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Abstract

The present thesis is concerned with optimization of the closed loop performance
of controlled industrial processes. This is achieved through iterative schemes where
input/output data is collected from the process during closed loop operation. A pre-
sentation of methods for achieving this iterative performance enhancement is given
with a clear distinction between model based and data driven approaches. Special
attention has been given to simple data driven strategies and the Iterative Feedback
Tuning method in particular where a detailed study of methodological developments
and tuning properties are given. Based on this analysis new developments for the
Iterative Feedback Tuning method has been proposed.

In order to extend the application of this data driven tuning approach, the potential
of Iterative Feedback Tuning has been analyzed and tested for control structures
where this tuning method were novel. Results has been presented which show that
the method is applicable for the nonlinear inventory control law and for a state
space control system with state observes. For inventory control the proposal of
applying a novel tuning method for the free parameters in the control law was
interesting since classical tuning rules do not generally apply. The potential of
the method was successfully illustrated by tuning step responses on a multivariable
implementation of level control for a pilot scale four tank system. For the state space
system analytical solutions to the feedback and the observer gain exist based on a
plant model estimate. Tuning may therefore be relevant in case a mismatch exists
between the true system and the model estimate used in the control design. The
application of data driven tuning is interesting since most data driven approaches
are focused on systems described by transfer functions. It is shown that the Iterative
Feedback Tuning can be applied for tuning, and that the gains converge to the known
analytical solutions.

A general disadvantage in using the Iterative Feedback Tuning method is that a
large number of plant experiments may be required, hence the rate of convergence is
an important issue. Slow convergence rate is often seen when tuning for disturbance
rejection due to insufficient excitation of the system. It is proposed to improve
the rate of convergence by utilizing external perturbation signals during the data
acquisition. External perturbations will affect the operating condition and hence
the performance cost function. The main idea is to shape the curvature of the cost
function, rendering it less sensitive to noise, without introducing too much bias with
respect to the optimum of the unperturbed problem. An algorithm which balance
this in an optimal sense has been proposed and given the name Perturbed Iterative
Feedback Tuning. It is further shown that for minimum variance control an optimal
perturbation signal design exists which does not bias the optimization.
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Resumé

Denne afhandling omhandler optimering af lukket sløjfe opførselen af regulerede
industrielle processer. Denne optimering opn̊as gennem en iterativ metode, hvor
processens input og udgang m̊ales under feedbackregulering. Der er givet en præsen-
tation af metoder til optimering ved iterative algoritmer, hvor disse er klassificeret
i modelbaserede og datadrevene strategier. I særdeleshed er ”Iterative Feedback
Tuning” blevet behandlet, og et detaljeret studie af denne algoritmes udvikling og
potentiale er givet. Baseret p̊a denne analyse er ny forskningsresultater udviklet
der bygger p̊a ”Iterative Feedback Tuning” algoritmen.

For at udvide anvendelsesomr̊adet for den datadreven tunings algoritme er poten-
tialet for Iterative Feedback Tuning blevet analyseret og testet, for reguleringsstruk-
turer hvor dennes anvendelse er ny. Resultater er blevet præsenteret, der viser
at algoritmen kan anvendes p̊a b̊ade den ulineare ”inventory control” regulerings-
strategi og for reguleringssløjfer baseret p̊a en tilstandsbeskrivelse med ufuldstændig
tilstandsinformation, dvs. at estimation af tilstandene er en del af regulatoren.
Specielt for ”inventory control” har denne nye anvendelse til tuning af de frie para-
meter i regulatoren et potentiale, siden klassiske metoder ikke er generelt anvendelige
for denne ulineære strategi. Tuningsmetoden er vist at kunne fungere og er eksem-
plificeret ved tuning af en multivariable niveauregulerings sløjfe p̊a et pilotskala
anlæg af et firetank system. For reguleringssløjfer p̊a tilstandsform findes ana-
lytiske løsninger for de optimale værdier af forstærkningen i tilbagekoblingen og for
tilstands estimationen. Datadreven tuning kan derfor have et potentiale n̊ar, der er
uoverensstemmelse mellem det sande system og den estimerede model der anvendes
til beregning af regulatoren. Datadreven tuning er ogs̊a interessant for dette system,
siden de fleste datadrevne metoder er udviklet til systemer p̊a overføringsfunktions
form. Det er vist, at ”Iterativ Feedback Tuning” kan anvendes til tuning af sys-
temer p̊a tilstands form, og at forstærkningerne for tilbagekoblingen og tilstands
estimatoren konvergerer til de velkendte analytiske løsninger.

En general ulempe ved anvendelse af ”Iterative Feedback Tuning” er, at et større
antal eksperimenter p̊a anlægget er nødvendige og derfor bliver hastigheden hvormed
metoden konvergere væsentlig. En langsom konvergenshastighed opleves ofte n̊ar
reguleringssløjfen tunes til afvisning af forstyrrelser pga. mangelfuld ekscitation af
systemet. Det er forsl̊aet at forbedre konvergenshastigheden ved, at benytte eks-
terne perturbationssignaler. Ekstern perturbation har en effekt p̊a operationen af
reguleringssløjfen og p̊avirker systemets kostfunktion. Den overordnede ide er, at
forme krumningen af kostfunktionen s̊aledes, at den bliver mindre følsom overfor
stokastisk støj uden at ændre optimum for meget i forhold til det uperturberede
problem, dvs. bias. En algoritme der balancere dette p̊a en optimal vis er forsl̊aet
og navngivet ”Perturbed Iterative Feedback Tuning”. Det er yderligger vist, at for
minimalvarians regulering findes der et optimalt design for perturbationssignalet,
der ikke introducerer bias i optimeringsproblemet.
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1

Introduction

The increasing competition on the global market has rendered optimizing process
operation a necessity for new as well as existing production in the chemical industry.
Optimized process operation means that the process is operated with higher yield,
consumes less resources and is safe for both the environment and the personnel ope-
rating the plant. In practice a higher yield is often achieved by operating close to
inherent process limitations where advanced control strategies and/or a very tight
tuning is required. In many continuous processes the main control problem is that
of disturbance rejection. Advanced control strategies are based on dynamic models
for the specific process. These models play an important role in optimization of the
performance of the production unit. In particular implementation of model predic-
tive controllers (MPC) in recent years, have contributed to increased competition
capabilities of the product supply chain in petrochemical and chemical industries.
Identification of dynamic models plays a major role in an MPC application and it
is estimated that more than 80 % of the time during an advanced control imple-
mentation is spent on modelling (Andersen et al., 1991; Jørgensen and Lee, 2002).
Control oriented process modelling is part of the frame work on application oriented
modelling. System identification is an area that has received much attention in the
last twenty years but especially within identification for control there is still room
for improvement in development of systematic methods. Identification for control
implies experiments where the collected data for identification are retrieved from a
process operated under control i.e. in closed loop.

Traditionally process system identification has mostly been carried out in open
loop. When using open loop estimation on processes with stabilizing single loop
controllers, these will be considered as part of the plant, and cannot be tuned sub-
sequently. In open loop operation the plant variations have to be monitored by the
operators and controlled manually. In system identification for control it is advan-
tageous to conduct the experiments in closed loop, and use an estimation method
that estimates the parameters in the plant and the noise model within the loop
from the input/output data. Besides obtaining a distinction between the plant and
the controller in the loop, the plant variations are under control during the experi-
ments. This situation may be demanded due to safety or quality concerns, or simply
because the model for an operating point close to an unstable region has to been
determined. Closed loop experiments are further motivated by the work of Schrama
(1992b) and Hjalmarsson et al. (1994a) who have shown that more accurate con-
trollers are achieved, when the control design criterion is the performance of the
closed loop system. System identification for control aims at identifying a model
for a continuous process or a local model set for a batch process, which yields sa-
tisfactory performance of the closed loop system given a desired operation point or

1



Chapter 1. Introduction

trajectory.
The benefits and challenges in closed loop identification have been motivated seve-

ral times in the literature. The key point is, that it is the performance of the closed
loop that is object for the performance optimization (Hjalmarsson et al., 1994a;
Schrama, 1992b). Since then several research groups have worked on development
of suitable systematic methods for handling an iterative procedure of closed loop
experiments, model parameter estimation and enhanced control design (Åström and
Nilsson, 1994; Van den Hof and Schrama, 1995; Gevers, 1996; Jørgensen and Lee,
2002; Gevers, 2002; Hjalmarsson, 2005).

In process control the typical control problems differ substantially at the different
layers of the control hierarcy. At the sigle loop layer conventional Proportional,
Integral and Differential controllers (PID) are typically - still - applied. Fairly re-
cently alternative control strategies have been introduced also at the single loop
layer. These include Inventory control (Farschman et al., 1998) and MPC (Laachi
and Rawlings, 2005). Both these strategies can also be extended to the multivariable
case.

The many algorithms which have been proposed for optimizing the performance
of the control loop fall into two categories. The first category estimates a model of
the process from plant data, and uses this model in the control design assuming the
certainty equivalence principle. Hence these algorithms will be referred to as indi-
rect methods. The second category consists of the direct methods which optimize
the loop performance by applying the data directly, without calculating a model
estimate. The indirect methods are dominating since it is usually preferred to apply
a model based control design as e.g. MPC. Having an estimate of the process model
and the model uncertainty, also supplies the user with the possibility of verifying
nominal and robust stability prior to implantation (Skogestad and Postlethwaite,
1996). A drawback of the indirect methods is, that an accurate model estimate is
required in order to archive the designed performance. If the model estimate is inac-
curate, the certainty equivalence principle constitutes too crude an assumption. A
direct method is usually applied on linear, single input/single output control struc-
tures with restricted complexity such as PID controllers. The strength is that it can
be applied when no process model information is available, and usually the compu-
tations are less complex which is an advantage for achieving widespread industrial
use.

1.1 Model Based Control

All model based control designs aim at achieving some desired behavior or perfor-
mance of the loop. Early developments in this area were based on first order, step or
frequency response models which were used to select PI or PID control parameters
(Ziegler and Nichols, 1942; Cohen and Coon, 1953). Assuming the plant model to
be known, the closed loop behavior can be designed by selecting the parameters in
the controller using the certainty equivalence principle. One criteria which is of-
ten used in simple control design is to shape the closed loop transfer function. For
single input/single output systems, analytical tuning methods such as Direct Syn-
thesis and Internal Model Control can be used to derive a transfer function for the

2



1.1. Model Based Control

controller (Åström and Hägglund, 1995; Garcia and Morari, 1982). These methods
give the desired structure and dynamics of the resulting loop transfer function. This
type of design criteria is also known as pole placement. For a large number of sim-
ple standard models, both Direct Synthesis and Internal Model Control, produce a
controller transfer function which corresponds to a classical PID controller (Rivera
et al., 1986; Chien and Fruehauf, 1990; Chen and Seborg, 2002; Skogestad, 2003).
For multivariable systems this procedure is more complex since each input/output
relation corresponds to one controller in a controller matrix. Each controller will
have to be designed individually.

Another approach based on optimal control is to minimize a performance cost
function. A performance cost function includes the signals from the process, e.g.
the input and output, to calculate an index for the loop performance level. The
control design and parameterization which produce the lowest possible value of the
performance cost, is referred to as an optimal control design (Anderson and Moore,
1989). Often a performance cost function is expressed as a weighed sum of the
squared signal values. Let the loop consist of the system with a process model G, a
noise model H and the controller C. A general quadratic cost function with penalty
on the output and the control can be written as:

F (G,H,C) =
1

2N

N∑

t=1

y2
t + λu2

t (1.1)

where λ determines the weight between the penalty on the output and the control
effort, and N is the number of discrete data points. Given a fixed parameterization
of the controller, the optimal set of parameters can be evaluated by a standard
minimization algorithm. One advantage is that this criterion is applicable also in
multivariable systems. The cost function will in the multivariable case be formulated
on matrix form

F (G,H ,C) =
1

2N

N∑

t=1

yT
t Qyt + uT

t Rut =
1

2N

N∑

t=1

‖yt‖2
Q + ‖ut‖2

R (1.2)

where Q and R are weighting matrices. The cost function in (1.2) would be the
multivariable equivalent of (1.1) if Q = I and R = λI. The design choice for this
class of optimal controllers is to select a proper structure of the performance cost
function and the values in the weight matrices. Different versions of the performance
cost function can be formulated which insures good tracking properties, penalty on
the control move etc. (Anderson and Moore, 1989)

Optimal controllers based on a performance cost function may be grouped into dif-
ferent classes. In case the cost function only penaltilize the output or the tracking
error, the optimal controller is termed a minimum variance controller (MV) (Åström,
1970; Kučera, 1991). If the controller is designed to give optimal tracking with re-
spect to a reference model it is referred to as a pole placement controller (PZ) (Chen,
1993). If frequency filters are applied in the cost function, it is possible to design in
which frequency range high or low penalty is desired. A minimum variance controller
which include frequency weighting in the cost function is referred to as a generalized
minimum variance controller (GMV). For linear system and the general quadratic

3
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performance cost function in (1.2) where y may be considered as either the output
or a tracking error, a classical formulation is referred to as the Linear Quadratic
controller (LQ) (Kwakernaak and Sivan, 1972; Anderson and Moore, 1989). The
optimal solution to the LQ problem is a linear feedback law, which can be evaluated
from the solution to iterations in the Riccati matrix equation. It was the paradigm
shift in the 1960’s from describing system dynamics as differential equations in the
input and output into state space descriptions, which gives a systematic handling of
multivariable systems, who led to the development of LQ control, which in Willems
(2007) is considered to be the main result in control theory of that time. In case
of incomplete state information, the LQ controller can be combined with a Kalman
filter assuming Gaussian distributed noise. This strategy is known as the Linear
Quadratic Gaussian controller (LQG).

A different solution to the same type of problem, introduced by Clarke et al.
(1987a,b), is labeled Generalized Predictive Control (GPC). In this strategy the
optimal set of control signals are calculated by predicting future outputs. It is as-
sumed that the controller will bring the system close, in some sense, to the reference
signal within a fixed control horizon, and the control will stay constant over the
remaining part of the prediction horizon used by the cost function. The first of the
calculated controls is implemented, new measurements or estimates of the states are
achieved and the problem is solved again for the next discrete time. The compu-
tations proceed as a moving horizon algorithm and Ydstie (1987) group this and
similar predictive algorithms which emerged at the same time as multi-step receding
horizon control. In case input or output constrains have to be considered as part
of the control problem, the GPC or the LQ controller are conveniently extended to
Model Predictive Control (MPC) (Garcia and Morari, 1982; Hallager et al., 1984;
Muske and Rawlings, 1993; Maciejowski, 2002). Two references in the pioneering
stage of MPC control is the paper by Cutler and Ramaker (1980) and the classic
application paper by Richalet et al. (1978). Willems (2007) states the following
relation between MPC and the field of process control:

”MPC is an area where essentially all aspects of the field, from modeling
to optimal control, and from observers to identification and adaptation,
are in synergy with computer control and numerical mathematics.”

The close related LQ, GPC and MPC formulations are easily applied for multivari-
able systems since all three can be formulated using state space model formulations.

1.2 Identification for Control

Model identification for control ideally should be based on closed loop data, rather
than open loop data. First of all, closed loop data means that the process is esti-
mated under the conditions at which it has to be operated. Closed loop experiments
also imply that the control loop can act on plant variations and reject disturbances
during the data acquisition. Hence the risk of producing off spec product or un-
safe operation is minimized. Several processes can not be operated in open loop,
which means that stabilizing controllers would be estimated as an intrinsic part of
the plat model when using open loop estimation techniques (Ljung, 1999). That
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implies that it would not be possible to tune these stabilizing loops based on the
achieved model. Closed loop system identification circumvents this problem by tak-
ing the feedback mechanism into account in the estimation. Section 1.3 shows the
estimation techniques used in closed loop system identification.

In the late 1980s, the system identification community started to shift their focus.
Instead of seeking an estimate of the true system, an approximation to the true
system is sought with the intended model application in mind (Gevers and Ljung,
1986; Van den Hof and Schrama, 1995; Gevers, 1996). When identifying a model
for a process with a control application in mind, the aim is not to achieve the
best approximation to the true system, but to achieve the best performance of the
control loop. This loop contain the true system and a designed controller based on
the model estimate. The performance will be affected by the experimental conditions
i.e. external excitation of the system, number of data points and of cause whether
the process is operated in open or closed loop. Hjalmarsson et al. (1996) conclude
that closed loop system identification produces better performance than open loop
identification, when the system is in the model class. I.e. no un-modelled dynamics.
Forssell and Ljung (2000) link optimal control design and the optimal experimental
design for closed loop identification. Using closed loop data in identification for
control is intuitively reasonable since the process is identified under the same type
of conditions as the new loop will be operated. This is in contrast to classical open
loop step response experiments.

In both open and closed loop identification, it is required that the process is
sufficiently excited in order to yield informative data (Ljung, 1999). Let T (G,C) be
a stable feedback connection consisting of the possibly unstable system G and the
controller C. Due to the controller, the loop will reject disturbances and track set
points. The performance of the loop can be evaluated through the performance cost
function F (G,C). In order to sufficiently excite the system to reveal the dynamics,
two external perturbation signals can be introduced to the system. The closed loop
system with external probing signals is shown in Figure 1.1

yref + r2
+

− uc
C yc

+ +

r1

u
G y

+ + dy

Figure 1.1. Block diagram for a feedback control loop. External perturbation signals
are added to the reference and control signals in order to excite the process and obtain
informative data.

The signal r1 introduces a deviation from the control input to the system, which
will act as a known disturbance on the plant input. The second signal r2 acts as
a known perturbation in the reference signal. This signal can therefore be used
to move the process around to span a desired region of the output space. One or
both of these signals can be used and designed according to the objectives of the
experiments. In principle there is no difference between using either r1 or r2. If
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the controller is known, the filter C can be used such that the effect of a signal r2

is the same as if the filtered signal is used as r1. In general the choice of signals
depend on the constraints and the model one intends to identify the parameters
in. Given input constraints or unknown B(q−1) parameters in a ARX like model,
Auto Regressive process with eXogenous input, the r1 signal that acts on the input
is advantageous. Likewise with r2 with respect to output constraints or unknown
A(q−1) parameters.

1.2.1 The Necessity of an Iterative Scheme

The design of optimal experimets and the optimal controller for loop performance, is
a function of the unknown plant. Hence this design is infeasible which is the case for
any optimal design problem in estimation, where the optimal design depends on the
quantity one seek to estimate (Goodwin and Payne, 1977). The solution is to use an
iterative scheme which, provided a set of conditions is fulfilled, will converge to the
optimal design (Schrama, 1992b). Closed loop identification is an iterative procedure
since it contains two essential elements which interact: Model estimation and control
design. The estimated model will be affected by the implemented control which
was operating during the data acquisition. When the estimated model is used to
design a new controller, the resulting loop will perform differently from the previous.
Hence data from this new loop may give a different model estimate compared to the
previous. The identified plant model is used to design a new controller in order to
enhance the performance of the loop. If the performance specifications are not met,
repeated iterations will have to be performed according to the following scheme,
until the performance is satisfactory.

• Closed loop experiment

• Estimation of a plant and noise model, Gi and Hi

• Implement controller Ci+1 based on the model estimates

• Evaluation of closed loop performance, ‖F (G,H,Ci+1)‖

Identification in closed loop through the iterative scheme involves some inherent
problems and design challenges, that need to be addressed in order to prevent diver-
gence of the procedure (de Callafon, 1998). It must be required that the performance
of the control loop is equal to or better than the performance of the loop for the
previous iteration.

1.3 Model Estimation from Closed Loop Data

Three main approaches to model estimation from closed loop data exist, each with
a number of advantages and disadvantages (Söderström and Stoica, 1989; Ljung,
1999).

• Direct identification

• Indirect identification
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• Joint input/output identification

In direct identification, the data set {u,y} is used to estimate the process model as
in open loop identification. The basic principle of not having inputs that are corre-
lated with the process noise is violated by this method. A consistent estimate is only
produced by this method if the data are informative, and the model structure of
the estimate contains the true model structure. That is rarely the case in practice,
since it implies that a very high model order has to be chosen in order to avoid bias.
The advantages of the direct estimation are that it is simple and applicable, inde-
pendently of whether the controller is known and of its complexity. A disadvantage
of the direct identification is, that even if the model set is large enough to contain
the true process model, G, but the noise model, H, is not able to contain the noise
dynamics, the estimate of the process model, Ĝ will be biased due to the feedback
(Gevers, 1996).

In indirect identification a model is estimated using {ri,y} which prevent the
problem with correlations. Given this estimate of the closed loop, an estimate for
the process is deduced using knowledge of the controller as shown in equation (1.3).
This method requires a known linear controller without input saturation and anti
wind up.

Ĝcl =
Ĝ

1 + ĜC
(1.3)

Indirect identification can also be applied given a nonlinear controller, but that
requires computation of the model output ŷ(t|θ) as a function of the open loop
parameters, θ, the known controller and past dither signal values before forming
the output error criterion (Ljung, 1999).

Joint input/output identification estimates the transfer from the excitation signals
ri to both u and y. The estimation of the two transfer functions are straigt forward
since they are both open loop estimation problems. The system model is then equal
to the ratio between the two transfer functions. This can be done simultaneously to
mimic the direct approach or in steps e.g. by the two step method suggested by Van
den Hof and Schrama (1993) or by the coprime factor method (Van den Hof et al.,
1995). The joint input/output method can also be utilized for a system containing
an unknown nonlinear controller (Ljung, 1999).

These methods only provide an estimate of a nominal model. In de Callafon
(1998) it is shown that a set of models can be obtained by estimation of the nominal
model using stable coprime factorizations and the model uncertainty by considering
a perturbation in the dual-Youla parameterization. The estimated nominal model
can easily have a too high complexity, in order to be used directly for control design.
Hence a model reduction may be necessary. Gevers (2002) shows how the bias error
of the estimate has to be tuned during the iterative procedure.

1.4 Research Objective and Aim

It has been the overall objective of this research project to investigate directions
in identification for control, based on closed loop techniques. This investigation
was focused on technology which is amenable to process industry. The aim of the
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project was then to develop methods and tools which are easily applied and general
for process optimization. These methods would be based on the waste amount of
theory developed in the areas of system identification and control theory.

The focus has been concentrated on direct data driven optimization and particu-
larly on the Iterative Feedback Tuning method. This method qualifies with respect
to low complexity in terms of the algorithm and can, and has, been used on va-
rious systems and industrial processes. The investigation of the tuning method has
been focused on achieving a detailed knowledge on the theoretical foundation of the
method and identify its limitations and area of application. Based on this analysis,
the research has been following two main aims which are based on the following
hypotheses:

• It is possible to extend the area of application of the Iterative Feedback Tuning
method for processes and control structures which are novel to this tuning
procedure.

• It is possible to extend the application range of the Iterative Feedback Tuning
method beyond its presents practical limitation by changing the experimental
procedures which is imbedded in the method.

1.5 Thesis Organization

This thesis is organized in three main parts excluding this introduction chapter,
the final conclusions, suggestions for future works, appendices and references. The
thesis is compiled as a collection of technical reports, scientific conference and journal
papers which have been produced and presented/submitted as part of this research
project. Hence all chapters containing novel results which have been produced as
part of this Ph.D. project will reflect the content in one separate paper containing
the contribution. Each such chapter will have the same title as the respective paper
and the paper abstract on the first page. The remaining pages of these chapters will
contain the contribution formatted to fit this thesis. All references given in these
papers which then will be part of these chapters, are collected at the end of the
thesis and not after each chapter.

Part 1 - Algorithms in Identification for Control
This part of the thesis intents to provide a general introduction to optimization
of control loop performance by closed loop identification and model based
control synthesis. It contains well known results and serves as an introduction
to the area and a background for the remaining parts of the thesis. Several
approaches for control loop optimization are discussed in chapter 2, which gives
a broad overview over a range of methods and classifies these in direct and
indirect methods for controller tuning. Chapter 3 gives a detailed introduction
to Iterative Feedback Tuning, which is the tuning algorithm investigated in
this thesis. The general method is outlined and the state of the art for this
tuning algorithm is discussed with references to the numerous contributions
which have been published by different researchers in the field. The chapter
ends by listing the contributions of this thesis related to Iterative Feedback
Tuning method.
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Part 2 - Iterative Feedback Tuning for More Complex Control Structures
This part of the thesis is based on two conference paper contributions, where
each have been given a separate chapter. These two chapters are both explor-
ing the Iterative Feedback tuning method to tune control structures, where
application of this method has not yet be reported. Chapter 4 investigates
the tuning method for the nonlinear Inventory Control structure, and chapter
5 investigates the method for tuning the feedback gain and the observer gain
in a state space control structure and compares the results to classical LQG
design.

Part 3 - Iterative Feedback Tuning for Disturbance Rejection
This part of the thesis is based on one journal paper contribution and a tech-
nical rapport, where each contribution has been given a separate chapter. The
first contribution, which is given in chapter 6, argues for introducing exter-
nal perturbation in Iterative Feedback Tuning when tuning for disturbance
rejection. The second contribution in chapter 7 contains a more detailed ana-
lysis of the convergence properties of Iterative Feedback Tuning in presence of
external perturbations and provides an optimal perturbation signal design.

Concluding remarks and future work are presented in chapter 8.

1.6 Publication list

In this section all the scientific documentation produced as part of the research
work associated with this Ph.D. study is listed. The following is divided in journal
papers, peer reviewed conference publications and other publications. The chapters
which are based on the contributions in these papers are given in bold font after the
reference.

Journal Papers

Jakob Kjøbsted Huusom, Niels Kjølstad Poulsen, and Sten Bay Jørgensen. Im-
proving Convergence of Iterative Feedback Tuning. In Press for Journal of Process
Control. DOI information: 10.1016/j.jprocont.2008.09.004 Chapter 6

Peer Reviewed Conference Publications

Jakob Kjøbsted Huusom, Niels Kjølstad Poulsen, and Sten Bay Jørgensen. Data
Driven Tuning of State Space Controllers with Observers. Submitted for the Euro-
pean Control Conference, Budapest, Hungary, Aug. 23-26, 2009. Chapter 5

Jakob Kjøbsted Huusom, H̊akan Hjalmarsson, Niels Kjølstad Poulsen, and Sten Bay
Jørgensen. (2008) Improving Convergence of Iterative Feedback Tuning using Op-
timal External Perturbations. In Proceedings of the 47th IEEE Conference on
Decision and Control, pages 2618 – 2623. Chapter 7
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Jakob Kjøbsted Huusom, Paloma Andrade Santacoloma, Niels Kjølstad Poulsen,
and Sten Bay Jørgensen. (2007). Data driven tuning of inventory controllers. In
Proceedings of the 46th IEEE Conference on Decision and Control, pages 4191 –
4196. Chapter 4

Jakob Kjøbsted Huusom, Niels Kjølstad Poulsen, and Sten Bay Jørgensen. (2007).
Iterative Controller Tuning for Processes with Fold Bifurcations. In Proceedings for
ESCAPE 17, pages 835 – 840.

Jakob Kjøbsted Huusom, Denis Bonné, Niels Kjølstad Poulsen, and Sten Bay Jørgensen.
(2005). Process Identification Challenges for Nonlinear Model Predictive Control
In Proceedings of International Workshop on Assessment and Future Directions of
Nonlinear Model Predictive Control, pages 451 – 458.

Other Publications

Jakob Kjøbsted Huusom, H̊akan Hjalmarsson, Niels Kjølstad Poulsen, and Sten Bay
Jørgensen. (2008). A Design Algorithm using External Perturbation to Improve
Iterative Feedback Tuning Convergence. Technical Report PEC08-16, CAPEC and
IMM at Technical University of Denmark and Automatic Control at Royal Institute
of Technology, Sweden. http://orbit.dtu.dk/All.external?recid=221002. Chapter
7
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Algorithms in Identification for
Control
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2

Directions in Identification for
Control

Given the challenge of designing a suitable controller for a particular process, one
is faced with a series of choices. In this chapter, it is assumed that an appropri-
ate selection of actuators and process measurements has been made, and a control
structure has been selected. The task of model identification, control design and
tuning are discussed with references to a number of well known methods within
identification for control. Some of these methods are tailored for a specific control
structure, while others offer more flexibility. It is assumed that the data used for
estimation, tuning etc. in the following algorithms is acquired during closed loop
operation.

The first choice to be made is to select either a direct or a indirect i.e. model based
method. A model based method involves estimation of unknown parameters in either
a first principle engineering model or in some black box model structure. Given
the process insight provided by the model, a controller can be designed. A direct
method utilizes the data directly in tuning the control parameters, without the use
of a model. In general, better performance of the control loop can be achieved from
a model based method since the dynamic behavior of the process can be exploited in
the control design. In case sufficiently detailed knowledge of the process dynamics
is not available, using a direct tuning method may be a reasonable approach. In
the following, algorithms for model based and direct controller optimization will be
described separately.

2.1 Process Identification and Model Based Con-

trol Design

The joint problem of estimating parameters in some known model structure and
design a model based controller becomes quite complex, when treated in an optimal
sense. Gevers (1996) illustrates this complexity by dividing the task of identification
for control into three categories of decreasing complexity.

Dual Control: The most ideal solution handles the dual problem of identification
and control by posing an optimal control problem in which the updating of
unknown parameters is embedded. Such a formulation will give an optimal
handling of the trade off between tight control and the need for excitation for
parameter estimation.
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Optimal Experimental Design: The experimental design problem is focused on
performing the identification such that the achieved performance of the loop
is close to the ideal performance, based on knowledge of the true system. The
optimal solution to this problem will therefore depend on the unknown process.

Identification and Model Based Control: This more realistic approach com-
pares the achieved loop performance to the optimal nominal design, which is
derived from a system model.

The dual control problem, which is the optimal solution to a stochastic control
problem with unknown and possible time-varying parameters, is a computationally
very hard problem. It was introduced in the 1960’s by Fel’dbaum (1965), but since
most general dual control problems can not be solved analytically, most attention
has been given to suboptimal problems (Lindoff et al., 1999; Li et al., 2008). Both
the dual control problem and optimal experimental design are too idealized to have
a feasible solution for a general problem. The main interest of this section will focus
on methods of identification and model based control.

The iterative procedure of model estimation, model based control synthesis and
performance evaluation mentioned in Section 1.2.1 requires some preliminary choices.
First a model structure for the plant and possibly the type of noise have to be se-
lected. How and whether to include a description of the model uncertainty is impor-
tant for the final robustness of the system. This choice is also related to the norms
used for the identification criterion and in the control design. E.g. the L2-norm used
in prediction error estimation of unknown parameters in a fixed structure versus the
∞-norm or the G∆ structure to represent an unstructured uncertainty description
(Skogestad and Postlethwaite, 1996). These choices of estimation and control design
norms affect the complexity of the resulting problem. It also determines whether
a global optimization of the robust performance is achieved or a local optimization
of the achieved performance. Optimal robust performance is a very attractive pro-
perty, and H∞ theory has been dominating in the last 15 years of the 20′th century
(Willems, 2007). Selecting the less computational demanding optimization of nom-
inal performance may yield better performance of the achieved loop, at the expense
of guarantied robustness.

In the following a few examples of algorithms are presented which offer different
solutions to this trade off. The robustness and hence the complexity of the methods
will be successively increasing.

2.1.1 Optimizing Nominal Performance

In the general problem setting a model structure for the process is selected e.g. a
nonlinear first principles engineering model or a standard input/output model such
as the ARMAX model, a Auto Regressive, Moving Average process with eXogenous
input. Several results on parameter estimation for specific model structures have
been reported (Sjöberg et al., 1995; Gopaluni et al., 2004; Milanese and Taragna,
2005; Qin et al., 2005). Ljung (1999) is a key reference for prediction error estima-
tion of parameters in linear time invariant system, as the ARMAX structure. This
class of linear model structures is often used to approximate processes in a control
loop. Given a process model, the control design is performed using the certainty
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equivalence principle. The result is a controller which will minimize the performance
of a designed loop consisting of the identified model, F (Ĝ, Ĥ, Copt(Ĝ, Ĥ)). The ac-
tual performance of the loop will be F (G,H,Copt(Ĝ, Ĥ)). The iterative procedure of
model identification from closed loop data and subsequent re-design of the controller
should ideally render the actual performance converge to the designed performance.
An advantage of this approach is that the true model does not have to belong to
the model set for the procedure to converge (Gevers, 1996). The model order can
therefore be selected based on the trade off between bias and variance error of the
plant model estimate.

In order to illustrate the steps involved in one iteration of identification for model
based control, a basic example is outlined. First of all it is assumed that the process
is currently working in closed loop, and performance optimization is needed since the
current performance is dissatisfactory. The performance could be evaluated based
on the cost function (1.1).

F (G,H,C) =
1

2N

N∑

t=1

y2
t + λu2

t (1.1)

It is assumed that the process can be approximated by the ARMAX model structure

A(q−1)yt = q−kB(q−1)ut + C(q−1)et et ∈ N (0, 1) (2.1)

where A(q−1), B(q−1) and C(q−1) are polynomials in the backshift operator q−1

which shifts the discrete time index as ψt−i = q−iψt. k is the discrete time de-
lay through the process. The A(q−1) and C(q−1) polynomials are monic, hence
their leading coefficient is equal to one. The unknown system parameters in the
A(q−1), B(q−1) and C(q−1) polynomials can the be collected in the vector θ which
has to be estimated. Performing the estimation using direct estimation and the
prediction error framework means that the closed loop data and the model is used
to generate a sequence of one step ahead prediction errors

ǫt(θ) = yt − ŷt(θ|Yt−1,Ut−1) (2.2)

where Yt−1 and Ut−1 are two vectors containing information of the in- and outputs
up till time t− 1. An optimization algorithm can be used to find the optimal set
of parameters which will minimize the prediction errors. The least squares solution,
i.e. the L2-norm, is:

θopt = arg min
θ

1

N

N∑

t=1

ǫt(θ)T ǫt(θ) (2.3)

For a linear system description, the prediction errors can be written as a linear regres-
sion problem, and an analytical solution for least squares optimal set of parameters
exists (Ljung, 1999; Kailath et al., 2000). For more general model descriptions,
nonlinear regression may be required, where a numerical search algorithm can be
used to evaluate the parameters (Ljung, 1999; Nocedal and Wright, 1999). Given
a system model a certainty equivalence control synthesis can be performed based
on the performance criterion (1.1). The criterion is used to evaluate the unknown
optimal set of control parameters ρ in some control structure e.g. a PID controller
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or a structure which use the criterion more directly as LQG or minimal variance
control i.e. λ = 0. For an arbitrary control structure, predicted values of the in-
and outputs can be used in a numerical scheme equivalent to the model parameter
estimation problem.

