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Summary 

In yeast, Saccharomyces cerevisiae, the Snf1 protein kinase is primarily known as a key component of 

the glucose repression regulatory cascade.  The Snf1 kinase is highly conserved among eukaryotes 

and its mammalian homolog AMPK is responsible for energy homeostasis in cells, organs and whole 

bodies. Failure in the AMPK regulatory cascade leads to metabolic disorders, such as obesity or type 2 

diabetes.  The knowledge about the Snf1 protein kinase remains to be of much interest in studying 

yeast carbon metabolism and human biology. 

To investigate the effect of Snf1 kinase and its regulatory subunit Snf4 on the regulation of glucose and 

galactose metabolism, I physiologically characterized ∆snf1, ∆snf4, and ∆snf1∆snf4 CEN.PK 

background yeast strains in glucose and glucose-galactose mixture batch cultivations (chapter 2). The 

results of this study showed that delayed induction of galactose catabolism was SNF1 or SNF4 gene 

deletion specific. In comparison to the reference strain, growth delay on galactose was found to last 2.4 

times (7 hours) longer for the ∆snf4, 3.1 times (10.5 hours) longer for the ∆snf1, and 9.6 times (43 

hours) longer for the ∆snf1∆snf4 strains. The maximum specific growth rates on galactose were found 

to be two to three times lower for the recombinant strains compared to the reference strain (0.13 h-1) 

and were found to be 0.07 h-1 for the ∆snf1, 0.08 h-1 for the ∆snf4 and 0.04 h-1 for the ∆snf1∆snf4 

strain. In contrast to what is generally believed, the study showed that the Snf1 kinase was not solely 

responsible for the derepression of galactose metabolism.  

To investigate the regulatory role of Snf1 kinase on a global scale, the global scale mRNA, large-scale 

yeast quantitative proteome and metabolome datasets were generated.  One of the largest yeast 

global quantitative proteome datasets (2388 proteins) to date was generated using Multidimensional 

Protein Identification Technology followed by quantitation using stable isotope labeling approach 

(chapter 3).  The stable isotope labeling was compared to the spectral counting quantitative approach 

and the study showed that the stable isotope labeling approach is highly reproducible among biological 

replicates when complex protein mixtures containing small expression changes were analyzed. Where 

poor correlation between stable isotope labeling and spectral counting was found, the major reason 

behind the discrepancy was the lack of reproducible sampling for proteins with low spectral counts. 

To reconstruct a regulatory map of the yeast Snf1 protein kinase, I used the abundances of 5716 

mRNAs, 2388 proteins, and 44 metabolites measured for the wild-type, ∆snf1, ∆snf4, and ∆snf1∆snf4 

strains.  By integrating these measurements with global protein-protein-interactions, protein-DNA-

interactions and a genome-scale metabolic model, I mapped the complete network of interactions 

around the protein kinase Snf1 (chapters 4, 5).  Through these interactions, I identified how the Snf1 

protein kinase regulated cellular metabolism on gene or protein level.  The study revealed that the Snf1 

protein kinase played a far more extensive role in controlling both carbon and energy metabolism than 

previously anticipated.  Similar to the function of AMPK in humans, my findings showed that Snf1 was 
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a low energy checkpoint.  Our results suggested that it was possible to use yeast more extensively as 

a model system for studying the molecular mechanisms underlying the global regulation of AMPK in 

mammals. 
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Dansk sammenfatning 

I gær, Saccharomyces cerevisiae, er Snf1 protein kinase primært kendt som en nøglekomponent i 

regulerring der er ansvarlig for glukoserepressionen. Proteinet Snf1 kinase er konserveret mellem 

eukaryoter og analogen i mammalieceller er AMPK, som er ansvarlig for at kontrollere energistofskiftet. 

Hvis de reguleringer som som AMPK styrer ikke fungerer leder det til udvikling af metabolske 

sygdomme, såsom fedme eller type 2 diabetes. Det er derfor af stort interesse at studere Snf1 protein 

kinase nærmere, da den har stor vægt i gærs kulstofmetabolisme og i humanbiologi. 

For at undersøge effekten af Snf1 kinase og dens regulatoriske komponent Snf4 på reguleringen af 

glukose og galaktosemetabolismen i gær, blev der foretaget fysiologiske studier af ∆sn1, ∆snf4 og 

∆snf1∆snf4 deletionsstammer som blev sammenlignet med en referencestammen. Stammerne blev 

dyrket i batchkultiveringer på glukose eller på en blanding af glukose og galaktose (kapitel 2). Denne 

undersøgelse viste at der er en forsinket induktion af galaktosemetabolismen som var SNF1 og SNF4 

specifik. I sammenligning med referencestammen, var lagfasen mellem glukoseomsætningen og 

galaktoseomsætningen, henholdsvis 2.4 gange længere (7 timer) for ∆snf4 stammen, 3.1 gange 

længere (10.5 timer) for ∆snf1 stammen og 9.6 gange længere (43 timer) for ∆snf1∆snf4 stammen. 

Den maximale specifikke væksthastighed på galaktose var to til tre gange lavere for de rekombinante 

stammer, sammenlignet med referencestammen, som havde en maksimal specifik væksthastighed på 

0.13 h-1, hvorimod denne hastighed blev bestemt til 0.07 h-1 for ∆snf1 stammen, 0.08 h-1 for ∆snf4 og 

0.04 h-1 for ∆snf1∆snf4 stammen. Det kunne konkluderes at snf1 kinase ikke alene er ansvarlig for 

derepressionen af galaktosemetabolismen. 

For at nærmere undersøge den regulatoriske rolle af snf1 kinase på en global niveau blev der udført en 

kvantitativ proteome analyse. En af de mest omfattende kvantitative proteomdatasæt  blev indsamlet 

(omfattede 2388 proteiner) og genereret ved brug af  multidimensionel proteinidentifikationsteknologi 

med efterfølgende kvantificering ved hjælp af en isotopmærkningsmetode. Brugen af isotopmærkning 

for kvantificering blev sammenlignet med den spektrale optælling for kvantificering og studiet viste at 

isotopmærkningsmetoden var meget reproducerbar mellem de biologiske replika når komplekse 

proteinblandinger med lav variation i udtryksniveau blev sammenlignet (kapitel 3). Når de to 

kvantificeringsmetoder blev sammenlignet, kunne man observere en dårlig sammenhæng mellem de to 

metoder, hvilket primært skyldes begrænsninger i den spektrale metode ved lave spektrale optællinger. 

For at rekonstruere det regulatoriske netværk der omfatter Snf1 protein kinase i gær blev 5716 mRNA- 

niveauer, 2388 proteinniveauer og 44 metabolitniveauer målt. Ved at integrere disse målinger med 

globale protein-protein interaktioner, protein-DNA interaktioner og en omfattende metabolsk model, var 

det muligt at kortlægge det komplette netværk af interaktioner omkring Snf1 protein kinase (kapitel 4 og 

5). Gennem definitionen af disse interaktioner, var det muligt at identificere hvordan snf1 kinase 

regulerer den cellulære metabolisme på gen eller proteinniveau. Studiet afslørede at Snf1 protein 
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kinase spiller en meget mere omfattende rolle i kontrol af både kulstof og energimetabolismen end man 

tidligere troede. Parallelt med hvad man kender til om AMPKs humane funktion, så viser resultaterne at 

Snf1 er et kontrolpunkt ved lavt energiniveau. Disse resultater peger på muligheden at mere 

omfattende bruge gær som modelsystem for at studere de molekylære mekanismer som er ansvarlige 

for den globale regulering af AMPK i mammalieceller. 
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1.1 Objective of the thesis 

I dedicated my Ph.D. study to the Snf1 protein kinase in yeast Saccharomyces cerevisiae.  I focused 

on expanding the knowledge about Snf1 kinase’s role regulating yeast metabolism.  The Snf1 

regulation of carbon metabolism results generated in my thesis may be used in metabolic engineering 

and yeast industrial applications.  The Snf1 regulation of yeast metabolism results generated in my 

thesis may contribute to the reconstruction of the global yeast regulatory network, and through yeast-

mammalian homology study, it may improve our understanding of human metabolism.  

First, I asked if, by deleting kinase encoding gene SNF1, the kinase’s regulatory subunit encoding gene 

SNF4, or both of these genes, we could expand our knowledge about the Snf1 kinase’s and its 

regulatory subunit’s role regulating carbon metabolism.  I aimed to do so by using industrially relevant 

dynamic glucose and glucose-galactose-mixture batch cultivations.  This experimental set-up assisted 

me in investigating how the Snf1 kinase and its regulatory subunit Snf4 functioned within the glucose 

repression regulatory cascade and how the Snf1 kinase interlocked glucose repression, glucose 

induction and galactose induction regulatory cascades. 

Second, I aimed to investigate the yeast Snf1 kinase’s role on a global scale.  To do so, I focused on 

the reconstruction of the Snf1 kinase global regulatory network.  Using top-down Systems Biology 

approach, I integrated large-scale mRNA, protein and metabolite expression data that I generated in 

my thesis with publicly available protein-protein-interaction, protein-DNA-interaction and protein-

metabolite interaction data.  This approach allowed me to identify metabolic, signaling or regulatory 

proteins, transcription factors and metabolic hot-spots through which the Snf1 protein kinase regulated 

yeast metabolism per se.  Through systems approach and yeast-mammalian cell homology study I also 

aimed to prove that yeast Snf1 kinase, as well as its homologous mammalian AMPK, is a low energy 

checkpoint.   

I believe that the data generated and yeast Snf1 regulatory network reconstructed (in my thesis) may 

be further transferred to mammalian systems to expand knowledge of the AMPK signaling cascade, 

which is linked to various metabolic disorders.  I will be proud if results generated in my Ph.D. study are 

used to ultimately understand human biology and address metabolic disease.   
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1.2 Yeast 

Yeasts are eukaryotic micro organisms classified in the kingdom of Fungi, making up more than 1000 

species.1  Among these species there are yeasts that are used for brewing, baking or as food additives, 

and yeasts which are human pathogens or which may spoil foods.  Yeasts have been used in brewing 

and baking processes for thousands of years.  Only in the last 150 years, since the experiments of 

Louis Pasteur, scientists have begun to explore how yeast works.   

The most well known yeast is Saccharomyces cerevisiaea.  S. cerevisiae is a unicellular, 5-10 µm in 

diameter budding yeast that is believed to be originally isolated from the skins of grapes.2  S. cerevisiae 

has a respiro-fermentative metabolism, i.e.  in the presence of oxygen and  at high glucose 

concentration, S. cerevisiae produces ethanol in addition to biomass.  Biomass production is the 

usually the dominating metabolic process occurring aerobically in most other yeast.3, 4  The oxidative 

metabolism is repressed in the presence of high glucose in S. cerevisiae and this makes this yeast 

produce ethanol (a Crabtree effect).5  In addition, S. cerevisiae has a glucose repression effect, in 

which yeast first grow on preferable carbon source - glucose, then, after glucose is exhausted, yeast 

may consume less preferable and non-fermentative carbon sources.  The consequences of the 

Crabtree and glucose repression effects are of great importance for industry as manipulation of growth 

conditions can either increase fermentation byproducts of interest or increase biomass (for example for 

protein production).  S. cerevisiae is the micro organism behind the most common types of 

fermentation.  It is also the most intensively studied eukaryotic model organism in molecular and cell 

biology. 

 

1.2.1 Saccharomyces cerevisiae in industrial applications 

For centuries S. cerevisiae have been used in the production of food and beverages, and today this 

organism is also used in a number of different processes within the pharmaceutical industry.  S. 

cerevisiae is a very attractive organism to work with since it is nonpathogenic, and due to its long 

history of application in the production of consumable products such as ethanol and baker’s yeast, it is 

classified as a GRAS organism (Generally Regarded As Safe).  Also, the well-established fermentation 

and process technology for large-scale production with S. cerevisiae make this organism attractive for 

several biotechnological purposes.  Another important reason for the applicability of S. cerevisiae 

within the field of biotechnology is its susceptibility to genetic modifications by recombinant DNA 

technology.   

                                                 
a S. cerevisiae is also called ‘yeast’ in further text of my thesis.  
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Traditionally, strain improvement of baker’s and brewer’s yeast has relied on random mutagenesis and 

classical genetic breeding approaches.  Progress in the field of recombinant DNA technology has 

enabled us to manipulate a pathway of interest (e.g. by modifying promoter strength, deleting genes, or 

introducing new genes or whole pathways) and, therefore, to directly improve desired cell 

characteristics.  This directed improvement of the cellular properties achieved from the interplay of 

theoretical analysis, relying on biochemical information, and the application of genetic engineering is 

referred to as Metabolic Engineering.6  Through Metabolic Engineering, we can improve industrial 

processes by improving productivity and yield of a compound of interest, by eliminating by-products, by 

improving process performance, by improving cellular properties, or by extending substrate or product 

range.7  For example, through Metabolic Engineering and recombination approaches, S. cerevisiae has 

successfully been used for lactic acid and xylitol production, which are attractive compounds in the 

chemical and food industries.8, 9  The first recombinant protein, interferon, and the first genetically 

engineered vaccine, hepatitis B surface antigen, have been produced by S.cerevisiae.10, 11  In recent 

times, through new genomic-driven solutions, S. cerevisiae is used to address global energy and 

environmental challenges, e.g. it is used to produce biofuels.12 

 

1.2.2 Saccharomyces cerevisiae as a model organism to study human metabolism 

Yeast, as well as e.g. fly and worm, is a model organism that provides insights in many aspects of cell 

biology, biochemistry and physiology,13 and provides grounds for developing new technologies, 

analysis methods and experience.  Yeast is a touchstone model organism in post-genomic research 

and there is no other eukaryote that has been as manipulated, both genetically and physiologically, as 

S. cerevisiae.14, 15  The genomic sequences of humans and model organism demonstrate a basic unity 

in the strategy of life.  For example, 30% of human genes involved in the development of diseases 

have functional homologues in yeast and those can be placed in the context of the informational 

pathways.16  Biological processes such as misfolding or aggregation of proteins that are implicated in 

the process of neurodegeneration (e.g. Alzheimer’s), have been recapitulated in yeast.13  Easy to 

handle, fast-growing, well-studied S. cerevisiae remains to be an attractive and broadly used model 

organism to study human biology, and ultimately to understand and address human disease and aging. 
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1.3 Snf1 protein kinase and its regulatory subunit Snf4 in S. cerevisiae 

Originally, the Snf (Sucrose Non-Fermenting) proteins has been identified in screens for mutants with 

growth defects on sucrose and raffinose.17, 18  In 1986, the yeast Snf1b protein kinase has been 

determined to play a central role in carbon catabolite repression (also called glucose repression) in the 

yeast S. cerevisiae (Figure 1).19  It has been determined that the Snf1 protein kinase is required for 

expression of glucose repressible genes and also suggested that the Snf4 may regulate Snf1 activity.19  

For the last 20 years, the Snf1 protein kinase has been an object of interest in studying carbon 

metabolism and fermentation.  Understanding of the Snf1 kinase role in the regulation of carbon 

metabolism is crucial for metabolic engineering and design of industrial fermentation processes. 
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Figure 1. Glucose repression regulatory cascade and its link to glucose induction and galactose 
induction regulatory cascades.  White nodes mark members of the glucose repression regulatory 
cascade.  Grey nodes distinguish members of glucose induction regulatory cascade.  Black nodes 
indicate members of galactose induction regulatory cascade.  Transcription factors are marked in 
squares.  Double lines indicate transport and metabolic reactions.  The letter-P-in-a-circle symbols 
mark phosphorylation. For more detailed information refer to the chapter ‘The role of Snf1 protein 
kinase‘. 

 

                                                 
b In this thesis, yeast genes and proteins are named according to the nomenclature of SGDatabase 
(http://www.yeastgenome.org/). Genes are marked using capital italic characters (e.g. SNF1).  Yeast proteins are marked 
using the first letter capitalized (e.g. Snf1).  Mammalian proteins are marked using all capital letters (e.g. AMPK).  
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Homology studies indicate that the yeast Snf1 protein kinase is a part of an evolutionary conserved 

AMPK (AMP-activated Kinase) regulatory cascade. Recent reviews imply that AMP-activated kinase 

regulatory cascade regulates energy homeostasis in all eukaryotic cells (Figure 2).20, 21  All energy-

consuming reactions (e.g. protein synthesis, cell growth) are powered by the high concentration of 

ATP.  When cellular stress response to certain factors causes a drop in the intracellular energy, the 

activated AMPK acts as a ‘master switch’ inducing ATP-generating catabolic pathways and repressing 

ATP-consuming processes.   Failure in mammalian AMPK regulatory cascade may cause metabolic 

disorders such as dementia, type 2 diabetes and obesity.  Today, mammalian AMPK is a major target 

for two existing classes of drugs used to treat type 2 diabetes.  AMPK activators also have potential as 

anticancer drugs.22  The knowledge about the yeast Snf1 protein kinase regulatory cascade is 

successfully transferred to mammalian systems and the Snf1 kinase serves a good model system to 

study human AMPK.  

 

ATPADP AMP

AMPK
(Snf1)

Catabolism
(glycolysis, β-oxidation)

Energy consumption
(lipid biosynthesis, cell growth)

ATPADP AMP

AMPK
(Snf1)

Catabolism
(glycolysis, β-oxidation)

Energy consumption
(lipid biosynthesis, cell growth)

 

Figure 2. The yeast Snf1 protein kinase, as well as mammalian AMPK, is a low energy 
checkpoint.  Grey and blue arrows symbolize energy homeostasis in a cell. When activated in the low 
energy growth conditions, the AMP-activated (black arrow) kinases induce (black arrow) energy 
generating (catabolic) processes, such as glycolysis and β-oxidation, and repress (black ‘T-shaped’ 
arrow) energy consuming (anabolic) processes, such as lipid biosynthesis and cell growth.  The Snf1 
protein kinase’s involvement in the regulation of catabolic and anabolic processes is discussed in later 
chapters in more detail. 

 

This chapter will briefly cover the structural organization, regulators and targets of the Snf1 protein 

kinase complex and demonstrate the homology between yeast Snf1 protein kinase and mammalian 

AMP-activated kinase. Prior knowledge about Snf1 protein kinase will be summarized including 

contributions from my Ph.D. study towards a complete understanding of the global role of the yeast 

Snf1 protein kinase.    
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1.3.1 The structure and localization of the Snf1 protein kinase complex 

The yeast Snf1 protein kinase functions in a heterotrimeric protein complex that consists of α, β and γ 

subunits (Figure 3).23  The S. cerevisiae yeast genome codes for one α-subunit Snf1, one γ-subunit 

Snf4, and three β-subunits Sip1, Sip2 and Gal83.  Consequently, the Snf1 protein kinase functions in 

three complexes Snf1-Snf4-Sip1, Snf1-Snf4-Sip2 and Snf1-Snf4-Gal83.  The α−subunit is a serine-

threonine protein kinase, which has a catalytic kinase domain that contains a conserved threonine 

residue (Thr210), and a regulatory domain that contains an AID (Auto-Inhibitory Domain).  Based on 

the kinase domain phylogeny, the catalytic α-subunit is most closely related to the CaMK protein 

kinases.24  The γ-subunit regulates the activity of the α-subunit.  Through the γ-subunit’s interaction 

with the α-subunit’s regulatory domain, the  α-subunit’s AID is inactivated, its conformation changes, 

and its kinase catalytic domain is activated.25, 26  The γ-subunit is composed of four consecutive CBS 

(Cystathionine β-Synthase) domains that form binding sites for AMP.27  To date, the evidence shows 

that the yeast γ-subunit does not bind AMP.28  The β-subunits act as a scaffold and play a central role 

in Snf1 protein kinase heterotrimer formation, localization and function.  Each of the β-subunits interact 

with α- and γ-subunits through conserved motifs KIS (Kinase-Interacting Sequence) and ASC 

(Association with Snf1 Complex), respectively.29-32  Various N-terminal sequences of β-subunits define 

subcellular localization and substrate specificity for the Snf1 kinase complex in yeast.33-35   
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Figure 3.  The structure of the yeast Snf1 protein kinase complex.  The figure shows interaction 
between three Snf1 kinase complex subunits  α, β and γ, conserved domains and conserved threonine 
210 in the catalytic Snf1 kinase domain.  The dashed line indicates possible interaction between α- and 
γ-subunits.  For more detailed information, please, see chapter ‘The structure and localization of the 
Snf1 protein kinase complex’.    
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Based on green fluorescent protein fusion studiesc, the three Snf1 protein kinase complexes (Snf1-

Snf4-Sip1, Snf1-Snf4-Sip2 and Snf1-Snf4-Gal83) have been found to localize in the cytoplasm when 

cells are grown on glucose.  When glucose is exhausted, or cells grow in a non-fermentable carbon 

source, the β-subunits target Snf1 protein kinase complexes to different organelles.  The Gal83 targets 

Snf1-Snf4-Gal83 to the nucleus, the Sip1 targets Snf1-Snf4-Sip1 to the vacuolar membrane, and the 

Snf1-Snf4-Sip2 complex remains in the cytoplasm (Figure 4).33, 35  The dynamic relocalization of the 

three Snf1 protein kinase complexes is likely linked to different Snf1 kinase functions, which will briefly 

be described in later chapters. 
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Figure 4.  The localization of the three Snf1 protein kinase complexes under alternative carbon 
sources or low glucose.  Under glucose growth conditions, the three Snf1 protein kinase complexes 
are located in the cytoplasm.  When glucose is exhausted, the Snf1-Snf4-Gal83 complex is targeted to 
the nucleus, the Snf1-Snf4-Sip1 complex is targeted to the vacuole, or to the vacuolar membrane and 
Snf1-Snf4-Sip2 complex remains in the cytoplasm and may be attached to the plasma membrane. 

 

A high degree of homology is identified between the yeast Snf1 protein kinase and its homolog 

mammalian AMPK.36  The conservation of these protein kinases extends to the non-catalytic β and γ-

subunits of the heterotrimeric complexes (Table 1).  In mammals the two α-subunits, two β-subunits 

and three γ-subunits form 12 heterotrimeric αβγ complexes that are distributed and active in different 

tissues and organs.37-39  Homologous to the yeast Snf1 protein kinase, the catalytic domain of the 

mammalian α−subunit contains conserved threonine (Thr172),40 phosphorylation of which activates 

AMPK.  The regulatory γ−subunit contains four CBS sequences that form two AMP-binding sites, and 

the β−subunits act as scaffolding.  Differently from the yeast cells, the AMP allosteric binding to the 

                                                 
c The green fluorescent protein (GFP) is originally isolated from the jellyfish Aequorea victoria and fluoresces green when 
exposed to blue light. The GFP may be incorporated into the genome of yeast and maintained there through breeding.  The 
recombinant yeast strain is able to express its own protein that is fused to GFP.  The illuminated GFP is almost not harmful to 
living cells and the expression or localization of the recombinant GFP fused protein may be studied in highly automated live 
cell fluorescence microscopy systems. 
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γ−subunit is necessary for a stable interaction between α and γ−subunits, which is required for an 

activation of AMPK.41 

 

Table 1. Comparison of the AMP-activated kinases in yeast and mammalian cells. 

 

 

1.3.2 The regulation of Snf1 protein kinase  

Several proteins and regulatory events participate in the Snf1 kinase activation-deactivation process 

(Figure 5, Table 1).  The Snf1 kinase activity is linked to glycolytic pathway activity.42, 43  In the 

presence of glucose (i.e. high glycolytic rate) activated hexokinases (e.g. Hxk2) repress Snf1 protein 

kinase activity.42, 43  The exact repression mechanism is not yet understood, but Snf1-Hxk2 constitutive 

interaction has been identified.44  In addition, the phosphatase Glc7-Reg1 dephosphorylates and 

inhibits Snf1 kinase activity. 45, 46  Under low glucose growth conditions (i.e. when intracellular 

AMP:ATP ratio increases) the Snf1 protein kinase is active.  The presence of three α, β and γ-subunits 

in one complex, the γ-subunit interaction with α-subunit, and the phosphorylation of Thr210 in the 

catalytic domain are required for Snf1 kinase to be fully active.25, 26, 32  Three redundant upstream 

kinases Tos3, Sak1 and Elm1 can phosphorylate the Snf1 kinase’s Thr210.  The Snf1 kinase 

phosphorylates Reg1 and releases Glc7-Reg1 phosphatase from the Snf1 kinase complex.46  The 

allosteric AMP binding to Snf4 does not activate Snf1 kinase directly, but indirect Snf1 regulation by 

AMP cannot be excluded.47   

Research is ongoing to understand which exact signals activate upstream kinases and the 

phosphatase, and what the key factor regulating Snf1 kinase activity is.  It is in debate whether the 

phosphorylation by the upstream kinases, or dephosphorylation by the phosphatase plays the 

dominant role regulating Snf1 protein kinase activity.   

  Snf1 (yeast) AMPK (mammalian) 
α-subunit Snf1 AMPK α1, α2 
β-subunit Sip1, Sip2, Gal83 AMPK β1, β2 

Complex 
structure 

γ-subunit Snf4 AMPK γ1, γ2, γ3 
AMP Indirect Direct 

Upstream kinases Tos3, Elm1, Sak1 LKB1, TAK1, CaMKK2 
Phosphoatases Reg1/Glc7 PP2Cα 

Physical 
Regulators 

Other interacting proteins Std1, Hxk2  
Transcription factors Mig1, Cat8, Sip4 HNF4α, ChREBP 
Metabolic enzymes Acc1 ACC, HMGR 

Downstream 
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Regulatory proteins Tor1, Pho85, Gcn5, Histone 
H3 

Heat shock protein, 
mTOR 
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Figure 5. The activation and deactivation of the Snf1 protein kinase complex.  At growth 
conditions with high glucose, the Snf1 protein kinase activity is repressed.  At growth conditions with 
low glucose, the Snf1 protein kinase activity is induced.  The Hxk2 hexokinase represses Snf1 protein 
kinase activity with an unknown mechanism.  The upstream kinases (Elm1, Tos3, Sak1) phosphorylate 
and activate Snf1 kinase.  The interaction between α−subunit and γ−subunit (pink line) activates Snf1 
kinase.  The binding of AMP to γ−subunit may activate the Snf1 kinase complex.  The Glc7-Reg1 
phosphatase interacts with and inhibits Snf1 kinase at growth conditions with high glucose 
concentration.  Reg1 is phosphorylated by the Snf1 protein kinase and Glc7-Reg1 is released from the 
active Snf1 kinase complex at growth conditions with low glucose concentration.  

