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Summary

When a tumor reaches a certain size it can no longer rely on passive
perfusion for nutrition. The tumor therefore emits signaling molecules
which stimulating surrounding vessels to divide and grow towards the
tumor, a process known as angiogenesis. Very little angiogenesis is present
in healthy adults where it is primaily found in wound healing, pregnancy
and during the menstrual cycle. This thesis focus on the negative
consequences of angiogenesis in cancer. It consists of a an initial overview
followed by four manuscripts. The overview gives a short introduction to
the process of angiogenesis and the involved signaling molecules.
Subsequently, a short review of contrast agents and perfusion measurements
is given. Finally, methods for monitoring angiogenesis using magnetic
resonance imaging are reviewed.
A method for monitoring early stages of angiogenesis as well as the effect
of anti-angiogenic treatment is presented in the first manuscript. In the
second and third manuscript, two separate methods of quantifying
perfusion, blood volume and vessel permeability are presented. The
methods are used to show that drug delivery to a xenografted tumor is
plausible and to show possible vascular maturation in a transgenic mouse
model. The last manuscript presents a new method for in vivo cell labeling.
This method could find use in studying the metastatic spread of cancer cells
throughout the body.
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Resumé

Når en tumor når en vis størrelse kan dens behov for ernæring ikke længere
opfyldes ved passiv diffusion alene. Derfor udsender tumoren signalstoffer
som stimulerer omkring liggende kar til at dele sig og vokse hen imod
tumoren, en proces som kaldes angiogenese. Angiogenese finder primært
sted hos raske i forbindelse med sårheling, vækst og kvindens menstruations
cyklus. I denne afhandling fokuseres på de negative konsekvenser af
angiogenese i forbindelse med cancer. Afhandlingen består af en
sammenfatning fulgt af fire artikler. Sammenfatningen giver en kort
introduktion til angiogenese samt hvilke signalstoffer er involveret heri.
Dernæst gives en kort introduktion til kontraststoffer og måling af
perfusion. Tilsidst introduceres metoder til monitorering af angiogenese ved
hjælp af magnetisk resonans billeddannelse. 
Gennem artiklerne præsenteres metoder til at monitorere de tidlige stadier
af angiogenese samt effekten af anti-angiogenetisk behandling. Dernæst
anvendes forskellige perfusionsmetoder til at monitorere perfusion,
blodvolumen og permeabilitet af angiogenetiske kar. Disse metoder
sandsynliggør at et kemoterapeutisk stof kan leveres til en transplanteret
hjernetumor. Endvidere viser de en mulig modning af karrene i en transgen
mamma brystcancer model. Til slut præsenteres en metode til mærkning af
celler in vivo. Denne metode kan på sigt udvikles til at monitorere
spredningen af cancer celler (metastaser).
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Preface

This thesis was prepared at Informatics Mathematical Modelling, the
Technical University of Denmark and Danish Reserch Centre for Magnetic
Resonance, Copenhagen University Hospital, Hvidovre in partial fulfillment
of the requirements for acquiring the Ph.D. degree in engineering. 

The thesis deals with monitoring anigogenesis using magnetic resoanance
methods. The main focus has been on developing techniques for monitoring
the effects of anti-angiogenic drugs in cancer. 

Readers are expected to have a basic understanding of magnetic resonance
imaging and spectroscopy as well as a basic understanding of normal
physiology. The more advanced methods used in this thesis will briefly be
presented in the following chapters.

The thesis consists of a summary report and a collection of four manuscripts
written during the period 2004–2008.

Hvidovre, May 2008
David Alberg Holm
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Chapter 1 Angiogenesis 1

Chapter 1 Angiogenesis

The interest for tumor vasculature has existed since the 1920s and even
earlier. In 1907 Goldmann1 noticed that the development of tumors in
organs resulted in ”chaotic irregularity” of the blood vessels and that
growing tumors exhibited extensive formation of blood vessels most
apparent in the zone of proliferation. He also noted that necrosis occurred
even in highly vascularized growths and suggested that necrotic areas were
”the battlefield on which assailant and defendant both perished”. In 1945
Algire et al2 noted that malignant cells provoke vascular proliferation. 

Ever since more knowledge about the necessity for a tumor to establish a
vasculature and its consequences have been obtained. In the following a
brief introduction to angiogenesis is given. Which factors are involved,
which types of angiogenesis exists and what the consequences of
angiogenesis are will be introduced.

1.1 Introduction

Angiogenesis is the process of formation of new blood vessels from existing
ones. It is both benign (wound healing, fetal growth, menstrual cycle) and
pathological (e.g. cancer,  diabetic blindness, age-related macular
degeneration, rheumatoid arthritis). In healthy adults angiogenesis is
governed by the balance of angiogenic stimulating and inhibiting factors. If
the balance between these is affected a pathology may develop.
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Researchers are developing ways of inducing3,4 and inhibiting angiogenesis
5 in order to cure various pathologies in
which angiogenesis is either too active or
lacking. The focus of this thesis is
angiogenesis during cancer development.

1.2 Angiogenesis in cancer

Cancer begins with a population of cells
which are unresponsive to normal control
of cell division and cell death by which
normal cells are regulated6. Therefore the
cells divide and a lesion forms as a solid
mass with no blood vessels. Normal cells
can survive up to 100µm away from
vessels whilst cancer cells, which are
more resistant to hypoxia, can survive at
greater distances7. This is visualized in
figure 1.17.

1.2.1 Tumors need angiogenesis

When the tumor reaches a size of 1-2 mm3 the central cells can no longer be
supplied with oxygen by passive diffusion. After a while the lack of oxygen
makes the cells unable to maintain their electrolyte balance. The
concentration of metabolites inside the cells becomes higher than outside
the cells. As the cells are not permeable to metabolites but have water
channels, water pours in to neutralize the metabolite concentration gradient
(osmosis). The inflowing water makes the cells swell and ultimately burst.
The intracellular content of the bursting cells damage surrounding cells and
causes inflammation. This process is called necrosis. It differs from the
naturally occurring process of apoptosis in which cells are degraded in a
controlled manner. As the inner cells in the tumor lack oxygen and become
necrotic, the tumor needs vascularization in order to grow further8. 

Normal blood vessels are lined with endothelial cells and include pericytes
(smooth muscle cells). Further, fully developed blood vessels contain a
basement membrane. The basement membrane is a specialized, sheet like

Figure 1.1: Vessels stained with

CD31 (brown) in a tumor. At

110µm the tumor cells are

necrotic which can be seen by

the hematoxylin staining of DNA

(blue). From 7 
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structure of the extracellular matrix. Its primary function is to anchor the
endothelium to connective tissues and to act as a barrier preventing
malignant cells from invading the deeper tissue. Larger vessels also contain
smooth muscle cells which contraction state can be controlled, to regulate
blood flow.

Blood vessels can be formed in three different ways:

– Vasculogenesis is the formation of vascular structures from endothelial
stem cells (angioblasts), This form is mostly seen during embryonal
development of the vascular system.

– Intussusception is the process, where the capillary wall extends into the
lumen to split a single vessel in two. In this form the basal membrane is
not breached.

– Angiogenesis is the process when new vessels are formed by sprouting
from existing vessels.

Angiogenic sprouting is an ordered series of events. Cancer cells emit
angiogenic growth factors which bind to receptors on the endothelial cells
of preexisting blood vessels making the nucleus produce new proteolytic
molecules. These dissolve the basement membrane. Endothelial cells
proliferate and begin to migrate towards the tumor. Additional enzymes are
produced to dissolve tissue in front of the budding vessels (matrix
metalloproteinases). Sprouting endothelial cells form a blood vessel tube
and individual blood vessels connect to form loops that can circulate blood9.

Tumors have several ways of obtaining a vascular supply. The term
Vascular-Cooption is used when tumor cells grow around existing vessels in
highly vascularized organs10. Intussusception has been seen in some tumor
xenografts11. Furthermore speculation has arisen that stem cells from the
bone marrow may be involved in the neovascularization of tumors12,13,14,
meaning that vasculogenesis could also be involved. 

However, it is widely accepted that the main way tumors obtain a blood
supply is through sprouting angiogenesis. The transcription factor Hypoxia
Inducible Factor 1 (HIF-1) is thought to be the main initiator of
angiogenesis. HIF-1 regulates the physiologic responses to low oxygen
levels (hypoxia) and pathophysiology of cancer, heart attach, stroke and
chronic lung disease. The HIF-1 regulated genes encode for proteins that are
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involved in angiogenesis and vascular remodeling.

Another contributing factor in angiogenesis is over expression of heat shock
proteins (HSP). HSP supports the correct conformation, stabilization,
activation, and localization of proteins, many of which are involved in
tumor cell proliferation, angiogenesis and invasion15. Furthermore, defects
in p53 tumor suppressor genes result in decreased production of the
angiogenesis inhibitor thombospondin-116. 

1.2.2 Signaling molecules

The secretion of angiogenic growth factors by the tumor cells (especially
vascular endothelial growth factor (VEGF) and basic fibroblast growth
factor (bFGF)) is considered to be the most important mechanism for
induction of angiogenesis among a range of different molecules. Necrotic
parts of the tumor, which are found in even well perfused tumors, induce a
strong inflammatory response and VEGF is highly expressed in adjacent
tissue17. Macrophages are often seen in tumors as they are in wound
healing18. Non-malignant stromal cells inside the tumor can contribute to
the production of angiogenic growth factors, possibly by stimulation from
the tumor cells19.

VEGF and bFGF have been studied in detail and are secreted by a wide
variety of human tumors. Other molecules are involved20, but description of
these is beyond the scope of this text. 

VEGF

VEGF was first described in 1989 as a molecule that enhances mitosis of
endothelial cells21. Later, VEGF was discovered to be identical to vascular
permeability factor (VPF) which had been described as increasing vascular
permeability22. Because of the strong angiogenic effect and specificity for
endothelium VEGF is considered to be the most important signaling
molecule in tumor angiogenesis20. VEGF binds to various VEGF receptors
(VEGFR) and neuropilins acting as enhancing co-receptors. VEGFR are
expressed on most vascular endothelial cells, bone marrow derived cells
including hematopoietic stem cells, and lymphatic endothelial cells. The
VEGF molecule exists in different forms (VEGF-A through F and placenta
growth factor (PlGF)20. For tumor angiogenesis VEGF-A is the most
important type as it is considered to be the key regulator of blood vessel
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formation23. Binding of VEGF-A to different VEGFR induce endothelial
cell proliferation, angiogenesis and enhance vascular permeability. The
murine version of VEGF, which was used to promote angiogenesis in
matrigel chambers in manuscript I, has similar affinity for human receptors.

VEGF-A expression is regulated by multiple stimuli, including hypoxia
through HIF-1 activation, p53 mutation, estrogen and nitric oxide (NO). In
many tumors VEGF-A is continuously expressed even under normal
oxygenation and can be particularly upregulated during hypoxia24.

VEGF contributes to the phenotype of tumors in multiple ways: angiogenic
sprouting is induced by its chemotactic and mitogenic effect on endothelial
cells. Newly formed immature tumor vessels (which depend on VEGF
signaling to survive) are allowed to persist. Vessels in and around the tumor
are dilated as a result of NO production and high vascular permeability
disrupts the fluid exchange between vessels and interstitium. VEGF
expression is one of the first steps in the angiogenic process and is
considered to be ”the master switch of the angiogenic cascade”25.

bFGF

Basic fibroblast growth factor (bFGF) was originally isolated from bovine
brain and pituitary extracts because of its proliferative effect on
fibroblasts26. Binding of bFGF to an FGF receptor induces mitogenic,
proliferative and chemotactic effects27 

FGF receptors are expressed in many cell types, including tumor cells (so it
is not specific for endothelium). However FGF does have a strong
angiogenic effect and is a classically used growth factor for angiogenesis28.
Inhibition of bFGF binding to the FGF receptor can prevent angiogenesis
and tumor growth, though it is difficult to separate the effects on
angiogenesis and the direct anti-proliferative effect29.

bFGF signaling is regulated in multiple ways. It is strongly bound to
heparin sulfate proteoglycans in the extracellular matrix from which it can
be released by proteases during the angiogenic process30. It may also be
released directly from cells producing it. bFGF modulates integrin
expression and FGFR are believed to crosstalk with integrin during
angiogenesis. bFGF regulates integrin expression and binds a form of
integrin which is expressed on endothelial cells during angiogenesis and is
required for bFGF and VEGF driven angiogenesis31.
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bFGF and VEGF control many of the same pathways and several
observations supports crosstalk between the two signaling pathways. The
synergistic effects of bFGF and VEGF have been observed by several
researchers and may be a result of common signaling pathways32,33.

1.2.3 Vascular abnormalities and hypoxia

In normal tissue, vessels are equally distributed and structured for efficient
perfusion and oxygen exchange. Tumor vasculature is often disordered and
unsystematic as shown in figure 1.2. The diameter of the vessels changes
and the distance between branches is high which results in a high resistance
to blood flow. Therefore even small changes in blood pressure can have
consequences for the tumor blood flow. Tumor vessels appear dilated
mainly due to VEGF. Blood vessels are immature which is why loops, blind
ends and shunts between arteries and veins are common8,34.  

Tumor vessels generally have sparse or no pericyte coverage and an
abnormal detached basement membrane35. Large openings between

Figure 1.2: Morphology of blood vessels (red) in the normal brain (left) is

very different from the dilated and disorderly vessels in the U87 glioma

xenograft (right). Deep tumor vessels are hidden by the bright signal from

the tumor itself (green), vascular density is similar in both fields. Stained

red blood cells (blue) appear round in slow-flowing tumor vessels, but only

as single streaks in the normal vessels. In vivo multi-photon laser scanning

micrographs; 250µm Z-projection, field width ~600µm, false colors. 

Kindly provided by Carsten Dan Ley who acquired it at the Edwin L. Steele

laboratory. 3D quantification shows that tumor vessels are larger than the

vessels in normal brain (middle).
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endothelial cells make tumor vessels more permeable than normal vessels to
contrast agents used for magnetic resonance imaging36. 

Even after the induction of angiogenesis, hypoxia is a feature of most solid
tumors, even those which are well vascularized37. Vessels are not organized
in the arteriole-capillary-venule pattern as normal vasculature meaning that
blood pressure and flow is inhomogeneous across the tumor. Because of
this, blood flow in tumor vessels can be low or intermittent and even tumor
cells in close proximity to a vessel may experience transient periods of
hypoxia38. Acute vascular collapse due to high interstitial pressure39,40,41 the
immune related destruction of cells, and the release of toxic agents42 has
been speculated to explain this.

Erythrocytes flowing through loops or shunts can have suboptimal
conditions for oxygen exchange. Furthermore tumor cells proliferate very
rapidly, meaning that metabolic demands increase faster than the vascular
system can support. This increases tumor hypoxia and makes the vascular
supply the rate limiting step for further tumor growth43.

The main cellular response to hypoxia is the release of HIF-1, which in
tumors mediates angiogenesis, increased survival, proliferation and
increased glucose metabolism. These effects are critical to the formation of
solid tumors. Because HIF-1 expression is a big advantage for tumor cells
there is a strong selection for cells with HIF-1 pathways and HIF-1 is often
active even without hypoxia44. 

Most clinically detectable tumors have necrotic zones where tumor
vasculature is insufficient. HIF-1 inhibits apoptotic pathways leading to a
predominance of necrotic cell death. Immune reaction to these necrotic
zones, attract inflammatory cells contributing to the angiogenic process.
The shift from apoptotic to necrotic cell death may be an important step for
development and growth of cancers45. 

Exposure to hypoxia may contribute to promoting tissue invasion and
increasing metastatic potential. In clinical tumors hypoxia has been
correlated with tumor progression, increased metastatic potential and poor
prognosis44.
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1.3 Inhibition of angiogenesis and vascular disruptive
agents

As tumors depend on vascular supply in order to grow it follows that
inhibition of the vascular development may be desirable. This form of
therapy is called vascular targeted therapy and exploits ways in which
tumor vasculature differs from normal vasculature. Tumor vessels have an
activated endothelium which is proliferating, a basement membrane which
is abnormal, and are immature and unstable. Thus, drugs targeting
developing vessels with limited effect on normal vasculature have been
developed. 

Two different forms of vascular targeted therapy exist. Anti-angiogenic
therapy targets angiogenesis and thereby limits the growth of new vessels
while leaving existing vessels intact. Vascular disruptive therapy destroys
existing tumor vessels without affecting normal vessels in the body. Not all
drugs fall into one of these two categories. Many anti-angiogenic drugs
have vascular damaging effects at high doses and some cancer drugs have
secondary anti-angiogenic effects. For example chemotherapeutic agents
target all dividing cells including the endothelial cells.

1.3.1 anti-angiogenic therapy

Anti-angiogenic therapy stops the formation of new blood vessels but may
induce regression of immature tumor vessels as well. As previously
mentioned, vascular supply is the rate limiting step in tumor growth.
Therefore, prevention of angiogenesis should stop further growth. Indeed
preclinical studies have shown that inhibition of angiogenesis decreases
mean vascular diameter and arrests tumor growth46.

Most of the anti-angiogenic drugs block the effects of VEGF at some level.
This may happen by binding free VEGF, blocking the receptors or by
inhibiting the function of the receptors. VEGF is an ideal target because of
its many roles in angiogenesis and the limited side effects in normal adults.
Because of VEGFs role, inhibition of VEGF is most likely necessary in all
anti-angiogenic therapy, but may not be able to stand alone47.

Thalidomide, though not initially developed for this purpose, is an example
of a drug found to have a strong anti-angiogenic effect 48. Thalidomide may
downregulate the synthesis of an integrin that is essential for VEGF and
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bFGF induced angiogenesis49but the mechanism for the anti-angiogenic
action of Thalidomide is not fully understood50. Thalidomide was employed
as an anti-angiogenic treatment in the Matrigel Chamber assay described in
manuscript I.

1.3.2 Vascular disruptive therapy

Vascular disruptive agents do not affect angiogenesis directly but affects
blood flow through existing vasculature. Vascular disruptive agents cause
hypoxia which only leaves viable cells on the rim of the tumor close to
vasculature in the surrounding tissue. The main classes of agents are tubulin
binding agents and flavonoids.

Flavonoids are mainly known for the DMXAA compound, currently in
phase II clinical trial testing. The method of action of the flavonoids is not
entirely clear. However, stable production of tumor necrotic factor and
elevation of NO production has been observed. How these factors lead to a
decrease in blood flow and apoptosis of endothelial cells is not yet
understood51.

The tubulin binding agents interfere with the function of the cytoskeleton of
endothelial cells. The classic agent is Colcicine which is too toxic for
clinical use. An alternative is Combretastatin having similar effects. In
general tubulin binding agents destabilize the microtubuli of the endothelial
cytoskeleton and may also interfere with junctions between cells
influencing vascular permeability. The exact method by which they lower
blood flow is still unknown. Tumor blood vessels are more sensitive to
tubulin binding agents than normal blood vessels which may be caused by
the lack of maturity of the tumor vessels.

1.3.3 Pros and cons for vascular targeted therapy

Mainly tumors exhibit neovasculature in adults. Hence, antivascular therapy
should be more specific than chemotherapy and radiation. Secondly, since
endothelial cells are not malignant they are less likely to develop drug
resistance. Thirdly, endothelial cells are in direct contact with the
bloodstream so delivery of the vascular targeted agent should be persistent. 

Correctly administered vascular targeted agents do, however, have side
effects52 and primarily delay the growth of tumor. The increased hypoxia in
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the tumor may even cause selection of clones that are resistant to hypoxia or
increase production of angiogenic growth factors. 

The vascular damaging agents can have significant effects on tumor blood
flow and most of the tumor may become necrotic after treatment.
Unfortunately the necrotic part of the tumor can be repopulated very
quickly and blood flow restored making the delay in tumor growth small51.
Because of this, vascular targeted therapy is not widely used in the clinic.

Vascular targeted therapy was originally envisioned as a monotherapy and
concern was raised that reduced tumor perfusion would compromise drug
delivery to the tumor and hypoxia would reduce sensitivity to radiation
therapy. Fortunately, this was not the case and vascular targeted can thereby
increase sensitivity to chemotherapy and radiation53,54.

Details of the synergistic effect of vascular targeted drugs and traditional
cancer therapy remain to be elucidated. Evidence that anti-angiogenic
drugs, especially the ones which affect VEGF, can work to ”normalize”
tumor vasculature by inhibiting VEGFs effect on vascular permeability
exists. This would normalize osmotic pressure gradients and increase
exchange of water and molecules between the tumor vasculature and
interstitium. Although the long term effect of the vascular targeted agents is
to deprive the tumor of blood supply a ”normalization window” may exist
where the tumor perfusion is significantly improved34. Most studies have
shown improvement in vascular function and drug delivery when combined
with anti-VEGF treatment55 though some have not56. This indicates that the
correct timing between the two may be important for efficient synergistic
effects.

Synergistic effects between traditional cancer treatment and vascular
disruptive agents are more intuitive. The vascular disruptive agents usually
target the core of the tumor due to the almost complete disruption of tumor
blood vessels. Chemotherapy and radiation primarily target the rim of the
tumor since delivery of drugs and oxygen is usually improved in the rim
compared to the center of the tumor.
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Chapter 2 MR contrast agents

As the experimental basis of this thesis and all papers included, depend on
the usage of contrast agents to estimate blood volume (Manuscript I),
perfusion (Manuscripts II+III) or to label cells (Manuscript IV) a brief
introduction to MR contrast agents is in place. Perfusion measurements and
angiogenesis monitoring based on employment of different contrast agents
will be described in chapter 3 and 4, respectively.

2.1 Introduction

Magnetic resonance imaging produces images by measuring RF signals
from the magnetic moments of primarily water protons although other
elements (13Carbon,31Phosphor,3Helium) can be imaged as well. Because of
its abundance proton MR is the most widely used method both clinically
and preclinically57.

In conventional MR images the contrast depends mainly on the proton spin
density and the longitudinal (T1) and transverse (T2) relaxation times. These
differences are often enough to provide good contrast between organs and
to distinguish pathological from healthy tissue. 

Nevertheless some pathological diseases do not lead to differences in
morphology and do not show specific change in relaxation times.
Combining MRI and contrast agents enhances the possibility to depict
inflamed tissues in arthritis58, tumor angiogenesis59,60 and multiple
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sclerosis61.

New contrast agents have been developed in order to visualize molecular
and cellular processes noninvasively62. This is possible by directing a tracer
toward the target molecule or process of interest. Typically the target
molecule is only present in very low concentrations. Therefore molecular
imaging was traditionally used only in optical techniques, nuclear methods
such as positron emission tomography (PET), and single photon emission
computed tomography (SPECT). Because of the low spatial resolution of
the nuclear methods, alternative methods based on magnetic resonance
imaging (MRI) are being developed. The main challenge is to enhance the
sensitivity of MR to the contrast agent. This may be realized using contrast
agents with a high relaxivity such as iron oxide particles with a high
payload of iron. Such methods have enabled MRI to monitor single cells.
For example Heyn et al labeled cancer cells and followed metastasis to the
brain63.

2.2 Generation of contrast

The equilibrium magnetization in MRI can be disturbed by radiation with
an external radio frequency (RF) field. When the RF is switched off the
system relaxes back to thermal equilibrium, a process known as relaxation.
Two different forms of relaxation are distinguished, namely spin-lattice or
longitudinal relaxation (T1) and spin-spin or transverse relaxation (T2). The
transverse relaxation may be accelerated by macro and microscopic field
inhomogeneities in which case the relaxation time is referred to as T2*
being shorter than T2 as the latter reflects only signal loss caused by nuclear
interactions.

The potency of a contrast agent to shorten T1 and T2 is denoted its relaxivity.
It is defined by the change in longitudinal and transversal relaxtion rates per
unit of contrast agent64.Relaxivity is denoted r1 or r2 and is expressed in mM-

1s-1. In general r1 decreases at higher field strength and r2 less so. The ratio
between r1 and r2 determines if a contrast agent is suitable for T1 weighted
imaging or if it only suitable for T2 weighted imaging. The so called T1

agents which are typically Gd-chelates have a low r2 compared to r1 and
generate positive contrast on most T1 weighted images while T2 agents have
a large r2 yielding negative contrast on most T2 weighted images.



2.2 Generation of contrast 13

2.2.1 T1 Contrast agents

T1 contrast agents are often paramagnetic ion containing agents. The metal
ion must have the property of shortening T1 without causing significant
broadening of the proton peak. The most commonly used T1 agent is the
lanthanide Gadolinium (Gd3+) which has a high paramagnetic moment. The
transition metal ions manganese (Mn2+) and iron (Fe3+) are also good T1

agents. Most free metal ions are toxic for living tissue and must be chelated
in order to avoid toxicity.

The action of a T1 agent can be explained using figure 2.1A showing Gd-
DTPA (gadopentate dimeglumine) also known as Magnevist57. The

Figure 2.1: Schematic of the physical principle of the working of MRI

contrast agents. (A) T1 lowering agent Gd-DTPA. Efficient relaxation

is experienced by water coordinated to the inner sphere of the Gd3+ ion

(first hydration layer). Important properties governing relaxation are

the rotational correlation time r of the whole complex, the exchange

correlation time m, and the diffusion correlation time d. (B)

Susceptibility induced dephasing causes rapid loss of transverse

magnetization resulting in short T2 relaxation times of water

surrounding a superparamagnetic FeO particle. Adapted from

reference 57
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observed difference in relaxation is caused by an intrinsic contribution (R1t)
and a contribution from the contrast agent (R1CA):

R1=R1tR1CA ,whereR1=
1

T 1

2.1

R1t is the intrinsic relaxation without contrast agent and R1CA is the
paramagnetic contribution of the contrast agent which can be formulated as
follows:

R1CA=r 1⋅[CA] 2.2

where r1 is the relaxivity (mM-1s-1) and [CA] is the concentration of the
contrast agent. In principle the shortening of the relaxation rate is linear
with the contrast agent concentration (first order approximation).
Furthermore, it is apparent that the effect can be enhanced by either
increasing the amount of contrast agent [CA] or using a contrast agent with
higher relaxivity r1.Although r1 is a contrast agent specific parameter it also
depends on the solvent and its distribution which could vary in vivo, i.e.
when the contrast agent is confined to the blood pool. Thus, the contrast
agent may not affect all water protons in the tissue equally. Therefore
linearity of R1 with concentration of contrast agent cannot always be
guaranteed65. 

