2Kymax/0K,)+1 points will be present in ky and V = (2ky .,/ 5k )+1 points in k.

Thus, the total number of terms that must be calculated in Eq. 13 is R-V-2N-(N+2), where each
term is of the form of Eq. 14 or 15.

Xmax

3.3 A simple test case: the electric Hertzian dipole at the origin

In order to illustrate the SWE-to-PWE transformation and the computation of the visible as well
as invisible regions of the plane wave spectrum from the Q coefficients of the SWE, we
consider a z-oriented electric Hertzian dipole with dipole moment p located at the origin of the
coordinate system.

For this antenna configuration we know from [Hansen, 1988, Eq. 2.117] that the SWE of the
radiated field contains only the single mode s =2, m =0, n =1, where

o= ;zﬂ (19)
o B (M) 11 d g
For(r) = Zﬁ( o cosé f 2w Ak (krh® (kr))sin9 0 (20)

When Eq. 19 is substituted into Eq. 13 and Eq. 12 is used, the plane wave spectrum becomes



Tk, ky,7) = ——| k %+k y+k22‘k22 elk? (21)
ey Arkn| y k, ’
which agrees with the plane wave spectrum obtained directly from the dipole current [Hansen
and Yaghjian, 1999, eq. 3.109]. Though this configuration is particularly simple, it illustrates
the general property that each spherical vector wave contributes to the entire spectral domain of
the PWE — the visible region as well as the invisible region — and that the complete PWE can be
obtained from the complete SWE. For a general antenna more Q coefficients will be present in
the SWE of the radiated field, and thus more terms will be required in the computation of Eq.
13 as illustrated in the following section.

4. Numerical investigation on the SWE-to-PWE transformation

In this section we investigate the properties of the SWE-to-PWE transformation of Eq. 13, in
particular the convergence mechanism, in the general case where the coefficients

Ql(r?q)n and Qéﬁin are included. The purpose is to study the possibility of truncating the infinite n-

series to a finite value N that might be different from the truncation number used in far-field
calculations. In order to do that, we investigate the case of an x-oriented electric Hertzian dipole
displaced on the x-axis, see Fig. 7. In spite of its apparent simplicity, this test case possesses
characteristics that are representative for more complex antennas, and its use here is motivated
by several factors. First, since any source distribution can in principle be constructed from a
combination of properly positioned, oriented and excited Hertzian dipoles, the case of a single
dipole is representative for more realistic sources. Second, as it will be seen in Egs. 22-23, a
single electric Hertzian dipole displaced from the origin of the coordinate system possesses an
infinite SWE like any complex antenna, which allows us to study the truncation of Eg. 13 to
finite N-values. Third, the Hertzian dipole allows the analytical calculation of the exact plane
wave spectrum which provides the necessary reference to investigate such a truncation, see Egs.
24-26. We have investigated other source configurations, see for example [Cappellin, Frandsen
and Breinbjerg, 2006][Cappellin, Breinbjerg and Frandsen, 2006] for an array of Hertzian
dipoles and a rectangular aperture in free-space, but the present one with a single dipole shows
qualitatively — though not quantitatively — the same properties.

For the x-oriented dipole with dipole moment p located at the position x = r, the Q coefficients
can be calculated analytically [Hansen, 1988, eq. A1.78]

Q® =0 n=12.0 m=-n,..n (22)

m .
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with j,(kr) being the spherical Bessel function of the first kind. Different values of r, have been
studied and here the results for r, = 2/, corresponding to kr, = 12, are presented. The n-mode

2 n
1
power spectrum, B4 (n) = EZ Z

s=1 m=-n

® |?

smn

[Hansen, 1988, eq. 2.55], normalized to the value

of Paq (1), is shown in Fig. 8. It is seen that the peak occurs at n~kr, =12, as expected, and

that the major amount of power is contained in the first N =kr, +10 modes. By use of Egs.

12-13-22-23 the plane wave spectrum is calculated for different truncation numbers N and
resolved in its Cartesian components T,, T,, and T,. These are then compared to the exact plane



wave spectrum, calculated analytically from the dipole current distribution as [Hansen and
Yaghjian, 1999, eq. 3.109]

k2 —Kk® e i
oy = p X e—lero e|kzz (24)
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From Eqgs. 24-26 it is seen that Ty x and Try contain the singularity in k,. Fig. 9 shows the
normalized magnitude (in logarithmic scale) of the x-component, T, x and T,, on the plane
z2=0.24, for N = kro, N = kro+10 N = kro+20, N = kr,+30, and N = kr,+38, while the
corresponding phase plots in radians are given in Fig. 10. From Fig. 9 it is possible to
distinguish the singularity for k, = 0, the nulls occurring at k, = £k, and the exponential decay in
the invisible region. Eq. 13 is a convergent series and we notice from Fig. 9 that the spectral
region in the k¢k,-domain where the convergence is reached gradually increases with increasing
N. For N = kr,= 12 the visible region is not completely reconstructed but the convergence is
reached with N = kr,+10 = 22, in the visible region and at k, = 0. Values of N >kr, +10 only

influence the invisible region.

The convergence mechanism can also be understood by considering the n-mode power
spectrum of Fig. 8. The extremely low values of power contained in the high n-modes are given
by corresponding extremely low values of Q-coefficients which keep finite the product with the
diverging spherical vector wave functions, and provide the necessary terms in order for the
series of EqQ. 13 to reach convergence. A plot of the amplitude of T, as a function of N for
specific points in the spectral domain is shown in Fig. 11. We clearly distinguish two different
mechanisms: the series of Eqg. 13 reaches convergence with N = kr,+10 = 22 for points in the
visible region, while additional N terms are needed to reach convergence for points in the
invisible region. In particular, for the spectral point (k,, k) = (1.2k, 0) (blue curve in right-hand
plot of Fig. 11), convergence is not reached until N = kr,+23 = 35. For the spectral point (k, k)
= (1.6k, 0) (red curve in right-hand plot of Fig. 11) convergence is not reached until N = kr,+33
= 45; and for (ky, ky) = (1.8k, 1.8k) (black curve in right-hand plot of Fig. 11) convergence is not
within the first 50 terms of the SWE. Furthermore, it is interesting to note that for these
spectral points the magnitude of the accumulated series becomes very large, in excess of
100dB, for intermediate values of N before it converges at a level of some -10dB. For all of
these spectral points in the invisible region, the first few terms (N < 5) are bounded and the
accumulated series has values comparable to those for points in the visible region. A plot of the
real and imaginary parts of T, as a function of N, see Fig. 12, shows that the path to
convergence for points with k, = 0 and k,> k forms a rectangular spiral which initially diverges
but then converges to the final value. For points within the visible region, the convergence path
is more irregular though obviously much faster. It has been observed that these mechanisms of
convergence are independent of the spectral component and govern both the amplitude and the
phase. The truncation number N required to reach convergence in the [-2k, 2k] domain depends
on r, and it has been found that N = kr, + 4kr, constitutes a good rule-of-thumb. This rule holds

for the present case of a single dipole and was also observed for other antenna configurations
[Cappellin, Frandsen and Breinbjerg, 2006] [Cappellin, Breinbjerg and Frandsen, 2006],
though it may not be generally valid. Moreover, as a consequence of the properties of the
expansion of Eq. 10, the convergence mechanism is independent of the z-plane of observation



though the spectrum in the invisible region of course becomes negligible with larger z-
coordinates, see Fig. 13 for the case z = 44.

Since the Hertzian dipole investigated here is displaced along the x-axis, the convergence of the
SWE-to-PWE transformation depends only on the k, spectral variable and is thus independent
of the k, spectral variable as seen from Figs. 9-10. For sources distributed along both the x- and
y-axes, the convergence will depend on both k, and k in the sense that all points in the visible
region reach convergence with N = kr,+10, while all points in the invisible require more terms
depending on their location in the spectral domain and the antenna size.

5. Conclusions

Fundamental properties of the SWE-to-PWE transformation have been investigated analytically
and numerically. The transformation allows the calculation of the PWE in the visible as well as
the invisible spectral regions from the knowledge of the Q-coefficients of the SWE. The
transformation of individual spherical waves was studied in order to determine how these
contribute to different regions of the spectral domain. It was noted that each spherical wave
contributes to the visible as well as the invisible regions and thus provides information on the
propagating as well as evanescent waves of the PWE. Also, the convergence properties of the
transformation were studied, and it was found that these are vastly different for the visible and
invisible regions of the PWE. While a truncation in the n-modes at N = kr,+10, with r, being
the radius of the minimum sphere, is generally sufficient to reach convergence in the visible
region, a much higher value is necessary in the invisible region, where the path to convergence
was found to involve very large intermediate values. For the configuration investigated here, a
truncation number N = kr,+4 kr, was found to be necessary for a [-2k, 2K] region of the spectral
domain. Furthermore, it was shown how the numerical problem of calculating the spherical
wave functions for a given n- and m- mode in points of the invisible region can be overcome by
embedding the exp(ik,z) term in the calculation of the associated Legendre functions, and
guidelines were provided to find the proper z-plane. Finally, it was pointed out that the
determination of the PWE in the invisible region leads to an improved spatial resolution
compared to the traditional half a wavelength provided by the visible region alone.

The SWE-to-PWE transformation constitutes an essential step in a new antenna diagnostics
technique for spherical near-field antenna measurements, where the extreme near-field must
subsequently be computed from the obtained PWE using Eg. 4 by either a direct numerical
integration or, more efficiently, an inverse Fourier transform [Cappellin, Frandsen and
Breinbjerg, 2006]. It is noted that the antenna diagnostics technique based on the SWE-to-PWE
transformation will be influenced and limited by the finite dynamic range and accuracy of the
measurement system. This will limit the number of terms in the SWE that can be accurately
measured and the spectral region where convergence can be reached [Cappellin, Breinbjerg and
Frandsen, 2006] [Cappellin, Frandsen and Breinbjerg, 2007][Cappellin et al., 2007].
Nevertheless, the properties of the SWE-to-PWE transformation investigated above are
generally also of practical importance and determine, along with the quality of the measurement
system, the accuracy and the efficiency of this antenna diagnostics technique [Cappellin,
Frandsen and Breinbjerg, 2007][Cappellin et al., 2007].