ρopt = arg min
ρ
F (Ĝ, Ĥ, C(ρ)) (2.4)

which would then produce the controller Copt(Ĝ, Ĥ). For an ARMAX or a state
space model structure, the parameterization of the optimal controller for the minimal
variance and the LQG controllers have been derived analytically, and the control
parameter estimation problem is well defined (Åström, 1970). The optimal controller
transfer function for the LQG problem for the ARMAX model (2.1) is given as
(Poulsen, 1997):

ut =
−S(q−1)

R(q−1)
yt (2.5)

where the polynomials S(q−1) and R(q−1) are given by solving the Diophantine
equation

P (q−1)C(q−1) = A(q−1)R(q−1) + q−kB(q−1)S(q−1) (2.6)

where P (q−1) is the solution to the spectral factorization

P (q−1)P (q) = B(q−1)B(q) + λA(q−1)A(q) (2.7)

In order to have a unique solution is must be required that the order of the R(q−1)
polynomial nr is equal to nb + k − 1 and the order of S(q−1), ns equal to the maxi-
mum value of na − 1 or np + nc − (nb + k). Further more it must be required that
the roots of P (q−1) are not located outside the unit circle.

The steps illustrated in this section would be similar if other process model de-
scriptions and control designs where chosen. Multivariable industrial processes are
often being approximated by a linear state space description which can be estimated
using subspace identification (Verhaegen, 1994; Van Overschee and De Moor, 1994).
For multivariable systems it is an advantage to select a control law which take in-
teractions between the multiple actuators into account, e.g. LQ or MPC strategies
(Luyben et al., 1998). These strategies require full state information which may not
be measured for an arbitrary black box state space description. This problem can
be circumvented by introducing a Kalman filter for state estimation in the control
law. The model estimate will then be used in both the construction of the state
estimator and the controller, and the loop performance will depend on both.

2.1.2 Frequency Weighted, L2 Identification and H2 Control

Design

One degree of freedom which the designer can use in the model estimation and in the
control design is to include a stable filter in the criteria. The frequency weighting
which is introduced by the data filter can be used to eliminate the effect of undesired
high frequency noise from data (Ljung, 1999).

A data driven identification/control design scheme is presented by Zang et al.
(1995), that iteratively aims to improve the closed loop performance. A least squares

16



2.1. Process Identification and Model Based Control Design

model identification is performed from closed loop data. The data are filtered in
order to improve the model accuracy at those frequencies where the measures of ro-
bust stability or performance indicate that improvements are needed. A frequency
weighted LQG control design is used to account for the imperfections of the esti-
mated model. The effect of the weighting renders the controller cautious in the
frequency bands where the data reflects a difference between the plant and the
model.

The frequency weighted regulation objective become

JC = lim
N→∞

1

N

N∑

t=1





[(
Φy

Φyc

)1/2

yc
t

]2

+ λ2

[(
Φu

Φuc

)1/2

uc
t

]2


 (2.8)

where Φy and Φu are the spectra of the signals obtained on the actual system where
Φyc and Φuc are obtained from simulations of the closed loop system. When e.g.
Φy

Φyc
is large, it means that the model fit is poor and that disturbance rejection is

not as good as expected from the designed system. This frequency will therefore be
weighted more in the following control design. The method is in this way trying to
compensate for the drawback with respect to robustness, which is inherent in the L2

identification and H2 control design. It achieves an attractive compromise between
an infeasible ∞-norm design and the feasible 2-norm design without robustness
guaranties. The Zang algorithm is not much harder to solve than the basic L2

identification and H2 control design.
A clear distinction is made between a robust stability and a performance objective

in the identification step. An external perturbation signal rt is entering the loop
as a perturbation of the reference when data is being acquired for the identification
step. When performance is the main issue, an excitation spectrum which is a scaled
version of the noise spectrum is used, while a constant spectrum is used when the
main issue is stability.

2.1.3 Parameter Uncertainty Regions

When the parameters in a fixed model structure are identified, computation of the
parameter confidence region will give an indication of how far the model estimate
may be from the true system. This analysis depends on whether the true system is
contained in the model set Ljung (1999).

In Gevers et al. (2003a) a method for control oriented system identification is
published and the method is illustrated in Gevers et al. (2003b). The derivation of
the theory behind this algorithm limits the use to single input/single output, linear,
time-invariant systems only. Given an estimate of a plant model, an uncertainty
set (PE model set) is defined as the space spanned by the parameter α-confidence
ellipsoids.

θ ∈ U = {θ|(θ − θ̂)T P−1
θ (θ − θ̂) < χ}, α(qθ, χ) = Pr(χ2(qθ) < χ) (2.9)

where qθ is the number of parameters in θ, and P θ is an estimate of the covariance
matrix of the parameter estimate. Results are given for necessary and sufficient
conditions for a controller to stabilize all plants within the set and an upper bound
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for the worst case performance. These are labeled controller validation for stability
and performance. A set of controllers then exits that is able to stabilize all plants
within the PE model set. A control oriented identification experiment is here defined
as an experiment that maximize the set of controllers that are able to stabilize the
PE model set. This connection is made by evaluating the worst case chordal distance
as a function of frequency or the worst case ν-gab introduced by Vinnicombe (1993).
This method offers a convenient algorithm with a relative degree of robustness which
is linked to the statistical properties of the model estimate through the confidence
regions.

2.1.4 Unstructured Model Uncertainty

When a model is used to describe a system of higher order than the model structure,
the estimate will be associated with a unstructured uncertainty. This under modeled
dynamics can be described using the G∆ model formulation, where the ∆ represent
the uncertainty. As an example equation (2.10) shows an additive unstructured
uncertainty description, where the true system G can be written of a reduced order
representation Gr plus an additive term.

G = Gr + ∆add (2.10)

The same form can be used to express model parameter uncertainty. Other forms as
multiplicative input/output uncertainties, their inverse or a coprime factor uncer-
tainty are given in Skogestad and Postlethwaite (1996) and Zhou and Doyle (1998).
The G∆ uncertainty description is a powerful representation which allow robustness
analysis and robust control synthesis.

2.1.5 Estimation with the Youla Parameterization

The Youla parameterization is based on the fractional representation of a system
(Youla et al., 1976; Desoer et al., 1980). The model uncertainty is viewed as a
coprime factor uncertainty. If the true system is stabilizable it can be parameterized
as a controller based perturbation of some plant model, defined by the stable Youla
parameter Q. This means that all controllers that stabilize a plant G can be given
in terms of the Youla parameterization:

CQ =
Nc +QD

Dc −QN
(2.11)

where the plant, the noise model and the controller are given by the stable right
coprime factorizations1:

G = ND−1 (2.12)

H = MD−1 (2.13)

C = NcD
−1
c (2.14)

This system description is based on the following general model

yt = Gut +Het ⇒ Dy = Nut +Met (2.15)

1The coprime factorization G = ND−1 means that N and D do not share any unstable zeros

18



2.1. Process Identification and Model Based Control Design

Hansen et al. (1989) use this parameterization to solve the closed loop experimental
design problem. This problem is transformed into an open loop estimation problem
of the dual-Youla parameter. The dual-Youla parameter R produces all systems
which yields a internally stable feedback connection with a controller C. S is a
parameter that gives the corresponding noise dynamics. Since these two parameters
can be estimated in a open loop fashion an estimate of the true plan model can
be deduced given some auxiliary model Gx = NxD

−1
x . This approach to system

identification has since been known as the Hansen scheme.

N = Nx +DcR (2.16)

M = S (2.17)

D = Dx −NcR (2.18)

One of the advantages of describing the system using the Youla parameters is clearly
that it is guaranteed that the perturbation contains the true system, another is that
the loop is guaranteed stable. Further more does the fractional approach convert
the problem into an open loop identification problem. In Ansay et al. (1999) the
signals for the identification of the two dual-Youla parameters are generated from
the controller rather than from the plant, which makes it possible to estimate the
parameters separately. In De Bruyne et al. (1998) and De Bruyne et al. (1999)
considerations are presented for tuning the model order and a nonlinear version of
the Hansen scheme.

2.1.6 Iterative Robust Performance Enhancement

In his thesis, de Callafon presents an algorithm for robust control enhancement (de
Callafon, 1998). This method is based on system identification using a fractional
approach to identify a plant and its uncertainty set G through the dual-Youla para-
meterization. This identification framework has been thoroughly treated in Schrama
(1992a). The control design is based on µ-synthesis, which is a H∞ control design
(Packard and Doyle, 1993; Zhou and Doyle, 1998). Through an iterative procedure,
the closed loop performance is optimized in a robust sense. Letting Γi and Γtol be the
performance level for the i’th iteration and the tolerance respectively, the necessary
demands in order to prevent divergence of the iterative scheme can be formulated
as:

Identification
‖F (Ĝ,Ci)‖∞ ≤ Γi ∀Ĝ ∈ Gi

Control design
‖F (G,Ci+1)‖∞ ≤ Γi+1 < Γi ∀G ∈ Gi

This will be repeated until Γi+1 ≤ Γtol, if possible.
In the identification experiment the triangular inequality is used to define a control

relevant identification problem. In Schrama (1992a) it is shown that
∣∣‖F (Ĝ, C(Ĝ))‖ − ‖F (G,C(Ĝ)) − F (Ĝ, C(Ĝ))‖

∣∣ ≤ ‖F (G,C(Ĝ))‖
‖F (G,C(Ĝ))‖ ≤ ‖F (Ĝ, C(Ĝ))‖ + ‖F (G,C(Ĝ)) − F (Ĝ, C(Ĝ))‖

(2.19)
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where G is the true system, Ĝ is the nominal system model and C(Ĝ) is the controller
designed based on Ĝ. Tight upper and lower bounds can be achieved by minimizing
the performance degradation ‖F (G,C(Ĝ)) − F (Ĝ, C(Ĝ))‖.

2.2 Direct methods

Opposite the indirect methods which rely on a model estimate, the direct tuning
methods will adjust the controller directly based on the data acquired from the
control loop. This more crude approach can be very useful when the process model
structure is unknown. Direct methods may also be convenient for fine tuning of
a controller, when the observed loop performance degrades slowly over time. The
model based control design will always depend on the model quality. Hence mo-
delling bias or time varying parameters may result in poor performance which can
then be adjusted by direct tuning. Another advantage is that the direct tuning
methods are often relatively simple and computationally easy to apply for simple
control structures compared to a model based approach.

Classical tuning rules as the Ziegler-Nichols method and other step response or
frequency response methods belong to the class of direct tuning methods. In this
section only methods which can use closed loop data are considered and in the
following three direct tuning methods will be presented. Two of these has been
introduced within the last ten years.

2.2.1 Iterative Feedback Tuning - IFT

The Iterative Feedback Tuning method was suggested in the mid 1990’s. It has
proven to be an amenable tuning strategy and it has been a central topic in a vast
number of publications. The key idea is to construct an unbiased estimated of the
performance cost function gradient, based on closed loop data. This estimate is
then used in a search algorithm which minimize the performance cost by tuning the
control parameters. In each iteration of the Iterative Feedback Tuning, two experi-
ments are required for one degree of freedom single input/single output controllers.
One additional experiment is needed for a two degree of freedom controller. For
multivariable systems the number of experiments which is required in order to form
an unbiased gradient estimate grows with the complexity. The fact that numerous
plant experiments have to be performed as part of the tuning is one of the main
obstacles of the Iterative Feedback Tuning method. Advantages are that the method
is very flexible in terms of optimization criteria and poses very few restrictions on
the system. A thorough presentation of the Iterative Feedback Tuning method with
the developments and applications will be given in Chapter 3.

2.2.2 Correlation-based Tuning - CbT

The Correlation-based Tuning method was proposed in Karimi et al. (2003). A de-
tailed description can be found in Karimi et al. (2004) and in the thesis Mǐsković
(2006). The algorithm assumes a linear time-invariant system, G, with an unknown
transfer function. The system is controlled by a linear time-invariant controller,
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C(ρ). In this section a single input/single output system with a one degree of free-
dom controller will be assumed. Extension from this basic formulation is provided
in Mǐsković (2006). Let Gd be some designed reduced order plant model, working in
a feedback loop with the controller, Cd, which is designed such that the loop meets
performance specifications. When both the actual and the design loop are subject
to the same reference signal, the output error can be computed as the difference
between the output signals of two loops.

ǫoe(ρ, t) = y(t) − yd(ρ, t) (2.20)

=

(
C(ρ)G

1 + C(ρ)G
− CdGd

1 + CdGd

)
r(t) +

1

1 + C(ρ)G
v(t) (2.21)

since only the output from the true system will be affected by process noise. The
two feedback loops and the generation of the output error are shown in Figure 2.1.

r(t)
−

+
C(ρ)

u(ρ, t)
G

+ +

v(t)

Achieved feedback loop

y(ρ, t)

+

−

ǫoe(ρ, t)

−

+
Cd

ud(t) Gd
yd(t)

Designed feedback loop

Figure 2.1. Block diagram for the achieved and the design feedback control loops used
in the Correlation based Tuning algorithm.

In case the designed controller is implemented in the loop with the true plant,
the output error will have a contribution from both the noise and the modelling
error between Gd and the true system G c.f. equation (2.21). The main idea in the
tuning method is then to adjust the controller parameters in order to de-correlate
the output error with the reference signal. The analytical solution to this problem
would be the controller:

C(ρ) = Cd
Gd

G
(2.22)

which depends on the unknown plant model G. Since the analytical design is infea-
sible a correlation equation is defined as

f(ρ) = E{f̄(ρ)} = 0 (2.23)

where E{·} is the mathematical expectation and

f̄(ρ) =
1

N

N∑

t=1

ζ(t)ǫoe(ρ, t) (2.24)
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where N is the number of discrete data points and ζ(t) is a vector of instrumental
variables which are correlated with the reference signal, but independent of the
disturbance. The solution to the correlation equation will give the parameters in a
decorrelating controller. This problem can be solved by a stochastic approximation
procedure, and for a large number of data points using a Newton-Raphson search
algorithm. For more details in solving the correlation equation and the choice of
instrumental variables a discussion is provided in Mǐsković (2006).

The Correlation-based Tuning provide an attractive algorithm which uses an intu-
itively reasonable criterion to optimize the control parameters. It does not use the
quadratic cost (1.1) directly, but it is left to the user to define Gd and Cd which leave
some freedom to the design. In general, convergence is faster than a standard Itera-
tive Feedback Tuning problem which require three experiments in each iteration,
where Correlation-based Tuning only needs one (Karimi et al., 2003). The two me-
thods are related and have a similar type of equations for the parameter update. The
Correlation-based Tuning is in its basic formulation not applicable when r(t) = 0,
as would be the case for a disturbance rejection problem, since this reference signal
would produce a trivial solution to the correlation equation. A reformulation of
the method which tune the control parameters for disturbance rejection is given in
Mǐsković et al. (2003). The disturbance is regarded as process noise uncorrelated
with any measurement noise in the system. The aim of the tuning is to achieve a
controller which can compensate for the process noise. Hence the output has to be
uncorrelated with the process noise.

2.2.3 Virtual Reference Feedback Tuning - VRFT

Virtual Reference Feedback Tuning was first introduced in Campi et al. (2000) fol-
lowed by the papers Campi et al. (2002) and Lecchini et al. (2002). In contrast to
Iterative Feedback Tuning and Correlation-based Tuning, this method only needs
one open or closed loop plant experiment to find a set of optimal control parameters.
This methodology is applicable for linear, time-invariant, single input/single output,
discrete time systems where the control is linear in the parameters. The main idea
is to use a set of input/output data obtained from the true system, and a desired
model for the loop. These will be used to form a set of input/output data which
can be utilized to estimate the controller parameters in one step. The idea is based
on the model reference criterion:

FMR(ρ) =
∥∥∥
(

G(q−1)C(q−1,ρ)

1 +G(q−1)C(q−1,ρ)
−M(q−1)

)
W (q−1)

∥∥∥
2

2
(2.25)

where M(q−1) is the reference model for the loop and W (q−1) is user defined weight-
ing function. The basic algorithm is a follows:

1. Select a reference model M(q−1) with the desired closed loop dynamics.

2. Collect a sequence of input/output data in open loop from the true system.

3. Calculate the virtual reference signal r̄(t) such that y(t) = M(q−1)r̄(t).

4. Form the tracking error e(t) = r̄(t) − y(t).

22



2.2. Direct methods

5. Filter the error and the input signals through a suitable data filter L(q−1). I.e.
eL(t) = L(q−1)e(t) and uL(t) = L(q−1)u(t)

6. Calculate the set of control parameters which minimize the following open
loop identification criterion:

FV R(ρ) =
1

N

N∑

t=1

(uL(t) − C(q−1,ρ)eL(t))2 (2.26)

which is a linear least squares problem with an analytical solution.

It can be shown that for a proper selection of the data filter L(q−1), the criterion
used in the algorithm approximates to the model reference criterion (Campi et al.,
2002; Lecchini et al., 2002). As the algorithm is outlined here it is assumed that the
data is noise free. In presence of noise a biased estimate is achieved. This can be
circumvented by applying an instrumental variable method. A discussion on use of
noisy data and closed loop experiments can be seen in Lecchini (2001). An extension
to more general and nonlinear control structures is presented in Campi and Savareci
(2006).

Virtual Reference Feedback Tuning is a very appealing direct tuning method due
to the fact that only one experiment is required. Unfortunately it is suboptimal
for restricted controller classes. As in the case for Correlation-based tuning this
algorithm is well suited for optimizing the loop tracking performance, while optimal
disturbance rejection may be difficult to handle due to lack of excitation in the
input/output data when only noise perturb the system.
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3

Iterative Feedback Tuning - IFT

The need for systematic algorithms for direct optimization of control loops with
restricted complexity controllers have motivated the development of the Iterative
Feedback Tuning method. The method is based on the ideas from optimal control,
but addresses the problems of limited dynamic process information. The algorithm
is easily applied in practice and can be consisted as an attractive alternative to
classical tuning rules for e.g. PID control loop.

The basic idea is to formulate a performance cost function and use an experimental
optimization algorithm to minimize this cost function, with respect to the control
parameters for a process relevant control purpose. The optimization algorithm ite-
ratively improves the performance based upon an estimation of the cost function
sensitivity to the control parameters. Evaluation of the partial derivatives of the
cost function with respect to the controller parameters, ρ, is based on measure-
ments taken form the closed loop system. This method of iterative performance
enhancement does not include an estimate of the process model. The algorithm was
presented first time in Hjalmarsson et al. (1994b) and have since been extended and
tested in a number of papers i.e. Hjalmarsson et al. (1998); Lequin et al. (1999,
2003). See Hjalmarsson (2002) and Gevers (2002) for a more extensive overview of
the development of the method and references to applications.

r
Cr

+

−

u
G

v

+ + y

Cy

Figure 3.1. Feedback loop with a two degree of freedom controller.

The closed loop system depicted in Figure 3.1, implements a two degree of free-
dom controller, C = {Cr, Cy}, on a discrete time, linear time-invariant and single
input/single output system G. The system transfer functions are then given as:

y =
CrG

1 + CyG
r +

1

1 + CyG
v = T r + Sv (3.1a)

u =
Cr

1 + CyG
r − Cy

1 + CyG
v = SCrr − SCyv (3.1b)
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where r is the reference value for the measurements y, u is the actuator variable
and v is a noise signal for the system presented in deviation variables. S and T are
the sensitivity and the complementary sensitivity functions respectively. Given a
desired reference model for the closed loop Td, the desired reference response from
the loop is given as yd = Tdr. The performance criterion can then be formulated as a
typical quadratic cost function, F (ρ), with penalty on ỹ = y(ρ) − yd and the control
effort. The optimal set of parameters will then require, that the partial derivative
of the cost function with respect to the control parameters is zero, and this point
represents the global minimum given the admissible parameter space. This optimal
solution to the minimization problem can be obtained through an iterative gradient
based search algorithm in case where the cost function is convex.

ρi+1 = ρi − γiR
−1
i

∂F (ρi)

∂ρ

= ρi − γiR
−1
i J(ρi) (3.2)

where Ri is a positive definite matrix and J(ρ) is the gradient column vector
of F (ρ) with respect to the control parameters. The i’th step is then given by
hi = −γiR

−1
i J(ρi). In case R = I the algorithm steps in the steepest decent direc-

tion. In case R = H(ρ) = ∂2F (ρ)/∂ρ2 or an approximation to the Hessian, the Newton
or Gauss-Newton algorithm appears. γi determines the step length and the choice
of R and γ will thus affect the convergence properties of the method (Hjalmarsson
et al., 1994b; Nocedal and Wright, 1999).

The key contribution in Iterative Feedback Tuning is that it supplies an unbiased
estimate of the cost function gradient, without estimating a plant model, Ĝ, given
that the noise v is a zero mean, weakly stationary random signal (Hjalmarsson
et al., 1998). Using an estimate of the J(ρ) in (3.2), instead of the analytical cost
function gradient, as a stochastic approximation method will still make the algorithm
converge to a local minimizer, provided that a minimizer exists, the estimate is
unbiased and that the sequence of γi fulfills condition (3.3) (Robbins and Monro,
1951).

∞∑

i=1

γ2
i <∞,

∞∑

i=1

γi = ∞ (3.3)

This condition is fulfilled by having γi = a/i where a is some constant. This method
has a convergence rate which is too slow for most industrial purposes (Mǐsković,
2006). In cases where the variance of the cost function gradient estimate approaches
zero, due to a large number of data points, classical Gauss-Newton optimization with
γi = 1, may be used instead in order to speed up the convergence.

Given the cost function

F (ρ) =
1

2N
E

[
N∑

t=1

ỹt(ρ)2 + λ

N∑

t=1

ut(ρ)2

]
(3.4)

where the minimization criterion is

0 = J(ρ) =
1

N
E

[
N∑

t=1

ỹt(ρ)
∂ỹt

∂ρ
+ λ

N∑

t=1

ut(ρ)
∂ut

∂ρ

]
(3.5)
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it is seen that estimates of ∂ỹ/∂ρ and ∂u/∂ρ are needed in order to produce an esti-
mate of J(ρ). Since yd is not a function of the control parameters it holds that
∂ỹ/∂ρ = ∂y/∂ρ. The partial derivatives of the in- and output with respect to the
control parameters can be evaluated based on equation (3.1).

∂y

∂ρ
=

1

Cr(ρ)

∂Cr

∂ρ
T (ρ)r − 1

Cr(ρ)

∂Cy

∂ρ
T (ρ)y (3.6a)

∂u

∂ρ
=
∂Cr

∂ρ
S(ρ)r − ∂Cy

∂ρ
S(ρ)y (3.6b)

3.1 The Iterative Feedback Tuning Algorithm

Gradient estimates of the in- and output can be produced given data from three
separate closed loop experiments on the system. The authors behind the Iterative
Feedback Tuning method have published two different ways of conducting these ex-
periments which will both be presented here in detail. In the paper Hjalmarsson
et al. (1994b) where the Iterative Feedback Tuning framework was initially pre-
sented, a method was used that in this thesis will be referred to as the original
Iterative Feedback Tuning formulation. In the paper Hjalmarsson et al. (1998) and
later publications a slightly refined version was used which will be referred to as the
refined Iterative Feedback Tuning formulation.

3.1.1 The Original Formulation of Iterative Feedback Tun-

ing

The three experiments in the original formulation are designed as follows:

1) r1 = r i.e. the reference signal sequence in the first experiment is the same as
for normal operation of the process.

2) r2 = y1 i.e. the reference signal sequence in the second experiment is the
output from the first experiment

3) r3 = r i.e. the reference signal sequence in the third experiment is the same
as for normal operation of the process, just as in the first experiment.

These experiments give the following in- and outputs

Ex. no 1: y1 = T (ρ)r + S(ρ)v1 u1 = S(ρ) (Cr(ρ)r − Cy(ρ)v1)
Ex. no 2: y2 = T (ρ)y1 + S(ρ)v2 u2 = S(ρ) (Cr(ρ)y1 − Cy(ρ)v2)
Ex. no 3: y3 = T (ρ)r + S(ρ)v3 u3 = S(ρ) (Cr(ρ)r − Cy(ρ)v3)
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The sequence of input/output data form these experiments (yi;ui) i ∈ {1, 2, 3} will
be utilized as follows:

ỹ = y1 − yd (3.7a)

u = u1 (3.7b)

∂̂y

∂ρ
=

1

Cr(ρ)

(
∂Cr

∂ρ
y3 − ∂Cy

∂ρ
y2

)
(3.7c)

∂̂u

∂ρ
=

1

Cr(ρ)

(
∂Cr

∂ρ
u3 − ∂Cy

∂ρ
u2

)
(3.7d)

It can be seen from (3.7a) and (3.7b) that the first experiment gives the measurement
of ỹ and u that is needed in the estimate of J(ρ). The estimate of the gradients of
the input and output can be written as

∂̂y

∂ρ
=
∂y

∂ρ
+

S(ρ)

Cr(ρ)

(
∂Cr

∂ρ
v3 − ∂Cy

∂ρ
v2

)
(3.8)

∂̂u

∂ρ
=
∂u

∂ρ
− S(ρ)Cy(ρ)

Cr(ρ)

(
∂Cr

∂ρ
v3 − ∂Cy

∂ρ
v2

)
(3.9)

which means that the two terms in the estimate of the cost function gradient in
(3.5) become:

ỹ
∂̂y

∂ρ
= (T (ρ)r − yd)

∂y

∂ρ
+ S(ρ)v1∂y

∂ρ
+

S(ρ)

Cr(ρ)

(
T (ρ)r − yd

) [∂Cr

∂ρ
v3 − ∂Cy

∂ρ
v2

]
+

S2(ρ)

Cr(ρ)
v1

[
∂Cr

∂ρ
v3 − ∂Cy

∂ρ
v2

]
(3.10)

u
∂̂u

∂ρ
= S(ρ)Cr(ρ)r

∂u

∂ρ
+ S(ρ)Cy(ρ)v1∂u

∂ρ
−

S2(ρ)Cy(ρ)r

[
∂Cr

∂ρ
v3 − ∂Cy

∂ρ
v2

]
−

S2(ρ)Cy(ρ)

Cr(ρ)
v1

[
∂Cr

∂ρ
v3 − ∂Cy

∂ρ
v2

]
(3.11)

From this result it can be seen that the noise signal v1 plays an active part in the
optimization of the control parameters. This is due to the squared terms of v1 which
is produced by ỹ∂y/∂ρ. The noise terms from the second and third experiment act
as nuisance. Further more it is evident that having a zero mean, weakly stationary
random noise sequence v acting on the process will ensure that the estimate of the
cost function gradient is unbiased. The variance of this estimate is proportional to
two times the variance of the noise signals.

From equation (3.6) it can be seen that if the controller is tuned for disturbance
rejection hence r = 0, it is only required to perform the first and second experiment.
This is because the term in (3.6) where data from the third experiment are used,
is zero and inclusion of this last experiment will only introduce the undesired noise
sequence v3 in the estimate for the Jacobian.
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3.1.2 The Refined Formulation of Iterative Feedback Tuning

This second Iterative Feedback Tuning formulation is based on a small change in the
equations for the derivatives of y and u in equation (3.6) by adding and subtraction
the same term.

∂y

∂ρ
=

1

Cr(ρ)

(
∂Cr

∂ρ
− ∂Cy

∂ρ

)
T (ρ)r +

1

Cr(ρ)

∂Cy

∂ρ
T (ρ)(r − y) (3.12a)

∂u

∂ρ
=

(
∂Cr

∂ρ
− ∂Cy

∂ρ

)
S(ρ)r +

∂Cy

∂ρ
S(ρ)(r − y) (3.12b)

This change motivates that the second experiments should be changed, and for the
refined IFT formulation the experiments are:

1) r1 = r i.e. the reference signal sequence in the first experiment is the same as
for normal operation of the process.

2) r2 = r − y1 i.e. the reference signal sequence in the second experiment is
the difference between the ordinary reference and the output from the first
experiment

3) r3 = r i.e. the reference signal sequence in the third experiment is the same
as for normal operation of the process, just as in the first experiment.

These experiments give the following in- and outputs:

Ex. no 1: y1 = T (ρ)r + S(ρ)v1 u1 = S(ρ) (Cr(ρ)r − Cy(ρ)v1)
Ex. no 2: y2 = T (ρ)(r − y1) + S(ρ)v2 u2 = S(ρ) (Cr(ρ)(r − y1) − Cy(ρ)v2)
Ex. no 3: y3 = T (ρ)r + S(ρ)v3 u3 = S(ρ) (Cr(ρ)r − Cy(ρ)v3)

The sequence of input/output data from these experiments (yi;ui) i ∈ {1, 2, 3} will
be utilized as

ỹ = y1 − yd (3.13a)

u = u1 (3.13b)

∂̂y

∂ρ
=

1

Cr(ρ)

[(
∂Cr

∂ρ
− ∂Cy

∂ρ

)
y3 +

∂Cy

∂ρ
y2

]
(3.13c)

∂̂u

∂ρ
=

1

Cr(ρ)

[(
∂Cr

∂ρ
− ∂Cy

∂ρ

)
u3 +

∂Cy

∂ρ
u2

]
(3.13d)

As in the original formulation the first experiment gives the measurement of ỹ and
u that is needed in the estimate of J(ρ). The estimate of the gradients of the input
and the output can be written as

∂̂y

∂ρ
=
∂y

∂ρ
+

S(ρ)

Cr(ρ)

[(
∂Cr

∂ρ
− ∂Cy

∂ρ

)
v3 +

∂Cy

∂ρ
v2

]
(3.14)

∂̂u

∂ρ
=
∂u

∂ρ
− S(ρ)Cy(ρ)

Cr(ρ)

[(
∂Cr

∂ρ
− ∂Cy

∂ρ

)
v3 +

∂Cy

∂ρ
v2

]
(3.15)
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which means that the two terms in the estimate of the cost function gradient become

ỹ
∂̂y

∂ρ
= (T (ρ)r− yd)

∂y

∂ρ
+ S(ρ)v1 ∂y

∂ρ
+

S(ρ)

Cr(ρ)

(
T (ρ)r − yd

) [(∂Cr

∂ρ
− ∂Cy

∂ρ

)
v3 +

∂Cy

∂ρ
v2

]
+

S2(ρ)

Cr(ρ)
v1

[(
∂Cr

∂ρ
− ∂Cy

∂ρ

)
v3 +

∂Cy

∂ρ
v2

]
(3.16)

u
∂̂u

∂ρ
= S(ρ)Cr(ρ)r

∂u

∂ρ
+ S(ρ)Cy(ρ)v1∂u

∂ρ
−

S2(ρ)Cy(ρ)r

[(
∂Cr

∂ρ
− ∂Cy

∂ρ

)
v3 +

∂Cy

∂ρ
v2

]
−

S2(ρ)Cy(ρ)

Cr(ρ)
v1

[(
∂Cr

∂ρ
− ∂Cy

∂ρ

)
v3 +

∂Cy

∂ρ
v2

]
(3.17)

From this result, equation (3.14) and (3.15) it can be seen that v1 plays the same role
as in the optimization of the control parameters in the original Iterative Feedback
Tuning formulation. The properties of v being a zero mean, weakly stationary
random noise sequence acting on the process will still ensure that the estimate of
J(ρ) is unbiased, but the variance of this estimate is likely to be smaller than in
the original formulation.

As in the case with the original formulation, controller tuning for disturbance
rejection with r = 0 only requires the first and second experiment. Furthermore,
the formulation of the derivatives in equation (3.12) renders the third experiment
unnecessary if Cr = Cy since the bracket in the first term becomes zero.

3.1.3 General Properties and Shortcomings of the Iterative

Feedback Tuning Algorithm

Both Iterative Feedback Tuning formulations are applicable to all types of controllers
when the data filters used in the estimators (3.7c) and (3.7d) or (3.13c) and (3.13d)
can be formulated as proper, stable transfer functions. The filters needed to con-
struct the gradient estimate of the in- and outputs for a typical implementation of
a two degree of freedom PID controller with derivative filter are listed in Appendix
A. The calculations in the algorithm are not restricted by the process as long as the
system is closed loop stable. Appropriate choices of γ and R are needed since these
affect the direction and the step size in the iterative improvement of the control
parameters. The process and the controller obviously affect the signals {u,y} which
together with λ influence the shape of the cost function.

3.1.3.1 Robustness and stability

Since no model of the system is estimated during the Iterative Feedback Tuning,
nominal or robust stability of the loop can not be evaluated prior to the implemen-
tation of the new controller. Problems may arise as a consequence of the design or
through the optimization itself. Choosing a performance criterion where the stability
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margin for the optimal controller is too small will cause the algorithm to converge
towards a non-robust controller. E.g. the disturbance rejection problem for a single
input/single output system should not have a performance cost function without
penalty on the input, since a minimum variance controller is inherently non-robust
Hjalmarsson (2002).

Robust control theory operates with the following sensitivity matrix

T(G,Cy(ρ)) =

[
GS(ρ)Cy(ρ) GS(ρ)
S(ρ)Cy(ρ) S(ρ)

]
(3.18)

In case the closed loop system is stable the generalized stability margin is

bG,Cy
= ‖T(G,Cy(ρ))‖−1

∞ (3.19)

In Vinnicombe (1993) it is shown that C2 will stabilize the loop if C1 stabilizes
T(G,C1) and if δv(C1, C2) < bG,C1 . The Vinnicombe distance, δv is defined as

δv = ‖(1 + C2C
∗
2 )−

1/2(C2 − C1)(1 + C1C
∗
1 )−

1/2‖∞ (3.20)

provided that winding number condition (3.21) is satisfied or δv = 1 otherwise1.
De Bruyne et al. (1999) use this result to adjust the step length, γi, in order to
ensure robust parameter update in the iterations of the Iterative Feedback Tuning
algorithm.

δv < 1 ⇔
{
‖1 + C∗

2C1‖ 6= 0 ∀ω, and

wno(1 + C∗
2C1) + η(C1) − η(C2) = 0

(3.21)

where wno(·) is number of counterclockwise encirclements of the origin in the Nyquist
plot, and η(·) is the number of unstable poles.

Extension of the Iterative Feedback Tuning algorithms in order to insure both
performance enhancement and a robust control design have been proposed. The
idea is to have a performance criterion which includes both the normal performance
criterion plus a term that promotes robustness. In Veres and Hjalmarsson (2002)
an approximation of the infinity norm of the sensitivity matrix provides robustness
where Procházka et al. (2005) uses a weighted two norm in order to tune the stability
for a critical frequency band.