The paramagnetic contribution from the contrast agent is generally
understood to originate from relaxation in two pools of water either
coordinated directly with Gd3+ (inner sphere) or located in the second
coordination sphere and the bulk (outer sphere see figure 2.1A. For
simplicity a qualitative description of the most important factors will be
given here while a more thorough description can be found in the following
papers65,66,64.

The fluctuating local magnetic field created by the paramagnetic ion
provides a relaxation pathway for the water protons. The interaction falls of
rapidly with distance. Gd should therefore have at least one site at which
water can coordinate directly (q=coordination number). Furthermore the Gd
should have fast water exchange, characterized by the correlation time τm,

so that a considerable number of water molecules may experience
relaxation. The rotational correlation time of the whole complex τr is also
important. Normally Gd-DTPA has a high τr. Slowing down the complex
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results in fluctuations of the paramagnetic center at frequencies close to the
Larmor frequency improving relaxation. Finally, diffusion provides
relaxation to water molecules in bulk surrounding the paramagnetic entity.
Diffusion is characterized by the diffusion correlation time τd57. 
Most commercially available Gd based T1 lowering agents are low
molecular weigh poly(amino-carboxylate) complexes. In this thesis two
different agents have been used Gd-DTPA (Magnevist) and Gd-BT-DO3A
(Gadovist). Their chemical structures are shown in figure 2.2 together with
the structure of choline, creatine and N-acetyl aspartate (NAA). Magnevist
was used in the two perfusion papers included in this thesis, while both
Magnevist and Gadovist were used in the cell labeling paper. 

In order to improve image contrast the agents should have a local tissue
concentration on the order of 10-7 mol/g tissue. This is sufficient when used

Figure 2.2: Figure 6: Chemical structures, in charged form, of the

metabolites: (a) choline (b) creatine (c) N-acetyl aspartate and contrast

agents: (d) Gd-DTPA (Magnevist) and (e) Gd-BT-DO3A (Gadovist). Note

that choline possesses an overall positive charge whilst zwitterionic

creatine has both positive and negative charges and N-acetyl aspartate has

two negatively charged carboxylate groups. Gd-DTPA is negatively charged

whilst Gd-BT-DO3A is a neutral molecule.Kindly provided by Dr. Ian

Rowland
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as a blood pool agent but not in order to image molecular epitopes
expressed in the living body, since these receptors are usually only present
in very low concentration of approximately 10-9 to 10-13 mol/g67. 
The low molecular contrast agents can be improved. They only have one
water correlation site and their rotational correlation time τr is too short as a
consequence of their low size. In addition the water exchange rate 1/τm is in
general too low for optimal relaxation.
Two different routes have been followed in order to improve r1 of theese
agents.
The first strategy aims to enhance r1 by optimizing q, τr and τm. Some have
increased the water exchange rate66,68 while others have increased the
rotational correlation time by grafting chelates on to macromolecules64.
Hitherto, these approaches have not lead to sufficiently high relaxation
times for molecular imaging.
The second approach is to increase the number of Gd3+ entities per particle.
Multiple Gd3+ chelates have been attached to dendrimers and these agents
have been used as contrast agents69,70. Furthermore Aime et al65 put multiple
Prohance (Gd-HP-DO3A) inside an apoferritin cage obtaining relaxivites as
high as 80 mM-1s-1. Their group later managed to monitor angiogenesis by
labeling neural cell adhesion molecules (NCAM) with this complex71. 
The manganese ion (Mn2+) is also a paramagnetic ion and may serve as an
MRI contrast agent. Early studies used low doses of MnCl2 in its ionic form
although it is toxic72. The author of this thesis was involved in a work by
Madsen et al73 in which toxicity of MnCl2 at low concentration was
estimated based on spectroscopy. In this study, no toxic effects were found
and MnCl2 is quite popular in preclinical studies because it acts as a calcium
(Ca2+) analog. Mn2+ can also be chelated to reduce the toxicity and a
manganese based contrast agent, Mn-DPDD, is FDA approved for liver
imaging74.

2.2.2 T2 contrast agents

The local magnetic field fluctuations of a paramagnetic ion result in a
paramagnetic contribution to the transverse spin-spin relaxation, similar to
the effect described for T1. A more effective way of decreasing T2 exists,
using superparamagnetic contrast agents. These are usually iron oxide
nanoparticles composed of magnetite (Fe3O4) or magnemite (γ-Fe2O3) with
a diameter of 4nm to 2.8µm. They are also termed very small
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superparamagnetic iron oxide particles (VSOP 4-8nm), ultra small super-
paramagnetic iron oxide particles (USPIO 20-40nm), superparamagnetic
iron oxide particels (SPIO 60-150nm), or micron-sized particles of iron
oxide (MPIO 1-6µm) according to their size or monocrystaline iron oxide
particles (MION) or cross-linked iron oxide particles (CLIO) depending on
their crystallin structure. MPIOs have been used to visualize individual
cells75. 

The iron oxide particles can contain several thousand magnetically ordered
iron ions and the net magnetic moment is much higher than of a single
paramagnetic ion. The particles are not magnetic when outside a magnetic
field but can be magnetized by the magnetic field inside the MR scanner.
The effect on the transverse relaxivity can best be understood by the bulk
susceptibility effect (figure 2.1B). The large magnetic moment of the
superparamagnetic nanoparticles induces strong local field gradient yielding
quick loss of phase coherence of the surrounding water proton spins76,77.
Increased relaxivity can be observed at a considerable distance from the
nanoparticles since the effects are not limited to water protons in close
proximity to the nanoparticle. Water diffusion in the proximity of the
nanoparticle enhances the dephasing effects.

Similar to T1 we can define

R2=R2tR2CA ,whereR2=
1

T 2

2.3

and

R2CA=r 2⋅[CA] 2.4

where R2 and r2 can also be substituted by R2
* and r2

*.

As for the T1 agents local decrease in R2 is strongly affected by
biodistribution of the agent78.
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2.3 Measuring relaxivity of contrast agents

As described in 2.1 and 2.3 a linear relationship (r1/r2) between change in
R1/R2 and contrast agent concentration exists. This relationship is not
always linear in vivo as described, but a linear relationship is expected in
vitro. Therefore, it is quite trivial to measure the water relaxivity for a
contrast agent. 

Since the possibility of inner-sphere relaxation and other interactions
between the contrast agent and a given molecule, r1 and r2 may vary
between metabolites and water. In order to measure r1 and r2 it is necessary
to measure R1 and R2 of each metabolite separately in samples containing
varying amounts of contrast agent. 

Before presenting the results, R1 measurement methods will briefly be
introduced along with the exact method used to estimate relaxivity.

2.3.1 Spectroscopic R1 measurements

In order to measure R1 for each metabolite a new spectroscopic sequence
was developed in which a non-selective inversion pulse was added to a
PointRESolved Spectroscopy (PRESS) sequence. By varying the time
between inversion and readout (TI) it was possible to fit R1. 

Conventionally the signal as a function of TI for an inversion recovery
sequence is written as:

S∝M
0
⋅1−2e−TI⋅R1e−TR⋅R1 2.5

where repetition time (TR) is assumed >> TI, S is signal and M0 is the
equilibrium magnetization. This equation does not take the effects of
imperfect inversion into account. Furthermore, the magnetization differs
immediately before inversion, due to varying TI without changing TR. For
these reasons a new set of equations were formulated:

S∝M
0
M 0−M

0
⋅e−TI⋅R1  2.6

M 0=M0⋅X⋅1−e
−TR−TI ⋅R1 2.7

where M(0) is the magnetisation immediately before the inversion and X is
the inversion efficacy with -1 corresponding to perfect inversion.
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Equations 2.6, 2.7 were fitted to the signal using a non linear least squares
fitting method79 implemented in MatLab. The fitted parameters were M0, X
and R1. For the water suppressed metabolite R1 measurements, the signal vs.
time curves were fitted simultaneously for all three metabolites and equal
inversion efficacy (X) was assumed. For the water relaxation
measurements, a fixed inversion efficacy of -0.7 was used. An example of
fitting the fitting employed is shown in figure 2.3.

The same measurement and fitting method was used for in vivo

measurements of metabolite R1s in the paper by Madsen et al73 and in
manuscript IV. Automatic peak fitting was tested but unfortunately the
signal to noise of some of the inverted spectra was not sufficient to obtain
robust results. The author therefore ended up manually annotating the peak
and baseline positions of each spectrum. 

Figure 2.3: Signal as a function of TI, together with fitted curve for

Choline, Creatine, NAA and H2O. Numbers after each metabolite are the

fitted R1 values. The H2O signal values were divided by 20 in order to

show all curves in one plot.
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2.3.2 Relaxivity measurements

In order to measure relaxivity for a given contrast agent, samples containing
25mM of choline, creatine and NAA were mixed with varying amounts of
contrast agent (0 to 50µM). Signal as a function of TI for water (no water
suppression) and the three metabolites (with water suppression) were
measured for each sample and R1 was fitted as described in the following.
Samples with Bovine Serum Albumin (BSA) were also prepared in order to
estimate the effects of protein binding. The slope of the concentration/R1

curve is the r1 relaxivity as depicted in figure 2.4.

Figure 2.4:  Relaxivity plots for the non-protein (left) and the BSA-

phantoms (right). R1 for choline (cho), creatine (Cr), NAA and water are

plotted as a function of the Mn2+ concentration (µM). Bars are standard

error of the fitted parameters.

Figure 2.4 shows good linearity between contrast agent concentration and
R1, which was the case for all contrast agents. The results for each of the
contrast agents will be presented in the next section.
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2.4 Relaxivity of contrast agents at 4.7T

The measured relaxivities can illustrate some of the concepts introduced in
the beginning of this chapter. The results of relaxivity measurements of
Magnevist, Gadovist, and manganese on water, choline, creatine and NAA
are shown in table 1 and the results will briefly be discussed based on the
theory introduced previously.

Phantoms H2O Choline Creatine NAA 

Magnevist   4.4 (0.3) 8.6 (0.2) ** ! 3.9 (0.2)   1.7 (0.3) **

Magnevist BSA   3.8 (0.3) 7.8 (0.3) ** ! 3.3 (0.4)   1.0 (0.7) **

Gadovist   5.4 (0.4) 2.4 (0.1) ** 4.1 (0.2) **   3.7 (0.3) **

Gadovist BSA   5.6 (0.1) 2.3 (0.2) ** 3.7 (0.3) **   3.5 (0.3) **

Mn   8.3 (0.4) ! 1.1 (0.8) ** 2.8 (0.4) ** 28.1 (0.8) ** !

Mn BSA 13.6 (1.3) ! 1.8 (0.4) ** 2.8 (0.6) **   4.8 (0.7) ** !

Table 1: Relaxivities of Gadovist and Magnevist on metabolites with BSA

and without BSA. Numbers in parenthesis are standard error of the fit.*

Denotes statistically different from relaxivity of water (P<0.05) **

(P<0.005). ! denotes that the BSA and non BSA values are statistically

different (P<0.05).

2.4.1 Magnevist

The choline relaxivity for magnevist decreases slightly when BSA is added.
Magnevist is anionic while choline is cationic. This means that increased
inner-sphere relaxation can be expected in the absence of BSA. The cationic
nature of the choline molecule will result in increased outer-sphere
interaction with negative cations, causing the relaxation rate of the protons
in the choline molecule to be increased compared to the other metabolites.
In the presence of BSA, relaxivity of choline is slightly reduced, but it is
still higher than the other metabolites suggesting that the ‘inner sphere’
interaction is reduced and the enhanced ‘outer sphere’ interaction of species
with opposite charge remain.
The lowest relaxivity for Magnevist is for NAA, which is most likely
explained by decreased interaction between the Magnevist and NAA
because of their anionic nature. Creatine relaxivity lies between choline and
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NAA relaxivity values which corresponding well with its zwitterionic
nature.

2.4.2 Gadovist

None of the metabolites stand out as having either a very high or very low
relaxivity with Gadovist, most likely due to the neutral nature of Gadovist.

2.4.3 Manganese

The water relaxivity for Mn2+ increases in the samples with BSA. Free Mn2+

cations in solution are able to interact with six H2O molecules (q=6).
However, when albumin is present in the solution, albumin and Mn2+ are
complexed80 reducing the number of water molecules that may interact with
free Mn2+ (q), potentially reducing the relaxation efficiency of Mn2+. When
bound, the motion of the Mn2+ cations is slowed (τr decreases), enhancing
the relaxation properties of the Mn2+ cations. Consequently, the longitudinal
relaxivity on water increases. 
The NAA relaxivity of Mn2+ is very high without BSA. This may be
explained by inner-sphere interaction between the anionic NAA and the
cationic Mn2+. Similar to what was seen with Magnevist and choline, the
anionic nature of NAA molecule will result in increased outer-sphere
interaction with positive cations, causing increased relaxivity of NAA
compared to the other metabolites. In the presence of BSA, NAA relaxivity
is drastically reduced, but is still higher compared to the relaxivity of other
metabolites suggesting a reduction of inner sphere interaction and that the
enhanced outer sphere interaction remain. Moreover, the Mn2+ cations were
shown to least affect the longitudinal relaxivity of choline. This is in
accordance with the fact that choline is positively charged consequently
tending towards less strong interaction the positively charged Mn2+ cations.
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Chapter 3 Measuring perfusion using MRI

It is important to distinguish blood flow and perfusion. Blood flow is a
measure of how much blood flows through a vessel per time unit. The
preferred unit for blood flow is ml per minute. 

Perfusion is a measure of how much blood is available for exchange of
oxygen, nutrients and waste products to the tissue. Therefore big vessels
which run through the tissue, acting solely as 'pipes', should not be included
in the perfusion measurement. Only arteriole, capillary and venolous blood
flow should be included. Perfusion is measured as blood flow per unit time
per unit tissue and the standard unit is ml per min per 100g of tissue.

As described in chapter 1 angiogenesis is a process in which new vessels
are formed. For that reason the density of vessels in the tissue could be a
good indicator for angiogenesis. Such a quantity does exist (microvascular
density MVD) and can be measured using microscopy. MVD has been
shown to correlate well with outcome and tumor grade81. Unfortunately, the
spatial resolution of MRI (approx 100µm) does not allow MVD to be
measured directly. A solution could be to measure flow in the vessels using
MRI, but the tortuous structure of the vessels means that a given voxel
within a tumor has blood flowing in multiple directions preventing correct
flow estimates. 

The purpose of angiogenesis is not flow per say but rather to exchange
nutrients and deliver oxygen to the tumor cells. Thus, perfusion is an
obvious choice for monitoring the efficiency of angiogenesis and perfusion
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parameters have been correlated with e.g. MVD, to be further described in
chapter 4.

In the following a brief introduction to the different methods which exist for
quantifying perfusion and other vascular parameters will be given.

3.1 Introduction

As previously described, tumors become dependent on perfusion as they
grow. When they reach a size of 1-2mm3 the need for nutrients can no
longer be met by passive diffusion and the tumor emits signaling molecules
stimulating angiogenesis. 

There are numerous ways to measure perfusion using MRI. Most include
injection of an exogenous paramagnetic contrast agent which is injected
through a vein.

In this thesis, I have used invasive methods that can provide better signal to
noise and extra information (e.g. leakiness) compared to noninvasive
methods. A brief attempt was made at implementing arterial spin labeling
on the preclinical system but unfortunately hardware limitations hindered
this method. For completeness, a brief introduction of two noninvasive
methods will be given.

3.2 MR perfusion methods

3.2.1 Arterial spin labeling (ASL)

Arterial spin labeling is a non-invasive method which uses blood as an
endogenous contrast agent. It was first introduced by Detre et al82 and
Williams et al83 in 1992. Two separate images are acquired, one where
blood supplying the tissue of interest is labeled using radio frequency pulses
and one without labeling. The labeled blood exchanges with water in the
tissue and changes its magnetization. The difference between the labeled
and unlabeled images is perfusion weighted. The difference in signal is on
the order of a few percent of the equilibrium signal which means that
averaging is needed in order to measure a usable signal. ASL is quite
sensitive to delays in the delivery of blood from the labeling area to the
imaging volume due to T1 relaxation during transit. As flow is generally
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higher and distances smaller in rodents than humans this is less of an issue
in preclinical experiments A good general introduction to ASL can be found
in an article by Golay et al84. 

3.2.2 Blood Oxygen Level Dependant (BOLD)

BOLD is similar to arterial spin labeling in that blood is used as an
endogenous contrast agent. Although with BOLD the measured signal is
based on the oxygenation level of the blood. It was first described by
Ogawa85,86 and Ogawa & Lee87 in 1990 in rat brain studies with high
magnetic field strength. Ogawa & Lee noticed that the imaged blood vessels
yielded negative contrast on high resolution MRI images. BOLD has since
been further developed and in the following a brief introduction to the
theoretical background is provided.

Oxygenated hemoglobin is diamagnetic while deoxygenated hemoglobin is
slightly paramagnetic. The paramagnetic effects of the deoxygenated
hemoglobin induces susceptibility differences between the blood vessels
and surrounding tissue resulting in loss of signal in T2* weighted MR
sequences. Consequently, if the concentration of oxygenated blood changes,
the MR signal will change88.
BOLD is often used for brain activation studies as an indicator for neural
activity. When the neurons are activated energy consumption increases and
waste products accumulate yielding an increase in brain perfusion. Whether
the increase in perfusion is because of lack of oxygen or because of
accumulation of waste products is unclear. The increase in perfusion is
larger than the increase in metabolism, effectively meaning that the
percentage of blood which is deoxygenated while passing through the tissue
(oxygen extraction fraction) is decreased. As a result, the blood in active
areas of the brain contain relatively less deoxygenated blood which results
in a net increase in signal from the tissue88.

BOLD does not measure quantitative perfusion or quantitative changes in
perfusion but indicate areas where perfusion changes after some form of
stimulation e.g changes in activation of the brain.

3.3 Invasive methods

As paramagnetic contrast agents shorten both T1 and T2* the effects of the



26 Measuring perfusion using MRI

contrast agent can be quantified using either T2* weighted imaging
(dynamic susceptibility contrast) or T1 weighted imaging (dynamic contrast
enhanced). When the change in signal has been converted to contrast agent
concentration, the processing of the dynamic data is equal for both methods.
A brief introduction to acquisition and processing of both types of imaging
and how perfusion can be quantified is provided in the following.

3.3.1 Dynamic Susceptibility Contrast (dSC)

Dynamic Susceptibility Contrast is often used to measure perfusion using
MRI. A paramagnetic contrast agent is injected into a peripheral vein and
the MR signal is measured as a function of time. The intravascular contrast
agent introduces local inhomogeneities in the magnetic field leading to
faster dephasing of the spins resulting in loss of signal.

The first step in quantifying perfusion based on dSC is to convert the
measured signal to contrast agent concentration. In most dSC studies it is
assumed that the signal is approximately linearly related to the contrast
agent concentration89. 

R2t ∝Ctt  (3.1)

Figure 3.1: The change in transverse relaxation rate as a function of

vessel size for typical gadolinium dosages (single and double dose; 0.1

and 0.2 mmol/kg, respectively) and deoxyhemoglobin in spin echo (SE)

and gradient echo (GE) sequences with typical TE values. Note the

microvascular sensitivity of the SE sequence (in the range of capillary

diameters), while GE sequences are equally sensitive to all vessel sizes.

From Weisskoff90
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Both gradient echo (GE) and spin echo (SE) sequences have been used to
measure perfusion. As seen in figure 3.1, SE sequences are primarily
sensitive to capillaries while GE sequences are equally sensitive to all
vessel sizes90. In addition, SE sequences require a larger dose of Gd-DTPA
in order to get the same signal difference. For that reason GE sequences are
typically used for measuring perfusion.

For a centric phase encoded spoiled gradient echo sequence the signal after
injection of contrast agent can be expressed as91

S t =S
0
sin1−e−TR⋅R1R1 t ×e−TE⋅R2R2 t  (3.2)

where S(t) is the signal as a function of time, S0 is the signal before
injection of contrast agent, TR the repetition time, TE the echo time, ∆R1

and ∆R2 are changes in the longitudinal and transversal relaxation times. In
most cases ∆R1 is assumed to be very small and is omitted, but if the vessels
in an area are permeable to the contrast agent, the extravascular contrast
agent can have an effect on tissue R1 which will affect the measured signal.
All vessels outside the brain are partly permeable to small contrast agents
due to fenestrations in the vessels. Tumor vessels are extremely permeable
due to big pores. In these regions, the contrast agent is able to enter the
extracellular space resulting in an increased longitudinal relaxivity. This can
increase the signal as seen in figure 3.2. Different solutions to this problem
exist. In some cases the effects of extravascated contrast agent is modeled
by modifying the acquisition92, in other cases a predose of Gd-DTPA is
given in order to reduce the T1 shortening effects93.

In manuscript II, a predose of Gd-DTPA was injected and the ∆R1 effects
were therefore neglected. If R1 and R2 are assumed constant, equations 3.1
and 3.2 can be combined to give89

Ctt =−k ˙log
St

S0

/TE (3.3)

where k is a proportionality constant depending on a multitude of factors
including the tissue, contrast agent (relaxivity), field strength and pulse
sequence parameters. An example of a signal curve which is converted into
a contrast agent concentration curve is shown in figure 3.2. Because of the k
factor, quantitative perfusion measurements are impossible using T2* bolus
imaging. Some authors solve this problem by using a reference tissue e.g.
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normal white matter which they assume have a known perfusion89. In other
cases93, such as in manuscript II, only relative blood flow and blood volume
are reported, eliminating the need to estimate k. 

As previously mentioned, a problem that still remains is that the relaxivity
of the contrast agent, specifically its ability to affect T2, is dependent on the
tissue and vessel distribution78. 

A linear relationship between contrast agent concentration and signal
decrease is often assumed as described in equation 3.1. As shown by van
Oesch et al94 this is not always the case for flowing blood. However, these
effects can be eliminated by including phase information. Simonsen et
al95 showed linear relations in vivo though recent studies are questioning the
validity of this linearity96. The manuscripts included in this thesis did not
correct for non-linearities in the relation between signal intensity and
contrast agent concentration.

In order to quantify perfusion an arterial input function is needed. Because
of the swift changes in signal intensity in the arteries, a high temporal

Figure 3.2: Signal as a function of time for an artery is shown in A. The

signal curve is converted to contrast agent concentration curve in B.
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resolution is needed to adequately sample the arterial input function. For
humans, consensus is that the time between frames should maximally be a
couple of seconds. However no such consensus exists for preclinical
experiments. In clinical scanners, echo planar imaging (EPI) is typically
employed allowing 10-15 slices to be acquired. On preclinical systems a
spoiled flash sequence is typically used reducing the number of slices that
can be acquired. We typically acquired one 2 mm slice with a time
resolution of less than two seconds.

3.3.2 Dynamic contrast enhancement (dCE)

Dynamic contrast enhanced MRI has not been the method of choice for
measuring perfusion. The is mainly due to limitations in time resolution and
limited signal to noise in T1W dynamic MRI scans. New technology (e.g.
parallel imaging) has made it feasible to run dynamic MRI scans with a
high temporal resolution while still acquiring adequate anatomical coverage
in humans97. Because of the problems with obtaining T1W images with high
time resolution, T1W measurements have classically been modeled using
different kinetic modeling methods one of which will be described in
section 3.4.4.

Perfusion has been measured using dCE employing many different
methods. Unfortunately, there is currently no consensus for which method
to use, hindering comparison of results between studies. A few studies have
used inversion recovery acquisition, while most current studies use
saturation recovery. For the purpose of this thesis, I will describe the steps
involved in estimating perfusion based on a saturation recovery sequence.

For a saturation recovery sequence with centric phase encoding the signal
equation can be written as follows91:

S t =S
0
sin1−e−TD⋅R1R1t ×e−TE⋅R2R2t  (3.4)

where R1 and R2 are reciprocal relaxation times before contrast injection, α
is the flip angle and TD is the saturation delay. Usually R2 is assumed
constant and ∆R2 are omitted as a sequence with shortest possible echo time
is used. R1 can be fitted from a pre-contrast R1 measurement with varying
TDs. Because of noise, the subtraction might yield negative baseline values.
The mean of the first few images (before contrast injection) is thus often
subtracted from the time series data, eliminating the need to measure R1. S0
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is sometimes omitted, assuming that the equilibrium magnetization is
constant throughout the subject. This is not entirely true as S0 depends on
e.g. proton density and effective flip angle. In manuscript III of this thesis
baseline subtraction was employed and the S0 estimate from pre-contrast R1

measurement was used in the signal equation.
If R2 is assumed constant and ∆R2 is omitted, baseline is subtracted (R1=0)
and a linear relationship between contrast agent concentration and ∆R1 is
assumed (∆R1=r1 Ct(t), where r1 is longitudinal relaxivity of the contrast
agent) then Ct(t) can be found using the following equation:

Ctt ∝
R1

r 1

=−log 1− St 

S0⋅sin ⋅ 1

TD /r1 (3.5)

As every parameter is known and as the T1 shortening effect is not affected
by the orientation and structure of the vessels Ct(t) can be accurately
obtained using dCE MRI which makes it more feasible as a quantitative
method than dSC MRI60.

3.3.3 Arterial input function

For both dSC and dCE, obtaining a good arterial input function is of
paramount importance. A short review of the problems in acquiring a
precise arterial input function (AIF) and some solutions is presented in the
following.

The arterial input function must be sampled adequately. In humans
consensus is that the interval between images should maximally be a couple
of seconds89. Because the bolus is dispersed and might be delayed while it
traveling through the vasculature, the artery used to sample the AIF should
be as close as possible to the tissue being imaged, e.g. in small vessels
feeding the tumor instead of in a large vessel such as the descending aorta98.
To obtain a good AIF close to the tissue of interest can be a challenge as the
peripheral vessels are very small which can lead to partial volume effects.
Calemente et al99 solved the problem by using independent component
analysis to automatically find local AIFs in the brain.

A delay of the of the Ct(t) curve compared to the AIF will underestimate
blood flow and overestimate mean transit time (MTT)100. The effects of
delay can is easily eliminated by using block circulant
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deconvolution101 (method employed in manuscript II) or by shifting the time
curve after finding the initial rise of contrast agent concentration. The
dispersion effects are more difficult to correct for and requires vascular
modeling100. 

Partial volume effects are difficult to avoid and can lead to either over- or
underestimation of the AIF depending on the experimental conditions which
may lead to over or underestimation of blood flow. Van Osch102 et al
published a paper on correction of the AIFs concluding that correction was
possible for vessels that are aligned with the magnetic field.