 

The Snf1 protein kinase also responds to nitrogen limitation, salt, ion, alkaline pH, heat shock, and 

oxidative stresses.48, 49  These distinct stresses regulate Snf1 kinase’s activity and its subcellular 

localization, dependent or independent of the upstream (Tos3, Sak1 or Elm1) kinase.49  In addition, 

other Snf1 regulating proteins, such as Std1,50 may affect specific Snf1 kinase functions.  Responding 

to specific stresses, the Snf1 protein kinase interacts with specific downstream targets25 and regulates 

distinct biological processes. 

The conservation among species is not limited to the AMPK complex, but extends through the 

regulatory cascade.51, 52  The mammalian tumor suppressor LKB1 and two Ca2+/calmodulin-dependent 

kinase kinases (CaMKKs), all of which are homologous to the yeast Tos3, Elm1 and Sak1, are 

upstream kinases of AMPK (Table 1).53-56  The yeast Snf1 kinase and mammalian AMPK also share 

homologous downstream targets (e.g. Acc1). The AMP, glucose and oxidative stress regulates activity 

of the yeast Snf1 and mammalian AMPK.20  In addition, the AMPK is activated by other physiological 

and pathological stresses that generally deplete cellular ATP, i.e. change the AMP:ATP ratio.  These 

stresses include hypoxia,57 ischemia, uncoupled oxidative phosphorylation, exercise and muscle 

contraction.58  Other stresses such as hyperosmotic stress,59 Ca2+,55 and hormones (e.g. leptin and 

interleukin-6) also regulate AMPK complexes.60  Recent scientific evidence shows that the upstream 

kinase LKB1 is constitutively active, and the AMPK protein phosphatase 2Cα (PP2Cα) is regulated by 

AMP levels indicating that the phosphatase may play a dominant role regulating AMPK activity.61  
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1.3.3 Snf1 kinase interacts with hundreds of proteins 

The yeast Snf1 protein kinase interactsd with more than 200 proteins (based on the information posted 

on protein-protein interaction database BioGRID62 in October, 2007).  A single phosphorylome studye 

showed that Snf1 phosphorylates 80 yeast proteins,63 indicating that all these proteins might be 

regulated by the Snf1 protein kinase.  In the list of proteins, interacting with or being phosphorylated by 

Snf1, there are transcription factors (TFs) (e.g. Mig1, Sip4, Cat8), signal transducing proteins (e.g. 

Pho85, Gcn5), enzymes and structural proteins (e.g. Acc1, histone H3).  The hundreds of proteins 

interacting with Snf1 kinase are involved in biological processes, such as organelle organization and 

biogenesis, transcription, transport, stress response, and metabolism of carbon, lipid, nucleic and 

amino acids.  The abundance and functional variety of identified Snf1-interacting proteins also 

pinpoints that the yeast Snf1 protein kinase regulates different metabolic processes in the cell. 

 

1.3.4 The role of Snf1 protein kinase  
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Figure 6.  The targets and biological processes regulated by the Snf1 protein kinase.  The figure 
summarizes prior knowledge and knowledge obtained during my thesis.   Transcription factors, signal 
transducing proteins, regulatory proteins and enzymes (all marked in grey boxes) are directly or 
indirectly affected by the Snf1 kinase.  The Snf1 targets marked in bold were identified in my thesis 
work and were described in chapter 4.  More detailed information about most of these Snf1 kinase 
targets and processes regulated by the Snf1 kinase can be found in the chapter ‘The role of Snf1 
protein kinase in the cell’. 
                                                 
d The list of protein-protein interactions, which are posted on the BioGRID (http://www.thebiogrid.org)  database, are derived 
using variety of techniques, highlighting yeast two-hybrid system, mass-spectrometry based approaches, genetic interactions, 
co-expression, synthetic growth defect and phenotypic enhancement.  

e Phosphorylome study identifies global protein phosphorylation in yeast. In this particular study, the proteome chip technology 
was used and a subset of 80 proteins, which were phosphorylated by the protein kinase Snf1, was identified. 
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The yeast Snf1 protein kinase has primarily been described as a regulator of carbon metabolism  and 

as a key node in the glucose repression regulatory cascade.64, 65  The Snf1 kinase is also a key 

regulator of carbon and energy metabolism during diauxic shift.66  It is likely that on a more global 

scale, Snf1 contributes to the regulation of transcription initiation.67-69  The Snf1 kinase has also been 

shown to regulate lipid70, 71 and glycogen metabolism,72 cell cycle,73 morphogenesis,74, 75 redox 

homeostasis49, 76 and aging.34, 77  Altogether, Snf1 appears to be a global regulator (Figure 6) of 

metabolism and the homology studies with mammalian AMPK suggest that Snf1 is a low energy 

checkpoint (Figure 2).20, 21, 78 

 

1.3.4.1 Glucose repression regulatory cascade  

In response to a glucose signal, glucose repression regulatory cascade represses or activates 

metabolism of alternative carbon sources (Figure 1).64, 65  When glucose is present, Snf1 kinase is not 

active (Figure 5) and the expression of the genes, that are regulated by glucose repression regulatory 

cascade, is repressed.  When the glucose is exhausted, or in the presence of alternative carbon 

sources, the Snf1 kinase is active and the expression of these genes is derepressed or activated 

(Figure 1). 65, 79, 80  The upstream kinases may phosphorylate and thus activate Snf1 kinase.  

Specifically, the Sak1 upstream kinase has been identified to promote Snf1-Snf4-Gal83 nuclear 

localization under low glucose.81  The Snf1-Snf4-Gal83 presence in the nucleus33 correlates with 

Gal83’s role to mediate Snf1 interaction with TF Sip482 and with other TFs of glucose repression 

regulatory cascade.  In the nucleus, the activated Snf1 kinase phosphorylates and deactivates TF 

Mig1,83 and phosphorylates and activates TFs Sip4 and Cat8.84, 85  In addition, the downstream Snf1 

targets are interconnected by more complex regulation, such as deactivated Mig1 releases expression 

of CAT886 and activated Cat8 induces expression of SIP4.87  Through this complex transcription 

regulatory network, Snf1 acts as a key node in glucose repression regulatory cascade and regulates 

gluconeogenesis, respiration and catabolism of alternative carbon sources.65, 80    

 

1.3.4.2 Response to various carbon signals 

The Snf1 kinase integrates cellular responses to different carbon signals.  For example, the glucose 

repression regulatory cascade is interlocked with glucose induction and galactose induction regulatory 

cascades (Figure 1).  Through the regulation of TF Mig1, the Snf1 kinase regulates the expression of 

genes coding for members of the glucose induction pathway (sensor Snf3 and signal transducer Mth1) 

and for glucose transporters Hxt2 and Hxt4.88  Genes coding for enzymes and regulatory proteins 

within galactose metabolism are under dual regulation by galactose induction regulatory cascade and 
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by glucose repression regulatory cascade.89  In the presence of glucose, Mig1 represses GAL 

expression and in the presence of galactose, GAL genes are activated by the TF Gal4 (Figure 1).   

During my thesis work the physiology of the ∆snf1f, ∆snf4 and ∆snf1∆snf4 strains compared to the wild-

type strain was studied aiming to identify the roles of the Snf1 kinase and its regulatory subunit Snf4 in 

the regulation of galactose metabolism under dynamic growth conditions (chapter 2).  For this study, 

glucose and glucose-galactose batch cultivation conditions were used (Figure 8).  These experimental 

conditions created a base for tracking Snf1 kinase’s and its regulatory subunit’s Snf4 role in glucose 

rich, glucose low and in galactose rich dynamic growth conditions.  The study indicated that Snf1 and 

Snf4 had independent roles regulating galactose catabolism.  The study also showed that the Snf1 

kinase complex regulated galactose metabolism not solely in response to available glucose or 

galactose, but also in response to available intracellular energy (ATP) that was required for the 

induction of galactose catabolism (Figure 1). 

 

1.3.4.3 Diauxic shift and generation of energy 

When glucose is exhausted, cells are subjected to ‘diauxic shift’, during which the cell produces the 

enzymes needed to metabolize the other available carbon source, and switches carbon metabolism 

from fermentation to respiration.  The expression of more than 2000 genes is changing through the 

diauxic shift and more than 400 of these genes are regulated by the Snf1 protein kinase.66  It is not yet 

known how the Snf1 protein kinase regulates expression of these 400 genes, but some mechanisms 

are identified (Figure 6).  Besides its role in glucose repression regulatory cascade, the Snf1 protein 

kinase phosphorylates TF Adr1 and induces Adr1 binding to chromatin.90  Consequently, Adr1, 

together with different TFs, regulates biochemical pathways that generate precursors of energy, acetyl-

CoA and NADH, from non-fermentable carbon substrates.66  For example, Adr1 together with Cat8 

regulate expression of genes within ethanol catabolism, Adr1 together with Pip2 and Oaf1 regulate 

fatty acid β-oxidation,91 and Adr1 together with Ino2,4 regulate expression of INO1 and GUT1 that are 

also involved in lipid metabolism.92 

In addition, Snf1 contributes to transcription initiation on a more global scale.67, 68  The Snf1 and the 

acetyltransferase Gcn5 function in an obligated sequence, Snf1 phosphorylates histone H3 Ser10 and 

Gcn5 deacetylates histone H3 Lys14, thereby enhancing transcription of e.g. INO1 and GAL1 

contributing to the regulation of lipid and carbon metabolism.68, 69  It has also been identified that the 

                                                 
f The ∆snf1, ∆snf4 and ∆snf1∆snf4 mark recombinant strains, in which the SNF1, SNF4 or both genes are deleted (i.e. 
knocked-out) from the yeast genomic DNA, respectively.  
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Snf1 protein kinase through the interaction with RNA polymerase II holoenzymeg may regulate 

expression of hundreds of genes67 and so regulate metabolic changes during the diauxic shift.66  These 

findings indicate that the Snf1 kinase through the regulation of TFs, being part of transcription initiation 

machinery and being a regulator of histones, may regulate the expression of hundreds of genes and be 

a global regulator of metabolism in yeast. 

 

1.3.4.4 Response to stress  

The Snf1 protein kinase regulates protective mechanisms against various stresses including those that 

arise simultaneously with glucose depletion.48, 49  When cells are starved for glucose, besides 

deactivating the glucose repression regulatory cascade, the Snf1 also promotes expression of salt-

stress-responding ENA1,93 activates heat shock TF Hsf1,94 and deactivates the stress-responsive TF 

Msn2.95  In the reconstructed regulatory network of the Snf1 protein kinase (Figure 1 in chapter 4), I 

identified that the Snf1 kinase regulates protective mechanisms against various stresses including 

oxidative stress.  Recently, Wiatrowski & Carlson have identified the protein-protein-interaction 

between Sip2 and Yap1h.76  The presence of this interaction suggests that the Snf1 kinase may 

regulate carbon and oxidative metabolism in a coordinated manner.76, 96  Based on results obtained in 

my thesis work and on previous knowledge, I suggest that the Snf1 protein kinase in different 

heterotrimeric complexes regulate various stress responses: e.g. the Snf1 protein kinase in complex 

Snf1-Snf4-Gal83 regulates carbon metabolism and the Snf1 protein kinase in complex Snf1-Snf4-Sip2 

is involved in the regulation of redox balancing (chapter 4).   

 

1.3.4.5 Response to nitrogen and coordinated Snf1-Tor1 regulation 

It is generally accepted that the Snf1 protein kinase is active at low glucose concentrations.  In 

addition, scientific evidence presented below shows that the Snf1 protein kinase has basal activity 

when cells are grown in excess of glucose.  Unphosphorylated Snf1 that has basal kinase activity 

participates in nitrogen signaling,97 provides resistance to toxic hypoxyurea and toxic cations98, 99 and 

regulates diploid pseudohyphal differentiation75 and filamentous growth.100  The Tor (Target Of 

Rapamycin) kinase is a well studied regulator of cell growth and, as the Snf1 protein kinase, is 

described to regulate nitrogen signaling, filamentous growth and response to stress.101  Also, both Snf1 

                                                 
g The RNA polymerase II holoenzyme is a large protein complex that consists of the RNA polymerase core complex and a 
variety of other proteins including transcription factor complexes.  The RNA polymerase II holoenzyme is recruited to the 
promoters of protein-coding genes and initiates transcription of DNA to synthesize precursors of mRNA. 

h The Yap1 is a basic leucine zipper transcription factor that is required for oxidative stress tolerance. Yap1 activates the 
transcription of anti-oxidant genes in response to oxidative stress.  
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and Tor1 regulate expression of INO1,102 phosphorylate and activate TF Gln3103 and regulate the 

subcellular localization and activity of TF Msn2 in response to carbon or nitrogen limitation, 

respectively.95  These evidences indicate that the functions of the Snf1 and Tor1 kinases are cross-

linked.   

In my work, reconstructed Snf1 kinase regulatory network (chapter 4) identified that the loss of the Snf1 

kinase impacted general and redox stress response as well as nitrogen and lipid metabolism, all of 

which were also regulated by the Tor1 protein kinase (Figure 1 in chapter 4).  My results supported the 

prior knowledge and, furthermore, suggested that Snf1 and Tor1 both played a role in integrating 

information on the nutritional state and performed coordinated regulation of energy, redox metabolism, 

and, consequently, aging (chapter 4).  

In homology to yeast, mammalian AMPK and mTORi may have reciprocal and overlapping functions.  

In hypothalamus, AMPK and mTOR act as fuel sensors and antagonistically regulate energy intake.104, 

105  The mTOR is also regulated by AMPK.  Activated AMPK inhibits mTOR suppressing 

gluconeogenesis and protein synthesis in the peripheral tissues, thereby conserving low energy levels 

during low energy states.58, 106 

 

1.3.4.6 Lipid metabolism 

The Snf1 kinase regulates energy generating fatty acid β-oxidation and energy consuming biosynthesis 

of fatty acid, sterol and lipid.  The yeast Snf1, as its mammalian homolog AMPK, directly 

phosphorylates and inactivates Acc1 (Acetyl-CoA Carboxylase) and therefore inhibits fatty acid and 

sterol biosynthesis.70, 71  Also, the Snf1 regulates the expression of INO1 and GUT1,2 that are involved 

in the biosynthesis of phospholipids.70, 102  It is also believed (but not yet proven) that, as mammalian 

and plant AMP-activated kinase,107, 108 the yeast Snf1 protein kinase phosphorylates and inactivates 

Hmg1 (3-Hydroxy-3-Metylglutaryl-CoA reductase), which catalyzes a rate limiting step in sterol 

biosynthesis.   

On a global scale and for the first time my work showed that the Snf1 kinase regulated fatty acid β-

oxidation, fatty acid synthesis and biosynthesis of phospholipid precursors (Figures 1, 2 in chapter 4; SI 

Figure 5 in chapter 5).  In homology to mammalian system, I showed that the yeast Snf1 protein kinase 

controlled carnitine metabolism and consequently co-regulated the fatty acid β-oxidation and the 

synthesis of fatty acids and sterols (Figure 2 in chapter 4).  

 

                                                 
i The mTOR is a mammalian homolog of the yeast Tor proteins that respond to nutrient limitation and control cell growth. 
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1.3.4.7 Specific roles of the three distinct Snf1 kinase complexes 

The Snf1 protein kinase in the Snf1-Snf4-Gal83 complex participates in the glucose repression 

regulatory cascade (Figure 1).  The role of the Snf1-Snf4-Sip1 complex is not yet determined.  The 

cyclic AMP-dependent Pka (Protein Kinase A) maintains the Snf1-Snf4-Sip1 cytoplasmic localization in 

glucose-excess-grown cells.35  The Snf1-Snf4-Sip2 complex has a role in controlling cell longevity and 

response to the oxidative stress.76, 77  The N-myristoylated Sip2 keeps the Snf1 kinase complex by the 

plasma membrane.  In aging cells, when the myristoyl moiety is lost, the Snf1’s β-subunit Sip2 

relocates from the plasma membrane to the cytoplasm, the Snf1 localizes to the nucleus and regulates 

aging by affecting chromatin structure and genomic stability.34   

In my thesis work, the Snf1 regulatory network (Figure 1 in chapter 4) was reconstructed, and it was 

identified that, in response to the loss of SNF1, carbon metabolism and redox balancing changed.  The 

analysis of the observed global metabolic changes indicated that the loss of SNF1 affected cell 

longevity as well.  Overall, I suggested that the Snf1 kinase mediated energy and redox balancing for 

optimal yeast growth: (i) the Snf1 kinase in complex with Snf4 and Gal83 regulated carbon and energy 

metabolism,64, 79 (ii) the Snf1 kinase in complex with Snf4 and Sip2 was involved in the regulation of 

redox balancing and longevity76, 77 (chapter 4).   

 

1.3.4.8 The yeast Snf1, as its mammalian homolog AMPK, is a low energy checkpoint 

The AMPK is described as a low energy checkpoint.21, 60, 78  All energy-consuming reactions are 

powered by the high concentration of ATP.  When cellular stress causes a drop in the intracellular 

energy, the activated AMPK acts as a ‘master switch’ inducing ATP-generating catabolic pathways and 

repressing ATP-consuming processes (Figure 2).  The AMPK performs this regulation in different 

tissues, in response to various additional signals, mainly by either direct phosphorylation of target 

enzymes, or by regulating gene expression.  For example, during exercise, activated AMPK increases 

glucose uptake in the muscle cells.37, 78, 109  In white-fat tissues, AMPK balances body lipid storage.110, 

111  In response to low glucose level in blood, the AMPK participates in the inhibition of insulin 

production and secretion by islet β cells.112, 113  Food intake is repressed when AMPK in the 

hypothalamus is inhibited by glucose, leptin and insulin.  Food intake is stimulated when AMPK in the 

hypothalamus is activated by the hormones adiponectin and gherin.114  Therefore AMPK regulates 

body weight.58, 104  Overall, the pivotal role of AMPK places it in an ideal position for regulating whole-

body energy metabolism, and thus AMPK could play a part in protecting the body from metabolic 

diseases such as type 2 diabetes113 obesity,60 cardiac hypertrophy and arrhythmia,115, 116 and 

cancer.115, 117  Although the Snf1 protein kinase complex has been more extensively studied in the 

context of glucose repression, its role in energy homeostasis, in homology to mammalian AMPK, is 

becoming increasingly evident (Figure 2).20, 21  The studies discussed above shows that the Snf1 
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protein kinase is involved in the regulation of energy generation, energy consumption and energy 

storage.70, 79, 118   

My Ph.D. work was the first global scale study that demonstrated that the Snf1 protein kinase had 

coordinated control over energy producing and energy consuming metabolic pathways (chapter 4).   

Overall, my study detected more similarities between the functions of the yeast Snf1 and the 

mammalian AMPK than previously published.  This opened the door for broader use of yeast as a 

model for studying the role of AMPK in regulating different parts of human metabolism and, ultimately, 

for better understanding and addressing metabolic disorders. 
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1.4 Top-down Systems Biology approach 

The completion and publication of the genome sequences of Haemophilus influenzae in 1995119 and 

the yeast Saccharomyces cerevisiae in 1996120 has been a milestone in the history of biological 

research.  Now, a traditional data-poor discipline has been transformed to data-rich discipline and this 

has pushed scientists towards a new view of biology, namely Systems Biology, where data-driven 

discovery meets hypothesis-driven science.121  Systems Biology does not emphasize the investigation 

of the individual genes or proteins independently, as has been the highly successful trend for the past 

30 yearsj.  Rather, it investigates the behavior and relationships of all of the elements in a particular 

biological system.16, 122  An important challenge that is faced by investigators today is interpreting new 

large-scale data sets (e.g. global-scale gene expression dataset, large-scale protein expression or 

interaction dataset) and thereby deriving fundamental and applied biological information about whole 

biological systems.121, 123  To accomplish that, the following are needed: 

(i) system-wide component identification, 

(ii) identification of macromolecule interactions within the cell,  

(iii) computational inference of biological system and 

(iv) rigorous integration of heterogeneous data (Figure 7).123 

 

Figure 7. The roadmap of Systems Biology Approach taken in my Ph.D. work. The mRNAs, 
proteins and metabolites were extracted from chemostat grown wild-type, ∆snf1, ∆snf4 and ∆snf1∆snf4 
strains and analyzed using Affymetrix DNA microarray system, MudPIT (Multidimensional Protein 
Identification Technology) followed by stable-isotope-labelling-based quantification, and GCMS (Gas 
Chromatography-Mass Spectrometry), respectively.  Quantified 5544 mRNAs, 2388 proteins and 44 
metabolites were integrated with available protein-protein ((BIOGRID-Saccharomyces_cerevisiae 
v.2.0.25), protein-DNA124, 125 and protein-metabolite interaction126 datasets with the aim to reconstruct 
the Snf1 kinase regulatory network. The strategy and results of my study are presented in chapters 4, 
5.  

                                                 
j The single gene/protein based approach is not obsolete or bad.  In fact, a lot of systems biology is possible only because 
single gene approaches generated enough information so that now one can start looking at a systems rather than individual 
components.  Systems Biology is a natural ‘evolution’ from previous approach, which was, is and will be equally important.  
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This chapter will briefly walk through these four strategic steps of the Systems Biology Approach and 

summarize the work that has been done, including contributions from my Ph.D. work, toward a truly 

holistic understanding of cellular behavior. 

 

1.4.1 System-wide component identification 

One of the major objectives of Systems Biology is to reconstruct biological networks and perform a 

quantitative description on how these operate under conditions of interest.  In top-down Systems 

Biologyk, consistent and comprehensive quantitative data sets of mRNA, proteins and metabolites are 

unprecedented starting points to understand systems and provide a solid basis for data integration and 

further quantitative modeling (Figure 7).122, 127  It is still not possible to study biology solely in silico and 

it is thus crucial to use an experimental set-up, in which generated datasets can be analyzed together 

to understand biological systems. To accomplish this, the biological samples of interest have to be 

cultivated in well-suited growth conditions (e.g. chemostat cultivations), and analyzed by using 

compatible data analysis platforms (e.g. either cDNA microarrays128 or oligonucleotide arrays).129-131  

Many of the available Systems Biology studies require high-throughput analyses that are expensive, 

and it is therefore often limiting factor in performing all needed experiments in one laboratory.  Thus, 

the use of previously published experimental data available from various repositories, such as 

computer databases and supplementary material of published articles, is commonly used and highly 

desirable.  The available data from various repositories also facilitates the development of computer 

algorithms and other theoretical studies that requite huge data sets.  This creates a definite need for 

collecting and sharing large datasets, however, inconsistencies among cross-platform and cross-

laboratory studies remain an important issue that must be carefully evaluated before these resources 

are used in the field.121, 127 

 

1.4.1.1 Chemostat cultivation 

Chemostat cultivations are well-controlled growth conditions.132, 133  Parameters that affect cell growth, 

such as nutrient availability, aeration, stirring and temperature, are monitored and kept constant 

throughout the chemostat cultivation.  Nutrients are continuously fed to the culture and the culture fluid 

is removed (with the same rate) from the cultivation chamber keeping the culture volume constant 

(Figure 8).  This generates steady-state growth conditions, where the specific growth rate, biomass, 

cell metabolic and regulatory processes are constant.  Based on the above characteristics, chemostats 

                                                 
k The top-down Systems Biology is a systemic-data driven approach. It starts from measuring genome-wide experimental data 
and it is followed by data analysis and data integration to discover or refine pre-existing models that ultimately describe the 
measured data.  In this way, previously unidentified interactions, mechanisms and molecules can be identified, and 
hypotheses concerning co- and inter-regulation of groups of those molecules can be put forward. 
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are highly reproducible and are well suited to study cell response to a single specific environmental or 

genetic parameter, while minimizing the number of confounding parameters found in batch cultivations.  

Ultimately in Systems Biology, data generated from the chemostat cultivations are well suited for the 

design of genome-scale models. 

 

 

Figure 8.  Comparison of batch and chemostat cultivation.  During batch cultivations, glucose is 
consumed and yeast cells grow exponentially.  After depletion of glucose, the specific growth rate 
drops to zero.  Differently, in chemostat cultivations, all relevant growth parameters, including glucose 
concentration in the culture, are constant in time and this creates steady-state growth conditions, were 
biomass and growth rate are constant.  To study the impact of deletion of SNF1 and SNF4 genes on 
the regulation of carbon metabolism, dynamic glucose and glucose-galactose-mixture batch 
cultivations were used and the results were presented in chapter 2.  To generate high-quality large-
scale transcriptome, proteome and metabolome datasets, the chemostats cultivations were used.  In 
chemostat cultivations only the deletion of SNF1 or SNF4 affected omics dataset differences between 
the strains of comparison.  Extracted proteome samples were used in a large-scale quantitative 
proteome study (chapter 4).  Extracted proteome, transcriptome and metabolome samples were used 
in an integrative top-down Systems Biology study (chapter 4). This figure is borrowed from the review, 
written by Weusthuis.133    

 

In my thesis work, wild-type, ∆snf1, ∆snf4 and ∆snf1∆snf4 strains were grown in carbon-limited 

chemostat cultivations to ensure that metabolic and regulatory changes in these strains were specific 

to disruptions of the Snf1 complex, and not complicated by external effects resulting from the specific 

mutant physiology (e.g. different specific growth rates).  From these cultivations extracted 
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transcriptome, proteome and metabolome datasets were successfully used in large-scale comparative 

and Systems Biology studies (chapters 3, 4).   

 

1.4.1.2 Transcriptomics 

Transcriptomics is the study of the complete set of all messenger RNA molecules i.e. “transcripts” that 

are produced by the genome discretely in one cell or in a population of cells.  The field of 

transcriptomics provides information about both the presence and the relative abundance of transcripts 

thereby indicating the active components within the cell.  Today DNA microarrays represent a robust 

and powerful discovery tool for expression profiling of thousands of genes simultaneously.  Two types 

of DNA microarrays, cDNA microarrays,128 developed at Stanford University, and oligonucleotide 

arrays,129-131 developed at Affymetrix, Inc., are widely used.  Although array technology is exactly the 

kind of comprehensive high-throughput approach that Systems Biology demands, the various levels of 

post-transcriptional control might challenge its importance, because proteins, but not mRNAs, are the 

functional productsl of the coding sequences within the genome.  Several studies have been dedicated 

to evaluate whether measured mRNAs can be used to extrapolate protein abundances in yeast.134-136  

A recent thorough study has concluded that the correlation between mRNA and protein levels is weakly 

(70%) positive and this is insufficient to predict protein expression levels from the quantitative mRNA 

data.136   

In this thesis, I generated global-scale gene expression data for the S. cerevisiae wild-type, ∆snf1, 

∆snf4 and ∆snf1∆snf4 strains using Affymetrix GeneChip® Yeast Genome 2.0 Arrays.  The generated 

gene expression data was analyzed together with proteome, metabolome and various interaction 

datasets to reconstruct Snf1 kinase regulatory network (chapter 4).  In collaboration with Roberto 

Olivares (CMB) and Kiran R. Patil (CMB), the generated transcriptome and proteome datasets were 

used to study translation efficiency in yeast.  Searching for parameters that influence translation (e.g. 

codon bias, availability of tRNA, protein production cost, protein length), we aimed to mathematically 

define translational efficiency, and determine if measured mRNAs could be used to predict protein 

expression levels (ongoing project, CMB).   