Appendix A

In this appendix the SWE-to-PWE transformation is derived along the lines of [Hansen and
Yaghjian, 1999, Section 3]. We begin by introducing the far-field expression for the SWE of
Eg. 1 [Hansen, 1988, eq. 2.179],
|kr

Egyr (F) = lim E(r)__sz Z QA K (0,0) + Q2 Koy (6,00)

. =l m= (@)

elkr _

T F(0.9)

with 6<[0,7] and p<[0,27]. F(0,9) is the far-field pattern, and K,,(8,¢) the far-field
pattern functions [Hansen, 1988, pp. 49]
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Next, we consider the PWE of Eq. 4 and in particular its far-field expression in Eqg. 5 [Hansen
and Yaghjian, 1999, eq. 3.133]
ikr
Efo (1) = lim E(7) = _& ik cosO T (ksin@cosp, ksindsing) 0¢e[0,7/2], ¢<[0,2x]
kl’i;ao r (e)
e —
= F(6.9)

By identifying Eq. (2) and (e) in the spatial domain where both hold, 8 €[0,z/2] ¢ €[0, 2],
the plane wave spectrum T canbe expressed as

QS)Kmn(e(p)+anKmn(9¢)
\Fﬁkcosezlmzn tmn amn 2 ®

kcos@ F(6.0)
where ksin&cosp=k,and ksinésing =Kk, are the spectral variables. In the first place, this

T (ksin @cos @, k sin Asin )=

relation holds for real 6-angles and thus the visible region, k7 +kZ <k?. However, since the

far-field pattern of a finite source distribution is an analytic function, [Hansen and Yaghjian,
1999] and [Gerchberg, 1974], it is possible to analytically continue the far-field pattern to
complex #-angles, obtaining from Eq. (f) the plane wave spectrum also in the invisible region,

kZ +kJ > k. While the relationship between the plane wave spectrum and the far-field pattern
can be found from Eq. (e) alone, the use of Eq. (a), and thus of the first equality in Eq. (f),



allows the analytical continuation to complex values of 6, overcoming the difficulty of
continuing a measured far-field pattern [Hansen and Yaghjian, 1999, pp. 136].
By writing 6 and ¢ as functions of the spectral variables k and ky according to
) | kG kS anl &
arcsin % , @ =arctan K, (9)

allowing values of k. and k, larger than k and ensuring @ €B and ¢ <[0,27], writing
k, =kcos@ and by defining T (k,,k,)e"* =T (k,.k,,z) , from Eq. (f) it follows that
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The plane wave spectrum f(kx,ky,z) can thus be written in its entire k.k,-domain from the
knowledge of the Q coefficients of the SWE of the radiated field.
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Abstract

An effective technique for extracting the singularity of plane wave spectra in the computation
of antenna aperture fields is proposed. The singular spectrum is first factorized into a product of
a finite function and a singular function. The finite function is inverse Fourier transformed
numerically using the Inverse Fast Fourier Transform, while the singular function is inverse
Fourier transformed analytically, using the Weyl-identity, and the two resulting spatial
functions are then convolved to produce the antenna aperture field. This paper formulates the
theory of the singularity extraction technique and illustrates the effect of this for an array of
electric Hertzian dipoles.

1. Introduction

The plane wave expansion (PWE) is widely used in antenna theory, as well as diffraction,
imaging and propagation theory, to represent the electromagnetic field in source-free regions of
space as an infinite, continuous spectrum of plane waves [1]-[3]. The plane wave spectrum
(PWS) of the PWE is an analytic function on the entire spectral domain, except possibly at the
circular border between the visible and invisible spectral regions where a singularity may exist
[4]. Since the PWS at, and close to, this circular border corresponds to the far-field radiation
pattern at wide angles, a zero of the pattern at those angles is a necessary condition for the PWS
to be finite. Otherwise, the PWS possesses a singularity there, and this is thus the case for most
antennas.

In applications where the aperture field is calculated from the PWS this singularity must be
taken properly into account in order to ensure the accuracy of the aperture field. In some cases,
e.g., where the PWS is determined from a planar near-field measurement over a finite scan plan,



the PWS is reliable only over the central part of the visible region of the spectral domain [5],
and the part of the domain where the singularity exists must be disregarded. However, in other
cases, e.g., where the PWS is determined from a far-field measurement, a compact range
measurement or a spherical near-field measurement, the PWS at, or close to, the border between
the visible and invisible regions can be determined and the singularity is thus known.

Since the PWS and the aperture field constitute an inverse Fourier transform pair, the Inverse
Fast Fourier Transform (IFFT) is normally used for computation of the aperture field from the
PWS. However, the singularity of the PWS, though integrable, prevents a straightforward
application of the IFFT. Many singularity extraction techniques for numerical integration have
been proposed, in particular for integral equation and method of moment techniques [6][7], but
here a different approach is used.

The purpose of this work is to formulate and validate a new singularity extraction technique for
the computation of antenna aperture fields from singular plane wave spectra. In this technique
the singular PWS is first factorized into a product of a finite function and a singular function.
The inverse Fourier transforms of these two spectral functions are then calculated. For the
finite function this is done numerically using the IFFT, and for the singular function this is done
analytically using the Weyl-identity. Finally, the two thus obtained spatial functions are
convolved to produce the antenna aperture field. In this work the effect of the singularity
extraction technique is applied to a simple test case in order to isolate and identify the
singularity and its influence on the aperture field. However, the singularity extraction technique
has been applied also to real measurements data for practical and complicated antennas [8]-[9].
The present manuscript is organized as follows: In Section 2 the PWE theory is briefly
summarized with particular attention to the singularity. In Section 3 the singularity extraction
technique is formulated, while Section 4 illustrates its effect through a numerical test case. All
expressions are given in the S.1. rationalized system with a suppressed €™ time convention.

2. The Plane Wave Expansion

The PWE of the electric field E , valid for z > z, with z, being the largest z-coordinate of the
antenna as indicated in Fig. 1a, is given by [4]

E(x, y,z)=ij. IT‘(kx,|<y)e‘kzZe‘(kx“kvy)olkxclky =F Tk, )} 237 (1a)

where (x,y,z) are the Cartesian coordinates of the observation point with position vector T,
while k, and k, are the spectral variables which together with k, = /k? —k? —k? , with k being

the wavenumber, constitute the Cartesian components of the wave propagation vector k. Eq.
1a shows that the two-dimensional inverse Fourier transform (IFT), F*, of the PWS for a given

z-coordinate z > zo, T (K, ky,2) =T (k. k,)e":*, provides the electric field E at that z-plane.
The inverse of Eqg. 1a is obviously

T (ky, ky2) zzi I J‘ E(x,y,2)e Y gxdy = F {E(x, Y, z)}, z>1, (1b)
T

The spectral k.k,-domain is divided into two regions, see Fig. 1b. The visible region, for ky 2+ ky2

< K% contains propagating plane waves and the invisible region, for kJ+ k,> > k contains

evanescent plane waves. The two spectral variables ky and ky are real, while k;, is real in the

visible region but purely imaginary with a positive imaginary part in the invisible region to



satisfy the radiation condition. Since the evanescent plane waves are exponentially attenuated
with increasing z-coordinate, their contribution to the field is usually negligible at distances
larger than one wavelength from the antenna [3]. In practice, the k.- and ky-integrals are
truncated at finite values +K,max and +kymax, respectively, and in cases where the PWS is obtained
from measurements, the PWS is reliable only over the visible region or an even smaller spectral
domain [5].

The PWS is an analytic function on the entire spectral domain except possibly at the border
between the visible and invisible region where k, = 0 and a singularity of the type 1/k, often
exists in one or more of its components [4]. This constitutes the only possible singularity and a
necessary but insufficient condition to prevent its exsistence is a null in the xy-plane of the
antenna far-field pattern. While the singularity in the PWS does not explicitly appear in Eq. 1b,

it is seen when T_(kx,ky) is expressed as a function of the volume current density J of the
antenna [4]

1 1

K x IZXJ'J—(F)e—i(kx><+kyy+kzz)dV @)
\

with # being the medium intrinsic admittance, or when the visible region of f(kx, ky) is
expressed in terms of the far-field pattern [4],
Efar(r,a,q;):knm E(r,0,9)
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3. The singularity extraction technique

Though the singularity of f(kx,ky) is integrable, a direct use of the IFFT results in an

inaccurate aperture field unless the singularity is sampled very densely. While on one hand this
could in principle be possible, on the other hand such a high density would be necessary over
the entire k.k,-domain in order to have the uniform sampling required by the IFFT algorithm.
This presents a problem when the plane wave spectrum is obtained from measurements since a
very dense angular or spatial sampling, in - and ¢-coordinates for far-field measurements or in
x- and y-coordinates for planar near-field measurements, is then required. Another possible
approach is to employ a special numerical integration scheme incorporating a singularity
extraction technique like for example is shown in [6][7]. Finally, it is possible to transform the
Cartesian spectral variables into spherical spectral variables in which case the singularity
disappears. However, in both cases one would loose the advantages of the IFFT.

Here, we propose to defactorize the spectrum T into a product of two functions, the finite 'Fl
and the singular 1/k, whereby

f(kkay):fl(kx'ky)ki : 4

Since the IFT of a product of two spectral functions is equal to the convolution of the two
corresponding spatial functions [10] the integral of Eq. 1a is effectively solved since the IFT of



the finite 'Fl can be computed numerically by the IFFT and the IFT of the singular 1/k, is

computed analytically using the Weyl-identity [4]

ikr QxR .
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Thus Eq. 1a is rewritten as follows,

E(x Y, z)=% J’ IT_(kx,ky)eikzzei(kx”kyy)dkxdky 7> 1, (6)
1 s 1 iz itk y)
_Zﬂ_j_jq(kx,ky)kze e dk, dk,
:iT Tf (k. .k, )els g &M gy g @iof Tieikzzle“kx“kvy’dk dk
2z 3 1 Y T ) Ik X

ikry

= E]_(X, Y, Z_Zl)®

i2zn

As it seen in Eq. 6, the z-coordinate is split in two z = (z-z;)+ 2z, and hence r, =/x* +y* + 22 .

This is done to have an exponential term of the type of ™% in both factors, in order to use the

Weyl identity of Eq. 5 and ensure an accurate implementation of the convolution, as explained
in the following.

From a computational point of view the following important observations can be made.

First it is noted that, in practical implementations of Egs. 1a and 6, the PWS is known only at N
x N discrete points on a finite *kgna and *kyma domain and thus with sampling densities
Ak = 2K, max /(N —1) and Ak = 2Ky ey /(N = 1), respectively. In virtue of the Nyquist sampling
criterion and the discrete Fourier transform theory, the transformed electric field is also given at
NXN discrete points centered at  the origin and with sampling
densities Ax = 277 /(Ak,N) and Ay = 27 /(Ak, N) , respectively [3].

Second we notice that the Green’s function, that is usually computed at the same N x N discrete
spatial points', is azimuthally symmetric and, once convolved with the function E , it provides
the electric field E at (2N-1) x (2N-1) discrete points.

Third, though the result of Eq. 6 is in principle independent of the chosen z;, the result is

accurate only when the truncation errors of the two spatial functions on the chosen xy-domain
are negligible. For the AUT considered in Section 4 which has a size of 8, a z-coordinate less

than 0.2\ ensures E, values with negligible truncation error on the [-301 : 30A] xy-domain and

a z3-plane of about 0.01\ provides the Green’s function with a sufficient decay on the same
spatial region. The effect of the convolution will always be that of a more accurate field;

! The Green’s function can however be computed on an even larger Xy-domain, provided that
the sampling in x- and y- is maintained, since we know its expression analytically.



however, for small z;-values the Green’s function is very peaked and it may happen that the
effect is quantitatively limited.

Fourth, if we want to compute the electric field E only on a certain spatial window of the entire
xy-domain, whether centered or not, we can easily modify the convolution algorithm by

providing as input the function El on the desired xy-window, as long as a sufficient decay of

E, is ensured. The Green’s function can also be considered on a window smaller than the entire

xy-domain, provided that such a window is centered at the origin and a decay of at least 60dB
from the peak is ensured. By doing that, the computational time for the convolution drastically
diminishes.

Fifth, it is noted that the singularity extraction technique provides the correct aperture field also
for non-singular spectral components and the technique can thus be applied to all components
of the PWS without a priori considerations on the absence or presence of the singularity.