3.1.3.2 Tuning a loop with a nonlinear process.

A nonlinear process may produce a more complex cost function which limits the
Iterative Feedback Tuning algorithm’s ability to converge to the global minimum,
but it will not prevent the calculations contained in each iteration. For a non-convex
optimization it is possible to end up in a local minimum. Having an initial controller
which is far from the optimal, it can be beneficial to start with a reference trajec-
tory which is closer to the initial, than the desired, and then gradually tighten the
requirement through the iterations in order to avoid local minima. For optimization
of the settling time an criterion that relax the penalty during the first part of the
time horizon can be used in a similar fashion. This type of criterion is elaborated

1C∗

i is the complex conjugated transposed of Ci
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in section 3.1.5. The Iterative Feedback Tuning algorithm can in the standard for-
mulations cope with some types of nonlinear systems in closed loop with a linear
controller (Hjalmarsson, 2002). This is due to the fact that the Iterative Feedback
Tuning algorithm generates the true gradient of the in- and outputs up to first or-
der. If the difference between experiments under normal conditions and the special
experiment in the gradient formation is small, this approximation will be sufficiently
good. It must be noted that a nonlinear system can be more sensitive to alternations
in disturbance signal or changes in operational regions, compared to the conditions
under which the controller where tuned. Sjöberg et al. (2003) suggest a modified set
of experiments for gradient generation which are developed for tuning of nonlinear
controllers and possible nonlinear processes. The number of experiments necessary
for forming the gradient is in this algorithm n+ 1 where n is the number of para-
meters in the controller that is subject to tuning, which renders the method useful
for optimizations of controllers with only a small number of parameters.

3.1.3.3 Tuning a multivariable loop.

In case the system under control has multiple inputs and outputs, Iterative Feedback
Tuning can still be applied (Hjalmarsson, 1999). An example of a case study with
tuning of a decoupling controller for a (2 × 2) system is presented in Gunnarsson
et al. (2003). Given a description of a general, discrete time, linear, time-invariant,
multiple input/multiple output system, which is depicted in figure 3.2(a), the model
can be given as:

(
y
w

)
= G




r
v
u


 (3.22a)

with the control law

w = C(ρ)u (3.22b)

where r ∈ Rnr is a vector of external signals as set points or reference trajectories,
v ∈ Rnv is unmeasurable process inputs as disturbances and noise, w ∈ Rnw is the
all the measured outputs, u ∈ Rnu is all the control signals and y ∈ Rny represents
all variables which are included in the performance criterion, which then can be
given as:

F (ρ) =
1

2N
E

[
N∑

t=1

y(t,ρ)TWty(t,ρ)

]
(3.23)

This structure of the cost function will allow both penalty on deviation from set
points and control signals. Assuming all the nw × nu blocks in the controller which
produce the pairing between controlled signal and manipulated variables are inde-
pendently parametized, then the relation between controller block Cij and the scalar
output yl is

(
yl

wij

)
= Ḡijl




r
v
uij


 (3.24a)

uij = Cijwij (3.24b)
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where Ḡijl is the interconnection between the real plant and the remaining blocks in
the controller. This system has the structure of a single input/single output system,
and the gradients of the cost function can thus be evaluated by the same type of
experiments as previously described. Only 1 + nu × nw experiments are required in
order to calculate an estimate of the gradients: First one normal experiment with
the desired reference signals, r1 = r, where the signals w1 and y1 are measured. This
experiment corresponds to the block diagram in Figure 3.2(a). Then one experiment
for each block, Cij in the controller. In these special experiments, which are used
to form the gradients, r = 0 and the output w1

ij is added to the control signal uij.
The measured output y2

l is then filtered through the gradient of the controller Cij

with respect to one of the parameters in ρ, in order to form the gradient of the
output yl with respect to that particular parameter. Figure 3.2(b) shows how the
gradients are produced by the second experiment. The number of experiments can
be quiet large for a multivariable system. A number of alternative approaches to
estimation of ∂y/∂ρ, which is not unbiased but still useful, is presented in Jansson
and Hjalmarsson (2004).

r
v

y
G

w

C

u

(a) Multivariable feedback loop

0

v2

y2
l

C ′
ij ŷ′lḠijl

w2
j

Cijw1
ij ++

u2
ij

(b) Gradient experiment

Figure 3.2. Figure (a) shows a block diagram for a general multivariable feedback loop.
Figure (b) shows a block diagram of how the individual gradients can be formed by
conducting a set of special experiments on the closed loop system.

3.1.4 Estimation of the Hessian

In order to take a Newton step in (3.2), it is necessary to know the Hessian of the cost
function with respect to the control parameters. Since the process model is unknown,
it is only possible to evaluate an estimate of the Hessian based on input/output
measurements. Hjalmarsson et al. (1994b) suggest the approximation in (3.25) of the
Hessian which can be calculated based on the available signals. This approximation
is the second derivative of the cost function (3.4) where squared derivative terms
have been disregarded. An advantage of using this approximation is that it will
produce a positive definite matrix. This estimate is, unlike the estimate of the cost
function gradient, biased. A Gauss-Newton iteration based on this approximation
has proven to be superior to a pure gradient iteration using R = I (Hjalmarsson
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et al., 1994b).

R =
1

N

N∑

t=1


 ∂̂yt

∂ρ

(
∂̂yt

∂ρ

)T

+ λ
∂̂ut

∂ρ

(
∂̂ut

∂ρ

)T

 (3.25)

The estimate in (3.25) is dependent on which of the two formulations of the iterative
feedback tuning that has been used to generate the gradients of the input and output.
In case the original formulation has been used the gradients are given by (3.8) and
(3.9) and the multiplications in (3.25) become:

∂̂y

∂ρ

(
∂̂y

∂ρ

)T

=
∂y

∂ρ

(
∂y

∂ρ

)T

+

S(ρ)

Cr(ρ)

[
∂y

∂ρ

((
∂Cr

∂ρ

)T

v3 −
(

∂Cy

∂ρ

)T

v2

)
+

(
∂y

∂ρ

)T (∂Cr

∂ρ
v3 − ∂Cy

∂ρ
v2

)]
+

S2(ρ)

C2
r (ρ)

[
∂Cr

∂ρ

(
∂Cr

∂ρ

)T

(v3)2 +
∂Cy

∂ρ

(
∂Cy

∂ρ

)T

(v2)2

]
−

S2(ρ)

C2
r (ρ)

[
∂Cr

∂ρ

(
∂Cy

∂ρ

)T

v3v2 +
∂Cy

∂ρ

(
∂Cr

∂ρ

)T

v2v3

]
(3.26)

∂̂u

∂ρ

(
∂̂u

∂ρ

)T

=
∂u

∂ρ

(
∂u

∂ρ

)T

−

S(ρ)Cy(ρ)

Cr(ρ)

[
∂u

∂ρ

((
∂Cr

∂ρ

)T

v3 −
(

∂Cy

∂ρ

)T

v2

)
+

(
∂u

∂ρ

)T (∂Cr

∂ρ
v3 − ∂Cy

∂ρ
v2

)]
+

S2(ρ)C2
y (ρ)

C2
r (ρ)

[
∂Cr

∂ρ

(
∂Cr

∂ρ

)T

(v3)2 +
∂Cy

∂ρ

(
∂Cy

∂ρ

)T

(v2)2

]
−

S2(ρ)C2
y (ρ)

C2
r (ρ)

[
∂Cr

∂ρ

(
∂Cy

∂ρ

)T

v3v2 +
∂Cy

∂ρ

(
∂Cr

∂ρ

)T

v2v3

]
(3.27)

If the refined formulation is used such that (3.14) and (3.15) describe the gradients
of the input and output, the multiplications in (3.25) will be:

∂̂y

∂ρ

(
∂̂y

∂ρ

)T

=
∂y

∂ρ

(
∂y

∂ρ

)T

+

S(ρ)

Cr(ρ)

∂y

∂ρ

((
∂Cr

∂ρ
− ∂Cy

∂ρ

)T

v3 +

(
∂Cy

∂ρ

)T

v2

)
+

S(ρ)

Cr(ρ)

(
∂y

∂ρ

)T ((∂Cr

∂ρ
− ∂Cy

∂ρ

)
v3 +

∂Cy

∂ρ
v2

)
+

S2(ρ)

C2
r (ρ)

[(
∂Cr

∂ρ
− ∂Cy

∂ρ

)(
∂Cr

∂ρ
− ∂Cy

∂ρ

)T

(v3)2 +
∂Cy

∂ρ

(
∂Cy

∂ρ

)T

(v2)2

]
−

S2(ρ)

C2
r (ρ)

[(
∂Cr

∂ρ
− ∂Cy

∂ρ

)(
∂Cy

∂ρ

)T

v3v2 +
∂Cy

∂ρ

(
∂Cr

∂ρ
− ∂Cy

∂ρ

)T

v2v3

]

(3.28)
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∂̂u

∂ρ

(
∂̂u

∂ρ

)T

=
∂u

∂ρ

(
∂u

∂ρ

)T

−

S(ρ)Cy(ρ)

Cr(ρ)

∂y

∂ρ
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∂Cr

∂ρ
− ∂Cy

∂ρ

)T

v3 +

(
∂Cy

∂ρ

)T

v2

)
−

S(ρ)Cy(ρ)

Cr(ρ)

(
∂y

∂ρ

)T ((∂Cr

∂ρ
− ∂Cy

∂ρ

)
v3 +

∂Cy

∂ρ
v2

)
+

S2(ρ)C2
y (ρ)

C2
r (ρ)

[(
∂Cr

∂ρ
− ∂Cy

∂ρ

)(
∂Cr

∂ρ
− ∂Cy

∂ρ

)T

(v3)2 +
∂Cy

∂ρ

(
∂Cy

∂ρ

)T

(v2)2

]
−

S2(ρ)C2
y (ρ)

C2
r (ρ)

[(
∂Cr

∂ρ
− ∂Cy

∂ρ

)(
∂Cy

∂ρ

)T

v3v2 +
∂Cy

∂ρ

(
∂Cr

∂ρ
− ∂Cy

∂ρ

)T

v2v3

]

(3.29)

It can be seen that the bias in (3.25) is due to the squared terms of v2 and v3 which
will give a positive contribution, where all other terms which involve these two noise
signals will have an expected value of zero, if the noise is zero mean. The effect
of the bias depends on how dominant these bias terms are compared to the exact
realization of ∂y/∂ρ (∂y/∂ρ)T and ∂u/∂ρ (∂u/∂ρ)T . The positive bias term will reduce the
step size in (3.2).

In Solari and Gevers (2004) it is shown that an unbiased estimate of the Hessian
can be obtained by increasing the number of experiments. As shown above, it is
the squared noise signals in the estimate of the gradients that causes problems. The
solution is to have an experiment no 4 and 5 which are conducted as experiments
no 2 and 3 of either of the two formulations of the Iterative Feedback Tuning. In

this way a second estimate of the gradients ∂̂y/∂ρ and ∂̂u/∂ρ can be formed based
on the two last experiments. This will produce two sets of gradients which have
different and uncorrelated noise content. The Hessian can then be formed without
bias by multiplication of these two sets of independent gradient estimates. Solari
and Gevers (2004) further show how the second order derivatives can be estimated
from further close loop experiments on the system, but this approach is limited to
the case where the controller is tuned for disturbance rejection only.

3.1.5 Alternative Optimization Criteria

By introducing an alternative formulation of the cost function, F , the Iterative
Feedback Tuning method can be tailored to fit a specific optimization criterion.
The demand that needs to be imposed on the formulation of the cost functions, is
that it has to be differentiable with respect to the controller parameters. Further
more, it is required that a consistent estimate of the cost function gradient can be
constructed based on the designed experiments.

A frequency weighting can be included in the cost function in order to handle
non-minimum phase or unstable controllers (Hjalmarsson et al., 1998).

F (ρ) =
1

2N
E

[
N∑

t=1

(Ly ỹt(ρ))2 + λ
N∑

t=1

(Luut(ρ))2

]
(3.30)
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where Ly and Lu are filters. Lequin (1997) suggests a modification of the cost
function where non-negative time dependent weights are multiplied on both the
squared deviation between the desired and achieved output and on the squared
control action.

F (ρ) =
1

2N
E

[
N∑

t=1

wy
t ỹt(ρ)2 + λ

N∑

t=1

wu
t ut(ρ)2

]
(3.31)

Letting these weights be equal zero for the t ∈ {1, t0 − 1} and one for t ∈ {t0, N}
gives the following cost function where the time up till t0 are referred to as the mask.

F (ρ) =
1

2N
E

[
N∑

t=t0

ỹt(ρ)2 + λ

N∑

t=t0

ut(ρ)2

]
(3.32)

This formulation of the cost function can be convenient when optimizing the settling
time (Lequin et al., 1999).

In case it is desired to penalize the control velocity and not the position, the cost
function can be formulated using the control move.

F (ρ) =
1

2N
E

[
N∑

t=1

ỹt(ρ)2 + λ

N∑

t=1

∆ut(ρ)2

]
(3.33)

=
1

2N
E

[
N∑

t=1

ỹt(ρ)2 + λ

(
N∑

t=1

ut(ρ)2 +

N∑

t=1

ut−1(ρ)2 − 2

N∑

t=1

ut(ρ)ut−1(ρ)

)]

The partial derivatives are then given by

J(ρ) =
1

N
E

[
N∑

t=1

ỹt(ρ)
∂ỹt

∂ρ
+

λ

N∑

t=1

(
ut(ρ)

∂ut

∂ρ
+ ut−1(ρ)

∂ut−1

∂ρ
− ut(ρ)

∂ut−1

∂ρ
− ut−1(ρ)

∂ut

∂ρ

)]

=
1

N
E

[
N∑

t=1

ỹt(ρ)
∂ỹt

∂ρ
+ λ

N∑

t=1

(ut(ρ) − ut−1(ρ))

(
∂ut

∂ρ
− ∂ut−1

∂ρ

)]
(3.34)

It is seen from (3.34) that substituting the control value by the control move does
not change the method significantly. The same signals are needed for the estimation
of the cost function gradient, only the index is shifted. This index shift does not
cause problems since both u0 and y0 are known.

3.2 Contributions to the Iterative Feedback Tun-

ing Method

In the following chapters, novel contributions to the Iterative Feedback Tuning
method will be presented. This chapter have indicated that Iterative Feedback
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Tuning is a matured methodology, and that several researchers have contributed
to analyze the properties of the method and extending both the basis and areas of
application, e.g. robustness analysis and application for multivariable system. The
results presented in the following falls into two separate categories, which therefore
have been separated into two different parts.

The first contribution does not change the tuning method algorithm, but investi-
gate the application on two control structures where application of the Iterative
Feedback Tuning is novel. The first of these control structures is inventory control.
In the control law for the inventory controller, the process model is imbedded, hence
a nonlinear controller is possible. In order to correct for modeling errors the control
law includes a term with a classical control action e.g. proportional and integral
actions. The tuning of the proportional gain and the integral time in a inventory
controller can not be performed based on classical tuning rules, due to the overall
structure of the control law. Iterative Feedback Tuning of these parameters has been
investigated and successfully performed for a multivariable level controller on a pilot
plant. These results are presented in chapter 4. The second control structure where
the application of Iterative Feedback tuning has been investigated is for tuning the
feedback gain and the observer gain in a state space system description of a feedback
loop. The optimal value of these two gains has an analytical solution in case the
system model and the noise properties are known.

The second contribution is related to the general problem of tuning a controller
for disturbance rejection. Iterative Feedback Tuning is in principle able to handle
the disturbance rejection problem, since the noise present in the first experiment in
an iteration drives the optimization. Unfortunately the tuning method may exhibit
a very slow rate of convergence for this type of problems, since the variance of the
gradient estimates of the in- and outputs may be large compared to their mean
values. Solutions for speeding up the convergences, and hence prevent a very large
number of plant experiments, have been focused on the application of pre-filters in
the performance cost function. This thesis presents a solution based on the applica-
tion of external perturbation signals in order to introduce more information content
in data. This contribution is reported in chapter 6 and 7. In the latter chapter,
a more elaborate analysis of the convergence properties of the Iterative Feedback
Tuning method for the disturbance rejection problem is given. This includes both
the nominal case and the tuning with external perturbations. An algorithm for
design of the optimal spectral properties for the perturbation signal is part of this
contribution.
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Part II

Iterative Feedback Tuning for
More Complex Control Structures
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4

Data Driven Tuning of Inventory
Controllers

Abstract

A systematic method for criterion based tuning of inventory controllers based on
data-driven Iterative Feedback Tuning is presented. This tuning method circumvent
problems with modeling bias. The process model used for the design of the inven-
tory control is utilized in the tuning as an approximation to reduce time required
on experiments. The method is illustrated in an application with a multivariable
inventory control implementation on a four tank system.
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4.1 Introduction

The purpose of this paper is to present a systematic method for tuning inventory
controllers with Iterative Feedback Tuning. This data-driven tuning approach op-
timizes the actual closed loop performance hence circumventing problems due to
modelling bias, that is part of any model for a real system, which would affect
the control design. Furthermore, the process model will be utilized in the tuning
algorithm in order to decrease time for plant experiments.

Inventory process control is based on passivity theory which states that the dynam-
ical behavior of a system can be classified in terms of the conservation, dissipation
and transport of positive extensive thermodynamic properties of the system. In pas-
sive systems, the stored amount of this property in any given time interval, is always
lower or at most equal to the amount delivered to the system during the same time
(Sira and Angulo, 1997). The theory is closely connected to optimization of just in
time production of supply chains. In the work by Ydstie and coworkers, passivity
theory was first applied on process systems and a formal connection was established
between the macroscopic thermodynamics of process systems and passivity theory
of nonlinear control (Ydstie and Alonso, 1997). In continuation Farschman et al.
(1998) utilized the structure of first principle models in formulation of a nonlinear
control law which has the form of output feedback linearization for which Byrnes
et al. (1991) has proven closed loop stability through fulfillment of the passivity
inequality for minimum phase systems and certain classes of nonlinear minimum
phase systems. Inventory control has proven a useful methodology to synthesize a
complex control law with a simple transfer function in the feedback and have been
tested for a number of applications (Dueñas, 2004; Farschman et al., 1998).

The problem of tuning the parameters in the feedback loop in the inventory control
law is an area which has not received much attention. Dueñas (2004) states that
classic tuning rules for linear systems can be applied in case where a perfect model
of the system is available and all inventories are used for control, in which case
perfect feedback linearization is achieved. Tuning of systems where a biased process
model has been used in the design of the inventory controller will be addressed in
this paper. The approach which will be presented uses the process model in the
control design but a data driven method for tuning performance of the closed loop
in order to compensate for modelling errors. Iterative Feedback Tuning, presented
in Hjalmarsson et al. (1994b) for linear SISO systems, is an applicable methodology
which have since been matured and developed (Hjalmarsson, 2002) and tested in a
number of papers (Hjalmarsson et al., 1998; Lequin et al., 1999, 2003).

This paper is organized with a short introduction on the formulation of the control
law for an inventory controller for a SISO system in the following section. A SISO
formulation is used to ease notation but the remaining part of paper will focus
on MIMO formulation due to the nature of the case study. Section 4.3 contains
a formulation and problem statement for criterion based controller tuning which is
followed by section 4.4 explaining Iterative Feedback Tuning. A case study on tuning
a multivariable inventory controller implemented on a pilot scale of the quadruple
tank process as given in section 4.5 before the concluding remarks.
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4.2 Inventory Control

An inventory, υ, is represented by a physical extensive property and its general
balance is given by

(
Accumul.

of υ

)
=

(
Input flow

of υ

)
−
(

Output flow

of υ

)

︸ ︷︷ ︸
φ(d,x,u)

+

(
Generation

of υ

)
−
(

Consump.

of υ

)

︸ ︷︷ ︸
p(x)

(4.1)
where a distinction is made between φ(d, x, u) and p(x) which represent transport
to the system and production in the system respectively. x, u and d is the state, the
input and the disturbances for the associated general nonlinear dynamical system

ẋ = f(x) + g(d, x, u) x(0) = x0 (4.2a)

y = h(x) (4.2b)

The function f(·) describes the internal state evolution due to generation or con-
sumption, the function g(·) describes the external contribution to the state evolution
and h(·) maps the state to the output. Let υ be an arbitrary inventory associated
with the dynamic system (4.2), then the dynamic behavior is given by

dυ(x)

dt
=
dυ(x)

dx
f(x)

︸ ︷︷ ︸
Lf υ

+
dυ(x)

dx
g(d, x, u)

︸ ︷︷ ︸
Lgυ

(4.3)

Where the terms Lfυ and Lgυ are directional derivatives. Equation (4.1) shows how
φ and p are represented in the conservation law balance. Consequently, inventory
systems can be written in the same form as the dynamic system (4.2).

dυ

dt
= p(x) + φ(d, x, u) (4.4a)

υ = w(x) (4.4b)

which is the notation used for inventory control (Farschman et al., 1998). The term
p denotes the production rate of the inventory and let p∗ represent a stationary
value of the production rate. The term φ is the supply rate for the system. The
connection between these and the directional derivatives are given as

p(x) = Lfυ(x) + p∗, p∗ = p(0) (4.5)

φ(d, x, u) = Lgυ(x) − p∗ (4.6)

The inventory controller with proportional action on the feedback e(t) = (υ(t) − υset(t))
or with on-off control is given by control laws (4.7) and (4.8) respectively.

φ(d, x, u) + p(x) = −Kce(t) (4.7)

φ(d, x, u) + p(x) =





δ if e(t) < −ǫ
0 if −ǫ ≤ e(t) ≤ ǫ

−δ if e(t) > ǫ
(4.8)
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In case a perfect model has been used for the inventory, a proportional controller
will be sufficient and efficient in rejecting disturbances and tracking set points given
a proper value of the proportional gain. In case the model is biased, which is
the case for all real model based control implementations, it may be necessary to
include integral action in the feedback control. This formulation is given in (4.9).
Likewise, derivative action could be a part of the feedback, but given a reasonable
process model the feed forward part of the inventory control renders such action
unnecessary.

φ(d, x, u) + p(x) = −Kc

(
e(t) +

1

τI

∫ t

0

e(τ)dτ

)
(4.9)

It is seen that the inventory formulation can yield a complex and nonlinear controller
depending on the model for the inventory. The problem of tuning the inventory con-
troller is then to select proper parameters for the feedback part of the controller,
which will provide sufficient closed loop performance.

4.3 Criterion Based Controller Tuning

Given a description of a closed loop system where the controller, C(ρ) is acting on
the multivariable discrete linear time invariant system G, the transfer functions are
given as:

y(ρ) = (1 + C(ρ)G)−1C(ρ)Gr + (1 + C(ρ)G)−1v

= T(ρ)r + S(ρ)v (4.10a)

u(ρ) = (1 + C(ρ)G)−1C(ρ)r− (1 + C(ρ)G)−1C(ρ)v

= S(ρ)C(ρ)r − S(ρ)C(ρ)v (4.10b)

where r is the reference value for the measurements y(ρ), u(ρ) is the actuator vari-
able and v is a noise signal for the system which is presented in deviation variables.
S(ρ) and T(ρ) are the sensitivity and the complementary sensitivity functions re-
spectively. Given a desired reference model for the closed loop Td, the desired
response from the loop is given as yd = Tdr. The performance criterion can then
be formulated as a typical quadratic cost function

F (ρ) =
1

2N
E

[
N∑

t=1

(yt(ρ) − yd
t )

2

]
(4.11)

where E[·] denotes the expectation with respect to a weakly stationary disturbance,
since the measurement y(ρ) is affected by the process and measurement noise. The
formulation in (4.11) gives minimal variance control. Penalty on the control position
or its increments can also be part of such a performance criterion as well. The
optimal controller will be the set of controller parameters, ρ, that minimizes the
cost function.

ρopt = arg min
ρ
F (ρ) (4.12)
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Given a convex cost function, this minimization is equivalent to solving

0 = J(ρ) =
∂F

∂ρ
=

1

N
E

[
N∑

t=1

(yt(ρ) − yd
t )

T ∂yt

∂ρ

]
(4.13)

This equation can be solved iteratively by the following scheme

ρi+1 = ρi − γiR
−1
i J(ρi) (4.14)

where R is some positive definite matrix. In case R = I the algorithm steps in the
steepest decent direction. In case R = H(ρ) = ∂2F/∂ρ2 or an approximation to the
Hessian, the Newton or Gauss-Newton algorithm appears. γi determines the step
length and the choice of R and γ will thus affect the convergence properties of the
method (Hjalmarsson et al., 1994b; Nocedal and Wright, 1999).

The problem involved with the optimization of performance through this scheme
is that the actual process model often is unknown. That implies that the sensitivity
functions, T and S, are unknown and it is therefore not possible to calculate ∂y/∂ρ

and thus J(ρ). Iterative Feedback Tuning solves this problem, and offers a purely
data driven algorithm. With respect to tuning of inventory controllers with imper-
fect process models, the true sensitivity function is unknown. This constitutes a
problem since it is the performance of the actual loop that is subject to optimiza-
tion, and hence motivates application of the Iterative Feedback Tuning.

4.4 Iterative Fedback tuning

The key contribution in Iterative Feedback Tuning is that it supplies an unbiased
estimate of the cost function gradient without estimating a plant model, Ĝ, given
that the noise v is a zero mean, weakly stationary random signal (Hjalmarsson et al.,
1998). Using an estimate of the Jacobian in (4.14) instead of the analytical Jacobian,
as a stochastic approximation method, will still make the algorithm converge to a
local minimizer, provided that the estimate is unbiased, the Jacobian, J(ρ), is a
monotonically increasing function and the sequence of γi fulfills condition (4.15)
(Robbins and Monro, 1951).

∞∑

i=1

γ2
i <∞,

∞∑

i=1

γi = ∞ (4.15)

This condition is fulfilled by having γi = a/i where a is some constant. This method
however has a convergence rate which is too slow for most industrial purposes
(Mǐsković, 2006). In cases where the variance of the Jacobian approaches zero due
to a large number of data points classic Gauss-Newton optimization with γi = 1,
may be used instead to speed up convergence.

By differentiation of equation (4.10) it can be shown that

∂y

∂ρ
= S(ρ)G

∂C

∂ρ
(r − y(ρ)) (4.16)
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The data needed for estimation of the gradient J(ρ) can therefore be generated
from two types of closed loop experiments on the system. First the system is run
in nominal mode which reflects the normal operation for which good performance is
desired, and the sequence y1 is collected. Secondly a set of special experiments are
performed in order to get information of ∂y/∂ρ. Here the reference is set to zero and
the signal e = r − y1 filtered through ∂C/∂ρi is added to the control signal in order
to get an estimate of ∂y/∂ρi cf. (4.16). This type of experiment has to be performed
as many times as the number of parameters in ρ in the controller (Hjalmarsson
and Birkeland, 1998). For SISO systems the number of necessary experiments are
reduced to one, since scalar linear operators commute.

∂y

∂ρ
= S(ρ)G

∂C

∂ρ
(r − y) = C(ρ)−1∂C

∂ρ
S(ρ)GC(ρ)(r − y(ρ)) (4.17)

that implies that the gradient estimate can be formed by filtering y2 through C(ρ)−1 ∂C
∂ρ

when the reference signal in the gradient experiments is r2 = r1 − y1 hence only one
gradient experiment is since the filtering is not performed prior to the experiment.
Jansson and Hjalmarsson (2004) suggests this strategy for MIMO system as an ap-
proximation and provides sufficient conditions for local convergence in the vicinity
of the optimum. In case this approximation causes the algorithm not to step in
a descent direction, due to the error caused by non commuting matrices, the full
method have to be applied.

The requirements on the controller are that the controller transfer function itself
and ∂C

∂ρ
or C(ρ)−1 ∂C

∂ρ
are proper stable filters. This is the case for tuning proportional

and integral action in the feedback for inventory control. Tuning of the feed forward
part can be performed too if this requirement is fulfilled.

In order to reduce the time spent on experiments in each iteration in Iterative
Feedback Tuning of inventory controllers, a process model can be utilized. The
first experiment which reflects the normal operation, for which good closed loop
performance is desired, has to be performed on the actual system. The gradient
experiments where data from the first experiments are used can then be performed
by simulation. This will produce a biased but noise free estimate of the gradient of
the output and hence J(ρ). Even though this approximation is biased, convergence
may be faster since the gradient will be deterministic while the gradient estimate
from classic Iterative Feedback Tuning may be affected by a poor signal to noise
ratio and hence poor convergence properties (Huusom et al., 2007a).

4.5 Case Study - Four Tank System

The quadruple tank process in Fig. 4.1 has received attention because it shows inter-
esting multivariable characteristics which permit illustration and analysis of different
control concepts. In spite of its simple model (4.18) derived by mass balances and
the Bernoulli’s flow equation, it exhibits both minimum phase and non-minimum
phase behavior (Johasson, 2000). Water can be directed in different ways to the
tanks dependent on the position of the three-way valves ϑi and the flow rate from
the reservoir can be manipulated through a centrifugal pump. A pilot plant scale
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of this process is available at CAPEC, Dept. of Chem. Eng. for testing control
structures for which the physical parameters are presented in table 4.1.

dV1

dt
= −a1

√
2gh1 + a3

√
2gh3 + ϑ1F1 (4.18a)

dV2

dt
= −a2

√
2gh2 + a4

√
2gh4 + ϑ2F2 (4.18b)

dV3

dt
= −a3

√
2gh3 + (1 − ϑ2)F2 (4.18c)

dV4

dt
= −a4

√
2gh4 + (1 − ϑ1)F1 (4.18d)

The model (4.18) is formulated in terms of the inventory being the liquid volume in
each tank. The actual measurement from the process is the liquid level. This process
therefore has a very simple transformation between the underlying dynamical system
and the model in terms of inventories.

Vi = Aihi, i ∈ {1, 2, 3, 4} (4.19)

In Andrade (2007) a centralized multivariable inventory control law for this system
has been derived based on the model (4.18). The static model has been validated on
steady state plant data and linear correlations, with a squared Pearson correlation
coefficient of 0.999, have been fitted for hi vs. F 2

j in order to increase the model

Figure 4.1. Schematic diagram of the quadruple tank process.

Symbol Value Units Parameter

ai 1.23 cm2 Area of the outlet pipes
Ai 380 cm2 Transversal area for each tank
g 981 cm/s2 The acceleration of gravity

Table 4.1. Physical parameters for the four tank pilot plant
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accuracy for the flow expressions, which in steady state are

hi =
1

2ga2
i

F 2
j (4.20)

The valve characteristics were investigated around the desired operation point but
the model does not include the nonlinear behavior of the three way valves. These
investigations show that despite some effort in the modeling of a relative simple
system, the feed forward action from the inventory controller is not sufficient and
both proportional and integral action will be required in the feedback in order to
eliminate offset from e.g. a step response.

The objective is to control the inventories for the two lower tanks i.e. no. 1
and 2 see Fig. 4.1. The manipulated variables are the two flow rates F1 and F2

and the three way valves are considered as disturbance variables and will remain
in a constant position through out the test. From the tank model the controlled
inventories are given as:

φ1(ϑ,h,F) = −a1

√
2gh1 + a3

√
2gh3 + ϑ1F1 (4.21a)

φ2(ϑ,h,F) = −a2

√
2gh2 + a4

√
2gh4 + ϑ2F2 (4.21b)

since the production term is zero for this process. Utilizing the static formulation
of (4.18)

φ1(ϑ,h,F) = −a1

√
2gh1 + (1 − ϑ2)F2 + ϑ1F1 (4.22a)

φ2(ϑ,h,F) = −a2

√
2gh2 + (1 − ϑ1)F1 + ϑ2F2 (4.22b)

Choosing both proportional and integral action on ei = Vi(t) − V set
i in the feedback

loop, and isolating the manipulated variable gives the following multivariable control
law.

[
ϑ1 (1 − ϑ2)

(1 − ϑ1) ϑ2

] [
F1

F2

]
=


−K1

(
e1(t) + 1

τI1

∫ t

0
e1(τ)dτ

)
+ a1

√
2g(h1)

−K2

(
e2(t) + 1

τI2

∫ t

0
e2(τ)dτ

)
+ a2

√
2g(h2)


 (4.23)

It is clear that this control law can not be solved for any arbitrary setting of the three
way valves, since ϑ1 + ϑ2 = 1 renders this matrix singular and hence not invertible.
Johasson (2000) shows that ϑ1 + ϑ2 < 1 gives non-minimum phase behavior while
the system is in minimum phase for ϑ1 + ϑ2 > 1.

Implementation of the inventory controller on the pilot plant can not be done
directly since the flow rates are not free to be manipulated directly. A set of lower
level SISO PI-controllers are implemented to adjust the speed of rotation for the
centrifugal pumps in order to achieve the desired flow rates calculated from the
inventory controller, which will act at a supervisory control layer for the underlying
regulatory SISO loops. The control structure implemented on the tank system is
depicted in Fig. 4.2. The tuning of the regulatory PI-control loops is performed
based on IMC tuning rules and a first order model for the pump dynamics based on
step response experiments. The parameters are Kc = 0.8 s−1 and τI = 8 s for the
loop controlling F1. For the second loop controlling F2 they are Kc = 0.7 s−1 and
τI = 8 s. Both the control layers have been executed every 4 seconds. In practice
this cascade structure is not effective if the underlying loops are not executed at
least ten times faster than the outer loop (Wittenmark et al., 1995).
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Figure 4.2. Diagram for the implemented control structure on the four tank pilot plant.

Tuning

The design objective for the tuning is chosen as a servo problem i.e. tracking a
desired trajectory. A step change is introduced simultaneously to the two lower
tanks, operating at steady state at the nominal operating point. After one hour
the reference is stepped back to the nominal value and the experiment ends after
a total of two hours. For a sample time of 4 seconds this gives 1800 data points
for each of the output measurements. The nominal operating point, which is in the
non-minimum phase region, is defined by

[
hset

1

hset
2

]
=

[
24 cm
21 cm

]
,

[
ϑ1

ϑ2

]
=

[
0.14
0.24

]
,

The step changes applied in the reference signal are a decrease ∆hset
i = 2 cm i.e. to

a level of 22 and 19 cm in the two tanks respectively.
It is desired that the two outputs of the lower tanks perform as the following

second order transfer function

T d
i (s) =

KT d

τ 2
T ds2 + 2τT dξT ds+ 1

, i ∈ {1, 2} (4.24)

where KT d = 1, τT d = 30 and ξT d = 1.3 in order to have a over damped system with
DC-gain equal to one and rise time of approximately 150 seconds.