 

 

 

                                                 
l Proteins are called functional products of the coding sequences, because proteins, but not mRNA, perform functions in the 
cell, e.g. catalyze metabolic reaction, transduce signal, or provide structure for the cell.  
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1.4.1.3 Proteomics 

Ultimately proteomics aims to identify and quantify cellular levels of all proteins that are encoded by a 

genome. The techniques used to perform complete proteome analysis are still limited, mainly due to 

the high dynamic range (101 to 106 molecules per cell) of the proteome.137  The protein modifications, 

interactions, localization in various cellular compartments138 and different protein turn-over times139 also 

contribute to the complexity in the development of the field.  Various tools combining mass 

spectrometry and liquid chromatography or gel-based protein separation, have been designed and 

used to improve proteome identification and quantification.140  Several technical advances include: (i) 

multidimensional protein identification technology (MudPIT), developed in Prof. Yates’ lab, that 

separates and identifies proteins from complex mixtures;141, 142 (ii) in vitro protein labeling, developed in 

Prof. Aebersold’s lab, that uses isotope coded affinity tags (ICAT);143 (iii) promising non-labeled 

quantitative proteomics approach,144 that is still under development in Prof. Smith’s lab, and (iv) tools 

that identify protein modifications.145  Other proteome identification and quantification tools based on  
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Figure 9. The schematic representation of performed quantitative proteome analysis.  The 
collected 14N-labeled global protein samples from the wild-type, and 15N-labeled global protein samples 
from the ∆snf1, ∆snf4 and ∆snf1∆snf4 strains were analyzed using micro-liquid chromatography 
coupled mass spectrometry, otherwise called MudPIT.146  Generated both MS and MS/MS spectram 
were subjected to the computational analysis to produce quantitative proteome dataset.  MS/MS were 
searched with SEQUEST algorithm147 against a database of the translated Saccharomyces cerevisiae 
ORFs, and so the identification (sequencing) of the detected proteins was performed.  SEQUEST 
results were assembled, filtered and transformed to user-friendly .txt files using the DTASelect2.0 
algorithm.148  SEQUEST and DTASelect2.0 output files were submitted to CenSus software149 to 
calculate the relative protein abundance differences based on reconstructed ion chromatograms (i.e., 

                                                 
m The MS spectrum is a full scan of specific mass-to-charge (m/z) peptide ions, which, in our case, was generated in a mass 
spectrometer and mass analyzer Orbitrap.  This MS spectrum was used for relative quantification of the proteome.  The 
MS/MS spectrum is a tandem mass spectrum, that is generated by additional fragmentation of peptide ions to sequence (i.e. 
identify) proteins.  In our case, a tandem-linked LTQ mass spectrometer was used to generate MS/MS spectrum. 
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14N/15N CenSus Ratio).  This generated quantitative proteome dataset was analyzed in the large-scale 
proteome study, described in chapter 3, and in the Systems Biology study, described in chapter 4. 

protein chip technology or other mass spectrometry-based strategies have found their niches in 

specific proteome areas as reviewed in Patterson & Aebersold.150  For example, the protein microarray 

containing a whole yeast proteome on a chip can be used for proteome-wide studies identifying protein 

interactions, post-translation modifications, antibody specificity and protein activity.63, 151, 152   

In this thesis, I generated the largest, to date, yeast quantitative proteome dataset in Dr. Yates’ 

Proteomics Mass Spectrometry lab.  The proteome of the wild-type yeast strain was metabolically 

labeled in chemostat cultivations using >99% ammonium-15N sulfate, as the sole nitrogen source.  The 

three mutant strains were metabolically labeled using sole >99% ammonium-14N sulfate.  The total 

protein was extracted from the cells, separated using MudPIT and quantified using stable isotope 

labeling approach (Figure 9) or spectral counting.  The comparison and characteristics of these two 

quantitative datasets was described in chapter 3.  The generated high-quality quantitative proteome 

dataset was used in the Systems Biology Study (chapter 4), where the Snf1 kinase regulatory network 

was reconstructed.   

 

1.4.1.4 Metabolomics 

Metabolomics (also referred to as metabolite profiling) aims at identifying and quantifying the complete 

set of metabolites in the cell.  Metabolites are the mediators and products of metabolism, and thus, 

they reflect a cell’s phenotype the best.  In terms of Systems Biology, metabolome datasets are not 

easy to analyze, since the relationship between the metabolome and the genome is indirect (Figure 

7).153  Metabolite levels are the final result of a complex integration of gene expression, RNA 

translation, post-translation modification, enzyme activity, and pathway regulation.154  The high-

throughput methods for analyzing as many metabolites as possible in a single experiment are still 

being developed and typically rely on mass spectrometry and NMR spectroscopy.155  No method is yet 

available to analyze a complete metabolite set.   

Contributing to this thesis work, post doc Michael C. Jewett (CMB) generated the metabolome dataset 

of 44 metabolites from chemostat grown wild-type, ∆snf1, ∆snf4 and ∆snf1∆snf4 strains (chapter 5).  I 

used this metabolome dataset as a back-up experiment that substantially contributed to analyzing 

transcriptome and proteome datasets, and evaluating the reconstructed regulatory network of the yeast 

protein kinase Snf1 (chapter 4).   
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1.4.1.5 Data repositories 

To share results of performed transcriptomics, proteomics and metabolomics analyses, members of 

the scientific community deposit omics data in computer databases, or publish it as Supplementary 

Online material.  To date, hundreds of transcriptome (e.g. http://www.ebi.ac.uk/microarray-as/aer/?#ae-

main[0]), proteome (e.g. http://bioinformatics.icmb.utexas.edu/OPD/) and metabolome (e.g. http://www-

en.mpimp-golm.mpg.de/03-research/index.html) databases are publicly available free of charge.  Most 

databases require that the submitted experimental data is accompanied with additional information that 

is needed to unambiguously interpret the results of the submitted experiment and to potentially 

reproduce the experiment.  For example, MIAME (Minimum Information About a Microarray 

Experiment) standard has been created to document microarray experiments.  The proteome 

databases (e.g. http://info.med.yale.edu/proteome/) have started to use MIAME standard for reporting 

proteome datasets as well.   

The omics data generated in my Ph.D. work is publicly available.  The microarray data has been 

submitted to the ArrayExpress (http://www.ebi.ac.uk/microarray-as/aer/) and is available using the 

accession number E-MEXP-1407.  Proteome dataset has been submitted as a supplementary material 

for Usaite et al (2008), J Prot Res (chapter 3) and is available at http://pubs.acs.org. During my Ph.D. 

work I have also contributed to the development of the MIAME compliant MicroArray Database 

(http://www.fbd.dtu.dk/fbd/), in which all CMB generated DNA microarray data is going to be collected. 

 

1.4.2 Identification of macromolecule interactions within the cell 

In the overview written in 1998, Alberts has stated that ‘the entire cell is as a factory that contains an 

elaborate network of interlocking assembly lines, each of which is composed of a set of large protein 

machines’.156  Before we can understand and describe the structure of the cell, it is necessary to 

uncover these ’assembly lines’.  During the last decade, comprehensive and systematic identification of 

protein-protein, protein-DNA interactions and protein complexes has accelerated unraveling the 

functional organization of the yeast proteome, contributing to the understanding of the cell as a 

whole.157, 158 

 

1.4.2.1 Protein-protein interaction 

Through signaling cascades and enzyme complex formations, protein-protein interactions dictate many 

cellular processes.  Pioneering Uetz et al159 and Ito et al160 have used a technique called yeast two-

hybrid system to identify yeast protein-protein interactions on a global scale.  The yeast two-hybrid 

system is a preferable method, since it validates protein interactions in vivo.  However, only two 



 

Ph.D. Thesis, Renata Usaite 

 

30

proteins are tested at a time and the method predicts only ‘possible’ interactions, since the 

hybridization takes place in the nucleus that is not a native compartment for many proteins.161  The 

more recently developed technique, affinity purification mass spectrometry of protein complexes, on 

the other hand, is a promising high-throughput approach.  It detects real complexes in physiological 

settings, and it misses only those complexes that are not present under conditions studied.161  

Pioneering Ho et al,158 Gavin et al157 and Krogan et al.162  have performed affinity purification mass 

spectrometry studies. Today the knowledge about measured and predicted protein-protein interactions 

are collected in computer databases that vary by their purpose, size and the sources of protein-protein 

interactions posted.62, 125, 163  In my top-down Systems Biology study (chapter 4) I used protein-protein 

interaction data from the BioGRID database (http://www.thebiogrid.org) that holds information on 

57,680 unique protein-protein interactions from 3,868 unique proteins in yeast (BIOGRID-

Saccharomyces_cerevisiae v.2.0.25).  A variety of techniques, highlighting yeast two-hybrid system, 

mass-spectrometry based approaches, genetic interactions, co-expression, synthetic growth defect 

and phenotypic enhancement, contribute to the uncovering of complete yeast interactome.62   

 

1.4.2.2 Protein-DNA interaction 

Interactions between proteins and DNA mediate transcription, DNA replication, recombination, and 

DNA repair.  Using chromatin immunoprecipitation in conjunction with microarrays, what is called ChIP-

chip technology,164 it is now possible to measure the in vivo binding of many transcription factors to the 

promoters of most genes.  Using ChIP-chip technology, Harbison et al has reconstructed an initial map 

of yeast transcriptional regulatory code by identifying the DNA sequence elements that are bound by 

204 regulators under various conditions and that are conserved among Saccharomyces species.124  

Just in 3 years, the Harbison et al study has been cited by more than 300 other publications and the 

dataset of 10,884 high-confidence (P < 0.001) protein-DNA interactions has been used as a reference 

in various studies and algorithms to elucidate the underlying structure of the transcriptional regulatory 

network.165-167   

In my Ph.D. work, the protein-DNA interaction dataset was used in Reporter Effector analysis168 and in 

high-scoring subnetwork analysis (chapters 4, 5).  The outputs of these two analyses contributed to the 

reconstruction of the Snf1 protein kinase regulatory network (chapter 4). 

 

1.4.3 Computational inference of structure 

Most transcriptome, proteome, metabolome, protein-protein interaction, and protein-DNA interaction 

analyses provide us with tens, hundreds, or even thousands of data nodes, often expanding the known 

number of expression changes or interactions by order of magnitude.  The immediate task is to 
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develop and use computational strategies to verify and analyze global-scale data with the intention of 

generating hypotheses and making biological discoveries.   

1.4.3.1 Verification of omics data 

Replication, normalization and statistical evaluation are required to create and determine the 

significance of any biological experiment.  Normalization has to be done within each and between all 

datasets of comparison.  A minimum of three biological replicates are required to be able to perform 

valid statistical analysis. Student’s t-Test or ANOVA statistical tests are popular in the analysis of 

transcriptome, proteome or metabolome datasets.   

In my Ph.D. work, all experiments were performed in three biological replicates and all generated 

datasets were statistically validated using Student’s t-Test analysis.  The DNA microarray data was 

normalized using dChip software,169 proteome and metabolome data were normalized based on linear 

distribution.   

 

1.4.3.2 Cross-platform variation  

A cross-platform variation remains to be an issue among metabolome, proteome or transcriptome 

datasets.  The consistency among the data must be carefully verified before a comparison of two 

datasets is valid.  For example, a detailed study, which has compared by various methods identified 

protein-protein interactions, shows that among 80,000 available protein-protein interactions, only 2,400 

(3%) are identified by two or more techniques.161  This mismatch may be explained by not optimally 

working methods for any type of protein-protein interactions and by false positives that are generated 

using any of the methods.161  Different confidence assignment schemes are developed to combat false 

positive protein-protein interactions.170  For example, one of these algorithms is implemented to the DIP 

(protein-protein interaction) database (http://dip.doe-mbi.ucla.edu/Services.cgi) and this algorithm 

estimates that only ~50% of the protein-protein interactions that are collected in the DIP database are 

reliable.171  In the other example, Michael C. Jewett (CMB) has experimentally demonstrated that 

different metabolite quenching and extraction methods that are used on the same biological samples 

result in different quantitative and even qualitative metabolome datasets (unpublished results).  In 

Systems Biology, where several large-scale datasets are frequently analyzed together to understand a 

biological structure, it is important to make sure that the datasets used in the analysis are compatible. 

During my Ph.D. work, I contributed to an ongoing CMB project, where the same biological samples 

were analyzed using two types of GeneChip® Yeast Genome Arrays (YG_98 and Yeast_2) that were 

designed by Affymetrix.  I found that the gene expression results generated using these two platforms 

were not equivalent for every gene on the chip.  The expression change of some genes measured on 

one platform deviated from the expression change measured on the other platform.  The only 
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difference causing this inconsistency was that the oligo-probes placed on the YG_98 and Yeast_2 

arrays had different chemical properties.  Computational approaches and prediction tools are created 

that ultimately improve comparison of the data generated using different analysis platforms.172-174  To 

date, there are no reliable means to correlate complete gene expression profiles among different DNA 

microarray systems.   

 

1.4.3.3 Data mining 

Methods to analyze gene expression datasets have received the most attention to date, because the 

technology to generate gene expression data had spread widely much before technology to generate 

quantitative global proteome or metabolome datasets has been available.  Clustering, for example, 

groups genes by their co-expression patterns175, 176 and is frequently used as the first gene expression 

data analysis step.  Results of clustering suggest the presence of regulatory circuits within groups of 

co-expressed genes. The clustered gene expression dataset is frequently further analyzed in the 

context of the biological processes, molecular functions, or genomic sequences to pinpoint metabolic 

or regulatory changes that are present in the biological system of interest.  For example, the promoter 

analysis that groups genes with shared regulatory sequences in their promoters177, 178 is commonly 

used on the clustered gene expression data.  The promoter analysis determines the probability with 

which a certain transcription factor may be responsible for gene expression change within a group of 

co-expressed genes.  Different data analysis algorithms and analysis tools are still being created.  The 

tools used in gene expression analysis methods, such as clustering, are transformed to analyze 

proteome and metabolome datasets. 

 

1.4.3.4 Data integration to reconstruct complete cellular networks 

Data integration is a promising global-scale data analysis strategy that ultimately yields molecular 

interaction networks that more closely reflect real cellular structures.  Through the integration 

approach, the high-error rate within global-scale datasets is likely mitigated, and thus, the quality of the 

biological information obtained is improved.  For example, through the joined analysis of genetic, 

biochemical, and ChIP-chip experimental data, global transcription regulation networks have been 

reconstructed for S. cerevisiae and E. coli.165, 179  These networks can help to predict novel protein-

DNA interactions and identify transcription regulatory circuits.  The other example illustrates that the 

comparison of protein-protein interaction networks, which are generated for worm, fly and yeast, shows 

that, although any single network contains false-positive interactions (discussed above), embedded 

beneath this noise there is a repertoire of protein interaction complexes and pathways that are 

conserved across all three species.180   
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1.4.3.5 Data integration to identify biologically active subnetworks 

The data integration approaches also aim to pinpoint the portions of the networks that are the most 

active under a studied condition.  In one of the first data integration studies, a protein-protein 

interaction dataset has been analyzed with gene expression data to identify the most responsive 

protein-protein interaction subnetworks.181  The identified the most responsive subnetworks describe 

highly active  
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Figure 10.  The strategy taken in this Ph.D. thesis to reconstruct and validate Snf1 kinase 
regulatory network.  In my thesis generated global-scale mRNA and protein datasets were analyzed 
using Reporter Effector,168 Reporter Metabolite182 and subnetwork analysis tools. These approaches 
were in detail described in chapter 5.  The outputs of these analysis tools were used to reconstruct 
global Snf1 kinase regulatory network that was depicted in Figure 1 in chapter 4, SI Figures 3, 4 in 
chapter 5.  The reconstructed regulatory network was analyzed using genome-scale metabolic network 
and using metabolome dataset generated in this study until biological conclusion was reached. PPI = 
protein-protein interaction, PDI = protein-DNA interaction, GSMM = genome-scale metabolic model. 

 

regulatory modules of connected proteins and regulated genes that significantly change in response to 

a perturbation.181  In the other study, protein-protein interaction dataset has also been integrated with 

gene expression data and the dynamic protein complex formation during the yeast cell cycle has been 

reconstructed.183  By integrating transcriptome, proteome and metabolome datasets, Ishii et al has 

determined that the E. coli metabolic network employs fundamentally different regulatory strategies in 

response to either environmental or genetic perturbations.184   

The main goal of my Ph.D. work was to reconstruct the global Snf1 protein kinase regulatory network 

(Figure 1 in chapter 4).  To achieve this, generated transcriptome, proteome and metabolome datasets 
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were integrated with available protein-protein, protein-DNA and protein-metabolite interaction datasets 

using Reporter Metabolite,182 Reporter Effector168 and high-scoring subnetwork185 analysis tools (Figure 

10).  In this data integration study, the novel biological discoveries were strengthened through 

elimination of false positive data within the large-scale datasets used, and through the confirmation of 

novel findings on the different cellular levels (chapters 4, 5).    

 

1.4.4 Rigorous integration of heterogeneous data 

Many properties of complex biological systems cannot be understood from monitoring the components, 

unless such information is connected and integrated through mathematical models. The reason is that 

static component concentrations, albeit extremely informative, do not contain functional informational 

per se.  The functional behavior of a network emerges through the nonlinear gene, protein, and 

metabolite interactions across multiple metabolic and regulatory layers.  To really achieve a holistic, 

quantitative, and predictive understanding of whole systems, we have to develop cellular or systems 

mathematical models that enable an iterative cycle between prediction and experiments.121, 123  This 

ultimately brings Systems Biology up to a level at which it is applicable in industry and medicine. 

 

1.4.4.1 Cellular modeling and analysis 

Generated omics data provide measurements that strive not only to integrate data, but also to model 

the entire cell.  These global approaches are the most powerful because they define all possible 

components of the system, do not require any prior assumptions, and do not involve hypothetical 

interactions.  More than a dozen genome-scale metabolic networks for various organisms are 

reconstructed,126, 186 and those are arguably the best characterized complex biological networks, since 

they demonstrate network behaviors that are not apparent from examination of a few isolated 

interactions alone.  The COBRA (Constraints-Based Reconstruction and Analysis) technique187 

emerged as a successful approach to modeling systems on a genome scale and it seeks to clearly 

distinguish biologically feasible from biologically unfeasible network states, rather than exactly 

predicting network behavior.  The knowledge of created metabolic networks when integrated e.g. with 

gene expression data can be used to uncover the structure of transcription regulation.182, 188  Recently, 

a reconstructed yeast regulatory network has been coupled with a genome-scale metabolic network.167  

This improved study proves how a systematic approach can be used to fill in missing information and 

to search for novel regulatory mechanisms.  These are just initial steps and much work remains to be 

done to capture the true internal state of the cell through whole-cell modeling.   
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1.4.4.2 Systems Biology as an applied science 

The integration of omics data in the context of Systems Biology has primarily affected basic biological 

research.  Nevertheless, Systems Biology has already proved to be essential in industry and medical 

applications.  There are examples showing that through the use of Systems Biology, industrial 

biotechnological processes are improved and, therefore, the market price for commercial products 

drops.189  Many studies of human systems are adopting omics data-integration strategies to identify 

biomarkers that are associated with a disease state.  For example, through the data integration 

approach, transcriptome and metabolome biomarkers can be identified to detect specific metabolic 

changes and to define prognosis characteristics in human neuroendocrine cancers.190  Proteomics 

tools also find applications in clinical diagnostics.191, 192  Modeling of biological networks is believed to 

facilitate drug discovery, i.e. model simulations may lead to identification of optimal drug targets and 

avoidance of side effects.193   

I will be proud if the transcriptome, proteome and metabolome datasets that are generated in my thesis 

contribute to the EU AMPKIN project, in which I am participating.  This project, based on reconstructed 

yeast Snf1 protein kinase regulatory network, and based on close homology between yeast Snf1 and 

mammalian AMPK signaling cascade, aims to identify drug targets against type 2 diabetes.  Ultimately, 

the Systems Biology community, through modeling of complete living cells, aims to develop 

personalized and preventative therapies.   
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1.5 Conclusions and future perspectives 

My thesis work expands the knowledge of the Snf1 protein kinase’s role in yeast. I used physiology and 

Systems Biology studies to generate novel biological findings about the regulation of yeast carbon and 

energy metabolism.  

First, through the physiological study, I characterized ∆snf1, ∆snf4 and ∆snf1∆snf4 strains compared to 

wild-type strain and suggested roles of Snf1 and Snf4 in the regulation of galactose metabolism in 

dynamic growth conditions (chapter 2).  I showed that the Snf1 protein kinase was not a sole regulator 

of galactose metabolism and that the Snf1 protein kinase and its regulatory subunit Snf4 likely had 

independent roles in the regulation of galactose metabolism.  This study indicated that (i) the 

continuing Mig1-based repression of GAL genes (Figure 1 in chapter 1), (ii) the changes in cellular 

energetics (i.e. availability of ATP), and (iii) the accumulation of toxic galactose derivatives inhibited 

galactose growth initiation and maximum specific growth rate on galactose in the recombinant yeast 

strains compared to the wild-type strain during growth on glucose–galactose-mixtures.  Further studies 

are needed to prove these hypotheses. 

Second, using top-down Systems Biology approach, I reconstructed the global-scale Snf1 protein 

kinase regulatory network (Figure 10 in chapter 1, Figure 1 in chapter 4). Using global-scale mRNA, 

(largest to date) quantitative protein (chapter 3) and large-scale metabolite data generated in this 

study, previously generated and publicly available biological data, and computational methods, I 

identified proteins interacting with the Snf1 kinase, transcription factors and metabolic hotspots that 

responded to the disruption of the Snf1 kinase complex.  My result both confirmed already known 

information on the regulatory network, proving the validity of my approach as well as novel knowledge 

were obtained. These Snf1 kinase targets represented key components of the global Snf1 protein 

kinase regulatory network.  Using the information from the reconstructed regulatory network, I proved 

on a global scale that the yeast Snf1, as its mammalian homolog AMPK, was a low energy check-point 

(Figure 2 in chapter 1), which had not previously been shown.  Through the integrated study I showed 

that the Snf1 protein kinase regulated fatty acid oxidation and fatty acid biosynthesis (Figure 2 in 

chapter 4).  Furthermore, I showed that the Snf1 protein kinase regulated carnitine metabolism that, in 

homology to mammalian systems, played a role in fatty acid metabolism, which had not previously 

been demonstrated in yeast.  Changes identified within redox metabolism and energy storage 

metabolism also contributed to proving the hypothesis that the yeast Snf1 protein kinase is a low 

energy checkpoint.  My study also suggested that the Snf1 kinase mediated energy and redox 

balancing for optimal yeast growth: (i) the Snf1 kinase in complex with Snf4 and Gal83 regulated 

carbon and energy metabolism,64, 79 (ii) the Snf1 kinase in complex with Snf4 and Sip2 was involved in 

the regulation of redox balancing and longevity.   
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To my knowledge, this study was the first where three types of ome-measurements were integrated to 

reconstruct a complex regulatory network.  My work demonstrated the promise of integrating 

measurements from multiple cellular levels to reconstruct regulatory networks.  

If the reconstructed Snf1 kinase regulatory network was further computationally analyzed within the 

yeast genome-scale mathematical models, signal transduction links between the Snf1 protein kinase 

and transcription factors regulated by Snf1 (Figure 1 in chapter 4) or other nutrient sensing regulating 

proteins (e.g. Tor1) could be identified.  This would lead to a more thorough understanding of the Snf1 

kinase’s function within a complete yeast regulatory network.  Through homology study between the 

yeast Snf1 kinase and mammalian AMPK signaling cascades and using mathematical modeling, the 

reconstructed regulatory network of the Snf1 protein kinase could be transferred onto the human 

cellular or even systems mathematical models and used e.g. for identifying drug targets against 

metabolic disorders such as diabetes and obesity, where the mammalian AMPK plays a key regulatory 

role.   
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Abstract

We investigated the effect of Snf1 kinase and its regulatory subunit Snf4 on the regulation of glucose and galactose metabolism in the
yeast Saccharomyces cerevisiae by physiologically characterizing �snf1, �snf4 and �snf1�snf4 in CEN.PK background in glucose and
glucose–galactose-mixture batch cultivations. The main result of this study showed that delayed induction of galactose catabolism was SNF1
or SNF4 gene deletion specific. In comparison to the reference strain, growth delay on galactose was found to last 2.4 times (7 h), 3.1 times (10.5 h)
and 9.6 times (43 h) longer for the �snf4, �snf1 and �snf1�snf4 strains, respectively. The maximum specific growth rates on galactose were
determined to be two to three times lower for the recombinant strains compared to the reference strain (0.13 h−1) and were found to be 0.07, 0.08
and 0.04 h−1 for the �snf1, �snf4 and �snf1�snf4 strains, respectively. The study showed that Snf1 kinase was not solely responsible for the
derepression of galactose metabolism.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Budding yeast; Glucose repression; Galactose induction

1. Introduction

Glucose (or catabolite) repression has been identified in
many microorganisms, and it has been very well documented
and investigated in Saccharomyces cerevisiae (Gancedo, 1998;
Rolland et al., 2002). Today this phenomenon, as well as
co-consumption of different carbon sources remains to be of
interest among a lot of research groups working in funda-
mental science and for industrial applications of yeast. For
example, the industrially used carbon sources often consist
of sugar mixtures, and due to glucose repression these sug-
ars are utilized sequentially, resulting in prolonged production
time (Olsson and Nielsen, 2000). Industrially relevant lac-
tose, molasses and lignocelluloses contain galactose and the
induction of galactose catabolism through metabolic engi-
neering strategies and construction of glucose-derepressed
strains may improve cell growth and production of desired
compounds (Kim et al., 2004; Ostergaard et al., 2000,
2001).