4. Test case

In order to illustrate the effect of the singularity extraction technique presented in Section 3, we
investigate here an array of 5 y-oriented electric Hertzian dipoles displaced along the x-axis at a
distance of 2\ from each others, see Fig. 2. The excitations of the 5 dipoles are P, P/2, P/5, P/8,
and P/10, respectively, with P being the dipole moment of the dipole at the origin. The exact
PWS is first computed from Eq. 2 on the [-2k, 2k] k¢k,-domain with 91 sampling points in both
directions, see Fig. 3. The PWS clearly shows the singularity in both the x- and y-components.
In the computation of the aperture field from this PWS, only the visible region is taken into
account since this is most often the case in practice, while the invisible region is zero-padded.
Fig. 4a shows the analytical x- and y-components of the electric field on the z = 0.1A plane
while Fig. 4b shows the result of a straightforward IFFT of the singular PWS without the use of
the singularity extraction technique. It is evident that while all 5 dipoles are seen in Fig 4a, only
the first 2 are clearly distinguished in Fig 4b. The last 3 dipoles, having a weaker excitation, can
not be correctly detected since the singularity is not properly taken into account. Fig 4c then
shows the result of applying the singularity extraction technigue. In this case all 5 dipoles are
clearly detected and the difference in their excitations can also be seen. The slightly wider
extensions of these compared to the analytical result is due to the truncation of the PWS to the
visible region and the truncation of the two functions involved in the convolution on the finite
xy-plane.

5. Conclusions

An effective technique to extract the singularity of plane wave spectra in the computation of
antenna aperture fields was presented. The algorithm is based on the Inverse Fast Fourier
Transform and Weyl-identity and allows the accurate computation of the aperture field when a
dense sampling in the spectral domain is not possible. The detection of sources of very weak
amplitude has been verified by a numerical example and the evident advantages compared to
the Inverse Fast Fourier Transform of the plane wave spectrum without the singularity
extraction have been underlined.
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Figure legends

Figure 1. PWE for a general antenna: (a) Spatial domain of validity, z > z,, (b) Visible and
invisible regions of the spectral kik,-domain.

Figure 2. Array of five y-oriented electric Herzian dipoles displaced on the x-axis.

Figure 3. Amplitude of the Cartesian components of the PWS T for the array of Hertzian
dipoles in dB scale and normalized to the center value of T,, on the z = 0.1 plane.

Figure 4. Amplitude of the x- and y-component of the electric field in dB scale at z = 0.1A
normalized to the maximum of the y-component of the analytical field: (a) analytical field, (b)
IFFT of the visible region of the PWS without the singularity extraction, (c) IFT of the visible
region of the PWS with the singularity extraction.
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ON THE RELATIONSHIP BETWEEN THE SPHERICAL WAVE
EXPANSION AND THE PLANE WAVE EXPANSION FOR ANTENNA
DIAGNOSTICS
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ABSTRACT

The relation between the plane wave expansion
(PWE) and the spherical wave expansion (SWE)
is investigated. It is shown how the SWE can be
transformed into the PWE, from which the
aperture field can subsequently be calculated.
Through the SWE-to-PWE transformation the
visible as well as the invisible regions of the
plane wave spectrum can be recovered, providing
a high spatial resolution of the aperture field.

The SWE-to-PWE transformation allows an
efficient antenna diagnostics for spherical near-
field antenna measurements. Different test cases
are examined and the limitations implied by the
practical truncation of the SWE are investigated
and clarified.

Keywords: Spherical wave expansion, plane
wave expansion, antenna diagnostics.

1. Introduction

Electrical and mechanical errors in an antenna
can be identified by use of an efficient antenna
diagnostics technique. The presence of such
errors is usually observed in the measured far-
field pattern, however their causes can only be
explained by analyzing the extreme near-field
amplitude and phase. Since a direct measurement
of this quantity is not usually implemented in
measurement facilities, an alternative procedure
has to be used. Several non-invasive diagnostics
techniques have been proposed over the years [1]
and [4]; however, all methods are limited either
in terms of the type of antennas for which they
can be used, or in terms of the accuracy that they
can provide e.g. methods based on planar and
cylindrical near-field or far-field measurements.
There is thus a need for an antenna diagnostics
technique that applies to general types of
antennas and that is intrinsically accurate. We
propose a new technique to be applied at the
DTU-ESA Spherical Near-Field Antenna Test

Facility located at the Technical University of
Denmark [2]. The measurement technique
employed at the DTU-ESA Facility is based on
the SWE of the field radiated by the antenna [3].
This expansion is mathematically valid in any
source-free region of space outside the minimum
sphere of the antenna, the smallest sphere
centered at the origin of the measurement
coordinate system which completely encloses the
antenna. Thus the aperture field in the extreme
near-field of the antenna can not be computed [4].
One way to overcome this is to transform the
SWE of the radiated field into a PWE. We will
show how the plane wave spectrum can be
computed by the coefficients of the SWE, on any
aperture plane in the antenna source-free region.
This will give two main advantages. The first is
that the plane wave spectrum can be evaluated
also in part of the spectrally invisible region, the
second is that the aperture field can be computed
as an inverse Fourier transform (IFT) of this
spectrum. Hence, the spatial resolution achieved
in the aperture field can in principle exceed the
traditional value of half a wavelength, provided
by the traditional techniques. In this manuscript
analytical calculations as well as numerical
simulations will be shown and investigations on
the number of spherical modes necessary for the
PWE convergence will be presented. All results
are expressed in the S.I. rationalized system with
e’ time convention.

2. Theory
2a) Theoretical derivation

We start by introducing the SWE of the electric
field E radiated by an antenna circumscribed by a
minimum sphere of radius r,. In any source-free
region r > r, the field can be expressed as [3],

B3, Y A0 RO O

n=1l m=-n
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Where Q¥ andQ® are  the  expansion

coefficients, that can be obtained from a spherical
near-field measurement, and F®(r) and

o . )
F (r) are the power-normalized spherical vector

wave functions. The medium intrinsic admittance
is denoted by 7, k is the wave number, and T is
the position vector expressed as a function of the
traditional spherical coordinates (r, 6, ¢). In
practice, the n-summation of the SWE is
truncated at n = N, with N usually being equal to
N = kr,+10. The PWE of the same electric field in
the spectral k¢ky-domain valid for z > z,, with z,
being the largest z-coordinate of the source
region, is given by [5]

E(XY Y, Z) = i I J. f(kX’ky) eikzzei(kxX+kyy)dkxdky (2)

where k,, ky, k, are the Cartesian components of
the wave propagation vector k  with

k, =k? k2 —kZ . The spectral domain, defined

by the variables k, and k,, can be divided in two
regions, the first one called “visible” for ke 2+ ky2
< k2, responsible of the propagating plane waves,
and the second one called “invisible” for k2+ ky2
> k2, see Fig. 1, constituted by the evanescent
plane waves. The two variables k, and k, are
always real, while k, is real in the visible region
but purely imaginary in the invisible region. In
practice, the k.k,-integrals are truncated at finite
values Kymay and *Kymay.

A
ky -y
Invisible

k

iy

Figure 1. Visible and invisible regions in the
spectral k,k,-domain.

The plane wave spectrum for a given z-coordinate
is equal to T (k,,k,)e™ . It was previously shown

[6-7] how the SWE of Eq. 1 can be transformed
into the PWE of Eq. 2, arriving at the following
relation

T (ke kyJe™? = ki,g(g)eikcom @)

Z

where E(8) is given by

-3 3 )" 0@ g gm
E(s)-zz\ﬁm[%mns W@h

n=lm=-n

—iQ (@ )]

with § =simicos g X +sinasing § +cosa 2, Be[-x,
n] and a€B, see Fig. 2. The vector spherical
harmonics Y,"(a, B) is defined by

O B LR K (T
Yy (a,B)= \/Z_ﬂ[ \m\] (da Py (cosa)e™ B + (5)

—_il?}]m(com)imeimﬁd]
sina

with P™(cosa) being the normalized associated

Legendre function as defined by [3],
& = COoSaCOSB X +Ccosasing y —sino 2 and

S =-sinB%+cospy. The variables o and # on
the right hand side of Eq. 3 must be expressed as
functions of the spectral variables k, and k
according to §=k/k. The spatial resolution J,
and J, obtained in the aperture field is given by
Sy =7/ Kymax, Oy =7m/Kyme and can thus be

controlled by selecting Kinax and  Kymax

appropriately in the SWE-to-PWE
transformation.
Im{a}]
w/2
0 >
Re{a}

I'B
|

Figure 2. Domain of the angle & on contour B.

We can therefore summarize the required steps of
this antenna diagnostics technique as follows:

1. Evaluate the Q coefficients through a
spherical near-field measurement of the
AUT.

2. Calculate the plane wave spectrum in
the k,k,-domain on a given z-plane,
7>17,, according to Eqs. 3-4.



3. Compute the field on the desired z-
plane as the IFT of the spectrum
through Eq. 2.

2b) Theoretical considerations

We will now focus on three specific aspects of
the SWE-to-PWE transformation. First, by
looking at the expression of the

Y." (e, ) function, in Eq. 5, we see after a few
mathematical manipulations that

§XY7nm (e, p) o< R2mn (@, p) Y7nm (e, B) o< len (@, p)
(6)

where K, (6,0) = lim o F&\(r,0,0), With s =
kr—oo €
1,2 is the far-field pattern function of the

spherical vector waves functions. We conclude
that the spectrum in the a-domain, E(8)e'¢* ,

is thus given by the SWE of the far-field. All
information about the visible and invisible
spectral regions of the PWE is therefore in
principle contained in the far-field. As an
example of this important property, a z-oriented
Hertzian dipole located at the origin of the
coordinate system can be considered. Its SWE
contains only the single modes=2, m=0,n=1.
From the knowledge of the corresponding
coefficient Q¥ the plane wave spectrum is

completely reconstructed in the visible as well as
in the invisible region. For more realistic
antennas the SWE of the field is given by a larger
number of modes, however, the concept of
deriving the complete set of Qs from the far-field
remains principally valid and its consequences
will be discussed later. Second, since the variable
a becomes purely imaginary in the invisible
domain, see Fig. 2, the trigonometric functions in

o included in Y,"(a, B) are not limited in that

region, and this gives rise to computational
problems already for moderate values of n. An
example is shown in Fig. 3, where the amplitude
of the spectrumonz=Afors=1, m=0and n=

20 and Q) =1is presented in logarithmic scale

and normalized to the value on-axis. On the other

hand, the exponential terme™®, which is also
included in the spectrum, provides a decay in the
invisible region. A way to partly control the
computational difficulties is thus to embed the
term €"into the calculation of the vector
spherical harmonics.

Spectrum amplitude for n=20 m=0

Ky/k

0
Kx/k
Figure 3. Amplitude of the spectrum for n = 20,
m=00onz=4,indB.

Third, we concentrate on Eq. 3. It is noted that a
singularity for k, = 0 (k+ k,” = k%) will always be
present at least in one component of any antenna
spectrum, and that the necessary, but not
sufficient, condition to avoid that is a null for 8 =
n/2 of the antenna far-field pattern [5]. The
singularity prevents a direct use of the fast IFT
for the calculation of the aperture field, since an
infinite number of points would be required to
correctly sample the function in the vicinity of k,
= 0. But there is a way to overcome the problem
and get an accurate value of the field even from
components affected by the singularity. For this

purpose, we write the spectrum T as a product of
two functions, the finite 'ITl and the singular 1/k;,

i.e. f(kkay) =-|T1(kkay)ki . We know that the IFT
4

of T is equal to the convolution in the spatial
xyz-domain of the IFT’s of the two separated
functions. We inverse transform, with a fast IFT,
T_l and we write the inverse Fourier transform of

1/k, by use of the Weyl identity [5] forz>0

ikr <% )
_e :iJ' J‘ieu(kxx+kyy+kzz)dkxdky )
i2zr 2z kK,

To properly convolve
Ei(x,y,z):F‘l{fl(kx,ky,z)} with the Green’s
function [8], we need to split the quantity z in
two, z=z-z;+z,, to have an exponential factor of

the type of €™ on both terms. We thus get



kr1

FYT (ke ky 2} =E(x,y,2) =Ey(x,y,2— z1)® (8)

withr, = ﬂxz +y2+ zl2 . The results and the

accuracy of this method will be shown in the
following section, dedicated to the test cases.