Initially the system is implemented with the following controller parameters Kc =
K1 = K2 = 0.0139 s−1 and τI = τI1 = τI2 = 200 s. Performing the performance ex-
periments on the pilot plant gave the responses in Fig. 4.3 for which the value
of the cost function was evaluated to F (ρ0) = 0.0574. The initial set of controller
parameters results in an over shoot, and a slower response than desired.

Tuning of a controller in operation on a real process requires several repeated
experiments and is therefore rather time-consuming. To save time and avoid noise,
the gradient experiment are simulated and only the first experiment in each iteration
is conducted as a plant experiment. This is reasonable since a very good process
model is available. The gradient experiment is further more the SISO formulation of
the gradient experiment, which also introduces an error in the gradient experiment.
This is necessary since the data filters from the gradient of the controller causes
problems, while filtering though C−1 ∂C

∂ρ
does not. Despite these error sources, the

tuning has been successfully performed. The results are presented in table 4.2 and
the response using the final set of controller parameters are shown in figure 4.4.
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Controller K1 · 103 τ I1 K2 · 103 τ I2 Fsim Fexp

C0 13.9 200 13.9 200 0.0279 0.0574
C1 15.2 171 19.5 505 0.0220 0.0502
C2 18.6 237 19.8 1275 0.0128 0.0365
C3 23.1 346 14.4 1401 0.0097 0.0384
C4 26.5 483 12.3 1363 0.0100 0.0364

Table 4.2. Result of the iterative controller tuning. For each controller the parameters
are presented together with the value of the performance cost function based on both
a noise free simulation and an experiment on the pilot plant.

From the values of the cost function, F , it can be concluded that the method does
decrease the specified performance cost based on evaluation of the cost from pilot
plant experiments and noise free simulations. The value of the cost function has
dropped 37 % in 4 iterations based on the pilot plant experiments and from Fig.
4.4 it is clear that the tuning has reduced the over shoot substantially. It is seen
that the control has become more aggressive which corresponds well with the min-
imal variance design of the cost function. From the development of the controller
parameters it is clear that the dynamics of the two separate lower tanks is different
which renders the parameters from these two loops deviate. The coupling between
the tanks through the three way valves may also contribute to produce a compli-
cated curvature of the cost function, which is indicated by the non monotonous
development of the parameters.

4.6 Conclusions

Criteria based tuning of inventory controllers has to rely on data driven methods
due to modeling bias. Iterative Feedback Tuning has been shown to be an amenable
method for tuning the feedback in inventory controllers, and the process model from
the design of the inventory control can be used to simplify the steps in the iteration
by simulating the gradient experiments. This approximation will give bias to the
gradient estimate but the estimate will be noise free. Tuning of a multivariable
inventory controller implemented on a four tank system show a clear improvement
in performance in only 4 iterations.
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Figure 4.3. Dynamic response of the pilot plant to +2 cm, simultaneous step changes
in the reference to the two lower tanks. The responses are shown for the liquid level
in all four tanks together with the desired response on the lower tanks. Furthermore
the responses in the manipulated variable from the inventory controller are given. The
implementation of the controller is based on the initial set of controller parameters.
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Figure 4.4. Dynamic response of the pilot plant to +2 cm, simultaneous step changes
in the reference to the two lower tanks. The responses are shown for the liquid level
in all four tanks together with the desired response on the lower tanks. Furthermore
the responses in the manipulated variable from the inventory controller are given. The
implementation of the controller is based on the tuned set of controller parameters after
4 iterations.
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5

Data Driven Tuning of State
Space Controllers with Observers

Abstract

Iterative Feedback Tuning is a purely data driven tuning algorithm for optimizing
control parameters based on closed loop data. The algorithm is designed to pro-
duce an unbiased estimate of a performance cost function gradient and the control
parameters are iteratively improved in order to achieve optimal loop performance.
This tuning method has been derived for and is widely applied on systems using a
transfer function representation.

In this paper equivalent forms are found for a control system in a state space
representation, with state observer and proportional feedback, and in a transfer
function representation. It is shown how the parameters in the transfer function,
describing the feedback control of a state space system, can be tuned by Iterative
Feedback Tuning. A simulation example illustrates that the tuning converges to
known analytical solutions for the feedback control gain and the Kalman gain in the
state observer.
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5.1 Introduction

The need for optimal process operation has rendered methods for optimization of
control loop parameters an active research area. Much attention has been directed
in performing control oriented system identification, which implies model estimation
from closed loop data (Schrama, 1992b; Hjalmarsson et al., 1994a; Gevers, 2002).
Optimizing the parameters in a control loop is an iterative procedure since the data
from one experiment will depend on the current controller, and repeated iteration
is necessary for the loop performance to converge to a minimum. Estimating a
model from closed loop data requires special techniques (Ljung, 1999) and several
algorithms have been published which handle the iterative scheme of closed loop
system identification and model based control design (Zang et al., 1995; Gevers
et al., 2003a; de Callafon, 1998). An alternative would be a direct data driven
approach to tuning of the control parameters without utilizing a model estimate.

Data driven tuning methods have mainly been reported for systems given in trans-
fer function form. Examples are the Iterative Feedback Tuning method (Hjalmarsson
et al., 1998) and in recent years the Correlation based Tuning (Karimi et al., 2004)
and Virtual Reference Feedback Tuning (Campi et al., 2002). Controllers which
are based on state space description of the system model are mainly tuned based
on an estimated process model. Hence the potential advantages by using a direct
tuning method are not exploited. These advantages are that direct tuning often is
computational less demanding than model identification and model based control
design. The direct tuning methods can be used even when insufficient knowledge of
the model structure limits the performance, where the system is tuned based on the
certainty equivalence principle.

This paper intends to investigate the use of the direct tuning method, Iterative
Feedback Tuning, for optimization of the feedback gain and the state observer gain
for a control loop based on a state space system description. Based on the certainty
equivalence principle, an analytical solution for optimal values of these two gains
exists. This renders the loop performance sensitive to model errors and bias. The
data driven tuning in this paper will only be investigated for systems with full
process insight.

The perspective for simple tuning methods for control structures based on state
space descriptions is very interesting. The majority of advanced control strategies
are today model based and rely on state space descriptions. Direct controller tuning
may serve as an interesting alternative, when fine tuning a control loop or when a
degrading loop performance is observed.

This paper is organized as follows. In Section 5.2 a short introduction to the
system and control loop description is given together with the optimal model based
design. In Section 5.3 the data driven tuning method, Iterative Feedback Tuning,
is presented and Section 5.4 analyses the state space formulation in relation to the
tuning method. An illustrative simulation example is given in Section 5.5 before
final conclusions are drawn.
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5.2 The State Space Control Loop

Given the following linear, discrete time, single input/single output, time-invariant
system description:

xt+1 = Axt + But + ep
t , ep

t ∈ Niid(0,Pep)

yt = Cxt + em
t , em

t ∈ Niid(0, σ
2
em)

(5.1)

where xt is the system states, ut is the manipulated variable and yt is the system
output at time instant t ∈ Z. ep

t represents process noise and em
t is measurement

noise. The cross correlation between ep
t and em

t will be assumed zero in this paper.
It is desired to control this system using the proportional feedback law

ut = −Lxt +Mrt (5.2)

where L is a constant feedback gain matrix and M is a controller gain for the
reference signal. Since the exact value of the states are not known, an observer is
used to generate state estimates based on measurements of the process output and
a process model

xt+1 = Âxt + B̂ut + ep
t , ep

t ∈ Niid(0, P̂ep)

yt = Ĉxt + em
t , em

t ∈ Niid(0, σ̂
2
em)

(5.3)

The observer has the form of the predictive Kalman filter with the constant gain
matrix K, assuming stationary conditions.

x̂t+1|t = Âx̂t|t−1 + B̂ut + K
(
yt − Ĉx̂t|t−1

)

ut = − Lx̂t|t−1 +Mrt

(5.4)

The structure of the state space feedback loop with observer, consisting of equation
(5.1) and (5.4), is shown in Figure 5.1. In order to have a static gain from the
reference to the process output equal to one, the following requirements can be
derived based on an assumption of full state information

M =

[
Ĉ
[
I − Â + B̂L

]−1

B̂

]−1

(5.5)

Introducing the state estimation error x̃t = xt − x̂t, and assuming full process knowl-
edge, the system can be represented by (5.6) which provides a convenient description
with a more clear distinction between feedback control and state estimation dynam-
ics (Åström, 1970):

xt+1 = (A− BL)xt + B(Lx̃t +Mrt) + ep
t , ep

t ∈ Niid(0,Pep)

x̃t+1 = (A− KC) x̃t − Kem
t + ep

t , em
t ∈ Niid(0, σem)

ut = − L(xt − x̃t) +Mrt

yt = Cxt + em
t

(5.6)

If the system (5.1) is stabilizable and detectable a set {L,K} exists which renders
the system stable (Kwakernaak and Sivan, 1972). Hence if optimal values for the
feedback and Kalman filter gains are used stability is guaranteed. Computation of
these optimal gains are shown in the following subsection.
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Figure 5.1. Structure of a state space feedback loop with an observer.

5.2.1 Optimal model based design

Optimal values for both the observer gain K and the feedback gain L exist and
have known analytical solutions (Anderson and Moore, 1989; Grewal and Andrews,
1993).

The optimal, stationary value for the gain matrix in the predictive Kalman filter
can be evaluated based on the process model and information of the noise intensity.
The stationarity condition is indicated by the ∞ subscript on the gain matrix and
the covariance matrix on the state prediction error P∞.

K̂∞ =ÂP̂∞Ĉ
T
[
ĈP̂∞Ĉ

T
+ σ̂2

em

]−1

P̂∞ =ÂP̂∞Â
T

+ P̂ep − ÂP̂∞Ĉ
T
[
ĈP̂∞Ĉ

T
+ σ̂2

em

]−1

ĈP̂∞Â
T

(5.7)

The equation for the state prediction error variance matrix is an algebraic Riccati
equation.

The optimal value for the controller gain depends on the optimization criterion.
In this paper the control design will minimize the value of a cost function for the
loop performance. For a single input/single output system

F (y, u) =
1

2N

N∑

t=1

y2
t + λu2

t (5.8)

where λ determines the weighting between the penalty on the output and the con-
trol. For optimal tracking the output is replaced by the tracking error in the cost
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function. The optimal Linear Quadratic Gaussian controller (LQG) produces an
optimal feedback gain for the quadratic cost function

FLQG(y, u) =
1

2N

N∑

t=1

x̂T
t QRx̂t + λu2

t (5.9)

Using the linear system description in (5.3) with Gaussian noise, and assuming the
horizon in the criterion approaches infinity, will produce the following stationary
solution for the controller gain:

L∞ =
[
B̂

T
S∞B̂ + λ

]−1

B̂
T
S∞Â

S∞ =Â
T
S∞Â + QR − Â

T
S∞B̂

[
B̂

T
S∞B̂ + λ

]−1

B̂
T
S∞Â

(5.10)

This set of equations are on the same form, as for the design of the Predictive
Kalman filter. It can be seen that the weights QR and λ in the cost functions play
the same role in the equations as the noise variance in the filter equations. In case
QR = CTC the cost function (5.9) is equivalent to (5.8).

5.3 Iterative Feedback Tuning

This data driven tuning method was introduced in Hjalmarsson et al. (1994b) in
1994 and further developed and refined in Hjalmarsson et al. (1998). An extensive
overview of contributions and applications for this tuning method can be found
in Gevers (2002); Hjalmarsson (2002). The tuning method optimizes the control
parameters based on a performance cost function as (5.8). The main idea is to use
closed loop data to form an unbiased estimate of the cost function gradient with
respect to the control parameters, and use that in a gradient based search algorithm.

The Iterative Feedback Tuning method works with a system description for a
feedback loop with a two degree of freedom controller, C = {Cr, Cy}, as shown
in Figure 5.2 and Equation 5.11. The process model G is a discrete time transfer
function and the noise vt is a zero mean, weakly stationary random signal.

yt =
GCr

1 +GCy
rt +

1

1 +GCy
vt = Trt + Svt (5.11a)

ut =
Cr

1 +GCy
rt −

Cy

1 +GCy
vt = SCrrt − SCyvt (5.11b)

where S and T is the sensitivity and the complementary sensitivity function respec-
tively.

Based on the general cost function with penalty on the tracking error ỹt = yt − yd
t

F (y, u) =
1

2N

N∑

t=1

ỹ2
t + λu2

t (5.12)

and the system description (5.11), Hjalmarsson et al. (1998) shows that the cost
function gradient with respect to the control parameters is

∂F

∂ρ
=

1

N
E

[
N∑

t=1

ỹt(ρ)
∂ỹt

∂ρ
+ λ

N∑

t=1

ut(ρ)
∂ut

∂ρ

]
(5.13)
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rt
Cr

+

−

ut
G

vt

+ + yt

Cy

Figure 5.2. Feedback loop with a two degree of freedom controller.

where E[·] is the mathematical expectation. The derivative of the in- and outputs
are given by

∂y

∂ρ
=

1

Cr(ρ)

(
∂Cr

∂ρ
− ∂Cy

∂ρ

)
T (ρ)r +

1

Cr(ρ)

∂Cy

∂ρ
T (ρ)(r − y) (5.14a)

∂u

∂ρ
=

(
∂Cr

∂ρ
− ∂Cy

∂ρ

)
S(ρ)r +

∂Cy

∂ρ
S(ρ)(r − y) (5.14b)

When the cost function (5.8) with λ = 0 is used, which was used in the LQG design,
the problem reduces to a disturbance rejection problem where rt = 0. Hence the
expression for the gradients reduces to

∂y

∂ρ
= − ∂Cy

∂ρ
GS(ρ)y (5.15a)

∂u

∂ρ
= − ∂Cy

∂ρ
S(ρ)y (5.15b)

Given the cost function gradient estimate the update of the control parameters in
the optimization are performed by iterations in

ρi+1 = ρi − γiR
−1
i

∂̂F (ρi)

∂ρ
(5.16)

where γi is the step length and Ri is some positive definite matrix, preferably the
Hessian estimate of the cost function

R =
1

N

N∑

t=1


 ∂̂yt

∂ρ

(
∂̂yt

∂ρ

)T

+ λ
∂̂ut

∂ρ

(
∂̂ut

∂ρ

)T

 (5.17)

This optimization will converge despite the stochastic nature of the cost function
gradient as a stochastic approximation method as long as an optimum exists, the
estimate is unbiased and the following condition on the step size is fulfilled (Robbins
and Monro, 1951).

∞∑

i=1

γ2
i <∞,

∞∑

i=1

γi = ∞ (5.18)

This condition is fulfilled by having γi = a/i where a is some constant. In case
where the number of data points, N , is very large the variance of the gradient
estimate becomes small, and a faster converging gradient scheme than the stochastic
approximation may perform well.
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5.3.1 The tuning algorithm

In order to form the estimate of the cost function gradient in (5.14), measurements
of the system in- and output and their derivatives with respect to the control pa-
rameters are needed. The following three closed loop experiments are performed on
the system, where the superscripts refer to the experiment number.

Ex. # 1: y1
t = T (ρ)rt + S(ρ)v1

t

u1
t = S(ρ) (Cr(ρ)rt − Cy(ρ)v1

t )
Ex. # 2: y2

t = T (ρ)(rt − y1
t ) + S(ρ)v2

t

u2
t = S(ρ) (Cr(ρ)(rt − y1

t ) − Cy(ρ)v2
t )

Ex. # 3: y3
t = T (ρ)rt + S(ρ)v3

t

u3
t = S(ρ) (Cr(ρ)rt − Cy(ρ)v3

t )

where rt is the reference signal during normal operation. The sequence of input/out-
put data from these experiments (yj; uj) j ∈ {1, 2, 3} will be utilized as

ỹt = y1
t − yd

t (5.19a)

ut = u1
t (5.19b)

∂̂y

∂ρ
=

1

Cr(ρ)

[(
∂Cr

∂ρ
− ∂Cy

∂ρ

)
y3 +

∂Cy

∂ρ
y2

]
(5.19c)

∂̂u

∂ρ
=

1

Cr(ρ)

[(
∂Cr

∂ρ
− ∂Cy

∂ρ

)
u3 +

∂Cy

∂ρ
u2

]
(5.19d)

The estimator of the in- and output gradients can be written as

∂̂y

∂ρ
=
∂y

∂ρ
+

S(ρ)

Cr(ρ)

[(
∂Cr

∂ρ
− ∂Cy

∂ρ

)
v3 +

∂Cy

∂ρ
v2

]
(5.20a)

∂̂u

∂ρ
=
∂u

∂ρ
− S(ρ)Cy(ρ)

Cr(ρ)

[(
∂Cr

∂ρ
− ∂Cy

∂ρ

)
v3 +

∂Cy

∂ρ
v2

]
(5.20b)

It can be seen from these equations that only the noises in the last two experiments
contribute as a nuisance, since they contribute to the variance. The noise in the
first experiment, in contrast, contributes to the analytical part of the gradients from
(5.14).

In case the tuning algorithm is used for disturbance rejection, i.e. rt = 0, the third
experiment is redundant. The tuning algorithm can be summarized as

- Collect (yj
t ; u

j
t) j ∈ {1, 2, 3} from the three closed loop experiments with the

controller C(ρi).

- Evaluate the gradient of the cost function ∂F (ρi)/∂ρ, the Ri matrix and update
the control parameters to ρi+1.

- Evaluate the performance F (ρi+1) and repeat with i = i+ 1 if the performance
tolerance is not achieved.
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5.4 Transforming the State Space Formulation

The restrictions which the Iterative Feedback Tuning method sets on the control
strategy used, are that the controller and the partial derivatives of the controller,
with respect to the control parameters, can be formulated on transfer function form.
It must be required that the filters in (5.19) are proper and stable. If the derivative
of the controller is unstable it is required to include filters in the performance cost
function to compensate and ensure a bounded output from the filtering (Hjalmarsson
et al., 1998).

Using the system description (5.1), the system model (5.3) and the observer based
feedback law (5.4) a transfer function description of the system and the feedback
connection can be produced by elimination of the states. The conversion from dis-
crete time, state space description, to the equivalent discrete time transfer function
from for the true system (5.1) is given by

G(q) = C (qI −A)−1 B (5.21)

where q is the one step, forward shift operator, i.e. in general it applies that
ψt+i = qiψt. The transfer function for the feedback connection is achieved by sub-
stitution of the observer based feedback law (5.4) in the equation for the system
model (5.3) and performing the conversion

Cy(q) = L
[
qI −

(
Â − B̂L −KĈ

)]−1

K (5.22)

The controller, Cr, which represents the transfer from the reference to the control
signal can also be derived from Equations (5.4) and (5.3). The controller will include
the dynamics of the observer loop.

Cr(q) = M − L
[
qI −

(
Â − B̂L −KĈ

)]−1

B̂M (5.23)

In the special case of a first order system, i.e. a scalar state vector, Cr simplifies to

Cr(q) =
M(q − Â+KĈ)

q − Â+ B̂L+KĈ
(5.24)

The interconnection between the plant and the controller transfer functions is de-
picted on Figure 5.2.

The transfer function description given in this section and for the Iterative Feed-
back Tuning method only includes additive noise on the output in contrast to
the state space description which provides a clear distinction between process and
measurement noise. From (5.6) it can be derived that the following identity render
the two descriptions identical.

vt =C [qI − (A − BL)]−1

(
I + BL [qI− (A −KC)]−1

)
ep

t +

(
1 + C [qI − (A− BL)]−1 BL [qI− (A −KC)]−1 K

)
em

t (5.25)
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5.5. An Example

5.4.1 Tuning potentials

It is seen from the transformation of the state space system into the transfer function
form, that a controller can be derived which makes it possible to tune the control
parameters using the Iterative Feedback Tuning method. The control parameters
can be both the feedback and/or the observer gains, or it could also be the parame-
ters in the model estimate since these also are an intrinsic part of controller. When
full process knowledge is available, it does not make sense to find the optimal feed-
back and observer gain by data driven tuning. The purpose of this contribution is
merely to show that it is possible and that the results from the tuning are consistent
with the well known analytical results.

When full process knowledge is not available e.g. there is uncertainty in the es-
timated parameters or incomplete information about the noise intensity, then the
values for the feedback and observer gains will be affected and so will the achieved
closed loop performance. This performance deterioration is a consequence of the
gains being evaluated based on the certainty equivalence principle. In case the only
error is related to the information about the noise intensities it is straight forward to
tune the gain in the Kalman filter, using this data driven approach. Hence Iterative
Feedback Tuning provides an alternative method to tune a Kalman filter to that
of direct estimation of noise intensities Åkeson et al. (2008). If there are errors in
the parameters of the system model description as indicated in equation (5.4), the
system can not be represented by (5.6). The correct representation would be

xt+1 = (A− BL)xt + B(Lx̃t +Mrt) + ep
t , ep

t ∈ Niid(0,Pep)

x̃t+1 =
(
Â − KĈ

)
x̃t − Kem

t + ep
t −∆, em

t ∈ Niid(0, σem)

∆ =
(
(A − Â) − K(C − Ĉ)

)
xt + (B − B̂)(Mrt − L(xt − x̃t))

ut = − L(xt − x̃t) +Mrt

yt = Cxt + em
t

(5.26)

Investigation on tuning the performance of this system with parametric uncertainty
in the system model estimate is current work.

5.5 An Example

In order to illustrate the potential of using the Iterative Feedback Tuning method
on a discrete time, state space system with observer and a proportional feedback
gain, the following first order system is investigated.

xt+1 = 0.98xt + 0.02ut + ep
t , ep

t ∈ Niid(0, σ
2
ep)

yt = 1xt + em
t , em

t ∈ Niid(0, σ
2
em)

(5.27)

This system is characterized by its fairly slow dynamics and a static gain of one
from the input to the output. The sample time for this system is 1 second.

The system will be implemented using the structure (5.6), where full knowledge
of the process and the noise is assumed. For this system the feedback gain will be
tuned for tracking and noise rejection. Furthermore both the feedback gain and
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the observer gain are tuned simultaneously for the noise rejection problem. The
performance cost function used for the tracking problem has λ = 0, which produces
the minimum variance controller. For the noise rejection problem λ ∈ {0; 0.001}.

5.5.1 Tuning for Set Point Tracking

Initially the noise is characterized by σep = 0.025 and σem = 0.01 which are used
with the process model to calculate the optimal Kalman filter gain by (5.7). It is
desired to find the optimal feedback gain, which will render the step response of the
closed loop system resemble that of a first order system with a settling time of 10
seconds. A time horizon of 20 seconds will be used in the cost function. Hence this
closed loop system will have a two degree of freedom controller where Cy is given
by (5.22) and Cr by (5.24). In the tuning, the control structure is treated as a two
degree of freedom controller.

The optimal controller gain for this tracking problem has been determined nu-
merically to Lopt = 11.959. For two different initial values of the feedback gain, 50
iterations in the data driven tuning have been performed, and the trajectories for
the feedback gain and the performance cost function are shown in Figure 5.3. It
can be seen in the figures that the tuning does converge in very few iterations to
the level around the optimal value of the feedback gain and hence to the expected
value of the loop performance.

5.5.2 Tuning for Disturbance Rejection

When tuning for disturbance rejection the process noise level has been increased
so that σep = 1 and the time horizon used in the performance cost function N is
extended to one hour. Since this is a disturbance rejection problem, only a one degree
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Figure 5.3. Development in the feedback gain and the loop performance cost when
tuning the loop’s step response for a tracking problem given two different initial values.
The optimal value for the feedback gain and the corresponding value for the expected
optimal performance are given as a full lines.
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5.6. Conclusions

of freedom controller has been used in the tuning which means that only experiment
no. one and two in the Iterative Feedback Tuning algorithm are required in each
iteration, and only the gradient ∂Cy/∂L needs to be evaluated. Initially the optimal
Kalman filter gain is used and only the feedback gain is tuned for both the minimum
variance control problem and for λ = 0.001, Figure 5.4. The optimal feedback gain,
Lopt(λ = 0), is very close to a limit which would make the controller Cy unstable.
The optimal values for the feedback gain is calculated by (5.10). A constraint is
implemented in the control parameter update equation (5.18) which will decrease
the step length γi from 1 in case it is predicted that Li+1 > Lmax. Lmax produces
a controller with a pole on the stability limit. Results from simultaneous tuning of
both gains with λ = 0.001 are shown in Figure 5.5. It is seen that in both cases
that the tuning is able to converge to the level of the optimal values of the gains.
The rate of convergence is not quite as fast as for the tracking problem. This is to
be expected since the step response experiment perturbed the system more that the
noise in the disturbance rejection case.

5.6 Conclusions

Equivalent forms for a closed loop control system has been found for a state space
system with observer and proportional feedback gain and a transfer function system
description respectively. These equivalent forms mean that a transfer function de-
scription for the feedback controller in the closed loop state space system has been
derived. Hence it is shown how the data driven controller tuning method Iterative
Feedback Tuning is applicable also for state space control systems. In simulation
studies it is shown that the tuning method converge to known analytical solutions
for the feedback gain and the Kalman filter gain in the state observer.
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Figure 5.4. Development in the feedback gain and the loop performance cost when
tuning the loop for disturbance rejection given two different values of λ in the cost
function. The optimal values for the gains and the corresponding values for the expected
optimal performance are given as a full lines. The highest allowed value for the feedback
gain Lmax is also given.
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Figure 5.5. Development in both the feedback and Kalman gain in the controller and
the loop performance cost when tuning the loop for disturbance rejection. The optimal
values for the gains and the corresponding value for the expected optimal performance
are given as a full lines.
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Part III

Iterative Feedback Tuning for
Disturbance Rejection

65





6

Introducing External
Perturbations in Tuning for

Disturbance Rejection

Abstract

Iterative Feedback Tuning constitutes an attractive control loop tuning method
for processes in the absence of an accurate process model. It is a purely data driven
approach aiming at optimizing the closed loop performance. The standard formu-
lation ensures an unbiased estimate of the loop performance cost function gradient
with respect to the control parameters. This gradient is important in a search al-
gorithm. The extension presented in this paper further ensures informative data to
improve the convergence properties of the method and hence reduce the total num-
ber of required plant experiments especially when tuning for disturbance rejection.
Informative data is achieved through application of an external probing signal in
the tuning algorithm. The probing signal is designed based on a constrained opti-
mization which utilizes an approximate black box model of the process. This model
estimate is further used to guarantee nominal stability and to improve the parameter
update using a line search algorithm for determining the iteration step size. The
proposed algorithm is compared to the classical formulation in a simulation study
of a disturbance rejection problem. This type of problem is notoriously difficult for
Iterative Feedback Tuning due to the lack of excitation from the reference.
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Rejection

6.1 Introduction

The increasing competition on the global market has rendered optimizing process
operation a necessity for new as well as existing production in the chemical industry.
Advanced control strategies are based on models for the specific process. These
models play an important role for optimization. Control oriented process modeling
is part of the advances of application oriented modeling. System identification is an
area that has received much attention but within identification for control there is
still room for improvement in development of systematic methods. Identification for
control implies experiments where the collected data for identification are retrieved
from a process operated under control i.e. in closed loop. It is however infeasible
to derive rigorous dynamic models for any process. Consequently a number of
data driven methods have been developed for control optimization such as Iterative
Feedback Tuning, Virtual Reference Feedback Tuning and Correlation-based Tuning
(Hjalmarsson et al., 1994b; Campi et al., 2002; Karimi et al., 2004).

Two main paths have been pursued in the attempt to produce an useful algo-
rithm for identification for control using closed loop data. The governing principle
in one of these paths has been to ensure robust stability of the loop in all iterations.
The paper Gevers et al. (2003a) handles parameter uncertainty in the estimated
plant model using confidence ellipsoids and ensures robust stability of all systems
within the spanned model set. During the iterations the worst case performance
within the set is optimized. A similar methodology is used by de Callafon (1998),
using the more conservative H∞ strategy. The model and the uncertainty are iden-
tified through the dual Youla parameterization. The control design is based on
µ-synthesis. These methods are attractive due to their robustness properties but
they are computationally demanding, and the achieved performance may be poor
due to optimization of the worst case performance. The other path optimizes the
actual performance of the loop and addresses the issue of stability subsequently to
an iteration between model identification and control design. In this category falls
the Iterative Feedback Tuning method, which is the subject of the present paper.
The key contribution presented here is an analysis of how to improve convergence
of the Iterative Feedback Tuning and hence to reduce the required number of plant
experiments. Improved convergence is achieved by applying an external probing sig-
nal to the process in order to optimize the information content in the data combined
with the use of line search in the parameter update.

This paper is organized as follows: The coming section presents basic criterion
based controller tuning and section 6.3 shows how Iterative Feedback Tuning fits into
this category and how an unbiased gradient estimate is achieved from data. Section
6.4 presents the problem of lack of informative data when tuning for disturbance
rejection. It is shown how probing signals can resolve this problem and how to design
these. Section 6.5 presents a new algorithm for Perturbed Iterative Feedback Tuning
with guaranteed informative data and discusses control parameter update. In the
subsequent section simulation studies are presented before concluding remarks are
given.
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6.2. Criterion Based Controller Tuning

6.2 Criterion Based Controller Tuning

A description of a scalar closed loop system is depicted in Figure 6.1. The two
degree of freedom controller, C = {Cr, Cy}, is implemented on the discrete linear
time invariant system G, hence the transfer functions are given as:

yt =
GCr

1 +GCy
rt +

1

1 +GCy
vt = Trt + Svt (6.1a)

ut =
Cr

1 +GCy
rt −

Cy

1 +GCy
vt = SCrrt − SCyvt (6.1b)

rt is the reference value for the measurements yt, ut is the actuator variable and vt

is a noise signal for the system which is presented in deviation variables. S and T
are the sensitivity and the complementary sensitivity functions respectively. Given
a desired reference model for the closed loop Td, the desired response from the loop
is given as yd

t = Tdrt. The performance criterion, which will be a function of the
control parameters, ρ, can then be formulated as a typical quadratic cost function,
F (ρ), with penalty on deviations from the desired output and the control effort.
The deviation of the outputs is given as

ỹt = yt(ρ) − yd
t (6.2)

The optimal set of parameters will then require a minimization of F (ρ). A solution
to the minimization problem can be obtained through the iterative gradient based
local search algorithm (6.3). In case the cost function is convex the minimization
will converge to the global minimizer, but this is in general not true.

ρi+1 = ρi − γiR
−1
i

∂F (ρi)

∂ρ

= ρi − γiR
−1
i J(ρi) (6.3)

where Ri is a positive definite matrix and J is the gradient column vector of
F (ρ) with respect to the control parameters ρ. The i’th step is then given by
hi = −γiR

−1
i J(ρi). In case R = I the algorithm steps in the steepest descent direc-

tion. In case R = H(ρ) = ∂2F (ρ)/∂ρ2 or an approximation to the Hessian, J(ρi)J
T (ρi),

the Newton or Gauss-Newton algorithm appears respectively. The choice of R and
γ will thus affect the convergence properties of the method (Hjalmarsson et al.,
1994b; Nocedal and Wright, 1999). The iteration step size γi can be determined
using e.g. a line search method.

rt
Cr

+

−

ut
G

vt

+ + yt

Cy

Figure 6.1. Feedback loop with a two degree of freedom controller.

69



Chapter 6. Introducing External Perturbations in Tuning for Disturbance
Rejection

6.3 Classical Iterative Feedback Tuning

This method of iterative performance enhancement does not include an estimate of
the process model. The basic idea is to formulate a cost function and use the opti-
mization algorithm (6.3) to minimize this cost function with respect to the control
parameters. Evaluation of the partial derivatives of the cost function with respect
to the control parameters, ρ, are based on measurements taken from the closed
loop system. The algorithm was first presented in Hjalmarsson et al. (1994b) and
has been analyzed, extended and tested in a number of papers. References Gevers
(2002) and Hjalmarsson (2002) provide an extensive overview of the development of
the method and of some of its applications.

The key contribution in Iterative Feedback Tuning is that it supplies an unbiased
estimate of the cost function gradient without requiring a plant model estimate, Ĝ,
given that the noise v is a zero mean, weakly stationary random signal (Hjalmarsson
et al., 1998). Using an estimate of the gradient vector in (6.3) instead of the ana-
lytical gradient vector, as a stochastic approximation method, will still render the
algorithm converge to a local minimizer, provided that a local minimizer exists, the
gradient estimate is unbiased and the sequence of γi fulfills condition (6.4) (Robbins
and Monro, 1951).

∞∑

i=1

γ2
i <∞,

∞∑

i=1

γi = ∞ (6.4)

This condition is fulfilled e.g. by having γi = a/i where a is some positive constant.
However this requirement has a convergence rate which is too slow for most industrial
purposes (Mǐsković, 2006). In cases where the variance of the cost function gradient
vector estimate approaches zero, classical Gauss-Newton optimization with γ = 1
may be used instead in order to speed up the convergence. The variance of the
estimate will approach zero as the number of data points approach infinity. The
Gauss-Newton or other gradient based optimization methods are not guaranteed
to converge when the stochastic realization of the gradient vector of the objective
function change between iterations.

Given the cost function

F (ρ) =
1

2N
E

[
N∑

t=1

ỹt(ρ)2 + λ
N∑

t=1

ut(ρ)2

]
(6.5)

where the minimization criterion is

0 = J(ρ) =
1

N
E

[
N∑

t=1

ỹt(ρ)
∂ỹt

∂ρ
+ λ

N∑

t=1

ut(ρ)
∂ut

∂ρ

]
(6.6)

it is seen that estimates of ∂ỹ/∂ρ and ∂u/∂ρ are needed in order to produce a reliable
estimate of the cost function gradient vector. Since yd is not a function of the control
parameters, then ∂ỹ/∂ρ = ∂y/∂ρ. The partial derivatives of the in- and output with
respect to the control parameters can be evaluated based on equation (6.1).

∂y

∂ρ
=

1

Cr(ρ)

∂Cr

∂ρ
T (ρ)r − 1

Cr(ρ)

∂Cy

∂ρ
T (ρ)y (6.7a)

∂u

∂ρ
=
∂Cr

∂ρ
S(ρ)r − ∂Cy

∂ρ
S(ρ)y (6.7b)
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or rewritten into the more favorable form.