∗ Corresponding author. Tel.: +45 45252677; fax: +45 45884148.
E-mail address: lo@biocentrum.dtu.dk (L. Olsson).

In the presence of a rapidly fermentable carbon source,
such as glucose, the transcription of genes, whose products
are essential for catabolism of slowly fermentable or com-
pletely non-fermentable carbon sources, is repressed (Gancedo,
1998; Rolland et al., 2002). In the absence of glucose, S. cere-
visiae metabolizes alternative carbon sources. Typically, the
transcription of genes that encode enzymes required for metab-
olizing such alternative carbon sources are induced by those
specific carbon sources. For example, the GAL genes that encode
the enzymes of the Leloir pathway are repressed by glucose
and induced by galactose (Nehlin et al., 1991; Rubio-Texeira,
2005).

Glucose repression involves several different signal transduc-
tion pathways. The main glucose repression pathway involves
the Snf1 kinase complex (Carlson et al., 1981), which under
glucose limitation inactivates the transcription repressor Mig1
and hereby prevents Mig1 from interacting with the transcrip-
tional co-repressors Cyc8–Tup1. This leads to derepression of
genes involved in the metabolism of alternative carbon sources
(Treitel et al., 1998). Snf1 is a serine–threonine protein kinase
that, in the glucose repression pathway, is active in a complex
containing the regulatory subunit Snf4, together with the Gal83
protein. Gal83 is required for Snf1 nucleus localization, where

0168-1656/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.jbiotec.2007.09.001
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Snf1 may inactivate Mig1 or stimulate transcription activators
such as Cat8 (Rahner et al., 1999; Treitel et al., 1998).

The glucose induction pathway (through sensors Snf3 and
Rgt2 and Grr1) regulates transcription factor Rgt1, which
represses or activates HXT expression in response to the avail-
ability of extracellular glucose (Ozcan and Johnston, 1999).
Kaniak et al. (2004) have shown that there is a complex cross-
communication between the glucose repression and glucose
induction pathways. Mig1 (and Mig2) represses metabolic genes
(like HXT2, HXT4 and SUC2) and regulatory genes (such as
MIG1 and SNF3), intertwining these two glucose signal trans-
duction pathways.

Galactose utilization and regulation of GAL genes have been
extensively reviewed (Bhat and Murthy, 2001; Rubio-Texeira,
2005). The induction of the GAL genes is mediated by the inter-
play between three regulatory proteins: transcriptional activator
Gal4; transcriptional repressor Gal80; and substrate (galactose)
sensor/inducer Gal3 (Rubio-Texeira, 2005). It has recently been
shown that in glucose non-repressive growth conditions, Gal3 is
active only when it binds both of its allosteric effectors galactose
and ATP (Bhat and Murthy, 2001). As GAL regulon induction
continues, bifunctional Gal1 can replace Gal3 and maintain the
induced state of GAL genes in the presence of galactose (Thoden
et al., 2005).

When glucose is depleted, regulation of carbon metabolism
changes and growth on other available carbon sources is induced.
The glucose repression signaling pathway takes a role in this
shift. It has been shown previously that �snf1 and �snf4 strains
are unable to grow on non-fermentable carbon sources such
as ethanol, glycerol and acetate due to the repression of glu-
coneogenesis (Schuller and Entian, 1987). The expression of
galactose metabolizing genes are under the competitive regu-
lation of the transcription repressor Mig1 and the transcription
activator Gal4 (Nehlin et al., 1991). Previous molecular biology
studies described that the �snf1 and �snf4 strains had poor or
no growth on galactose (Carlson et al., 1981; Kuchin et al., 2003;
Neigeborn and Carlson, 1984; Palecek et al., 2002; Schmidt and
McCartney, 2000; Van Driessche et al., 2005; Zhou and Winston,
2001). It has also been found that not all yeast species are able
to grow on galactose indicating that the regulation of galactose
metabolism might be yeast-strain dependent.

The overall objective of this study was to perform a physi-
ological profiling of the �snf1, �snf4 and �snf1�snf4 strains
in glucose and glucose–galactose batch cultivations and investi-
gate how, in comparison to the reference strain, the disruptions
of the Snf1 kinase complex affected the regulation of carbon
metabolism and, in particular, the galactose metabolism under
dynamic growth conditions. The S. cerevisiae CEN.PK geno-
typic background reference and three recombinant �snf1, �snf4
and �snf1�snf4 strains were used in this study. The physi-
ological response of the recombinant strains to glucose and
galactose substrate availability was systematically evaluated by:
(i) performing glucose and glucose–galactose-mixture batch
cultivations, (ii) calculating specific substrate uptake, product
production rates and yields of extracellular metabolites and (iii)
comparing the results to a physiological profile of the reference
strain.

2. Materials and methods

2.1. Yeast strains

The S. cerevisiae strains used in this study were CEN.PK
113-7D (MATa MAL2-8c SUC2), a prototrophic strain from P.
Kötter (Frankfurt, Germany) (Van Dijken et al., 2000) and its
derivatives. The only genotypic difference among strains used
is summarized in Table 1.

2.2. Construction of the yeast strain IBT100072

The strain IBT100072 with double SNF1 and SNF4 gene
deletion was created using a two-step gene deletion strategy,
sporulation and dissection of tetrads. The deletion of SNF4 (snf4
(4-966)::loxP-Kan-loxP) was introduced into IBT100072 from
the CEN.PK 507-5B strain (Table 1). To have two distinct gene-
deletion verification strategies (G148 plating assay for the dele-
tion of SNF4 and PCR for the deletion of SNF1) in the IBT10072
strain, SNF1 was deleted without using loxP-Kan-loxP inser-
tion. First, four PCR fragments were created to delete SNF1 by
using the bipartite gene-targeting technique (Reid et al., 2002).
The upstream and downstream regions of SNF1 were amplified
using the genomic DNA of CEN.PK 113-5D strain as a tem-
plate and two primer pairs: SNF1 A (5′-GCT ATC AAA TGC
TGA ACC TTC C-3′) and SNF1 B (5′-GCA GGG ATG CGG
CCG CTG ACA GGG AGT GTA GCA AAA CTT GTT AC-3′);
SNF1 C (5′-CCG CTG CTA GGC GCG CCG TGG GTG GAA
CGT AAA AGA ATG ATA TGG-3′) and SNF1 D (5′-TGT TCT
GGC AGC ATG ATT TG-3′). Kluyveromyces lactis URA3 was
amplified as two overlapping fragments (referred to as upstream
and downstream) using the plasmid pWJ1042 (Reid et al., 2002)
as a template and the primer pairs: dKL5′ (5′-GTC AGC GGC
CGC ATC CCT GCT TCG GCT TCA TGG CAA TTC CCG-
3′) and 3′-int (5′-GAG CAA TGA ACC CAA TAA CGA AAT
C-3′); 5′-int (5′-CTT GAC GTT CGT TCG ACT GAT GAG
C-3′) and cKL3′ (5′-CAC GGC GCG CCT AGC AGC GGT
AAC GCC AGG GTT TTC CCA GTC AC-3′). The amplified
SNF1 upstream region fragment was fused to the upstream K.
lactis URA3 fragment, and the SNF1 downstream region frag-
ment was fused to the downstream K. lactis URA3 fragment.
These two fusion fragments were used as transformation mate-
rial for the CEN.PK 113-5D strain. The transformation was
performed as previously described by Gietz and Woods (Gietz
and Woods, 2002). A total of 10 Ura+ transformants (grown on
synthetic complete (SC) Ura− medium) were streak-purified and
re-streaked on SC media plates containing 5-fluoroorotic acid
(5-FOA) (ZymoResearch) to selectively loop out the K. lactis
URA3 gene (Boeke et al., 1984). The 5-FOA resistant colonies
were picked out and checked for loss of K. lactis URA3 by replica
plating on SC Ura− medium. Finally, the deletion of SNF1 was
confirmed by PCR using SNF1 A and SNF1 D primers.

In order to create a MAT� His− snf4 strain, the CEN.PK
507-5B strain was crossed with CEN.PK 110-10C on Esposito
supplemented (SPO) medium plates and left to sporulate for 4
days. Each of 10 tetrads was divided into 4 spores under dissec-
tion microscope (Nikon eclipse 50i). The strain was confirmed
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Table 1
Yeast strains used in this study

Straina Name in text Genotype Source

CEN.PK 113-7D Reference strain MATa URA3 HIS3 TRP1 LEU2 SUC2 MAL2-8C Provided by P. Kötterb

CEN.PK 113-5D MATa HIS3 TRP1 LEU2 SUC2 MAL2-8C ura (3–52)::loxP-Kan-loxP Provided by P. Kötter
CEN.PK 110-10C MAT� URA3 TRP1 LEU2 SUC2 MAL2-8C his3-delta1 Provided by P. Kötter
CEN.PK 506-1C �snf1 MATa URA3 HIS3 TRP1 LEU2 SUC2 MAL2-8C snf1 (4-1899)::loxP-Kan-loxP Provided by P. Kötter
CEN.PK 507-5B �snf4 MATa URA3 HIS3 TRP1 LEU2 SUC2 MAL2-8C snf4 (4-966)::loxP-Kan-loxP Provided by P. Kötter
IBT100072 �snf1�snf4 MATa URA3 HIS3 TRP1 LEU2 SUC2 MAL2-8C snf1 (1-1903) snf4 (4-966)::loxP-Kan-loxPc This study

a All the strains of this study are derived from the same parental CEN.PK background strain (Van Dijken et al., 2000).
b Institut für Mikrobiologie, Frankfurt, Germany.
c The deletions of SNF1 are different in IBT00072 and CEN.PK 506-1C strains (explanation in Section 2).

by selective replica plating on SC His− medium, and on G418
antibiotic containing YPD medium. Finally, the transformant
(MATa Ura− snf1) was crossed with the MAT� His− snf4 strain
and left to sporulate for 4 days on Esposito supplemented (SPO)
medium. Each tetrad was divided into 4 spores under dissec-
tion microscope (Nikon eclipse 50i); the IBT100072 strain was
characterized by PCR, selective plating on SC Ura− medium,
SC His− medium, SC Ura−, His− medium and also on G418
containing YPD medium.

2.3. Inoculum and pre-culture

The strains were stored at −80 ◦C in Eppendorf tubes con-
taining YPD medium (Rose et al., 1990) with 20% (v/v) glycerol.
The yeast suspension was thawed and streaked out onto YPD
agar plates. A single colony was picked from these plates and
used for inoculation of a shake flask.

2.4. Shake-flask cultivations

For the pre-cultures, a minimal medium based on Verduyn et
al. (1992) was used. The composition of contents per liter was:
(NH4)2SO4, 7.50 g; KH2PO4, 14.40 g; MgSO4 × 7H2O, 0.50 g;
d-glucose, 10.0 g; Antifoam 289 (A-5551, Sigma–Aldrich),
0.050 ml; trace metals, 2.0 ml (composition given below);
vitamins, 1.0 ml (composition given below). The trace metal
solution contained per liter: EDTA (Titriplex III®), 15.0 g;
ZnSO4 × 7H2O, 4.5 g; MnCl2 × 2H2O, 0.82 g; CoCl2 × 6H2O,
0.3 g; CuSO4 × 5H2O, 0.3 g; Na2MoO4 × 2H2O, 0.4 g;
CaCl2 × 2H2O, 4.5 g; FeSO4 × 7H2O, 3.0 g; H3BO3, 1.0 g; KI,
0.10 g. The vitamin solution contained per liter: biotin, 0.05 g;
p-benzoic acid, 0.20 g; nicotinic acid, 1.00 g; Ca-pantothenate,
1.00 g; pyridoxin HCl, 1.00 g; thiamin HCl, 1.00 g; myo-inositol,
25.00 g. The pH was adjusted to 6.5 via drop-wise addition of
2 M NaOH. The carbon substrate was autoclaved separately.
Thereafter the carbon source and sterile filtered vitamins were
aseptically mixed into the final formulation. Two-baffled shake
flasks (500 ml) with 100 ml of medium were inoculated and
incubated for 24 h at 30 ◦C in an orbital shaker at 150 rpm until
the cell mass concentration (dry weight) reached 1–1.5 g l−1.
Pre-cultures from shake-flasks with 20 g l−1 of d-glucose were
used for inoculation of glucose and glucose–galactose-mixture
batch cultivations. The bioreactors were inoculated to a final
biomass (dry weight) concentration of 1 mg l−1.

2.5. Batch cultivations

Cultivations were carried out in well-controlled, four-baffled,
5 l in-house manufactured bioreactors with a working volume
and temperature of 4 l and 30 ◦C, respectively. The bioreac-
tors were equipped with two disk-turbine impellers rotating
at 600 rpm. The final formulated medium contained per liter:
(NH4)2SO4, 15.0 g; KH2PO4, 3.0 g; MgSO4 × 7H2O, 1.50 g;
Antifoam 289 (A-5551, Sigma–Aldrich), 0.050 ml; trace metals,
3 ml (composition given above); vitamins, 3 ml (composition
given above). A total of 30.0 g l−1 of d-glucose was included
for the glucose batch; 15.0 g l−1 of d-glucose and 15.0 g l−1 of
d-galactose were used for the glucose–galactose-mixture batch
cultivations. The pH was maintained at 5.0 by automatic addi-
tion of 2 M NaOH. The air flow was controlled at 4 l per min
(1 vvm), and the off gas was directed through a condenser
chilled to 4 ◦C to minimize evaporation of ethanol from the
bioreactor.

2.6. Tests to detect suppressor mutations arising under
selective pressures of galactose

The following experiments were performed to ensure that
the observed and described phenotypes were not caused by sup-
pressor mutations generated in this study. Never subjected to
galactose selection before, the �snf1, �snf4 and �snf1�snf4
strains were plated in dilute suspensions on YP medium agar
plates (Rose et al., 1990) containing 20 g l−1 d-glucose or
20 g l−1 d-galactose as the only carbon source. The same number
of colonies appearing on both carbon sources indicated that no
additional mutations were required for growth on galactose. To
determine if any suppression mutations happened throughout
extensive glucose–galactose-mixture batch cultivations, sam-
ples of the �snf1, �snf4 or �snf1�snf4 strains were collected
from the end point of these cultivations and inoculated into
shake-flasks with 2% of ethanol, 2% of acetate or 2% of
galactose as a sole carbon source. Reference CEN.PK 113-7D
and never subjected to galactose selection �snf1, �snf4 and
�snf1�snf4 strains were used in the control experiments. None
of the recombinant strains showed any differences in growth phe-
notypes before and after batch cultivation: they did not grow on
non-fermentable carbon sources, but grew poorly on galactose.
Reference CEN.PK 113-7D strain grew on all carbon sources
tested.
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2.7. Biomass determination

The dry weight was determined by using 0.45 �m pore size
nitrocellulose filters (Supor®-450 Membrane Filters, PALL Life
Sciences, Ann Arbor, MI, USA), as previously described by
Ostergaard et al. (2001). The OD was determined at 600 nm by
using a Hitachi model U-1100 spectrophotometer. Samples from
the cultivation broth were diluted with water to maintain an OD
measurement range of 0.1–0.3. The dry weight measurements
were used for determination of maximum specific growth rates.

2.8. Analysis of extracellular metabolites

Samples (2 ml) were taken from the cultivation broth, imme-
diately filtered through a 0.45 �m pore size cellulose acetate
filter (Osmonics, Westborough, MA, USA) and stored at −20 ◦C
until further analysis. Glucose, galactose, glycerol, ethanol,
acetate, pyruvate and succinate were separated and quantified on
HPLC using an Aminex HPX-87H column (Bio-Rad) according
to Zaldivar et al. (2002).

2.9. Off-gas analysis

Carbon dioxide and oxygen concentrations in the exhaust gas
were monitored each 15 s by a Brüel and Kjær 1308 acoustic gas
analyzer (Brüel and Kjær, Nærum, Denmark) (Christensen et al.,
1995).

2.10. Calculations of specific growth
rates and yield coefficients

The maximum specific growth rate was determined from
measurement of dry weight of biomass as a function of time.
Determination of yield coefficients for extracellular metabolites
as well as biomass was based on a linear regression of their con-
centration as a function of the residual glucose concentration in
the exponential growth phase. Specific product formation rates
(rp) and specific substrate uptake rates (rs) for each strain within
a particular growth condition were calculated using graphically
determined values of the maximum specific growth rate (μ) and
the biomass yield on substrate (Ysx) or the product yield on

biomass (Yxp).

rs = μ

Ysx
(1)

rp = μYxp (2)

3. Results

3.1. SNF1 and SNF4 deletions caused an increased acetate
production and decreased glucose uptake during the
exponential growth on glucose

The physiological characterization of the glucose repression
recombinant �snf1, �snf4, �snf1�snf4 strains in compar-
ison to the reference strain was performed in glucose or
glucose–galactose dynamic growth conditions. All the CEN.PK
genotypic background S. cerevisiae yeast strains were culti-
vated and studied in aerobic batch cultivations with a minimal
medium containing 30 g l−1 of d-glucose or a mixture of
15 g l−1 d-glucose and 15 g l−1 d-galactose as the sole carbon
source.

During the exponential growth on glucose, the �snf1, �snf4
and �snf1�snf4 strains were found to have lower glucose uptake
rates and higher acetate production rates compared to the ref-
erence strain (Table 2). The �snf1 strain was found to have
a 24% lower specific glucose uptake rate, a 40% lower spe-
cific ethanol production rate compared to the reference strain.
This result correlated well with previous physiological observa-
tions and suggested that Snf1 through Mig1 was involved in the
regulation of glucose sensing/uptake (Aon and Cortassa, 1998;
Kaniak et al., 2004). The acetate yield on glucose was found
to be 0.02 g g−1 for the �snf4 and the �snf1�snf4 strains, and
0.03 g g−1 for the �snf1 strain and it was more than five-fold
higher compared to the 0.004 g g−1 determined for the reference
strain (Westergaard et al., 2004). Data indicated that the acetate
conversion to CO2 was lower in the recombinant strains com-
pared to the reference strain during an exponential growth on
glucose.

Table 2
Physiological parameters from aerobic glucose batch cultivations

Relevant genotype Maximum specific
glucose uptake ratea

(g g−1 h−1)

Maximum specific
growth rate (h−1)

Maximum specific
ethanol production
ratea (g g−1 h−1)

Biomass
yieldb (g g−1)

Ethanol yieldb

(g g−1)
Acetate yieldb

(g g−1)
Glycerol
yieldb (g g−1)

Reference strainc 3.1 0.31 1.0 0.10 0.34 0.004 0.07
�snf1 2.4 0.26 0.6 0.11 0.35 0.03 0.06
�snf4 2.8 0.27 1.0 0.10 0.37 0.02 0.08
�snf1�snf4 2.4 0.33 0.9 0.14 0.37 0.02 0.04

The physiological parameters in this table were calculated as described in Section 2. The average values calculated from two or three biological replica batch
experiments are presented. Standard deviations were determined to be lower then 5% of the average value.

a Maximum specific substrate uptake rate is expressed as g of glucose consumed per g of dry weight per h; maximum specific ethanol production rate is expressed
as g of ethanol produced per g of dry weight per h.

b Yields are expressed as g of product (biomass, ethanol, acetate or glycerol) produced per g of glucose consumed.
c Data from Westergaard et al. (2004).
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3.2. The presence of galactose affects glucose fermentation
of the �snf1, �snf4 and �snf1�snf4 strains, but not of the
reference strain

The maximum specific growth rates on glucose did not
change for any of the strains of the study whether they were culti-
vated in glucose or glucose–galactose-mixtures (Tables 2 and 3).
The specific glucose uptake rate was found to be 20% lower
in glucose–galactose-mixtures compared to the glucose batch
cultivations for the recombinant strains and was found to be
2.0 g g−1 h−1 for the �snf1 and 2.2 g g−1 h−1 for the �snf4
and �snf1�snf4 strains. The specific glucose uptake rate for
the reference strain remained constant in both sets of cultiva-
tions and was equal to 3.1 g g−1 h−1 (Ostergaard et al., 2001;
Westergaard et al., 2004). The �snf1�snf4 strain was deter-
mined to have the highest biomass yield (0.14 g g−1, 0.14 g g−1)
and the lowest glycerol yield (0.04 g g−1, 0.03 g g−1) on glu-
cose, in glucose and glucose–galactose-mixtures, respectively
(Tables 2 and 3). In glucose–galactose-mixtures, the single dele-
tion �snf1 and �snf4 strains increased biomass yield on glucose
by 30%, reduced glycerol yield on glucose by 60% (compared
to glucose batches) and appeared to have the same physiologi-
cal characteristics as those found for the double deletion strain
(Table 3). Overall, our results showed that the double deletion of
SNF1 and SNF4 or the presence of galactose in glucose growth
conditions triggered changes in the central carbon metabolism
towards biomass production for the recombinant strains of the
study. The biomass yield on glucose for the reference strain
remained constant in glucose, glucose–galactose-mixtures and
was equal to 0.10 g g−1.

3.3. Disruption of Snf1 kinase complex causes a delay of
the induction of growth on galactose

It has been shown that Snf1 kinase is required for galac-
tose metabolism only to relieve repression of the GAL genes
by the Mig1–Cyc8–Tup1 complex (Johnston et al., 1994). In
order to evaluate the effect of the disruption of the Snf1 kinase
complex on the repression of the GAL regulon, the refer-
ence, �snf1, �snf4 and �snf1�snf4 strains were grown in
glucose–galactose-mixture batch cultivations. The lag phase
between glucose depletion and initiation of galactose uptake was
found to be 5 h for the reference strain, 12 h for the �snf4, 15.5 h
for the �snf1 and 48 h for the �snf1�snf4 strains (Table 3). Dur-
ing the lag phase, a very slow specific growth rate (0.01 h−1)
was calculated for the �snf4 and the �snf1 strains. For the
�snf1�snf4 strain, there was no increase in biomass after glu-
cose depletion for a period of 20 h, thereafter a specific growth
rate of 0.01 h−1 was calculated for the remaining 28 h of the
lag phase. The data showed that deletion of the genes SNF4 or
SNF1 caused a similar, but reproducibly distinct delay in the
induction of the GAL regulon and a delayed initiation of expo-
nential growth on galactose. The galactose growth delay for the
double deletion strain was found to be more than two times
longer compared to the single deletion strains (Fig. 1).

It was not possible to observe any decrease of the extracellular
galactose in any of the lag phases after the glucose was depleted Ta
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Fig. 1. Representative growth and fermentation profiles of the �snf1 (A), �snf4
(B) and �snf1�snf4 (C) strains from aerobic glucose–galactose-mixture batch
cultivations. Glycerol and pyruvate production profiles are not shown. Time zero
is set to be the time of galactose depletion. Symbols: glucose, black square (�);
galactose, white square (�); ethanol, black circle (�); acetate, white circle (©);
biomass, black triangle (�); CO2 measure in outlet gas, % (C-mol l−1), dashed
line (- - -).

(Fig. 1). However, the amount of ethanol produced, during the
growth phase on glucose, decreased after glucose depletion and
throughout the lag phase. We neglected a possibility that cells
grew on ethanol based on: (i) the a priori knowledge that �snf1
and �snf4 are not able to grow on ethanol (Schuller and Entian,
1987), (ii) no exponential growth was observed through the lag
phase, (iii) the absence of CO2 production during the decrease in
ethanol concentration, which would indicate ethanol oxidation
by the culture. Based on carbon balance calculations, we deter-
mined that part (∼65%) of the ethanol was oxidized to acetate,
while producing NADH for cell maintenance. The other part
(∼35%) of the ethanol was lost due to evaporation.

3.4. Investigation of poor galactose growth in �snf1,
�snf4 and �snf1�snf4 CEN.PK background strains

The maximum specific growth rate on galactose was
found to be 0.13 h−1 for the reference strain, 0.08 h−1 for
the �snf4, 0.07 h−1 for the �snf1 and 0.04 h−1 for the
�snf1�snf4 in glucose–galactose-mixture batch cultivations
(Table 3). It correlated well with galactose growth induc-
tion delay and could probably be explained by gradually
different Mig1-based repression of GAL genes in the recom-
binant strains. In addition, we observed that the recombinant
strains were consuming acetate simultaneously with galactose
in the glucose–galactose-mixture batch cultivations. This phe-
notype was observed especially clearly in the �snf1�snf4
strain cultivations (Fig. 1). Previous studies in our labo-
ratory showed that the reference strain consumed acetate
straight after galactose depletion (data not published). Fur-
ther studies have to be done to investigate whether acetate
co-consumption has any impact on the calculated specific
growth rates on galactose for the recombinant strains of this
study.

4. Discussion

4.1. Changes within glucose repression regulatory cascade
under glucose excess

It has been shown that under glucose excess the Snf1
kinase is inactive (McCartney and Schmidt, 2001), thus non-
phosphorylated Mig1 locates in the nucleus and represses genes
involved in the catabolism of alternative carbon sources as
well as hexose transporters (Kaniak et al., 2004; Papamichos-
Chronakis et al., 2004). In this study, increased acetate
production and decreased glucose uptake were calculated under
glucose excess for the �snf1, �snf4 and �snf1�snf4 com-
pared to the reference strain (Tables 2 and 3). These results
suggested that genes involved in the degradation of acetate
(e.g., ACS1) (Kratzer and Schuller, 1997) and genes coding
for hexose transporters (HXT2, HXT4) (Kaniak et al., 2004)
were likely to be less expressed in the deletion strains com-
pared to the reference strain even under glucose excess, where
the repression of the genes is normally fairly strong. To explain
this phenomenon, we proposed that the disrupted Snf1 kinase
complex resulted in a shift in the equilibrium of the kinase
Snf1 and phosphatase Glc7 catalyzed reactions towards the
non-phosphorylated state of Mig1 (Gancedo, 1998; Schuller,
2003). Consequently, more of Mig1 was available to repress
the expression of metabolic genes as well as genes coding
for the activators of gluconeogenesis (example Cat8) (Hedges
et al., 1995) in the conditions where there is normally fairly
strong glucose repression. In addition, the absence of the Snf1
kinase complex excluded the phosphorylation and, thus, the
activation of Cat8 (Hedges et al., 1995; Young et al., 2003)
in the deletion strains. The sum of the changes within glu-
cose repression cascade that resulted due to the deletions of
SNF1 and SNF4 likely caused the observed changes in carbon
metabolism.
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4.2. Snf1 and Snf4 roles in Snf1 kinase complex in glucose
repression regulatory cascade and outside of it

Deletion of SNF1 or SNF4 disrupts glucose repression reg-
ulatory cascade, since neither �snf1 nor �snf4 are able to
grow on non-fermentable carbon sources (Schuller and Entian,
1987). Galactose catabolism, in addition to glucose repression
regulatory cascade, is under the galactose induction system
(Rubio-Texeira, 2005) and our study showed that the deletion
strains were able to initiate growth on galactose. In comparison
to the reference strain it was expected that the loss of Snf1 kinase
(�snf1 and �snf1�snf4 cases) caused more severe changes in
galactose metabolism than the change caused by the loss of its
regulatory subunit Snf4 (�snf4 case). The study showed that
the delay of the induction of growth on galactose was much
longer in the double deletion strain compared to the delays for the
�snf1 and �snf4 strains in the glucose–galactose-mixture culti-
vations (Fig. 1 and Table 3). The results suggested that not only
Snf1 kinase complex regulated Mig1 repression of GAL genes
(Gancedo, 1998), but other functions of Snf1 or Snf4 contribute
to the regulation of galactose metabolism.