3. Test Cases
3a) Array of Hertzian dipoles

A set of five x-oriented Hertzian dipoles on the
xy- plane, four equally displaced from the origin
with the distance r, and one at the center, see Fig.
4, is the first test case.

ANz

Figure 4. Five Hertzian dipoles displaced on
the xy- plane, with minimum sphere of radius
rO.

With such a configuration the aperture plane can
be moved into the minimum sphere of radius r,,
still remaining in a source-free region. For this
antenna the Q coefficients can be calculated
analytically, by use of the results reported in [3,
pp. 339] for a sampled x-polarized planar current
ring. Since the SWE contains arbitrarily high-
order modes in n and m, the influence of the
truncation in n in Eg. 4 can be analyzed. We
consider as reference spectrum the one calculated
through the dipole currents [5]

1) k2 —k?
X ok ’u[cos(kr)+cos(k n)+= j k
k
—((cos(krﬂcos(k n)+= ]xky 9)
T, = ?Pk ”[cos(ero)+cos(kyro)+lj

with P being the dipole moment. T, and T,
contain the singularity in k,. Different values of r,
have been studied, and here the results for r, = 24
corresponding to kr,=12, will be considered. The

spectral components are then computed with Eq.
4 for different values of N. Plots for N=kr,,
N=kr,+10 and N=kr,+40 are shown in dB in Fig.
5, for the x-component on z = 0.2/, normalized to
the value of T, in the origin.
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0
Kx/k
Tx: N=kr,+10
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Tx: N=kr_+40

Ky/k

-80

Figure 5. Amplitude of the x-component of the
spectrum of the five dipoles with r,=24, on
z=0.22 in dB: the reference T,, N=kr,,
N=kr,+10 and N=kr,+40.

We see how the convergence region in the k-
domain increases gradually with increasing N.
For N=kr, the visible region is still not
completely reconstructed but its convergence is
reached with N=kr,+10. For N>kr,+10, only
changes in the invisible region are noted until the
complete picture is obtained by N=kr,+40=52.
The singularity for k, = 0 is perfectly identified,
already by N=kr,+10.

To better understand the convergence mechanism,
we also plot the n-mode power spectrum,

1 2 : .
Prag (N) =3 Z‘Qé%)n‘ in function of n, see Fig. 6.
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Figure 6. n-mode power spectrum for r,=24.

Extreme low values of power are contained in the
high n modes, however, due to the corresponding
low values of Q’s the product with the diverging
vector spherical harmonics is kept finite. A plot

of the x-component of the spectrum in function of
N, for different points of the spectral domain, can
finally clarify the convergence mechanism, see
Fig. 7. Points belonging to the visible region
reach convergence with N=kr,+10, while points
in the invisible region need more modes as they
move away from the visible region. The
maximum N required for a complete convergence
in the [-2k, 2k] domain depends on r,. It was
found that generally N=kr,+4kr, is needed for the
five dipoles case. From Fig. 7 we see that the
series behaves as one with alternating sign. At
every step n a new quantity is summed to the
previous terms, adding or subtracting a certain
amount of spectrumThis is necessary in order to
“clean” the spectral invisible region, until the
convergence values are reached. We can therefore
inverse Fourier transform the spectrum and
compare the quantity with the analytical field.
The z-component can be directly fast inverse
Fourier transformed, while the x- and vy-
components require the procedure of the
convolution. To understand the influence of the
invisible region, we consider the spectrum
computed with N=kr,+40=52, N=kr,+10=22 and
N=kr,=12.

Tx convergence in function of N
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Figure 7. Amplitude of the x-component of the
spectrum in function of N, kr,=12, for different
points of the spectral domain.

Only the convergent part of the spectrum is used
in these cases, while the non-convergent part is
replaced by zeros. Results are shown in Fig. 8 for
the x-component on z=0.24, normalized to the
value on axis of the analytical field and plotted in
linear scale: we can distinguish the five dipoles
on the xy-plane in all pictures. However the
result provided by N=kr, is not quantitatively
satisfactory in  determining the dipoles
contribution. On the other hand, already with



N=kr,+10 terms a very accurate aperture field is
computed. This means that the most important
part of the spectrum to be recovered is constituted
by the visible region, the singularity for k, = 0,
and a little part of the invisible region.
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Figure 8. Amplitude of the x-component of the
field on z=0.24, for r,=24 in linear scale: the
analytical, the one obtained by N=kr,,
N=kr,+10 and N=kr,+40.

3b) Rectangular aperture in free-space

The second antenna test case is a rectangular
aperture excited by a TEO1 mode, located on the
xy-plane and radiating in free space, see Fig. 9.

z

==
/b X

Figure 9. Rectangular aperture, of dimensions
a and b, located on the xy-plane, excited by the
TEO1 mode.

From the analytical far-field pattern F(6,¢),
based on electrical and magnetic equivalent
currents [9], the reference spectrum T is
calculated as
f(ksinecosw,ksinesin(p)=—'F(9’(p) [5], with
kcos@
0elo,z/2]andp €[0,27). This immediately

provides the expression for T in the visible
region kZ +kZ <k?. However, it is possible to



analytically continue the far-field pattern F (6, ¢)
to complex values of 6 [5], so that, by the use of

the same expression, the spectrum T in the
invisible region is also calculated. The angle & is
substituted by o defined on the domain B, and ¢
by B. The Q coefficients are calculated from the
projection of the far-field on the functions
§xY" (e, p) and Y," (e, ), and, due to numerical

noise, only N=19 terms are available.

Different values of a and b have been analyzed,
and here we present the results for a=1 and b=24,
corresponding to kr,=6. The expressions of the
reference spectral components are:

X

_abk  cosY sinX|  k.k}
4k, Y2 (x12)* X | k(KE+k5)

k,k2
(1+ﬂ0—12k2)+% 1+&
k k(kg +k3) k,

with By [k = y1-(1/(2b)2) , X =kea/2, and

Y =kyb/2. Ty =0 and T, =-k,T,/k,, from

(10)

k-T =0. The singularity in k,=0 is present both
in T, and T,. Again, we calculate the spectrum
through Eq. 4 with different values of N, and we
focus on the x-component, see Fig. 10 where the
quantities are normalized to the value of T, in the
origin and plotted on z=0.21. The convergence
mechanism is similar to the one shown by the five
dipoles case. As before, the singularity on k, = 0
is perfectly identified. Slightly more than kr,
terms are needed to reach convergence in the
visible region, while modes with n>kr, have only
influence on the invisible region.

Tx reference
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Figure 10. Amplitude of the x-component of
the spectrum for the rectangular aperture with
a=4 and b=24, on z=0.24 in dB: the reference
Ty, N=kr,, N=kr,+10 and N=kr,+13.

The n-mode power spectrum is reported in Fig.
11, and compared to the one of a set of five
dipoles with r,=2 having the same value of kr,.



Prad(n)
50

* 5dipoles ro=1L

LA
* .
.
-50 i =
—_ L) §
% i, .
= ¢4
-100 ..
el
B T
-150 L4
® é
-200,
0 5 10 15 20

Figure 11. n-mode power spectrum for a
rectangular aperture with a=LA and b=2A,
compared with the one given by five dipoles
with the same r,,.

The power contained in the high n modes is lower
than in the five dipoles case: the corresponding
Q’s can therefore better control the product with
the diverging vector spherical harmonics. This
could be the reason why a large part of the
invisible region is reconstructed already for
N=kr,+10. The x-component of the field is finally
calculated on z=0.2A as IFT of the x-component
of the spectrum with the use of the convolution,
see Fig. 12.

No analytical expression of the field is known on
that z-plane, so the comparison is done between
the IFT of the reference spectrum and the IFT of
the spectrum represented by N=kr,+10 terms,
with the non-converging region replaced by
zeros. Results are in linear scale and normalized
in respect of the value on axis of the field
obtained by the reference spectrum. The aperture
dimensions on the xy-plane are identified, and
again, extremely good agreement is found
between the two pictures.
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Figure 12. Amplitude of the x-component of
the field on z=0.24, for a rectangular aperture
with a=A and b=2), in linear scale: above from
the reference spectrum, below from N=kr,+10.

4. Conclusions

A new antenna diagnostics technique for
spherical near-field antenna measurements has
been presented. The theoretical derivations as
well as the two test cases have shown an
important property: the plane wave spectrum, in
the visible as well as in part of the invisible
region, can be derived by the knowledge of the Q
coefficients of the SWE of the field. This
provides a spatial resolution in the aperture field
higher than the usual half wavelength provided by
the traditional techniques. It is important to point
out that, while the reconstruction of the invisible
region of the PWE is in principle possible from
the SWE, the practical truncation of the SWE in
real measurements will of course enforce a
limitation on this. However, it has been shown
that very accurate aperture fields can be obtained
with a realistic truncation number, provided that
the spectrum at k,=0 is recovered. Future work
will focus on the influence of finite dynamic
range on the truncation number, for different
types of antennas. Real measured data will then
be included in the analysis.
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ABSTRACT

A new antenna diagnostics technique based on
the transformation of the spherical wave
expansion (SWE) into the plane wave
expansion (PWE) is proposed. The new
technique allows the recovery of the plane
wave spectrum in the visible region, and in
principle also in part of the invisible region,
from data acquired during a spherical near-
field measurement. From the PWE the
aperture field can subsequently be calculated.
While the fundamental properties of the SWE-
to-PWE transformation have been reported in
previous articles, we concentrate here on the
influence of non-ideal measurements aspects on
this diagnostics technique. In order to isolate
different measurement inaccuracies, the
investigation is based on simulations

1. INTRODUCTION

While the effect of electrical or mechanical errors
in an antenna is observed in its measured far-field
pattern, the errors themselves are more easily
identified in the extreme near-field of the
antenna.  Several non-invasive  diagnostics
techniques have been proposed over the years
[1]-[3], but generally these techniques possess
limitations with respect to the type of antennas
and antenna errors to which they apply, and/or to
the accuracy they provide.

We have proposed a new diagnostics technique
[4]-[5] to be applied at the DTU-ESA Spherical
Near-Field Antenna Test Facility located at the
Technical University of Denmark [6]. The
measurement technique employed at the DTU-
ESA Facility is based on the SWE of the field
radiated by the antenna. The SWE is valid outside
the antenna minimum sphere and does not readily
allow the calculation of the aperture field in the
extreme near-field of the antenna. One way to
overcome this is to transform the SWE of the
radiated field into a PWE. The plane wave
spectrum can be computed from the knowledge of
the coefficients of the SWE, on any aperture

plane in the extreme near-field outside the
antenna. This technique gives two main
advantages. The first is that the plane wave
spectrum can in principle be evaluated also in
part of the spectrally invisible region, and the
second is that the aperture field can be computed
as Inverse Fourier Transform (IFT) of this
spectrum. Hence, the spatial resolution achieved
in the aperture field can theoretically exceed the
traditional limit of half a wavelength. While the
fundamental properties of the SWE-to-PWE
transformation have been described in previous
articles [4]-[5], we will concentrate here on how
non-ideal measurements aspects affect the
diagnostics technique. To do that, we will
consider an antenna model consisting of electric
and magnetic Hertzian dipoles. Electrical
measurements inaccuracies will be added to the
calculated near-field. The effects of such
quantities on the obtained Q coefficients, and on
the extreme near-field provided by the diagnostics
will be then studied. Finally, errors will be
introduced in the antenna model and the ability of
the diagnostics technique to identify these will be
tested. All results are expressed in the S.I.
rationalized system with the e™" time convention.