The AIF for dSC images might be contaminated by T1 effects while the AIF
for dCE images might be contaminated by T2* effects. Heilmann et
al103 developed a novel MR sequence in which T1 and T2* weighted images
were acquired simultaneously making it possible to compensate for these
effects. For dCE recent approaches has been dual echo104,105 and combined
T1 and T2* sequences106,107 similar to the one Heilmann used to compensate
for T2* effects. The dSC sequence used in manuscript II was heavily T2*
weighted and no attempt to correct for T1 effects were used except for
administering a predose of contrast agent. The dCE sequence employed in
manuscript III used the shortest possible echo time and a very small dose of
contrast agent. Therefore T2* contamination was assumed minimal.

3.4 Processing of dynamic MRI data

As previously mentioned, the processing of dSC and dCE perfusion data is
equal as soon as the MR signal has been converted to concentration of
contrast agent over time. From the images an AIF is found either by
automated methods or by manually selecting a pixel where the
concentration of contrast agent increases rapidly and the concentration at
the peak is high.

3.4.1 Blood volume

When both arterial and tissue concentrations have been acquired and no or
little leakage of contrast agent is assumed, blood volume can be estimated
as the ratio of the areas under the arterial and tissue time curves:
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BV=
∫
−∞

∞

Ct t 

∫
−∞

∞

C
a
t 

(3.6)

If the arterial input function is not available, relative BV values can still be
obtained by dividing the integrals of the tissue curves in the two areas.

When using the AIF recirculation of the contrast agent needs to be taken
into account or incorrect estimates of blood volume may result. One
solution is to fit the arterial curve with a gamma variate function to
eliminate the recirculation part108. Another solution is to deconvolve the
tissue curve with the arterial curve and use the integral of the deconvolved
signal curve to determine BV instead89. This is often performed using
singular value decomposition which will be introduced in the next section.

3.4.2 Blood flow

Consider an infinitely short lasting injection (delta function) giving arterial
contrast agent concentration (Ca) at time 0. Tissue concentration as a
function of time can then be formulated as89 

Ctt =BF⋅Ca⋅Rt  (3.7)

where BF is the blood flow and the residue function is termed R(t). R(t)
describes the fraction of tracer in the vessel at time t after injection. R(0)=1
and R(∞)=0 assuming that the tracer is not bound and does not pool up in
the tissue. The concentration of contrast agent is proportional to the amount
of blood passing through the tissue per time unit.

In actuality, the contrast agent is injected into a peripheral vein and is not a
delta function. It is broadened during the passage from vein to tissue and
may be described as a sum of impulse response functions. Equation 3.7 then
becomes a convolution89:

Ctt =BF⋅Ca⊗Rt  (3.8)

In order to calculate BF from this equation, the impulse response must be
found by deconvolution. Assuming that R(0)=1, BF is simply the first value
of the impulse response while BV is the area under the deconvolved tissue
curve. Due to noise, the deconvolution can be ill posed, meaning different
solutions (different R(t)) exist for each pixel. 
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Deconvolution may be performed using different approaches. Most of these
are model independent while others assume a specific shape of the residual
function.

Model independent deconvolution - Fourier

One solution is to use the Fourier transform. The Fourier transform of two
convolved functions equals the product of their separate transforms. This
means that equation 3.8 can be solved as:

F {BF⋅Rt ⊗Cat }=F {Ct t }⇒

F {BF⋅Rt }⋅F {Cat }=F {Ctt }⇒

BF⋅Rt =F
−1 {

F {Ctt }

F {Cat }
}

(3.9)

where F{...} denotes the Fourier transform and F-1{...} denotes the inverse
Fourier transform.

This approach is sensitive to noise and has problems with the discontinuity
of the impulse response at t=0. There are ways of solving this109,110, however
the classical approach is to formulate equation 3.8 as a matrix equation.

Model independent deconvolution - SVD

If tissue and artery concentration is measured at equidistant time points, the
tissue concentration can be discretized and changed to matrix formulation
by:

Ctt j=BF∫
0

t j

CaRt j−d≈BFt∑
i=0

j

CatiR t j−ti


Ct t1

Ct t2

..
Ct tN 

=BF⋅t 
Cat1 0 .. 0

Cat2 Cat1 .. 0

.. .. .. ..

CatN  CatN−1 .. Cat1
⋅

R t1

R t2

..
R tN 

 (3.10)

This is a standard equation and it is often solved by singular value
decomposition. One disadvantage of the original SVD approach is that it
tends to underestimate flow if the arterial input function and tissue curve are
not well aligned. The structure of the vessels or pathology can cause a delay
in the arrival of the bolus to the tissue. However this issue has been solved
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by using block circulant SVD111. Using this method, the arterial curve is
padded with zeros and shifted as shown below.

(3.11)

This makes the SVD insensitive to delays between artery and tissue curves.
Even tissue curves that come before the arterial input function are fitted
correctly.

If the above equations are expressed as c=A·b they can be solved for b (the
elements of R(t) scaled by BF). By decomposing A = U · S · VT, where U
and V are orthogonal matrices and S is a nonnegative square diagonal
matrix, the inverse can be expressed as A-1=V·W·UT, where W = 1/S along
the diagonals and zero elsewhere. Values of W where S is less than a preset
tolerance are set to zero to reduce oscillations (this method is also called
truncated SVD - TSVD112). The residue function scaled by BF, b can be
estimated by b = BF V·W·Ut

·c. BF is estimated as the maximum value of b.
The discontinuities at the beginning and end can give rise to amplification
of leakage frequencies, which may give oscillations in the deconvolved
signal. This problem can be solved by decreasing the tolerance or using an
oscillation index and varying the tolerance until the oscillation index falls
below a certain value113. 

In manuscript II, block circulant deconvolution was used with a preset
tolerance which was the same for all pixels. Smith et al have shown that
inverse Fourier transform and SVD provide equal results as long as the
delay between the AIF and the tissue curve is not too severe110. Smith used
classic deconvolution, however in manuscript II, block circulant
deconvolution has been used, which should compensate for delays.

Model independent deconvolution – Tikhonov regularization

Tikhonov regularization is a well known and very common form of
regularization112,114. It adds a side constraint (λ2||Lb||2, where L is a matrix
and || indicate vector norm) to stabilize the solution of an ill-posed problem.
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L is chosen based on priori information (for example that the residue
function should be smooth) and the Lagrange multiplier λ or the
regularization parameter must be optimized. Instead of solving the original
problem (by minimizing ||A·b – c||) an alternative more stable problem, is
solved by minimizing a weighted combination of the residual norm and the
side constraint.

b=min{∥A⋅b−c∥2∥L⋅b∥
2
} (3.12)

The matrix L introduces a penalty if the solution b behaves in an
undesirable way based on the a priori condition used. Various forms of L
have been proposed but most commonly the first order difference operator
(L1) is used to reduce oscilation112,115:

L1=
−1 1 0 0 0

0 −1 1 0 0

0 0 ⋱ ⋱ 0

0 0 0 −1 1
 (3.13)

The L1 has a tendency to overregularize dispersed residua functions too
much, hence Calemente et al suggested a modified L1 matrix116, that reduces
the regularization of a number of initial points. 

The key for optimal regularization is then to select the optimum
regularization value λ. One of the simplest and most popular ways of doing
so is to find the corner of the L-curve112. The L-curve plots the trade off
between minimizing the residual norm ||A·b – c|| and the constraint norm
||Lb||. When plotted on a log-log scale this curve usually has a distinct L-
shape as shown in figure 3.3. At small λ values, the solution is dominated
by the perturbation error in the vector c. The residual norm is small but the
solution semi-norm varies dramatically (due to division by small singular
values). This corresponds to the vertical part of the L-curve. At high λ
values, the solution is dominated by the regularization error and ||Lb||
changes little with λ. However, the data misfit (the residual norm) increases
heavily. This corresponds to the horizontal part of the L-curve. It has been
shown that the corner of the L-curve (found as the point in the L-curve with
maximum curvature) gives an acceptable compromise between data misfit
and regularization112.
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The Tikhonov regularization with automatic selection of λ value based on
the L-curve method was used in Manuscript III to minimize the effects of
noise in the deconvolution.

Other model independent deconvolution methods

A statistical approach in which the kernel (residue function in formula 3.8)
is optimized using a maximum likelihood approach has been suggested by
Vonken et al117. In another approach Andersen et al used a Gaussian process
to approximate the convolution kernel118.

Model dependent approaches

The deconvolution techniques described do not make assumptions of
vascular structure. Alternative methods exist which model tracer transport
and retention. One possibility is to assume an exponential residue model by
assuming that the microvasculature acts like a well-mixed compartment
yielding an exponential residue function119. Most of the residue functions
found by deconvolution appear to be mono-exponential but pathology or
multiple compartments can change this which may lead to erroneous results.

Figure 3.3: Left: Log of residual norm plotted against log of the constraint

norm for different λ values (0-200) for a ROI in manuscript 3. Numbers

along the curve are the λ values. Right: Curvature of the L-curve. Optimal

λ is selected as the maximum of the curvature and corresponds to the

corner of the L-curve.
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3.4.3 Mean transit time

When blood flow and blood volume has been determined the mean time the
tracer takes to traverse the vasculature can be calculated using the central
volume theorem120:

MTT = BV / BF (3.14)

3.4.4 Vascular leakage (Patlaks method)

As previously described, tumor vessels are immature and have large gaps.
This makes tumor vessels very permeable to contrast agents. The rate of
leakage can be estimated, using a method which was formulated by Patlak
et al in the 80s. The method has one critical simplifying assumption, namely
that there is an 'irreversible' tissue region outside the vasculature, where the
tracer is trapped for the duration of the experiment121,122. The working
equation for this system is:

Ctt =K i∫
0

t

CpdvdCpt vaCp t  (3.15)

where Cp and Ct are plasma and tissue concentrations, Ki is the
unidirectional transfer constant from vessel to interstitial fluid, vd is the
fractional volume of plasma tracking tissue space and va is the fractional
volume of the plasma. Since va and vd cannot be separated from the data
they will be combined to vD (VD=Vd+Va).

Patlak et al linearized the problem as follows:

Ctt =K i∫
0

t

CpdvDCpt ⇒

Ctt 

Cp t 
=K i

∫
0

t

Cpd

Cpt 
V D

(3.16)

By plotting 
Ctt 

C
p
t 

against 
∫
0

t

Cp d

Cp t 

a linear plot is obtained (if the

assumptions of the model are fulfilled) where the slope is Ki and the y-
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intercept is VD. The x-axis of this plot is called 'stretch time'. In a later
work122 Patlak generalized the model to include effects of efflux from the
'irreversible' tissue compartment back into blood.

Ctt =K i∫
0

t

e
−kbt−

CpdvDCpt  (3.17)

This is equivalent to the consensus model proposed by Tofts et al in 1999123.

Ewing et al124 tested three different models: no leakage, unidirectional
leakage (3.16), and bidirectional leakage (3.17) in a 9L glioma model. They
found the bidirectional leakage model to fit the data more correctly inside
the tumor and that the unidirectional leakage model tended to overestimate
VD and underestimate Ki. Correlation was nevertheless found between the Ki

obtained with the two models. For the early time points (up to 7.5 minutes),
similar Ki and Vd were found. In manuscript III the original unidirectional
Patlak method was applied resulting in good linearity in the timespan (10
min) we measured. However Ewing employed a different tumor model (9L
glioma) using a macromolecular contrast agent (MMCM – Gadomer).
Results may thus not be comparable.

3.5 Curvology

In some works no attempt is made to quantify perfusion or other
parameters. Instead description of the shape of the MR signal curve is used
to extract parameters related to pathology. This method has been termed
curvology. Parameters extracted can be the arrival time (time from injection
to signal starts to drop/increase), time to peak (time from bolus arrives till it
reaches maximum value) and full width half maximum of the peak89. In a
study by Brandt et al125 , in which the author was involved, this form of
processing was employed in order to identify areas with blood brain barrier
breakdown in meningitis. This was obtained by identifying pixels in which
signal increased above a threshold. It was possible to distinguish rats treated
with antibody from untreated rats as well as early from late infection.
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Chapter 4 Monitoring angiogenesis using
MRI

In this chapter I will introduce the various methods which can be exploited
to monitor angiogenesis using MRI. This overview is based on the excellent
reviews by Barrett126, Bhujwalla59 and Padhani60. I have aimed to highlight
the most important findings listed in these papers and relevant connections
to the manuscripts published in this thesis.

4.1 Introduction

Angiogenesis may be monitored multiple ways. One option would be to
monitor circulating blood levels of angiogenic factors (e.g. VEGF) or
circulating endothelial stem cells. Currently, measuring VEGF is not
sensitive or specific enough. However, a study has shown correlation
between circulating endothelial stem cells and treatment response127. 

The ”gold-standard” measurement of angiogenesis is the microsvascular
density (MVD) quantifying the average number of microvessels within a
microscopic field. This method does not indicate whether vessels are
functional or hyperpermeable. Furthermore, it is invasive and biased
according to where the sample is taken. As previously mentioned, tumors
are very heterogeneous and angiogenesis is primarily present in the
periphery. Imaging modalities can provide non-invasive means of detecting
angiogenesis in the whole tumor. The ability to monitor angiogenesis non-
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invasively over time allows treatment to be monitored and early detection of
drug efficacy before size changes of the tumor are apparent. Furthermore,
non-responding tumors can be identified and medical treatment revised. 

Many modalities are able to provide information about vascular state
including MRI, computed tomography (CT), positron emission tomography
(PET), single photon emission-computed tomography (SPECT), ultrasound,
and optical imaging. CT, PET and SPECT expose the patient to ionizing
radiation making longitudinal monitoring problematic. CT provides high
quality images with a high spatial resolution and gives a signal directly
proportional to density facilitating easy processing. PET can provide
noninvasive tumor perfusion estimates using 15O labeled water but the
modality requires a cyclotron on site because of the short half life of 15O
(minutes). PET and SPECT can measure radio-tracers at picomolar
concentration. However, few tracers exist and at best they provide low
spatial resolution128. There is ongoing development in this field but none of
the new angiogenic agents are available clinically.

Ultrasound is safe for the patient but very operator dependent. Progress is
being made with targeted micro bubbles as contrast agent129.Being a couple
of microns in diameter, they stay confined within the vasculature and hence
give good measures of perfusion and blood volume but no indication of
leakiness. Optical imaging is of limited use since the modality is only able
to penetrate a few centimeters below the skin surface.
In light of these observations MRI stands out by not employing radiation
exposure, being able to assess tumor size and stage, and offering multiple
weightings in one single session. Information can be obtained with or
without contrast agents as will be described in the following.

4.2 Noninvasive methods

4.2.1 Arterial spin labeling (ASL)

ASL provides regional maps of blood flow which has been suggested as a
marker for the degree of neovascularization within tumors due to the
increased size and number of vessels. ASL could thereby provide a
noninvasive way of monitoring angiogenesis indirectly by measuring blood
flow and the method has been used to measure blood flow in brain
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tumors130. Kimura et al131 showed significant correlation between ASL
signal intensity change and microvessel area from histology. ASL has also
been used to measure blood flow as an outcome parameter in a 9L
gliosarcoma rat model with differences in VEGF expression132.

ASL has been utilized in many areas of the body e.g. showing vascular
remodeling and angiogenesis within the ovary during the menstrual cycle133.
Also renal cell carcinomas have been assessed. Boss et al134 showed that the
use of ASL was equivalent to contrast enhanced T1 images for monitoring
tumor recurrence following radio ablation therapy.

4.2.2 Blood Oxygen Level Dependent (BOLD)

BOLD has most widely been used for brain activation studies in which a
specific task is performed and changes in the BOLD signal is used to
indicate which areas of the brain are active during the performed task. 

Applying BOLD methods to tumors is more difficult. In order to induce a
change in the deoxy/oxyhemoglobin ratio, cancer studies use either inhaled
100% oxygen or carbogen (95% oxygen, 5% CO2) as a challenging
method135. Though BOLD relies on the amount of signal produced by
oxyhemoglobin there is a complex interaction between changes in blood
volume, blood flow and tissue oxygen consumption rate. Most of the BOLD
techniques compare signal before and after inhalation of a gas, however the
BOLD response to carbogen is complex and its relationship to angiogenesis
is not always clear. The effects of carbogen not only changes blood
oxygenation but also causes blood vessels to dilate (increased CO2)
increasing blood flow. There are different mechanisms that may increase the
BOLD signal, including increased oxygenation or decreased
deoxyhemoglobin due to increased flow. Blood flow can be estimated as it
leads to decreased oxygen extraction from the tissue but it is difficult to
distinguish this from reversible hypoxia. One solution is to use an
alternative method for monitoring flow e.g. Doppler ultrasound.
Alternatively, T2* maps can be generated and kinetic modeling can be used
to estimate the contributions of flow and deoxyhemoglobin136. 

Carbogen-BOLD has been used to study angiogensis in xenografted ovarian
tumors at different stages137, where BOLD was shown to map the
heterogeneity of mature vessels in the tumor. In another study138 BOLD was
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able to predict vascular maturation by measuring the degree of reaction to
induced hypercapnia. BOLD has also been used to monitor the efficacy of
radio sensitizing tumors by increasing oxygenation prior to radiotherapy136.
BOLD has been shown to be more rapidly reversible than contrast enhanced
MRI, making it suitable for monitoring vascular disruptive treatments139.

BOLD imaging has been used in many angiogenesis studies. Though an
injection of contrast agent is not required, most studies use inhalation of
carbogen gas mixtures which may not be available in a clinical setting and
may cause patient discomfort. Reproducibility using this method is limited,
but BOLD has great potential for monitoring areas of oxygenation within
tumors.

4.3 Invasive methods

The vasculature within tumors is very heterogeneous. While some vessels
have a high degree of maturity others have incomplete layers and show high
permeability. Angiogenic vessels have gaps between endothelial cells, the
endothelium and the basement membrane, making them hyper permeable to
macromolecules36. This can be exploited using contrast enhanced MRI.
Contrast agents that leak slowly through normal vasculature will quickly
leak out of tumor vessels and give rise to differential enhancement.
Dynamic contrast enhanced (dCE) MRI can be performed either using low
molecular weight contrast media or high molecular weight contrast media.
Gd-DTPA is the most widely used low molecular weight contrast agent. 

As there are a multitude of ways to analyze dCE MRI scans, details will not
be provided. However these methods can be categorized based on the size
of the agents used and their specialization (e.g. specific binding). In general
studies examining leakage parameters are based on T1W imaging while
studies investigating blood volume and perfusion are based on T2*W
imaging60. Recent developments in pulse sequences allow for rapid
acquisition of T1W images enabling quantification of blood volume and
flow as well as leakage and distribution volume. This type of method was
used in manuscript III where perfusion and leakage parameters were
extracted from a single T1W dynamic scan.

In the following T1W imaging has been used unless explicitly stated
otherwise.



4.3 Invasive methods 43

4.3.1 Dynamic MRI with low molecular weight contrast agents

Following data acquisition, kinetic models can be applied to derive
estimates of tissue perfusion and permeability based on the dynamic time
curves.

dCE MRI parameters have been shown to correlate with vascular
permeability within tumor tissue97. The technique has also been used to
demonstrate the effect of anti-angiogenic drugs and can be used for early
detection of treatment response. Morzola et140 al showed decreased vessel
permeability 24 hours after treatment using a drug targeting VEGF, FGF
and PDGF (platelet derived growth factor) receptors. Wadam et al141 showed
a reduction in permeability and extracellular volume in patients with
invasive breast cancer after injection of a VEGF antibody. Successful
results have also been obtained with PTK/ZK, a VEGF receptor inhibitor
acting on three separate VEGF receptors. Response to treatment has been
shown as early as two days after treatment either by permeability
parameters or initial area under the curve142,143. 

The effects of thalidomide in combination with carboplatin has been
evaluated using T2*W dynamic MRI and results were correlated to clinical
status144. This research group also showed correlation between rCBV maps
obtained using T2*W bolus imaging and MVD145. Some T1W studies have
also shown correlation between dynamic parameters and
MVD146,147,148 while others have not149,150. VEGF expression and permeability
have been shown to correlate by Knopp et al151 though other groups have
shown no correlation149,152.

The results from animal studies can be used to guide the timings of DCE
MRI in phase 1 studies. Galbraith et al used preclinical studies of the effects
of Combretastatin to select the most optimal time point to monitor treatment
in patients153. Other studies showed that anti-VEGF treatment can change
micro vessel permeability as early as 90 min after first dose154,155 although
anti-VEGF drugs are thought to act over a much longer period. This
information was later used to design human studies.

There is still a lack of consensus concerning what kinetic model should be
used for analyzing dynamic MRI studies. However, DCE MRI seems to be
the imaging technique of choice for monitoring clinical response in anti-
angiogenic and antivascular trials.
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4.3.2 Dynamic MRI with macromolecular weight contrast agents

Macromolecular contrast agents (MMCM) are in the range of 5-90 kDA and
include both gadolinium and iron oxide based agents. They were originally
designed for prolonged intravascular retention for use in MR angiography.
The agents do not pass through normal endothelium and are more selective
for pathological vasculature.

The increased size compared to the low molecular weight agents, yield
different pharmacokinetics. Because low molecular weight contrast agents
are freely diffusible, their estimates of permeability will be affected by the
blood flow while MMCMs are minimally diffusible tracers reflecting
permeability with a minimal flow contamination. MMCMs are ideal blood
pool agents and can give a more accurate estimate of tumor blood volume.
The leakiness (Ki) of MMCMs is inversely related to their molecular weight
(mW). A doubling of the mW leads to a 25% decrease in Ki. Obviously the
diameter of the molecules rather than their weight is important but generally
weight and diameter follow each other. 

Albumin-Gd (Albumin-(Gd-DTPA)) is a widely used MMCM in which Gd-
DTPA is bound to albumin. The main problem is to obtain strong complex
binding between Gd3+ and albumin, allowing no free toxic gadolinium. This
has been solved by using bifunctional chelates that link albumin to Gd3+

with high binding affinity156.

MS325 (or vasovist) is an agent which reversibly binds albumin. In humans
it is bound to albumin with good affinity (approx 96% bound) 157 but the
percentage bound decreases a lot in rats (76%) and mice (67%). Thus, the
injected MS325 becomes a mixture of a blood pool agent and unbound Gd-
DTPA limiting usability. However, the non specific binding does help to
clear the compound from the body rapidly reducing the risk of toxicity from
the gadolinium. The use of MS325 for angiogenesis imaging has yet to be
tested in humans. Turetschek et al158 have compared MS325 to albumin-Gd
in a breast cancer model in mice but found no correlation between MS325
and MVD or tumor grade. Different results may be obtained in humans
where the binding affinity is higher.

Albumin-Gd has been used to characterize microvessels in a wide range of
tumors. Marzola et al159 showed that Albumin-Gd correlates with MVD and
immunhistochemistry and that it is similar to low molecular weight
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dynamic MRI after treatment with VEGF inhibitors. Pham et al154 showed
large reduction in permeability and unchanged plasma volume in breast
tumors after administration of an anti-VEGF antibody.

Another option for MMCM is liposomes in which a hydrophilic interior is
surrounded by one or more phospholipid bilayers. They can incorporate
either Gd or iron particles and are preferentially taken up by liver and
spleen. Animal trials have shown good potential for imaging metastatic
lymph nodes. Unfortunately it is very difficult to produce liposomes in
uniform sizes.

Yet another class of MMCMs is dendrimers. These are synthetically
produced, highly branched, spherical polymers which can be produced in
uniform sizes. Dendrimers with sizes from 5-8 nm in diameter are able to
selectively leak through hyperpermeable tumor vessels while larger
dendrimer based agents demonstrate vascular enhancement with minimal
leakage. They have been used to demonstrate early effects of radiation
therapy on tumor permeability160.

4.3.3 Iron containing MMCM

Iron oxide particles exist in various sizes and are often used as MMCM
agents. To avoid aggregation of the agents a dextran coat is most often
employed. Iron oxides are super paramagnetic predominantly shortenening
T2*. However, T1 relaxation effects are also present. SPIO particles are are
mainly degraded by phagocytic cells while USPIO are taken up more
slowly. 

USPIOs have been used to monitor angiogenesis in murine breast cancer
models where Ki showed correlation with tumor grade and histological
MVD161,162 using a T1W method. Similar correlation was found in a colon
carcinoma model163. Pathak164 et al showed correlation between MVD and
dSC MRI after administration of an iron containing MMCM using T2*W
determination of blood volume. 

In manuscript I the SPIO Ferridex was used to quantify angiogenesis in
matrigel chambers showing good correlation with an optical method.
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4.3.4 Stem cells and targeted agents

As endothelial stem cells are thought to be involved in angiogenesis another
approach is to label these and track their behavior. Even single cells may be
detectable if labeled with iron oxide particles165. Anderson et al166 injected
labeled endothelial precursor cells and showed that they localized to the
angiogenic portions of a tumor using T2 W imaging.

Ideally an MR contrast agent would target specific molecular markers
present on angiogenic blood vessels. Many such markers are already known
and some are being utilized in MRI. One advantage is that these markers are
directly available to the blood enabling efficient delivery. The main problem
for MRI is the low number of targets compared to the signal from unbound
agent inside the vessels167. Thus, the binding has to be very specific and the
elimination of unbound agent swift. Because of the low number of binding
sites the MR sequences used to detect the agent have to be sensitive to small
changes in the signal making PET and SPECT the more likely candidates
for this type of detection. However Winter et al168 selectively targeted an
integrin associated with angiogenesis increasing signal in tumors by 126%
predominately in the periphery. Mulder et al169 used targeted liposomes and
demonstrated signal enhancement in activated tumor endothelium. MRI
targeted imaging may have limited usability at present but larger and more
potent macromolecular contrast agents are under development which could
increase sensitivity. Furthermore specialized coils and increased field
strength may also contribute.
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Chapter 5 Aims

As previously described, angiogenesis is important in many kinds of
pathologies as well as some normal biological processes. In this thesis, the
main focus has been on angiogenesis in cancer.

The main aim has been to develop methods for monitoring the status,
development, and consequences of tumor angiogenesis. 

More specifically, the sub-aims were:

● To develop a technique to detect the development of angiogenesis
and to quantify the effects of treatment using anti-angiogenic drugs
on initial stages of angiogenesis.