It has been shown by Cortassa and Aon (1998) that Snf1
kinase is involved not only in the release of glucose repression,
but also in the regulation of cellular energetics. It has been sup-
ported by the three- to four-fold lower ATP/ADP concentrations
measured in cellular extracts from the �snf1 compared to the
�snf4 and reference strains. Lin et al. (2001) have shown that the
�snf4 strain had four-fold lower intracellular ATP levels com-
pared to the reference strain. In glucose non-repressive growth
conditions Gal3 requires the presence of galactose and ATP to
initiate galactose induction (Bhat and Murthy, 2001). It has not
been proven that Gal1 requires ATP to perform the regulatory
function of the expression of GAL genes (Bhat and Hopper,
1992). Based on the provided background information and the
results from this study we propose that, besides the continuous
Mig1-based repression of GAL genes in all of the recombinant
strains, the lower intracellular ATP in the �snf1 and �snf4
strains enabled the Gal3 protein to interact with Gal80. Con-
sequently, the Gal1 protein might have over-shadowed the Gal3
function causing a delayed activation of the GAL regulon (Bhat
and Murthy, 2001), however further investigations are needed to
prove this.

4.3. CEN.PK background strains with disrupted Snf1
kinase complex are able to poorly grow on galactose

This is the first study describing the �snf1, �snf4
and �snf1�snf4 strains’ growth characteristics in dynamic
glucose–galactose batch cultivations under well-defined cul-
tivation conditions. Previously, �snf1 and �snf4 galactose
growth studies were performed using shake-flask cultivations
and plate assays. Different galactose growth phenotypes have
been observed for the �snf1 and �snf4 strains and the possibil-
ity of suppressor mutations causing those phenotypes have been
discussed in previous and mainly agar plating studies (Carlson
et al., 1984; Palecek et al., 2002; Schuller and Entian, 1991;
Thompson-Jaeger et al., 1991; Van Driessche et al., 2005). All

necessary experiments were performed to assure that no suppres-
sor mutations have appeared in response to selective pressures
of galactose in this study (described in Section 2).

A more than 24 h lag phase was observed for the �snf1
and �snf4 recombinant strains when these strains were inoc-
ulated in minimal media with galactose as a sole carbon
source in shake-flask or batch cultivations (data not shown). In
glucose–galactose-mixtures, after cells were pre-grown on glu-
cose, twice as fast (15.5 h for the �snf1 and 12 h for the �snf4
case) initiation of growth on galactose was observed (Fig. 1
and Table 3) compared to conditions where galactose was a
sole carbon source. The results showed that different cultivation
conditions influenced observed galactose growth phenotypes. In
addition, liquid cultures offer different growth conditions than
solid substitute (agar plates) and therefore our results can not
be directly compared to earlier studies where ability to grow on
galactose was mainly tested on agar plates (Carlson et al., 1984;
Schuller and Entian, 1991; Thompson-Jaeger et al., 1991).

It has been previously shown that in different genotypic back-
ground strains, Mig1 represses expression of the same genes in a
range from a few to a few hundred folds (Lutfiyya and Johnston,
1996; Olsson et al., 1997). It has been shown that higher levels of
cAMP can decrease the expression of genes subjected to glucose
repression (Zaragoza et al., 1999). The CEN.PK background
strains, also used in this study, have been described as having ‘a
lack of cAMP response’ phenotype, due to a point mutation in
the adenylate cyclase gene (Van Dijken et al., 2000; Vanhalewyn
et al., 1999). We propose that distinct cAMP signaling proper-
ties may contribute to the incomplete repression of GAL genes in
the CEN.PK background �snf1, �snf4 and �snf1�snf4 strains.
Overall, the genotypic background of the strain and cultivation
conditions may impact observed galactose growth phenotypes.
The results of this study implied that not only the Snf1 kinase
was responsible for the repression/derepression of galactose
metabolism, but other signaling mechanism (i.e. cAMP level)
had an impact on the observed phenotypes.

4.4. The Mig1 repression and an accumulation of
intracellular galactose derivatives affect the maximum
specific growth rates on galactose for the �snf1, �snf4 and
�snf1�snf4 strains

In glucose–galactose-mixture cultivations, the maximum
specific growth rates on galactose were found to be lower for
the recombinant strains compared to the reference strain and
were found to correlate with the delayed growth induction on
galactose (Table 3). We propose that the reduced growth of the
recombinant strains on galactose is a likely response to a contin-
uous Mig1-based repression of GAL genes (Nehlin et al., 1991)
leading to repressed galactose uptake and catabolism. In addi-
tion, we suggest that due to the partly inactive Leloir pathway
(caused by the continuous Mig1 repression of the GAL genes)
in the recombinant strains, the intracellular galactose may be
partly converted into galactitol through a metabolic pathway
yet poorly described in S. cerevisiae, but clearly unrelated to
the Leloir pathway (Petrash et al., 2001). We have previously
observed that S. cerevisiae accumulated galactitol during its
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growth on galactose, and reduced maximum specific growth rate
correlated well with the increased galactitol accumulation (data
not published). Another toxic compound, galactose-1-phosphate
(Bhat, 2003), may also accumulate in the recombinant strains,
if Gal1 instead of Gal3 was activated in order to induce the
growth initiation on galactose. As Gal1 also has a kinase cat-
alytic activity, it converts galactose to galactose-1-phosphate,
meanwhile, the other Leloir pathway enzymes are still not
expressed at this early stage of induction of GAL regulon lead-
ing to possible galactose-1-phosphate accumulation in the cell,
as it has been shown previously (Meyer et al., 1991). Toxicity
caused by the galactose derivatives should be proved in further
studies.

Overall, the results of this study strongly suggest that the con-
tinuing Mig1-based repression of GAL genes, changes in cellular
energetics and possible accumulation of toxic galactose deriva-
tives inhibited galactose growth initiation and maximum specific
growth rate on galactose in the recombinant strains compared to
the reference strain in the glucose–galactose-mixtures.
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The quantitative proteomic analysis of complex protein mixtures is emerging as a technically challenging
but viable systems-level approach for studying cellular function. This study presents a large-scale
comparative analysis of protein abundances from yeast protein lysates derived from both wild-type
yeast and yeast strains lacking key components of the Snf1 kinase complex. Four different strains were
grown under well-controlled chemostat conditions. Multidimensional protein identification technology
followed by quantitation using either spectral counting or stable isotope labeling approaches was used
to identify relative changes in the protein expression levels between the strains. A total of 2388 proteins
were relatively quantified, and more than 350 proteins were found to have significantly different
expression levels between the two strains of comparison when using the stable isotope labeling strategy.
The stable isotope labeling based quantitative approach was found to be highly reproducible among
biological replicates when complex protein mixtures containing small expression changes were
analyzed. Where poor correlation between stable isotope labeling and spectral counting was found,
the major reason behind the discrepancy was the lack of reproducible sampling for proteins with low
spectral counts. The functional categorization of the relative protein expression differences that occur
in Snf1-deficient strains uncovers a wide range of biological processes regulated by this important
cellular kinase.

Keywords: CenSus • MudPIT • Snf4 • AMP-activated kinase • 15N • mass spectrometry • proteomics

Introduction

In the field of systems biology, the integration of different
-omics technologies is critical for understanding the cell as a
whole. Compared to transcriptomics, proteomics continues to
remain elusive in terms of generating and integrating experi-
mental data into interpretive and predictive models. Since
proteome analysis provides complementary information about
biological systems and pathways, it is essential that new
proteomic methodologies are developed to provide a compre-
hensive look at a biological process.

The proteome complexity is overwhelming, and based on
Human Proteome Project findings, there are far fewer protein-
coding genes in the human genome than proteins in the human
proteome, which is estimated to reach 1 000 000 protein
isoforms.1 Diversity of post-translation modifications, alterna-
tive splicing, and dynamics of protein complexes generate this

complexity, which holds important biological information.
Detection and understanding of the complete proteome will
therefore allow uncovering of global signaling and kinetic traits.
However, the complexity of the proteome remains one of the
major issues preventing us from having analytical tools that
allow comprehensive detection and/or quantification of the
“complete” proteome.

Various tools combining mass spectrometry and liquid
chromatography or gel-based protein separation are being
developed and used to improve complex proteome identifica-
tion.2 Multidimensional protein identification technology (Mud-
PIT) has emerged as a sensitive tool for the separation and
identification of proteins from complex mixtures.3,4 MudPIT,
in combination with the metabolic or in vitro labeling of
proteins, generates accurate and abundant quantitative pro-
teome results.5,6 Other proteome identification and quantifica-
tion tools based on protein chip technology or other mass
spectrometry based strategies find their niche in specific
proteome areas as reviewed in Patterson et al.7

Accurate quantitative global proteomics data are critical for
studying global cellular processes and for integrating the data
with other -omics data. Different approaches have been and
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are being developed to quantify protein expression differences
using mass spectrometry.8–10 Relatively few comparative studies
of different quantitative proteome approaches have been
performed (when real biological samples were used) to evaluate
accuracy and reproducibility of quantitative proteome results.11,12

Zybailov and coauthors have compared quantitative proteome
outputs generated by spectral counting and the stable isotope
labeling approach, using RelEx.13 They argued that a strong
correlation between two proteome quantification methods can
be obtained and that spectral counting was more reproducible
and capable of quantifying proteins over a wider dynamic
range.

In this study, we used the yeast Saccharomyces cerevisiae as
a model system. To evaluate the effect of a genetic perturbation,
we evaluated three deletion strains, where Snf1 kinase, its
regulatory subunit Snf4, or both Snf1 and Snf4 complex
subunits were deleted, in comparison to the wild-type strain.
The Snf1 protein kinase complex plays a role in the glucose
repression signaling cascade and regulates carbon metabolism
through phosphorylation of transcription factors such as Mig1
and Cat8.14 Snf1 has been found to directly regulate the activity
of signaling proteins such as Hog85, metabolic proteins such
as Acc1, and phosphorylates histone H3.15,16 Various small-
scale studies on the Snf1 protein imply that Snf1, as well as its
mammalian homologue AMPK, might be a global regulator and
energy balancer in the cell.17 It is therefore interesting to
perform global-scale quantitative proteome studies on the Snf1-
deficient strains, as we expect to affect the expression of a large
numberofproteinswhentheSnf1kinasecomplexisdysfunctional.

In this study, a global quantitative proteome data set was
generated and analyzed using two different quantitative strate-
gies, and its quality was evaluated using classical statistics and
prior biological knowledge. Four yeast strains (∆snf1, ∆snf4,
∆snf1∆snf4, and wild-type strain) were metabolically 14N- and
15N-labeled and pregrown in biological triplicates in well-
controlled steady state carbon limited chemostat cultivations,
which are highly reproducible and suitable for global-scale
comparative studies.18 On the basis of previous studies,14,19 it
was expected that the Snf1-deficient strains had different
transcripts and consequently altered protein expression profiles
(compared to the wild-type strain) due to the lasting glucose
repression effect under carbon limitation. Global protein
extracts were generated from the yeast culture samples and
analyzed using online multidimensional fractionation coupled
with tandem mass spectrometry using an LTQ-Orbitrap mass
spectrometer.20 Stable isotope labeling and spectral counting
approaches were used to calculate protein expression differ-
ences, and the two quantitative proteomic outputs were
statistically evaluated and compared.

Materials and Methods

Yeast Strains. All S. cerevisiae strains used in this study were
generated from the CEN.PK 113-7D laboratory strain (Scientific
Research & Development GmbH, Oberursel, Germany) (Table
1).

Chemostat Cultivation of Cells. Steady state aerobic chemo-
stat cultures were grown at 30 °C in 2 L bioreactors (Applikon)
using a working volume of 0.5 L and a dilution rate of D )
0.100 (( 0.005) h-1. Cultures were fed with a modified minimal
medium containing 75 mM nitrogen and 250 mM carbon
(calculated on a per atom basis), which ensured that growth
was limited by the carbon source and nitrogen was in excess.
The sole difference in growth conditions among the strains
used was that the wild-type strain was grown in >99%
ammonium-15N sulfate, >99 atom % 15N, manufactured by
Spectra Stable Isotopes (Columbia, MD), while the deletion
∆snf1, ∆snf4, and ∆snf1∆snf4 strains were grown in 99%
ammonium-14N sulfate, 99 atom % 14N, manufactured by
ISOTEC INC. (Miamisburg, OH). The pH was measured online
and kept constant at 5.0 by automatic titration with 4 M KOH
using an Applikon (ADI1030) biocontroller. The stirring speed
was set to 800 rpm, and the dry airflow rate was 0.5 L/min.
The exhaust gas from chemostat cultivation was led through a
condenser, and the mole % of carbon dioxide and oxygen was
measured online using a PC-controlled acoustic gas analyzer
(Brüel & Kjær, Denmark). After batch cultivation, dry weight,
metabolite concentrations, and gas profiles were monitored
until they reached a steady state (constant over at least five
residence times) after which samples for protein extraction
were taken. All samples were collected no later than 10–15
residence times from the start of continuous operation: (i) to
avoid any strain adaptation that generally occurs over long-
term cultivation,21 and (ii) to ensure that metabolic labeling
was enriched to >99%.

Media. The carbon limited minimal medium composition
was based on the study described by Verduyn et al.22 The
amounts per liter of the compounds were: (NH4)2SO4, 5 g;
KH2PO4, 3 g; MgSO4 ·7H2O, 0.5 g; D-glucose, 7.5 g; Antifoam
289 (A-5551, Sigma-Aldrich), 0.05 mL; EDTA (Titriplex III), 15.0
mg; ZnSO4 ·7H2O, 4.5 mg; MnCl2 ·2H2O, 0.82 mg; CoCl2 ·6H2O,
0.3 mg; CuSO4 ·5H2O, 0.3 mg; Na2MoO4 ·2H2O, 0.4 mg;
CaCl2 ·2H2O, 4.5 mg; FeSO4 ·7H2O, 3.0 mg; H3BO3, 1.0 mg; KI,
0.1 mg; biotin, 0.05 mg; p-benzoic acid, 0.2 mg; nicotinic acid,
1.0 mg; Ca-pantothenate, 1.0 mg; pyridoxin, HCl, 1.0 mg;
thiamin, HCl, 1.0 mg; m-inositol, 25.0 mg.

Isolation and Extraction of the Yeast Total Protein Pool.
Samples for total protein isolation were taken from the chemo-
stat cultivations by rapid sampling of 2 × 200 mL of culture in
a 500 mL centrifuge tube containing 200 mL of crushed ice.

Table 1. Yeast Saccharomyces cerevisiae Strains Used in this Study

straina name in text genotype source/ref

CEN.PK 113-7D wild-type strain MATa URA3 HIS3 TRP1 LEU2 SUC2 MAL2-8C provided by P. Kötterb

CEN.PK 506-1C ∆snf1 MATa URA3 HIS3 TRP1 LEU2 SUC2 MAL2–8C snf1
(4,1899)::loxP-Kan-loxP

provided by P. Kötter

CEN.PK 507-5B ∆snf4 MATa URA3 HIS3 TRP1 LEU2 SUC2 MAL2–8C snf4
(4,966)::loxP-Kan-loxP

provided by P. Kötter

IBT100072 ∆snf1∆snf4 MATa URA3 HIS3 TRP1 LEU2 SUC2 MAL2–8C snf1 (1,1903) snf4
(4,966)::loxP-Kan-loxP

Usaite et al.c

a The strains were derived from the parental laboratory CEN.PK background strain.34 b Institut für Mikrobiologie, Frankfurt, Germany. c Strain design
and characteristics have been published in Usaite et al.19
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Cells were quickly pelleted (4500 rpm at 0 °C for 2 min),
instantly frozen by dropwise addition into liquid nitrogen, and
stored at -80 °C until further analysis. Cells were lysed in a
buffer containing 7.4 mL/L of �-mercaptoethanol and 7.4 g/L
of NaOH while incubated at 4 °C for 20 min. The proteins were
precipitated by using 25% TCA (v/v) and ice-cold acetone. The
pellet was air-dried, and the protein fraction was obtained by
extracting the pellet with a 1 × Invitrosol (Invitrogen) and 8 M
urea mixture. The protein concentration was determined using
the BCA Protein Assay Kit (PIERCE). Lysates from 14N-labeled
and 15N-labeled samples were mixed 1:1 by protein weight and
subjected to protein digestion.

Digest of Extracted Protein Pool. An amount of 200 µg of
total protein (100 µg of 14N-labeled and 100 µg of 15N-labeled)
was reduced by adding Tris(2-carboxyethyl) phosphine (TCEP)
to 5 mM and incubating at 20 °C for 30 min. The reduced
sample was then carboxyamidomethylated by adding iodoac-
etamide (IAA) to 10 mM and incubating at 20 °C for 20 min in
the dark. Endoproteinase LysC was added at an enzyme/
substrate ratio of 1:100, and the samples were incubated for
4 h at 37 °C. The samples were subsequently diluted to 2 M
urea with 100 mM Tris-HCl, pH 8.5, brought to 1 mM CaCl2,
and further digested by adding trypsin at an enzyme/substrate
ratio of 1:20 and incubating overnight at 37 °C. The digestion
reaction was quenched by adding formic acid to 5% (v/v) to
reduce the pH to 2–3. The peptide mixture was purified by
solid-phase extraction using SPEC-PLUS PTC18 cartridges
(Ansys Diagnostics, Lake Forest, CA). Samples were freeze-dried
and resuspended in 5% formic acid solution. Samples not
immediately analyzed were stored at -80 °C.

MudPIT Analysis. The protein pool digest was pressure-
loaded onto a 250 µM ID fused silica capillary column with a
filtered union (UpChurch Scientific, Oak Harbor, WA) that was
previously packed with 3 cm of 5 µm Partisphere strong cation
exchanger (Whatman, Clifton, NJ) followed by 3 cm of 5 µm
Aqua C18 material (Phenomenex, Ventura, CA). After loading,
this trapping column was washed with buffer containing 5%
acetonitrile/0.1% formic acid. After desalting, a 100 µm i.d.
capillary with a 5 µm pulled tip packed with 18 cm of 3 µm
Aqua C18 material (Phenomenex, Ventura, CA) was attached
to the filter union, and the entire split-phase column (desalting
column–filter union–analytical column) was placed inline with
an Eksigent nanoLC-2D HPLC (Dublin, CA) and analyzed using
aseven-stepseparationmodifiedfromthatdescribedpreviously.3,4

A further optimization of MudPIT was performed in this study.
It showed that extending the length of the analytical column
from 10 to 18 cm and reducing the number of chromatography
steps from 12 to 7, while keeping the total analysis time the
same (24 h), improved peptide detection and resulted in
identification of 30% more protein IDs. The buffers used were
5% acetonitrile/0.1% formic acid (buffer A), 80% acetonitrile/
0.1% formic acid (buffer B), and 500 mM ammonium acetate/
5% acetonitrile/0.1% formic acid (buffer C). Steps 1 and 7 had
a 120 min lasting buffer B gradient profile of 2–90%. Steps 2–6
had the following profile: 10 min of 98% buffer A, 5 min of X%
salt pulse, a 10 min gradient from 2 to 10% buffer B, a 180 min
gradient from 10 to 50% buffer B, and a 15 min gradient from
50 to 90% buffer B. The 5 min salt pulse percentages (X) were
0, 10, 20, 30, 50, 70, and 100%, respectively, for the seven-step
analysis. As peptides eluted from the microcapillary column,
they were electrosprayed directly into a linear ion trap/Orbitrap
(LTQ-Orbitrap) hybrid mass spectrometer (Thermo Electron
Corp., Bremen, Germany) with the application of a distal

electrospray voltage of 2.5 kV versus the inlet of the mass
spectrometer. A cycle of one full-scan mass spectrum (150–2000
m/z) collected in the orbitrap mass analyzer followed by four
data-dependent MS/MS spectra collected in the LTQ was
repeated continuously throughout each step of the multidi-
mensional separation. A more detailed description of LTQ-
Orbitrap settings is described by Yates et al.20 Application of
mass spectrometer scan functions and HPLC solvent gradients
were controlled by the Xcalibur data system.

Analysis of Tandem Mass Spectra. MS/MS were analyzed
using the following software analysis protocol. MS/MS remain-
ing after filtering were searched with the SEQUEST algorithm23

against a database of Saccharomyces cerevisiae ORFs down-
loaded from the Saccharomyces Genome Database (SGD) on
March 3, 2005. This database was concatenated to a decoy
database in which the sequence for each entry in the original
database was reversed to estimate the false positive rate from
the search.24 No enzyme specificity was considered for any
search. Two separate SEQUEST parameter files were prepared,
and SEQUEST was run twice on each of the ms2 files to
separately sequence peptides that were either 14N- or 15N-
labeled. SEQUEST results were assembled and filtered using
the DTASelect2.0 program, an improved version of DTASelect25

that uses a linear discriminant analysis to dynamically set XCorr
and DeltaCN thresholds for the entire data set to achieve a user-
specified false positive rate (5% in this analysis). The false
positive rates are estimated by the program from the number
and quality of spectral matches to the decoy database.

Quantification of the Relative Protein Abundances. DTA-
Select2.0 output files were submitted to CenSus as described
in Venable et al.9 to calculate the relative protein abundance
differences based on reconstructed ion chromatograms (i.e.,
14N/15N CenSus Ratio). The same DTASelect2.0 output files
were also used to calculate normalized spectral counts (NSpC)
for each protein k:

(NSpC)k)
(SpC ⁄ L)k

∑ i)1

N
(SpC ⁄ L)i

in which the total number of tandem MS spectra matching
peptides from protein k(SpC) was divided by the protein’s
length (L), then divided by the sum of SpC/L for all N proteins
identified. Spectral counts serve as a parameter for estimating
protein abundances and have been used for calculating relative
protein abundance differences.8,26 Normally spectral counts are
merged among all experiments to average variation and
increase the number of significantly detected peptides. In this
study, relative protein abundance differences based on normal-
ized 14N- and 15N-spectral counting were calculated in each
MudPIT experiment separately and compared to relative
quantification of the extracted ion chromatograms from each
labeled and unlabeled peptide pair using the Census algorithm.
For the purpose of this paper, this is an effective way to
compare spectral counting versus stable isotope labeling since
both methods are applied to the same data set which eliminates
run to run variation and offers insight into the strengths and
weaknesses of both quantitation methods.

Normalization and Statistical Data Analysis. Calculated
spectral counts in each experiment were normalized based on
protein length and a total number of spectra detected per
experiment. In addition, linear normalization was used in those
cases, when the median of the protein abundance ratios
(calculated using normalized spectral counts) was not equal
to one. In stable isotope labeling based quantification, nor-
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malization is performed using the CenSus algorithm (Venable
et al.9). A CenSus algorithm was used to correct inaccurate 15N
and 14N ratios based on errors in sample mixing. This correc-
tion is based on the assumption that the natural log of all ratios
will form a Gaussian distribution and the median of all ratios
in a properly mixed sample should be equal to zero.

These computational steps assured that quantified relative
protein abundance ratios between mass spectrometry runs
could be fairly compared. Outputs generated by spectral
counting and stable isotope labeling were subjected to com-
parative analysis. A t test using a threshold of P < 0.05 was
used to describe biological variance. A hypergeometric distri-
bution test was used to define biological processes, in which
the proteins, with significantly (P < 0.05) changed abundances,
were enriched (hypergeometric test: P < 0.01) in response to
the disruption of the Snf1 kinase complex.

Results

Physiological Profile of Strains Used in this Study. Three
S. cerevisiae yeast deletion strains, ∆snf1, ∆snf4, and ∆snf1∆snf4,
and the wild-type strain were cultivated in biological triplicates
in glucose-limited chemostat cultivations at a dilution rate of
0.1 h-1. The only nitrogen source used in these cultivations
was ammonium sulfate: 15N-labeled ammonium sulfate for the
wild-type strain and 14N-labeled ammonium sulfate for the
deletion strains. At steady state, yeast performed only respira-
tory metabolism, and the biomass yield on glucose was found
to be 0.50 g/g for the wild-type strain and 0.45 g/g for the ∆snf1,
∆snf4, and ∆snf1∆snf4 strains. It was assumed that total protein
was constant in the deletion as well as wild-type strains since
no major differences in morphology or distribution throughout
cell cycle phases were observed while performing microscopy
screening. The ∆snf1, ∆snf4, and ∆snf1∆snf4 strains were
compared to the wild-type strain by analyzing them in 1:1 total
protein mixtures derived from one of the 99% 14N-labeled
deletion strains and 99% 15N-labeled wild-type strain (details
in Materials and Methods).

Characterization of Identified Proteome. One sample of
each yeast lysate was generated and analyzed using MudPIT.
The total number of proteins identified per each strain was
calculated by merging spectral counting data from three
biological replicates (Table 2). On average, 1600 proteins based
on a two-peptide threshold (and 2300 proteins based on a one-
peptide threshold) were identified per one 24 h MudPIT
experiment. The number of identified proteins in a given time
frame found in this study was compatible with the latest
achievements that were generated using other global protein
identification technologies like GelC-MS/MS or three-dimen-
sional LC-MS/MS.27,28 A previous immunoblotting TAP Western
study (referred to as the “control study” in this report)29 has
estimated that over 4000 proteins are expressed in asynchro-
nously growing yeast cultures. This suggested that using a two-
peptide per protein threshold we identified less than half of
the possible proteins present in the global proteome mixture

analyzed. Two factors that may limit our ability to identify all
possible proteins in the sample are: (i) our analytical setup,
which includes protein extraction, protein digestion, and
peptide fractionation methods, failed to identify the subsets
of proteins with unusual chemical properties; and (ii) the
dynamic range of the lysate is too large to be comprehensively
analyzed in one run using our current two-dimensional chro-
matography strategy.