2. THEORY OF THE SWE-TO-PWE
TRANSFORMATION

We begin by introducing the SWE of the electric

field E radiated by an antenna circumscribed by
a minimum sphere of radius r, [7], with r > 1y,

_ K 0 n _ _ -
B0 =7 2 2. Um0 Fim®.

n=lm=-n

Where Ql(,?])n and Qéfr)m are  the

coefficients, obtained from a spherical near-field

expansion

measurement, and Elﬁr)](F) and Ifz(% (r) are the

power-normalized  spherical ~ vector  wave
functions. The medium intrinsic admittance is #, k
is the wave number, and T is the position vector
expressed in terms of spherical coordinates (r, 6,
@) or rectangular coordinates (X, y, z). In practice,



the n-summation of the SWE is truncated at
N=kr,+10 since this is sufficient for an accurate
calculation of the far-field. The PWE of the same

electric field E in the spectral k.k,-domain valid
for z > z,, with z, being the largest z-coordinate
of the antenna, is given by [8]

E(x,y,2) = i J. J. Tk, ky)eikzz i(kxx+kyy)dkxdky (2)

where k, and ky, are the spectral variables and
k, =[k? —kZ —k§

divided in two reglons the visible, for k2+ k <
k2, containing the propagatlng plane waves, and
the invisible, for k/+ k/Z > k? containing the
evanescent plane waves, see Fig. 1. The two
variables k, and k, are always real, while k; is real
in the visible region but purely imaginary with a
positive imaginary part in the invisible region. In
practice, the k,- and ky-integrals are truncated at
finite values +kyna, and +kma, respectively. At the
border between the visible and invisible regions
k, = 0 and the PWE generally possesses a
singularity there [8].

. The spectral domain can be

kA

<

Invisible

Kk

S

Figure 1. Visible and invisible regions of the
spectral kik,-domain.

The plane wave spectrum for a given z-coordinate
is thus T (k,,k,)e™:* . It was previously shown [4]-
[5] and [9] how the SWE of Eq. 1 can be
transformed into the PWE of Eq. 2, arriving at the
following relation

T (ky ky)e™? = kié(é)exp(ikcomz) 3)
4

where E(§) is given by

(3) S><Y (a, B)+

E®)= ZZ\WW[ o

n=lm

S ANCO)

4)

With § = sinacos g X +sinasin g y+cosa 2, fE[-n, 7]
and equal to g =atan(, /ky), « €B see Fig. 2

and equal to «=acosk,/k), and Y,"(a,p)

being the vector spherical harmonics, see also
[4]-[5]. The imaginary values of the angle «
correspond to the invisible kk,-domain, and make
the spherical harmonics Y,"(«, ) divergent in

that region. Eq. 4 shows that the plane wave
spectrum can be expressed as a series of spherical
harmonics weighted by the Q coefficients of the
SWE of the radiated field.

Im{a}]

0

Figure 2. Domain of the variable o. on contour B.

But, while the visible region of the spectrum
reaches convergence around N=kr,, the invisible
requires many more modes [5]. In practice the
high order modes can not be measured due to the
finite dynamic range. However, it has been shown
[5] that the recovery with N ~ kr, terms of the
visible region and the singularity for k, = 0
provides accurate aperture fields. The spatial
resolution (5,6, ) obtained in the aperture field

is given by Sy =71 Kymaxs 5y :”/kymax and

can in principle be controlled by selecting Kymax
and Kymax appropriately in the SWE-to-PWE
transformation. While in previous works [4]-[5]
the investigations were based on ideal noise-free
test cases, we will concentrate in the following on
more realistic cases.

3. SIMULATION MODEL FOR
FINITE MEASUREMENT
ACCURACY

It is the purpose of this section to consider some
of the most typical measurement electrical
inaccuracies in order to clarify their influence on
the proposed diagnostics technique. To do that, a
Standard Gain Horn (SGH) model consisting of
electric and magnetic Hertzian dipoles will be
considered. Different measurement electrical
errors will be added to its radiated near-field, and
from that field distribution the Q coefficients will



be computed. The aperture field will be then
calculated by using Egs. 2-3-4.

3.1 Antenna Model

The SGH model works at the frequency of 3GHz.
It represents a pyramidal horn with an aperture of
a=4. and b=31 located on the xy-plane, see Fig.
3, and with the lengths of the flared section in the
xz- and yz-planes being R,=R;=5.. v The
dominant TE10 mode constitutes the co-polar
component, it is y-polarized and excited with
amplitude 1, while the TEO1 mode provides a
typical cross-polar component, it is x-polarized
and has an amplitude of 10 and a phase of —in/4,
see Fig. 3.

From the equivalence theorem, the equivalent
magnetic co-polar currents are

M, = cos(”—xjexp(i%(x2 IRy + Y2 IR))K )
a

VA
b:37\.T = ~

l ~ \ '
-
f”

P

T a=d

v

v

Figure 3. Aperture of the SGH model with the
TE10 and TEO1 modes, and the reference
coordinate system.

while the electrical are computed from the
magnetic imposing a Huygens source dependence

Joo = —ncos(%XJexp(i %(X2 IR, +Yy2IR))y (6)

with xe[-a/2, a/2] and y € [-b/2, b/2]. The cross-
polar equivalent currents are computed in the
same way and are equal to, with C= 102exp(—
in/4),

Jero = 777Ccos[%y]exp(i%(x2 IRy +y2IRNX  (7)
Mero = —Ccos[%’jexp(i%(x2 IR, +y2IR))Y  (8)

The current distributions of Egs. 5-8, are sampled
every A/4 on the xy-plane to provide on the
sampling points the excitation of a set of electric
and magnetic Hertzian dipoles distributed on the
aperture. From this dipole distribution the

radiated field is computed and the directivity is
plotted, see Fig. 4. It can be seen that the model
represents a typical SGH pattern both in the co-
polar as well as in the cross-polar components,
computed according to Ludwig’s 3™ definition

[71.
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Figure 4. Directivity of the SGH model, co-polar
(continuous lines), cross-polar (dashed lines).

3.2 Measurement Electrical Inaccuracies
Model

Drift and noise, in amplitude and in phase, have
been chosen to represent the most frequent and
important measurement electrical inaccuracies.
Their values are reported in Tab. 1, for a
frequency of 3GHz and a scan speed of 3
deg/sec. Drift during a spherical scan has been
modelled as a linear function of the time t,
driftr =d -t/ T, with d being the value of the
drift, see Tab. 1 in amplitude or in phase, and T
the duration of a scan.

Amplitude drift -0.015 dB
Amplitude noise -60 dB
Phase drift 0.25°
Phase noise 0.15°

Table 1. Values of measurement electrical
inaccuracies.

If X =|X[e'“* is the 6- or y-component of the
electric field E ona sphere of radius of 104 from
the origin, then the field is equal to
Xiot = (X|- @+ drifteror) )e'™ when affected
by amplitude drift and to
Xiop = (| X| )e!* F Moo \when  affected by
phase drift. Noise has been considered random



and uniformly distributed providing
Xtot = (X|+n0ise o Je'* for the amplitude

noise and X o =|X|[e"(“*+"!S&wor) for the phase

noise. The Q coefficients have then been
computed from the near-field distribution with
electrical inaccuracies by the software SNIFTD
[10], and the power spectrum

2 .
Prad (n):%Z|Qs(r3r?n| has been found, see Fig.
sm
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Figure 5. SGH power spectrum for different
electrical inaccuracies and for the ideal case.

Fig. 5 shows that the major and most evident
effect of the considered electrical inaccuracies is
to truncate the available n-modes. It can be noted
that numerical noise will anyway affect the
computation,  limiting the n-modes to
N=28=kr,+13 for the ideal case. Since all types of
measurement errors manifest themselves as a
constant level of the spectrum after a certain
mode number, it was decided to continue the
investigation with the amplitude noise alone, and
then investigate different values of this.

3.3 Spectra and Near-Fields Results

The plane wave spectrum is then computed by
using Egs. 3-4 with the Q coefficients obtained
from the field distribution affected by an
amplitude noise of -60 dB. The truncation in n is
set equal to 18 and an aperture plane equal to z =
0.22 is selected. A plot of the y- and z-
components is reported in Fig. 6 in dB scale with
the values normalized to T,(0,0), and compared to
the ones calculated through the ideal case with a
truncation in n equal to 28. In both cases the
visible region is recovered, and the singularity at
k, = 0 is identified. The extra ten n-modes,

provided by an improvement of 80 dB in the
dynamic range of the ideal case, allow the
reconstruction of a small part of the invisible
region, which is reduced for the noisy case. The
spectrum in the invisible region is then replaced
by zeros in the non-converging region and
inverse Fourier transformed, see Fig. 7. For the
data affected by amplitude noise the convergent
region has a radius of 1.03k, while for the ideal
case it is 1.1k. Fields are in dB scale and
normalized to the value of E,(0,0) when affected
by amplitude noise.
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Figure 6. Amplitude of Ty and T, on z=0.24, for a
noise amplitude of -60dB and for the ideal case.

They are compared to the components given by
the ideal case, and to the ones provided by the
superposition  of  the analytical dipole
contribution. The results affected by amplitude
noise are satisfactory and in good agreement with
the ideal and the analytical ones, both for the y-
as well as for the z-component. Very accurate
results are provided by the ideal case, where the
convergent region has a radius of 1.1k. We can
again conclude that the recovery of the singularity
for k, = 0 and of small part of the invisible region
are important to reconstruct the aperture field.
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Figure 7. Amplitude of E, and E, on z=0.24, for a
noise amplitude of -60dB, for the ideal case and
for the analytical case.

4. DIAGNOSTICS EXPERIMENT

The TE20 mode is now introduced in the SGH
aperture, to simulate an overmoding error, with
an amplitude equal to 0.1 or 0.2. The presence of
this error gives rise to an asymmetry both in the
main lobe and the side—lobes of the directivity
pattern, see Fig. 8. For every TE20 amplitude
case an amplitude noise varying between -70 dB
and -50 dB is later added to the SGH near-field
distribution on the spherical surface with radius
104 from the origin. The Q coefficients are
computed by SNIFTD [10] and the power
spectrum is calculated, see Fig. 9.
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Figure 8. Directivity on p=0 for the SGH with
TE20 amplitude equal to 0.2: co-polar
(continuous line), cross-polar (dashed line), in
blue the ideal case with no overmoding.
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Figure 9. Power spectrum for different values of
noise amplitude: SGH with TE20 amplitude
equal to 0.2.

It can be seen that for a noise amplitude of -50 dB
we have N=17 modes, and that a new mode is
obtained every time the noise is decreased by -10
dB. The effect is the same whether the amplitude
of the TE20 mode is 0.1 or 0.2. The spectral
components are then computed on the plane z =
0.24, with the N truncation values of Tab. 2.

-50dB amplitude noise N=17
-60 dB amplitude noise N=18
-70 dB amplitude noise N=19

Table 2. Truncation value N for different values
of noise amplitude.