∂y

∂ρ
=

1

Cr(ρ)

(
∂Cr

∂ρ
− ∂Cy

∂ρ

)
T (ρ)r +

1

Cr(ρ)

∂Cy

∂ρ
T (ρ)(r − y) (6.8a)

∂u

∂ρ
=

(
∂Cr

∂ρ
− ∂Cy

∂ρ

)
S(ρ)r +

∂Cy

∂ρ
S(ρ)(r − y) (6.8b)

where the estimates produced from this expression are expected to have a reduced
variance compared to (6.7) in case ∂Cr

∂ρ
≈ ∂Cy

∂ρ
. The derivation of (6.7) and (6.8) are

given in Hjalmarsson et al. (1998).

6.3.1 The Tuning algorithm

Estimates of the derivatives (6.8a) and (6.8b) can be realized through the following
set of experiments where the superscripts refer to the experiment number.

1) r1
t = rt i.e. the reference in the first experiment is the same as for normal

operation of the process.

2) r2
t = rt − y1

t i.e. the reference in the second experiment is the difference be-
tween the ordinary reference and the output from the first experiment

3) r3
t = rt i.e. the reference in the third experiment is the same as for normal

operation of the process, just as in the first experiment.

These experiments give the following in- and outputs

Ex. # 1: y1
t = T (ρ)rt + S(ρ)v1

t

u1
t = S(ρ) (Cr(ρ)rt − Cy(ρ)v1

t )
Ex. # 2: y2

t = T (ρ)(rt − y1
t ) + S(ρ)v2

t

u2
t = S(ρ) (Cr(ρ)(rt − y1

t ) − Cy(ρ)v2
t )

Ex. # 3: y3
t = T (ρ)rt + S(ρ)v3

t

u3
t = S(ρ) (Cr(ρ)rt − Cy(ρ)v3

t )

The sequence of input output data form these experiments (yi;ui) i ∈ {1, 2, 3} will
be utilized as

ỹt = y1
t − yd

t (6.9a)

ut = u1
t (6.9b)

∂̂y

∂ρ
=

1

Cr(ρ)

[(
∂Cr

∂ρ
− ∂Cy

∂ρ

)
y3 +

∂Cy

∂ρ
y2

]
(6.9c)

∂̂u

∂ρ
=

1

Cr(ρ)

[(
∂Cr

∂ρ
− ∂Cy

∂ρ

)
u3 +

∂Cy

∂ρ
u2

]
(6.9d)

The estimate of the gradients of the input and the output can be written as

∂̂y

∂ρ
=
∂y

∂ρ
+

S(ρ)

Cr(ρ)

[(
∂Cr

∂ρ
− ∂Cy

∂ρ

)
v3 +

∂Cy

∂ρ
v2

]
(6.10a)

∂̂u

∂ρ
=
∂u

∂ρ
− S(ρ)Cy(ρ)

Cr(ρ)

[(
∂Cr

∂ρ
− ∂Cy

∂ρ

)
v3 +

∂Cy

∂ρ
v2

]
(6.10b)
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It can be seen from these equations that only the noise in the last two experiments
contribute as a nuisance, since they contribute to the variance. The noise in the
first experiment, in contrast, contributes to the analytical part of the gradients
from (6.8). The Iterative Feedback Tuning method is depicted in Figure 6.2. The
performance check is evaluated by repeating the first experiment with the updated
controller.

Choose Ci, i = 0

Perform the 3 closed loop experiments

Evaluate gradients
d∂y

∂ρ
,
d∂u

∂ρ
, Ĵ

Choose and evaluate R, {SD, NR, GN}

Iterate controller, ρi+1 = ρi − γiR
−1

i
Ji

Implement Ci+1

Check performance

Ok

Done

i = i + 1

Figure 6.2. Schematic representation of the Iterative Feedback Tuning method.

6.3.2 Characteristics of Iterative Feedback Tuning

The Iterative Feedback Tuning method has several attractive properties which makes
it useful for optimization of control performance when a model is unavailable. First
of all Iterative Feedback Tuning utilizes closed loop data which is advantageous
since it is the loop performance that is subject to optimization, and it renders the
method amenable for processes where opening the loop is not an option. Secondly
it is not restricted by the type of process. Even though the theory is developed for
linear systems, the references Hjalmarsson (1998); Sjöberg et al. (2003) states that
this method is applicable on some nonlinear processes as well, despite the fact that
nonlinearities will generate a bias in the gradient estimate. The Iterative Feedback
Tuning method does generate the true first order approximation of the gradients
for a nonlinear process. The bias can be expected to be small for many practical
applications (Sjöberg et al., 2003) and successful tuning of PID loops for industrial
processes has been reported in Lequin (1997); Hjalmarsson et al. (1997). The theory
has furthermore been extended to cover optimization of multivariable processes,
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which implies that more experiments in each iteration are necessary (Hjalmarsson
and Birkeland, 1998; Hjalmarsson, 1999; Jansson and Hjalmarsson, 2004) and to
cover non-minimum phase and time delay systems (Lecchini and Gevers, 2002).
Finally the only restriction on the control structure is that the closed loop is stable
and that the transfer functions in (6.10), through which the data is filtered, are stable
as well. This property extends the application beyond the classical PID control
with derivative filter. The reference De Bruyne (2003) has applied the method
with internal model controllers and the reference Huusom et al. (2007b) applies the
method on a nonlinear inventory control structure. The filtering in (6.9) becomes
a problem when the derivative of the controller with respect to the parameters is
unstable or when Cr is non-minimum phase. Theory has been developed to cope
with such difficulties by including frequency filters in the cost function which is
illustrated in Hjalmarsson et al. (1998).

One disadvantage of using Iterative Feedback Tuning compared to model based
optimization is that nominal stability can not be guaranteed. Even though the
parameter update in equation (6.3) steps in a descent direction, the new controller
may render the loop unstable. De Bruyne et al. (1999) provides an algorithm which
ensures stability using the generalized stability margin, evaluated by using estimates
of the closed loop transfer function. Veres and Hjalmarsson (2002); Procházka et al.
(2005) go further and define two cost functions, one for performance and another for
robustness. The performance cost is of the form (6.5) and the robustness criterion
is minimizing some norm of the closed loop sensitivities, preferably the H∞ norm.

Speed of convergence can also be an issue since each iteration requires a number of
real plant experiments, hence the number of iterations has to be reasonably low. In
case a process is tuned for disturbance rejection, it can be seen from the algorithm
in section 6.3.1 and equations (6.9) and (6.10) that only the noise during the first
experiment is driving the optimization. That implies that the analytic part of the
gradients of the input and output may be small compared to the variance part. This
poor signal to noise ratio will slow down convergence at best, compared to a situation
where the reference is different from zero and the loop receives stronger excitation.
In Hjalmarsson et al. (1998) it is shown how filtering of the reference signal before
the two gradient experiments, and subsequently filtering of the input/output data
from these experiments with the inverse of the filters, can improve the signal to noise
ratio. E.g. let W j

i be a set of stable and inversely stable filters for iteration i and
with j ∈ {2, 3} as the experiment superscript in the algorithm. If r2 = W 2

i (r1 − y1)
and r3 = W 3

i r1 are used as reference signals in the gradient experiments, and if
the signals {yj

i ,u
j
i} are replaced by {(W j

i )−1yj
i , (W

j
i )−1uj

i} in (6.9c) and (6.9d) the
filters will suppress the influence of the noise in the frequency band where it has a
gain larger than one. Optimal design of the prefilters, W j

i , have been investigated in
Hildebrand et al. (2004, 2005b) where the asymptotic accuracy of the tuning method
is improved by minimizing the covariance of the gradient estimate. An expression
for this covariance is derived in Hildebrand et al. (2005a).

Virtual Reference Feedback Tuning (Campi et al., 2002) and Correlation-based
Tuning (Karimi et al., 2004) are two data driven controller tuning methods which
typically outperform Iterative Feedback Tuning in convergence rate and hence re-
quire fewer plant experiments. Virtual Reference Feedback Tuning only need one
open or closed loop experiment to find a near optimal solution. The idea is to use
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a set of input/output data obtained from the plant, and a reference model for the
loop. A virtual reference signal, which filtered through the reference model repro-
duces the plant output, is calculated and the tracking error between this virtual
reference and the output can be formed. Estimation of the control parameters is
then reduced to an open loop estimation problem, using the tracking error as input
and the actual plant input data as output. The method is formulated using open
loop and noise free data but the use of noisy data and closed loop experiments are
discussed in Lecchini (2001). Correlation-based tuning uses a reduced order ref-
erence model with the desired closed loop properties to design a controller for the
actual loop. Given a sequence for the reference, an output error signal can be formed
as the difference between the output from the true system and the output from the
designed loop. Only the output from the true system will be affected by process
noise and the main idea in the tuning method is then to adjust the control parame-
ters in order to de-correlate the output error with the reference signal. Despite the
difference in criteria, this method is closely related to the Iterative Feedback Tun-
ing method. A special formulation of the Correlation-based tuning algorithm which
handles the disturbance rejection problem is given in Mǐsković et al. (2003). In the
present contribution an alternative route for obtaining informative experiments and
fast convergence is pursued.

6.4 Informative Experiments

The algorithm for Iterative Feedback Tuning ensures that the data from the three
experiments can be used to form an unbiased estimate of the cost function gradient
with respect to the control parameters. However the experiments are not necessarily
performed such that a large signal to noise ratio is ensured, thus informative data is
not guaranteed. From the system identification literature it is well known that ex-
ternal perturbation can be required in order to sufficiently excite a process. In order
to identify a certain model structure and/or minimize the variance on the parameter
estimate, data with sufficient information content is required (Söderström and Sto-
ica, 1989; Ljung, 1999). This knowledge provides the inspiration to include external
perturbation in the experiments conducted during each iteration of the Iterative
Feedback Tuning when noise rejection is essential for closed loop performance.

External perturbation, indicated with subscript p, can be applied as a probe signal
to either the reference or the control signal giving the following input output relations

y = T (r + rp) + S(v +Gup) (6.11a)

u = SCr(r + rp) − SCyv + up (6.11b)

The derivatives of the input and output in (6.11) with respect to the control param-
eters is determined as in (6.7).

∂y

∂ρ
=

1

Cr(ρ)

∂Cr

∂ρ
T (ρ)(r + rp) −

1

Cr(ρ)

∂Cy

∂ρ
T (ρ)y (6.12a)

∂u

∂ρ
=
∂Cr

∂ρ
S(ρ)(r + rp) −

∂Cy

∂ρ
S(ρ)y (6.12b)
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or rewritten into the more favorable form.

∂y

∂ρ
=

1

Cr(ρ)

(
∂Cr

∂ρ
− ∂Cy

∂ρ

)
T (ρ)(r + rp) +

1

Cr(ρ)

∂Cy

∂ρ
T (ρ)(r + rp − y) (6.13a)

∂u

∂ρ
=

(
∂Cr

∂ρ
− ∂Cy

∂ρ

)
S(ρ)(r + rp) +

∂Cy

∂ρ
S(ρ)(r + rp − y) (6.13b)

By conducting the three experiments described in section 6.3.1 with the addition of
the signals {ri

p,u
i
p}, where i ∈ {1, 2, 3}, it can be seen by applying the signals as in

(6.9), that not every type of perturbation strategy should be recommended:

∂̂y

∂ρ
=
∂y

∂ρ
+

S(ρ)

Cr(ρ)

[(
∂Cr

∂ρ
− ∂Cy

∂ρ

)
(v3 +Gu3

p) +
∂Cy

∂ρ
(v2 +Gu2

p)

]
(6.14a)

∂̂u

∂ρ
=
∂u

∂ρ
− S(ρ)Cy(ρ)

Cr(ρ)

[(
∂Cr

∂ρ
− ∂Cy

∂ρ

)
(v3 +Gu3

p) +
∂Cy

∂ρ
(v2 +Gu2

p)

]
(6.14b)

The signals u2
p and u3

p will give a contribution to the variance part of the gradient
estimate hence these signals should be avoided. Adding a probing signal to the

reference will on the other hand always contribute to the analytic part of ∂̂y/∂ρ and
∂̂u/∂ρ, but note that it must be required that r2

p = r3
p in order to construct equation

(6.13) from (6.12).
Which, and how many of the probing signals, {r1

p, r
2
p, r

3
p,u

1
p}, one should use in

Iterative Feedback Tuning is less evident. One could argue that it would not be
an advantage to apply perturbation in the two last experiments since the second
experiment is already perturbed with the output from the first. Even though all
experiments are conducted in closed loop, it is desired not to disturb the process more
than necessary. Choosing between perturbing either the reference or the control
signal in the first experiment is of little consequence. Identical results in the output
can be achieved using r1

p or u1
p = Crr

1
p. Intuitively it seems more reasonable to use

u1
p rather than r1

p since this choice will not affect yd in the cost function.
When applying the Iterative Feedback Tuning method for performance optimiza-

tion, the achieved set of control parameters will be, ρn, which is a stochastic variable.
Hence there will be an error between the achieved set of control parameters and the
optimal set, ρopt, which will minimize the expected performance cost. Assuming
n to be large this error will only be associated with the noise of the system while
the expected value E [ρn − ρopt] will be equal to zero, hence the difference between
the expected value of the achieved performance cost and the optimal is a variance
error. Introducing perturbations on e.g. the reference in the first experiment in the
Iterative Feedback Tuning algorithm imply that the method achieves the set of con-
trol parameters ρn(rp). For large values of n the expected value of E [ρn(rp) − ρopt]
is in general non zero. The difference between the expected value of the achieved
performance cost and the optimal will be associated with both a bias and a variance
error. The bias error is due to the fact that it is the performance of the perturbed
process, and not the performance for the normal operation that becomes subject to
optimization. This means that the objective transforms to a disturbance rejection
problem with both process noise and an external perturbation signal. Introducing
external perturbation will in general be associated with a bias error, but the vari-
ance error will decrease due to better signal to noise ratio in the data used by the
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tuning method. Hence the aim is to find a perturbation signal which balance these
two errors and render

E [F (ρn(rp))] < E [F (ρn)] (6.15)

The bias error will in general be a consequence of introducing external perturbation.
Design of perturbation signals which renders unbiased or minimal bias is current
work. Adding perturbations will change the curvature of the performance cost
function, hence it may change the location of the optimum and should change the
rate of convergence. The perturbed problem will, as the classical, converge to a
local minimum of the performance cost, if the perturbations signal is bounded.
Hence the two problems belong to the same class of optimization problems for which
convergence has been established (Hjalmarsson, 2002).

6.4.1 Probe signal design

Design of the probing signal aims at obtaining as rich an information content in
data as possible, without disturbing the process more than necessary. Therefore the
probe signal design will be formulated as a constrained optimization problem. A
high information content will correspond to shaping the Hessian of the cost function,
i.e. rendering it large in some sense and make the optimum more distinct (Goodwin
and Payne, 1977). The information content may be evaluated by the numerical
value of a scalar function of the Hessian e.g. the trace or the determinant of the
matrix. The value of the cost function with the current controller and for a given
perturbation signal should be constrained by a maximum value. An alternative
constraint condition could be to limit the intensity of the perturbation signal itself.
The subject for optimization will be a parameterization, ϑ, of the probing signal
e.g. the parameters in a data filter or the amplitude and frequency for a number
of sinusoids. Choosing the determinant as the scalar function the design of probing
signal can be formulated as

ϑopt = argmax
ϑ

det(H)

s.t. F (ρ,ϑ) ≤ Fmax
(6.16)

In order to compute ϑopt and thus generate an optimal probing signal, it is necessary
to be able to evaluate both the cost function, F , and a full rank Hessian or Hessian
approximation for any given set of ϑ. That would require knowledge of the true
system or an evaluation based on the Iterative Feedback Tuning. The latter would
imply an unreasonably large number of experiments. Instead the optimization is
based on a model estimate. This model estimate will be used only as an approxima-
tion of the true system for the optimization of ϑ to define the perturbation signal.
It will not be utilized for the gradient evaluation in the Iterative Feedback Tuning
that optimizes ρ based on the true closed loop performance. The reason being that
Iterative Feedback Tuning is a model free tuning method, which can be applied
in cases where a model based control design is not possible due to lack of a suffi-
ciently good model. Using a very crude model estimate in the perturbation signal
optimization may be sufficient to produce a perturbation signal which significantly
improves the convergence of the tuning. Knowing the process gain may be useful
e.g. in determining the intensity of the perturbation signal. Performing a model
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based control design based on the crude model estimate could serve as an initial
starting point for the control parameters, but it is in this context assumed that this
initial controller does not perform sufficiently well and that the data driven tuning
is necessary.

Having the optimization of the perturbation signal based on an approximate model
implies that using this signal on the true process, the input output data may not
satisfy the constraint exactly. How large such a constraint violation can become
will of cause depend on the accuracy of the model, but in cases where this might
be of concern, a more conservative choice of Fmax may be appropriate. The plant
model mismatch will also affect ϑopt. This is unavoidable, but the effect is judged to
be of limited consequence. The system will in any case be perturbed, hence faster
converge of the tuning is achieved.

It will be necessary to apply this optimization of perturbation signals before each
iteration in the Iterative Feedback Tuning. Since the control is tightened through
the iterations, stronger perturbations can be allowed as one proceeds through the
iterations, while satisfying the performance constraint. Since the design of the per-
turbation signal is model based, it can be calculated offline before a new iteration
begins. The optimization problem (6.16) does not restrict neither the system nor
the parameterization of the perturbation. Convexity is therefore not guaranteed.

6.5 Perturbed Iterative Feedback Tuning

Applying perturbation in Iterative Feedback Tuning calculated based on a plant
model estimate introduces a few new elements in the algorithm, as shown in Figure
6.3 with gray shaded background. In this illustration of the algorithm it is assumed
that the perturbation is added to the control signal as a filtered white noise signal.

The workflow in Figure 6.3 shows that the optimization of the probe signal is
performed after each update of the controller, when a new iteration is required.
The initial probe signal can also be based on the optimization if a plant model is
determined a priori. In absence of a model estimate ϑ0 will have to be selected by
the user. The data from the perturbed experiment can give the basis for estimation
of a new model consecutively through the iterations. Whether it is preferred to
update the model estimate in each iteration or use the same a priori estimate in
the optimization will depend on how well the updated models can be expected to
be. Since the controller is changing through the iterations, it would be expected
that better models can be achieved by consecutive update. This has to be viewed in
relation to the fact that the data from the experiments is optimized for the controller
tuning algorithm which may not provide the best data for model estimation.

Having an approximate model estimate provides the option of ensuring nominal
stability of the loop before implementing the updated controller, Ci+1. Estima-
tion of the plant model can be performed using closed loop system identification
(Söderström and Stoica, 1989; Ljung, 1999).
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Choose u
1
p = P (ϑ0)ǫChoose Ci, i = 0

Perform the 3 closed loop experiments

Evaluate gradients
d∂y
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d∂u
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Choose and evaluate R, {SD, NR, GN, LM}

Iterate controller, ρi+1 = ρi − γiR
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i
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Check stability, adjust γi (line search)

Implement Ci+1

Check performance
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1
p = P (ϑi)ǫ

Figure 6.3. Workflow in the novel Perturbed Iterative Feedback Tuning. The new
elements are shown with a gray shaded background. The parameters, ϑi, are the filter
coefficients.

6.5.1 Control parameter update

The control parameter update in the Iterative Feedback Tuning method influences
the convergence properties and hence the number of required experiments. In Hjal-
marsson et al. (1994b) equation (6.17) was suggested as an estimate of the Hessian
of the cost function with respect to the control parameters, that can be estimated
from the experiments. This estimate is biased due to occurrence of squared terms
of the noise signals v2 and v3. This problem was resolved in Solari and Gevers
(2004) by conducting experiment # 2 and 3 twice in order to form two uncorrelated
estimates of ∂y/∂ρ and ∂u/∂ρ to be used in (6.17). Including yet an extra experiment
gives the option of including second order terms in the Hessian estimate as well.
The advantage of having an unbiased Hessian estimate, or including second order
terms has to be weighted against the disadvantage of an additional experiment in
each iteration and the possible loss of the positive definiteness property.

Ĥ =
1

N

N∑

t=1


 ∂̂yt

∂ρ

(
∂̂yt

∂ρ

)T

+ λ
∂̂ut

∂ρ

(
∂̂ut

∂ρ

)T

 (6.17)

The Gauss-Newton optimization method is known to perform very well in the vicin-
ity of the optimal solution Nocedal and Wright (1999). When the initial controller
gives a performance which is far from optimal, the curvature of the performance
cost with respect to the control parameters may be more complicated, hence a
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more cautious algorithm may be preferred. An obvious solution could be to include
a damping factor, µ, as a regularization in the Hessian estimate as suggested by
Levenberg (Levenberg, 1944).

Ri = Ĥi + µiI (6.18)

A starting value for the damping coefficient is

µ0 = τ max (diag(Ĥ0)) (6.19)

where τ is 10−6 for a good initial guess and 10−3 to 1 if the guess is expected to
be poor Madsen et al. (2004). The update of the damping coefficient can then be
evaluated based on the quality of the previous step. The gain ratio, ̺, is the ratio
between the actual and the expected improvement in the cost function:

̺ =
Fi−1 − Fi

1
2
hT

i (µihi − Ji)
(6.20)

where hi is the step in the control parameters given by −γiR
−1
i J(ρi). As in update

of the step length in trust region methods the damping coefficient can be updated
using the gain ratio which has given name to Levenberg-Marquardt optimization.
The update strategy suggested by Marquardt (Marquardt, 1963) is

µi+1 =





2µi, ̺ ∈] −∞; 0.25]

µi, ̺ ∈]0.25; 0.75[
µi/3, ̺ ∈ [0.75;∞[

(6.21)

In Nielsen (1999) the damping coefficient is updated by

̺ < 0

{
µi+1 = µiνi

νi+1 = 2νi

̺ ≥ 0

{
µi+1 = µi max (1

3
, 1 − (2̺− 1)3)

νi+1 = 2

(6.22)

where ν0 = 2. This scheme is a continuous version of the strategy suggested by
Marquardt (1963) but converges generally faster. The two updating strategies are
illustrated in Figure 6.4. Both strategies decrease the step length in the parameter
update by increasing µ if the value of the cost function is increasing from one step to
another or not sufficiently decreased. The use of Levenberg-Marquardt optimization
in Iterative Feedback Tuning is attractive since it provides a systematic method
for handling ill conditioned Hessians, which otherwise can lead to large steps in
Gauss-Newton optimization that may render the loop unstable. This problem was
encountered in Lequin et al. (1999) for optimization of step responses. The solution
chosen by the authors was to gradually truncate the initial part of the time horizon
in the calculation of the cost function and thereby changing the curvature of the
performance cost with respect to the controller parameters. The cost function used
in Lequin et al. (1999) was

F (ρ) =
1

2N
E

[
N∑

t=t0

ỹt(ρ)2 + λ
N∑

t=1

ut(ρ)2

]
(6.23)
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Figure 6.4. Updating of the damping coefficient as function of the gain ratio. The
straight dashed curves is the strategy proposed in Marquardt (1963) cf. equation (6.21)
and the full line is the strategy proposed by Nielsen (1999) cf. equation (6.22).

where an initial time for the output deviation in the cost function, t0, was decreased
from some initial large value through the iterations. This strategy was effective
but the problem can be overcome by using the Levenberg-Marquardt method which
optimize the cost function with t0 = 1 through all the iterations.

The more cautious Levenberg-Marquardt method compared to classical Gauss-
Newton is advantageous when a model of the system is not available. In case a
process model is available, a more attractive update method will include a line
search algorithm. Line search is only a real option for Iterative Feedback Tuning
if a model is available, since several cost function evaluations are required, which
otherwise would demand plant experiments.

6.6 Simulation Examples

Test cases with Iterative Feedback Tuning are performed given the following two
degree of freedom PID controller

Cr :
U(s)

R(s)
= Kc

[
1 +

1

τIs

]
(6.24a)

Cy :
U(s)

Y (s)
= Kc

[
1 +

1

τIs
+

τDs

0.1τDs+ 1

]
(6.24b)

working in closed loop on the linear time invariant second order process model,
(6.25a), affected by Gaussian white noise vt ∈ N (0, 0.052) filtered through the first
order noise model (6.25b). See Figure 6.1.

G(s) =
1

s2 + 0.1s+ 1
(6.25a)

H(s) =
1

s+ 1
(6.25b)

This process model was used in Lequin et al. (1999) to illustrate Iterative Feedback
Tuning for the settling time problem. In the first simulation example the same
settling time problem is considered and the use of Levenberg-Marquardt optimiza-
tion is demonstrated. In the subsequent simulation case, in section 6.6.2, the loop
is tuned for noise rejection. It is demonstrated how probing signals and the line
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search algorithm can improve the convergence of the Iterative Feedback Tuning al-
gorithm. Different noise realizations are used through the iterations but the same
set of different realizations are use between different trials of the tuning in order to
keep comparable conditions. In Monte Carlo simulations performed for performance
evaluation all realizations of the noise are independent.

The initial controller is chosen identical to the example in Lequin et al. (1999),
which gives a very poorly tuned loop, but helps to illustrate some of the inherent
problems in Iterative Feedback Tuning.

[
Kc τi τD

]
=
[
0.025 2 1

]

6.6.1 Optimizing of Settling Time

For the settling time problem a unit step change is introduced in the reference and
it is desired to optimize the controller such that the closed loop response resembles
that of a first order process with a settling time of 20 seconds, hence Td = 3/(20s+3).
The simulation time is 200 seconds. In optimization of settling times, a cost func-
tion without penalty on the control is used, hence λ = 0 in (6.5). When the classical
Iterative Feedback Tuning method is used with the simple Gauss-Newton optimiza-
tion, the biased Hessian estimate (6.17) and γ = 1, then the first iteration produces
a controller which renders the loop unstable.

As a solution to this problem, and in order to avoid local minima, Lequin et al.
(1999) uses the cost function (6.23) with an initial time for the output deviation in
the cost function on t0 = 80 sec. in the first iteration. This initial time is lowered by
20 sec. until t0 = 20. The values of γi remains equal to one. Simulation results based
on this strategy but with a final mask of t0 = 1 are presented in Table 6.1, where the
control parameters are presented with the corresponding value of the cost function
from the first experiment in the iteration and the corresponding mask width.

Iteration Kc τI τD Mask F (ρi) · 103

Initial 0.025 2 1 80 21.713

No. 1 0.0382 1.5344 0.4247 60 7.0074
No. 2 0.0514 1.1304 0.2513 40 4.2786
No. 3 0.0516 0.4671 0.2909 20 2.0616
No. 4 0.0422 0.3742 0.8757 1 1.0989
No. 5 0.0312 0.2599 1.5292 1 1.1534

Table 6.1. Control parameters and the value of the performance cost function for each
iteration with the corresponding mask as suggested by Lequin et al. (1999). The cost
function is evaluated based on the first experiment in the iterations. The Gauss-Newton
method is used for optimization of the loop performance

In this paper the above problem is solved using Levenberg-Marquardt optimization,
with τ = 10−4 in (6.19) and the update strategy for µ is based on (6.22). The
results are presented in Table 6.2. Comparing the results in Tables 6.1 and 6.2,
it is seen that the performance after 5 iterations is very close despite the different
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Iteration Kc τI τD Mask F (ρi) · 103

Initial 0.025 2 1 1 75.717

No. 1 0.0501 1.9268 0.8011 1 27.655
No. 2 0.0944 1.9029 0.7259 1 8.1042
No. 3 0.1555 1.8930 0.7113 1 2.3160
No. 4 0.1823 1.8904 0.7111 1 1.3894
No. 5 0.2113 1.8862 0.7110 1 0.9797

Table 6.2. Control parameters and the value of the performance cost function for each
iteration. The mask is only one sample for all iterations. The cost function is evaluated
based on the first experiment in the iterations. The Levenberg-Marquardt method is
used for optimization of the loop performance

development of the control parameters through the iterations. The main difference
between two methods is, that the method of Lequin et al. (1999) changes the cost
function that is minimized, when the initial time, t0, in the cost function is changed.
With the proposed Levenberg-Marquardt method the cost function remains the
same. That is reflected in the performance cost. In the latter case the improvement
from one iteration to the next is reflected by the value of the cost while these are
not comparable when the mask t0 in the cost function is changed.

Remark:
From iteration 4 and 5 in Table 6.1 the value of the performance cost is increased
slightly for the same cost function. This is due to the different stochastic realizations
of the noise. This behavior is an indication of being close to optimal tuning.

6.6.2 Perturbations in Iterative Feedback Tuning

In this example the process is tuned for disturbance rejection, hence rt = 0 and
only the noise present in the first experiment drives the tuning. λ = 0.01 is used
in the cost function. Again the Levenberg-Marquardt optimization is used where
τ = 10−4 in (6.19) and the update strategy for µ is based on (6.22). Three trials with
different strategies for the tuning are performed for the performance optimization
of the process. 10 iterations are used in each of the trials. In the first trial the
Iterative Feedback Tuning method is applied in its standard form but having the
Levenberg-Marquardt parameter update. In the second trial external perturbations
on the control signal are included in the first experiment of each iteration in order
to increase the information content in data. The perturbation signal is given by

up = P (ϑ)ǫ, ǫt ∈ N (0, 1), t ∈ {1, 2, .., N} (6.26)

where P (ϑ) is the stable first order data filter

P (ϑ) =
ϑ1

ϑ2s + 1
, ϑ ∈ R2

+ (6.27)

The optimization performed in each iteration is based on an estimated plant model
and subject to the constraint Fmax = 0.02. In the last trial the same perturbation
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strategy is applied as in trial 2 and the Levenberg-Marquardt parameter update is
extended with an exact line search in each iteration for evaluating γi. The line search
is performed on the estimated plant and noise model of the system. The results are
presented in Figure 6.5 which shows the value of the performance cost function for
each of the control loops through the ten iterations as an average of 100 Monte
Carlo runs, F̄MC(ρi). Tables 6.3 and 6.4 shows the result as control parameters
and observed performance for the second and third trial for all ten iterations. This
information is omitted for the first trial since no significant changes occur. The
process model estimate and the noise model is produced prior to the tuning from
closed loop data with the initial controller in the loop. Data points have been
collected from one hour simulation with a pseudo-random binary reference signal.
This signal was generated with a low pass frequency band from 0 to 0.01 hence a
clock period of 100. The amplitude was 0.4 such that the constraint on Fmax was
not violated during the experiment. Two thirds of the data was used to estimate
a Box Jenkins model with the true model structure as an open loop estimation
problem using the prediction error method, i.e. direct identification. The remaining
one third of the data was used for validation and showed white residual for the auto-
and cross-correlation functions and a model fit for the one step ahead prediction of
93.7 %.

Iteration Kc τI τD F̄MC(ρi) · 103

Initial 0.025 2 1 0.2328

No. 1 0.0180 2.6910 2.4212 0.2319
No. 2 0.0202 3.0130 3.0618 0.2300
No. 3 0.0259 3.1818 3.2934 0.2254
No. 4 0.0349 3.2657 3.4148 0.2191
No. 5 0.0488 3.3067 3.4685 0.2136
No. 6 0.0654 3.3315 3.4918 0.2060
No. 7 0.0935 3.3389 3.4998 0.1956
No. 8 0.1292 3.3397 3.5007 0.1862
No. 9 0.1464 3.3398 3.5011 0.1794
No. 10 0.1577 3.3398 3.5015 0.1761

Table 6.3. Controller parameters and the value of the performance cost function for
each iteration in the second series of Perturbed Iterative Feedback Tuning. The cost
function is evaluated based on 100 Monte Carlo runs, F̄MC(ρi).

From the results of the three trials it can be seen that hardly any improvement
of the performance can be observed over the 10 iterations of the tuning for the
first trial with classical Iterative Feedback Tuning. The control parameters moved
very little in each iteration. In the second trial with Perturbed Iterative Feedback
Tuning the performance is improved from one iteration to the other and provides a
controller after ten iterations that is clearly superior to the initial trial. The rate of
approach towards the local minimizer is slowing down through the iterations which
is also due to the update strategy of the damping coefficient. In the third trial where
both Perturbed Iterative Feedback Tuning and exact line search are used, significant
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Iteration Kc τI τD F̄MC(ρi) · 103

Initial 0.025 2 1 0.2328

No. 1 0.0221 2.2873 1.5909 0.2313
No. 2 0.0231 5.2606 8.5949 0.2251
No. 3 0.2475 6.1356 2.1208 0.1599
No. 4 11.438 7.7009 0.8945 0.1492
No. 5 11.437 7.7030 0.7431 0.1475
No. 6 11.437 7.7030 0.7431 0.1481
No. 7 11.437 7.7030 0.7431 0.1485
No. 8 11.437 7.7030 0.7427 0.1478
No. 9 11.437 7.7030 0.7421 0.1471
No. 10 11.437 7.7030 0.7421 0.1472

Table 6.4. Controller parameters and the value of the performance cost function for each
iteration in the third series of Perturbed Iterative Feedback Tuning with line search.
The cost function is evaluated based on 100 Monte Carlo runs, F̄MC(ρi).

improvements can be observed between consecutive iterations until the fifth iteration
where the update seems to have converged. After the fifth iteration the line search
could not find improvement in the search direction for these iterations and did not
approach the minimum further. The theoretical value of the local minimizer has
been evaluated numerically to 7.636 · 10−5 based on full process knowledge.

6.7 Conclusion

An extension to the Iterative Feedback Tuning algorithm imposing external probing
signals to the predefined experiments is proposed. Perturbed Iterative Feedback
Tuning is an advantage when tuning for disturbance rejection. Perturbing the pro-
cess can yield more informative data and thereby improve convergence properties
of the tuning method for disturbance rejection, hence reducing the number of plant
experiments. The use of the Perturbed Iterative Feedback Tuning algorithm is out-
lined. It is motivated to generate this external probing signal from a constraint
optimization utilizing a plant model, which is not necessary in the standard for-
mulation of the tuning method. Having a plant and a noise model of the system
renders the use of a line search algorithm for the parameter update possible, which
is demonstrated to significantly improve convergence. Furthermore availability of
a model allows a check on nominal stability of the loop. The use of Levenberg-
Marquardt optimization is advocated and illustrated for controller tuning of a step
response problem. The advantages of the proposed algorithm with probing and line
search is illustrated on a disturbance rejection problem, which is notoriously difficult
for classical Iterative Feedback Tuning.
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Figure 6.5. Performance of each controller through the iterations for all three series
evaluated based on 100 Monte Carlo trials. The cost for the local minimizer is also
displayed as the dotted line.
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7

A Design Algorithm using
External Perturbation to Improve

Iterative Feedback Tuning
Convergence

Abstract

Iterative Feedback Tuning constitutes an attractive control loop tuning method
for processes in the absence of sufficient process insight. It is a purely data driven
approach to optimization of the loop performance. The standard formulation ensures
an unbiased estimate of the loop performance cost function gradient, which is used
in a search algorithm for minimizing the performance cost.