In addition to SEQUEST and the DTASelect2.0 algorithm
used in this study, we also examined the effects of considering
only unique peptide identifications. All peptides that were
found to match the sequences of two or more proteins were
discarded from the analysis and not used to define the list of
identified or quantified proteins. This additional filtering step
reduced the list of identified proteins by 5–14% per experiment
(Table 2) but offered significant benefits in data quality as
discussed below.

In prior studies, dynamic range, sensitivity, and sequencing
speed were discussed as being the major parameters limiting
the complete identification of the yeast proteome.27,30 In our
study, assuming that the abundance of proteins was distributed
over the same range in the cells throughout their exponential29

and steady state (chemostat cultivations) growth phases, we
determined the sensitivity and the dynamic range of MudPIT
analysis performed in this study (Figure 1). A total of 100 µg of
total protein per sample per strain was used in each MudPIT

Table 2. Number of Proteins Identified in the Studya

threshold wild-type strain (9)b ∆snf1 (3) ∆snf4 (3) ∆snf1∆snf4 (3)

two-peptide 1853 (2029)c 1808 (2111) 1855 (2124) 1477 (1636)
one-peptide 3907 (4100) 3299 (3580) 3359 (3641) 2954 (3113)

a A total of 5% false positive spectra threshold (determined by DTASelect2.0) was used; protein was included in this table and in the analysis, if it was
identified in 2 out of 3 biological replicates. b Number of MudPIT experiments merged. c The number of identified proteins based on only unique peptides;
the number in parentheses indicates the number of proteins identified based on all (unique and nonunique) detected peptides.

Figure 1. Numbers of identified and quantified proteins based
on only unique peptides. The black column represents the control
data set from the TAP Western study29 and includes 3868
proteins. The gray column represents in this study identified the
proteome based on a one-peptide threshold and includes 3257
proteins. The white column represents the identified proteome
based on a two-peptide threshold and includes 2019 IDs. The
column with an angled stripe pattern represents the stable
isotope labeling (CenSus) quantified proteome data set and
includes 1910 proteins. (Numbers of identified and quantified
protein data sets did not match numbers presented in Table 2
and Table 3 because not all proteins identified and quantified in
this study were identified and quantified in the TAP Western
control study as well).
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run. In agreement with de Godoy calculations,27 it was assumed
that the lowest-abundance proteins were present at a concen-
tration of about 20 fmol in every sample analyzed. Results
showed that 40% of the proteins were detected in each range
of protein abundances from 40 to 2000 molecules per cell
(Figure 1). A total of 77% of proteins were detected in each
range spanning protein abundances from 4000 to 512 000
molecules per cell. A default two-peptide minimum per protein
was used to derive these numbers of identified proteins. If a
one-peptide per protein threshold was used, 84% of proteins
were identified in the protein abundance range from the lowest
up to 512 000 molecules per cell. A one-peptide threshold
dramatically increased the number of detected proteins for the
lower range of protein abundances (lowest up to 8000 molecules/
cell)sthis fraction of the proteome, based on the control
study,29 covers 80% of the total yeast proteome.

The identified proteins were also analyzed to look for trends
in other characteristics such as protein pI or protein mass.
These parameters did not appear to have a significant impact
as the identified proteins had a wide range of masses and pIs
(data not shown). An additional pool of 650 proteins, beyond
the list of proteins quantified in the control study,29 was
identified indicating that a differently expressed protein pool
might have been present when cells were pregrown in the set
growth rate chemostat cultivations compared to the exponen-
tial growth cultivations. The main limitation for the reliable
identification of the complete proteome was found to be the
inability to identify more than one peptide from the lowest-
abundance proteins. Overall, the result of this study showed
that by using the Orbitrap platform for generation of high mass
accuracy data and DTASelect2.0 we could begin to sample the
lowest-abundance proteins.

Relative Protein Expression Differences Quantified
Using Two Algorithms. Two quantitative approaches, spectral
counting and stable isotope labeling, were used to assess
relative protein expression differences between the ∆snf1,

∆snf4, and ∆snf1∆snf4 strains and the wild-type strain. While
spectral counting uses all identified unique peptide spectra for
a given protein to calculate a relative protein abundance, the
stable isotope labeling approach uses individual 14N- and 15N-
labeled unique peptide pairs and quantitates relative peptide
abundances to infer average relative abundance of a corre-
sponding protein (performed by CenSus).9 These two features
constitute the main differences between the CenSus and the
spectral counting calculated outputs.

The “total quantified” proteome was determined by merging
relative protein abundance differences calculated for each of
the three biological replicates using stable isotope labeling or
spectral counting. One third of the translated yeast proteome
was quantified using the stable isotope labeling approach
(Table 3). Using the same four-peptide/protein threshold for
both of the quantitative approaches, stable isotope labeling
(compared to spectral counting) quantified more proteins in
the study. Table 3 shows that twice as many significant changes
in protein expression could be found using isotope labeling
compared to spectral counting. Additional evidence supporting
the idea that stable isotope labeling outperformed spectral
counting under these study conditions can be seen in Figure
2. The spectra detected in the same two biological replicate
MudPIT experiments were used for a comparative relative
protein abundance quantification study using stable isotope
and spectral counting approaches. Only proteins, which were
quantified based on two-peptide pairs (four-peptide/protein)
per MudPIT run, were used in the graphical representation of
the comparison (Figure 2). These results indicated that in
complex protein mixtures, where protein sequence coverage
was frequently low and relatively small differences in protein
expression were expected, the calculated relative protein
expression differences appeared to be more accurate and
reproducible when stable isotope labeling was used compared
to spectral counting.

Table 3. Results of Quantitative Proteome Analysis

method wild-type strain ∆snf1 ∆snf4 ∆snf1∆snf4

total quantified by CenSusa 2388 1954 (1816) 2012 (1862) 1697 (1432)
significantly changed by CenSusb 381 393 352
total quantified by spectral countinga 1798 1535 (1404) 1478 (1365) 1261 (1090)
significantly changed by spectral countingb 175 161 109

a Calculated at least from one biological replica, if two-unique-peptide pairs (four peptide/protein) were available. A total of one-unique-peptide pair
(two peptides/protein) per biological replica was included into quantitative analysis, if this protein was quantitated at least in two biological replicates. A
number of proteins, which were quantified at least in two biological replicates, was indicated in parentheses. b Significantly changed proteins were those
in which protein expression levels deviated less than P < 0.05 among biological replicates.

Figure 2. Correlation of relative protein abundance differences calculated for two biological replicates of the ∆snf1∆snf4 strain versus
the wild-type strain. Plot A presented comparison of relative protein abundance differences calculated for two biological replicates by
using the stable isotope labeling approach (649 IDs). Plot B presented a comparison of relative protein expression differences calculated
for the same two biological replicates by using spectral counting (654 IDs). In this figure, presented spectral counting results are based
on 10 spectra (median) and 22 spectra (average) per biological replicate.
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Protein quantification based on spectral counting was found
to be largely improved when spectra generated from multiple
experiments were averaged and merged so that abundance
values could be determined from a larger number of spectra
per protein. Larger numbers of proteins were quantified using
stable averaged spectral counts (2373 proteins for the wild type,
2057 for the ∆snf1, 2081 for the ∆snf4, and 1763 for the
∆snf1∆snf4) as compared to the use of spectral counting in
this study (Table 3), and averaged spectral counts from biologi-
cal replicates generated a more accurate measurement of
relative protein abundance then those of each individual
replicate. Merging of the spectral counting results was not used
in this study since it did not allow statistical evaluation of the
quantitative data.

A detailed comparison between our quantitative analysis and
the absolute protein levels determined in the control study
showed that ∼37% of the proteins were quantitated in each
range of protein abundances from lowest up to 4000 molecules
per cell, and ∼74% of the proteins were quantitated in each
range spanning from 4000 up to 512 000 molecules per cell.
Similar profiles, ∼25% of low-abundance proteins and ∼70%
of high-abundance proteins, were relatively quantified when
spectral counting was used.

The result of this study presents the largest number of
quantified global yeast proteome by mass spectrometry to date.
Stable isotope labeling accurately and reproducibly quantified
proteins even when only a small number of spectra per protein
(generated from a single mass spectrometry experiment) were
identified. The stringent statistical evaluation of biological

variance derived among single MudPIT experiments was suit-
able to use in this study, and it strengthened the presence of
true biological changes substantially.

Elimination of Nonunique Spectra Improves the
Quantitative Proteome Data Set. Our results showed that by
removing nonunique peptides from the experiment the number
of identified proteins was reduced by 5–14% per MudPIT run.
Importantly, this led to a significant improvement in the ability
to identify statistically meaningful differences in protein ex-
pression among proteins identified only by unique peptides.
The data from the same mass spectrometry experiment were
analyzed with and without the inclusion of nonunique peptides
using both stable isotope labeling and spectral counting. A total
of 3% of proteins quantified by stable isotope labeling and a
total of 12% of proteins quantified by spectral counting were
found to have different relative protein expression levels
depending on whether nonunique spectra were included in the
analysis (data not shown).

Significant improvement of quantitative data after nonu-
nique peptides were excluded was illustrated with the following
example (Figures 3 and 4). This example focused on the relative
quantitation of the two highly homologous proteins, Adh1 and
Adh2 (89% sequence similarity). After digestion, Adh1 and Adh2
yielded a combination of unique and shared peptides that were
identified and relatively quantified. Figure 3 presents the ratios
of quantified Adh1 and Adh2 peptides when the spectra of the
∆snf1 strain were compared to the spectra of the wild-type
strain. From this figure, it could be clearly seen that the unique
peptides clustered at a specific ratio for each protein, while

Figure 3. Peptide abundance ratios quantified by CenSus for Adh1 and Adh2 in the ∆snf1 strain versus the wild-type strain. Plots
presented relative peptide abundance ratios (differences) quantified for Adh1 (plot A) and Adh2 (plot B) proteins in one of the biological
replicates. Values that corresponded to relative peptide abundance differences calculated based on unique (to particular protein) peptides
were marked with black circles. Values that were calculated based on nonunique peptides were marked with open circles.

Figure 4. Relative Adh1 and Adh2 averaged protein abundance differences in the ∆snf1 strain versus the wild-type strain when calculated
by CenSus and based on all or exclusively on unique peptides only. The relative protein abundance difference was calculated by
averaging the determined peptide abundance ratios. The standard deviation was determined based on the variation among calculated
peptide abundance ratios. The acetaldehyde-ethanol conversion reaction presented directionality and relative protein abundance levels
calculated for Adh1 and Adh2 proteins.
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the shared, nonunique peptides, representing a mixed popula-
tion of both Adh1- and Adh2-derived peptides, clustered at a
different, inaccurate ratio. The ultimate result of including or
excluding these nonunique peptides in the quantitative analysis
can be seen in Figure 4. The Adh1 and Adh2 averaged protein
abundance ratios were inaccurate (showed a large standard
deviation) when nonunique peptides were included and were
more accurate (displayed a lower standard deviation) when
nonunique peptides were excluded. To interpret these results
in a biological context, quantitative data based on only unique
peptides clearly showed that acetaldehyde-ethanol conversion
was shifted toward ethanol production when the ∆snf1 strain
was compared to the wild-type strain. This result correlated
with prior data and the fact that the ∆snf1 strain cannot grow
on ethanol.31 In contrast, when nonunique peptide spectra
(causing the large standard deviation) were included in the
quantitative data sets for the Adh1 and Adn2 proteins, no
meaningful biological conclusions could be derived about
ethanol oxidation. Overall, when nonunique peptides were
discarded from the data sets, the calculation of averaged
protein expression differences and their standard deviations
were much improved: 3% more proteins (for the CenSus case)
were found to have significantly changed (P < 0.05) expression
in the mutant strains compared to the wild-type strain and
could be included in further biological analyses.

Correlation between Stable Isotope Labeling and
Spectral Counting Analyses. We next examined how well the
proteins quantitated by either spectral counting or stable
isotope labeling could be correlated with each other. For this
analysis, we focused on the quantitative proteomics analysis
of the ∆snf1 strain. A pool of significantly changed proteins (P
< 0.05) based on spectral counting and stable isotope labeling
was used in this comparison (Table 3). A total of 79 proteins
were found to have changed expression (P < 0.05) levels when
quantified by both approaches, and only three of these proteins
(Ybr078w, Ydr505c, Ygl103w) correlated poorly. The quantita-
tion of these three proteins proved to be difficult by either
method due to the low number (∼7) of spectra detected per
protein per strain. The poor spectra quality for these three
outliers prevented us from concluding whether stable isotope
labeling or spectra counting was more successful in these cases.

Among the remaining 302 proteins, for which expression was
determined to be significantly changed based on CenSus
output, 65 were not quantified by spectral counting due to too
few (1 or 2) spectra identified per protein per strain in each
experiment. 242 out of the 302 proteins were quantified using
less than ten-peptide pairs per protein, further highlighting the
ability of stable isotope labeling to quantify proteins based on
fewer peptides than spectral counting. Several biologically
meaningful and differentially expressed proteins were found
in this subset. Some of these proteins, such as the long-chain
fatty acyl-CoA synthetase Faa1 (Yor317w), hexokinase Hxk2
(Ygl253w), and glycogen synthase Gsy1 (Yfr014c), were identi-
fied as having significantly changed expression (in the ∆snf1
strain compared to the wild-type strain) using the stable isotope
labeling approach. However, these proteins were not found to
be reproducibly quantified among biological replicates using
spectral counting due to the low number of identified spectra
per each of these proteins. The Faa1, Hxk2, and Gsy1 were
predicted to be affected in the Snf1-kinase complex disrupted
strains.14,31 These findings demonstrate that by using the stable
isotope labeling approach the list of quantified proteins was

enhanced, and more biologically important findings were
revealed, even from low numbers of spectra.

A total of 96 proteins were found to be significantly changed
when quantified by spectral counting alone. Seventy-seven (out
of 96) proteins were quantified based on less than ten-peptide
pairs per protein. Twenty-nine (out of 96) proteins were
quantified based on five-peptide pairs per protein, and these
were found to have opposite abundance ratios compared to
the stable isotope labeling approach. Overall, the results
indicated that there is a good correlation between stable isotope
labeling and spectral counting, except when spectral counting
is based on low numbers of spectra.

Biological Evaluation of the Quantified Proteome. Our
results suggested that for the data set used in this study stable
isotope labeling was more effective and reproducible than
spectral counting for discerning protein expression differences
in the mutant yeast strains. On the basis of this observation,
we focused on the CenSus-produced quantitative results,
emphasizing the subset of proteins that had significant (P <
0.05), thus biologically relevant, protein expression changes
when the proteome of the three mutants was compared to the
proteome of the wild-type strain. A reproducible protein
expression change across multiple biological replicates strongly
supported the conclusion that a true biological phenomenon
was being observed instead of a stochastic, insignificant event.

The CenSus-generated list of 2388 proteins was categorized
by GO annotations to determine their connections to different
biological processes, molecular functions, and localizations. We
found that the subcellular distribution of the quantified (and
identified) proteins was not significantly different from the
subcellular distribution of the entire yeast proteome. This
suggeststhattheproteinextractionmethodusingtheurea-invitrosol
mixture based protocol was unbiased and contained soluble
and membrane-associated proteins. The hypergeometric dis-
tribution analysis test was applied to determine whether the
enrichment of proteins with significantly changed expression
was present among certain GO biological processes and GO
molecular function categories. The test was performed in
relation to the total pool of 2388 quantified proteins, and the
results were summarized in the Table 4.

Enriched protein expression changes (hypergeometric test:
P < 0.01) within carbon metabolism and respiration GO
biological process categories were expected since the list of
genes within these processes are known to be transcriptionally
regulated by Snf1.31 Enriched protein expression changes
within the nucleic acid metabolic process group were also
expected as there is an increasing number of reports describing
the role of Snf1 in transcription regulation through histone
modification and chromatin remodeling.16,32 Our global scale
proteomics study also indicated potentially new areas of Snf1-
mediated regulation. For example, little was known about the
Snf1’s involvement in the regulation of amino acid metabolism.
Table 4 shows that the enriched number of proteins with
significant expression changes was found within the amino acid
and derivative metabolic process group for all three mutant
strains. This indicated that amino acid metabolism was highly
linked to the Snf1 kinase’s function under these experimental
conditions. Further studies are required to determine the links.
The oxidoreductase activity GO molecular function category
was found to be enriched (hypergeometric distribution test: P
< 0.01) with significantly changed expression having proteins,
in the three mutant strains compared to the wild-type strain.
These proteins were distributed among the GO biological
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process categories, such as generation of precursor metabolites
and energy (Adh2, Idp2, Tdh1), electron transport, amino acid
(Glt1), lipid, carbohydrate, and vitamin (Gut2) metabolic
processes (Table 4). These findings indicated that Snf1 was
clearly playing a role as a global regulator in the central
metabolism of yeast.33

Overall, the study identified protein expression changes that
were expected based on prior literature, confirming the high
quality of the generated global quantitative proteome data set.
It also indicated Snf1 involvement in the regulation of meta-
bolic processes for which Snf1 has not been explicitly discussed
before, indicating its broader regulatory role in yeast.

Discussion

Elimination of Nonunique Peptides Improved the
Quality of the Quantitative Proteome Data Set
Substantially. A significant improvement in the ability to
identify statistically meaningful protein expression differences

among proteins identified just by unique peptides was il-
lustrated by Figure 3. One major advantage of using CenSus
was the ability to visualize the data. Graphical evaluation of
the data (relatively quantified peptide expression differences)
offered an opportunity to identify unusual distributions of
peptide ratios that might limit the ability to accurately deter-
mine the protein abundance ratio. This was clearly demon-
strated in Figure 3 where the difficulties caused by the presence
of redundant (nonunique) peptides in the analysis were readily
identified. Thus, manual evaluation of quantitative data, where
possible, could lead to a significant improvement in the quality
of the quantitative results. For spectral counting, on the other
hand, the high variability in spectral counts for different
peptides of a protein limited their utility. Meaningful quantita-
tive information required summing up all peptide spectra
corresponding to a protein across an entire experiment to
generate one abundance value for the protein. In this case, it
was not possible to identify unusual distributions of peptide

Table 4. List of Significantly Changed Proteins in the ∆snf1, ∆snf4, and ∆snf1∆snf4 and the GO Process Categories, in which
These Proteins Were Found to Be Enricheda

∆snf1 ∆snf4 ∆snf1∆snf4

GO process P value list of proteinsb P value list of the proteins P value list of proteins

generation of precursor
metabolites and energy

2E–09 ACS1, ADH2, PGM2,
GND2, CIT3, IDP2, CYB2,
TDH1, NDE2, GSY2, PET10

1E–11 MLS1, ACS1,
ICL1, ADH2,
GND2, PGM2,
IDP2, SOL4,
CYB2, NDE2,
CIT3, TKL2,
IDP3, TDH1,
GPH1, YJL045W

1E–11 ADH2, ACS1, MLS1, TDH1,
PGM2, ICL1, IDP3, CYB2,
GLC3, IDP2, TSL1, MDH2,
CIT3, TPS2, INO1, GSY2,
ETR1, MCR1, NTH1, IDH2,
HXK2, CIT2, IDH1, AAT2, ALD5

amino acid and derivative
metabolic process

2E–09 YAT1, YAT2, ICL2,
GAD1, IDP2, CAT2, STR3

6E–11 YAT2, YAT1,
GAD1, IDP2,
ICL2, CAT2,
STR3, GLY1

1E–11 CAT2, IDP2, YAT1, ICL2,
YAT2, GLT1, THR4, SER1,
IDH2, CPA2, THR1, HOM3,
CIT2, HIS5, BAT1, SER3,
IDH1, ARG8, ILV3, ARG4,
ARO9, ECM40, PRO2, TRP3,
ILV1, HIS1, AAT2, ASN2,
ILV2, ARO8, ARO2, HIS7,
HOM2, GLY1, HIS4, MET22,
ARG1, ORT1, ARO4, ARO3, ASN1

carbohydrate metabolic
process

2E–05 PGM2, GND2, CIT3, IDP2,
TDH1, GSY2

1E–10 MLS1, ICL1,
GND2, PGM2,
IDP2, SOL4,
CIT3, TKL2,
IDP3, TDH1,
GPH1

3E–10 MLS1, TDH1, PGM2, ICL1,
IDP3, GLC3, IDP2, GUT2,
TSL1, MDH2, CIT3, TPS2,
INO1, GSY2, AMS1, NTH1,
IDH2, HXK2, CIT2, IDH1,
AAT2

vitamin metabolic process 3E–05 YAT1, YAT2, ADH2, SNZ1,
GND2, CAT2, NDE2

3E–06 YAT2, YAT1,
ADH2, GND2,
SOL4, CAT2,
NDE2, TKL2,
IDP3

2E–04 ADH2, IDP3, CAT2, GUT2,
YAT1, YAT2

DNA metabolic process 2E–04 ACS1, SWR1, MRC1, MYO4 7E–04 ACS1, MSC1,
SWR1

- -

RNA metabolic process,
transcription

5E–04 MRC1, MUD2, TFC3, RRP8 2E–05 MUD2, DCS2,
CSR2

2E–04 HXK2, PUS6, CSR2

lipid metabolic
process

2E–03 SPS19, GPT2, PLB2, FOX2,
POT1, ERG10

4E–05 LEM3, IDP3,
POT1, FOX2,
PLB2, SPS19,
ERG10, ATF2

6E–06 ATF2, POT1, PLB2, IDP3, FOX2,
FAS1, POX1, FAS2, FAA2,
AYR1, SPS19, ERG11, TES1,
GPT2, ACC1, ETR1, MCR1

cell cycle 3E–03 MRC1 3E–03 MSC1 8E–04 MSC1, ADY2, SDS24
cellular respiration – - - - 2E–03 ALD5, CYB2, MCR1
electron transport - - - - 4E–03 CIT3, ETR1, IDH2, IDH1

a The GO process categories, in which a chance of seeing significant protein expression change (P < 0.05) was high (hypergeometric test: P < 0.01),
were summarized in this table. The test was performed in relation to the distribution of 2388 quantified proteins among GO process categories. b Only
proteins for which expression was g2-fold change were included in the table.
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ratios to assess their affects on the quality of the overall
quantitative measurements. In conclusion, the elimination of
nonunique peptides improved the quality of the identified and
quantified global proteome data sets. This was particularly
crucial when the quantification was performed using spectral
counting since no information regarding the distribution of the
peptide ratios could be obtained.

Benefits Found when Stable Isotope Labeling or Spectral
Counting Was Used. The results of the comparative analysis
between stable isotope labeling and spectral counting showed
distinct benefits in each method. Stable isotope labeling based
quantification by CenSus was found to be more sensitive, was
highly reproducible between biological replicates, and gener-
ated higher precision data for low-abundance peptides and
proteins compared to spectral counting (Figure 2). On the basis
of these characteristics and the ability to statistically evaluate
the distribution of peptide ratios for a protein to assess the
precision of the expression level measured for each protein in
that experiment, the isotope labeling approach was better able
to identify small, but still biologically significant, changes in
protein expression levels between the mutants and the wild-
type strain.

In the case of spectral counting, when a large number of
spectra were identified for each of the proteins, the results of
the quantified relative protein expression differences correlated
well with stable isotope labeling. The high spectral coverage
required by spectral counting could be readily achieved when
simple protein mixtures were analyzed or repetitive MudPIT
analysis was performed on the same sample, and spectra from
multiple analyses could be summed up. In those cases where
redundant spectral coverage of proteins could be achieved,
spectral counting becomes advantageous since it is easy to use
and does not require prior isotopic labeling of the sample.

In conclusion, the study examined the effectiveness of two
different quantitative proteomic strategies applied to the same
proteomic data set. Significant protein expression changes were
found and confirmed using both analysis methods. In those
cases where a discrepancy was found between the methods,
the discrepancy could typically be explained by too few
identified spectra for that protein. Unusual distributions of
peptide ratios between samples due to the inclusion of peptides
that map to more than one protein (nonunique peptides) or
modified peptides were another potential factor capable of
skewing calculated protein abundance ratios when either of
the quantitative approaches was used.
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Highly conserved among eukaryotic cells, the yeast AMP-activated kinase (AMPK) Snf1 is a 

central regulator of carbon metabolism.  To map the complete network of interactions around 

the protein kinase Snf1 and its regulatory subunit Snf4, we measured global gene expression, 

protein levels, and metabolite levels in wild-type, ∆snf1, ∆snf4, and ∆snf1∆snf4 knock-out 

strains.  Integrating these measurements with global protein-protein-interactions, protein-DNA-

interactions and the yeast genome-scale metabolic model reveals that Snf1 plays a far more 

extensive role in controlling both carbon and energy metabolism than previously understood.  