For both amplitudes of the TE20 mode and for all
noise amplitudes, the visible region of the plane
wave spectrum reaches convergence and the
singularity is identified. For all cases, the effect in
Eq. 4 of an extra mode in n reflects into an
enlargement of the convergent region of the
invisible spectrum. For -50dB noise the
reconstructed region has a radius of 1.02k which
becomes 1.04k for -60dB and -70dB noise and
1.14k for the ideal case. The invisible region
where convergence has not been reached is
replaced by zeros and the spectral components are
inverse Fourier transformed. Plots for the x- and
y-components of the aperture field are shown in
Fig. 10 for the TE20 amplitude equal to 0.2, in
dB scale and normalized to E,(0,0) when -50 dB
noise is present. The aperture distribution is
compared to the one provided by the ideal case
with no noise and N=27, and to the analytical
dipole distribution. Different colour scales are
used for the x- and y-components to better
visualize the amplitude variations. The
asymmetry in the aperture distribution is clearly



detected in both components, providing accurate
results in comparison with the analytical ones.
The importance of the detection of the singularity

for k,= 0 is again noticed.
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Figure 10. Amplitude of E, and E, on z=0.2/ for
a TE20 amplitude of 0.2. From the top: noise
amplitude -50dB, -60dB and -70dB, ideal case,
and analytical case.

To underline its importance for a diagnostics
point of view, the radius of the converging region
for -60dB noise is now selected first equal to 0.8k
and then 0.95k, while the remaining spectrum is
replaced by zeros. The spectra are inverse Fourier
transformed on z = 0.2], and the results are
shown in Fig. 11, for the x-component. Even
though an asymmetry is detected, the accuracy in
respect of the ideal or the analytical case is very
poor and not satisfactory. We can conclude that
the singularity, well reconstructed by 17 modes,
and a small part of the invisible region are
important for an accurate diagnostics technique.

To support that the aperture field obtained in Fig.
10 is the consequence of an overmoding error and
not of a mechanical tilt of the SGH aperture, the
phase of the y-component is plotted, see Fig. 12.
The symmetry of this on the xy-plane indicates
that a tilt is not present.

Ex noise 60 dB 0.95k

-3 -2 -1 0 1 2 3
X/

Ex noise 60 dB 0.8k

Figure 11. Amplitude of E, on z=0.24 for a TE20
amplitude of 0.2 and -60dB amplitude noise:
region of radius 0.95k (above), region of radius
0.8k (below).

Ey noise 60dB

Figure 12. Phase of E, on z=0.2/ for a TE20
amplitude of 0.2, -60dB amplitude noise and
1.04k convergent region.

5. CONCLUSIONS

The effects of finite measurement accuracy on the
SWE-to-PWE diagnostics technique have been
presented. It was found that among the numerous



kinds of measurement electrical errors, the
amplitude noise was the strongest and the most
important. The effect of such a noise distribution
generally reflects into a truncation of the
available Q coefficients of the SWE of the field.
It has been found that for a SGH the measured
Q’s are anyway sufficient to reconstruct the
visible region of the plane wave spectrum, the
singularity for k, = 0, and a small circular region
in the invisible region. This spectral distribution
provides very accurate results in the computed
aperture field. The effect of an overmoding error
has also been studied. It has been found that an
overmode of amplitude 0.1 and 0.2 can be
detected and identified, in amplitude as well as in
the phase, in the presence of typical measurement
noise. Future investigations will concentrate on
different antenna types with the purpose of
identifying other antenna errors.
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ABSTRACT

A new antenna diagnostics technique has been
developed for the DTU-ESA Spherical Near-
Field Antenna Test Facility at the Technical
University of Denmark. The technique is based
on the transformation of the Spherical Wave
Expansion (SWE) of the radiated field, obtained
from a spherical near-field measurement, to the
Plane Wave Expansion (PWE), and it allows an
accurate reconstruction of the field in the
extreme near-field region of the antenna under
test (AUT), including the aperture field. While
the fundamental properties of the SWE-to-PWE
transformation, as well as the influence of finite
measurement accuracy, have been reported
previously, we validate here the new antenna
diagnostics technique through an experimental
investigation of a commercially available offset
reflector antenna, where a tilt of the feed and
surface distortions are intentionally introduced.
The effects of these errors will be detected in the
antenna far-field pattern, and the accuracy and
ability of the diagnostics technique to
subsequently identify them will be investigated.
Real measurement data will be employed for
each test case.

Keywords: Antenna diagnostics, spherical near-
field measurements, spherical wave expansion,
plane wave expansion, offset reflector antenna.

1. Introduction

Electrical and mechanical errors in an antenna may
seriously affect the antenna’s performance. Though
their presence is usually observed by anomalies in
the antenna’s far-field pattern, their identification is
normally possible only through an analysis of the
antenna’s extreme near-field. The reconstruction of

the extreme near-field on the basis of near- or far-
field measurements is thus an essential step in
antenna diagnostics.

Several non-invasive diagnostics techniques have
been proposed over the years [1]-[3]: [1] computes
the aperture field from planar near-field
measurements, [2] studies and detects the errors
caused by radome defects on basis of spherical
near-field measurements while [3] reconstructs the
induced currents on the surface of big reflectors
starting from far-field data.

When the field is expressed as a SWE obtained
from a spherical near-field measurement, as is the
case at the DTU-ESA Spherical Near-Field Antenna
Test Facility [4], the calculation of the extreme
near-field is anyway not straightforward since the
SWE is valid only outside the antenna minimum
sphere of radius r,, see Fig. 1.

One way to circumvent this limitation is to
transform the SWE into the PWE, which is valid on
any z-plane z > z,, with z, being the largest z-
coordinate of the source; note that |zo| <, see

Fig. 1. Once the PWE is known, the extreme near-
field can be computed by an inverse Fourier
transform (IFT) and then subjected to diagnostics.
This constitutes the basis of the recently developed
SWE-to-PWE antenna diagnostics technique [5]-
[6]. The technique uses spherical near-field
measurement data to compute the field on a plane
located in the extreme near-field of the AUT, and
provides a spatial resolution that may, in principle,
exceed the traditional limit of half a wavelength.

The purpose of this work is to perform an
experimental validation of the SWE-to-PWE
antenna diagnostics technique under typical
measurement conditions. To this end, we employ a
cheap and simple commercially available offset
reflector antenna for satellite TV reception, which
in its nominal configuration already exhibits several



non-ideal characteristics. We then introduce three
additional errors, viz. a tilt of the feed, a localized
bump in the reflector, and a global distortion of the
reflector surface. The near-fields are measured on a
spherical surface, and transformed to the
corresponding far-fields, where the effects of the
errors are observed. The extreme near-field is then
computed with the new antenna diagnostics
technique with the purpose of identifying those
errors.
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Figure 1. Spatial domains of validity of the SWE
and PWE for a general antenna: the
PWE is valid for z > z,, the SWE for r
> ro.

The paper is organized as follows: In Section 2 the
SWE-to-PWE diagnostics technique and its
properties are briefly summarized, in Section 3 the
offset reflector antenna is described, while the
errors and the diagnostics results are presented in
Section 4. All quantities are expressed in the S.I.
rationalized system with the ™' time convention.

2. The SWE-to-PWE antenna diagnostics
technique
We start by introducing the SWE of the electric

field E radiated by an antenna circumscribed by a
minimum sphere of radius r,, [7], for r>r,.

_ k o0 n _ - _ 7
E(F) =%Z > QRSO+ QR Fm®, @)

n=lm=-n

where Ql(ni)n and é‘:‘gn are the expansion
coefficients and I?l(rﬁr)](F) and lfz(%)n(F) are the

power-normalized spherical vector wave functions.
The medium intrinsic admittance is #, k is the wave
number, and T is the position vector expressed in
terms of spherical coordinates (r, 6, ¢) or
rectangular coordinates (x, y, z). In practice, the n-
summation of the SWE is typically truncated at
N = kr,+10 since this is sufficient for an accurate
calculation of the far-field. The PWE of the same

electric field E in the spectral k.k,-domain valid for
Z>z,is given by [8],

E(X’ Y, Z) = i J‘ j f(kx, ky) eikzzei(kxx+kyy)dkxdky (2)

—00 —00

where k, and k,, are the spectral variables and
k, =yk?—k; —kJ . The plane wave spectrum for

a given z-coordinate is
T (K. k,.2) =T (K, k,)e":*. The spectral domain

is divided into two regions, the visible region, for
ké+ k,” < k2, which contains the propagating plane
waves, and the invisible region, for k’+ k2 > k2,
which contains the evanescent plane waves, see Fig.
2. The two variables k, and k, are real, while k, is
real in the visible region but purely imaginary with
a positive imaginary part in the invisible region. In
practice, the k.- and ky-integrals are truncated at
finite values *Kyma and  xkyma  respectively,
providing a spatial resolution (é‘x,éy) in the

aperture field equal to 6, =z /K . 0 =7/K . .

At the border between the visible and invisible
regions k, = 0 and the PWE generally possesses a
singularity there [8].
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Figure 2. Visible and invisible regions of the
spectral kek,-domain, and B contour of
the variable a.

It can be shown [5]-[6] that the SWE of Eg. 1 can
be rigorously transformed into the PWE of Eq. 2,

allowing the plane wave spectrum f(kx,ky,z) to

be written as

00 n
Tk ky,2)= Z Z Ql(r?w)nTlmn(erkyv z)+

n=1l m=-n (3)
+ Qi Tamn (ke Ky, 2)
where
_ eikzz (7i)n+1 —m
Timn (K, Ky, 2) = k_\ﬁ/ﬂ—(ﬁ% (@.p) (@)
_ eikzz (7i)n n —m
Tomn Ky, Ky, 2) :k_z\ﬁm—(ﬁk xYp (o, B)

®)

with  k=K/k=(k&+k,§+k,2)/k. The
Y"(a,B) is the
harmonics [5], a €B, see Fig. 2, and is equal to
a =acos(k, / k) , while g E[-ﬂ', 72'] and is equal
to g =atan(k, / ky). Eg. 3 shows that the plane

function vector spherical

wave spectrum on any z-plane z > z, can be
expressed as a series of the same type and with the
same Q coefficients of the SWE of Eq. 1, where the
only difference lies in the basis functions that are
now the vector spherical harmonics instead of the
power-normalized spherical vector wave functions.
The imaginary values of the angle « correspond to
the invisible region of the k,k,-domain. Though the

functions ﬂm(a, ) have an exponential growth in

that region, it is important to note that the series of
Eq. 3 is convergent in the entire spectral domain.
Nevertheless, while the visible region of the
spectrum reaches convergence with N = kr, terms,
the invisible requires many more terms to
compensate the exponential growth of the spherical
harmonics [5]-[6]. In practice the finite dynamic
range of the measurement system limits the
measurement of these high order modes. However,
it has been shown [6] that the recovery of the
visible region and the singularity fork, =0, both

correctly represented by the first N = kr, modes,
provides accurate aperture fields that facilitate an
effective diagnostics.

3. The offset reflector antenna: model and
nominal configuration

The AUT is a 12 GHz offset parabolic reflector,
defined in the xyz-coordinate system by a circular
projected aperture of diameter D = 60 c¢cm, a focal
length f =39 cm and a clearance d’ =9 cm, see Fig.
3. The feed is linearly polarized along X;, where X; y
zis the feed coordinate system, with its origin at the
focus and with z; pointing towards the center point
on the reflector. We introduce two coordinate
systems (CS): the measurement CS, Xmeas Yimeas Zmeass
with its origin on the reflector aperture plane and
the zea-axis normal to that and coinciding with the
horizontal rotation axis of the measurement system,
and the cut CS, Xcut Yeut Zeut» Obtained by rotating
Xmeas Ymeas Zmeas 26.5° around Ypeas, and with z¢; thus
aligned to the main beam direction.