● To enable monitoring the status of angiogenesis using MRI, in
particular, measuring perfusion as well as tumor vessel permeability.
This would enable studying the effects of treatment with anti-
angiogenic drugs as well as to evaluating the efficacy of new drugs.
Furthermore, methods for evaluating treatment response could be
the result of such a method.

● To develop methods for optimizing the timing between treatment
with anti-angiogenic agents and chemotherapy. It is well known that
a 'normalization' window exist in which tumor vasculature becomes
less permeable and perfusion increases after treatment which is why
timing may be critical.
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●To label cells using a contrast agent in order to permit the tracking of
metastasis present due to angiogenesis in cancer. Most cell labeling
methods rely on labeling cells ex vivo. However, for a transgenic
tumor model (such as the one used in manuscript III) ex vivo

labeling is not possible. Therefore, a further sub-aim was to develop
in vivo cell labeling. 

In the following a brief introduction to each manuscript will be given
followed by revisiting the aims describing what was learned and what the
future perspectives could be.

5.1 Manuscript I - In vivo angiogenesis assayed using
MRI

5.1.1 Summary

In this study, plexiglas cylinders were filled with Matrigel containing
proangiogenic agents (VEGF and bFGF) and surgically implanted
subcutaneously in nude mice. The mice were divided into two groups. One
group was treated with 200 mg/kg Thalidomide daily (N=9, while the other
group (N=11) acted as controls. 

Twelve days after implantation the mice were scanned using MRI. Bolus
passage of an SPIO (Endorem) was followed using a T2* weighted dynamic
sequence. In addition, pre- and post-contrast T2 maps were obtained using a
multi-readout spin echo sequence. After MRI, the animals were sacrificed
and the Matrigel chambers were imaged optically. Neovascularization was
quantified by automatic detection of red pixels.

Good correlation between the change in T2* and the optical method was
found (P=0.005) validating the MRI method. Significant differences in
vascularization were found between the Thalidomide and control group
using both optical and MR methods. 

5.1.2 Aims revisited

This study validated the possibility of monitoring initial development of
angiogenesis in vivo and demonstrated that the effects of treatment could be
quantified. In the future, this method may be used to study the effects of



5.1 Manuscript I - In vivo angiogenesis assayed using MRI 49

new anti-angiogenic drugs. Compared to conventional methods, the MRI
method allows for repeated measurements in each animal reducing the
sample size necessary to obtain significant results. The MRI method could
be used to investigate synergistic effects of chemotherapy combined with
anti-angiogenic treatment and the optimal timing between treatments. One
such example would be studying the uptake of a chemotherapeutic drug
using e.g. 19F or 13C spectroscopy.

5.2 Manuscript II - Perfusion in brain tumors

5.2.1 Summary

A partly intact blood brain barrier (BBB) or blood to tumor barrier can limit
drug delivery to tumors. Therefore, this study evaluated 13C spectroscopy as
a method to detect chemotherapeutic drug (13C labeled temozolomide TMZ)
uptake in a brain tumor model. Though TMZ was injected intra-
peritoneally, it is delivered to the brain through the vasculature. In order to
verify that it would be possible to deliver TMZ to the tumors, dynamic
susceptibility contrast measurements were performed and relative blood
volume and perfusion maps were obtained. 

The perfusion measurements showed increased blood volume and perfusion
in tumors compared to normal tissue, verifying that delivery of TMZ
through the blood is possible. Because of selective BBB breakdown at the
tumor site it was possible to qualitatively detect vascular permeability. This
was achieved by subtraction of pre- and post-contrast T1 measurements.
Phantom experiments showed that it was possible to detect 100 µM TMZ in
vitro. Finally 13C TMZ was successfully detected in U87 brain tumor in
vivo.

5.2.2 Aims revisited

While the primary goal of this study was to detect TMZ in vivo, dynamic
MRI was used to verify that drug delivery could take place fulfilling the
second sub-aim. Furthermore, qualitative estimates of vascular permeability
were used as a sign of neovascularization. As previously described, the
timing between administration of anti-angiogenic agents and chemotherapy
may be critical and a model such as this would be ideally suited to follow
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both drug uptake and vascular development after treatment. 

5.3 Manuscript III - dCE MRI of breast tumors

5.3.1 Summary

In this study two different tumor stages were followed in a transgenic tumor
model. The main advantage of using a transgenic model is that tumors form
spontaneously mimicking the behavior of tumors in patients more than
xenografted tumors. The PyMT model is ideal for studying angiogenesis as
each tumor evolves through four different phases which have been
described extensively. Two groups of mice were studied. One group was
scanned in the hyperplastic stage (N=4) and another in the late tumor stage
(N=4). Dynamic Contrast Enhanced MRI (dCE) was used to quantify both
perfusion and permeability of the vessels. 

All tumors were well perfused. Significant differences in the time it takes
the contrast agent to traverse the vasculature (Mean Transit Time – MTT)
were found between tumors and reference tissue as well as between the
hyperplastic and late tumor stage. Vascular permeability and blood volume
were decreased in late stage tumors compared to hyperplastic stage. The
changes in permeability, blood volume, and MTT were speculated to be
caused by maturation of the tumor vessels.

5.3.2 Aims revisited

This study was directly associated with the sub-aim of being able to monitor
status of angiogenesis. The study showed significant differences in the
vasculature of tumors at different stages. The methods employed in the
study would be suitable for studying the effects of treatment with anti-
angiogenic drugs and evaluating the efficacy of new drugs. Furthermore, the
vascular effects of conventional therapy (e.g. chemotherapeutics or
radiation) could be studied. In the future, the method should be validated
using histology. It could prove of interest to combine this method with
methods for detecting drug delivery (e.g. 19F or 13C spectroscopy).
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5.4 Manuscript IV – In vivo cell labeling

5.4.1 Summary

In this study, the use of electroporation for in vivo cell labeling was
evaluated. In order to verify the method, muscles in the hindleg of rats were
electroporated after administration of either saline (n=5), Magnevist (n=4)
or Gadovist (n=9). The concentration of contrast agent and the effects of
electroporation were followed using 1H spectroscopy for up to 2 months
after electroporation. T1 of choline, creatine, lipid, and water were measured
and relaxivity measurements were used to estimate the concentration of
contrast agent. Furthermore, pesudo-concentrations of each metabolite over
time were obtained.

Results showed significant reduction of T1s for choline, creatine and water
confirming that the contrast agent was internalized. The initial intracellular
concentration of contrast agent was up to 1 mM. Contrast agent
concentration decreased exponentially over time and seemed to reach a
plateau value of approximately 0.2 mM. The T1 values of metabolites and
water were decreased up to 2 months after electroporation. The pseudo-
concentration of choline and creatine was shown to be significantly
decreased in electroporated compared to non-electroporated animals which
would be consistent with tissue damage. Furthermore, T1 of the saline
electroporated animals was significantly higher than the control animals for
the first couple of weeks following electroporation which is indicative of
edema. The contrast agents are delivered into the cytoplasm via
electroporation. Consequently, the study also shows that the choline and
creatine resonances originate from metabolites within the cytoplasm since
the contrast agents and metabolites must be in the same compartment to
produce the observed relaxation effects

5.4.2 Aims revisited

This study has shown the feasibility of labeling cells in vivo using
electroporation and that the labeling was detectable up to 2 months after
electroporation. Therefore, in vivo cell labeling could be a feasible way of
monitoring e.g. metastatic spread of cancer cells. However, the method still
needs to be verified in tumors rather than the muscle cells labeled in this
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study. Further, the muscle cells were non-dividing while in a growing tumor
cells will divide diluting the contrast agent which in turn could lead to loss
of labeling. However, the initial concentration of contrast agent (approx
1mM) is significantly higher than the detection limit for free Gd-DTPA
0.05mM170 meaning that significant dilution can find place without loss of
signal. 

Electroporation was shown to have cellular effects (edema and metabolite
depletion), which might affect the tumor cells more than the muscle cells
and also contribute to the observed anti-cancer effects of electroporation.
However, a recent study has used electroporation to deliver anti-vascular
drugs to mouse breast tumors171.

Apart from cell labeling, this approach could provide additional insight into
the effects of contrast agents. Cells labeled using this method already have a
high susceptibility which would limit the T2* effects of an injected Gd-
DTPA bolus enabling studies of contrast agent properties and the use of
higher contrast agent concentrations.

5.5 Conclusion

In this thesis several ways of monitoring angiogenesis have been used.
Matrigel chambers were used to study initial development of angiogenesis
and the effect of treatment with the anti-angiogenic drug Thalidomide.
Using two separate perfusion measurement methods, the status of
angiogenesis was monitored in U87 gliomas as well as in a transgenic
mammary cancer model. Furthermore, delivery of the 13C labeled
chemotherapeutic drug Temozolomide to U87 tumors was quantified using
spectroscopy. Finally, a method for in vivo cell labeling using
electroporation was developed. The cellular effects of electroporation as
well as the persistence of the labeling were evaluated. These results indicate
that the method may be of use in studying metastatic spread of cancer cells,
although this has yet to be tested.

Most of the initial aims of this thesis were fulfilled. Future studies, based on
the developed methods, should investigate the optimal timing between anti-
angiogenic treatment and chemotherapy. Furthermore, the study of effects
and efficacy of new anti-angiogenic agents have been enabled with the
presented techniques. In addition, it would be very interesting to correlate
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vascular parameters extracted using dynamic MRI with histology.

In this thesis several ways of monitoring angiogenesis and anti-angiogenic
treatment have been developed. These methods could be used to gather
further insight into the angiogenic process. Furthermore new forms of
treatment can be evaluated, ultimately leading to patient benefit.



54 References

References

1. Goldmann, E. The growth of malignant disease in man and the lower animals, with
special reference to the vascular system. Proc R Soc Med 1-13(1907).

2. Algire, G. et al. Vascular reactions of normal and malignant tissues in vivo. I.
Vascular reactions of mice to wounds and to normal and neoplastic transplants. J
Natl Cancer INst 6, 73-85(1945).

3. Jacobs, J. Combating cardiovascular disease with angiogenic therapy. Drug

Discovery Today 12, 1040-1045(2007).
4. Fan, Y. & Yang, G. Therapeutic Angiogenesis for Brain Ischemia: A Brief Review.

Journal of Neuroimmune Pharmacology 2, 284-289(2007).
5. Dhanabal, M. & Sethuraman, N. Endogenous angiogenesis inhibitors as therapeutic

agents: historical perspective and future direction. Recent Patents Anticancer Drug

Discov 1, 223-36(2006).
6. Sarasin, A. An overview of the mechanisms of mutagenesis and carcinogenesis.

Mutation Research/Reviews in Mutation Research 544, 99-106(2003).
7. Hlatky, L., Hahnfeldt, P. & Folkman, J. Clinical Application of Antiangiogenic

Therapy: Microvessel Density, What It Does and Doesn't Tell Us. J. Natl. Cancer

Inst. 94, 883-893(2002).
8. Carmeliet, P. & Jain, R.K. Angiogenesis in cancer and other diseases. 407, 249-

257(2000).
9. Ziche, M., Donnini, S. & Morbidelli, L. Development of new drugs in angiogenesis.

Curr.Drug Targets 5, 485-493(2004).
10. Leenders, W.P.J., Küsters, B. & de Waal, R.M.W. Vessel co-option: how tumors

obtain blood supply in the absence of sprouting angiogenesis. Endothelium 9, 83-
7(2002).

11. Patan, S. et al. Vascular morphogenesis and remodeling in a human tumor xenograft:
blood vessel formation and growth after ovariectomy and tumor implantation. Circ

Res 89, 732-9(2001).
12. Asahara, T. et al. Bone Marrow Origin of Endothelial Progenitor Cells Responsible



 References 55

for Postnatal Vasculogenesis in Physiological and Pathological Neovascularization.
Circ Res 85, 221-228(1999).

13. Duda, D.G. et al. Evidence for incorporation of bone marrow-derived endothelial
cells into perfused blood vessels in tumors. Blood 107, 2774-2776(2006).

14. Asahara, T. et al. VEGF contributes to postnatal neovascularization by mobilizing
bone marrow-derived endothelial progenitor cells. The EMBO Journal 18, (1999).

15. Mazure, N.M., Brahimi-Horn, M.C. & Pouysségur, J. Protein kinases and the
hypoxia-inducible factor-1, two switches in angiogenesis. Curr Pharm Des 9, 531-
41(2003).

16. Giuriato, S. et al. Sustained regression of tumors upon MYC inactivation requires
p53 or thrombospondin-1 to reverse the angiogenic switch. Proceedings of the

National Academy of Sciences of the United States of America 103, (2006).
17. Sowter, H.M. et al. Expression and localization of the vascular endothelial growth

factor family in ovarian epithelial tumors. Lab Invest 77, 607-14(1997).
18. Yabkowitz, R. et al. Inflammatory Cytokines and Vascular Endothelial Growth

Factor Stimulate the Release of Soluble Tie Receptor From Human Endothelial Cells
Via Metalloprotease Activation. Blood 93, 1969-1979(1999).

19. Fukumura, D. et al. Tumor Induction of VEGF Promoter Activity in Stromal Cells.
Cell 94, 715-725(1998).

20. Ferrara, N., Gerber, H. & LeCouter, J. The biology of VEGF and its receptors. Nat

Med 9, 669-676(2003).
21. Gospodarowicz, D., Abraham, J.A. & Schilling, J. Isolation and characterization of a

vascular endothelial cell mitogen produced by pituitary-derived folliculo stellate
cells. Proc Natl Acad Sci U S A 86, 7311-5(1989).

22. Dvorak, H.F. et al. Vascular permeability factor/vascular endothelial growth factor,
microvascular hyperpermeability, and angiogenesis. The American Journal of

Pathology 146, (1995).
23. Bikfalvi, A. Angiogenesis: health and disease. Ann Oncol 17 Suppl 10, x65-

70(2006).
24. Shweiki, D. et al. Vascular endothelial growth factor induced by hypoxia may

mediate hypoxia-initiated angiogenesis. Nature 359, 843-845(1992).
25. Augustin, H.G. Tubes, Branches, and Pillars: The Many Ways of Forming a New

Vasculature. Circ Res 89, 645-647(2001).
26. Armelin, H.A. Pituitary Extracts and Steroid Hormones in the Control of 3T3 Cell

Growth. Proceedings of the National Academy of Sciences of the United States of

America 70, (1973).
27. Presta, M. et al. Fibroblast growth factor/fibroblast growth factor receptor system in

angiogenesis. Cytokine Growth Factor Rev 16, 159-78(2005).
28. McCarty, M.F. et al. Quantitative and qualitative in vivo angiogenesis assay. Int J

Oncol 21, 5-10(2002).
29. Baird, A., Mormède, P. & Böhlen, P. Immunoreactive fibroblast growth factor (FGF)

in a transplantable chondrosarcoma: inhibition of tumor growth by antibodies to
FGF. J Cell Biochem 30, 79-85(1986).

30. Presta, M. et al. Basic fibroblast growth factor is released from endothelial
extracellular matrix in a biologically active form. J Cell Physiol 140, 68-74(1989).



56 References

31. Friedlander, M. et al. Definition of two angiogenic pathways by distinct alpha v
integrins. Science 270, 1500-2(1995).

32. Pepper, M.S. et al. Potent synergism between vascular endothelial growth factor and
basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem

Biophys Res Commun 189, 824-31(1992).
33. Yoshiji, H. et al. Synergistic effect of basic fibroblast growth factor and vascular

endothelial growth factor in murine hepatocellular carcinoma. Hepatology 35, 834-
42(2002).

34. Jain, R.K. Normalization of Tumor Vasculature: An Emerging Concept in
Antiangiogenic Therapy. Science 307, 58-62(2005).

35. Baluk, P. et al. Abnormalities of basement membrane on blood vessels and
endothelial sprouts in tumors. Am J Pathol 163, 1801-15(2003).

36. Hashizume, H. et al. Openings between Defective Endothelial Cells Explain Tumor
Vessel Leakiness. Am J Pathol 156, 1363-1380(2000).

37. Gerlowski, L.E. & Jain, R.K. Microvascular permeability of normal and neoplastic
tissues. Microvasc Res 31, 288-305(1986).

38. Kimura, H. et al. Fluctuations in red cell flux in tumor microvessels can lead to
transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res 56, 5522-
8(1996).

39. Jain, R.K. Transport of molecules in the tumor interstitium: a review. Cancer Res 47,
3039-51(1987).

40. Wiig, H. et al. Interstitial fluid pressure in DMBA-induced rat mammary tumours.
Scand J Clin Lab Invest 42, 159-64(1982).

41. Tozer, G.M. et al. The relationship between regional variations in blood flow and
histology in a transplanted rat fibrosarcoma. Br J Cancer 61, 250-7(1990).

42. Falk, P. Differences in vascular pattern between the spontaneous and the transplanted
C3H mouse mammary carcinoma. Eur J Cancer Clin Oncol 18, 155-65(1982).

43. Hanahan, D. & Folkman, J. Patterns and Emerging Mechanisms of the Angiogenic
Switch during Tumorigenesis. Cell 86, 353-364(1996).

44. Ljungkvist, A.S.E. et al. Dynamics of tumor hypoxia measured with bioreductive
hypoxic cell markers. Radiat Res 167, 127-45(2007).

45. Zeh, H.J. & Lotze, M.T. Addicted to death: invasive cancer and the immune response
to unscheduled cell death. J Immunother 28, 1-9

46. Folkman, J. Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical
applications of research on angiogenesis. N Engl J Med 333, 1757-63(1995).

47. Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438, 932-936(2005).
48. Lentzsch, S. et al. Immunomodulatory analogs of thalidomide inhibit growth of Hs

Sultan cells and angiogenesis in vivo. Leukemia 17, 41-44(2003).
49. Stephens, T.D. & Fillmore, B.J. Hypothesis: thalidomide embryopathy-proposed

mechanism of action. Teratology 61, 189-95(2000).
50. Franks, M.E., Macpherson, G.R. & Figg, W.D. Thalidomide. The Lancet 363, 1802-

1811(2004).
51. Baguley, B.C. Antivascular therapy of cancer: DMXAA. The Lancet Oncology 4,

141-148(2003).
52. Dahl, O., Borkamo, E.D. & Fluge, O. Current status of antivascular therapy and



 References 57

targeted treatment in the clinic. Int J Hyperthermia 24, 97-110(2008).
53. Pattillo, C.B. et al. Targeting of the antivascular drug combretastatin to irradiated

tumors results in tumor growth delay. Pharm Res 22, 1117-20(2005).
54. Kerbel, R. & Folkman, J. Clinical translation of angiogenesis inhibitors. Nat Rev

Cancer 2, 727-39(2002).
55. Segers, J. et al. Potentiation of cyclophosphamide chemotherapy using the anti-

angiogenic drug thalidomide: Importance of optimal scheduling to exploit the
[`]normalization' window of the tumor vasculature. Cancer Letters 244, 129-
135(2006).

56. Ma, J. et al. Pharmacodynamic-mediated Reduction of Temozolomide Tumor
Concentrations by the Angiogenesis Inhibitor TNP-470. Cancer Res 61, 5491-
5498(2001).

57. Strijkers, G.J. et al. MRI contrast agents: current status and future perspectives.
Anticancer Agents Med Chem 7, 291-305(2007).

58. Lutz, A.M. et al. Detection of Synovial Macrophages in an Experimental Rabbit
Model of Antigen-induced Arthritis: Ultrasmall Superparamagnetic Iron Oxide-
enhanced MR Imaging. Radiology 233, 149-157(2004).

59. Bhujwalla, Z.M., Artemov, D. & Glockner, J. Tumor angiogenesis, vascularization,
and contrast-enhanced magnetic resonance imaging. Top Magn Reson Imaging 10,
92-103(1999).

60. Padhani, A.R. MRI for assessing antivascular cancer treatments. Br J Radiol 76, S60-
80(2003).

61. Veldhuis, W.B. et al. Interferon-Beta Prevents Cytokine-Induced Neutrophil
Infiltration and Attenuates Blood-Brain Barrier Disruption. J Cereb Blood Flow

Metab 23, 1060-1069(2003).
62. Weissleder, R. & Mahmood, U. Molecular Imaging. Radiology 219, 316-333(2001).
63. Heyn, C. et al. In vivo MRI of cancer cell fate at the single-cell level in a mouse

model of breast cancer metastasis to the brain. Magnetic Resonance in Medicine 56,
1001-1010(2006).

64. Caravan, P. et al. Gadolinium(III) Chelates as MRI Contrast Agents: Structure,
Dynamics, and Applications. Chem Rev 99, 2293-352(1999).

65. Aime, S. et al. Insights into the use of paramagnetic Gd(III) complexes in MR-
molecular imaging investigations. J Magn Reson Imaging 16, 394-406(2002).

66. Raymond, K.N. & Pierre, V.C. Next generation, high relaxivity gadolinium MRI
agents. Bioconjug Chem 16, 3-8

67. Nunn, A.D., Linder, K.E. & Tweedle, M.F. Can receptors be imaged with MRI
agents? Q J Nucl Med 41, 155-62(1997).

68. Laus, S. et al. GdIII complexes with fast water exchange and high thermodynamic
stability: potential building blocks for high-relaxivity MRI contrast agents.
Chemistry 9, 3555-66(2003).

69. de Lussanet, Q.G. et al. Dynamic Contrast-enhanced MR Imaging Kinetic
Parameters and Molecular Weight of Dendritic Contrast Agents in Tumor
Angiogenesis in Mice. Radiology 235, 65-72(2005).

70. Wang, S.J., Brechbiel, M. & Wiener, E.C. Characteristics of a new MRI contrast
agent prepared from polypropyleneimine dendrimers, generation 2. Invest Radiol 38,



58 References

662-8(2003).
71. Geninatti Crich, S. et al. Magnetic Resonance Visualization of Tumor Angiogenesis

by Targeting Neural Cell Adhesion Molecules with the Highly Sensitive Gadolinium-
Loaded Apoferritin Probe. Cancer Res 66, 9196-9201(2006).

72. Hazell, A.S. Astrocytes and manganese neurotoxicity. Neurochem Int 41, 271-
7(2002).

73. Madsen, K. et al. The effect of paramagnetic manganese cations on 1H MR
spectroscopy of the brain. NMR in Biomedicine Accepted for publication

74. Federle, M. et al. Efficacy and safety of mangafodipir trisodium (MnDPDP)
injection for hepatic MRI in adults: results of the U.S. Multicenter phase III clinical
trials. Efficacy of early imaging. J Magn Reson Imaging 12, 689-701(2000).

75. Shapiro, E.M., Skrtic, S. & Koretsky, A.P. Sizing it up: Cellular MRI using micron-
sized iron oxide particles. Magnetic Resonance in Medicine 53, 329-338(2005).

76. Bowen, C.V. et al. Application of the static dephasing regime theory to
superparamagnetic iron-oxide loaded cells. Magn Reson Med 48, 52-61(2002).

77. Bjørnerud, A. & Johansson, L. The utility of superparamagnetic contrast agents in
MRI: theoretical consideration and applications in the cardiovascular system. NMR

Biomed 17, 465-77(2004).
78. Pathak, A.P., Rand, S.D. & Schmainda, K.M. The effect of brain tumor angiogenesis

on the in vivo relationship between the gradient-echo relaxation rate change
(DeltaR2*) and contrast agent (MION) dose. J Magn Reson Imaging 18, 397-
403(2003).

79. Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters.
11, 431-441(1963).

80. Scheuhammer, A.M. & Cherian, M.G. Binding of manganese in human and rat
plasma. Biochim Biophys Acta 840, 163-9(1985).

81. Mazur, G. et al. Angiogenesis measured by expression of CD34 antigen in lymph
nodes of patients with non-Hodgkin's lymphoma. Folia Histochem Cytobiol 42, 241-
3(2004).

82. Detre, J.A. et al. Perfusion imaging. Magn Reson Med 23, 37-45(1992).
83. Williams, D.S. et al. Magnetic resonance imaging of perfusion using spin inversion

of arterial water. Proc Natl Acad Sci U S A 89, 212-6(1992).
84. Golay, X., Hendrikse, J. & Lim, T.C.C. Perfusion Imaging Using Arterial Spin

Labeling. Topics in Magnetic Resonance Imaging February 2004 15, 10-27(2004).
85. Ogawa, S. et al. Oxygenation-sensitive contrast in magnetic resonance image of

rodent brain at high magnetic fields. Magn Reson Med 14, 68-78(1990).
86. Ogawa, S. et al. Brain magnetic resonance imaging with contrast dependent on blood

oxygenation. Proc Natl Acad Sci U S A 87, 9868-72(1990).
87. Ogawa, S. & Lee, T.M. Magnetic resonance imaging of blood vessels at high fields:

in vivo and in vitro measurements and image simulation. Magn Reson Med 16, 9-
18(1990).

88. Logothetis, N.K. The neural basis of the blood-oxygen-level-dependent functional
magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci 357, 1003-
37(2002).

89. Ostergaard, L. Cerebral perfusion imaging by bolus tracking. 15, 3-9(2004).



 References 59

90. Weisskoff, R.M. et al. Microscopic susceptibility variation and transverse relaxation:
theory and experiment. Magn Reson Med 31, 601-10(1994).

91. Larsson, H.B.W. et al. Myocardial perfusion modeling using MRI. Magnetic

Resonance in Medicine 35, 716-726(1996).
92. Uematsu, H. et al. Measurement of the vascularity and vascular leakage of gliomas

by double-echo dynamic magnetic resonance imaging: a preliminary study. Invest

Radiol 37, 571-6(2002).
93. Boxerman, J.L., Schmainda, K.M. & Weisskoff, R.M. Relative cerebral blood

volume maps corrected for contrast agent extravasation significantly correlate with
glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 27,
859-67(2006).

94. van Osch, M.J.P. et al. Measuring the arterial input function with gradient echo
sequences. Magn Reson Med 49, 1067-76(2003).

95. Simonsen, C.Z. et al. CBF and CBV measurements by USPIO bolus tracking:
reproducibility and comparison with Gd-based values. J Magn Reson Imaging 9,
342-7(1999).

96. Kiselev, V.G. Transverse relaxation effect of MRI contrast agents: a crucial issue for
quantitative measurements of cerebral perfusion. J Magn Reson Imaging 22, 693-
6(2005).

97. Padhani, A.R. & Husband, J.E. Dynamic Contrast-enhanced MRI Studies in
Oncology with an Emphasis on Quantification, Validation and Human Studies.
Clinical Radiology 56, 607-620(2001).