Similar to the function of AMPK in humans, our findings show that Snf1 is a low energy 

checkpoint.  Our results indicate that it is possible to use yeast more extensively as a model 

system for studying the molecular mechanisms underlying the global regulation of AMPK in 

mammals, failure of which leads to aging and metabolic diseases, such as diabetes and 

obesity. 
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AMP-activated kinases (AMPKs) are highly conserved among yeast, plants, and mammals1 and are 

central regulators involved in cellular development and survival.  Mammalian AMPK, for example, is a 

master regulator of energy control.2  Its function is linked to metabolic and aging diseases and it is a 

potential drug target against obesity and diabetes.3  Through homology studies, yeast AMPK (Snf1) 

has been used as a model to study human AMPK.  For example, the upstream kinases of Snf1, Elm1, 

Pak1, and Tos3, helped identify their mammalian counterparts, Lkb1 and CaMKK-β, that activate 

human AMPK.4   

Snf1 regulates carbon metabolism during growth on various carbon sources.5, 6  In a complex with its 

regulator Snf4 and scaffolding protein Gal83, Snf1 regulates the utilization of alternative carbon 

sources via the transcription factors (TFs) Mig1 and Cat87.  Moreover, two other Snf1 scaffolding 

proteins Sip1 and Sip2 determine distinct Snf1-substrate specificity and sub-cellular localization.8   

There is, however, growing evidence that suggests a much broader role of Snf1 as a master regulator 

of both carbon and energy metabolism, probably in concert with the protein kinase Tor1.  Genome-

wide transcriptional profiling in yeast batch cultures has identified that active Snf1 is required for more 

than 400 of 1500 gene expression changes under glucose exhaustion.9, 10  At the level of protein 

interactions (BioGRID database),11 Snf1 associates with 209 proteins, only 10% of which are enriched 

(hypergeometric test: P = 1.5E-5) within GO carbohydrate metabolic process group (e.g. Adr1, Cat8, 

Sip4, Pho85, Gsy2, Reg1, Glc7).  Moreover, Snf1 as well as mammalian AMPK has been found to 

respond to various nutrient and environmental stresses including oxidative stress,12 implicating Snf1 as 

a global regulator in addition to controlling the utilization of various carbon sources.13  Furthermore, the 

remarkable structural conservation of AMPKs’ heterotrimeric complexes, specific upstream activators 

and downstream targets (at transcriptional, protein synthesis and degradation, and  post-translational 

levels) in different kingdoms suggests a common AMPK ancestral function as a key regulator of energy 

homeostasis.1   

Clarifying the organization and interactions of the Snf1 regulatory network is important for uncovering 

the complexity of global AMPK function and, ultimately, for using yeast as a model to study the role of 

AMPK in humans.  However, neither transcriptional profiling, protein-protein interactions, nor ancestry 
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alone can adequately describe the global regulatory role of Snf1.  For this, a systems approach 

combining global measurements across different levels of the cellular hierarchy (mRNAs, proteins, and 

metabolites) is required.  Recently, Ishii et al. and Castrillo et al. demonstrated the utility of such an 

approach for mapping the cellular response of Escherichia coli and Saccharomyces cerevisiae, 

respectively, to genetic and environmental perturbations.14, 15  Beyond mapping, we integrated data 

from genome-wide expression profiling and protein measurements with different networks comprising 

protein-protein interactions, protein-DNA interactions, and metabolic reaction stoichiometry.  This 

systems approach enabled reconstruction of the Snf1 complex regulatory network. 

 

Results 

To construct a map of network interactions controlled by the Snf1 kinase, we first collected a global 

dataset for wild-type S. cerevisiae CEN.PK113-7D and three Snf1 complex knock-out mutants ∆snf1, 

∆snf4, ∆snf1∆snf4 (supporting information (SI) Table 1) grown in triplicate in carbon-limited chemostat 

cultivations at a fixed dilution rate D = 0.100 h-1.16  Abundances of gene, protein, and intracellular 

metabolites were quantified using Affymetrix GeneChip® Yeast Genome 2.0 Arrays,17 multidimensional 

protein identification technology followed by quantitation using stable isotope labeling approach,16, 18 

and gas-chromatography coupled to mass spectrometry,19 respectively.  We quantified a total of 5667 

transcripts, 2388 proteins, and 44 intracellular metabolites.  At a threshold of P < 0.05, a total of 1651, 

1810 and 2395 mRNAs, 381, 396 and 352 proteins and 20, 14 and 34 metabolites had significantly 

changed abundance levels in the knock-out ∆snf1, ∆snf4, ∆snf1∆snf4 mutants compared to the wild-

type, respectively (SI Table 2).   

A systems approach to mapping Snf1 response pathways.  To reveal how the biological system 

was reprogrammed as a result of deleting SNF1, SNF4, or both SNF1 and SNF4, we applied several 

systems-wide methods that integrated our experimental measurements with data from protein-DNA 

binding,20, 21 protein-protein interaction databases,11 and the yeast genome scale metabolic model.22  

First, we used high-scoring subnetwork analysis23 to identify co-regulatory circuits of directly connected 
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proteins and regulated genes that are significantly changing as a group in response to the loss of Snf1 

kinase activity.  P-values from a two-tail Student’s t-test reflecting the significance of change in 

transcript levels between each mutant and the wild-type strain were converted into Z-scores using the 

inverse cumulative normal distribution function.  Z-scores were subsequently mapped on to protein and 

DNA nodes of an interaction network defined by 57680 protein-protein interactions (BIOGRID-

Saccharomyces_cerevisiae v.2.0.25)11 and 10884 protein-DNA interactions,20 and high-scoring 

subnetworks of coordinated biomolecular pathways were identified through a simulated annealing 

algorithm.23  Second, to integrate our transcriptomics and proteomics measurements in the same 

analysis, we extended the high-scoring subnetwork analysis by mapping protein abundance data for 

protein nodes and included interaction edges between mRNA species and their corresponding proteins 

(see supporting materials and methods).  We call this novel approach, which amplifies the significance 

of coordinated mRNA and protein expression, ‘DOGMA subnetwork analysis’.  Third, we developed 

and applied a ‘Reporter Effector’ algorithm24 to identify TFs and regulatory proteins whose connected 

genes were most significantly affected and responded as a group to genetic disruptions of the Snf1 

complex (see supporting materials and methods).  Here, Z-scores for each effector were calculated 

based on the average of Z-scores of its adjacent genes (based on gene expression data) in a network 

of 3246 protein-DNA interactions and 484 effectors collected from ChIP-chip experiments and the YPD 

database.20, 21  The cumulative Z-score was corrected for the size of the group.  Finally, we applied the 

Reporter Metabolite algorithm25 to our gene and protein expression data for discovering metabolic hot-

spots that significantly responded to the loss of Snf1 kinase activity (see supporting materials and 

methods).  Here, we queried a network comprising interactions derived from a genome scale metabolic 

model consisting of 708 enzymes, 584 metabolites and 1175 reactions.22 

In total, our four different analyses identified 54 significant network interactions (P < 0.05) where Snf1 

kinase plays a critical role (Fig. 1) and revealed the global regulatory network of the Snf1 kinase.  High-

scoring subnetwork analysis revealed three subnetworks comprising 301, 363, and 334 nodes and 

651, 987, and 834 edges for the ∆snf1, ∆snf4, ∆snf1∆snf4 mutants, respectively.  DOGMA subnetwork 

analysis identified three networks comprising of 444, 450, and 376 nodes and 766, 740  
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Figure 1.  The reconstructed regulatory network of Snf1 kinase.  The network was reconstructed 
by integrating mRNA and protein expression data for the ∆snf1 mutant versus the wild-type strain with 
previously reported protein-DNA20, 21 and protein-protein (BIOGRID-Saccharomyces_cerevisiae 
v.2.0.25)11 interactions, and with protein-metabolite interactions provided by the yeast genome-scale 
metabolic model.22  The network includes Snf1-interacting proteins that were identified by using high-
scoring subnetwork and DOGMA analyses (blue connections to diamonds and circles, respectively).  
Diamonds show gene expression data and circles show protein expression data, which is colored 
according to log2-ratio color scale.  The network also includes Reporter Metabolites, around which 
mRNA or protein abundance changes were significantly concentrated in response to the loss of SNF1 
(grey connections to diamonds and circles, respectively).  Reporter Effectors of Snf1 (orange 
connections to squares) show gene expression data.  The Reporter Effectors that are reported to 
associate to Snf1 kinase11 are shown using solid orange connections.  Nodes with black borders have 
significantly different (P < 0.05) mRNA or protein expression data for the ∆snf1 mutant versus the wild-
type strain.  Genes and proteins are named according to the SGDatabase nomenclature.  PEP = 
phosphoenolpyruvate, SAICAR = 1-(5'-Phosphoribosyl)-5-amino-4-(N-succinocarboxamide)-imidazole, 
UDP-GalNAc = UDP-N-acetyl-D-galactosamine, GlcNAc-1-P = N-Acetyl-D-glucosamine 1-phosphate; 
m = mitochondrial, ext = extracellular.  The reconstructed Snf1 kinase regulatory network based on 
data from the ∆snf4 and ∆snf1∆snf4 strains versus wild-type strain are presented in SI Figs. 3 and 4.  
More detailed information describing the subnetwork, Reporter Effector and Reporter Metabolite 
analyses outputs can be found in SI Tables 3-7. 

 

and 609 edges for the ∆snf1, ∆snf4, ∆snf1∆snf4 mutants, respectively.  Within these networks, focus 

was given towards first neighbors of Snf1 kinase.  From these co-regulated circuits, 12, 19 and 13 first 

neighbor nodes of the Snf1 kinase were identified using high-scoring subnetwork analysis and 21, 14, 

and 16 first neighbor nodes of the Snf1 kinase were identified using DOGMA subnetwork analysis for 
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the ∆snf1, ∆snf4, ∆snf1∆snf4 mutants, respectively (Fig. 1, SI Figs. 3 and 4).  Our analysis identified a 

few proteins (e.g. Mig1, Snf4, Acc1, Gsy2) that were expected on the basis of previous studies, but we 

also identified many other proteins interacting with Snf1, including proteins involved in carnitine 

metabolism (Yat2, Cat2), lipid metabolism (Smp2, Fox2), and the stress response (Hog1, Cna1).  

Strikingly, ~ 85 % of the first neighbors of Snf1 play a primary role outside the carbon metabolism.  

Reporter Effector analysis (which identifies regulators whose targets are most significantly impacted by 

the loss of Snf1) identified 22, 16 and 22 effectors for the ∆snf1, ∆snf4, ∆snf1∆snf4 mutants 

respectively (Fig. 1, SI Figs. 3 and 4).  Of importance, this method identified known TFs 

phosphorylated by Snf1 (e.g. Cat8), as well as TFs involved in redox, energy (Yap1, Skn7), nitrogen 

and amino acid (Bas1, Gcn4) metabolism that have not previously been implicated as being regulated 

by Snf1.  Finally, corroborating our analyses, the Reporter Metabolite approach identified key changes 

within carbon, energy (acetyl-CoA, succinate, glycogen, malonyl-CoA, long-chain carboxylic fatty acids) 

and redox metabolism (oxidized thioredoxin, NAD+/NADH) (Fig. 1, SI Figs. 3 and 4), highlighting the 

significant Snf1 involvement in controlling energy homeostasis.  

Validation of previously described Snf1 regulation.  At the core of the Snf1 regulatory network (Fig. 

1), there are players known to be impacted by Snf1 (e.g. glucose repression regulatory cascade 

nodes): Mig1, Hxk2, Snf4, Cat8.  For example, Cat8 regulates the glyoxylate cycle by controlling 

expression of the ICL1, MLS1, and MDH2 genes.7  Consistent with the importance of the Snf1-Cat8 

interaction, the expression of these genes, their coding proteins and the measured level of intracellular 

glyoxylate were significantly lower in the ∆snf1 mutant relatively to the wild-type strain (P < 0.05) (SI 

Fig. 5, SI Tables 8 and 9).  Overall, the results demonstrated a high degree of correlation for glucose 

repression related genes, their coding proteins and pathway metabolites.  This confirms prior 

knowledge of glucose repression regulatory cascade studies7, 13 indicating that transcriptional 

regulation is the primary glucose repression control mechanism and this validates our approach. 

Snf1 is revealed as a low energy check-point.  Mammalian AMPK is described as a low energy 

checkpoint that mediates the energy state of the cell by regulating catabolic and anabolic reactions.4  

Recent reviews have also implied that the yeast Snf1 protein kinase is a global energy regulator.1, 26  

However, global evidence across multiple levels of the cellular hierarchy is still lacking.  If this ancestral 

function is conserved, yeast Snf1 kinase would be expected to induce energy generating and repress 

energy consuming reactions under carbon limited growth conditions as used in this study.  Indeed, our 

data support this hypothesis.  High-scoring subnetwork analysis identified the most significant factors 

associated with Snf1 to be Fox2, Acc1 and Fas1 (Fig. 1, SI Figs. 3 and 4).  To explore how these 
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pathways were impacted, we built a pathway model linking all measurement types and known protein-

protein interactions in Cytoscape27 (Fig. 2).  Genes and proteins (Cta1, Pox1, Fox2 and Pot1) involved  

  

Figure 2.  The impact of Snf1 kinase loss on fatty acid metabolism demonstrates its role as a 
global energy regulator.  This figure comprises information of the yeast metabolic network,22 the 
reconstructed Snf1 regulatory network, and raw mRNA, protein and metabolite abundance data for the 
�snf1 mutant compared to the wild-type strain (Fig. 1, SI Tables 8 and 9).  This figure demonstrates 
that the loss of Snf1 represses energy producing reactions (e.g. β-oxidation).  In other words, the 
presence of Snf1 induces energy generating reactions, pointing to its role as a low energy checkpoint.  
Enzymes are mapped using protein (in diamonds) and mRNA (in small circles) expression data, which 
is colored according to log2-ratio color scale.  Available protein and metabolite relative abundance data 
is mapped on the regulators and metabolites, accordingly.  Nodes with black borders have significantly 
different (P < 0.05) expression data for the ∆snf1 mutant versus the wild-type strain.  Grey nodes 
represent components that were not measured.  Five Snf1-protein interactions (solid grey lines) were 
identified using subnetwork analyses.  Colored dotted lines indicate previously reported protein, 
transcriptional and allosteric regulations.7, 28   

 

in β-oxidation had lower expression in the Snf1 mutants relative to the wild-type (Fig. 2).  In agreement, 

quantitative metabolome analysis revealed that free fatty acids (oleic, palmitoleic, myristic, palmitic, 

and stearic acid) accumulated in the Snf1 kinase knock-out mutants relatively to the wild-type strain, 

rather than being catabolised by β-oxidation to generate energy (SI Tables 8 and 9).  Loss of Snf1 

therefore leads to a decrease in energy producing pathways.  This global regulation is likely through 

Snf1 induction of β-oxidation gene expression via the TFs Adr1, Pip2 and Oaf1.7, 28 
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Further evidence for the role of Snf1 in controlling energy metabolism through β-oxidation activation 

comes from exploring the fatty acid transfer system.  In humans, the carnitine metabolic and transfer 

system plays a rate limiting role for fatty acid β-oxidation.  Notably, it is found to be regulated by AMPK 

through controlling the level of malonyl-CoA.29  Analogous to humans, and previously not observed in 

yeast, our data indicate that the carnitine metabolism and transfer system are clearly under the control 

of the Snf1 kinase.  First, carnitine transfer associated proteins Cat2 and Yat2 were identified as key 

targets of Snf1 by subnetwork analyses and shown to have lower protein and gene expression levels 

when the Snf1 kinase complex was disrupted.  Second, malonyl-CoA and carnitine derivatives were 

identified as reporter metabolites (indicating that significant changes in gene and protein expression 

are centred around these metabolites).  Third, the malonyl-CoA generating enzyme Acc1 had lower 

expression in the mutants versus the wild-type strain.  Therefore, either through Snf1 association to 

Cat2 and Yat2, or through regulating production of malonyl-CoA, yeast Snf1 kinase controls the 

carnitine metabolic and transfer system and consequently fatty acid β-oxidation.   

Substantiating the hypothesis that Snf1 is a low energy checkpoint, repression of energy consuming 

(fatty acid and sterol biosynthesis) pathways was observed under carbon limitation in the mutants 

relative to the wild-type strain (Fig. 2).  Lipid biosynthesis may also be decreased, as the expression of 

GUT1 and its coding protein catalyzing the formation of glycerol-3-phosphate (the structural backbone 

of many lipids) synthesis was decreased.  This result is consistent with previous experiments showing 

GUT1 expression is activated by Snf1.28, 30  Given the observed increase in the levels of free fatty 

acids, serine and glycine, Snf1-mediated control of GUT1 expression might, in part, be regulating the 

biosynthesis of phospholipids (SI Fig. 5, SI Table 8).  Corroborating this hypothesis, our DOGMA 

subnetwork analysis identified several components involved in de novo lipid biosynthesis such as 

Acc1, Fas1 and Smp2, which all have AMPK-regulated human analogs.   

Energy storing pathways are also downregulated through a Snf1 dependent mechanism.  Glycogen is 

one of the major storage depots of the cell, and both the mRNA expression and protein levels of Gsy2, 

glycogen synthase, are decreased in the Snf1 mutants.  Importantly, Gsy2 and Pho85 (which regulates 

the activity of Gsy2)31 are identified in DOGMA subnetwork analysis as being some of the most 
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important network players impacted by the loss of Snf1 kinase activity.  Snf1 control of Msn2,4, which 

regulates the expression of GSY1 encoding glycogen synthase,31, 32 was also implicated (SI Fig. 4, SI 

Table 9).  These results are consistent with the identification of glycogen as a Reporter Metabolite.     

Collectively, our systems approach identified that energy generating β-oxidation pathways, energy 

consuming fatty acid synthesis and energy storing glycogen synthesis pathways were significantly 

affected by the loss of Snf1 kinase activity, indicating that Snf1 is mimicking the role of its homolog 

AMPK in mammalian cells as a low energy checkpoint.   

Snf1 as a regulator of redox metabolism.  Energy balancing not only depends on energy 

consumption and generation reactions, but also on the redox state of the cell.  In this study, the 

oxidoreductase activity GO molecular function category was enriched (hypergeometric test: P = 5E-07, 

P = 6E-03) for both mRNA and proteins whose abundance were found to be significantly changed.  

The systems analysis also implicated multiple genes, proteins, and metabolites that respond to redox 

change or are involved in redox maintenance (Yap1, Skn7, Msn2,4, Bas1, Pho2, Ssa1, Hsf1, Gts1, 

Fas1, Fox2, oxidized thioredoxin, NAD+/NADH, glutathione) (Fig. 1, SI Figs. 3 and 4).  Based on a 

previously observed Yap1-Sip2 interaction,33 we suggest that Snf1 kinase may contribute to redox 

homeostasis through a non-glucose repression signalling mechanism.  Specifically, the lower 

expression was found among genes (e.g. CTT1, SOD1, SOD2, GPX2)  that are involved in maintaining 

the redox balance and are regulated by oxidative stress through, Yap1 (SI Table 9).  The data indicate 

that a lower oxidative stress, thus, a less induced oxidative stress defense system, is present in the 

mutants versus the wild-type in this study. 

The role of Snf1 in controlling longevity.  Noting major changes in carbon, energy, and redox 

metabolism (previously implicated in aging in yeast, C. elegans, and humans), we also considered the 

impact of Snf1 on cell longevity.  Earlier studies have shown that overproduction of Snf1 kinase causes 

accelerated aging34 and that a ∆snf4 strain age slower.35  Our study results demonstrated that deletion 

of the Snf1 kinase resulted in lower induction of gluconeogenesis and glycogen biosynthesis (SI Fig. 

5), mimicking the biochemical and gene expression profile of a slower aging ∆snf4 strain described by 

Gordon et al.35, 36  Furthermore, we find a significant effect on redox metabolism and oxidative stress, 
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which has also been shown to be linked to aging.37  Recently the protein kinase Tor1 was linked to 

aging.38  Interestingly our analysis shows that Snf1 interacts with many pathways that may also be 

linked to the protein kinase Tor1 and thus our results suggest that Snf1 and Tor1 both play a role in 

integrating information on the nutritional state and in concert control energy and redox metabolism, and 

thereby also aging. 

 

Discussion 

Using our systems approach, novel Snf1 targets and their regulation on gene or protein level (in 

response to the loss of active Snf1) were identified.  Highlighting the importance of measuring both 

mRNAs and proteins, Snf1 neighbours identified only in DOGMA subnetwork analysis implied 

important post-transcriptional regulation effects.  For example, by only identifying Acc1 in DOGMA 

analysis, our results indicate that Acc1, which is phosphorylated and inactivated by Snf1,39 is regulated 

on the protein expression level when the Snf1 kinase complex is inactive.  As Pho85 and Gsy2 were 

also only identified as Snf1 first neighbours in DOGMA subnetwork analysis, combined gene 

expression and protein level data indicate that post-transcriptional control through Pho85 and Gsy2 

regulate glycogen metabolism when Snf1 kinase is inactive.  Because of the mode of action of Snf1 

kinase activity, measuring both gene expression and protein levels is an appropriate strategy for 

identifying regulatory structure.  Intracellular metabolome data was further used to validate changes in 

metabolic pathways which, through our network analysis, were identified to be Snf1-controlled (e.g. 

glyoxylate as described above) (Fig. 2, SI Fig. 5).  Measured free fatty acids (SI Table 8) highlighted 

the importance of available metabolome data and contributed to our understanding of role of Snf1 in 

controlling lipid metabolism and energy homeostasis.  Overall, our results indicate the beneficial 

contribution of utilizing measurements from multiple cellular levels to reconstruct regulatory networks. 

We have combined global data measurements from three levels of the cell (mRNAs, proteins, and 

metabolites) to construct a regulatory map of Snf1 kinase.  By integrating our measurements with 

different network based interactions and metabolic structures, our systems approach substantially 

increased information content and minimized the appearance of false positives from global-scale 
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datasets.  The regulatory map reconstructed here identifies new Snf1 targets and confirms previously 

described connections, validating the power of our systems approach.  Overall, our analysis reveals 

that Snf1 kinase is involved in multiple cellular pathways and, in particular, acts as a low energy 

checkpoint.  Corroborating the data presented in the main text, data from the ∆snf4 and ∆snf1∆snf4 

strains are consistent and strengthen the conclusion that Snf1 is a global energy regulator.  We 

suggest that the Snf1 kinase mediates energy and redox balancing for optimal yeast growth: (i) the 

Snf1 kinase in complex with Snf4 and Gal83 regulates carbon and energy metabolism,7, 13 (ii) the Snf1 

kinase in complex with Snf4 and Sip2 is involved in the regulation of redox balancing and longevity.33, 35  

Thus, our work strengthens the homology in function between yeast Snf1 and mammalian AMPK and 

opens the door for further using yeast as a model organism to study AMPK as a potential route to 

better understand and ultimately address metabolic disorders. 

 

Materials and Methods 

Strains and cultivation.  The S. cerevisiae strains used in this study were a prototrophic strain 

CEN.PK 113-7D (MATa MAL2-8c SUC2),40 its derivatives ∆snf1 and ∆snf4 supplied by Koetter 

(Frankfurt, Germany) and ∆snf1∆snf4 generated by Usaite et al.41  The only genotypic difference 

among strains used is summarized in SI Table 1.  Steady state aerobic chemostat cultures were grown 

at 30 ºC in 2-liter bioreactors (Braun B) using a dilution rate of D = 0.100 (± 0.005) h-1.  Chemostat 

cultivation ensured that metabolic and regulatory changes observed were specific to disruptions of the 

Snf1 complex, and not complicated by external effects resulting from the specific mutant physiology 

(e.g. different growth rates).  Detailed description of the cultivations performed and the composition of 

the carbon limited minimal medium used was summarized previously.16  After steady state was 

reached, the cell samples for metabolome, transcriptome and proteome analyses were collected.   

Transcriptome analysis and data acquisition.  Samples for RNA isolation were taken from 

chemostat cultivations as previously described.42  Total RNA was extracted by using a FastRNA Pro 

Red Kit (BIO 101© Systems, Inc., Vista, CA).  The cDNA synthesis, cRNA synthesis, labeling and 
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cRNA hybridization on the oligonucleotide array Yeast_2.0 (Affymetrix, CA) were performed as 

described in the Affymetrix GeneChip expression analysis manual that was downloaded from the 

Affymetrix website in October 2004.  The Yeast_2.0 arrays were scanned with the GeneChip® 3000 

7G Scanner.  The Affymetrix microarray suite v5.0 was used to generate CEL image files of the arrays.  

The array images were then normalized and the transcript levels of all S. cerevisiae probe sets were 

calculated with the perfect-match model in dChip v1.2.43  The gene expression data is available on the 

ArrayExpress.  The accession number is E-MEXP-1407. 

Proteome analysis and data acquisition.  Quantitative proteome data was generated and described 

by us previously.16  Briefly, samples for total protein were collected from chemostat cultivations, cells 

were lysed and total protein was extracted.  Protein concentration per sample was determined, and 

14N-labeled and 15N-labeled samples were mixed 1:1 by protein weight.  A total of 200 µg of total 

protein was chemically modified and digested by tripsin and endoproteinase LysC.  The protein pool 

digest was analyzed using Multidimensional Protein Identification Technology (MudPIT).18  A tandem 

mass spectrum was analyzed and relative protein abundance was quantified using stable isotope 

labeling as previously described.16, 44  Complete list of proteins, for which abundances were found to be 

significantly (P < 0.05) changed (in the ∆snf1, ∆snf4 and ∆snf1∆snf4 versus wild-type strain), based on 

the stable isotope labeling approach is available at http://pubs.acs.org as supplementary data to Usaite 

et al.16 

Metabolome analysis and data acquisition.  Cells from chemostat cultivations were rapidly 

quenched according to de Koning and van Dam.45  Cells were centrifuged at 10,000 x g for 3 minutes 

in -20°C to separate the cells from the quenching solution.  Chloroform: methanol: buffer (CMB) 

extraction and pure methanol extraction (MEOH) were carried out.46  Samples were freeze-dried at -

56°C using a Christ-Alpha 1-4 freeze dryer.19.  Amino and non-amino organic acid levels were 

determined by GC-MS analysis according to Villas-Boas et al19 except that a Finnegan FOCUS gas 

chromatograph coupled to single quadrupole mass selective detector (EI)   (Thermo Electron 

Corporation, Waltham, MA, USA) was used.  Peak enumeration was conducted with AMDIS (NIST, 

Gaithersburg, MD) with default parameters, and identification of conserved metabolites was conducted 
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with SpectConnect,47 using default parameters and a support threshold of 3.  Because SpectConnect is 

unable to resolve metabolite peaks that have similar MS spectra and are close in time, hand curation of 

the AMDIS output files was also performed.  Samples were normalized by an internal standard 

chlorophenylalanine (30 mL of a 4 mM solution was added prior to extraction) and by the biomass 

weight per sample.  The identified and quantified metabolites are listed in SI Table 8.       