A slow rate of convergence of the tuning method is often experienced when tuning
for disturbance rejection. This is due to a poor signal to noise ratio in the process
data. A method is proposed for increasing the data information content by intro-
ducing an optimal perturbation signal in the tuning algorithm. The perturbation
signal design is based on a detailed analysis of the asymptotic accuracy of the tuning
method. A formal algorithm for optimization of the perturbation signal spectrum
when tuning for disturbance rejection is presented. Special cases where an explicit
optimal design are available is discussed. The theoretical analysis is supported by a
simulation example.
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7.1 Introduction

Control design and tuning for disturbance rejection is one of the classical disciplines
in control theory and control engineering science. Design of compensators for distur-
bance rejections is well documented (Åström, 1970; Box and Jenkins, 1970; Åström
and Hägglund, 1995). Given a particular control design, the tuning of the control
parameters can be conducted based on tuning rules or by minimization of some loop
performance criterion. The performance criterion is typically a quadratic cost func-
tion with penalty on the process outputs and the control signals. Given a model of
the system, the set of optimal control parameters which minimize the performance
cost can be evaluated. In absence of a sufficiently reliable model, the tuning can be
performed based on data obtained from the loop, by a data driven optimization. It-
erative Feedback Tuning is a method for optimizing control parameters using closed
loop data and this algorithm will form the basis for the modifications presented here.
The basic algorithm was first presented in Hjalmarsson et al. (1994b) and has since
then been analyzed, extended and tested in a number of papers. Gevers (2002) and
Hjalmarsson (2002) provide extensive overviews of the development of the method
and references to applications.

The performance criterion, FN(yt, ut), used in the controller tuning is a function
of the output and the control action for the control loop. Hence it is a function of
the true system, the controller and external signals acting on the loop. We will use
the set-up in Figure 7.1 where G is a causal scalar linear time-invariant system, C is
the controller, which also is assumed to be causal scalar linear time-invariant, and
where rt is the reference signal and vt is the disturbance, respectively. Assuming, as
we will, that the disturbance is stochastic implies that the performance cost is itself
a random variable. However, as in, e.g., LQG-control, it is natural to minimize the
expected cost

F (·) , E [FN(·)] (7.1)

where here E[·] is the mathematical expectation over the random disturbances acting
on the closed loop system. This notation will be used throughout this paper. Notice
that in the following, when expectation of F (·) is taken, the expectation refers not
to the random disturbances acting on the system when assessing the closed loop
peformance. It refers to the random variables that have affected the experimental
data that has been used to design the controller for which the performance of F (·)
is to be assessed. In order words the expectation will be taken over the controller C
which will be seen as a random variable.

Our objective is to design a controller such that F is minimized when rt ≡ 0,
i.e. we are interested in disturbance rejection. Adding a reference signal during
the experimentation phase may however improve the quality of the obtained con-
troller C. In Iterative Feedback Tuning, one tries to minimize F with respect to
the controller using noisy closed loop experiments. The accuracy of this very much
depends on the shape of the cost function F one tries to minimize. The sharper the
optimum of F is, the easier it will be to find a good controller. Now, any change
in the spectrum Φr of the reference signal, will affect the output spectrum Φy and
the input spectrum Φu. Hence the reference signal spectrum affects the minimum
and the shape of the performance cost surface. By designing the spectrum of an
external reference it is consequently possible to shape the performance cost function
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Figure 7.1. A general feedback loop designed for disturbance rejection. The process, G,
and the compensator in the feedback loop, C, is given as scalar linear transfer functions.

in order to improve the convergence properties of the search algorithm in the tuning
method for the control parameters. However, one has to bear in mind that shaping
the cost function will also influence the location of the minimum in the controller
parameter space. The cost function evaluated with external perturbation will be
different from that of the original design problem when tuning for disturbance re-
jection. This is illustrated in Figure 7.2 where two examples of a quadratic cost
function are shown as function of two control parameters. Let the original design
F0 refer to the disturbance rejection case where the reference signal to the loop is
zero. F1 is then the evaluation of the same cost function for the case with external
perturbation where Φr 6= 0. Since the contour lines of F1 are closer together than for
F0, the optimization with the perturbation is less sensitive to the stochastic element
in the evaluation of the performance cost. The price to be paid is that the method
converges towards a different minimum. Despite this unfortunate consequence, suc-
cessful simulation studies are reported with respect to convergence using Perturbed
Iterative Feedback Tuning when tuning for disturbance rejection (Huusom et al.,
2008).

0 0.2 0.4 0.6 0.8 1
0
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0.4
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1
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ρ
2

Figure 7.2. Contours and minima for two cost functions with equal levels for the contour
lines. ρ1 and ρ2 are the control parameters. The full lines and the cross refer to the
original design criterion, F0. The dotted lines and the dot in the center is the cost
function when affected by an external perturbation, F1.
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7.1.1 Formulating a design criterion

Let F (ρ,ϑ) denote the cost function that we are interested in minimizing, where
ρ and ϑ represent the free control parameters which are to be tuned and a set
of parameters which characterize the reference signal spectrum, respectively. The
objective is to find the optimal ρ for a given ϑ = ϑ0 which corresponds to rt ≡ 0. We
denote the optimum ρ by ρ̄(ϑ), indicating its dependence on ϑ. Since the system
will be affected by noise it is only possible to obtain a minimizer, ρ̂n(ϑ), with a
certain accuracy; we use subscript n to denote that n iterations are performed in
the tuning method. Hence Iterative Feedback Tuning will produce a solution with
the following error

Σn(ϑ) , E
[
(ρ̂n(ϑ) − ρ̄(ϑ)) (ρ̂n(ϑ) − ρ̄(ϑ))T

]
(7.2)

that has the property that it depends on ϑ. Using a continuity argument it may
therefore be advantageous to optimize ρ for a ϑ 6= ϑ0, i.e. it may be that the
controller corresponding to ϑ may result in a smaller expected cost for the desired
excitation conditions (which correspond to ϑ0) than the controller tuned with the
desired operating conditions ϑ0. This can be expressed as that it may hold that

E
[
F (ρ̂n(ϑ),ϑ0)

]
< E

[
F (ρ̂n(ϑ0),ϑ0)

]
(7.3)

Our objective is to determine operating conditions ϑ such that E
[
F (ρ̂n(ϑ),ϑ0)

]
is

minimized. This is a very difficult problem since F (ρ̂n(ϑ),ϑ0) is a very complicated
and non-linear function of the random disturbances originating from the experiments
on which ρ̂n(ϑ) is based. This in turn means that the expectation with respect to
these random variables is very difficult to compute. Our approach to cope with this
is to perform a local analysis, assuming ϑ to be close to ϑ0. Using Taylor expansion
near the optimum we have that

F (ρ̂n(ϑ),ϑ0) ≈ F (ρ̄(ϑ0),ϑ0) +
∂F (ρ̄(ϑ0),ϑ0)

∂ρ

(
ρ̂n(ϑ) − ρ̄(ϑ0)

)
+

1

2

(
ρ̂n(ϑ) − ρ̄(ϑ0)

)T ∂2F (ρ̄(ϑ0),ϑ0)

∂ρ2

(
ρ̂n(ϑ) − ρ̄(ϑ0)

)

=F (ρ̄(ϑ0),ϑ0) +
1

2
Tr

{
∂2F (ρ̄(ϑ0),ϑ0)

∂ρ2

(
ρ̂n(ϑ) − ρ̄(ϑ0)

) (
ρ̂n(ϑ) − ρ̄(ϑ0)

)T
}

(7.4)

which means that

E
[
F (ρ̂n(ϑ),ϑ0)

]
− F (ρ̄(ϑ0),ϑ0)

≈1

2
Tr

{
∂2F (ρ̄(ϑ0),ϑ0)

∂ρ2
E
[(

ρ̂n(ϑ) − ρ̄(ϑ0)
) (

ρ̂n(ϑ) − ρ̄(ϑ0)
)T]
}

=
1

2
Tr

{
∂2F (ρ̄(ϑ0),ϑ0)

∂ρ2

(
ρ̄(ϑ) − ρ̄(ϑ0)

) (
ρ̄(ϑ) − ρ̄(ϑ0)

)T
}

+

1

2
Tr

{
∂2F (ρ̄(ϑ0),ϑ0)

∂ρ2
Σn(ϑ)

}
, ∆Fn(ϑ) (7.5)
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Now, if Σn(ϑ) can be evaluated then ∆Fn(ϑ) is a quantity that can be minimized
with respect to ϑ in order to find the (approximately) optimal (reference) pertur-
bation signal spectrum to be used in the experiments when tuning the controller
parameters ρ using Iterative Feedback Tuning.

The two terms in ∆Fn(ϑ) can be interpreted as follows: The first term is the bias
error due to that ϑ 6= ϑ0 is used in the optimization whereas the second term is the
variance error incurred on F (ρ̂n(ϑ),ϑ0). The bias error will typically increase as ϑ

moves away from ϑ0. As noted above, it may be possible to decrease the variance
error if ϑ is suitably chosen. The optimal perturbation choice ϑ = ϑ̄ will balance
these two terms. The aim of this study is to construct a systematic and formal algo-
rithm for designing an optimal external perturbation signal for Iterative Feedback
Tuning of the disturbance rejection problem. Based on (7.5), this algorithm will
minimize a design criterion which explicitly addresses this trade off between bias
and variance error in the distribution of the n’th iterate in the tuning algorithm,
ρn.

The paper is organized as follows: Section 7.2 presents the basic Iterative Feedback
Tuning algorithm for disturbance rejection. We also review an expression for the
error Σn(ϑ) of the method derived in Hildebrand et al. (2005b) for the disturbance
rejection problem. In Section 7.3 the effect of adding an external perturbation
signal to the loop in the tuning method is analyzed. This extends the result in
Hildebrand et al. (2005b) and provides us with an expression for Σn(ϑ) required
for the computation of the expression on the right in (7.5). Then in Section 7.4, a
formal design criterion for the perturbation spectrum is derived and a full algorithm,
tuning for disturbance rejection with Perturbed Iterative Feedback Tuning using
process insight, is constructed. Finally a simulation example serves to illustrate
the advantages of introducing an optimal external perturbation signal in the tuning
algorithm for the disturbance rejection case. Derivation of covariance expressions
for the derivative of the performance cost function is given in an appendix.

7.2 Iterative Feedback Tuning for disturbance re-

jection

The algorithm for performing Iterative Feedback Tuning for disturbance rejection is
illustrated in the following. The feedback loop in Figure 7.1 depicts the signals and
transfer functions which will be used in the algorithm for tuning the parameters ρ

in C. The objetive is to tuning the controller such that the effect of the noise, vt, is
rejected in an optimal sense.

The objective is to minimize the cost function:

FN(ρi) =
1

2N

N∑

t=1

(yt(ρi) − yd
t )

2 + λ(ut(ρi))
2 (7.6)

where N number of data points in the discrete time horizon and yd is the desired
output response. For the disturbance rejection problem rt ≡ 0 and hence yd

t = 0.
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The sensitivity of the cost function with respect to the control parameters is

J(ρi) =
∂FN (ρi)

∂ρ
=

1

N

N∑

t=1

yt(ρi)
∂yt(ρi)

∂ρ
+ λut(ρi)

∂ut(ρi)

∂ρ
(7.7)

where

∂yt

∂ρ
(ρ) = − ∂C(ρ)

∂ρ
GS2(ρ)vt (7.8)

∂ut

∂ρ
(ρ) = − ∂C(ρ)

∂ρ
S2(ρ)vt (7.9)

The minimization of the cost function is realized by iterating in the gradient scheme

ρi+1 = ρi − γiR
−1J(ρi) (7.10)

where R is a positive definite matrix. It could be chosen as the Hessian of the cost
function with respect to the control parameters ρ, or the identity matrix to achieve
a Newton or a steepest decent algorithm respectively. If a model for the system is
unknown, the gradients of the in- and output and hence the cost function gradient
can not be evaluated analytically. An estimate of the performance cost function
gradient is

Ĵ(ρi) =
1

N

N∑

t=1

yt(ρi)
∂̂yt(ρi)

∂ρ
+ λut(ρi)

∂̂ut(ρi)

∂ρ
(7.11)

where ∂̂yt(ρi)
∂ρ

and ∂̂ut(ρi)
∂ρ

are estimates of (7.8) and (7.9) respectively. In the tradi-
tional Iterative Feedback Tuning framework the minimization of the cost function,
(7.6), is based on data from two successive experiments (Hjalmarsson et al., 1998).

• Collect data {y1
t (ρi), u

1
t (ρi)}t=1,..,N where r1

t = 0

• Collect data {y2
t (ρi), u

2
t (ρi)}t=1,..,N where r2

t = −y1
t

This data is used to estimate the gradients of the in- and outputs

∂̂yt

∂ρ
,
∂C(ρi)

∂ρ
y2

t (7.12)

=
∂yt

∂ρ
(ρi) +

∂C(ρi)

∂ρ
S(ρi)v

2
t (7.13)

∂̂ut

∂ρ
,
∂C(ρi)

∂ρ
u2

t (7.14)

=
∂ut

∂ρ
(ρi) −

∂C(ρi)

∂ρ
S(ρi)C(ρi)v

2
t (7.15)

where (7.12) and (7.14), are the estimators for the gradients of the in- and outputs.
When these two expressions are used to form the estimate for the performance cost
function gradient (7.11), (7.13) and (7.15) imply that the estimate can be split into
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two terms: An analytic bias term, SN , and a variance term, EN . The latter term is
due to the noise present in the second experiment.

Ĵ(ρi) = SN(ρi) + EN (ρi) (7.16)

where

SN(ρ) =
1

N

N∑

t=1

[
y1

t (ρ)
∂yt(ρ)

∂ρ
+ λu1

t (ρ)
∂ut(ρ)

∂ρ

]

=
1

N

N∑

t=1

[
(S(ρ)v1

t )

(
−∂C(ρ)

∂ρ
GS(ρ)2v1

t

)
+ λ(−S(ρ)C(ρ)v1

t )

(
−∂C(ρ)

∂ρ
S(ρ)2v1

t

)]

(7.17)

EN(ρ) =
1

N

N∑

t=1

[
y1

t (ρ)

(
∂̂yt(ρ)

∂ρ
− ∂yt(ρ)

∂ρ

)
+ λu1

t (ρ)

(
∂̂ut(ρ)

∂ρ
− ∂ut(ρ)

∂ρ

)]

=
1

N

N∑

t=1

[
(S(ρ)v1

t )

(
∂C(ρ)

∂ρ
S(ρ)v2

t

)
+ λ(−S(ρ)C(ρ)v1

t )

(
−∂C(ρ)

∂ρ
S(ρ)C(ρ)v2

t

)]

(7.18)

The expectation of the variance part is zero, since the noise signals from the first
and second experiment are independent. The estimate of the cost function gradi-
ent produced by the Iterative Feedback Tuning method is therefore an unbiased
realization.

Given that the noise v is a zero mean, weakly stationary random signal, the key
contribution in Iterative Feedback Tuning, is that it supplies an unbiased estimate
of the cost function gradient, without requiring a plant model estimate, Ĝ, (Hjal-
marsson et al., 1998). Let the estimate, (7.11), be an unbiased and monotonically
increasing function of ρ. Using the estimate (7.11) in the gradient iteration (7.10)
instead of the analytical expression (7.7), as a stochastic approximation method, will
still make the algorithm converge to the expectation of the local minimizer provided
that the sequence of γi in (7.10) fulfills (Robbins and Monro, 1951; Hildebrand et al.,
2003)

∞∑

i=1

γ2
i <∞,

∞∑

i=1

γi = ∞. (7.19)

This condition is fulfilled e.g. by having γi = a/i where a is some positive constant.
A Gauss-Newton approximation of the Hessian to the performance cost func-

tion with respect to the controller parameters was suggested in Hjalmarsson et al.
(1994b). This first order approximation can be estimated using the available signals
from the tuning method

Ĥ =
1

N

N∑

t=1


 ∂̂yt

∂ρ

(
∂̂yt

∂ρ

)T

+ λ
∂̂ut

∂ρ

(
∂̂ut

∂ρ

)T

 (7.20)

This estimate will not be unbiased due to squared terms of the noise in the two
experiments, but it will be positive definite. A modification (Solari and Gevers,
2004) that involves additional experiments in each iteration of the iterative Feedback
Tuning algorithm produces an unbiased Hessian estimate.
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7.2.1 Asymptotic accuracy of the tuning method

The stochastic contribution in the gradient estimate will affect the asymptotic con-
vergence rate of the tuning method. A quantitative analysis was performed by Hilde-
brand et al. (2005a). The result is as follows: With n being the iteration number
and ρ̄ the optimal set of parameters, the sequence of random variables,

√
n(ρn − ρ̄),

converge in distribution to a normally distributed random variable with zero mean
and covariance matrix Σ according to

√
n(ρn − ρ̄)

D→ N (0,Σ)

Σ = a2

∫ ∞

0

eAtR−1Cov
[
Ĵ(ρ̄)

]
R−1eAT tdt

(7.21)

The result in (7.21) is valid given the following set of conditions hold:

1. The sequence ρn converges to a local isolated minimum ρ̄ of F

2. H(ρ̄) is the true Hessian for F (ρ) at ρ̄.

3. The gain sequence {γn} in (7.10) is given by γn = a/n, where a is a positive
constant.

4. There exists an index n̄ and a matrix R such that Rn = R for all n > n̄.

5. The matrix A = 1/2I − aR−1H(ρ̄) is stable, i.e. the real part of all the eigen-
values is negative.

6. The covariance matrix Cov
[
Ĵ(ρ̄)

]
is positive definite.

The result in (7.21) means that asymptotically the distribution for the deviation
between the n’th iterate of the controller parameter and the true optimum is known,
and that the method converges to the true local minimizer of the performance cost
function. In Hildebrand et al. (2005b) it is shown that the covariance expression for
the distribution simplifies if H(ρ̄), i.e. the true Hessian, is used as the matrix R in
(7.10). Hence for a Newton-Raphson optimization

Σ =
a2

2a− 1
R−1Cov

[
Ĵ(ρ̄)

]
R−1 (7.22)

As a measure of the quality of the controller for a given iteration, n, in the tuning
algorithm Hildebrand et al. (2005b) suggest the difference between the expected
value of the performance cost with C(ρn) in the loop minus the theoretical minimum
value. This quantity, ∆Fn, will be referred to as the control quality index.

∆Fn , E[F (ρn)] − F (ρ̄) (7.23)

This index is by definition a positive measure. Expanding it in a Taylor series around
the optimum up to second order gives the approximation:

∆Fn ≈ 1

2
E
[
∆ρ̄T

nH(ρ̄)∆ρ̄n

]
(7.24)
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where ∆ρ̄n = ρn − ρ̄. The following asymptotic expression when H(ρ̄)R−1 = I is
given in Hildebrand et al. (2005b):

lim
n→∞

nE
[
∆ρ̄T

nH(ρ̄)∆ρ̄n

]
=

a2

2a− 1
Tr
{

Cov
[
Ĵ(ρ̄)

]
[R−1]

}
(7.25)

From this analysis, it is seen that the covariance of the gradient estimate for the
performance cost function influences both the asymptotic covariance of the distri-
bution of ∆ρ̄n and the control performance quality measure given the parameters
ρn. It is therefore of interest to decompose this covariance expression. Due to the
independence of the signals v1

t and v2
t , the covariance of the gradient estimate in

Equation (7.16) can be divided into the following contributions.

Cov
[
Ĵ(ρ)

]
= Cov[SN(ρ)] + E

[
EN(ρ)SN(ρ)T

]
+ E

[
EN (ρ)SN(ρ)T

]T
+ Cov[EN(ρ)]

= Cov[SN(ρ)] + Cov[EN (ρ)] (7.26)

Assuming that the disturbance {vt} is a Gaussian process, the asymptotic frequency-
domain expressions of the two remaining terms are (Hildebrand et al., 2005a):

lim
N→∞

NCov[SN(ρ)] =
2

2π

∫ π

−π

|S(ejω,ρ)|4Φ2
v(ω)×

Re
{

[G(ejω,ρ) − λC(ejω,ρ)]S(ejω,ρ)
∂C(ejω,ρ)

∂ρ

}
×

Re
{

[G(ejω,ρ) − λC(ejω,ρ)]S(ejω,ρ)
∂C(ejω,ρ)

∂ρ

}T

dω

(7.27)

lim
N→∞

NCov[EN(ρ)] =
1

2π

∫ π

−π

|S(ejω,ρ)|4
[
1 + λ|C(ejω,ρ)|2

]2 ×

∂C(ejω,ρ)

∂ρ

∂C∗(ejω,ρ)

∂ρ
Φ2

v(ω)dω (7.28)

where C̄ is the complex conjugate and C∗ is the complex conjugate transpose of C.
A derivation is presented in Appendix B.

7.3 Introducing external perturbations in the tun-

ing

It is desired to improve the convergence rate and the asymptotic accuracy of the
Iterative Feedback Tuning method. To achive this, the signal to noise ratio in data
used in the tuning method must be increased. An external perturbation signal will
be used as reference in the first of the two experiments used in the tuning algorithm.
The experiments are then defined as follows:

• Collect data {y1
t (ρi), u

1
t (ρi)}t=1,..,N where r1

t = rp
t

• Collect data {y2
t (ρi), u

2
t (ρi)}t=1,..,N where r2

t = −y1
t
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where the external input rp
t is characterized by the spectrum Φrp . A discussion

on using external perturbations in the Iterative Feedback Tuning algorithm and an
introduction to Perturbed Iterative Feedback Tuning are given in Huusom et al.
(2008). The implication of introducing the external perturbation signal on the con-
vergence properties of the method will be elaborated in the following.

The implication on the gradient estimate of the cost function from including this
extra signal is

SN(ρi) =
1

N

N∑

t=1

[(
S(ρi)(Gr

p
t + v1

t )
)(

−∂C(ρi)

∂ρ
GS(ρi)

2(Grp
t + v1

t )

)
+

λS(ρi)(r
p
t − C(ρi)v

1
t )

(
−∂C(ρi)

∂ρ
S(ρi)

2(Grp
t + v1

t )

)]
(7.29)

EN (ρi) =
1

N

N∑

t=1

[(
S(ρi)(Gr

p
t + v1

t )
)(∂C(ρi)

∂ρ
S(ρi)v

2
t

)
+

λS(ρi)(r
p
t − C(ρi)v

1
t )

(
−∂C(ρi)

∂ρ
C(ρi)S(ρi)v

2
t

)]
(7.30)

Given the following two complex functions

Ψ(ejω,ρ) =[G(ejω,ρ) − λC(ejω,ρ)]S(ejω,ρ)
∂C(ejω,ρ)

∂ρ
(7.31)

Υ(ejω,ρ) =[|G(ejω,ρ)|2 + λ]S(ejω,ρ)
∂C(ejω,ρ)

∂ρ
(7.32)

and assuming that the disturbance {vt} and the reference signal rt are Gaussian
processes, the asymptotic covariance expressions for SN (ρ) and EN(ρ) are given as
(see Appendix C for details)

lim
N→∞

NCov[SN(ρ)] =
1

2π

∫ π

−π

|S(ejω,ρ)|4 ×
[

Re{G(ejω)Υ(ejω,ρ)}Re{G(ejω)Υ(ejω,ρ)}T Φ2
rp + Re{Ψ(ejω,ρ)}Re{Ψ(ejω,ρ)}T Φ2

v+[
2Re{G(ejω)Υ(ejω,ρ)}Re{Ψ(ejω,ρ)}T +Im{G(ejω)Υ(ejω,ρ)}Im{Ψ(ejω,ρ)}T−

Im{G(ejω)Υ(ejω,ρ)}TIm{Ψ(ejω,ρ)} + Re{G(ejω)Ψ(ejω,ρ)}Re{G(ejω)Ψ(ejω,ρ)}T +

Im{G(ejω)Ψ(ejω,ρ)}Im{G(ejω)Ψ(ejω,ρ)}T + Re{Υ(ejω,ρ)}Re{Υ(ejω,ρ)}T+

Im{Υ(ejω,ρ)}Im{Υ(ejω,ρ)}T

]
ΦrpΦv

]
dω (7.33)

lim
N→∞

NCov[EN(ρ)] =

1

2π

∫ π

−π

|S(ejω,ρ)|4
[
1 + λ|C(ejω,ρ)|2

]2 ∂C(ejω,ρ)

∂ρ

(
∂C(ejω,ρ)

∂ρ

)T

Φ2
v+

[
Re{Ψ(ejω,ρ))}Re{Ψ(ejω,ρ))}T + Im{Ψ(ejω,ρ))}Im{Ψ(ejω,ρ))}T

]
×

|S(ejω,ρ)|4ΦrpΦvdω (7.34)
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In relation to experimental design of the perturbation spectrum it is important to
know how the Hessian approximation is affected:

Ĥ =
1

N

N∑

t=1


 ∂̂yt

∂ρ

(
∂̂yt

∂ρ

)T

+ λ
∂̂ut

∂ρ

(
∂̂ut

∂ρ

)T

 (7.35)

where

∂̂yt

∂ρ
=
∂C(ρi)

∂ρ

(
GS(ρi)

2(Grp
t + v1

t ) + S(ρi)v
2
t

)
(7.36)

∂̂ut

∂ρ
=
∂C(ρi)

∂ρ

(
S(ρi)

2(Grp
t + v1

t ) + C(ρi)S(ρi)v
2
t

)
(7.37)

hence

Ĥ(ejω) =
1

2πN

∫ π

−π

∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
×

(
|G(ejω)|2|S(ejω,ρi)|4

(
|G(ejω)|2Φrp + Φv

)
+ |S(ejω,ρi)|2Φv

)
+

λ
∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
×

(
|S(ejω,ρi)|4

(
|G(ejω)|2Φrp + Φv

)
+ |C(ejω,ρi)|2|S(ejω,ρi)|2Φv

)
dω

(7.38)

=
1

2πN

∫ π

−π

∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
×

[
(|G(ejω)|2 + λ)|S(ejω,ρi)|4(|G(ejω)|2Φrp + Φv)+

(1 + λ|C(ejω,ρi)|2)|S(ejω,ρi)|2Φv

]
dω (7.39)

From the expressions in this section, it can be seen how external perturbation will
affect the relevant functions in relation to the covariance of the cost function gradient
estimate.

• The asymptotic expressions for SN and EN are affine functions in the fol-
lowing variables. SN = f(Φ2

rp,Φ2
v,ΦrpΦv) and EN = f(Φ2

v,ΦrpΦv), hence the
asymptotic covariance estimate is also an affine function in Φ2

rp , Φ2
v and ΦrpΦv.

• The Hessian estimate is an affine function in Φrp and Φv only.

7.3.1 Unbiased gradient estimation with perturbation

From the general feedback loop, Figure 7.1, it is seen that the closed loop transfer
functions are given by

yt =GS(ρi)r
p
t + S(ρi)vt (7.40)

ut =S(ρi)r
p
t − C(ρi)S(ρi)vt (7.41)

97



Chapter 7. A Design Algorithm using External Perturbation to Improve Iterative
Feedback Tuning Convergence

It would be interesting to have a design of rp which would not change the dynamics
in the response of y or u with respect to the inputs, compared to the unperturbed
case. If rp

t =
√

α/Gvt would be realizable, the output in (7.40) will simplify to

yt = GS(ρi)

√
α

G
vt + S(ρi)vt = (1 +

√
α)S(ρi)vt

which is only a scaled expression of the output for the unperturbed case. This
perturbation signal design will render the gradient estimate unbiased in case λ = 0
in (7.6), i.e. minimum variance control. It is optimal in the sense that this design
will contribute to a better signal to noise ratio without driving the optimization of
the control parameters to a biased optimum compared to the unperturbed case. In
case where rp =

√
αC(ejω,ρi)vt

ut = S(ρi)
√
αC(ejω,ρi)vt − C(ρi)S(ρi)vt = (1 +

√
α)C(ρi)S(ρi)vt

which means that an equivalent design is possible with an unbiased gradient esti-
mate, if the performance cost function only includes a penalty on the control (i.e.
λ → ∞). This is of course only of theoretical interest. The functional dependen-
cies in (7.40) and (7.41) means that a perturbation design which will give scaled
expressions for both y and u with respect to the unperturbed case does not exist.

In practical applications the actual random disturbance signal is unknown but the
spectrum of the disturbance may be known. If the perturbation signal is generated
using a signal with spectral properties equal to these of v, i.e. Φv, then the expected
value of the gradient estimates will still be unbiased. If rp

t and vt are independent
the spectrum of the output and the input in the two cases are:

Φy =|G(ejω)|2|S(ejω,ρi)|2Φrp + |S(ejω,ρi)|2Φv (7.42)

Φu =|S(ejω,ρi)|2Φrp + |C(ejω,ρi)|2|S(ejω,ρi)|2Φv (7.43)

Following the two optimal designs which has just be argued

Φrp =
α

|G(ejω)|2Φv ⇒ Φy = (1 + α)|S(ejω,ρi)|2Φv

Φrp = α|C(ejω,ρi)|2Φv ⇒ Φu = (1 + α)C(ejω,ρi)|S(ejω,ρi)|2Φv

From these expressions it is seen that the only requirement is knowledge of the noise
spectrum and the magnitude functions |G(ejω)|2 and |C(ejω,ρi)|2 in order to produce
a spectrum of the in- and output which are scaled with (1 + α), compared to the
unperturbed case. Insuring that the spectrum are scaled, is a less strict requirement
than having the signals y and u scaled. E.g. let the true system model contain a
time delay such that G(q) = q−kḠ(q). Since |G(ejω)|2 = |Ḡ(ejω)|2, a perturbation
signal generated by rp

t =
√

α/Ḡvt would only scale Φy up by (1 + α) but

yt = GS(ρi)

√
α

Ḡ
vt + S(ρi)vt = (1 +

√
αq−k)S(ρi)vt

which will change the dynamic response and hence render the gradient estimate of
the minimum variance cost function biased. This result gives some information for
generation of the optimal perturbation signal for disturbance rejection tuning of the

98



7.3. Introducing external perturbations in the tuning

minimum variance controller. It is desirable to have an input signal with the same
spectral properties as the random disturbance acting on the system. Furthermore
this signal will have to be filtered through the inverse of the true plant dynamics.

In practice it is not possible to generate an optimal perturbation signal since the
plant dynamics is unknown. On the other hand, the analysis in this section offers
an optimal design strategy for the perturbation signal in case a plant and noise
covariance estimates are available.

7.3.2 Influence of the perturbation power

In this section it will be assumed that λ = 0 in the performance cost function which
will therefore only depend on Φy. The perturbation signal spectrum will be chosen
as Φrp = (α/|G(ejω)|2)Φv such that the only free parameter is α which will determine
the power of the signal.

Using perturbations in the tuning algorithm will influence the covariance matrix of
the performance cost function gradient estimate and hence the expected performance
of the n’th iteration. Since expressions (7.33) and (7.34) show that the covariance
matrix is proportional to the squared spectrum of the perturbation signal, it will
be proportional to α2. The true Hessian of the performance cost function, used in
evaluation of Σ and ∆Fn, is independent of the perturbation, since this Hessian is
evaluated at the optimum for the unperturbed problem. For α→ ∞ it will therefore
be expected that Σ and the control quality index will grow with α2. In practice
the true Hessian is not known and has to be estimated from the same perturbed
data. Equation (7.39) shows that such a Hessian estimate is proportional to the
perturbation spectrum and hence α. By substitution of the true Hessian with this
perturbed Hessian estimate in the expressions for Σ and ∆Fn, it will be expected
that Σ will approach a constant value when α→ ∞ while the control quality index
will grow linearly. These results are verified by simulation in Figure 7.3.

In case the perturbation signal is kept constant between iterations, the covariance
expression for the performance cost will change. Since the perturbation signal does
not change between iterations it will be regarded as a deterministic signal. Hence
the multiplication between signals driven by the perturbation signal rp will not
contribute to the covariance. That implies that the term in SN in (7.33) with the
squared spectrum of the perturbation signal will be zero. Hence for a deterministic
rp

lim
N→∞

NCov[SN(ρ)] =
1

2π

∫ π

−π

|S(ejω,ρ)|4 ×
[ [

Re{Ψ(ejω,ρ)}Re{Ψ(ejω,ρ)}T
]
Φ2

v+

[
2Re{G(ejω)Υ(ejω,ρ)}Re{Ψ(ejω,ρ)}T +Im{G(ejω)Υ(ejω,ρ)}Im{Ψ(ejω,ρ)}T−

Im{G(ejω)Υ(ejω,ρ)}TIm{Ψ(ejω,ρ)} + Re{G(ejω)Ψ(ejω,ρ)}Re{G(ejω)Ψ(ejω,ρ)}T +

Im{G(ejω)Ψ(ejω,ρ)}Im{G(ejω)Ψ(ejω,ρ)}T + Re{Υ(ejω,ρ)}Re{Υ(ejω,ρ)}T+

Im{Υ(ejω,ρ)}Im{Υ(ejω,ρ)}T

]
ΦrpΦv

]
dω (7.44)

The covariance expression for EN in (7.34) remains unchanged. Having the same
realization for the perturbation signal will give a covariance expression for the per-
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Figure 7.3. Simulations of Tr(Σ) and the control quality index, ∆Fn, for increasing
power of the perturbation signal Φrp = (α/|G(ejω)|2)Φv. 1000 data points are used in the
simulation and 1000 repeated simulations are used to evaluate the covariance of the
gradient estimate. The perturbation signal is changed between subsequent simulations.

formance cost gradient estimate which is proportional to the perturbation signal
spectrum and not the spectrum squared. The influence of the deterministic pertur-
bation signal on Σ and ∆Fn is shown in Figure 7.4. It is seen that using a constant
perturbation signal while the Hessian is estimated from data, produces a covariance
matrix Σ which approaches zero as the power of the perturbation signal is increased.

7.4 A formal design criterion for the perturbation

spectrum

The previous section has shown that introducing an external perturbation signal in
the first of the experiments in the Iterative Feedback Tuning algorithm, can improve
the convergence and decrease the necessary number of iterations when the objective
is disturbance rejection. In this section we summarize the formal design criterion,
outlined in Section 7.1.1, and discuss practical issues.