The measurement set-up of the antenna in its
nominal configuration is shown in Fig. 4. By simply
rotating the Q coefficients of the SWE of the
radiated electric field measured in the measurement
CS, the Q coefficients of the SWE in the cut CS are
easily obtained [7]. The amplitude of the
transformed far-field pattern, in the cut CS, of the
antenna in its nominal configuration is plotted in dB
in Fig. 5, showing co- and cross-polar components
according to Ludwig’s 3™ definition [7], in the uv-
space, normalized to the maximum value of the co-
polar component.
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Figure 3. Offset reflector antenna: geometry and
coordinate systems.

Figure 4. AUT on the measurement tower:
geometry and coordinate systems.

From the Q coefficients the power spectrum
1 |G

Prad (n) :E Z |Q1(m)n
m=-n

see Fig. 6.

It is seen that the finite dynamic range of the
measurement system allows the correct acquisition
of N = 135 modes which, with ro=182, corresponds
to N = kr,+22, and M = 120.

2 2
+|Q§n)n| has been found,
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Figure 5. Amplitude of co- and cross-polar
components in dB of the antenna far-
field in its nominal configuration in the
cut CS.

Truncating the mode spectrum at these two values,
which will be wused in all the subsequent
investigated cases, retains more than 99.99% of the
total radiated power. With these n- and m-
truncations in the series of Eq. 3 it is expected to
recover only the visible part of the plane wave
spectrum and the singularity at k, = 0. A calculation
of the invisible region to improve the spatial
resolution of the aperture fields is not possible here,
since the number of available n-modes is not
sufficient to reach convergence in the invisible
region.

The Q coefficients of the SWE in the cut CS have
thus been used to compute with Eq. 3 the plane

wave spectrum 'IT(kX,ky,z), in the [-3k, 3K]

spectral domain, on the z-plane z = 17cm= 6.8 2, see
Fig. 3.
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Figure 6. Power spectrum in the cut CS of the
antenna in the nominal configuration
and the truncation numbers N=135,
M=120.

After replacing by zeros the values of the plane
wave spectrum in the invisible region, the spectrum
was inversely Fourier transformed obtaining the
aperture field. Plots of the amplitude of the x- and y-
components of the electric field (in dB scale and
normalized to the maximum of E,), and phase of the
x-component are shown in Fig. 7 on the z-plane z =
17 cm in the cut CS, where the projected circular
rim of the reflector is also indicated.

Phase Ex

0
X (cm)

Figure 7. Amplitude of E, and E, and phase of E,
on z=17 cm, in the cut CS for the
nominal configuration.

While the amplitude field distributions of E,
and E, are almost symmetric around the y=0
axis, as expected, the phase distribution is not
constant, as would be the case for an ideal
parabolic reflector antenna, but shows a
variation from the center of the aperture to the
edge that reaches the maximum value of 2.4
rad. Thus, this reflector antenna — even in its
nominal configuration — is far from ideal. By
looking at the left side of the projected circular
rim, we clearly distinguish the diffraction from
the strut and the effect of the feed.

4. Antenna errors: measurements and diagnostics
results

4a) Feed tilt

Feed tilts of 5° and 10° around the x; —axis have
been considered, see Fig. 8. The tilt of the feed
causes an asymmetry of the cross-polar far-field
which is detectable already for the 5° case but
becomes more evident for the 10° case, see Fig. 9.
The Q coefficients of the SWE in the cut CS have
been used to compute the plane wave spectrum

f(kx, ky, Z) on the z-plane z = 17cm.
The amplitudes of the x- and y-components of the
aperture field are shown in Fig. 10. When it is

compared to Fig. 7, this clearly shows a tilt of the
feed illumination towards the negative y-axis.



Figure 8. Offset reflector with a feed tilt.
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Figure 9. Amplitude of cross-polar component in
dB of the antenna far-field for the 10°
feed tilt case in the cut CS.
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Figure 10. Amplitude of E, and E, on z = 17 cm,
in the cut CS for the 10° feed tilt case.

4b) Gaussian bump

A metallic bump with the shape of a two-
dimensional Gaussian function with peak and sigma
both of 1 cm has been built and attached to the
reflector surface, see Fig. 11. The co-polar
component of the far-field pattern in the cut CS is
shown in Fig. 12.

-y

Figure 11. Offset reflector with a Gaussian
bump.

While the shape of the main beam is similar to the
one of the nominal configuration in Fig. 5, the
structure of the side-lobes changes significantly.
The same was noticed for the cross-polar
component.
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Figure 12. Amplitude of co-polar component of
the antenna far-field for the Gaussian
bump case in the cut CS.

The aperture field was then calculated on the z = 17
cm plane in the cut CS, see Fig. 13 (above). On that
plane also the z-component of the field (not shown
here) highlights the circular structure caused by the
bump.

Ex

h\—\‘ \.\\\,

Figure 13. Amplitude of E, on z =17 cm in the
cut CS (above),andonz=0.5cmin
the measurement CS (below) for the
Gaussian bump case.

Though the aperture illumination is now almost
symmetric, when compared to Figs. 7 and 10, a
circular structure of different amplitude is noticed
for x = 0 cm and y = -20 cm. The picture becomes
more clear when the aperture field is computed in
the measurement CS on z = 0.5 cm, see Figs. 3 and
13 (below), where the projected elliptical rim of the
reflector is also indicated.

4c) Surface distortion

A surface distortion was finally introduced by
randomly placing 21 dishes of aluminum each with
a diameter of 5 cm and thicknesses of 2.5 mm, 1.5
mm and 1 mm (A=2.5 cm) on the entire reflector
surface, see Fig. 14. This serves as a model of
slowly varying surface distortions.

Figure 14. Offset reflector with surface
distortions.

The co-polar component of the far-field is shown in
Fig. 15.

Eco surf dist

Figure 15. Amplitude of co-polar component of
the antenna far-field for the surface
distortion case in the cut CS.



It is seen that side-lobes of high amplitude appear
all around the main beam region, which remains
almost the same as for the nominal configuration of
Fig. 5.

Y (cm)

Y (cm)

Figure 16. Amplitude of E, on z =17 cm in the
cut CS (above),andonz=0.5cmin
the measurement CS (below) for the
surface distortion case.

The x-component of the aperture field is shown in
Fig. 16, above at z = 17 cm in the cut CS, and below
at z= 0.5 cm in the measurement CS. As for the
Gaussian bump case, the distortions become more
distinguishable on a plane closer to the reflector
surface, in particular all 21 dishes, the thicker
clearly, the thinner less strongly, are identified.

5. Conclusions

A diagnostics of a simple commercially available
offset reflector antenna for satellite TV reception
has been performed by applying the SWE-to-PWE
antenna diagnostics technique. The diagnostics
showed that the antenna in its nominal
configuration  already  exhibited  non-ideal
properties. Even in the presence of these, a feed tilt
and two different types of surface distortions, which
were intentionally introduced and provided

anomalies in the far-field pattern, were correctly and
accurately identified. The investigation serves as an
experimental validation of the SWE-to-PWE
antenna diagnostics technique in the presence of
typical measurement inaccuracies and a non-ideal
AUT. Furthermore, it highlights the value and
importance of applying different coordinate systems
and projected aperture planes for the purpose of
antenna diagnostics.
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Abstract

The recently developed Spherical Wave
Expansion-to-Plane Wave Expansion (SWE-to-
PWE) antenna diagnostics technique is employed
in an investigation of the antenna system in the
Microwave Imaging Radiometer using Aperture
Synthesis (MIRAS) for ESA’s Soil Moisture and
Ocean Salinity (SMOS) mission. The SWE-to-
PWE antenna diagnostics technique successfully
identifies the sources of the anomalies detected in
2 of the 138 MIRAS antenna far-field patterns that
were measured during the on-ground calibration at
the DTU-ESA Spherical Near-Field Antenna Test
Facility in 2006. In addition to its obvious value
for the SMOS mission, this investigation also
provides an experimental validation of the SWE-
to-PWE antenna diagnostics technique.

1 Introduction

The SMOS mission, scheduled for launch in 2008,
is the latest Earth Observation Mission of the
European Space Agency (ESA) [5]. Its purpose is
to monitor the water cycle, the density of the
seawater and the currents in the oceans to improve
the knowledge of these phenomena and hence
provide better weather and climate forecasts. A
special radiometer, MIRAS, has been developed to
capture the microwave radiation emitted from soil
and ocean in the frequency band from 1.404 GHz
to 1.423 GHz (L-band). In order to achieve the
required spatial resolution, the radiometer consists
of 69 independent dual-polarized receivers
positioned on an 8 meter diameter Y-shaped
support structure, that is folded during launch and
un-folded once the satellite is in orbit. Each

receiver includes a dual linearly polarized circular
patch antenna.

For the purpose of accurately determining the soil
moisture and ocean salinity, the radiometric signal
processing requires an extremely accurate
measurement of the receivers’ antenna far-field
patterns. A 1o accuracy of 0.05 dB for the
amplitude and 0.33° for the phase in a 70° angular
region centred on the main beam direction was
requested. The DTU-ESA Spherical Near-Field
Antenna Test Facility at the Technical University
of Denmark (DTU) [6] was selected to conduct the
on-ground calibration of the MIRAS antenna
patterns. After an investigatory study to improve
measurement procedures and the measurement
system during 2003 to 2005 [7]-[8], the final on-
ground calibration measurements took place from
November 2005 to July 2006, while the processing
of the raw measurement data to determine the
antenna far-field patterns was carried out in the
fall of 2006.

During the last measurement series of the MIRAS,
see Fig. 1, anomalies were detected in the antenna
patterns of two MIRAS receivers.

In order to identify the source of these far-field
anomalies a diagnostics of the two elements was
performed based on the SWE-to-PWE antenna
diagnostics technique [1]-[2]. The technique uses
spherical near-field measurement data to compute
the aperture field on a plane located in the extreme
near-field of the antenna under test, and provides a
spatial resolution that may, in principle, exceed the
traditional limit of half a wavelength. The
aperture plane was chosen to be positioned on the
outside surface of the Kapton-Germanium
protection layer which covers the complete
MIRAS structure, see Fig. 1.

The purpose of this work is, besides being an

important step in the MIRAS on-ground
calibration, to provide an experimental validation
of the SWE-to-PWE antenna diagnostics

technique, when working in the presence of noise,



finite dynamic range, and other non-ideal
phenomena typical of practical measurements.

Figure 1. Central part of the MIRAS, consisting of
the hub and the three inner arm segments, on the
tower of the DTU-ESA Spherical Near-Field
Antenna Test Facility during the last measurement
series.

The paper is organized as follows: in section 2 a
summary of the SWE-to-PWE technique is
provided, while in section 3 the two faulty
elements are analyzed. Both the measured far-field
patterns and the computed aperture field
distributions will be shown for each of the two test
cases, arriving at the identification of the antenna
errors. All results are expressed in the S.I.

rationalized the €' time

convention.

system  with

2 The SWE-to-PWE antenna diagnostics
technique

Electrical and mechanical errors in an antenna may
seriously affect the antenna performance, and
while their presence is normally detected by
anomalies in the measured far-field pattern, often
only an analysis of the extreme near-field can
facilitate the identification of those errors.
However, the computation of the extreme near-
field is generally not possible when the field is
expressed as a SWE obtained from a spherical
near-field measurement since the SWE is valid

only outside the antenna minimum sphere of
radius r,, with r, being the largest r-coordinate of
the source. One way to overcome this limitation is
to transform the SWE into the PWE which is valid
on any z-plane z > z,, with z, being the largest z-
coordinate of the source, see Fig. 2. Note that
|zo] < 1r,. Once the PWE is known, the extreme

near-field can be computed by use of the Fourier
transform and then subjected to diagnostics.
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Figure 2. Spatial domains of validity of the SWE
and PWE for a general antenna: the PWE is valid
for z > z,, the SWE for r > r,,.