98. Calamante, F. Bolus dispersion issues related to the quantification of perfusion MRI
data. J Magn Reson Imaging 22, 718-22(2005).

99. Calamante, F., Mørup, M. & Hansen, L.K. Defining a local arterial input function for
perfusion MRI using independent component analysis. Magn Reson Med 52, 789-
97(2004).

100. Calamante, F., Gadian, D.G. & Connelly, A. Delay and dispersion effects in dynamic
susceptibility contrast MRI: simulations using singular value decomposition. Magn

Reson Med 44, 466-73(2000).
101. Ona Wu, L.Ø. Tracer arrival timing-insensitive technique for estimating flow in MR

perfusion-weighted imaging using singular value decomposition with a block-
circulant deconvolution matrix. Magnetic Resonance in Medicine 50, 164-174(2003).

102. van Osch, M.J.P., van der Grond, J. & Bakker, C.J.G. Partial volume effects on
arterial input functions: shape and amplitude distortions and their correction. J Magn

Reson Imaging 22, 704-9(2005).
103. Heilmann, M. et al. Simultaneous dynamic T 1 and measurement for AIF assessment

combined with DCE MRI in a mouse tumor model. Magnetic Resonance Materials

in Physics, Biology and Medicine 20, 193-203(2007).
104. Kim, E. et al. Simultaneous acquisition of perfusion and permeability from corrected

relaxation rates with dynamic susceptibility contrast dual gradient echo. Magn Reson

Imaging 22, 307-14(2004).
105. Vonken, E.P. et al. Simultaneous quantitative cerebral perfusion and Gd-DTPA

extravasation measurement with dual-echo dynamic susceptibility contrast MRI.
Magn Reson Med 43, 820-7(2000).



60 References

106. de Bazelaire, C. et al. Combined T2* and T1 measurements for improved perfusion
and permeability studies in high field using dynamic contrast enhancement. Eur

Radiol 16, 2083-91(2006).
107. Zhuo, J., Poston, R. & Gullapi, R. Minimizing echo time dependence in the

assessment of perfusion parameters from multiecho T1–T2* sequences. 1121
108. Thompson, H.K. et al. Indicator transit time considered as a gamma variate. Circ Res

14, 502-15(1964).
109. Alsop, D. & Schlaug, G. The Equivalence of SVD and Fourier Deconvolution for

dynamic suscebtibility contrast analysis. Proc Intl Soc Mag Reson Med. 9,
1581(2001).

110. Smith, A.M. et al. Whole brain quantitative CBF and CBV measurements using MRI
bolus tracking: comparison of methodologies. Magn Reson Med 43, 559-64(2000).

111. Wu, O. et al. Tracer arrival timing-insensitive technique for estimating flow in MR
perfusion-weighted imaging using singular value decomposition with a block-
circulant deconvolution matrix. Magn Reson Med 50, 164-74(2003).

112. Hansen, P. Analysis of discrete ill-posed problems by means of the L-curve. SIAM

Rev 34, 561-580(1992).
113. Gobbel, G.T. & Fike, J.R. A deconvolution method for evaluating indicator-dilution

curves. Phys Med Biol 39, 1833-54(1994).
114. Tikhonov, A. Solution of incorrectly formulated probles and the regularization

method. Soviet Math Dokl 4, 1035-1038(1963).
115. Belge , M., Kilmer, M. & Miller, E. Efficient determination of multiple

regularization parameters in a generalized L-curve framework. Inverse Problems 18,
1161-1183(2002).

116. Calamante, F., Gadian, D.G. & Connelly, A. Quantification of bolus-tracking MRI:
Improved characterization of the tissue residue function using Tikhonov
regularization. Magn Reson Med 50, 1237-47(2003).

117. Vonken, E.P. et al. Maximum likelihood estimation of cerebral blood flow in
dynamic susceptibility contrast MRI. Magn Reson Med 41, 343-50(1999).

118. Andersen, I.K. et al. Perfusion quantification using Gaussian process deconvolution.
Magn Reson Med 48, 351-61(2002).

119. Larson, K.B. et al. Tracer-kinetic analysis for measuring regional cerebral blood flow
by dynamic nuclear magnetic resonance imaging. J Theor Biol 170, 1-14(1994).

120. Stewart, G. Researches on the circulation time in organs and on the influences which
affect it. Parts I-III. J Physiol 15, 1-89(1894).

121. Patlak, C.S., Blasberg, R.G. & Fenstermacher, J.D. Graphical evaluation of blood-to-
brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab

3, 1-7(1983).
122. Patlak, C.S. & Blasberg, R.G. Graphical evaluation of blood-to-brain transfer

constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow

Metab 5, 584-90(1985).
123. Tofts, P.S. et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-

weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn

Reson Imaging 10, 223-32(1999).
124. Ewing, J.R. et al. Model selection in magnetic resonance imaging measurements of



 References 61

vascular permeability: Gadomer in a 9L model of rat cerebral tumor. J Cereb Blood

Flow Metab 26, 310-320(2005).
125. Brandt, C.T. et al. Impact of bacteremia on the pathogenesis of experimental

pneumococcal meningitis. J Infect Dis 197, 235-44(2008).
126. Barrett, T. et al. MRI of tumor angiogenesis. J Magn Reson Imaging 26, 235-

49(2007).
127. Goon, P.K.Y. et al. Circulating Endothelial Cells, Endothelial Progenitor Cells, and

Endothelial Microparticles in Cancer. Neoplasia (New York, N.Y.) 8, (2006).
128. Rohren, E.M., Turkington, T.G. & Coleman, R.E. Clinical Applications of PET in

Oncology. Radiology 231, 305-332(2004).
129. Ellegala, D.B. et al. Imaging Tumor Angiogenesis With Contrast Ultrasound and

Microbubbles Targeted to {alpha}v{beta}3. Circulation 108, 336-341(2003).
130. Silva, A.C., Kim, S.G. & Garwood, M. Imaging blood flow in brain tumors using

arterial spin labeling. Magn Reson Med 44, 169-73(2000).
131. Kimura, H. et al. Perfusion imaging of meningioma by using continuous arterial

spin-labeling: comparison with dynamic susceptibility-weighted contrast-enhanced
MR images and histopathologic features. AJNR Am J Neuroradiol 27, 85-93(2006).

132. Moffat, B.A. et al. Inhibition of Vascular Endothelial Growth Factor (VEGF)-A
Causes a Paradoxical Increase in Tumor Blood Flow and Up-Regulation of VEGF-D.
Clin Cancer Res 12, 1525-1532(2006).

133. Tempel, C. & Neeman, M. Spatial and temporal modulation of perfusion in the rat
ovary measured by arterial spin labeling MRI. J Magn Reson Imaging 9, 794-
803(1999).

134. Boss, A. et al. Morphological, contrast-enhanced and spin labeling perfusion imaging
for monitoring of relapse after RF ablation of renal cell carcinomas. Eur Radiol 16,
1226-36(2006).

135. Ogawa, S. et al. Functional brain mapping by blood oxygenation level-dependent
contrast magnetic resonance imaging. A comparison of signal characteristics with a
biophysical model. Biophysical Journal 64, (1993).

136. Rijpkema, M. et al. BOLD MRI response to hypercapnic hyperoxia in patients with
meningiomas: correlation with Gadolinium-DTPA uptake rate. Magn Reson Imaging

22, 761-7(2004).
137. Gilead, A., Meir, G. & Neeman, M. The role of angiogenesis, vascular maturation,

regression and stroma infiltration in dormancy and growth of implanted MLS
ovarian carcinoma spheroids. Int J Cancer 108, 524-31(2004).

138. Gilad, A.A. et al. Functional and molecular mapping of uncoupling between vascular
permeability and loss of vascular maturation in ovarian carcinoma xenografts: the
role of stroma cells in tumor angiogenesis. Int J Cancer 117, 202-11(2005).

139. Jiang, L. et al. Comparison of BOLD contrast and Gd-DTPA dynamic contrast-
enhanced imaging in rat prostate tumor. Magn Reson Med 51, 953-60(2004).

140. Marzola, P. et al. In Vivo Assessment of Antiangiogenic Activity of SU6668 in an
Experimental Colon Carcinoma Model. Clin Cancer Res 10, 739-750(2004).

141. Wedam, S.B. et al. Antiangiogenic and Antitumor Effects of Bevacizumab in Patients
With Inflammatory and Locally Advanced Breast Cancer. J Clin Oncol 24, 769-
777(2006).



62 References

142. Mross, K. et al. Phase I clinical and pharmacokinetic study of PTK/ZK, a multiple
VEGF receptor inhibitor, in patients with liver metastases from solid tumours. Eur J

Cancer 41, 1291-9(2005).
143. Thomas, A.L. et al. Phase I study of the safety, tolerability, pharmacokinetics, and

pharmacodynamics of PTK787/ZK 222584 administered twice daily in patients with
advanced cancer. J Clin Oncol 23, 4162-71(2005).

144. Cha, S. et al. Dynamic Contrast-enhanced T2*-weighted MR Imaging of Recurrent
Malignant Gliomas Treated with Thalidomide and Carboplatin. AJNR Am J

Neuroradiol 21, 881-890(2000).
145. Cha, S. et al. Dynamic, contrast-enhanced perfusion MRI in mouse gliomas:

correlation with histopathology. Magn Reson Med 49, 848-55(2003).
146. Kiessling, F. et al. Comparing dynamic parameters of tumor vascularization in nude

mice revealed by magnetic resonance imaging and contrast-enhanced intermittent
power Doppler sonography. Invest Radiol 38, 516-24(2003).

147. Schlemmer, H. et al. Can pre-operative contrast-enhanced dynamic MR imaging for
prostate cancer predict microvessel density in prostatectomy specimens? Eur Radiol

14, 309-17(2004).
148. Buckley, D.L. et al. Microvessel density of invasive breast cancer assessed by

dynamic Gd-DTPA enhanced MRI. J Magn Reson Imaging 7, 461-4
149. Su, M. et al. Correlation of dynamic contrast enhancement MRI parameters with

microvessel density and VEGF for assessment of angiogenesis in breast cancer. J
Magn Reson Imaging 18, 467-77(2003).

150. Hulka, C.A. et al. Dynamic echo-planar imaging of the breast: experience in
diagnosing breast carcinoma and correlation with tumor angiogenesis. Radiology

205, 837-42(1997).
151. Knopp, M.V. et al. Pathophysiologic basis of contrast enhancement in breast tumors.

J Magn Reson Imaging 10, 260-6(1999).
152. Ah-See, M., Padhani, A.R. & Taylor, N. Evaluation of VEGF expression within

breast cancer biopsies & tumour microvasculature   assessment by multi-functional
dynamic contrast-enhanced MRI. The 4th European Breast

Cancer Conference (EBCC-4) (2004).
153. Galbraith, S.M. et al. Combretastatin A4 Phosphate Has Tumor Antivascular Activity

in Rat and Man as Demonstrated by Dynamic Magnetic Resonance Imaging. J Clin

Oncol 21, 2831-2842(2003).
154. Pham, C.D. et al. Magnetic resonance imaging detects suppression of tumor vascular

permeability after administration of antibody to vascular endothelial growth factor.
Cancer Invest 16, 225-30(1998).

155. Gossmann, A. et al. Dynamic contrast-enhanced magnetic resonance imaging as a
surrogate marker of tumor response to anti-angiogenic therapy in a xenograft model
of glioblastoma multiforme. 15, 233-240(2002).

156. Schmiedl, U. et al. Albumin labeled with Gd-DTPA. An intravascular contrast-
enhancing agent for magnetic resonance blood pool and perfusion imaging. Acta

Radiol Suppl 374, 99-102(1990).
157. Lauffer, R.B. et al. MS-325: albumin-targeted contrast agent for MR angiography.

Radiology 207, 529-38(1998).



 References 63

158. Turetschek, K. et al. MRI assessment of microvascular characteristics in
experimental breast tumors using a new blood pool contrast agent (MS-325) with
correlations to histopathology. J Magn Reson Imaging 14, 237-42(2001).

159. Marzola, P. et al. Early Antiangiogenic Activity of SU11248 Evaluated In vivo by
Dynamic Contrast-Enhanced Magnetic Resonance Imaging in an Experimental
Model of Colon Carcinoma. Clin Cancer Res 11, 5827-5832(2005).

160. Kobayashi, H. et al. Application of a Macromolecular Contrast Agent for Detection
of Alterations of Tumor Vessel Permeability Induced by Radiation. Clin Cancer Res

10, 7712-7720(2004).
161. Turetschek, K. et al. MR imaging characterization of microvessels in experimental

breast tumors by using a particulate contrast agent with histopathologic correlation.
Radiology 218, 562-9(2001).

162. van Dijke, C.F. et al. Mammary carcinoma model: correlation of macromolecular
contrast-enhanced MR imaging characterizations of tumor microvasculature and
histologic capillary density. Radiology 198, 813-8(1996).

163. de Lussanet, Q.G. et al. Gadopentetate Dimeglumine versus Ultrasmall
Superparamagnetic Iron Oxide for Dynamic Contrast-enhanced MR Imaging of
Tumor Angiogenesis in Human Colon Carcinoma in Mice. Radiology 229, 429-
438(2003).

164. Pathak, A.P. et al. MR-derived cerebral blood volume maps: issues regarding
histological validation and assessment of tumor angiogenesis. Magn Reson Med 46,
735-47(2001).

165. Arbab, A.S. et al. Comparison of transfection agents in forming complexes with
ferumoxides, cell labeling efficiency, and cellular viability. Mol Imaging 3, 24-
32(2004).

166. Anderson, S.A. et al. Noninvasive MR imaging of magnetically labeled stem cells to
directly identify neovasculature in a glioma model. Blood 105, 420-425(2005).

167. Miller, J.C. et al. Imaging Angiogenesis: Applications and Potential for Drug
Development. J. Natl. Cancer Inst. 97, 172-187(2005).

168. Winter, P.M. et al. Molecular Imaging of Angiogenesis in Nascent Vx-2 Rabbit
Tumors Using a Novel {alpha}{nu}{beta}3-targeted Nanoparticle and 1.5 Tesla
Magnetic Resonance Imaging. Cancer Res 63, 5838-5843(2003).

169. Mulder, W.J.M. et al. MR molecular imaging and fluorescence microscopy for
identification of activated tumor endothelium using a bimodal lipidic nanoparticle.
FASEB J 19, 2008-10(2005).

170. Langereis, S. et al. Evaluation of Gd(III)DTPA-terminated poly(propylene imine)
dendrimers as contrast agents for MR imaging. NMR Biomed 19, 133-41(2006).

171. Wells, J.M. et al. Electroporation-enhanced gene delivery in mammary tumors. Gene

Ther 7, 541-7(2000).



64 In vivo angiogenesis assayed using MRI 

Manuscript I In vivo angiogenesis
assayed using MRI 

An MR compatible in vivo assay, designed to evaluate the effects of

vascular-targeted drugs, has been developed and compared with a validated

optical-based method. Plexiglas cylinders containing Matrigel and pro-

angiogenic agents were implanted sub-cutaneously in nude mice and treated

with the anti-angiogenic agent thalidomide. Using quantitative T2

measurements obtained before and after administration of iron oxide

contrast agent, significant anti-angiogenic effects of the drug where shown

clearly demonstrating the feasibility of the approach. A dynamic contrast

enhanced MRI method based on T2* effects did not show significant

differences when compared to control animals. This study clearly shows the

feasibility and potential of the developed Matrigel-based system to provide

a simple, reproducible in vivo assay that may be used to assess a wide range

of angiotherapeutic agents using minimally invasive MR methods.

I.1 Introduction

Angiogenesis, defined as the process of developing new blood vessels from

pre-existing vasculature, is a critical process in cancer development.

Beyond a volume of 1 mm3, tumours require new blood vessel formation1,2,

for continued tumour development. Whilst angiogenesis is essential for

tumour growth, it also appears to increase the probability of tumour cells

entering the circulation leading to metastatic spread of the disease. The
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angiogenic process is therefore an obvious target for anti-cancer strategies

and this has led to the development of a relatively new class of vascular

targeted agents: angiotherapeutics. The development of new blood vessels is

promoted by an array of matrix molecules, accessory cells and soluble

mediators that may be released by host cells or by tumour cells themselves.

Hence, there are a multitude of possible targets and, therefore, strategies for

developing vascular-targeted anti cancer agents.  As a result, there are many

endogenous and synthetic angiotherapeutic agents under development and

in clinical trials.  

In the early stages of drug development, potential angiotherapeutic agents

may be identified using in vitro screening methods. However, when

compared to the development of other classes of drugs, in vivo assessment

is a particularly important step in the pre-clinical evaluation of potential

agents. A critical review3 has emphasized the essential role of in vivo

systems to test the efficacy of both pro- and anti-angiogenic agents. The

highly complex nature of cytokine interactions and vascular responses make

in vivo assays an essential step in the evaluation of new agents. 

Although implanted animal tumours provide a means of assessing the action

of angiotherapeutics, a simple reproducible in vivo model of non-tumour

vessel development would provide a system of significant value. Matrigel

plug implant systems have been developed previously to address the

limitations of in vitro assays and are becoming an essential component of in

vivo assays4,5,6. Matrigel systems have been previously used as ‘metabolic

Boyden chambers’ where MRI and MRS methods have been used

successfully to study cell invasion in vitro7,8. Consequently, this study has

utilized the simplicity of the Matrigel system together with the magnetic

properties of the gel, where long T2 values would provide maximal

sensitivity to both cellular infiltration and superparamagnetic contrast agent

effects. MR techniques allow a longitudinal study with the same subject

serving as its own control hence the combined use of Matrigel with MR

could provide a potentially powerful approach for assessing a wide variety

of agents.

To demonstrate the feasibility of the approach, the anti-angiogenic effects of

thalidomide on the vascularisation of Matrigel, preloaded with pro-

angiogenic cytokines, was investigated using contrast enhanced MR

methods. The anti-angiogenic mechanism of action of thalidomide is not yet
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fully understood. At pharmacological doses, thalidomide has modest or no

effect on proliferation of endothelial and malignant cells in vitro9,10,11,12,13.

Inhibition of angiogenesis induced by bFGF as well as VEGF in a cornea

micropocket assay is independent of anti-inflammatory effects and

suppression of TNF-α production by thalidomide14. It has been proposed

that thalidomide may down regulate the formation αvβ3 and αvβ5 integrins

(required for bFGF and VEGF-driven angiogenesis15) by DNA intercalation

of GC-rich promoter regions in the genes of the individual integrin

subunits16, which would affect endothelial cell migration. Whilst down

regulation of the β3 subunit has been demonstrated17, another study found

that thalidomide did not modulate αvβ3 expression18. Decreased levels in

patient plasma19, embryos11, and conditioned medium from endothelial cell

culture13 indicate that thalidomide may inhibit production of bFGF and/or

VEGF, possibly also by DNA intercalation20. Despite the incomplete

understanding of how thalidomide exerts its action, it remains a potent anti-

angiogenic agent and was selected for this study.

Building upon previous preliminary data with the Matrigel system, a

superparamagnetic  iron oxide contrast agent was applied to assess the

effects of the angiotherapeutic. The preliminary studies showed that the

high vascular permeability associated with the cytokines designed to

promote angiogenesis made the extracellular contrast agent GdDTPA less

appropriate than a blood-bourne iron oxide particle21. Consequently, the

kinetics of contrast agent induced changes in signal intensity using a T2*

weighted sequence were investigated. In addition, standard T2

measurements, acquired before and after iron oxide administration, were

used to minimize ‘blooming’ from T2* effects potentially increasing the

accuracy of the measurements. Data were then compared to a validated

optical-based assay. This study shows that using dynamic iron oxide

induced changes in signal intensity, the anti-angiogenic effects of

thalidomide can be demonstrated, validating the methodology.

I.2 Materials and Methods

I.2.1 Matrigel chamber preparation

Matrigel chambers were assembled from 14 mm diameter Millipore

diffusion chamber rings with side hole (Millipore Corp., Billerica, USA)
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and two nylon meshed membranes punched from 180µm pore size Nylon

Net Filter (Millipore Corp., Billerica, USA) as described previously . M

Cement (Millipore Corp., Billerica, USA) was used to attach the

membranes to the diffusion chamber. Assembled chambers, with an

approximate volume of 0.2 cm3, were sterilized by irradiation. Recombinant

human bFGF (Sigma-Aldrich, Vallensbaek, Denmark) and recombinant

murine VEGF (Sigma-Aldrich, Vallensbaek, Denmark) were reconstituted

according to manufacturers recommendations. Growth Factor Reduced

Matrigel (BD Biosciences, San Diego, CA) was thawed overnight on ice,

and a stock solution of Matrigel containing 750 ng/ml of bFGF and 250 ng/

ml of VEGF was prepared, aliquoted into appropriate portions and frozen.

On the day prior to each chamber implantation, a portion of the Matrigel

solution was thawed overnight on ice. The Matrigel mixture was drawn up

into a syringe, and briefly warmed by hand to speed up the solidification

process after injection. Carefully, the mixture was injected through the side

hole into the chambers, using a 27-gauge needle and allowed to solidify.

Care was taken to prevent the air flow of the laminar airflow hood from

drying out the chambers. 

I.2.2 Animals, chamber implantation and thalidomide
administration

Male nude NMRI mice (Taconic M&B, Lille Skensved, Denmark), 6 weeks

of age, were kept in individually ventilated SealSafe cages (Scanbur BK A/

S, Karlslunde, Denmark) with free access to sterile food and water. Lighting

was controlled in a 12-hour light/dark cycle. Following an acclimatization

period of 1 week, animals were anesthetized using a saline solution

containing xylazine 1 mg/kg (Rompun®, Bayer, Kgs. Lyngby, Denmark)

and ketamine 10 mg/kg (Ketalar®, Pfizer, Sollentuna, Sweden). An incision

of approximately 1.5 cm length was made transversally in the neck region

of each mouse, and a subcutaneous pocket on both flanks was formed by

blunt dissection. A chamber was inserted into each pocket, and the incision

closed with non-resorbable suture (Ethicon 6-0, Ethicon, Norderstedt,

Germany). The location of the incision removed from the actual

implantation site minimised any effects of mechanical stress by the rigid

chambers on the wounds. Thalidomide (Sigma-Aldrich, Vallensbaek,

Denmark) was added to a sterile 0.5% carboxy methyl cellulose solution to

a concentration of 10 mg/ml. The mice were randomized into two groups.
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One group (N=9) were treated with daily i.p. injections of thalidomide at a

dose of 200 mg/kg, while animals in the control group (N=11) were not

treated. Twelve days after implantation, the mice were imaged by MR. 

I.2.3 Magnetic Resonance Imaging 

Magnetic resonance imaging was performed using a 4.7T Varian Inova

system utilising a home built volume and surface coil. Animals were

anaesthetized using a sub-cutaneously injected mixture of

hypnorm/dormicum/atropine. Animals were then positioned within the

magnet with a surface coil placed over the chamber implanted in the right

flank. On three occasions, air bubbles trapped within the Matrigel matrix

had significant detrimental effects on image quality and the coil was

subsequently repositioned over the left flank. Following the acquisition of

scout images, quantitative T2 measurements were performed on a single

0.8mm slice, carefully positioned mid-way within the implant. Quantitative

T2 measurements were performed using a spin echo sequence with multiple

readouts, (MA=128x128, 30x30 mm FOV, TR=3s, TE=15-180 in steps of

15 ms (T2 pre). Mice were injected with 0.4 mg of Endorem (Guerbet,

Denmark) via a cannulated tail vein and the bolus was followed using a T2*

weighted gradient echo flash sequence (MA=128x128, FOV=30x30 mm,

TR=20ms, TE=5.2ms, FL=20degrees, 150 frames). Post-contrast T2

measurements (T2 post) were also performed. T2 maps were calculated using

non-linear least squares fitting applying the Levenberg-Marquardt method22.

I.2.4 MRI analysis

in vivo, Matrigel without infiltration has a T2 of approx 60 ms, therefore

pixels with a T2 below 45 ms were considered to contain blood vessels and

therefore infiltration. In order to estimate functional vessels the T2 post

images were subtracted from the T2 pre images and pixels with a T2

difference of 6ms or more were considered to contain functional blood

vessels.

For the dynamic MRI images, the mean of the last 45 images were

subtracted from the mean of the first 45 images and a signal difference

threshold was selected based on visual inspection of the time series. 
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I.2.5 Optical Quantification

Following MR examination, chambers were excised immediately after

sacrificing the mouse, placed on a white surface and photographed from

both sides using an Olympus SC-40 microscope (Olympus, Melville, NY)

fitted with a ring lighting system and a Leica DC-150 digital camera (Leica,

Bannockburn, IL). Using image processing software (Paint Shop Pro 8.1,

Jasc Software, Eden Prairie, MN), a region of interest on each chamber was

selected, corresponding to the area of the chamber within the inner border

of the Plexiglas diffusion chamber ring, and the remaining part of the image

darkened to black. By applying a specially defined filter to detect the

number of red pixels, all the masked images were quantified using Sigma

Scan Pro 5.0 (SPSS Science, Chicago, IL). The filter was constructed

beforehand to select all colours of red hue and manually adjusted to

correctly select red areas on a series of test optical images of Matrigel

chambers to ensure specific adaptation to our imaging setup. The optical

data was transferred to a spreadsheet and the percentage of red pixels within

the inner border of the Plexiglas diffusion chamber was calculated. 

I.2.6 Statistics

The non-parametric Mann-Whitney U-test was used to test differences

between groups, p-values below 0.05 were considered statistically

significant. Simple correlation was used to compare the two methods (red

pixel count and different MRI methods).

I.3 Results and Discussion

Chambers were well tolerated with little adhesive tissue reaction observed

when the chambers were removed. No macroscopic signs of inflammation

were observed.

Representative examples of the different optical and MR parameters

acquired (optical imaging, pre, post and difference T2 as well as gradient

echo dMRI) are shown in Figure I.1. Note that the red area of the optical

image corresponds well with the dark area seen on T2 pre and T2 post

images. As shown for animal (B), there is also good agreement between T2

diff, and dMRI. Approximately 50% of the mice showed good agreement

between T2 diff and dMRI difference images in the untreated mice, while for
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the thalidomide treated mice approximately 75% showed good agreement.