Denoting the design variables of the reference spectrum by ϑ (with ϑ0 correspond-
ing to a zero reference signal), we have from (7.5) that a suitable design criterion
is

∆Fn(ϑ) ,
1

2
Tr

{
∂2F (ρ̄(ϑ0),ϑ0)

∂ρ2

(
ρ̄(ϑ) − ρ̄(ϑ0)

) (
ρ̄(ϑ) − ρ̄(ϑ0)

)T
}

+

1

2
Tr

{
∂2F (ρ̄(ϑ0),ϑ0)

∂ρ2
Σn(ϑ)

}
(7.45)
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Figure 7.4. Simulations of Tr(Σ) and the control quality index, ∆Fn, for increasing
power of the perturbation signal Φrp = (α/|G(ejω)|2)Φv. 1000 data points are used in the
simulation and 1000 repeated simulations are used to evaluate the covariance of the
gradient estimate. The perturbation signal remains unchanged for all the subsequent
simulations.

where

Σn(ϑ) , E
[
(ρ̂n(ϑ) − ρ̄(ϑ)) (ρ̂n(ϑ) − ρ̄(ϑ))T

]

Recall that the first term in (7.45) is the bias, or the displacement of the optimal
performance due to the external perturbation, and that the second term is the
variance error. Under Conditions 1–6 in Section 7.2.1, (7.21) gives that Σn(ϑ) can
be expressed as

Σn(ϑ) ≈ 1

n
Σ(ϑ)

where n is the number of iterations that are going to be performed, and where

Σ(ϑ) = a2

∫ ∞

0

eAtR−1Cov
[
Ĵ(ρ̄,ϑ)

]
R−1eAT tdt (7.46)

(recall that a is the gain in the step-size, i.e. at iteration n, the step-size is γn = a/n).

In (7.46), Cov
[
Ĵ(ρ̄,ϑ)

]
is given by (7.26)

Cov
[
Ĵ(ρ,ϑ)

]
= Cov[SN(ρ,ϑ)] + Cov[EN(ρ,ϑ)] (7.47)

where asymptotic (in the experiment length N) expressions for Cov[SN(ρ,ϑ)] and
Cov[EN (ρ),ϑ] are given in (7.33)–(7.34) with Φrp being the reference signal spec-
trum that corresponds to the parameter ϑ. Observe that these expressions hold
when the disturbance vt and the reference signal rt are Gaussian distributed.
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In case the gain direction R in the Iterative Feedback Tuning algorithm (7.10) is

taken as ∂2F (ρ̄(ϑ),ϑ)
∂ρ2 , the simplified expression (7.22) can be used resulting in that

Σn(ϑ) ≈ a2

n(2a− 1)

[
∂2F (ρ̄(ϑ),ϑ)

∂ρ2

]−1

Cov
[
Ĵ(ρ̄,ϑ)

] [∂2F (ρ̄(ϑ),ϑ)

∂ρ2

]−1

(7.48)

When full process knowledge is available all quantities in (7.45) can be computed
from the equations above and thus one can optimize ∆Fn(ϑ) in order to obtain a
reference signal spectrum suitable for when using Iterative Feedback Tuning to tune
a controller that is to be used for disturbance rejection. Since the design criterion
∆Fn(ϑ) is based on a Taylor expansion it is recommended to introduce a constraint
on the reference signal power in the optimization. There are many possibilities for
parametrizing the reference spectrum. In the next section a straightforward method
where filter coefficients are used as design variables ϑ. It is also possible to use a
linear parametrization of the spectrum itself, we refer to Jansson and Hjalmarsson
(2005) for details.

As in general experimental design algorithms, the evaluation of the optimal so-
lution relies on knowledge of the true system which is not available (Goodwin and
Payne, 1977; Gevers and Ljung, 1986; Bombois et al., 2004). Therefore, practical
use of the method will have to rely on an initial plant model. However, since the
cost function appears to be smooth in many problems (see for example the next sec-
tion), the accuracy of this model does not seem to be critical. The model may also
be updated using the experimental data that is generated throughout the Iterative
Feedback Tuning-experiments in order to successively improve the design.

7.5 An example

A simulation study is preformed in order to illustrate the ideas and advantages of
introducing external perturbations in the Iterative Feedback Tuning method when
tuning for disturbance rejection. For simplicity the control loop used is a discrete-
time linear time-invariant transfer function model, and the controller has only two
adjustable parameters. The random disturbance acting on the system is Gaussian
white noise i.e. et ∈ Niid(0, σ

2) where σ = 1. The nomenclature refers to the block
diagram in Figure 7.1 where vt = H(q)et.

Plant model: G(q) =
q−1 − 0.5q−2

1 − 0.3q−1 − 0.28q−2

Noise model: H(q) =
1

1 + 0.9q−1

Controller: C(q) = ρ1 + ρ2q
−1

(7.49)

This system was used in Hildebrand et al. (2005b) to test the advantages of optimal
pre-filters in Iterative Feedback Tuning for disturbance rejection. The simulation
study is divided into two cases. In the first case a minimum variance control design
is used, hence λ = 0 in (7.6). In this case the optimal design of the perturbation
signal is known analytically. The second case treats the more general case where
penalty on both in- and outputs are included in the quadratic performance cost
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function. In the second case λ = 0.25 is chosen, and the optimal perturbation signal
is designed by optimizing the parameters in a data filter.

Before we proceed, we remark that in this example we have replaced ∂2F (ρ̄(ϑ0),ϑ0)
∂ρ2

in the second term of (7.45) by

F (ρ̄(ϑ),ϑ0)

F (ρ̄(ϑ),ϑ)

∂2F (ρ̄(ϑ),ϑ)

∂ρ2
(7.50)

This approximation is accurate when

ν ,
d

dρ

∂2F (ρ̄(ϑ),ϑ)

∂ρ2

∣∣∣∣
ϑ=ϑ0

is small since g(ϑ) has first order derivative at ϑ = ϑ0 given by g′(ϑ0) = ν.

g(ϑ) ,
F (ρ̄(ϑ),ϑ0)

F (ρ̄(ϑ),ϑ)

∂2F (ρ̄(ϑ),ϑ)

∂ρ2

7.5.1 Case one: Minimum variance control

In this section the external perturbation signal is given by rp
t =

√
α/Gvt where the

plant model G and the noise model H are assumed known. Hence α is the only free
parameter which will give the input power of the perturbation signal. The tuning
of the controller is performed for the minimum variance design where λ = 0 in the
performance cost function (7.6). An external perturbation increases the value of the
performance cost when applied. Figure 7.5 shows the normalized cost function as
a surface on a grid of controller parameter values. These surface plots are smooth
functions since the same noise realization has been used for each grid point and
in both the perturbation signal design and in the evaluation of the cost function.
The cost function is of course only a smooth function when the number of samples,
N → ∞, which is not practically realizable. In this simulation N = 512.

The two surfaces have the same minimum in Figure 7.5, since for this idealized
case

F (ρ,Φrp) = (
√
α + 1)2F (ρ, 0)

This property means that the perturbation gives the desired change in the curvature
of the performance cost function to yield a faster convergence. In order to illustrate
this result further a series of Monte Carlo experiments are performed using Perturbed
Iterative Feedback Tuning. Initially the control parameters has the optimal value,
but due to the stochastic nature of the data the tuning will move the parameters
away from this value for repeated iterations. In 1000 experiments, 10 iterations have
been performed from the same optimal starting point, and the values of the resulting
set of parameters has been saved. 1000 data points has been collected and used in
each iteration of the tuning. For four different values of α in the perturbation signal,
the results are presented in Figure 7.6. The variance and the cross-covariance of the
resulting control parameters are reported in Table 7.1. From the results of the
Monte Carlo simulations in Figure 7.6 and Table 7.1 it is obvious that increasing
the value of α in the perturbation signal, produces an optimization problem with a
statistically better defined optimum.
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Figure 7.5. Surface plot of the normalized performance cost function on a control
parameter grid. The lower surface is the performance cost when α = 0 and the upper
surface is for α = 1. The same noise realization vt has been used at each grid point and
in the perturbation signal design in order to obtain a smooth surface.

7.5.2 Case two: The general performance cost function

In this example the same system is used but the performance cost function is changed
so that λ = 0.25. Initially the perturbation signal is formed in the same way as in
the previous example, i.e. rp

t =
√

α/Gvt. Figure 7.7 show how the optimum of the
cost function depends on the perturbation power when λ 6= 0. This figure also shows
30 contour lines for the cost functions, hence the contour lines in the two plots do
not represent equal levels. The optimal control parameters for each surface and the
corresponding value of the performance cost function are given in Table 7.2.

In the general case where λ 6= 0 in the performance cost function, the ratio F (ρ(Φrp),0)
F (ρ(Φrp),Φrp)

in (7.50) is not constant. This is evident from Figure 7.8 which also shows that the
approximation is reasonable close to ρ̄. The figure also show that the curvature of
this surface is small close to ρ̄(Φrp).

7.5.2.1 Optimizing the perturbation signal

Since the value for λ is not very large, it is possible that the optimal design for λ = 0
yields a reasonable filter choice. From Figure 7.7 it is seen that the optimum for the
perturbed problem has not been moved very far from the unperturbed problem in
the control parameter space. Therefore the structure of the filter used to generate
the perturbation signal is chosen identical to the inverted system model. The initial
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(b) α = 1
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(c) α = 5
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(d) α = 10

Figure 7.6. The final control parameters from 1000 Monte Carlo experiments each with
10 iterations in the Perturbed Iterative Feedback Tuning method. All iterations are
initiated at the optimal value for the control parameters. The value of α in scaling the
perturbation signal has been changed in four steps from zero up to 10.

values for the filter parameters are selected as the model parameters θ.

rp
t =

1

G(q)
H(q)et = Grp(q)H(q)et, et ∈ Niid(0, σ

2) (7.51)

where

Grp(q) =
1 + ϑ1q

−1 + ϑ2q
−2

q−1 + ϑ3q−2
, ϑT

0 = θT = [−0.3 − 0.28 − 0.5] (7.52)

hence non causal filtering is required. In this filter design the parameter α which
adjusts the gain will not be included in ϑ as a free parameter. Hence variance of
the perturbation signal will be determined by the remaining free parameters. The
optimal set of filter parameters can be detirmined by the minimization of the control
quality index, ∆Fn(Φrp) in (7.45) as an unconstrained problem. The reason being
that the optimal perturbation power will be a trade off between the displacement
of the optimal control parameters due to perturbation, and the distance between
the expected and optimal performance. The optimal solution based on full process
insight where computed as

ϑT
opt = [−8.115 − 10.21 0.5434]
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Variance σ2
ρ1
· 103 σ2

ρ2
· 103 σρ1,ρ2 · 103

α = 0 1.24 1.03 -0.817
α = 1 1.16 1.02 -0.820
α = 5 0.757 0.743 -0.623
α = 10 0.522 0.531 -0.451

Table 7.1. The variance and the cross-covariance for the resulting set of control pa-
rameters from 1000 Monte Carlo experiments each with 10 iterations in the Perturbed
Iterative Feedback Tuning method. All iterations are initiated a t the optimal value
for the control parameters. Results are given for different values of α.
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(b) α = 1

Figure 7.7. Contour plots with each 30 conture lines of the performance cost function,
with λ = 0.25, on a control parameter grid. The perturbation signal rp

t =
√

α/Gvt is
applied and the optimal set of control parameters is marked with a + for α = 0 and
with ◦ for α = 1. The same noise realization vt has been used at each grid point and
in the perturbation signal design in order to obtain a smooth surface.

and the control quality index were improved from 5.123 · 10−3 to 0.2658 · 10−3.

7.5.2.2 Perturbed Iterative Feedback Tuning

In the following four series of 1000 Monte Carlo experiments are performed each
containing n = 10 iterations with Perturbed Iterative Feedback Tuning. Initially the
loop starts with the optimal set of control parameters for the unperturbed operation.

• The first series is classical Iterative Feedback Tuning without a perturbation
signal.

• In the second series the optimal designed perturbation filter for λ = 0 is used,
hence rp

t = H(q)/G(q)et. When λ is equal 0.25, this design is expected to produce
a cloud of Monte Carlo solutions which is more dense but biased compeared
to the first series.
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ρ̄1 ρ̄2 F (ρ̄) Fcorr(ρ̄)

α = 0 -0.8323 0.4333 1.5008 -
α = 1 -0.8828 0.4616 5.2697 1.5051

Table 7.2. The optimal set of control parameters for the two experiments with λ = 0.25
where the perturbation signal is given by rp

t =
√

α/Gvt. The value of the performance
cost function for the optimal set is given together with the corrected value which com-
pensates for the effect of perturbation.
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Figure 7.8. Surface plot of the performance cost function ratio F (ρ(Φrp ),0)
F (ρ(Φrp),Φrp) , with

λ = 0.25, on a control parameter grid. The two evaluations of the performance cost are
affected by perturbation signals rp

t =
√

α/Gvt with α = 0 and α = 1 respectively. The
same noise realization vt has been used at each grid point and in the perturbation signal
design in order to obtain a smooth surface. The point marked with + is the optimal
set of control parameters for the perturbed problem.

• The third series uses the perturbation signal with the optimal parameters
which was presented in Section 7.5.2.1. Since the variance of the perturbation
signal is unconstrained in the optimization the variance for rp = Grp(q,ϑ0)H(q)et

is 2.842 while it is 165.6 for rp = Grp(q,ϑopt)H(q)et

• The fourth and last series, the third experiment is repeated but such a strong
signal will not be allowed during the tuning and the filter is scaled accordingly.
Using αGrp(q,ϑopt) where α =

√
2.842/

√
165.6, will give a variance of the optimal

perturbation signal which is the same as for rp = Grp(q,ϑopt)H(q)et.

The results of these four trials are shown in Figure 7.9 as scatter plot of ρn together
with the optimal solution for the unperturbed problem as a red square. Table 7.3
presents the mean value, the variance and the cross-covariance for the Monte Carlo
solutions together with the optimal control parameter values for the unperturbed
case.

The results in Figure 7.9 and Table 7.3 clearly illustrates the advantage of introduc-
ing external perturbations when tuning for disturbance rejection. The optimal set of
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(c) rp = Grp(q, ϑopt)H(q)et
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(d) rp = αGrp(q, ϑopt)H(q)et

Figure 7.9. The final control parameters from 1000 Monte Carlo experiments each with
10 iterations in the Perturbed Iterative Feedback Tuning method. All iterations are
initiated at the optimal value for the control parameters for the unperturbed problem
which is marked as a red square and with the straight lines. The perturbations signals
used in series one to four corresponds to subfigure a, b, c, and d respectively.

perturbation filter parameters both significantly reduce the variance of final control
parameters from the 1000 Monte Carlo experiments, and reduce the displacement of
the optimal control parameter solutions for the perturbed and unperturbed problem.
It is possible to evaluate the optimal filter parameters for generating the perturba-
tion signal as an unconstrained optimization. Constrains can then be included by a
scaling the gain of the filter, which has been done for Figure 7.9d.

7.6 Conclusions

The convergence properties of the Perturbed Iterative Feedback Tuning algorithm
for optimizing control parameters for disturbance rejection problems, have been
investigated. Asymptotic expressions for the covariance of the cost function gradient
have been derived and a control quality index for Perturbed Iterative Feedback
Tuning is proposed. It is shown that using a deterministic external perturbation
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Statistic mean(ρ1) mean(ρ2) σ2
ρ1
· 103 σ2

ρ2
· 103 σρ1,ρ2 · 103

rp = 0 (optimal) -0.8323 0.4333 - - -

rp = 0 -0.8369 0.4353 1.57 1.22 -1.09
rp = Grp(q,ϑ0)H(q)et -0.9019 0.4628 1.07 0.899 -0.726
rp = Grp(q,ϑopt)H(q)et -0.8382 0.4477 0.0275 0.0311 -0.0204
rp = αGrp(q,ϑopt)H(q)et -0.8371 0.4418 0.698 0.718 -0.488

Table 7.3. The mean, variance and the cross-covariance for the resulting set of control
parameters from 1000 Monte Carlo experiments each with 10 iterations in the Perturbed
Iterative Feedback Tuning method. All iterations are initiated at the optimal value for
the control parameters for the unperturbed problem.

signal in the tuning will affect the control quality index. The magnitude of the
improvement depends on the power and the frequency content of the perturbation
signal.

For minimal variance control design an analytical expression is derived for a param-
eterization of the perturbation signal which is optimal in the sense that it converges
to the same set of control parameters as the unperturbed case. This optimal design
is illustrated in a simulation example where it is shown that increasing the power
of the perturbation signal improves the control quality index. For a general cost
function with quadratic penalty on both the output and the input, there does not
exist such an unbiased optimal parameterization of the perturbation signal. An al-
gorithm for minimizing the control quality index for this general case is proposed
based on process insight. This algorithm is shown to be able to produce a perturba-
tion signal which significantly improves the control quality index. Hence Perturbed
Iterative Feedback Tuning performs better than classical Iterative Feedback Tuning
when tuning for disturbance rejection.

Investigation on optimal parameterization of the perturbation signal and the per-
formance of Perturbed Iterative Feedback Tuning in case of very limited process
insight remain for future work.
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8

Conclusions

In this thesis data driven tuning of control parameters for optimization of closed loop
performance have been investigated with a special focus on the Iterative Feedback
Tuning method. A short review of iterative methods for performance enhancement
has been provided with a clear classification in direct and indirect methods. The
class of indirect methods is model based and relies on subsequent model identifica-
tion and certainty equivalence control design. The direct methods are the class of
purely data driven algorithms which optimize the performance, excluding the model
identification step. Iterative Feedback Tuning has been related to two recent direct
tuning methods, the Correlation-based Tuning and Virtual Reference Feedback Tu-
ning. A more detailed review of the developments in the Iterative Feedback Tuning
method is presented separately, discussing the perspectives and pinpointing some
shortcomings of the method. The main advantages of the method are that:

• The tuning method is easy to apply - also for operators without a higher
technical degree.

• It is flexible with respect to optimization criterion.

• The method offers very few restrictions on the system and the loop. It is only
demanded that the data filters used in the evaluation of gradient estimated of
the in- and outputs are proper and stable. Use of pre-filters may ensure this
property.

• All experiments are conducted in closed loop, and only one experiment in each
iteration perturbs the process.

Disadvantages of the method are:

• The tuning relies on a large number of plant experiments with is proportional
to the number of iterations. The number of required experiments in one ite-
ration grows with the dimension of the number of pairings for multivariable
system. Approximations do exist which solves the dimension problem for
multivariable systems, at the expense of introducing bias in the estimate in
the gradient of the performance cost function.

• The algorithm may show a slow rate of convergence due to the stochastic
nature of the produced gradient estimate of the cost function. This is especially
a problem when tuning a control loop for disturbance rejection.

• The basic algorithm does neither ensure stability nor robustness of the achieved
loop. Results have been published which handle this inconvenience at the
expense of making the tuning method computationally more complicated.
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Based on the investigation of the Iterative Feedback Tuning method two different
types of novel contributions have been developed and are documented in this thesis.
The first type of contribution is related to data driven tuning on control structures
where the application of Iterative Feedback Tuning is novel but thought to have a
significant potential. Two such control structures which have been investigated are
nonlinear inventory control and state space control structures with state estimation.
The second type of contribution is related to speeding up the convergence rate of the
data driven tuning for disturbance rejection, and hence reduce the total number of
required plant experiments. This improvement is achieved by introducing external
perturbation in order to introduce excitation and a higher information content in
data.

The application of Iterative Feedback Tuning on a system with an inventory con-
troller in the feedback loop is a straight forward application of the basic algorithm.
In the control law, the process model is imbedded with e.g. proportional and in-
tegral action in order to compensate for model mismatch and ensure offset free
tracking. Tuning of the gain and the integral time in the PI part is possible despite
the general nonlinear nature of the controller, since the data filters required by the
Iterative Feedback Tuning fulfill the basic requirement. Tuning of these parameters
by classical tuning rules would in general not be possible. This work has successfully
been tested on a multivariable implementation of inventory control of liquid levels
of a pilot scale plant of the classical four tank system.

Extending the application of Iterative Feedback Tuning to adjust the feedback gain
and possibly the Kalman filter gain in a state space control structure with observer
is possible by realizing the feedback control representation in transfer function form.
This controller will then depend on both these two gains, but also on the parameters
in the estimated system model which is used by the observer. It is shown that
the data driven tuning method converge to known analytical solutions of both the
feedback and observer gain, when the same cost function is used by the tuning and
in solving the stationary Riccati equations for optimal design of LQG control.

When tuning a set of control parameters by Iterative Feedback Tuning for a distur-
bance rejection problem the rate of convergence is often very slow even when using
long data series. This problem is caused by the stochastic nature of how the al-
gorithm constructs the gradient estimate of the performance cost function, with
respect to the control parameters by using new data series in each iteration. For the
disturbance rejection problem only the noise in the first experiment is driving the
optimization, while the noise in the gradient experiments is producing a contribution
to the estimation variance. If the variance is large compared to the mean, which is
often the case for disturbance rejection, it has a negative effect on the convergence
rate. This problem has previously been addressed by designing prefilters, which are
used for the reference signal in the gradient experiments. The contribution pre-
sented here has applied external perturbation as a mean to achieve the same end.
When a deterministic external signal is applied in the first experiment it affects the
optimization objective since the control is rejecting both noise and the probing. The
aim is to shape the curvature of the cost function such that the optimization prob-
lem is less sensitive to the noise in the gradient experiments without changing the
optimum away from the original problem. A detailed analysis of the effect of such
external perturbation signals is given. It is seen that in the general case it is not
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possible to apply a perturbation signal without introducing bias in the optimization
objective. For the special case of tuning a minimum variance controller a design
for unbiased perturbations exists. This analysis is extended to give a design algo-
rithm for optimizing perturbation signals for the Iterative Feedback Tuning method,
which balance the negative effect of bias against the positive effect of reducing the
expected distance, after a fixed number of iterations, to the biased optimum. Data
driven tuning of a control loop using this algorithm has been named Perturbed It-
erative Feedback Tuning. This algorithm has shown good improvements when the
perturbation design is based on knowledge of the true system.

8.1 Future work

Through the work which has been conducted for writing this thesis several open
problems and potentials have become apparent which have not been pursued due to
time limitations. One general limitation is the extent where it has been possible to
apply the proposed methods on real systems and not only rely on simulation results.
The pilot scale, four tank test facility at the Department of Chemical and Biochem-
ical Engineering, Technical University of Denmark would serve as a convenient test
bench for both tuning of state space control systems and also Perturbed Iterative
Feedback Tuning. It is expected that test of these and further developments will be
conducted on this or other test facilities in order to, not only virtually, validate the
proposed methods.

In relation to the tuning of state space control structures, a next step would
be a more profound analysis of tuning the feedback and the observer gains given
parametric uncertainty in the model estimate. The effect caused by under-modelled
dynamics is another interesting extension. A step further would be tuning of the
model parameters and subsequent recalculation of the feedback and observer gain. In
which case the gradient calculation would be troubled by the optimization involved in
the calculation of these gains. If a solution to this problem exists further extension to
the constrained case and Model Predictive Control would provide a great potential
for optimizing process operation. This might provide a systematically tuning of
the key parameters in model based controllers for processes where limited process
information is available.

Future work in relation to Perturbed Iterative Feedback Tuning will be to show
the potential of the method, even for systems where limited process knowledge is
available. Furthermore it would be interesting to look at the parameterizations of
the perturbation signal. Especially would guidelines for utilizing Perturbed Iterative
Feedback Tuning, based on no process information, be very useful. A systematic
comparison with competing techniques would be obvious. Since the perturbations
are applied in the first experiment and related problems are focusing on the gradient
experiments, combinations may be possible which would limit the total level of
excitation on each experiment and still achieve the same benefits with respect to
convergence.
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A

Data Filters for the Iterative
Feedback Tuning Method

Computation of the estimate of the gradient, Ĵ(ρ), in the Iterative Feedback Tuning
method requires calculation of the data filters used in:

∂y

∂ρ
=

1

Cr(ρi)

∂Cr

∂ρ
T (ρ)r − 1

Cr(ρi)

∂Cy

∂ρ
T (ρ)y (3.6a)

∂u

∂ρ
=
∂Cr

∂ρ
S(ρ)r − ∂Cy

∂ρ
S(ρ)y (3.6b)

or in
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∂ρ
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Cr(ρi)

(
∂Cr

∂ρ
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)
T (ρ)r − 1
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∂Cy
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∂ρ
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(
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∂ρ
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∂ρ
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S(ρ)r − ∂Cy

∂ρ
S(ρ)(r − y) (3.12b)

depended on whether a one or two degree of freedom controller are in operation.
These filters 1

Cr

∂Cr

∂ρ
and 1

Cr

∂Cy

∂ρ
or 1

C
∂C
∂ρ

are calculated based on the particular con-
troller implemented in the loop.

A.1 PID Control

In case where a PID controller is used in the feedback loop, the controller is given
by the transfer function from the error between the measurement and the reference
to the control signal as:

C :
U(s)

E(s)
= Kc

[
1 +

1

τIs
+ τDs

]
(A.3)

In practical application a derivative filter is supplied to the derivative term and a
two degree of freedom control is often used in order to avoid derivative action on
the reference signal.

Cr :
U(s)

R(s)
= Kc

[
1 +

1

τIs

]
(A.4a)

Cy :
U(s)

Y(s)
= −Kc

[
1 +

1

τIs
+

τDs

(ατDs+ 1)n

]
(A.4b)

where n is the order of the derivative filter and α becomes an additional parameter.
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A.1.1 First Order Derivative Filter

For a first order filter the controller transfer functions are

Cr :
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]
(A.5a)
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(A.5b)
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∂τI
=

−1

τ 2
I s+ τI

1

Cr

∂Cy

∂τD
=

τIs
2

α2τIτ 2
Ds

3 + (2ατIτD + α2τ 2
D)s2 + (τI + 2ατD)s+ 1

1

Cr

∂Cy

∂α
=

−τIτ 2
Ds

3

α2τIτ 2
Ds

3 + (2ατIτD + α2τ 2
D)s2 + (τI + 2ατD)s+ 1
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A.1. PID Control

A.1.2 Second Order Derivative Filter

For a second order filter the controller are

Cr :
U(s)

R(s)
= Kc

[
1 +

1

τIs

]
(A.6a)

Cy :
U(s)

Y(s)
= −Kc

[
1 +

1

τIs
+

τDs

(ατDs+ 1)2

]
(A.6b)

Derivatives ∂Cy

∂ρ

∂Cy

∂Kc
=

[
1 +

1

τIs
+

τDs

(ατDs+ 1)2

]

∂Cy

∂τI
=

−Kc

τ 2
I s

∂Cy

∂τD
=

−Kcs(ατDs− 1)

(ατDs+ 1)3

∂Cy

∂α
=

2Kcτ
2
Ds

2

(ατDs+ 1)3

Filters 1
Cy

∂Cy

∂ρ

1

Cy

∂Cy

∂Kc

=
1

Kc

1

Cy

∂Cy

∂τI
=

−(ατDs+ 1)2

α2τ 2
I τ

2
Ds

3 + ((1 + 2α)τ 2
I τD + α2τIτ

2
D)s2 + (τ 2

I + 2ατIτD)s+ τI
1

Cy

∂Cy

∂τD
=

(τI − ατIτDs)s
2

α3τIτ 3
Ds

4 + (α(1 + 3α)τIτ 2
D + α3τ 3

D)s3 + ((1 + 3α)τIτD + 3α2τ 2
D)s2 + (τI + 3ατD)s+ 1

1

Cy

∂Cy

∂α
=

−2τIτ
2
Ds

3

α3τIτ 3
Ds

4 + (α(1 + 3α)τIτ 2
D + α3τ 3

D)s3 + ((1 + 3α)τIτD + 3α2τ 2
D)s2 + (τI + 3ατD)s+ 1

Filters 1
Cr

∂Cy

∂ρ

1

Cr

∂Cy

∂Kc
=
α2τIτ

2
Ds

3 + ((1 + 2α)τIτD + α2τ 2
D)s2 + (τI + 2ατD)s+ 1

Kc(α2τIτ 2
Ds

3 + (2ατIτD + α2τ 2
D)s2 + (τI + 2ατD)s+ 1)

1

Cr

∂Cy

∂τI
=

−1

τ 2
I s+ τI

1

Cr

∂Cy

∂τD
=

(τI − ατIτDs)s
2

α3τIτ 3
Ds

4 + (3α2τIτ 2
D + α3τ 3

D)s3 + (3ατIτD + 3α2τ 2
D)s2 + (τI + 3ατD)s+ 1

1

Cr

∂Cy

∂α
=

−2τIτ
2
Ds

3

α3τIτ 3
Ds

4 + (3α2τIτ 2
D + α3τ 3

D)s3 + (3ατIτD + 3α2τ 2
D)s2 + (τI + 3ατD)s+ 1
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B

Derivation of covariance
expression for the cost function

estimate F̂ (ρ) in standard Iterative
Feedback Tuning.

In this section the asymptotic covariance expression for the performance cost func-
tion estimate will be derived. This covariance expression has been shown in Section
7.2.1 to consist of the sum of the asymptotic covariance for the sums SN and EN re-
flecting the deterministic and the variance part of the gradient estimate respectively.
These two sums are given by:

SN(ρi) =
1

N

N∑

t=1

[
(S(ρi)v

1
t )

(
−∂C(ρi)

∂ρ
GS(ρi)

2v1
t

)
+

λ(−S(ρi)C(ρi)v
1
t )

(
−∂C(ρi)

∂ρ
S(ρi)

2v1
t

)]

EN (ρi) =
1

N

N∑

t=1

[
(S(ρi)v

1
t )

(
∂C(ρi)

∂ρ
S(ρi)v

2
t

)
+

λ(−S(ρi)C(ρi)v
1
t )

(
−∂C(ρi)

∂ρ
S(ρi)C(ρi)v

2
t

)]

In the following derivations it will be used that SN consists of four signals that
are driven by the same noise realization. Hence all signals are correlated. EN also
consists of four signals but these are driven by two different realizations v1

t and v2
t

from the same distribution.

Derivation B.0.1 (Covariance expressions for SN) Given the sum QN which is

a generalization of the structure of SN .

QN =
1

N

N∑

t=1

[a(t)b(t) + c(t)d(t)] (B.1)

where a(t), b(t), c(t) and d(t) are signals generated by filtering the white noise signal e(t)
through the stable scalar transfer functions A and C and the vectors of stable transfer

functions B and D. Hence

a(t) = Ae(t), b(t) = Be(t), c(t) = Ce(t), d(t) = De(t)

Since all signals from a(t) to d(t) are correlated due to e(t), one obtains:

Cov[QN ] = E[QNQT
N ] − E[QN ]E[QN ]T (B.2)
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Chapter B. Derivation of covariance expression for the cost function estimate F̂ (ρ)
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Evaluation of the first term gives

E[QNQT
N ] =E


 1

N2

N∑

t=1

[a(t)b(t) + c(t)d(t)]

(
N∑

t=1

a(t)b(t) + c(t)d(t)

)T



=
1

N2
E




N∑

t=1

[a(t)b(t) + c(t)d(t)]

(
N∑

s=1

a(s)b(s) + c(s)d(s)

)T



=
1

N2
E




N∑

t,s=1

a(t)b(t)a(s)b(s)T + a(t)b(t)c(s)d(s)T +

c(t)d(t)a(s)b(s)T + c(t)d(t)c(s)d(s)T
]

=
1

N2


E[

N∑

t,s=1

a(t)b(t)a(s)b(s)T ] + E[

N∑

t,s=1

a(t)b(t)c(s)d(s)T ]+

E[
N∑

t,s=1

c(t)d(t)a(s)b(s)T ] + E[
N∑

t,s=1

c(t)d(t)c(s)d(s)T ]




Using the following formula which is correct for the given properties of a(t), b(t), c(t) and

d(t) and where α, β, δ and γ are fixed delays.

E[a(t − α)b(t − β)c(t − γ)d(t − δ)] =Rab(β − α)RcdT (δ − γ) + Rac(γ − α)RbdT (δ − β)+

Rbc(δ − α)RadT (γ − β)

the expression can be written as

E[QNQT
N ] =

1

N2




N∑

t,s=1

(Rab(0)RabT (0) + Raa(t − s)RbbT (t − s) + Rba(t − s)RabT (t − s))+

N∑

t,s=1

(Rab(0)RcdT (0) + Rac(t − s)RbdT (t − s) + Rbc(t − s)RadT (t − s))+

N∑

t,s=1

(Rcd(0)RabT (0) + Rca(t − s)RdbT (t − s) + Rda(t − s)RcbT (t − s))+

N∑

t,s=1

(Rcd(0)RcdT (0) + Rcc(t − s)RddT (t − s) + Rdc(t − s)RcdT (t − s))




The second term in (B.2) will take the same form but will only have a contribution different

from zero when the lag t − s = 0. Hence

E[QN ]E[QN ]T = Rab(0)RabT (0) + Rab(0)RcdT (0) + Rcd(0)RabT (0) + Rcd(0)RcdT (0)

which means that the covariance of QN simplifies to

Cov[QN ] =
1

N2

N∑

t,s=1

Raa(t − s)RbbT (t − s) + Rba(t − s)RabT (t − s)+

Rac(t − s)RbdT (t − s) + Rbc(t − s)RadT (t − s) + Rca(t − s)RdbT (t − s)+

Rda(t − s)RcbT (t − s) + Rcc(t − s)RddT (t − s) + Rdc(t − s)RcdT (t − s)
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or

Cov[QN ] =
1

N

N−1∑

τ=−(N−1)

N − |τ |
N

(
Raa(τ)RbbT (τ) + Rba(τ)RabT (τ)+

Rac(τ)RbdT (τ) + Rbc(τ)RadT (τ) + Rca(τ)RdbT (τ)+

Rda(τ)RcbT (τ) + Rcc(τ)RddT (τ) + Rdc(τ)RcdT (τ)

)

by letting N → ∞, using Kronecker’s lemma and applying the formula

∞∑

τ=−∞
Rab(τ)RcdT (τ) =

1

2π

∫ π

−π
Φab(ω)ΦcdT (ω)dω (B.3)

the following asymptotic expression appears

lim
N→∞

NCov[QN ] =
1

2π

∫ π

−π
Φaa(ω)ΦbbT (ω) + Φba(ω)ΦabT (ω)+

Φac(ω)ΦbdT (ω) + Φbc(ω)ΦadT (ω) + Φca(ω)ΦdbT (ω)+

Φda(ω)ΦcbT (ω) + Φcc(ω)ΦddT (ω) + Φdc(ω)ΦcdT (ω)dω (B.4)

where x is the complex conjugate of x.