To summarize the theory behind the SWE-to-PWE
technique, we start by introducing the SWE of the

electric  field E radiated by an antenna
circumscribed by a minimum sphere of radius r,
[3], with r >y,

_ k °s) n _ _ _
EM=—=. D QRSO+ Fim®. @)
\/; n=1l m=-n

where Q12 and Q¥ are the expansion

coefficients and F& (F) and FS) (F)are the
power-normalized  spherical ~ vector  wave
functions. The medium intrinsic admittance is 7, k
is the wave number, and T is the position vector
expressed in terms of spherical coordinates (r, 6,
@) or rectangular coordinates (x, y, z). In practice,
the n-summation of the SWE is typically truncated
at N = kr,+10 since this is sufficient for an
accurate calculation of the far-field. The PWE of

the same electric field E in the spectral Kyky-
domain valid for z > z, is given by [4],

E(X, Y, Z) _ % I j f(kx, ky) eikZZei(kxX+kyY)dedky (2)

where k. and k,, are the spectral variables and
k, =/k?—k? —kZ . The plane wave spectrum
z-coordinate is

for a given



T (K, Ky, 2) =T (K, k, )e":*. The spectral domain

is divided into two regions, the visible region, for
k+ k,” < k% which contains the propagating plane
waves, and the invisible region, for k+ k> > K2,
which contains the evanescent plane waves, see
Fig. 3. The two variables k, and k are real, while k,
is real in the visible region but purely imaginary
with a positive imaginary part in the invisible
region. In practice, the k- and ky-integrals are
truncated at finite values  *Kynax and 2Kyma
respectively, providing a spatial resolution
(0x,0y)in  the aperture field equal to

8y =7 Kymax» Oy =71 Kymax- At the border

between the visible and invisible regions k, = 0
and the PWE generally possesses a singularity
there [4].

k A
Y Invisible
K
Visible Kx

Figure 3. Visible and invisible regions of the
spectral k,k,-domain.

It can be shown [1][2] that the SWE of Eq. 1 can
be rigorously transformed into the PWE of Eq. 2,

if the plane wave spectrum f(kx, ky,2) is written

as
00 n
Tk )= > QT (kyoky,2) + 2
n=lm=-n ©)
) Tomn Ky, Ky, 2
+Q2mn Zmn( X1y )
where

(_i)n+1

\ﬁ/ﬂ—(ﬁm (a, ) (4)

_ eikzz
Timn (Ky. Ky, 2) =——
k;

_ eikzz (_i)n N
T2mn(kx:kyvz) =———=————=k XYnm(avﬂ)
z

k, Jnn(n+1)
(5)

with k =k /k = (k& +k,§ +k,2)/k . The function
Y."(a,8) s the vector spherical harmonics [1],
with a € B, see Fig. 4, equal to o =acos(k, / k),

and p€[-n, n] and equal to S =atan(k, /Kk,).

Eq. 3 shows that the plane wave spectrum on any
z-plane z > z, can be expressed as a series of the
same type and with the same Q coefficients of the
SWE of Eq. 1, where the basis functions are now
the vector spherical harmonics. The imaginary
values of the angle a correspond to the invisible
region of the k¢k,-domain. Though the functions
Y."(r,p) have an exponential growth in that

region, it is important to note that the series of Eq.
3 is convergent in the entire spectral domain.
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Figure 4. Domain of the variable o on contour B.

Nevertheless, while the visible region of the
spectrum reaches convergence with N = kr, terms,
the invisible generally requires many more terms
to compensate the exponential growth of the
spherical harmonics [1][2]. In practice, the finite
dynamic range of the measurement system limits
the measurement of these high order modes.
However, it has been shown [1] that the recovery
of the visible region and the singularity for
k, =0, both correctly represented by the first N =

kr, modes, provides accurate aperture fields that
facilitate an effective diagnostics.

3 Faulty elements and diagnostics results

During thé3final calibration measurements of the
MIRAS, see Figs. 1 and 5, anomalies were
discovered in the far-field patterns of two
receivers:

1) Port 1 of the receiver unit BCO3 showed a high
cross-polarisation in the ¢ = 90° plane.

2) Port 1 of the receiver unit A05 exhibited a
noticeable frequency variation in all ¢ planes.

In order to identify the sources of those anomalies,
the SWE-to-PWE diagnostics technique was
applied and the aperture fields for these two
receivers were computed on the z-plane placed on
the surface of the Kapton-Germanium protection
layer, see Fig. 1, located at z = -5mm in the
measurement coordinate system. For reference, the
diagnostics was also applied to the unit AO1 (port
1) which did not present any anomalies. Its co-



and cross-polar far-field patterns (Ludwig’s 3™
definition [3]) are shown in Fig. 6 for ¢ = 90°.

Y A

arm B

Figure 5. The MIRAS antenna system in the
measurement coordinate system with the faulty
units A05 and BCO3 and the correct unit AO1
indicated.
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Figure 6. Far-field pattern of the receiver unit A01,
port 1, for ¢ =90°, showing correct co- and cross-
polar components.

3.1 Element BCO3

The far-field pattern of port 1 of the receiver unit
BCO3 in the ¢ = 90° plane is shown in Fig. 7: it
exhibits a correct co-polar component, but an
unusual high cross-polar level at all frequencies of
interest when compared to the reference pattern of
Fig. 6.
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Figure 7. Far-field pattern of the receiver unit
BCO03, port 1, forp=90°, showing an unusual
high cross-polar component.

From the Q coefficients of the SWE the power
n

spectrum p_y_1 ®

rad (n) ZmZZ_n‘len

found, see Fig. 8.
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Figure 8. Power spectrum of the unit BCO3 at f
=1.423 GHz, and the truncation value N = 58.

It is seen that the finite dynamic range of the
measurement system allows the correct acquisition
of N = 58 modes which, at a frequency f =1.423
GHz and with r, being equal to 9, corresponds to
N =58 = kr,+2. With this n-truncation in the series
of Eq. 3 it is expected to recover only the visible
part of the plane wave spectrum and the
singularity at k, = 0. A calculation of the invisible
region to improve the spatial resolution of the



aperture fields is not possible due to an insufficient
number of n-modes. The plane wave spectrum
T (k,.ky,z) has thus been calculated with Eq. 3,

see Fig. 9 for a plot of the y-component in dB
scale on the [-2k, 2k] spectral domain. It is
possible to notice the recovery of the visible
region and the singularity at k, = 0, while it is
evident that the convergence of points belonging
to the invisible region is not reached yet. The
invisible region is thus replaced by zeros and the
spectrum is then inverse Fourier transformed to
obtain the aperture field.

Ty
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Figure 9. Amplitude of T,, unit BCO3, indB on z =
-5mm with N = 58: the visible region and the
singularity —are  reconstructed, while the
convergence in the invisible region is not reached
for this value of N.

In Fig. 10 the cross-polar components E, and E,
are plotted. It is possible to distinguish the
radiation from the circular patch as well as the
diffraction from the edges of the hub. Moreover,
for both components the radiation from the patch
shows asymmetries with respect to the axis
parallel to the y-axis and passing through the
center of the patch. It was thus concluded that the
anomalies of the pattern in Fig. 7 were due to an
error in the patch excitation, i.e., in the patch feed
network. The wunit BC03 was subsequently
replaced by a new one and, after a new spherical
near-field measurement, the aperture fields were
calculated, see Fig. 11. It is noted that the patch
excitation is now totally symmetric and the
diffraction from the edges has decreased slightly
with respect to the faulty element case shown in
Fig. 10.

The circular ripples in the near-fields shown in
Figs. 10 and 11 are artefacts caused by the
truncation of the plane wave spectrum at the
border of the visible region. This is the general

consequence of a convolution with a sinc function
in the transformed spatial domain. For high
directive antennas, i.e., when the plane wave
spectrum is highly concentrated inside the visible
region and has low values at the border of the
visible region, this ripple effect is negligible. For
low directive antennas, i.e., when the plane wave
spectrum is distributed on the entire visible region,
this ripple effect becomes evident.

Ey z=-5mm
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Ez z=-5mm

Figure 10. Amplitude in dB and phase in radians
of E, and E,, unit BC03, on z =-5mm.

The artefact can however be reduced by use of
windowing prior to Fourier transform; to this end a
multitude of well-established signal processing
techniques is available [9].

Ey z=-5mm

0
X (m)
Ez z=-5mm

Figure 11. Amplitude in dB and phase in radians
of Ey and E,, unit BCO3 replaced, on z=-5mm.

3.2 Element A05

The far-field pattern of port 1 of the receiver unit
AO05 in the ¢ = 0° plane is shown in Fig. 12: the
co-polar component clearly shows an unusual
frequency variation.

This anomaly was observed in all ¢ planes and in
some of them also for the cross-polar component.
In order to highlight and isolate the effect of the
frequency variation, the diagnostics was also
applied to the correct element A01l. From the
measured Q coefficients the power spectrum was
computed and it was found that again a truncation
of the n-modes at N = 58 was necessary for both
elements. Following the same procedure used for
the unit BCO3, the spectra were computed on the [-
2k, 2k] spectral domain with the use of the SWE-
to-PWE transformation of Eq. 3 on the z-
planez=-5mm, and then inverse Fourier
transformed. Again, for both units only the visible
region and the singularity for k, = 0 were
recovered, while the entire invisible region did not
reach the convergence with N = 58 and was thus
replaced by zeros.
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Figure 12. Far-field pattern of the receiver unit
A05, port 1, forp=0°, showing an unusually
large frequency variation.

In Fig. 13 the y-component of the aperture field of
the faulty unit AO5 is compared to the
corresponding component of the correct unit AO1
for the three frequencies of interest, f = 1.404
GHz, 1.413 GHz and 1.423 GHz. While the
behaviour of the unit A01 remains constant with
frequency, the unit A05 shows significant changes.
In particular it is noticed that the field at the
antenna itself is asymmetric and changes with
frequency; furthermore, the diffraction from the
hub edges decreases with increasing frequency.
The same happens to the z-component, while it
becomes less evident for the co-polar x-
component. The same asymmetries were noticed
also in the phase plots. Again, it was concluded
that the anomalies detected in the far-field pattern
were due to errors in the feed network.

Ey z=-5mm

Y (m)

Y (m)
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Figure 13. Amplitude of E, in dB on the z-plane z
= -5mm: above the unit A05 (faulty) below the
unit AO1 (correct): (a) f =1.404 GHz (b) f =1.413
GHz (c) f =1.423 GHz.

4 Conclusions

A diagnostics of two units of the SMOS MIRAS
antenna system has been performed by applying
the SWE-to-PWE antenna diagnostics technique to
the measurements of the final on-ground
calibration at the DTU-ESA Spherical Near-Field
Antenna Test Facility. The diagnostics showed
that the anomalies observed in the far-field pattern
could be traced back to asymmetries and
frequency variations in the extreme near-field of
the two antenna elements. In both cases, it was
concluded that errors were present in the feed
networks of the units, for port 1 only, and the
presence of such errors was later confirmed by an
inspection of the antenna hardware. It is noticed,
that the calculated aperture fields show not only
the field radiated directly by the antenna unit but
also quite clearly the diffraction from the edges

and other structural components of the support
structure.

The investigation presented here also serves as an
experimental validation of the SWE-to-PWE
antenna diagnostics technique in presence of
typical measurement inaccuracies and highlights
the importance of the analysis of the cross-polar
components, in amplitude as well as in phase, for
the purpose of antenna diagnostics.
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