Figure I.2 shows time curves from a chamber in which it is possible to

identify three distinct regions based on the time curves. The red ROI has a

very quick wash in of contrast and then shows slow clearance,

Figure I.1: Example of different optical and MR images obtained for two

different mice. Note that the red area in the optical image corresponds well

with the dark area in T2 pre and T2 post. In B there is also good agreement

with T2 diff and dMRI.

Figure I.2: Quantitative T2 map showing values post contrast (left) together

with dMRI difference image (GE flash, TR/TE=20/5.2 ms, flip angle 20

degrees, 150 acqs). The image shown is the difference between the mean of

the 25 first and last images. (middle). Tissue curves for the ROIs shown in

the middle is shown on the right.  A large infiltration is seen in the upper

left corner. A large vessel is clearly visible on the dMRI difference map

(middle). Some correspondence between post contrast T2 map (left) and

dMRI difference (middle) is seen.  As shown in the time curves (right) three

distinct regions could be identified. The red region appears to be a vessel

where washout makes the signal return towards baseline after the initial

dip caused by injection of contrast agent. The green and blue regions of

interest show areas of differing vascularization.    
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characteristics typical of a blood vessel. The green ROI shows slower wash

in of contrast agent and no sign of clearance which would fit well with an

area with tissue infiltration and leaky vessels. The blue ROI has the same

characteristics as the green ROI but with less signal reduction which might

be explained by low vascularization.

For all modalities the percentage of vessels/infiltration was quantified as

described in materials and methods. The results of this quantification is

shown in figure I.3. As shown in the figure both T2 pre and T2 post

overestimate the percentage of vessels compared to the optical method

while T2 diff and dMRI are closer to the values of the optical method. All

modalities showed statistically significant differences between untreated

and treated animals except for the dMRI difference method.

Table 1 shows the correlation between the different MR modalities and the

optical method for the scanned chamber as well as for the mean of both

chambers. The results show that there is only good correlation (P<0.05) for

Figure I.3: Percentage of chamber quantified as blood vessels

using the types of quantification. Error bars indicate standard

error of the mean.* Indicates significant differences with P<0.05,

** P<0.01, *** P<0.001
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the T2 difference method. 

Scanned chamber Both chambers

T2 pre 0.685 0.671

T2 post 0.352 0.450

T2 diff 0.005 ** 0.012 *

dMRI 0.129 0.098

Table 1 P values for correlation between the chambers which were MR

scanned and the optical images of the scanned chamber or both chambers.

* Indicates significant differences with P<0.05, ** P<0.01

Four MR derived parameters were measured. Three of the four showed

significant difference between the control and treated group (Figure I.3). 

When compared with the previously validated ‘red pixel’ methodology only

T2 diff values, indicative of functional blood vessels, were found to be

correlated with the number of red pixels. Correlation of the red pixel

measurements with T2 diff values are consistent with the ‘haemoglobin

measurements’ reflecting blood volume within the same ROI. The potential

advantages of using MRI to measure blood delivery and not just

haemoglobin, via the red pixel measurement, do not appear to have been

realised previously. Furthermore, T2 pre and T2 post measurements appear to

overestimate the percentage of vessels in each chamber probably due to the

inclusion of avascular inflammatory tissue. 

Thalidomide inhibits in vitro tube formation11,23, and in vivo angiogenesis in

matrigel assays11,23. In this study, thalidomide significantly decreased red

coloration in the Matrigel chambers. Thalidomide inhibits in vitro

endothelial cell migration13,24 ; and is in accord with our previous

observation that two substances with anti-angiogenic activity in the

Matrigel chamber also inhibited EC migration in vitro6,25, supporting the

view that inhibiting endothelial cell migration is a central element of in vivo

anti-angiogenic effects. Thalidomide (200mg/kg) was a more potent

inhibitor of angiogenesis in the Matrigel Chamber assay than the

established anti-angiogenic agent bevacizumab25, an antibody that binds

human VEGF. Although this could be related to bevacizumab being

ineffective against the VEGF contribution from the murine tumor stroma,
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the results presented here still demonstrate a powerful anti-angiogenic effect

of thalidomide, detectable by optical and by MRI methods.

I.4 Conclusion

Studying angiogenesis within the implanted chambers offers several

advantages in terms of MRI; the ROI is very clearly defined, the implant is

initially avascular with a long T2 and it is not necessary to consider pre-

existing vascularisation. Longitudinal studies are relatively simple to

conduct as only simple rigid body realignment of acquired images will be

required. Quantification by the optical / red-pixel method at the final

timepoint is much faster than histological analysis of the tumor, making it

easier to confirm the results by an alternative method. The dMRI difference

maps show the initial effects of the contrast agent while the T2 maps show

the extent of tissue infiltration and steady state effects. The MR findings

also appear consistent with the mechanism of action of thalidomide. 

Here, a new approach to evaluate angiogenic responses in the Matrigel

chamber assay using MRI has been presented. The use of a non-invasive

evaluation method makes the Matrigel chamber assay a powerful tool to

study angiogenic processes, which previous, invasive evaluation methods

such as histology and measurement of red coloration do not permit. Optical

measures of haemoglobin, as used previously in the in vivo Matrigel assay,

may report on the extent of ‘vascular infiltration’ rather than viable/patent

vasculature. Hence continuous observation of angiogenesis in Matrigel

chambers over time, where individual animals may be followed

longitudinally and act as their own controls, has the potential to contribute

significantly to the understanding of the angiogenic process and its

modulation by exogenous agents. The ability to use non-invasive MR

methodology makes the Matrigel MR assay a potentially valuable tool in

the routine assessment of a wide range of vascular targeted agents.
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Manuscript II Perfusion in brain tumors

The partly intact blood-brain barrier (BBB) and/or blood-brain tumor

barrier (BTB) results in poor drug delivery into brain tumors making drug

delivery to brain tumors a challenging problem, and the noninvasive

detection of drug delivery critically important. In this study, in vivo

magnetic resonance spectroscopy (MRS) was used to detect an anticancer

agent, temozolomide (TMZ), in vivo in murine xenotransplants of the

U87MG human brain cancer.

Dynamic MRI with the low molecular weight contrast agent, GdDTPA, was

used to evaluate tumor vascular parameters. Carbon-13 labeled TMZ

([13C]TMZ, 99%) was intraperitoneally administered at a dose of 15.5 µmol

(3 mg/mouse) during the course of in vivo MRS experiment. Heteronuclear

multiple-quantum coherence (HMQC) MRS of brain tumor was performed

before and after i.p. administration of [13C]TMZ.

Dynamic MRI experiments demonstrated slower recovery of MRI signal

following intravenous bolus injection of GdDTPA, higher vascular flow and

volume obtained by T2*-weighted MRI as well as enhanced uptake of the

contrast agent in the brain tumor in comparison to the normal brain obtained

by T1-weighted MRI. These data demonstrate partial breakdown of the

BBB/BTB and good vascularization in U87MG xenografts.  A [13C]TMZ

peak was detected at 3.9 ppm by HMQC from a selected volume of about

1.0 cm3 within the brain tumor with a HMQC pulse sequences.

This study has clearly demonstrated noninvasive detection of [13C]TMZ in
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xenografted U87MG brain tumor with MRS.  Noninvasive tracking of

antineoplastic agents using MR spectroscopy will have a significant impact

on brain tumor chemotherapy.

II.1 Introduction

Malignant brain tumors have poor prognosis.  This is due, in part, to poor

drug delivery and the correspondingly limited therapeutic response caused

by a partly intact blood-brain barrier (BBB), blood-brain tumor barrier

(BTB), and reduced tumor blood flow26.  Temozolomide (TMZ) is a

relatively new alkylating agent that has been successfully used for

chemotherapy of glioblastoma multiforme and anaplastic astrocytoma.  The

ability to monitor concentrations of the therapeutic agent within the tumor

noninvasively over the course of chemotherapy is important to improve

therapeutic strategies and/or to evaluate patient response to the treatment.

Magnetic resonance imaging (MRI) and spectroscopic imaging (MRSI)

have a significant potential such applications.  They can provide detection

of the drug molecules as well as functionally monitor the anticancer effects

of therapy repeatedly, with high spatial resolution, and no radiation

exposure during the longitudinal course of therapy.  TMZ is a good

candidate for noninvasive monitoring by MRS because this compound can

be labeled with a 13C isotope in the methyl position, and can be detected in

vivo with 13C MRS at clinically relevant concentrations27.  We previously

demonstrated MR measurement of the intratumoral spatial distribution of

carbon-13-labeled TMZ ([13C]TMZ) in xenografted human breast

carcinomas in mice using a heteronuclear multiple-quantum coherence

(HMQC) pulse sequence28 with gradient selection of coherence29.  Since

TMZ is currently approved for use in brain tumors, preclinical studies with

a brain tumor model is a necessary step for clinical translation of the

method. One major problem is that concentrations of the drug in brain

tumors is generally lower than that in breast tumor models because of poor

drug delivery. Combined with a less efficient MR setup for brain MRI/MRS

due to the reduced filling factor of the RF resonator, this results in

significantly reduced sensitivity of MRS to detect drug delivery in brain

tumors. TMZ was successfully detected by HMQC in vitro at a

concentration of about 100 µg/ml (0.5 mM [13C]) with a signal-to-noise

ratio (SNR) of about 11 for a nominal spatial resolution of 2.5 mm in-plane
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(15.6 mm3).  A TMZ peak was also detected in in vivo HMQC spectra of a

xenografted breast tumor post-intra peritoneal injection of [13C]TMZ at a

total dose of 45 mg/kg with the same nominal voxel size. In this study, to

provide a necessary gain in detection sensitivity required for in vivo

detection of [13C]TMZ in brain tumor models, we performed a single-voxel

spatially localized HMQC spectroscopy using outer-volume suppression30,

for spatial localization. To our knowledge, this is the first report for direct

detection of drug molecules in xenografted brain tumors using an MR

technique.

Quantitative measurement of tumor vascular parameters such as tumor

vascular volume and vascular permeability-surface area product in

preclinical models is typically performed using dynamic MRI with high

molecular weight contrast agents, such as a conjugate of GdDTPA with

albumin (albumin-GdDTPA)31. However, preliminary results obtained for

brain tumor xenografts demonstrated a negligibly low uptake of albumin-

GdDTPA in brain tumors as reported previously32. Also, high molecular

weight MR contrast agents are currently not approved for clinical use.

Conventional clinically approved low molecular weight MR contrast agents,

such as GdDTPA, are more likely to distribute in brain tumors, and

quantitative parameters of tumor vascularization that control drug delivery

to the tumor can be obtained from the MR contrast agent kinetics in the

tumor.

In this study, a combination of bolus tracking and contrast-enhanced

dynamic MRI following two consecutive intravenous injections of low

molecular weight contrast agent, GdDTPA, was used to extract vascular

parameters of the tumor, such as vascular volume, blood flow, and an

effective volume transfer constant for the contrast agent33.  Noninvasive

detection of TMZ in brain tumor-bearing mice following intra peritoneal

administration of [13C]TMZ was performed using an inverse detection

HMQC pulse sequence with outer-volume suppression for volume

selection.
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II.2 Materials and Methods

II.2.1 Materials

[13C]TMZ (99% 13C at the methyl position) was obtained from Cambrige

Isotope Laboratories, Inc. (Andover, MA, U.S.A.).  

3-(Trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt (TSP) was obtained

from Sigma-Aldrich Co. (St. Louis, MO, U.S.A.).  Magnevist (GdDTPA)

was obtained from Bayer Healthcare Pharmaceuticals, AG (Leverkusen,

Germany).  All other chemicals were of reagent grade, and were obtained

commercially.  Double-tuned volume coil (1H/13C) for 9.4T Bruker Biospec

horizontal bore animal MR scanner was developed and built by Resonant

Research LLC (Baltimore, MD, U.S.A.).

II.2.2 Cell lines and animals

 Human malignant glioma U87MG cell lines were grown in Eagle’s

minimum essential medium (EMEM) with 1% penicillin, streptomycin, and

10% fetal bovine serum at 37°C with 5% CO2.  Approval from the

institutional animal care and use committee preceded all animal

experiments in the present study.  U87MG cells were inoculated

intracranially in immune suppressed male SCID mice (body weight of

approx. 22 g) that were purchased from NCI (Bethesda, MD, U.S.A.).

Briefly, 1 × 105 cells in 2 µL of Hanks’ solution were implanted by

intracranial injection using stereotactic guidance.  The skull was exposed,

and a burr hole was drilled through the skull 2 mm lateral and 3 mm

anterior to the bregma.  Tumor cells were injected over 5 min into the brain

parenchyma at a depth of 2.5 mm.  After inoculation, the scalp was sutured.

Three weeks following cell inoculation, animals with tumor sizes of over 3

mm were used for MR experiments. At least three mice were used for the

experiments.

II.2.3 In vitro MR study

MRI and MRS studies were performed with a horizontal bore Bruker

Biospec 9.4T MR scanner equipped with 121 mm shielded gradient

systems.  The Paravision 3.0.2 program (Bruker Biospin GmbH) was used

as acquisition software. A temozolomide phantom was prepared with 100
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µM [13C]TMZ in saline in a 15 mL plastic tube. [13C]TMZ signals were

measured using an inverse-detection HMQC pulse sequence with echo time

(TE) = 20 msec; repetition time (TR) = 1500 msec; number of acquisition

(NA) = 2048; dummy scan = 8.  Three-dimensional volume selection was

performed with a series of 6 slice-selective semi-adiabatic sech pulse (pulse

width = 1 msec, excitation slice thickness of 16 mm) used for outer-volume

suppression. A composite-pulse decoupling sequence, WALTZ-16 (γB2 = 1

kHz) set at 13C resonance frequency of [13C]TMZ of 49 ppm, was used for

broad-band decoupling of 13C during acquisition.

II.2.4 In vivo MR study

Mice were initially anesthetized with ketamine/acepromazine mixture (50

mg/kg and 5 mg/kg, respectively, in saline) via intraperitoneal injection, and

immobilized in a plastic cradle positioned within the double-tuned 1H/13C

RF coil, and the tail vein was catheterized for GdDTPA injection before

placing the probe in the magnet.  A second catheter was placed i.p. for

injection of [13C]TMZ solution.  A 100 mM cylindrical TSP phantom was

place on the head of the mouse, and used as an external reference.  For the

duration of MR experiment, animal was kept under gas anesthesia with 1%

isoflurane in the flow of air (1 mL/min).  Body temperature was maintained

at 37°C by heat generated from a pad circulating with warm water.  Mouse

respiration was monitored with a dedicated small animal physiology

monitoring system attached to the MR scanner.

Contrast-enhanced dynamic MRI — A slow injection of 30 µL of GdDTPA

solution (167 mM in saline) over 3 sec was performed during T1-weighted

MRI scan of the mouse brain. Briefly, a saturation recovery snapshot-

FLASH pulse sequence with an excitation pulse flip angle of 10 degrees, an

TE of 1.245 msec, and three T1 saturation recovery delays (250, 500, and

1,000 msec) were used, and an M0 map with a recovery delay of 10 sec was

acquired once prior to administration of GdDTPA solution. Either two or

three slices were selected with the slice thickness of 2 mm. T1 sequence was

repeated 64 times, and GdDTPA was injected after 4 scans that provided

pre-contrast as well as post-contrast quantitative T1 maps. A second bolus

injection of 40 µL of GdDTPA was performed during T2*-weighted fast low-

angle shot (FLASH) MRI scan to characterize vascular volume and

perfusion in xenografted brain tumor and mouse normal brain. Acquisition
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parameters were as follows: TE = 3.5 msec; TR = 333 msec for 3 slices, and

500 msec for 2 slices for temporal resolution of 1 sec per multislice image.

The same slices were selected as for T1-weighted acquisition, and

acquisition sequence was repeated 300 times.  For both experiments, in-

plane spatial resolution of 0.125 mm (128 × 64 matrix zero filled to 128 ×

128, field of view = 16 × 16 mm) was used.

HMQC   13  C/  1  H MRS   — After completing dynamic MRI experiments, the

probe tuning to 1H and 13C was rechecked, and tri-planar scout images were

acquired to determine the position of the imaging slices.  Initially, RF pulse

power was adjusted to optimize HMQC spectroscopy of the TSP phantom.

An outer-volume suppression with 6 slice selective sech pulse was

implemented to select a cubic region of interest using graphical prescription

routine.  An automatic and manual shimming routines using a point-

resolved spectroscopy (PRESS) method were consecutively used to shim

the region of the TSP phantom and the tumor region of the mouse brain.

HMQC MRS of brain tumor was performed before and after i.p.

administration of [13C]TMZ.  Acquisition parameters were as follows: TE =

20 msec; TR = 1500 msec; NA = 256; sweep width (sw) = 4960 Hz; dummy

scan = 8.  Similar to the in vitro study, the HMQC pulse sequence was used

for indirect 1H/13C MRS, and adiabatic pulse (sech, 1 msec) and a WALTZ-

16 composite-pulse decoupling sequence were used for voxel selection by

outer-volume suppression and broad-band 13C decoupling, respectively.

[13C]TMZ (15.5 mM) was injected via i.p. catheter every 10 min up to a

total of 1.0 mL.  After acquisition, animals were sacrificed, and extracted

brain tissues were individually immersed in cold formalin for 2 hrs, then

30% sucrose overnight for hematoxylin-eosin staining (Supplemental data;

S. Figure 1).

II.2.5 Data analysis

A MatLab™ (The MathWorks Inc.) script was used for the analysis of

vascular parameters, and a custom-written software in the IDL™

programming environment (Research Systems Inc.) and CSX3 software

developed by Dr. Peter B. Barker (The Johns Hopkins University) were

used for the analysis of MRS data.  Calculation of vascular parameters was

performed using block circulant deconvolution with manual localization of

a suitable arterial input function (criteria high peak and low time to peak)34 .
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The concentration of contrast agent is proportional to ∆R2, but the

proportionality constant is specific for tissue, magnetic field, and contrast

agent.  As the proportionality constant is unknown, only relative CBV and

CBF values are reported in this study.

II.3 Results

II.3.1 In vitro MR study

A single voxel spatially localized spectrum of a [13C]TMZ phantom

prepared in a plastic 10 mm diameter tube is shown in Figure II.1.

Figure II.1: MR spectroscopy of 100µM [13C]TMZ phantom using

HMQC pulse sequence with adiabatic refocusing pulse.  (A) Tri-planar

images of TMZ phantom.  Pink areas indicate the region of outer-

volume suppression applied by adiabatic pulse (sech, 1 ms).

Measurement volume is about 1.2 cm3.  (B) Spectrum obtained from

100 µM [13C]TMZ phantom.  TE/TR = 20/1500 msec, NA = 2048,

dummy scan = 8.  Temporal resolution = 51 min.  SNR = 26.8.

Axial Sagittal Coronal
(A)

(B)

6.0        4.0         2.0      ppm
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Selection of the region of interest (ROI) with a volume of approximately 1.2

cm3 was performed by a combination of 6 slice-selective semi-adiabatic

hyperbolic secant (sech) pulses30.  As shown in Figure  II.1, we could

reliably detect 100 µM of [13C]TMZ in 1.2 cm3 voxel in vitro in the

phantom.  The measured SNR was 26.8, and the acquisition time was 51

min.  Complete suppression of the bulk water signal at 4.7 ppm was

achieved in these in vitro experiments.  For typical in vivo acquisition

parameters with a relaxation delay of 1.5 sec and total acquisition time of

30 min with 1024 scans, the SNR was proportionately reduced to about 12.5

(data not shown).  In vitro studies with a [13C]TMZ phantom demonstrated

the feasibility of this technique to detect [13C]TMZ peak at 3.9 ppm in vivo

in a xenografted U87MG brain-tumor model.

Figure II.2: Experimental protocols for in vivo MRI/MRS studies.  (A) T1-

weighted saturation-recovery MRI.  (B) T2-weighted FLASH MRI.  (C)
1H/13C HMQC MRS.
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II.3.2 In vivo MRI for vascular parameters in xenografted U87MG
brain tumors

Experimental protocols for MRI/MRS studies are summarized in Figure

Error: Reference source not found.  Experiments started with the first

GdDTPA injection and the acquisition of quantitative T1 maps from the

tumor region of the brain (Figure Error: Reference source not foundA).  T1

measurement studies were followed by the bolus tracking experiment

(Figure Error: Reference source not foundB), which demonstrated that the

initial drop in T2*-weighted MR signal quickly recovered in the normal brain

while slow recovery was detected in brain tumors (Figure II.3).  This is a

common phenomenon typically observed in normal brain and brain

Figure II.3: Changes in signal intensities of (A) normal brain, and (B)

U87MG-xenografted tumor in mouse brain as shown in yellow regions in

each image following GdDTPA injection.  Images and intensity profiles are

a representative of five experiments.  Movie files are provided in

supplemental data (S. Figure 2).
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tumors35,36 .  Complete or partial breakdown of BTB, and/or BBB in the

tumor, and impaired tumor vascularization are two major factors

contributing to this effect36.  Typical reconstructed images of ∆R1

differences, cerebral blood flow (CBF), and cerebral blood volume (CBV)

are presented in Figure II.4.  Relative tumor blood flow (rTBF) (rTBF =

TBF / CBF) and relative tumor blood volume (rTBV = TBV / CBV) values

reconstructed from these maps are shown in Figure II.5.  Both TBF and

TBV were relatively higher than those in normal brain tissue, which

indicates that U87MG tumors are well vascularized, have sufficient blood

flow, and that permeability of the BBB and/or BTB within the tumor was

significantly compromised.

Figure II.4:  Images from one of the animals showing visible tumors.

Left: R1 difference maps.  Middle: Relative CBF maps.  Right: Relative

CBV maps.  CBF and CBV were divided by the mean of the normal area.

Green ROIs represent a region of the tumor tissue, and red ROIs

represent a region of the normal brain tissue.
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II.3.3 In vivo MRS of TMZ in xenografted U87MG brain tumor

After completing dynamic MRI studies with GdDTPA enhancement,

inverse detection HMQC spatially localized single volume spectroscopy

was performed as outlined in Figure Error: Reference source not foundC.

Initially all acquisition parameters were adjusted for a cylindrical phantom

filled with 100 mM TSP solution that was positioned next to the animal

skull as shown in Figure II.6A.  An indirect 1H/13C spectrum of methyl

carbons of TSP is shown in Figure II.6B.  Initial shimming (both automatic

and manual) was performed for the TSP phantom region and a single TSP

peak was clearly detected at 0 ppm with a composite-pulse decoupling

sequence, WALTZ-16 (γB2 = 1 kHz) applied to the carbon-13 RF channel.

Three-dimensional volume selection was performed as shown in Figure

II.6C with 6 slice selective sech pulses.  [13C]TMZ peak was detected in the

proton spectrum at around 3.9-4.0 ppm, and a natural abundance lipid peak

was registered at 1.3 ppm.  [13C]TMZ peak was consistently detected in

three tumor-bearing mice following i.p. injection of [13C]TMZ, and reached

its maximum amplitude at 30-50 min post initial injection of [13C]TMZ.  As

for in vitro studies, an excellent suppression of the bulk water peak at 4.7

ppm was achieved in in vivo experiments using the HMQC acquisition

Figure II.5: Ratios of TBF/CBF and

TBV/CBV in the animals showing visible

tumors. Bars represent standard error of the

mean.
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technique with gradient selection of coherences29.  The detection of

[13C]TMZ peak in U87MG xenografted tumors was attributable to (i) the

partial breakdown of BBB and (ii) well-vascularized character of U87MG

xenografts, as demonstrated by dynamic MRI.  This experiment

corroborated the feasibility of noninvasive detection of delivery of 13C-

labeled drug molecules to brain tumor using spatially-selective inverse

detection HMQC-based MRS.

Figure II.6: Illustration of the experimental setup for in vivo MRS, and

spectra of the external reference, TSP, and the mouse brain pre- and post-

intra peritoneal administration of [13C]TMZ at a total dose of 15.5 µmol.

Pink areas in tri-planar images indicate the region of outer-volume

suppression applied by adiabatic pulse (sech, 1 msec).  Spectra of TSP and

mouse brain are a representative of three experiments.
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II.4 Discussion

Non-invasive detection of [13C]TMZ in brain tumor by MRS allows

repeated monitoring of TMZ during the course of therapy, which can

provide a better opportunity to optimize the treatment plan by elucidation of

the relationship between TMZ delivery and antitumor activity when

combined with MRI.  Although O6-methylguanine-DNA methyltransferase

(MGMT) is known to be associated with TMZ resistance, our preclinical

animal studies with human breast cancer xenografts showed practically

unchanged MGMT expression levels in tumors treated with TMZ37.  In

addition, minimal involvement of MGMT in TMZ resistance in glioma was

reported by Bocangel et al.38.  Similarly, there is no involvement of

traditional multidrug resistance (MDR) drug-efflux pump mechanisms in

TMZ resistance39.  It was conceivable that changes in vascular parameters in

tumor resulted in poor response to chemotherapy37, which might be directly

linked to delivery issue.  The dynamic MRI results demonstrate that the

U87MG tumors are well vascularized, which is also supported by an early

report40.  Furthermore, the R1 difference maps show at least partial

breakdown of the BBB.  The rTBF/rTBV values (1.26/1.55) obtained are in

good agreement with experimental results obtained for the high-grade

gliomas in a recent arterial spin labeling (ASL)/dynamic susceptibility

contrast (DSC) study41.  Another study using only ASL showed decreased

TBF and TBV in U87MG tumors in mice42.  The inconsistency might be

explained by differences in magnetic susceptibility between the tumor and

normal brain tissue, which can be caused by differences in angiogenic state,

vascular architecture, hematocrit and other factors43.  The T1 effect of

GdDTPA leaking into the tissue via partly broken BBB or TBB can be a

problem in DSC studies.  In this study, the R1 measurements were

performed prior to DSC, and the gadolinium injected for the R1 maps acted

as a preloading for the DSC measurement which should minimize T1

effects44,45.

We were able to detect [13C]TMZ by HMQC at the volume of nearly 1.0

cm3 in mouse brain tumor.   To extrapolate our results to human studies, we

also detected N-acetyl aspartate (NAA) peak in normal mouse brain (voxel

size of 0.064 cm3) as well as in normal human brain at 3.0T (voxel size of

16 cm3) (Supplemental data; S. Figure 3).  From a comparison of both SNR

of NAA peak in mouse/human normal brain and SNR of [13C]TMZ peak in
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mouse brain tumor and phantoms, it should be possible to detect [13C]TMZ

peak in human brain tumors at concentrations of about 100 nM, which is

close to the reported maximal concentration of TMZ in plasma (about 10

µg/mL) and cerebrospinal fluid (about 50 nM)46. These results support the

potential feasibility of MRI technology for direct detection of the brain

tumor chemotherapy in clinical settings.