Letting A,B,C and D refer to the transfer functions in Equation (7.18), the cross spectra

can be evaluated using Equation (B.5) where x∗ is the complex conjugated transpose of x.

Φpq = PQ∗Φe (B.5)

where p(t) = Pe(t) and q(t) = Qe(t) is a set of signals produced by filtering the same noise

signal, e(t) through the stable transfer functions P and Q.

Φaa =|S(ejω,ρi)|2Φv

ΦbbT =|G(ejω)|2|S(ejω,ρi)|4
∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
Φv

Φcc =λ|C(ejω,ρi)|2|S(ejω,ρi)|2Φv

ΦddT =λ|S(ejω,ρi)|4
∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
Φv

Φba = − G(ejω)S(ejω,ρi)|S(ejω,ρi)|2
∂C(ejω,ρi)

∂ρ
Φv

ΦabT = − G∗(ejω)S∗(ejω,ρi)|S(ejω,ρi)|2
∂C∗(ejω,ρi)

∂ρ
Φv

Φac = −
√

λC∗(ejω,ρi)|S(ejω,ρi)|2Φv

ΦbdT =
√

λG(ejω)|S(ejω,ρi)|4
∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
Φv

Φbc =
√

λG(ejω)S(ejω,ρi)C
∗(ejω,ρi)|S(ejω,ρi)|2

∂C(ejω,ρi)

∂ρ
Φv

ΦadT = −
√

λS∗(ejω,ρi)|S(ejω,ρi)|2
∂C∗(ejω,ρi)

∂ρ
Φv
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Φca = −
√

λC(ejω,ρi)|S(ejω,ρi)|2Φv

ΦdbT =
√

λG∗(ejω)|S(ejω,ρi)|4
∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
Φv

Φda = −
√

λS(ejω,ρi)|S(ejω,ρi)|2
∂C(ejω,ρi)

∂ρ
Φv

ΦcbT =
√

λC(ejω,ρi)G
∗(ejω)S∗(ejω,ρi)|S(ejω,ρi)|2

∂C∗(ejω,ρi)

∂ρ
Φv

Φdc =λS(ejω,ρi)C
∗(ejω,ρi)|S(ejω,ρi)|2

∂C(ejω,ρi)

∂ρ
Φv

ΦcdT =λC(ejω,ρi)S
∗(ejω,ρi)|S(ejω,ρi)|2

∂C∗(ejω,ρi)

∂ρ
Φv

Hence

ΦaaΦbbT =|S(ejω,ρi)|2|G(ejω)|2 ∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

|S(ejω,ρi)|4Φ2
v

ΦbaΦabT =S2(ejω,ρi)G
2(ejω)

∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

|S(ejω,ρi)|4Φ2
v

ΦccΦddT =λ2|S(ejω,ρi)|2|C(ejω,ρi)|2
∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

|S(ejω,ρi)|4Φ2
v

ΦdcΦcdT =λ2S2(ejω,ρi)C
2
(ejω,ρi)

∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

|S(ejω,ρi)|4Φ2
v

ΦacΦbdT = − λG(ejω)C(ejω,ρi)|S(ejω,ρi)|2
∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

|S(ejω,ρi)|4Φ2
v

ΦbcΦadT = − λG(ejω)C(ejω,ρi)S
2(ejω,ρi)

∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

|S(ejω,ρi)|4Φ2
v

ΦcaΦdbT = − λG(ejω)C(ejω,ρi)|S(ejω,ρi)|2
∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

|S(ejω,ρi)|4Φ2
v

ΦdaΦcbT = − λG(ejω)C(ejω,ρi)S
2(ejω,ρi)

∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

|S(ejω,ρi)|4Φ2
v

Inserting these expressions in (B.4) one obtain after a few manipulations:

lim
N→∞

NCov[SN (ρi)] =
1

2π

∫ π

−π
|S(ejω,ρi)|4Φ2

v

[
Ψ(ejω,ρi)Ψ(ejω,ρi)

T + Ψ(ejω,ρi)Ψ(ejω,ρi)
T
]
dω

=
2

2π

∫ π

−π
|S(ejω,ρi)|4Φ2

v

[
Re{Ψ(ejω,ρi)}Re{Ψ(ejω,ρi)}T +

jRe{Ψ(ejω,ρi)}Im{Ψ(ejω,ρi)}T
]
dω

where

Ψ(ejω,ρi) =[G(ejω ,ρi) − λC(ejω,ρi)]S(ejω ,ρi)
∂C(ejω,ρi)

∂ρ

Which is the same as in (7.28) since the integration of 2jRe{Ψ(ejω,ρi)}Im{Ψ(ejω,ρi)}T

from −π to π is zero for all Ψ(ejω,ρi) ∈ C. q.e.d.
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Derivation B.0.2 (Covariance expressions for EN) For the derivation of the co-

variance of EN , let the sum QN be a generalization of the structure of EN .

QN =
1

N

N∑

t=1

[a(t)b(t) + c(t)d(t)] (B.6)

where a(t), b(t), c(t) and d(t) are signals generated by filtering the two uncorrelated white

noise signals e(t) and f(t) through the stable scalar transfer functions A and C and the

vectors of stable transfer functions B and D. Hence

a(t) = Ae(t), b(t) = Bf(t), c(t) = Ce(t), d(t) = Df(t)

Using the same derivation as above, but realizing that the cross correlation terms between

signals driven by uncorrelated noise realizations will be zero, the covariance can be written

as

Cov[QN ] =
1

N2

N∑

t,s=1

Raa(t − s)RbbT (t − s) + Rac(t − s)RbdT (t − s)+

Rca(t − s)RdbT (t − s) + Rcc(t − s)RddT (t − s)

hence

lim
N→∞

NCov[QN ] =
1

2π

∫ π

−π
Φaa(ω)ΦbbT (ω) + Φac(ω)ΦbdT (ω)+

Φca(ω)ΦdbT (ω) + Φcc(ω)ΦddT (ω)dω (B.7)

When A,B,C and D refers to transfer functions in Equation (7.18) the cross spectra are

Φaa =|S(ejω,ρi)|2Φv

Φcc =λ|C(ejω,ρi)|2|S(ejω,ρi)|2Φv

Φac = −
√

λC(ejω,ρi)|S(ejω,ρi)|2Φv

Φca = −
√

λC(ejω,ρi)|S(ejω,ρi)|2Φv

ΦbbT =|S(ejω,ρi)|2
∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
Φv

ΦddT =λ|C(ejω,ρi)|2|S(ejω,ρi)|2
∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
Φv

ΦbdT = −
√

λC(ejω,ρi)|S(ejω,ρi)|2
∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
Φv

ΦdbT = −
√

λC(ejω,ρi)|S(ejω,ρi)|2
∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
Φv

Hence

ΦaaΦbbT =|S(ejω,ρi)|4
∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

Φ2
v

ΦccΦddT =λ2|C(ejω,ρi)|4|S(ejω,ρi)|4
∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

Φ2
v

ΦacΦbdT =λ|C(ejω,ρi)|2|S(ejω,ρi)|4
∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

Φ2
v

ΦcaΦdbT =ΦacΦbdT
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Inserting these expressions in (B.7) gives:

lim
N→∞

NCov[EN (ρi)] =
1

2π

∫ π

−π
|S(ejω,ρi)|4

[
1 + λ|C(ejω,ρi)|2

]2 ×

∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

Φ2
vdω

Since the result is a real number, this expression is the same as (7.28) where the integrand

is the complex conjugate of the expression above. q.e.d.
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C

Derivation of covariance
expression for the cost function

estimate F̂ (ρ) for Iterative
Feedback Tuning with external

perturbation.

In this section the asymptotic covariance expression for the performance cost func-
tion estimate will be derived for the case where the system is perturbed. As argued
in Section 7.3 the covariance expression still consists only of the sum of the asymp-
totic covariances for the sums SN and EN which reflect the deterministic and the
variance part of the gradient estimate respectively. These two sums are given by:

SN(ρi) =
1

N

N∑

t=1

[(
S(ρi)(Gr

p
t + v1

t )
)(

−∂C(ρi)

∂ρ
GS(ρi)

2(Grp
t + v1

t )

)
+

λS(ρi)(r
p
t − C(ρi)v

1
t )

(
−∂C(ρi)

∂ρ
S(ρi)

2(Grp
t + v1

t )

)]

EN (ρi) =
1

N

N∑

t=1

[(
S(ρi)(Gr

p
t + v1

t )
)(∂C(ρi)

∂ρ
S(ρi)v

2
t

)
+

λS(ρi)(r
p
t − C(ρi)v

1
t )

(
−∂C(ρi)

∂ρ
C(ρi)S(ρi)v

2
t

)]

In the following derivations rp
t will be regarded as a signal driven by a white noise

process with the same distribution as v1
t and v2

t . r
p
t can be regarded as a deterministic

signal which will be reused in every iteration of the Iterative Feedback tuning or
alternatively a new signal could be generated for each iteration. The latter option
will be assumed in the following. Hence SN consists of eight signals arranged in two
sets of four driven by rp

t and v1
t . EN consists of six signals collected in three pairs

each driven by rp
t , v

1
t or v2

t .
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for Iterative Feedback Tuning with external perturbation.

Derivation C.0.3 (Covariance expressions for SN) For the derivation of the co-

variance of SN , let the sum QN be a generalization of the structure of SN .

QN =
1

N

N∑

t=1

[(a1(t) + b1(t))(a2(t) + b2(t)) + (a3(t) + b3(t))(a4(t) + b4(t))]

=
1

N

N∑

t=1

[a1(t)a2(t) + b1(t)b2(t) + a1(t)b2(t) + b1(t)a2(t)+

a3(t)a4(t) + b3(t)b4(t) + a3(t)b4(t) + b3(t)a4(t)]

where ai(t) and bi(t), i ∈ {1, 2, 3, 4} are signals generated by filtering the two uncorrelated

white noise signals e(t) and f(t) through the stable scalar filters A1, B1, A3, B3 and the

vectors of stable filters A2, B2, A4, B4.

a1(t) = A1e(t), a2(t) = A2e(t), a3(t) = A3e(t), a4(t) = A4e(t)
b1(t) = B1f(t), b2(t) = B2f(t), b3(t) = B3f(t), b4(t) = B4f(t)

Using (B.2) and evaluating the terms yields the following sum of cross correlation func-

tions:

Cov[QN ] =
1

N2

N∑

t,s=1

Ra1a1(t − s)Ra2a2T (t − s) + Ra2a1(t − s)Ra1a2T (t − s)+

Ra1a3(t − s)Ra2a4T (t − s) + Ra2a3(t − s)Ra1a4T (t − s) + Rb1b1(t − s)Rb2b2T (t − s)+

Rb2b1(t − s)Rb1b2T (t − s) + Rb1b3(t − s)Rb2b4T (t − s) + Rb2b3(t − s)Rb1b4T (t − s)+

Ra3a1(t − s)Ra4a2T (t − s) + Ra4a1(t − s)Ra3a2T (t − s) + Ra3a3(t − s)Ra4a4T (t − s)+

Ra4a3(t − s)Ra3a4T (t − s) + Rb3b1(t − s)Rb4b2T (t − s) + Rb4b1(t − s)Rb3b2T (t − s)+

Rb3b3(t − s)Rb4b4T (t − s) + Rb4b3(t − s)Rb3b4T (t − s) + Ra1a1(t − s)Rb2b2T (t − s)+

Ra1a2(t − s)Rb2b1T (t − s) + Ra1a3(t − s)Rb2b4T (t − s) + Ra1a4(t − s)Rb2b3T (t − s)+

Ra2a1(t − s)Rb1b2T (t − s) + Ra2a2(t − s)Rb1b1T (t − s) + Ra2a3(t − s)Rb1b4T (t − s)+

Ra2a4(t − s)Rb1b3T (t − s) + Ra3a1(t − s)Rb4b2T (t − s) + Ra3a2(t − s)Rb4b1T (t − s)+

Ra3a3(t − s)Rb4b4T (t − s) + Ra3a4(t − s)Rb4b3T (t − s) + Ra4a1(t − s)Rb3b2T (t − s)+

Ra4a2(t − s)Rb3b1T (t − s) + Ra4a3(t − s)Rb3b4T (t − s) + Ra4a4(t − s)Rb3b3T (t − s)

Hence

lim
N→∞

NCov[QN ] =
1

2π

∫ π

−π
Φa1a1(ω)Φa2a2T (ω) + Φa2a1(ω)Φa1a2T (ω)+

Φa1a3(ω)Φa2a4T (ω) + Φa2a3(ω)Φa1a4T (ω) + Φb1b1(ω)Φb2b2T (ω)+

Φb2b1(ω)Φb1b2T (ω) + Φb1b3(ω)Φb2b4T (ω) + Φb2b3(ω)Φb1b4T (ω)+

Φa3a1(ω)Φa4a2T (ω) + Φa4a1(ω)Φa3a2T (ω) + Φa3a3(ω)Φa4a4T (ω)+

Φa4a3(ω)Φa3a4T (ω) + Φb3b1(ω)Φb4b2T (ω) + Φb4b1(ω)Φb3b2T (ω)+

Φb3b3(ω)Φb4b4T (ω) + Φb4b3(ω)Φb3b4T (ω) + Φa1a1(ω)Φb2b2T (ω)+

Φa1a2(ω)Φb2b1T (ω) + Φa1a3(ω)Φb2b4T (ω) + Φa1a4(ω)Φb2b3T (ω)+

Φa2a1(ω)Φb1b2T (ω) + Φa2a2(ω)Φb1b1T (ω) + Φa2a3(ω)Φb1b4T (ω)+

Φa2a4(ω)Φb1b3T (ω) + Φa3a1(ω)Φb4b2T (ω) + Φa3a2(ω)Φb4b1T (ω)+

Φa3a3(ω)Φb4b4T (ω) + Φa3a4(ω)Φb4b3T (ω) + Φa4a1(ω)Φb3b2T (ω)+

Φa4a2(ω)Φb3b1T (ω) + Φa4a3(ω)Φb3b4T (ω) + Φa4a4(ω)Φb3b3T (ω)dω (C.1)
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When Ai,Bi, i ∈ {1, 2, 3, 4} refers to transfer functions in Equation (7.29) the cross spectra

are

Φa1a1 =|S(ejω,ρi)|2|G(ejω)|2Φrp

Φa2a2 =|S(ejω,ρi)|4|G(ejω)|4 ∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
Φrp

Φa3a3 =λ|S(ejω,ρi)|2Φrp

Φa4a4 =λ|S(ejω,ρi)|4|G(ejω)|2 ∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
Φrp

Φa1a2 = − |S(ejω,ρi)|2|G(ejω)|2
(

∂C(ejω,ρi)

∂ρ
S(ejω,ρi)G(ejω)

)∗
Φrp

Φa2a1 = − |S(ejω,ρi)|2|G(ejω)|2 ∂C(ejω,ρi)

∂ρ
S(ejω,ρi)G(ejω)Φrp

Φa1a3 =
√

λ|S(ejω,ρi)|2G(ejω)Φrp

Φa3a1 =
√

λ|S(ejω,ρi)|2G(ejω)Φrp

Φa1a4 = −
√

λ|S(ejω,ρi)|2|G(ejω)|2
(

∂C(ejω,ρi)

∂ρ
S(ejω,ρi)

)∗
Φrp

Φa4a1 = −
√

λ|S(ejω,ρi)|2|G(ejω)|2 ∂C(ejω,ρi)

∂ρ
S(ejω,ρi)Φrp

Φa2a3 = −
√

λ|S(ejω,ρi)|2
∂C(ejω,ρi)

∂ρ
G(ejω)2S(ejω,ρi)Φrp

Φa3a2 = −
√

λ|S(ejω,ρi)|2
(

∂C(ejω,ρi)

∂ρ
G(ejω)2S(ejω,ρi)

)∗
Φrp

Φa2a4 =
√

λ|S(ejω,ρi)|4|G(ejω)|2G(ejω)
∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
Φrp

Φa4a2 =
√

λ|S(ejω,ρi)|4|G(ejω)|2G(ejω)
∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
Φrp

Φa3a4 = − λ|S(ejω,ρi)|2
(

∂C(ejω,ρi)

∂ρ
S(ejω,ρi)G(ejω)

)∗
Φrp

Φa4a3 = − λ|S(ejω,ρi)|2
∂C(ejω,ρi)

∂ρ
S(ejω,ρi)G(ejω)Φrp

Φb1b1 =|S(ejω,ρi)|2Φv

Φb2b2 =|S(ejω,ρi)|4|G(ejω)|2 ∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
Φv

Φb3b3 =λ|S(ejω,ρi)|2|C(ejω,ρi)|2Φv

Φb4b4 =λ|S(ejω,ρi)|4
∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
Φv

Φb1b2 = − |S(ejω,ρi)|2
(

∂C(ejω,ρi)

∂ρ
S(ejω,ρi)G(ejω)

)∗
Φv

Φb2b1 = − |S(ejω,ρi)|2
∂C(ejω,ρi)

∂ρ
S(ejω,ρi)G(ejω)Φv

Φb1b3 = −
√

λ|S(ejω,ρi)|2C(ejω,ρi)Φv

Φb3b1 = −
√

λ|S(ejω,ρi)|2C(ejω,ρi)Φv
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Φb1b4 = −
√

λ|S(ejω,ρi)|2
(

∂C(ejω,ρi)

∂ρ
S(ejω,ρi)

)∗
Φv

Φb4b1 = −
√

λ|S(ejω,ρi)|2
∂C(ejω,ρi)

∂ρ
S(ejω,ρi)Φv

Φb2b3 =
√

λ|S(ejω,ρi)|2C(ejω,ρi)
∂C(ejω,ρi)

∂ρ
G(ejω)2S(ejω,ρi)Φv

Φb3b2 =
√

λ|S(ejω,ρi)|2C(ejω,ρi)

(
∂C(ejω,ρi)

∂ρ
G(ejω)2S(ejω,ρi)

)∗
Φv

Φb2b4 =
√

λ|S(ejω,ρi)|4G(ejω)
∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
Φv

Φb4b2 =
√

λ|S(ejω,ρi)|4G(ejω)
∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
Φv

Φb3b4 =λ|S(ejω,ρi)|2C(ejω,ρi)

(
∂C(ejω,ρi)

∂ρ
S(ejω,ρi)

)∗
Φv

Φb4b3 =λ|S(ejω,ρi)|2C(ejω,ρi)
∂C(ejω,ρi)

∂ρ
S(ejω,ρi)Φv

Evaluating the multiplication of the cross spectra in (C.1), it is evident that the terms can

be divided into four groups. The terms in these four sub-groups are evaluated separately

and summed.

In the following two complex functions are utilized

Ψ(ejω,ρi) =[G(ejω ,ρi) − λC(ejω,ρi)]S(ejω,ρi)
∂C(ejω,ρi)

∂ρ
(C.2)

Υ(ejω,ρi) =[|G(ejω ,ρi)|2 + λ]S(ejω,ρi)
∂C(ejω,ρi)

∂ρ
(C.3)

Φa1a1Φa2a2T =|S(ejω,ρi)|6|G(ejω)|6 ∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

Φ2
rp

Φa2a1Φa1a2T =|S(ejω,ρi)|4|G(ejω)|4S(ejω,ρi)
2G(ejω)2

∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

Φ2
rp

Φa1a3Φa2a4T =λ|S(ejω,ρi)|6|G(ejω)|4 ∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

Φ2
rp

Φa2a3Φa1a4T =λ|S(ejω,ρi)|4|G(ejω)|2S(ejω,ρi)
2G(ejω)2

∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

Φ2
rp

Φa3a1Φa4a2T =λ|S(ejω,ρi)|6|G(ejω)|4 ∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

Φ2
rp

Φa4a1Φa3a2T =λ|S(ejω,ρi)|4|G(ejω)|2S(ejω,ρi)
2G(ejω)2

∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

Φ2
rp

Φa3a3Φa4a4T =λ2|S(ejω,ρi)|6|G(ejω)|2 ∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

Φ2
rp

Φa4a3Φa3a4T =λ2|S(ejω,ρi)|4S(ejω,ρi)
2G(ejω)2

∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

Φ2
rp
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the sum of which yields

lim
N→∞

NCov[Q1
N ] =

1

2π

∫ π

−π
|S(ejω,ρi)|4Φ2

rp×
[
G(ejω)Υ(ejω,ρi)(G(ejω)Υ(ejω,ρi))

T + (G(ejω)Υ(ejω,ρi))(G(ejω)Υ(ejω,ρi))
T
]
dω

=
2

2π

∫ π

−π
|S(ejω,ρi)|4

[
Re{G(ejω)Υ(ejω,ρi)}Re{G(ejω)Υ(ejω,ρi)}T

]
Φ2

rpdω

Φb1b1Φb2b2T =|S(ejω,ρi)|6|G(ejω)|2 ∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

Φ2
v

Φb2b1Φb1b2T =|S(ejω,ρi)|4S(ejω,ρi)
2G(ejω)2

∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

Φ2
v

Φb1b3Φb2b4T = − λ|S(ejω,ρi)|6G(ejω)C(ejω,ρi)
∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

Φ2
v

Φb2b3Φb1b4T = − λ|S(ejω,ρi)|4G(ejω)S(ejω,ρi)
2C(ejω,ρi)

∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

Φ2
v

Φb3b1Φb4b2T = − λ|S(ejω,ρi)|6G(ejω)C(ejω,ρi)
∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

Φ2
v

Φb4b1Φb3b2T = − λ|S(ejω,ρi)|4G(ejω)S(ejω,ρi)
2C(ejω,ρi)

∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

Φ2
v

Φb3b3Φb4b4T =λ2|S(ejω,ρi)|6|C(ejω,ρi)|2
∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

Φ2
v

Φb4b3Φb3b4T =λ2|S(ejω,ρi)|4S(ejω,ρi)
2C(ejω,ρi)

2 ∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

Φ2
v

the sum of which yields

lim
N→∞

NCov[Q2
N ] =

1

2π

∫ π

−π
|S(ejω,ρi)|4Φ2

v×
[
Ψ(ejω,ρi)Ψ(ejω,ρi)

T + Ψ(ejω,ρi)Ψ(ejω,ρi)
T
]
dω

=
2

2π

∫ π

−π
|S(ejω,ρi)|4

[
Re{Ψ(ejω,ρi)}Re{Ψ(ejω,ρi)}T

]
Φ2

vdω

Φa1a1Φb2b2T =|S(ejω,ρi)|6|G(ejω)|4 ∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

ΦrpΦv

Φa1a2Φb2b1T =|S(ejω,ρi)|4|G(ejω)|2(S(ejω,ρi)G(ejω))2
∂C∗(ejω,ρi)

∂ρ

∂C(ejω,ρi)

∂ρ
ΦrpΦv

Φa1a3Φb2b4T =λ|S(ejω,ρi)|6|G(ejω)|2 ∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

ΦrpΦv

Φa1a4Φb2b3T = − λ|S(ejω,ρi)|4|G(ejω)|2S(ejω,ρi)
2G(ejω)C(ejω,ρi)

∂C∗(ejω,ρi)

∂ρ

∂C(ejω,ρi)

∂ρ
ΦrpΦv
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Φa3a1Φb4b2T =λ|S(ejω,ρi)|6|G(ejω)|2 ∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

ΦrpΦv

Φa3a2Φb4b1T =λ|S(ejω,ρi)|4(S(ejω,ρi)G(ejω))2
∂C∗(ejω,ρi)

∂ρ

∂C(ejω,ρi)

∂ρ
ΦrpΦv

Φa3a3Φb4b4T =λ2|S(ejω,ρi)|6
∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

ΦrpΦv

Φa3a4Φb4b3T = − λ2|S(ejω,ρi)|4S(ejω,ρi)
2G(ejω)C(ejω,ρi)

∂C∗(ejω,ρi)

∂ρ

∂C(ejω,ρi)

∂ρ
ΦrpΦv

the sum of which yields

lim
N→∞

NCov[Q3
N ] =

1

2π

∫ π

−π
|S(ejω,ρi)|4ΦrpΦv×

[
G(ejω)Υ(ejω,ρi)(Ψ(ejω,ρi))

T + Υ(ejω,ρi)Υ(ejω,ρi)
T
]
dω

=
1

2π

∫ π

−π
|S(ejω,ρi)|4×

[
Re{G(ejω)Υ(ejω,ρi)}Re{Ψ(ejω,ρi)}T +

Im{G(ejω)Υ(ejω,ρi)}Im{Ψ(ejω,ρi)}T +

Re{Υ(ejω,ρi)}Re{Υ(ejω,ρi)}T +

Im{Υ(ejω,ρi)}Im{Υ(ejω,ρi)}T

]
ΦrpΦvdω

Φa2a1Φb1b2T =|S(ejω,ρi)|4|G(ejω)|2(S(ejω,ρi)G(ejω))2
∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

ΦrpΦv

Φa2a2Φb1b1T =|S(ejω,ρi)|6|G(ejω)|2(S(ejω,ρi)G(ejω))2
∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
ΦrpΦv

Φa2a3Φb1b4T =λ|S(ejω,ρi)|4|G(ejω)|2(S(ejω,ρi)G(ejω))2
∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

ΦrpΦv

Φa2a4Φb1b3T = − λ|S(ejω,ρi)|6|G(ejω)|2S(ejω,ρi)C(ejω,ρi)
∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
ΦrpΦv

Φa4a1Φb3b2T = − λ|S(ejω,ρi)|4|G(ejω)|2S(ejω,ρi)
2G(ejω)C(ejω,ρi)

∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

ΦrpΦv

Φa4a2Φb3b1T = − λ|S(ejω,ρi)|6|G(ejω)|2G(ejω))2C(ejω,ρi)
∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
ΦrpΦv

Φa4a3Φb3b4T = − λ2|S(ejω,ρi)|4S(ejω,ρi)
2G(ejω)C(ejω,ρi)

∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

ΦrpΦv

Φa4a4Φb3b3T =λ2|S(ejω,ρi)|6|G(ejω)|2|C(ejω,ρi)|2
∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
ΦrpΦv
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the sum of which yields

lim
N→∞

NCov[Q4
N ] =

1

2π

∫ π

−π
|S(ejω,ρi)|4ΦrpΦv×

[
G(ejω)Ψ(ejω,ρi)(G(ejω)Ψ(ejω,ρi))

∗ + (G(ejω)Υ(ejω,ρi))
∗Ψ(ejω,ρi)

]
dω

=
1

2π

∫ π

−π
|S(ejω,ρi)|4×

[
Re{G(ejω)Ψ(ejω,ρi)}Re{G(ejω)Ψ(ejω,ρi)}T +

Im{G(ejω)Ψ(ejω,ρi)}Im{G(ejω)Ψ(ejω,ρi)}T +

Re{G(ejω)Υ(ejω,ρi)}TRe{Ψ(ejω,ρi)}−

Im{G(ejω)Υ(ejω,ρi)}T Im{Ψ(ejω,ρi)}
]
ΦrpΦvdω

Combining these four terms gives the covariance expression for SN .

lim
N→∞

NCov[SN (ρi)] =
1

2π

∫ π

−π
|S(ejω,ρi)|4 × [

[
G(ejω)Υ(ejω,ρi)(G(ejω)Υ(ejω,ρi))

T + (G(ejω)Υ(ejω,ρi))(G(ejω)Υ(ejω,ρi))
T
]
Φ2

rp+
[
Ψ(ejω,ρi)Ψ(ejω,ρi)

T + Ψ(ejω,ρi)Ψ(ejω,ρi)
T
]
Φ2

v+[
G(ejω)Υ(ejω,ρi)(Ψ(ejω,ρi))

T + Υ(ejω,ρi)Υ(ejω,ρi)
T
]
ΦrpΦv+[

G(ejω)Ψ(ejω,ρi)(G(ejω)Ψ(ejω,ρi))
∗ + (G(ejω)Υ(ejω,ρi))

∗Ψ(ejω,ρi)
]
ΦrpΦv ] dω

or

lim
N→∞

NCov[SN (ρi)] =
1

2π

∫ π

−π
|S(ejω,ρi)|4 ×

[

[
Re{G(ejω)Υ(ejω,ρi)}Re{G(ejω)Υ(ejω,ρi)}T

]
Φ2

rp+
[
Re{Ψ(ejω,ρi)}Re{Ψ(ejω,ρi)}T

]
Φ2

v+[
2Re{G(ejω)Υ(ejω,ρi)}Re{Ψ(ejω,ρi)}T + Im{G(ejω)Υ(ejω,ρi)}Im{Ψ(ejω,ρi)}T−

Im{G(ejω)Υ(ejω,ρi)}T Im{Ψ(ejω,ρi)} + Re{G(ejω)Ψ(ejω,ρi)}Re{G(ejω)Ψ(ejω,ρi)}T +

Im{G(ejω)Ψ(ejω,ρi)}Im{G(ejω)Ψ(ejω,ρi)}T + Re{Υ(ejω,ρi)}Re{Υ(ejω,ρi)}T +

Im{Υ(ejω,ρi)}Im{Υ(ejω,ρi)}T

]
ΦrpΦv

]
dω

Which is the shortest possible representation of the asymptotic covariance of SN from

(7.29). q.e.d.

Derivation C.0.4 (Covariance expressions for EN) For the derivation of the co-

variance of EN , let the sum QN be a generalization of the structure of EN .

QN =
1

N

N∑

t=1

[(a1(t) + b1(t))c1(t) + (a2(t) + b2(t))c2(t)]

=
1

N

N∑

t=1

[a1(t)c1(t) + b1(t)c1(t) + a2(t)c2(t) + b2(t)c2(t)]
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where ai(t), bi(t) and ci(t), i ∈ {1, 2} are signals generated by filtering the three uncorre-

lated white noise signals e(t), f(t) and g(t) through the stable scalar filters A1, A2, B1, B2
and the vectors of stable filters C1, C2.

a1(t) = A1e(t), a2(t) = A2e(t)

b1(t) = B1f(t), b2(t) = B2f(t)

c1(t) = C1g(t), c2(t) = C2g(t)

Using (B.2), evaluating the terms and realizing that the cross correlation function between

uncorrelated signals is zero yields:

Cov[QN ] =
1

N2

N∑

t,s=1

Ra1a1(t − s)Rc1c1T (t − s) + Ra1a2(t − s)Rc1c2T (t − s)+

Rb1b1(t − s)Rc1c1T (t − s) + Rb1b2(t − s)Rc1c2T (t − s) + Ra2a1(t − s)Rc2c1T (t − s)+

Ra2a2(t − s)Rc2c2T (t − s) + Rb2b1(t − s)Rc2c1T (t − s) + Rb2b2(t − s)Rc2c2T (t − s)

Hence

lim
N→∞

NCov[QN ] =
1

2π

∫ π

−π
Φa1a1(ω)Φc1c1T (ω) + Φa1a2(ω)Φc1c2T (ω)+

Φb1b1(ω)Φc1c1T (ω) + Φb1b2(ω)Φc1c2T (ω) + Φa2a1(ω)Φc2c1T (ω)+

Φa2a2(ω)Φc2c2T (ω) + Φb2b1(ω)Φc2c1T (ω) + Φb2b2(ω)Φc2c2T (ω)dω (C.4)

When A1, A2, B1, B2, C1 and C2 refer to transfer functions in Equation (7.30) the cross

spectra are

Φa1a1 = |S(ejω,ρi)|2|G(ejω,ρi)|2Φrp

Φa2a2 = λ|S(ejω,ρi)|2Φrp

Φa1a2 =
√

λG(ejω)|S(ejω,ρi)|2Φrp

Φa2a1 =
√

λG∗(ejω)|S(ejω,ρi)|2Φrp

Φb1b1 = |S(ejω,ρi)|2Φv

Φb1b2 = −
√

λC∗(ejω,ρi)|S(ejω,ρi)|2Φv

Φb2b2 = λ|S(ejω,ρi)|2|C(ejω,ρi)|2Φv

Φb2b1 = −
√

λC(ejω,ρi)|S(ejω,ρi)|2Φv

Φc1c1T = |S(ejω,ρi)|2
∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
Φv

Φc2c2T = λ|C(ejω,ρi)|2|S(ejω,ρi)|2
∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
Φv

Φc1c2T = −
√

λC∗(ejω,ρi)|S(ejω,ρi)|2
∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
Φv

Φc2c1T = −
√

λC(ejω,ρi)|S(ejω,ρi)|2
∂C(ejω,ρi)

∂ρ

∂C∗(ejω,ρi)

∂ρ
Φv
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Hence

Φa1a1Φc1c1T =|G(ejω)|2|S(ejω,ρi)|4
∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

ΦrpΦv

Φa2a2Φc2c2T =λ2|C(ejω,ρi)|2|S(ejω,ρi)|2
∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

ΦrpΦv

Φa1a2Φc2c1T = − λG(ejω)C(ejω,ρi)|S(ejω,ρi)|4
∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

ΦrpΦv

Φa2a1Φc1c2T = − λG∗(ejω)C(ejω,ρi)|S(ejω,ρi)|4
∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

ΦrpΦv

Φb1b1Φc1c1T =|S(ejω,ρi)|4
∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

Φ2
v

Φb2b2Φc2c2T =λ2|C(ejω,ρi)|4|S(ejω,ρi)|4
∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

Φ2
v

Φb1b2Φc2c1T =λ|C(ejω,ρi)|2|S(ejω,ρi)|4
∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

Φ2
v

Φb2b1Φc1c2T =Φb1b2Φc2c1T

Inserting these expressions in (C.4) gives:

lim
N→∞

NCov[EN (ρi)] =
1

2π

∫ π

−π
|S(ejω,ρi)|4

[
1 + λ|C(ejω,ρi)|2

]2 ∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

Φ2
v+

|S(ejω,ρi)|4
[
Ψ(ejω,ρi))Ψ(ejω,ρi))

T
]
ΦrpΦvdω

lim
N→∞

NCov[EN (ρi)] =
1

2π

∫ π

−π
|S(ejω,ρi)|4

[
1 + λ|C(ejω,ρi)|2

]2 ∂C(ejω,ρi)

∂ρ

(
∂C(ejω,ρi)

∂ρ

)T

Φ2
v+

[
Re{Ψ(ejω,ρi))}Re{Ψ(ejω,ρi))}T + Im{Ψ(ejω,ρi))}Im{Ψ(ejω,ρi))}T

]
×

|S(ejω,ρi)|4ΦrpΦvdω

This is the shortest possible representation of the asymptotic covariance of EN from (7.30).
q.e.d.
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