The technique used here is designed to monitor drug delivery, and not for

acquisition of spatial distribution unlike the previous report29.  The

limitations of spatial distribution of drugs in brain tumors are attributed to

insufficient drug delivery and relatively small tumor size compared to other

solid tumors.  This study has clearly demonstrated noninvasive detection of

[13C]TMZ in xenografted U87MG brain tumor with MRS.  Although it is

also possible to use the pharmacokinetics of an appropriate surrogate

marker of drug delivery, such as GdDTPA, with MRI to follow and predict

the delivery pattern of the drug to the tumor, this method has limited

feasibility for brain tumors with partly functional TBB.  Unlike MR contrast

agents, many anticancer agents used for brain cancer therapy including

TMZ can penetrate BBB, and their pharmacokinetics in the tumor can be

vastly different from the surrogate molecules such as GdDTPA.  The major

advantage of MRS is the direct monitoring of drug molecules, in this case,

TMZ. We envision that noninvasive monitoring of [13C]TMZ in brain

tumors by spatially-selective inverse detection HMQC-based MRS will lead

to more effective strategies for brain tumor therapy.
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II.6 Supplementary figures

S_Figure 1: Brain tissue section stained with hematoxylin

and eosin.  Brain tissue was carefully removed from the

skull, and extracted brain tissues were immersed in

formalin, followed by 30% sucrose as a cryoprotectant.

Each brain was embedded in Tissue-Tek® O.C.T.

Compound (Sakura Finetek U.S.A., Inc.), frozen with liquid

nitrogen, and stored -80�C until microscopy.  Nikon

Eclipse E400 upright microscope equipped with Nikon

super-high-pressure mercury lamp and SPOT Insight™

digital camera (Diagnostic Instruments, Inc.) was used for

microscopy.  2X Lens.  Tissue slice thickness = 10µm

H&E 
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S_Figure 2: Changes in signal intensities of normal

brain and U87MG xenografted brain tumor

following bolus i.v. injection of 167 mM of GdDTPA

(0.04 mL).  Images were acquired using T2-

weighted FLASH sequences.  Images were

reconstructed using IDL™ program Tumor regions

are outlined in yellow.  One representative slice

was extracted from two or three slices in each

animal, and movies are two representatives of five

animals.
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S_Figure 3: Comparison of internal standard peaks of N-acetyl aspartate

(NAA) in normal mouse brain and healthy human brain.  (A) Tri-planar

images of healthy human brain with a 2.5x2.5x2.5 cm cubic voxel indicators.

(B) NAA peak obtained from a normal mouse brain acquired by point-resolved

spectroscopy (PRESS) sequence (TE/TR = 20/2000 msec) at Bruker 9.4T

spectrometer.  A voxel size was about 0.064 cm3.  SNR was calculated to be

9.5.  (C) NAA peak obtained from a healthy human brain acquired by PRESS

sequence (TE/TR = 30/2000 msec).  A voxel size was about 16 cm3.  SNR was

calculated to be 98.  A STEAM (Stimulated echo acquisition mode, TE/TR =

20/2000 msec) sequence was also tried for MRS of NAA in a human subject,

and SNR was calculated to be 42 (data not shown).  The same NA was used in

all experiments.  An MRS experiment for a human subject was performed at

Philips clinical 3.0T scanner, and an 8-element SENSE™ head coil (Philips

Medical Systems, Andover, MA, U.S.A.) was used.  Prior to the experiment, a

written informed consent was obtained from a subject.

PRESS (TE/TR=20/2000ms)

NAA

PRESS (TE/TR=30/2000ms)

NAA
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Manuscript III dCE MRI of breast  tumors

Perfusion and vascular permeability have been studied in a transgenic

mammary cancer model (PyMT) at two different stages, the initial

hyperplastic and the late carcinoma stage. This was achieved by using

Tikhonov deconvolution and Patlaks method. It was shown that T1 weighted

contrast enhanced MRI can be used to estimate perfusion and leakage

parameters from a single scan. 

All tumors were well perfused. Significant differences in the time it takes

the contrast agent to traverse the vasculature (Mean Transit Time – MTT)

were found between tumors and reference tissue as well as between the

hyperplastic and late tumor stage. Vascular permeability and blood volume

were significantly decreased in late stage tumors compared to hyperplastic

stage. The changes in permeability, blood volume and MTT may indicate

vascular maturation over time.

III.1 Introduction

As a tumor reaches a size of 1-2mm3 its need for oxygene can no longer be

met by passive diffusion. The tumor therefore emits signaling molecules

which stimulate surrounding vessels to grow into the tumor. It has been

shown that the microvascular density (MVD) of a tissue is a good indicator

of angiogenesis47. Unfortunately the spatial resolution of MRI does not

allow MVD to be measured directly and the tortoisity of tumor vessels

make flow measurements impractical. A better method for quantifying
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angiogenesis with MRI is to measure perfusion. It is important to

distinguish blood flow and perfusion. Blood flow is a measure of how much

blood flows through a vessel per time unit. Perfusion is a measure of how

much blood is available for exchange of oxygen, nutrients and waste

products to the tissue. The purpose of angiogenesis is not flow per say but

rather to exchange nutrients and deliver oxygen to the tumor cells. Thus,

perfusion is an obvious choice for monitoring the efficiency of

angiogenesis.

Tumor vessels are more permeable to contrast agents than normal vessels48.

The permeability is a consequence of big pores between endothelial cells

and a lack of basal membrane. At different stages of tumor development the

distribution of endothelial cells may change. Hence, permeability of the

vessels can be used to estimate the maturity of the vessels.

In the transgenic model originally described by Guy et al49. in 1992, the

oncoprotein expression (polyoma middle T antigen (PyMT) is under the

control of mouse mammary tumor virus LTR (MMTV LTR). The

expression of PyMT is therefore restricted to the mammary epithelium.

PyMT is a membrane-attached protein and encoded by the small DNA

polyoma virus. PyMT is not expressed in human cells. However, it acts as a

potent oncogene because its products binds to and co-opts several signal

transduction pathways, which are altered in human breast cancers50. The

PyMT model mimics many processes found in progression of human breast

cancer. It does not only mimic the morphological pattern but also the

expression of biomarkers associated with poor prognosis. 

PyMT induces a stepwise progression into malignancy similar to that of

human breast cancer, featuring hyperplasia (normal/benign), adenoma

(ductal carcinoma in situ), early to late carcinoma with stromal invasion

(locally invasive carcinomas), and late carcinoma with distant metastasis.

The stages have been described in detail by Lin et al51 and Maglione et al52. 

Multiple mammary tumors are present at the hyperplastic stage (4-6 weeks

of age) where the mice develop palpable mammary tumors that involve the

entire mammary fat pad. These carcinomas are generally highly fibrotic,

with dense connective tissue separating individual nests of tumor cells. 

The following stage of adenoma is characterized by cellular proliferation

which fills and expands closely packed acini and ducts and, increasing the

size of primary tumor (7-9 weeks of age). Most of the tumor appears to

have an intact basement membrane. Although tumors at the hyperplastic
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stage have very few leukocytes in the surrounding stroma, some adenoma

lesions do contain foci of leukocytic infiltration in the vicinity of the tumor.

These infiltrates are composed of neutrophils, macrophages and fibroblasts.

An increased vascularity is also observed at these sites. 

The early carcinoma stage (9-11 weeks of age) is characterized by greater

cytological atypia and the identification of early stromal invasion. In these

areas of transition to malignancy, the tumor cells now appear pleomorphic,

showing a moderate variation in nuclear morphology, size, and shape. There

is also a high density of leukocytic infiltration surrounding the tumor acini. 

Late carcinomas (12-14 weeks of age) consist of solid layers of malignant

cells with marked variation in cell shape, size, and nuclear morphology. The

invasive tumor cells are associated with a reactive stroma, which consists of

fibroblasts and leukocytes.

This development with these stages makes the PyMT model an excellent

model in which progression of mammary cancer can be studied. It is also a

good model in which important principles of tumorgenesis can be

understood.

A range of different studies have correlated dynamic MRI parameters with

angiogenic markers. Wedam et al53 and Gossmann et al54 showed a decrease

in permeability and vascular volume after treatment with an anti-VEGF

agent. In other studies permeability55, and blood volume56 have been

correlated with MVD. Dynamic MRI has also been used to distinguish

benign from malignant tumors57,58.

The aim of this study was to explore the development of a spontaneous

tumor model. More specifically the aim was to compare perfusion and

permeability parameters at the hyperplastic and late carcinoma stages using

dynamic contrast enhanced MRI. 

The studied parameters were perfusion (BF), permeability (Ki), plasma

volume(Vp), distribution volume (Vd),  and mean transit time (MTT). Vp is

the volume of blood plasma confined to the vessel. Vd is the total volume in

which the contrast agent can be distributed. MTT is the average time it takes

for a contrast agent molecule to traverse the vasculature. These parameters

were obtained using Tikhonov deconvolution59 and Patlaks method60. In

order to perform both an aquarate arterial input function (AIF) is required,

which means that the slice selected for dynamic MRI should contain both

tumor and vessels.
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III.2 Materials and methods

III.2.1 Animal procedures

All procedures were conducted in accordance to the Danish Animal

Experiments Inspectorate (2007/561/1353). Two groups of female PyMT

mice (n=4 in each group) were anaesthetized with 5% isoflurane and a tail

vein catheter was inserted. (Needle size 25 G, catheter size 0.4 mm ID 0.8

mm OD (Astra)). Group 1: age 5-6 weeks, weight was approximately 20-25

g. Group 2:  age 12-14 weeks, weight was approximately 30-35 g. During

MR examination the animals were kept anesthetized using 0.8%  isoflurane

in a mixture of 0.25 l/min oxygen and 0.75 l/min air. 

All animals were kindly provided by Dr. Lars H. Engelholm from the

Finsens Laboratory, Copenhagen University Hospital, Rigshospitalet.  

III.2.2 Magnetic resonance imaging

All imaging was performed using a home built volume quadrature coil with

an inner diameter of 40mm  in an experimental 4.7T Varian Inova system

suitable for imaging small animals.

All images were acquired using a 35x35 mm field of view. After initial

scout and planning images, three 2mm axial angiograms were acquired

using a 2D time of flight gradient echo sequence (TR/TE 13/8.5 ms, matrix

128x128). Based on the scout and angio images a suitable slice including

both tumors and vessels was selected for dynamic MRI. 

High resolution T1W images were acquired before contrast injection

(TR/TE 300/14ms, matrix 256x256, Five 2 mm slices, 2 avg) and were used

to verify the selection of the dynamic MRI slice. 

A saturation recovery gradient echo sequence was used to measure initial T1

before bolus and subsequent dynamic imaging of the first pass of the bolus

through the tumor tissue. A 90 degree prepulse followed by gradient

spoilers was used and after a saturation delay (TD) the echoes were read out

using centric phase ordering and 30 degree flip angle. TR/TE were

18/3.7ms. The scan matrix was 128x64 and the field of view (FOV)

35x35mm resulting in an inplane resolution of 0.27x0.55mm. One 2 mm

slice was acquired. For precontrast T1 determination saturation delay was

varied (TD=150,300,450,600,750,900,1050,1200,1350,1500,1650,1800,

2500,4000ms) and data acquired with 5 averages. 



Materials and methods  95

The passage of the bolus was followed for 10 minutes using a TD of 150ms

and 1 average with a time resolution of 1.3s. After the first 50 frames

0.0019 mmol Magnevist (equivalent to 0.0625 mmol/kg for a 30g mouse)

was injected in the tail vein of the mouse. Immediately following the

dynamic scan postcontrast T1W images were acquired.

In order to relate the change in MR signal to concentration of contrast

agent, single point estimates of ΔR1 were performed during bolus passage.

In order to achieve this basis T1 and M0 were measured prior to contrast

agent injection.

III.2.3 Processing

The signal as a function of time for a gradient echo sequence with a 90

degree prepulse can be formulated as:

s t =M 0sin α 1−e
−TD⋅R1

+ΔR
1

t , ΔR1 t =r 1⋅Ct t  [1]

where s(t) is the signal as a function of time, M0 is the equilibrium

magnetization, α is the flip angle, r1 is the relaxivity of the contrast agent,

and Ct(t) is concentration of contrast agent as a function of time.

The relaxivity of Gd-DTPA at 4.7T was set to 3.8 s-1 mM-1 based on

relaxivity measurements on the same scanner (unpublished data). Equal

relaxivity was assumed for the intravascular compartment as well as tissue.

Precontrast R1 and M0 were fitted using equation 1 with ΔR1=0 using

nonlinear least squares fitting method22 implemented in Matlab (The

MathWorks Inc).  Ct(t) was found using equation 1 as previously

described61,62. 

Regions of interest (ROIs) were drawn in each tumor and a reference ROI

was drawn in muscle. The regions were drawn using the high resolution pre

and postcontrast T1W images and were confirmed using R1 and M0 maps. 

A pixel for extraction of the AIF was manually selected based on rapid

increase of the MR signal following contrast agent injection, large

maximum peak and quick washout of the contrast agent.  

Permeability

Vascular permeability for Gd-DTPA was mapped pixelwise using Patlaks

method60 assuming that the Gd-DTPA is 'trapped' in the tissue during the

duration of the experiment. Values from all ROIs were pooled and

histograms generated. Each histogram was divided by the number of points
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included in the histogram and converted to percentage.

The working equation for Patlaks method is:

Ct t =K i∫
0

t

Cp τ dτ+vpCp t  (2)

Where Cp is the concentration of contrast agent in the vessels (AIF).

It can be linearized as follows:

Ct t 

Cp t 
=K i

∫
0

t

Cp τ dτ

Cp t 
+V p

 (3)

If the assumptions of the model hold, 
Ct t 

C
p
t 

can be plotted against

∫
0

t

Cp τ dτ

Cp t 

 and the slope of the plot will equal the unidirectional transfer

constant Ki, whilst the intercept will equal the plasma distribution volume

Vp. When fitting Vp and Ki the initial 150 points were excluded until

linearity was obtained.

Perfusion

Blood flow (BF) and distribution volume (Vd) were obtained after averaging

each ROI. Averaging was used to increase signal to noise of the Ct(t) curves.

Furthermore, Tikhonov deconvolution is computationally requiring which

means that pixel by pixel estimates of BF and Vd were not practical.

Deconvolution was performed as described by Larsson et al63. In short the

tissue curves were deconvolved with the AIF using Tikhonov

regularization59 with automatic selection of regularization degree based on

the curvature of the L-curve. The result of the deconvolution is a fitted

tissue curve (Ct(t)) as well as the residue impulse function multiplied by

perfusion. The residue impulse function describes the amount of tracer

which is left in the vasculature as a function of time. Ideally the initial value

of the residue funtion is 1 and the last value 0.

Perfusion (BF) was calculated as the maximum value of the flow times

residue impulse function, while MTT was calculated as the area under the

residue impulse function. Distribution volume was then calculated based on
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the central volume theorem as BF x MTT.

Statistical significance was tested using students T-test and a significance

threshold of 0.05. Ki, Vp, BF, Vd and MTT values from each tumors stage

were compared to the reference tissue (muscle). Further, hyperplastic and

late carcinoma stage were compared.

III.3 Results

Permeability and plasma volume

Permeability Ki and plasma volume Vp were calculated using Patlaks

method. All Ki and Vp values from hyperplastic and late stage tumors, as

well as the values from the muscles as control were pooled. Based on the

pooled values histograms of their distribution were generated. Each

histogram was divided by the number of points it was based on, so the Y-

axis indicates percentage of pixels at the given X-value. 

Figure III.1 shows histograms of permeability and plasma volume for

muscle, hyperplastic and late carcinoma stages. 

Hyperplastic stage tumors show a more homegenous distribution of Ki than

late stage carcinomas. This is also reflected in the mean and median values

which are higher for the hyperplastic stage (figure III.2). Permeability for

muscle is quite uniform and is similar to permeability of the late stage

tumors. 

The plasma volumes for muscle are quite uniform compared to both tumor

types. The hyperplastic stage tumors show two distinct distributions of Vp.

The late stage tumors show one lower distribution. Figure III.2 display the

mean permeability and plasma volume in the different tissue ROIs.
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Figure III.1: Histograms of permeability and plasma volume for the

different ROIS. All Ki and Vp values from hyperplastic and late stage

tumors, as well as the values from the muscles as control were pooled. The

percentage of points is displayed as a function of Ki or Vp value. The

vertical lines indicate median (dashed) and mean (solid) values.
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The permeability of hyperplastic stage tumors (1.5±0.04ml/100g/min) is

increased compared to muscle (1.1±0.02ml/100g/min) and late stage tumors

(1.0±0.01ml/100g/min) and both differences are significant with P-values

<0.001. There is a significant difference between late stage tumor

permeability and muscle (P<0.02). The plasma volume for both hyperplastic

(30±0.5 ml/100g) and late stage tumors (20±0.1 ml/100g) is significantly

larger (P-values <0.001) than the plasma volume for muscle (11±0.1

ml/100g). The plasma volume of the late stage tumors is significantly lower

(P<0.001) than in the initial hyperplastic stage.

Figure III.2: Permeability (Ki) and plasma volume (Vp) in the

different ROIs. Bars are standard error of the mean (SEM). *

indicates significant difference from muscle with P<0.05, ***

indicates P<0.001 . !!! indicates significant difference between

hyperplastic and late stage with P<0.001.

Perfusion, distribution volume and MTT

Figure III.3 show BF, Vd and MTT as a function of tissue type. 
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Perfusion values were 7±1 ml/100g/min in muscle, 86±25 ml/100g/min in

hyperplastic stage tumors and 82±6 ml/100g/min in late carcinomas.

Perfusion is significantly different in both tumor stages compared to muscle

(P<0.01). 

Figure III.3: Mean perfusion, distribution volume and transit time for

the different groups.  Bars are SEM. ** denotes significantly different

than muscle P<0.01, *** P<0.001.

Both tumor types have a larger distribution volume (23±4/23±5 ml/100g)

than muscle (16±3ml/100g), although not significantly different (P>0.2). 

MTT values were 148±14s for muscle,  40±10s for hyperplastic and 20±3s

for late carcinoma stages. MTT is significantly lower than muscle for both

hyperplastic and late stage tumors (P<0.001). Late stage tumors have

shorter MTT than early stage tumors. If it is assumed that late stage tumors

have shorter MTT than early stage tumor, a one-tailed T-test can be applied

and result in signifcant difference (P<0.05, not indicated in the figure).
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Representative examples

Figure III.4 displays representative examples of T1 weighted images pre and

post contrast together with parametric maps of Ki and Vp. Hyperplastic

stage tumors are less well defined and smaller than late stage tumors.

Permeability is larger in the initial stage than in the late stage whilst blood

volume is approximately the same.

Figure III.5 shows Ct as a function of time together with the fitted perfusion

curve in the top row. The second row shows the residue function as a

function of time. Representative pixels from each of the different ROIs are

shown in the bottom row together with Ki (slope) and Vp (intercept). The

same animals were used as examples in figure III.4 and III.5.

Figure III.4: Example images and parametric maps of two animals from

hyperplastic and late stage groups, respectively. T1 weighted images are

shown pre- and post-contrast. Parametric maps of Ki and Vp  are

displayed. The scale for Ki  and Vp is 0-5 ml/100g/min and 0-40 ml/100g

respectively. ROIs indicating tumors (red and green) and muscle (blue)

are overlaid on the images.
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III.4 Discussion 

The PyMT transgenic mice is a transgenic breast cancer model that exhibits

a high frequency of pulmonary metastasis and the tumor formation in this

model has a short latency. This mouse model has been used extensively

because it shares many characteristics with human breast tumors. First,

tumors develop with high penetrance and show gradual loss of estrogen and

progesterone receptors51. Second, the multistage progression from

hyperplasia to a full-blown malignancy is represented in MMTV-PyMT

mice. 

The process of formation of new blood vessels plays a crucial role in local

Figure III.5: Perfusion, residue impulse function and Patlak plots for the

different ROIs shown in figure 1. Top row: Ct(t) as a function of time

together with fitted perfusion curve. Middle row: Residue impulse function

of time together with MTT. Bottom row: Patlak plots from a representative

pixel within each ROI together with estimated Ki and Vp. Each plot is from

the same animals as shown in figure III.4.
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tumor growth. In the PyMT model of mammary cancer the angiogenesis

precedes transformation of mammary hyperplasia to malignancy51,52. Tumor

progression is characterized by an initial ‘‘avascular phase’’ when the

tumors are small and usually lacking activity with diffusion being the major

way to support their metabolic needs. In the subsequent ‘‘vascular phase,’’

the development of a unique tumor vasculature is required for the increased

metabolic demand of tumors that have grown beyond a certain size.

The microvasculaturity has been extensively investigated in tumor whole-

mounts from the PyMT model52.  In short, the blood vessels associated with

atypical foci has larger diameters, a more irregular distribution and display

more tortuous courses. The number of vessels decreases relative to the

epithelial area during tumor development. The hyperplasia and the tumors

are not equally perfused which is supported by the presence of necrotic

areas in the early and late stages of carcinoma51,64.

In this study we have used a T1W dynamic contrast enhanced method to

measure perfusion and leakage parameters. We have shown that it is

possible to obtain quantitative permeability and plasma volume maps from

first pass dynamic MRI scans in PyMT breast tumors using two different

methods (Figures III.4&III.5). The distribution of permeability was

different for hyperplastic and late stage tumors (Figure III.1 left column).

Hyperplastic tumors show a larger heterogeneity in permeability and have a

higher median and mean permeability than the late stage tumors. This may

indicate elimination or maturation of immature vessels over time which

would also explain the reduction in plasma volume as shown in figure III.3. 

The permeability values obtained in this study are low compared to the

permeability measured in human breast tumors58,54. However, the human

studies typically use low time resolution measurements and Tofts

generalized model which fits both the early inflow and late efflux phases33.

We used a unidirectional leakage model assuming that Gd-DTPA primarily

leaks out of the vessel and does not return within the study period. Because

of the high time resolution employed this assumption should be valid,

according to Ewing et al65. Ewing found that unidirectional fitting tended to

underestimate Ki and overestimate Vp for the late/low time resolution

measurements, compared to bidirectional fitting. During the first 5-8

minutes the correlation between results obtained using uni- and

bidirectional fitting were good.

To our knowledge, this study is the first to quantify perfusion and

permeability in the PyMT tumor model. The permeability values we find
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are close to what Larsson et al66 found in human brain cancers with low

permeability using the same method. Normal brain is different from

mammary tissue because of the blood brain barrier. When the blood brain

barrier is broken down during tumorgenesis the tumor tissue resembles

body tumors such as mammary carcinomas. 

Larssons group found that Vd is expected to be larger than Vp for permeable

vessels as Vd includes the extracellular leakage space. This association was

seen for muscle in which Vd is 16 ml/100g/min and Vp is 11 ml/100g/min.

This difference is significant (P<0.001). In late tumors, the differences

between Vp and Vd are not significant which verifies the finding of low

permeability in the two tumor groups. It would be very interesting to

compare future measurements of permeability and blood volume with

histology estimates of MVD and vascular permeability to validate the

method.

The tumors are well perfused (figure III.3) and no significant differences in

BF or Vd were found between hyperplastic and late stage tumors. MTT was

lower for late stage tumors than for hyperplastic stage tumors. Maturation

of the vessel bed or elimination of immature vessels may explain the

observed reduction in MTT. 

We measured perfusion values of 86 ml/100g/min for hyperplastic stage and

82 ml/100g/min for late stage carcinomas, which is in good agreement with

the Makket et al who found a perfusion of 84ml/100g/min in human breast

cancers. We found a plasma distribution volume of  23 ml/100g in both

typers, were Makket found 32 ml/100g. MTT was measured to 40s in

hyperplastic stage and  20s in late stage tumors. Here Makket found a MTT

of 28s which is comparable to our findings in late stage tumors.

Makket also estimated permeability based on the ratio between late and

early stage plateau in the residua curve67. We have not used this method, but

very few of the residue impulse functions displayed a second plateau which

confirms the low permeability found using Patlaks method.

The angiogenesis of breast cancer has been examined with MRI in both

preclinical models and in patients. As mentioned in the introduction

perfusion MRI has been widely used to detect angiogenesis and the results

have been correlated with conventional angiogenesis markers (VEGF and

MVD). 

Galbraith et al68 used preclinical studies of the effects of Combretastatin to

select the most optimal time point to monitor treatment in patients. Other

studies showed that anti-VEGF treatment can change microvessel
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permeability as early as 90 min after first dose although anti-VEGF drugs

are thought to act over a much longer period69,54. This information was later

used to design human studies. Similarly, our results could provide a basis

for early diagnosis of cancer and distinguishing tumor stages in the clinic.

III.5 Conclusion

We show that T1 weighted dynamic contrast enhanced images can be used

to estimate perfusion and leakage parameters from a single scan. It is further

shown that early tumors are more permeable to Gd-DTPA and that the MTT

is longer in hyperplastic than late stage tumors. These results indicate that

the vessels in PyMT tumors mature over time making them less permeable

and that this decline in permeability results in a decrease in MTT. Dynamic

contrast enhanced MRI in animals holds great promise for gaining new

knowledge about the effects of anti-angiogenic drugs and to monitor the

development and maturation of angiogenic vessels during tumorgenesis.
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Manuscript IV In vivo cell labeling

IV.1 Introduction

The permeability of cell membranes may be temporarily increased by

exposing cells to pulsed high electric fields. When the trans-membrane

potential induced by the pulsed field exceeds a certain threshold, a

molecular rearrangement of the cell membrane occurs leading to the

formation of trans-membrane pores, dramatically increasing cell

permeability to ions and even macromolecules. Depending on the electric

field applied, the process may be reversible and the pores can resolve with

the permeability returning to its original value. This process, known as

electroporation, has become an established in vitro technique used to

introduce DNA or therapeutic genes into cells70. This technique has been

used in treatment of many diseases including cancer, multiple sclerosis and

inflammation following organ transplantation. It is also undergoing clinical

testing as a means of enhancing delivery of chemotherapeutic drugs71,72.

Preclinically it has been used to deliver anti-angiogenic drugs to tumors73.

Electroporation has also been used to label cells ex vivo for cell tracking

using magnetic resonance imaging74,75,76,77. The ability of electroporation to

deliver extracellular paramagnetic contrast agents intracellularly78 makes it

possible to probe the compartmentalization of MR detectable metabolites.

This is possible due to the relaxation effects of a paramagnetic gadolinium

containing chelate on the metabolite protons. Unlike water molecules,
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which are in fast exchange across the cell membrane, metabolites will

undergo relaxation enhancement only if the contrast agent and metabolite

are within the same (sub)cellular compartment. Consequently, since

electroporation will deliver the contrast agent into the cytoplasm, and in the

absence of extracellular contrast agent, metabolite relaxation will only

occur if the metabolite is also within the cytoplasm. 

In vivo, the aplication of a pulsed electric field produces unwanted effects

on the electroporated tissue. Several studies have adressed the toxicity of

electroporation on muscle tissue79,80,81 using magnetic resonance imaging

(MRI) methods. Consequently, in this study we have also investigated the

effects of electroporation on MR spectroscopic detectable metabolites in the

absence of contrast agent. Furthermore, we have investigated

electroporation-induced intracellular delivery of clinically used MR contrast

agents using MRI and MRS, exploring the effects of intracellular contrast

Figure IV.1: Chemical structures, in charged form, of the metabolites: (a)

choline (b) creatine (c) N-acetyl aspartate and contrast agents: (d) Gd-

DTPA (Magnevist) and (e) Gd-BT-DO3A (Gadovist). Note that choline

possesses an overall positive charge whilst zwitterionic creatine has both

positive and negative charges and N-acetyl aspartate has two negatively

charged carboxylate groups. Gd-DTPA is negatively charged whilst Gd-BT-

DO3A is a neutral molecule.
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agent on MR relaxation of metabolites. Using in vitro relaxivity

measurements on the three most commonly detected metabolites: choline,

creatine, N-acetylaspartate together with water, the intracellular

concentrations of the clinically used contrast agents: Magnevist (Gd-DTPA)

and Gadovist (Gd-BT-DO3A) (figure IV.1) may be approximated and a

measure of the in vivo half lives of the contrast agents obtained. In

summary, this study aims to investigate the effects of intracellularly trapped

contrast agent on MR detectable metabolites, probing their intracellular

compartmentalization. In addition, the concentration and half life of

intracellular contrast agent trapped in muscle has been estimated and the in

vivo effects of electroporation on rat muscle have been investigated using
1H MRS.

IV.2 Materials and Methods

IV.2.1 Electroporation

Male Sprague Dawley rats (Taconic, Lille Skensved, Denmark) (weight

355+/-52g) were anastesized using a mixture of Hypnorm (VetaPharma Ltd,

Leeds, UK), Dormicum (Midazolam (5 mg/ml), Hameln pharmaceuticals,

Hameln, Germany) and Atropin (Hospital pharmacies of Denmark,

Copenhagen, Denmark). The hind leg was fixated and a tail vein catheter

was inserted. 

The animals were electroporated five minutes after intra venous injection of

contrast agent or saline as follows. A home built array of two rows of four

needles (27G) were inserted into the rat hind leg. The needles were

separated by 2 mm and the rows by 9 mm. The needle arrays were

positioned approximately perpendicular to the long axis of the muscle

fibres. 8 pulses of 800 V/cm were applied for 100 µs at 1Hz using a Cyto

Pulse PA-4000 Electroporation device (Cyto Pulse Sciences, Glen Burnie,

MD, USA). These parameters have previously been shown by Gehl et al82 to

provide optimum intracellular delivery of a metal chelate into muscle tissue.

Two separate experiments were performed. In a pilot experiment, four rats

were administered, via the cannulated tail vein, 1 ml of Magnevist (0.5M

Gd-DTPA, Bayer/Schering, Denmark) 5 minutes prior to electroporation.

Following the pilot experiment, a more concentrated contrast agent

(Gadovist, 1M Gd-BT-DO3A, Schering, Berlin, Germany) was used
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instead. In the main experiment each animal was injected with either: 1 ml

of isotonic saline (N=5), 1 ml of Gadovist (N=3) or 1 ml of Gadovist which

was diluted 1 to 1 in isotonic saline (N=6) prior to electroporation. The

diluted (0.5M) Gadovist was used to compare directly with (0.5M)

Magnevist.

IV.2.2 Magnetic Resonance Imaging and Spectroscopy

All measurements were obtained using a home built volume transmit coil

with an inner diameter of 8.5 cm in combination with a 2.5 cm diameter

surface receive coil in an experimental 4.7T Varian Inova system suitable

for imaging small animals. The electroporated leg was stretched and fixated

inside the coil so that the muscle fibers in the leg were aligned

approximately parallel to the field. 

The animals which were injected with Magnevist (pilot experiment) were

scanned 1 day and 1 week after electroporation. The rest of the animals

(main) were scanned five times from 1-2 days up to 1 month post-

electroporation. Two animals were also scanned two months after

electroporation. Seven control (non-electroporated) animals were scanned

as controls.

The area of electroporation was identified using a T1W spin echo sequence

(TR/TE 360/14 ms, 20 coronal 1 mm slices, FOV 45x45 mm, Matrix

128x128) and a 4x4x4 mm voxel was positioned in the electroporated area

(see figure IV.2). 

An inversion recovery PRESS sequence was used which included the

following RF pulses. A 400µs hard inversion pulse and 90 and 180 degree

sinc pulses of 1000 and 1700µs respectively. CHESS water suppression

with 15ms gauss pulses was used. TE/TE2 was 10/7 ms.

Water T1 values were obtained using the following parameters: TR = 10 s, 3

averages, 25 inversion times ranging from 100 ms to 5000 ms. Furthermore

water M0 was estimated in a scan with no inversion and 3 averages.

Metabolite T1s were measured using CHESS water suppression and the

following parameters: TR= 6 s, 100 averages, 5 inversion times 150, 300,

450, 800 and 1400 ms. Furthermore metabolite M0 was estimated in a scan

with no inversion a TR of 10 s and 100 averages.
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IV.2.3 Relaxivity measurements

The relaxivity of Magnevist and Gadovist for each of the three most

commonly observed in vivo metabolites: Cho, Cre and NAA were measured

in phantoms containing 25 mM of each metabolite. Two samples were

prepared, for each contrast agent, one without bovine serum albumin (BSA)

and one with 5% BSA. The BSA was used to estimate the influence of

protein binding on relaxivity values and potentially obtain a relaxivity value

that is more likely to resemble that observed in vivo. Each sample was

mixed with varying concentrations of contrast agent (50, 25, 12.5, 6.25,

3.13, 1.56 and 0 µM). 

T1 relaxation times of each sample were measured with (30 averages) and

without water suppression (10 averages) using the same inversion recovery

PRESS sequence as used in vivo with the following parameters.

TR/TE/TE2=7000/55/15 ms, TI=120,350,1400, 2400,5500 ms, voxel size

4x4x4 mm.

IV.2.4 Processing

In vivo T1 measurements

All spectra were manually annotated. The following metabolites were

visible: cho, total creatine (phosphocreatine and creatine), Intramuscular

lipid (methylene) CH2 and (methyl) CH3 groups. In some spectra not all

metabolites were visible (due to experimental differences in shim and SNR)

and were consequently not annotated. Due to the sensitivity of the MR

system, cho was only visible in two control animals.

T1 fitting was performed using a non-linear least squares fitting algorithm22,

which was implemented in MatLab (The Mathworks, Inc). The normal

inversion recovery signal equation was modified. Firstly, the effect of non-

ideal inversion was included (X). In addition, the difference in

magnetisation immediately before inversion, due to varying TI without

changing TR, was taken into account (M(0)). The resulting signal equation

is shown in equations 1+2.
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M(0) is the magnetization immediately after the inversion and X is the

inversion efficacy. Typical values lie between -0.7 and -0.9. T1, M0, and X

were fitted while the other parameters where known.

Significance between groups was tested using the non parametric wilcoxon

rank sum test. Each observation was compared to the saline electroporated

groups at the same time point and control animals. A P value of 0.05 or less

was considered significant.

In vivo concentration measurements

Metabolite concentrations were estimated by dividing the height of each

metabolite in the M0 measurement with the height of the unsuppressed

water signal.

In vivo contrast agent concentrations

Contrast agent concentrations over time were estimated from the measured

T1 values of water, choline and creatine over time. The concentration of

contrast agent was calculated using equation 3 where T1E is the T1 measured

in the electroporated animals, T1C is T1 measured in control animals and the

relaxivity is the T1 relaxivity measured in phantoms with BSA.

                      

[CA ]=
 1

T
1E

−
1

T
1C


Relaxivity

(3)

Relaxivity measurements

The peakhight of each metabolite, in each sample at each TI, was measured

using an automatic peak detection method written in MaLab. T1 was fitted

using the same method as for the in vivo measurements, however the

inversion efficiacy (X) was assumed to be equal for all metabolites. The

relaxivity for each contrast agent was calculated by fitting a straight line to

contrast agent concentration vs 1/T1. The error of the fit for the T1 fitting

was included as a parameter to the linear fit so that values with high error of

fit are given less significance in determining the slope of the line.
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Significant differences in relaxivity were tested using a students T-test. 

IV.3 Results

IV.3.1 Relaxivity measurements

The relaxation efficience of  Gadovist and Magnevist for each metabolite

was studied in phantoms with and without BSA. The results are shown in

table 1. 

Longitudinal relaxivity values (s-1mM-1)

Phantoms
H2O Creatine

 (-CH2)

Choline

 (-CH3)

Creatine

  (-CH3)

NAA

 (-CH3)

Gadovist 5.4 (0.4) 8.2 (0.5) ** 2.4 (0.1) ** 4.1 (0.2) ** 3.7 (0.3) **

Gadovist

BSA
5.6 (0.1) 8.2 (0.6) ** 2.3 (0.2) ** 3.7 (0.3) ** 3.5 (0.3) **

Magnevist 4.4 (0.3) 5.5 (0.5) *  8.6 (0.2) ** ! 3.9 (0.2) 1.7 (0.3) **

Magnevist

BSA
3.8 (0.3) 4.1 (0.9)     7.8 (0.3) ** ! 3.3 (0.4) 1.0 (0.7) **

Table 1: Metabolite relaxivities for Gadovist and Magnevist with and

without BSA.* Denotes statistically different from relaxivity of water

(P<0.05). ** P<0.005).! Denotes that these values are statistically different

(P<0.05). For P<0.07 all Magnevist metabolites are significantly different

between BSA and non-BSA.

The relaxivities range from 1.0 to 8.2. Most of the metabolite relaxivity

values are statistically different from the water relaxivity values. For

Gadovist, relaxivity values are not significantly affected by the presence of

BSA. Whilst there is a tendency that BSA affects all Magnevist relaxivities

(P<0.07), only the choline difference is statistically significant (P<0.05).
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IV.3.2 Imaging

Figure IV.2 shows representative images from individual animals following

each treatment at different time points after electroporation. The blue square

indicates the location of the spectroscopy voxel. Bright pixels are visible in

the saline image after 1-2 days but the rest of the saline images show no

enhancement. In the 1-2 day images there are small “holes” in the bright

area corresponding to the needle tracks. All electroporated animals show an

increase in signal intensity corresponding to the electroporation site. Visual

inspection of the images revealed that the electroporated area in the

Gadovist animals appeared both brighter and larger than in the Magnevist

electroporated animals. It is also apparent that the effect of the entrapped

contrast agent is visible up to 2 months after electroporation.

Figure IV.2: Representative T1 weighted images acquired at different time

points after electroporation. For each treatment, images are shown from a

single animal. The blue square indicates the location of the spectroscopy

voxel
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IV.3.3 Spectroscopy

T1 values

T1 value as a function of time is shown in figure IV.3. In Cho, tCr and H2O

electroporation with a contrast agent lowers T1 compared to control and

saline.  In the IMCL (intramyocellular lipids) plots T1 is approximately the

same as in the controls. 

For Cho, all points (5/5) of the 0.5 Gadovist  and most (4/6) of the Gadovist

values are significantly lower than the saline values and gradually increases

towards the control value. For Magnevist the values are significantly

different than saline and the first T1 value is higher than the values for

Gadovist. 

For tCr (total Creatine = phosphocreatine & creatine) all values of 0.5

Gadovist and most values for Gadovist are significantly different from the

control and saline electroporated groups. There is an increase of T1 over

time but the increase rate seems to slow over time. For Magnevist the first

point is significantly lower than both control and saline and the second

point significantly lower than saline. The T1 value for the Magnevist treated

animals is higher than for the Gadovist treated animals.

In IMCL-CH2 and CH3 T1 is indepent of treatment and time. However a few

points are significantly different from the saline treated group.

For H2O the picture is more mixed. T1 decreases over time for the first two

weeks (except for Gadovist where it increases). The first two values of

saline are significantly increased compared to the non electroporated control

group, whereafter the T1 of the saline group normalizes. All 0.5 Gadovist

values are significantly lower than both saline and control. Most values of

Gadovist are significantly lower than the saline and control group. For

Magnevist the T1 value after a week is significantly lower than both saline

and control but higher than the Gadovist treated animals.
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Figure IV.3: T1 values measured for choline, creatine, IMCL-CH2, IMCL-

CH3 and H2O as a function of time after electroporation. Bars are SEM.

The solid black line indicates the mean of the control value (values

obtained from untreated animals) while the dashed lines indicate +/- 1

SEM. Points shown as empty circles indicate that the value is significantly

different from the mean saline value at the same time point. A *  indicates

that the value is significantly different from the control value.
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Metabolite concentrations

The concentration of the different metabolites over time were estimated by

dividing the metabolite peak heights by the water peak heights (figure IV.4).

In all electroporated animals, Cho and Cre concentrations were found to be

significantly lower than control animals. Choline is significantly reduced

compared to the saline electroporated animals in both Gadovist groups 14

and 21 days after electroporation. For creatine, all the electroporated

animals have lower ratios than normal untreated controls. For 0.5 Gadovist

and saline the difference is significant after 2 days. Both Gadovist values

are significantly higher in ratio than for the saline electroporated group. The

recovery of the creatine is equal for all animals. 

For IMCL-CH2 and  IMCL-CH3 the standard deviations are quite large.

Only a 1  points is significantly different from saline controls. Only

Gadovist after one week is significantly different from the control values.

Although there are few significant differences, there is a tendency that the

Gadovist electroporated animals have a higher ratio after one week than the

others. 

Contast agent concentrations

The concentration of contrast agent vs. time was estimated using the water,

choline and creatine T1 measurements and plotted as a function of time

(figure IV.6). The half life was fitted assuming monoexponential decay and

the results of this fit is shown in table 2. The decay of contrast agent is very

similar for Gadovist and 0.5 Gadovist. Although the initial slope and

concentration is different depending on the which metabolite is used to

estimate contrast agent concentration. Both the Gadovist and 0.5 Gadovist

electroporated group seem to reach a plateau concentration of

approximately 200 µM.

The Magnevist injected animals show a concentration below 200 µM for

both time points irrespective of the way the concentration is estimated. 

Halflife of ontrast agent (days)

 Metabolite Gadovist Gadovist 0.5

Water 13.0 45.4

Cho 1.3 2.2

Creatine 6.3 2.5

Table 2: Half life estimated using the metabolites for Gadovist and Gadovist 0.5
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Figure IV.4: Metabolite concentration estimates: Concentrations

were estimated by dividing the peak height of the metabolites (from

M0 measurements) divided by peak height of water (from M0

measurements). Points shown as empty circles indicate significant

differences from the saline value at the same point. * indicates

significant difference from the control values.
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As shown in table 2 and as expected from figure IV.5, the measured halflife

varies from 1.3 to 45.4 days depending on which metabolite is used to

estimate half life. in vivo half-life was not estimated for Magnevist as only

two time points were acquired in the pilot experiment.

Figure IV.5: Concentration of contrast agent as a function of time

calculated using T1 values of water, cho and creatine. 
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Validation of contrast agent concentrations

In order to validate the calculated contrast agent concentrations correlation

plots were made between Cho and water and tCr and water. As shown in

figure IV.6 there is good correlation between the values calculated based on

Cho and tCr. Furthermore it was shown that the contrast agent concentration

values estimated using the metabolites was 1.6 times the contrast agent

concentrations estimated using water.

Figure IV.6: Correlation between contrast agent concentration estimated by

water signal and concentrations estimated by Cho and tCr measurements

respectively. Both fitted slopes were 1.61 and both correlation coefficients

0.89. The standard error of the fit was 0.21 and 0.07 for Cho and tCr

respectively.
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IV.4 Discussion

IV.4.1 Relaxivities

Relaxivities of creatine, choline and NAA were measured in phantoms with

25 mM of each metabolite and varying amounts of Magnevist or Gadovist.

As shown in table 1 all metabolites have significantly different relaxivities

than those obtained for water. The results obtained for Gadovist are in

accord with those obtained previously for another non-ionic contrast agent

(Omniscan) at 1.5T83. Relaxivities of 2.6, 3.8 and 3.2 s-1mM-1 for choline,

creatine and NAA respectively were reported while the results for Gadovist

without BSA in this study are similar with values of  2.4, 4.1 and 3.7 s-1mM-

1  respectively. In this case of the ionic contrast agent Magnevist, the same

previous study found relaxivities of 6.6, 3.8 and 1.7 s-1mM-1 for choline,

creatine and NAA whilst this study found 8.6, 3.9 and 1.7 s-1mM-1 for

Magnevist without BSA.

The effect of non-specific protein binding on the metabolite relaxivities was

assessed using BSA. For Gadovist, a macrocyclic and non-ionic contrast

agent (IV.1), the presence of BSA had no significant effect on the measured

relaxivities. Magnevist, an ionic contrast agent possesses a double negative

charge that will tend to specifically enhance relaxation of positively charged

metabolites. Choline possesses a positive charge and hence exhibits the

highest (-CH3) relaxivity values. In the BSA samples all metabolites can

potentially bind non-specifically to the protein limiting relaxation.

However, increased correlation times due to binding will decrease

relaxation times hence the observed effects reflect the two competing

factors. Consequently, the relaxivities measured in the presence of  BSA

were used for the calculation of intracellular contrast agent concentrations

since non specific binding of the contrast agent inside the cell would be

expected.

IV.4.2 T1 weighted images and T1 values

The T1 of Cho, tCr and Water was reduced in all animals which were

electroporated with contrast agent (figure IV.4). This effect lasted up to 2

months and was clearly visible in the T1w images (figure IV.2) and T1 vs

time plots (figure IV.4). This is in good agreement with previous findings81.
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For Cho 4/6 of the Gadovist and all 0.5 Gadovist values were significantly

lower than saline. For tCr and Water most of the values were significantly

different than both control (16/22) and saline values (19/22). For Cho,

however, none of the Gadovist electroporated values are significantly

different from the control values. This may be due to the sensitivity of the

MR experiment since Cho was only visible in two of the control animals,

hence the mean and standard error of the mean of the control is poorly

defined. For Magnevist the effect on T1 was lower than for both Gadovist

and 0.5 Gadovist which is reflected in the estimates of contrast agent

concentration shown in figure IV.5, suggesting that the negative charge on

the chelate may influence cellular entrapment.

For the two lipid resonances (IMCL-CH2 and CH3), there is no effect of

contrast agent and T1 varies little with time. Although two values are

significantly higher than the saline values, none are significantly different

from the control values. This observation is attributed to the hydrophilic

nature of the chelates and the minimal interaction of the contrast agent with

the lipid

The animals which were electroporated with saline also appear bright on the

T1 weighted images (figure IV.2) while they show an increased T1 on the T1

measurements (figure IV.4). The sequence used is not solely dependent on

T1 but is also sensitive to changes in T2. Increased T2 values due to edema

therefore contribute to the slight increase in signal intensity following

electroporation. Edema resolves after approximately 2 weeks at which time

the muscle signal intensity also appears to normalize. A similar pattern is

visible in the Gadovist and Magnevist groups in which the T1 of water is

slightly higher after 2 days than after a week and then steadily increases

towards the value measured in normal controls.

The electroporation process delivers the contrast agent into the

cytoplasm78 and remains trapped in the muscle tissue over a long period of

time. The effects of the trapped gadolinium chelate on metabolite relaxation

over this period strongly suggests that a signficant fraction of the observed

metabolites also reside in the cytoplasm. Consequently, this study

demonstrates the ability of extracellular contrast agents to probe the

intracellular compartmentalization of MR detectable metabolites when

delivered intracellularly using electroporation. 
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IV.4.3 Metabolite concentrations

The estimated metabolite concentrations were calculated as the ratio of

peakhights from the uninverted water suppressed spectrum and the non

water suppressed spectrum using the same sequence parameters. The

calculations do not take the T1 shortening effect of the contrast agent in to

account. However given the long TR of the M0 measurements (10s) the

effect of a reduced T1 is minimal (for a T1 of 2s which is the longest T1

measured the signal is 99.9% of M0).  

The estimated concentration of each metabolite as a function of time after

electroporation is shown in figure IV.5. The electroporated animals all show

less cho and tCr than the non electroporated controls. In 3 cases this

difference is significant. For choline, the metabolite is not readily detected

in the non-electroporated control animals using the experimental setup

described here. Consequently, the levels of choline appear to reflect the

effects of the electroporation and may, therefore, indicate tissue damage.

The cho values have much higher SEMs than the rest of the metabolites due

to lower signal to noise. For tCr there is a clear trend. tCr is reduced to

approximately 4 % of the water peak and over time this increases to around

7.5 % of water which is within the mean + SEM of the normal controls. For

the observed lipid resonances (IMCL-CH2 and CH3), there is little

difference over time for saline. However both Gadovist groups have a

“spike” one week after electroporation. For the Gadovist group this increase

is significantly different from the normal controls. This apparent increase in

IMCL might be caused by effects similar to what is seen with strenous

exercise84. With strenous exercise it has been shown that IMCL decreases

and after a couple of days increases above normal levels due to

replinishment. owever, as the effect is not seen in the saline electroporated

animals the cause might be some kind of interaction with Gadovist and may

indicate toxicity. The levels of IMCL normalize after approximately three

weeks, which fits well with the findings for water T1 in the saline

electroporated group and so may reflect resolution of the electroporation-

induced edema. Some effects of EMCL contamination cannot be excluded

but care was taken to position the voxel in the muscle away from fascias

and subcutaneous fat. A study by Boesch et.al84 has shown that the

contamination from EMCL is around 0.1% if the voxel is postitioned with

care. Furthermore the same study showed that muscle fibers aligned in
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parralel with the magnetic field gives good seperation of EMCL and IMCL.

In the present work, the muscle fibers were aligned approximately in

parallel with the field so even if EMCL contamination was present it should

interfere minimally with the IMCL estimates

IV.4.4 Contrast agent concentration

The concentration of contrast agent as a function of time was estimated

using the T1 relaxation times of water and the two metabolites, choline and

tCr together with their in vitro relaxivity measurements. 

The results based on each metabolite vary significantly, especially in the

early time points. Part of this can be explained by the edema which also

affects the water T1. After 30 days all the methods agree that the Magnevist

concentration is approximately 0.2 mM which is in good agreement with

the findings of Leroy-Willing et al81 who found approximately 0.2 mM

trapped in rat muscle 26 days after electroporation with Gd-DOTA.

However the initial concentration of contrast agent is much higher than

what Leroy-Willing reported which is most likely caused by the differences

in delivery. Leroy-Willing uses direct muscular injection of contrast agent

which is diluted in saline while intravascular injection of a highly

concentrated contrast agent is used in this paper. 

The intracellular concentration of Magnevist (<100µM) was significantly

lower than the concentrations obtained with Gadovist (up to approximately

1mM, stablizing at approximately 200µM after 1 month). As suggested

above, this may be caused by the negative charge of Magnevist but may

also be due to linear, less stable structure of Magnevist compared with the

cyclic structure of Gadovist and their relative abilities to bind the

paramagnetic gadolinium cation. Release of gadolinium would result in

increased toxicity, potentially reducing the concentration of the

paramagnetic agent. The detection limit of Gd-DTPA is approximately

50µM at 1.5T85, and it may be lower at higher fieldstrength. Hence, this

method feasible for in vivo cell labeling studies e.g. cancer metastasis or

cell migration.

The half life of the trapped conrast agents are difficult to obtain as it seems

the concentration of contrast agent decreases in a mono-exponentially,

reaching a plateau of about 0.2 mM in which value it seems to stabilize.
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However compared to the half lives of free gadolinium found previously

(18.2h86  and 60 minutes87) the half life of the entrapped gadolinium found

in this study is much longer as clearly demonstrated by significantly

reduced T1 values visible two months after electroporation. This suggest

that the gadolinium cation remains chelated over this period. This

conclusion is also supported by the correlation between the contrast agent

concentrations estimated using water, choline and creatine. If, for example,

free gadolinium was released and was responsible for the observed

metabolite relaxation, different metabolite relaxivities may be expected due

to the postive charge of the gadolinium and consequently would not provide

the same correlations.

The concentration of contrast agent estimated using Cho and tCr relaxation

was found to be in close agreement and 1.6 times greater than that found

using water relaxation. Since water is in fast exchange across cell

membranes, intracellular gadolinium may relax extracellular water.

Consequently, this difference may reflect the interstitial volume and, using

appropriate models, may even allow for estimates of the relative ratio of

intracellular and extracellular volume to be obtained

IV.5 Conclusion

We have shown that the contrast agents; Gd-DTPA and Gd-BT-DO3A can

be internalized using electroporation. Once the contrast agent is trapped

inside muscle cells it may remain there for over 2 months (figure IV.2). This

suggest that the method may be usefull for in vivo cell labeling studies of

e.g. cancer metastasis or cell migration.

Two different contrast agents have been studied. Electroporation following

adiministration of Gadovist yielded intracellular contrast agent

concentrations which were substantially larger than electroporation

following Magnevist.

Cho and tCr concentrations are reduced as a consequence of

electroporation. For tCr the concentration normalizes within 3 weeks. For

IMCL we have shown a slight increase in the animals electroporated with

Gadovist which was not seen in the saline electroporated group that may

reflect contrast agent toxicity.

It has further been shown that Gd-DTPA and Gd-BT-DO3A can be used to
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probe intracellular compartmentalization in vivo. The T1 s of creatine and

TMA were decreased following electroporation when compared to the

control and saline electroporated animals (figure IV.4). This is attributed to

the contrast agent and metabolite residing in the same compartment as these

metabolites.
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