Data analysis.  Reporter Metabolite analysis was used to identify metabolic hot spots that significantly 

responded to the Snf1 kinase complex disruption at the gene or protein expression level.25  Reporter 

Effector analysis was used to identify TFs and regulatory proteins whose connected genes were most 

significantly affected and responded as a group to genetic disruptions of the Snf1 complex.24  High-

scoring subnetwork analysis 23 and in this study developed DOGMA subnetwork analysis were used to 

identify co-regulatory circuits of directly connected proteins and regulated genes that are significantly 

changing as a group in response to the loss of Snf1 kinase activity.  Reporter Metabolite, Reporter 

Effector, high-scoring and DOGMA subnetwork analyses are described in detail in supporting materials 

and methods.    
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6,� )LJXUH� ��� � 7KH� UHFRQVWUXFWHG� UHJXODWRU\� QHWZRUN� RI� 6QI�� NLQDVH�� � 7KH� QHWZRUN� ZDV�

UHFRQVWUXFWHG�E\�LQWHJUDWLQJ�P51$�DQG�SURWHLQ�H[SUHVVLRQ�GDWD�IRU�WKH�∆VQI��PXWDQW�YHUVXV�WKH�ZLOG�

W\SH�VWUDLQ�ZLWK�SUHYLRXVO\�UHSRUWHG�SURWHLQ�'1$��+DUELVRQ��HW�DO���������1DWXUH��+RGJHV��HW�DO���������
1XFOHLF� $FLGV� 5HV��� DQG�SURWHLQ�SURWHLQ� �%,2*5,'�6DFFKDURP\FHVBFHUHYLVLDH� Y��������� �6WDUN��HW� DO�
��������1XFOHLF�$FLGV�5HV���LQWHUDFWLRQV��DQG�ZLWK�SURWHLQ�PHWDEROLWH�LQWHUDFWLRQV�SURYLGHG�E\�WKH�\HDVW�
JHQRPH�VFDOH�PHWDEROLF�PRGHO� �)RUVWHU�� HW� DO� ��������*HQRPH� 5HV���� � 7KH� QHWZRUN� LQFOXGHV� 6QI��
LQWHUDFWLQJ�SURWHLQV�WKDW�ZHUH�LGHQWLILHG�E\�XVLQJ�KLJK�VFRULQJ�VXEQHWZRUN�DQG�'2*0$�DQDO\VHV��EOXH�
FRQQHFWLRQV�WR�GLDPRQGV�DQG�FLUFOHV��UHVSHFWLYHO\����'LDPRQGV�VKRZ�JHQH�H[SUHVVLRQ�GDWD�DQG�FLUFOHV�
VKRZ�SURWHLQ�H[SUHVVLRQ�GDWD��ZKLFK�LV�FRORXUHG�DFFRUGLQJ�WR�ORJ � �UDWLR�FRORXU�VFDOH���7KH�QHWZRUN�DOVR�
LQFOXGHV�5HSRUWHU�0HWDEROLWHV��DURXQG�ZKLFK�P51$�RU�SURWHLQ�DEXQGDQFH�FKDQJHV�ZHUH�VLJQLILFDQWO\�
FRQFHQWUDWHG�LQ�UHVSRQVH�WR�WKH�ORVV�RI�61)���JUH\�FRQQHFWLRQV�WR�GLDPRQGV�DQG�FLUFOHV��UHVSHFWLYHO\����
5HSRUWHU� (IIHFWRUV� �RUDQJH� FRQQHFWLRQV� WR� VTXDUHV�� VKRZ� JHQH� H[SUHVVLRQ� GDWD�� � 7KH� 5HSRUWHU�
(IIHFWRUV�WKDW�DUH�UHSRUWHG�WR�DVVRFLDWH�WR�6QI��NLQDVH��%,2*5,'�6DFFKDURP\FHVBFHUHYLVLDH�Y���������
DUH�VKRZQ�XVLQJ�VROLG�RUDQJH�FRQQHFWLRQV���1RGHV�ZLWK�EODFN�ERUGHUV�KDYH�VLJQLILFDQWO\�GLIIHUHQW��3���

������P51$�RU�SURWHLQ�H[SUHVVLRQ�GDWD�IRU�WKH�∆VQI��PXWDQW�YHUVXV�WKH�ZLOG�W\SH�VWUDLQ���*HQHV�DQG�

SURWHLQV� DUH� QDPHG� DFFRUGLQJ� WR� WKH� 6*'DWDEDVH� QRPHQFODWXUH�� � */&�� )58� DQG� 0$1� VWDQG� IRU�
JOXFRVH�� IUXFWRVH� DQG�PDQQRVH�� UHVSHFWLYHO\�� H[W�  � H[WUDFHOOXODU��P��  PLWRFKRQGULDO�� �0RUH� GHWDLOHG�
LQIRUPDWLRQ� GHVFULELQJ� WKH� VXEQHWZRUN�� 5HSRUWHU� (IIHFWRU� DQG�5HSRUWHU�0HWDEROLWH� DQDO\VHV� RXWSXWV�
FDQ�EH�IRXQG�LQ�6,�7DEOHV��������
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6,� )LJXUH� ��� � 7KH� UHFRQVWUXFWHG� UHJXODWRU\� QHWZRUN� RI� 6QI�� NLQDVH�� � 7KH� QHWZRUN� ZDV�

UHFRQVWUXFWHG�E\�LQWHJUDWLQJ�P51$�DQG�SURWHLQ�H[SUHVVLRQ�GDWD�IRU�WKH�∆VQI�∆VQI��PXWDQW�YHUVXV�WKH�

ZLOG�W\SH� VWUDLQ� ZLWK� SUHYLRXVO\� UHSRUWHG� SURWHLQ�'1$� �+DUELVRQ��HW� DO� ��������1DWXUH�� +RGJHV��HW� DO�
�������� 1XFOHLF� $FLGV� 5HV���� DQG� SURWHLQ�SURWHLQ� �%,2*5,'�6DFFKDURP\FHVBFHUHYLVLDH� Y���������
�6WDUN��HW�DO���������1XFOHLF�$FLGV�5HV���LQWHUDFWLRQV��DQG�ZLWK�SURWHLQ�PHWDEROLWH�LQWHUDFWLRQV�SURYLGHG�
E\� WKH� \HDVW� JHQRPH�VFDOH� PHWDEROLF� PRGHO� �)RUVWHU�� HW� DO� �������� *HQRPH� 5HV���� � 7KH� QHWZRUN�
LQFOXGHV�6QI��LQWHUDFWLQJ�SURWHLQV�WKDW�ZHUH�LGHQWLILHG�E\�XVLQJ�KLJK�VFRULQJ�VXEQHWZRUN�DQG�'2*0$�
DQDO\VHV��EOXH�FRQQHFWLRQV�WR�GLDPRQGV�DQG�FLUFOHV��UHVSHFWLYHO\����'LDPRQGV�VKRZ�JHQH�H[SUHVVLRQ�
GDWD�DQG�FLUFOHV�VKRZ�SURWHLQ�H[SUHVVLRQ�GDWD��ZKLFK�LV�FRORXUHG�DFFRUGLQJ�WR�ORJ � �UDWLR�FRORXU�VFDOH���
7KH�QHWZRUN�DOVR�LQFOXGHV�5HSRUWHU�0HWDEROLWHV��DURXQG�ZKLFK�P51$�RU�SURWHLQ�DEXQGDQFH�FKDQJHV�
ZHUH�VLJQLILFDQWO\�FRQFHQWUDWHG�LQ�UHVSRQVH�WR�WKH�ORVV�RI�ERWK�61)��DQG�61)���JUH\�FRQQHFWLRQV�WR�
GLDPRQGV�DQG�FLUFOHV�� UHVSHFWLYHO\��� �5HSRUWHU�(IIHFWRUV��RUDQJH�FRQQHFWLRQV�WR�VTXDUHV��VKRZ�JHQH�
H[SUHVVLRQ� GDWD�� � 7KH� 5HSRUWHU� (IIHFWRUV� WKDW� DUH� UHSRUWHG� WR� DVVRFLDWH� WR� 6QI�� NLQDVH� �%,2*5,'�
6DFFKDURP\FHVBFHUHYLVLDH� Y��������� DUH� VKRZQ� XVLQJ� VROLG� RUDQJH� FRQQHFWLRQV�� � 1RGHV� ZLWK� EODFN�

ERUGHUV� KDYH� VLJQLILFDQWO\� GLIIHUHQW� �3� �� ������P51$�RU� SURWHLQ� H[SUHVVLRQ� GDWD� IRU� WKH�∆VQI�∆VQI��

PXWDQW� YHUVXV� WKH� ZLOG�W\SH� VWUDLQ�� � *HQHV� DQG� SURWHLQV� DUH� QDPHG� DFFRUGLQJ� WR� WKH� 6*'DWDEDVH�
QRPHQFODWXUH���*/&� �JOXFRVH��$/$� �DODQLQH��H[W� �H[WUDFHOOXODU��0RUH�GHWDLOHG�LQIRUPDWLRQ�GHVFULELQJ�
WKH�VXEQHWZRUN��5HSRUWHU�(IIHFWRU�DQG�5HSRUWHU�0HWDEROLWH�DQDO\VHV�RXWSXWV�FDQ�EH�IRXQG�LQ�6,�7DEOHV�
�������
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6,�)LJXUH�����7KH�LPSDFW�RI�6QI��NLQDVH�ORVV�RQ�FHQWUDO�FDUERQ�PHWDEROLVP���7KLV�ILJXUH�FRPSULVHV�
LQIRUPDWLRQ� RI� WKH� \HDVW�PHWDEROLF� QHWZRUN� �)RUVWHU��HW� DO� ��������*HQRPH� 5HV���� WKH� UHFRQVWUXFWHG�

6QI��UHJXODWRU\�QHWZRUN��DQG�UDZ�P51$��SURWHLQ�DQG�PHWDEROLWH�DEXQGDQFH�GDWD�IRU�WKH�∆VQI��PXWDQW�

FRPSDUHG�WR�WKH�ZLOG�W\SH�VWUDLQ��)LJ�����6,�7DEOHV���������7KLV�ILJXUH�GHPRQVWUDWHV�WKDW�WKH�ORVV�RI�6QI��
UHSUHVVHV� JO\FRJHQ� ELRV\QWKHVLV�� JOXFRQHRJHQHVLV� DQG� ELRV\QWKHVLV� RI� OLSLG� SUHFXUVRUV�� ,Q� RWKHU�
ZRUGV��WKH�6QI��NLQDVH�UHJXODWHV�FDUERQ�DQG�HQHUJ\�PHWDEROLVP���(Q]\PHV�DUH�PDSSHG�XVLQJ�SURWHLQ�
�LQ�GLDPRQGV��DQG�P51$��LQ�VPDOO�FLUFOHV��H[SUHVVLRQ�GDWD��ZKLFK� LV�FRORXUHG�DFFRUGLQJ�WR�ORJ � �UDWLR�
FRORXU�VFDOH�� �$YDLODEOH�SURWHLQ�DQG�PHWDEROLWH� UHODWLYH�DEXQGDQFH�GDWD� LV�PDSSHG�RQ� WKH�UHJXODWRUV�
DQG� PHWDEROLWHV�� DFFRUGLQJO\�� � 1RGHV� ZLWK� EODFN� ERUGHUV� KDYH� VLJQLILFDQWO\� GLIIHUHQW� �3� �� ������

H[SUHVVLRQ�GDWD�IRU�WKH�∆VQI��PXWDQW�YHUVXV�WKH�ZLOG�W\SH�VWUDLQ���*UH\�QRGHV�UHSUHVHQW�FRPSRQHQWV�

WKDW� ZHUH� QRW� PHDVXUHG�� � 6HYHQ� 6QI��SURWHLQ� LQWHUDFWLRQV� �VROLG� JUH\� OLQHV�� ZHUH� LGHQWLILHG� XVLQJ�
VXEQHWZRUN�DQG�5HSRUWHU�(IIHFWRU�DQDO\VHV���&RORXUHG�GRWWHG�OLQHV�LQGLFDWH�SUHYLRXVO\�UHSRUWHG�DQG�E\�
5HSRUWHU�(IIHFWRU�DQDO\VLV�LGHQWLILHG�SURWHLQ��WUDQVFULSWLRQDO�DQG�DOORVWHULF�UHJXODWLRQV��*UDXVOXQG��HW�DO�
�������1XFOHLF�$FLGV�5HV���<RXQJ��HW�DO��������-�%LRO�&KHP���
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����6XSSOHPHQWDU\�0HWKRGV�

�

������5HSRUWHU�0HWDEROLWH�DQDO\VLV�

*HQH�RU�SURWHLQ�H[SUHVVLRQ�FKDQJHV�LQ�UHVSRQVH�WR�61)��RU�61)��JHQH�GHOHWLRQ�ZHUH�PDSSHG�RQ�WKH�

JHQRPH�VFDOH� PHWDEROLF� PRGHO� RI� 6�� FHUHYLVLDH� �)RUVWHU�� HW� DO� �������� *HQRPH� 5HV��� LQ� RUGHU� WR�

LGHQWLI\�PHWDEROLF�KRW�VSRWV� WKDW�VLJQLILFDQWO\�UHVSRQGHG�WR� WKH�6QI��NLQDVH�FRPSOH[�GLVUXSWLRQ�DW�WKH�

JHQH�RU�SURWHLQ�H[SUHVVLRQ� OHYHO��3DWLO�	�1LHOVHQ���������3URF��1DWO��$FDG��6FL��86$��� �7KH�JHQRPH�

VFDOH�PRGHO� RI� \HDVW�ZDV� ILUVW� UHSUHVHQWHG�DV� D�JUDSK� LQ�ZKLFK�HDFK�PHWDEROLWH� LV� FRQQHFWHG� WR�DOO�

HQ]\PHV� WKDW� FDWDO\]H�D� UHDFWLRQ� LQYROYLQJ� WKDW� SDUWLFXODU�PHWDEROLWH�� �(DFK�HQ]\PH� LQYROYHG� LQ� WKLV�

JUDSK� ZDV� WKHQ� VFRUHG� EDVHG� RQ� WKH� VLJQLILFDQFH� RI� WKH� FKDQJH� LQ� WKH� H[SUHVVLRQ� OHYHO� RI� WKH�

FRUUHVSRQGLQJ� JHQH� RU� SURWHLQ�� � 7KLV� VLJQLILFDQFH� VFRUH� ZDV� FDOFXODWHG� E\� XVLQJ� D� W�WHVW� DQG�

WUDQVIRUPLQJ� WKH� UHVXOWLQJ� 3� YDOXH� WR� D� =�VFRUH� XVLQJ� WKH� LQYHUVH� QRUPDO� FXPXODWLYH� GLVWULEXWLRQ�

IXQFWLRQ�� �(DFK�PHWDEROLWH�ZDV�DVVLJQHG� WKH�DYHUDJH�VFRUH�RI� LWV�N�QHLJKERXULQJ�HQ]\PHV��DQG� WKLV�

VFRUH�ZDV� WKHQ�FRUUHFWHG� IRU� WKH�EDFNJURXQG�E\�VXEWUDFWLQJ� WKH�PHDQ�DQG�GLYLGLQJ�E\� WKH�VWDQGDUG�

GHYLDWLRQ� RI� DYHUDJH� VFRUHV� RI� ������� HQ]\PH� JURXSV� RI� VL]H� N� VHOHFWHG� IURP� WKH� VDPH� GDWD� VHW���

7KHVH� FRUUHFWHG� VFRUHV� ZHUH� WKHQ� FRQYHUWHG� EDFN� WR� 3� YDOXHV� E\� XVLQJ� WKH� QRUPDO� FXPXODWLYH�

GLVWULEXWLRQ� IXQFWLRQ�� � 7KH� ��� WRS�VFRULQJ� PHWDEROLWHV� ZHUH� LGHQWLILHG� DV� UHSRUWHU� PHWDEROLWHV� DQG�

VHOHFWHG�IRU�IXUWKHU�DQDO\VLV���7KXV��WKH�UHSRUWHU�PHWDEROLWHV�DUH�WKRVH�DURXQG�ZKLFK�WUDQVFULSWLRQDO��6,�

7DEOH����RU�SURWHLQ�H[SUHVVLRQ��6,�7DEOH����FKDQJHV�DUH�VLJQLILFDQWO\�FRQFHQWUDWHG���

�

������5HSRUWHU�(IIHFWRU�DQDO\VLV�

7KH�5HSRUWHU�(IIHFWRU�DOJRULWKP�LV�DQ�LQWHJUDWLYH�PHWKRG�WKDW�FRPELQHV�WKH�WRSRORJ\�RI�WKH�UHJXODWRU\�

QHWZRUN��HIIHFWRU�–�JHQH��ZLWK�JHQH�H[SUHVVLRQ�OHYHOV��LQ�RUGHU�WR�LGHQWLI\�WKRVH�HIIHFWRUV��WUDQVFULSWLRQ�

IDFWRUV�� RWKHU� UHJXODWRU\� SURWHLQV�� ZKRVH� FRQQHFWHG� JHQHV� DUH� PRVW� VLJQLILFDQWO\� UHVSRQVLYH�DV� D�

JURXS� WR�D�SHUWXUEDWLRQ� �2OLYHLUD��HW� DO��DFFHSWHG��� �*HQH�H[SUHVVLRQ� IRU�D� WRWDO�RI�����HIIHFWRUV�DQG�

����WKHLU�WDUJHWV��DQG������SURWHLQ�'1$�LQWHUDFWLRQV�FROOHFWHG�IURP�&K,3�FKLS�H[SHULPHQWV��+DUELVRQ��

HW� DO� ��������1DWXUH�� DQG� <3'� GDWDEDVH� �+RGJHV�� HW� DO� ��������1XFOHLF� $FLGV� 5HV��� ZHUH� XVHG� WR�

SHUIRUP�WKH�5HSRUWHU�(IIHFWRU�DQDO\VLV���(DFK�HIIHFWRU�ZDV�VFRUHG�EDVHG�RQ�WKH�DYHUDJH�RI�VFRUHV�RI�

LWV� DGMDFHQW� JHQHV� �FRUUHFWHG� IRU� WKH� VL]H� RI� WKH� JURXS� RI� FRQQHFWHG� JHQHV��� DQG� WKH� KLJK�VFRULQJ�

HIIHFWRUV�DUH�WHUPHG�5HSRUWHU�(IIHFWRUV���5HSRUWHU�(IIHFWRUV�KLJKOLJKW�WKH�UHJXODWRU\�SDWKZD\V�DIIHFWHG�

IROORZLQJ� D� SHUWXUEDWLRQ�� DQG� WKXV� XQFRYHU� WKH� IXQFWLRQDO� OLQNV� EHWZHHQ� WKH� SHUWXUEDWLRQ� DQG� WKH�

FRQVHTXHQW�UHJXODWRU\�PHFKDQLVPV�LQYRNHG�LQ�WKH�FHOO�� �0DQ\�WUDQVFULSWLRQ�IDFWRUV�DQG�UHJXODWRUV�GR�

QRW�UHVSRQG�DW�WUDQVFULSWLRQDO�OHYHO�SHU�VH��EXW�WKURXJK�SRVW�WUDQVODWLRQDO�UHJXODWLRQ�LQVWHDG���5HSRUWHU�
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(IIHFWRU� DQDO\VLV� SURYLGHV� D� SRZHUIXO� WRRO� IRU� UHFRQVWUXFWLRQ� RI� UHJXODWRU\� FLUFXLWV� ZLWKRXW� D� SULRUL�

UHTXLUHPHQW�RI�FKDQJH�LQ�WKH�WUDQVFULSWLRQ�OHYHO�RI�WKH�UHJXODWRUV���,Q�WKLV�VWXG\��WKH�5HSRUWHU�(IIHFWRU�

DQDO\VLV� ZDV� SHUIRUPHG� WKUHH� WLPHV� XVLQJ� WKH� FRPSOHWH� JHQH� H[SUHVVLRQ� GDWDVHW�� XVLQJ� RQO\� ORZHU�

H[SUHVVLRQ�� RU� XVLQJ� RQO\� KLJKHU� H[SUHVVLRQ� KDYLQJ� JHQH� H[SUHVVLRQ� GDWDVHWV� IRU� DQ\� WZR�VWUDLQ�

FRPSDULVRQ�WR�DFFRXQW� IRU�UHSUHVVRU��DFWLYDWRU�RU�WKH�GXDO�UROH�KDYLQJ�WUDQVFULSWLRQ�IDFWRUV���7KH�WRS�

VFRULQJ� UHSRUWHU� HIIHFWRUV� �3� �� ������ZHUH� VHOHFWHG� IRU� IXUWKHU� DQDO\VLV� DQG�DUH� SUHVHQWHG� LQ� WKH�6,�

7DEOH����

�

������6XEQHWZRUN�DQDO\VLV�

7R� VHDUFK� IRU� WKH� KLJK�VFRULQJ� VXEQHWZRUNV� WKDW� GHVFULEHV� KLJKO\� DFWLYH� UHJXODWRU\� PRGXOHV� RI�

FRQQHFWHG�SURWHLQV�DQG�UHJXODWHG�JHQHV�WKDW�DUH�VLJQLILFDQWO\�FKDQJLQJ�LQ�UHVSRQVH�WR�D�SHUWXUEDWLRQ��

ZH�XVHG�WKH�SUHYLRXVO\�SURSRVHG�VLPXODWHG�DQQHDOLQJ�DOJRULWKP��,GHNHU��HW�DO� ��������%LRLQIRUPDWLFV��

LPSOHPHQWHG�ZLWK�DQ�DGGLWLRQDO�KHXULVWLFV��WKH�SUREDELOLW\�RI�D�FHUWDLQ�QRGH�EHLQJ�PDUNHG�YLVLEOH�LQ�WKH�

LQLWLDOL]DWLRQ�ZDV�SURSRUWLRQDO� WR� ���–�S�YDOXH��� �%ULHIO\�� WKH�DOJRULWKP�WDNHV�DV� LQSXWV�D�JUDSK�*� �L�H���

RQH�RI� WKH� LQWHUDFWLRQ� QHWZRUNV�� DQG�D� OLVW� RI�S�YDOXHV� �LQ� WKLV� FDVH�� IURP�D� WZR�tail Student’s t�WHVW��

UHIOHFWLQJ� WKH�FKDQJHV� LQ� WUDQVFULSW�SURWHLQ� OHYHOV�EHWZHHQ�HDFK�PXWDQW�DQG� WKH�UHIHUHQFH�VWUDLQ���3�

YDOXHV�DUH�FRQYHUWHG�LQWR�]�VFRUHV�XVLQJ�WKH�LQYHUVH�FXPXODWLYH�GLVWULEXWLRQ�IXQFWLRQ��=�VFRUHV�DUH�WKHQ�

PDSSHG�LQWR�WKH�JUDSK��DQG�WKH�VFRUH�RI�D�JLYHQ�VXEQHWZRUN�6*�LV�FDOFXODWHG�DV�WKH�DYHUDJH�VXP�RI�

DOO�QRGH�HOHPHQWV�RI�6*��FRUUHFWHG�IRU�EDFNJURXQG�DQG�IRU�WKH�VL]H�RI�6*��,Q�RUGHU�WR�ILQG�WKH�KLJKHVW�

VFRUH�VXEQHWZRUN��D�VLPXODWHG�DQQHDOLQJ�DOJRULWKP�LV�XVHG��$V�UHIHUUHG�E\�,GHNHU�HW�DO��DQG�EHFDXVH�

WKH�SUREOHP�RI�ILQGLQJ�WKH�KLJKHVW�VFRUH�FRQQHFWHG�VXEQHWZRUN�LV�13�KDUG��LW�LV�QRW�JXDUDQWHHG�WR�ILQG�

WKH�RYHUDOO�PD[LPXP�XVLQJ�WKLV�DOJRULWKP��,GHNHU��HW�DO���������%LRLQIRUPDWLFV����7KHUHIRUH��HDFK�SDLU�RI�

QHWZRUN�GDWD� ZDV� DQDO\]HG� ��� WLPHV�� DQG� WKH� IXUWKHU� DQDO\VLV� ZDV� EDVHG� RQ� WKH� UHVXOWV� IURP� WKH�

PHUJHG����KLJK�VFRULQJ�VXEQHWZRUNV��

+HUH�� D� ODUJH� QHWZRUN� FRPSULVLQJ� RI� ������ SURWHLQ�SURWHLQ� LQWHUDFWLRQV� DQG� ������ SURWHLQ�'1$�

LQWHUDFWLRQV� ZDV� XVHG� IRU� WKLV� DQDO\VLV�� � )URP� WKH� %LR*5,'� GDWDEDVH� �%,2*5,'�

6DFFKDURP\FHVBFHUHYLVLDH�Y����������D�GRZQORDGHG�OLVW�RI�SURWHLQ�SURWHLQ�LQWHUDFWLRQV�ZDV�FXUDWHG�E\�

UHPRYLQJ�GXSOLFDWHG�LQIRUPDWLRQ�DQG�E\�VHOHFWLQJ�SURWHLQ�SK\VLFDO�LQWHUDFWLRQV�JHQHUDWHG�XVLQJ�$IILQLW\�

&DSWXUH�06�� $IILQLW\� &DSWXUH�51$�� $IILQLW\� &DSWXUH�:HVWHUQ�� %LRFKHPLFDO� $FWLYLW\�� &R�FU\VWDO�

6WUXFWXUH��&R�IUDFWLRQDWLRQ��&R�ORFDOL]DWLRQ��&R�SXULILFDWLRQ��)5(7��)DU�:HVWHUQ��3URWHLQ�51$��3URWHLQ�

SHSWLGH�� 5HFRQVWLWXWHG�&RPSOH[� DQG�7ZR�K\EULG�PHWKRGV�� 7KLV� UHVXOWHG� LQ� REWDLQLQJ� ������ SURWHLQ�

SURWHLQ�LQWHUDFWLRQV��FRYHULQJ������XQLTXH�SURWHLQV��$�WRWDO�RI�������KLJK�FRQILGHQFH��S�YDOXH����������

SURWHLQ�'1$�LQWHUDFWLRQV�GHULYHG�IURP�&K,3�FKLS�GDWD��+DUELVRQ��HW�DO���������1DWXUH��ZHUH�LQFOXGHG�LQ�

KLJK�VFRULQJ�VXEQHWZRUN�DQDO\VLV����
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+LJK�VFRULQJ�VXEQHWZRUN�DQDO\VLV�FRQWDLQHG�WZR�GLIIHUHQW�W\SHV�RI�LQWHUDFWLRQV��SURWHLQ�SURWHLQ�DQG�

SURWHLQ�'1$��DQG�RQO\�FKDQJHV� LQ� WUDQVFULSW� OHYHOV�ZHUH�XVHG�WR�VFRUH�WKH�QRGHV�� �)LUVW�6QI��NLQDVH�

QHLJKERXUV��6QI��LQWHUDFWLQJ�SURWHLQV���WKDW�ZHUH�LGHQWLILHG�XVLQJ�KLJK�VFRULQJ�VXEQHWZRUN�DQDO\VLV��DUH�

OLVWHG�LQ�6,�7DEOH��������

'RJPD�VXEQHWZRUN�DQDO\VLV�FRQWDLQHG�WKUHH�W\SHV�RI�LQWHUDFWLRQV��SURWHLQ�SURWHLQ��SURWHLQ�'1$�DQG�

‘mRNA to protein’ translation interactions.  Since we quantified both mRNA and protein abundances, 

WKH�QHWZRUN�RI�ELR�PROHFXODU� LQWHUDFWLRQV�ZHUH�H[WHQGHG� WR�DFFRPPRGDWH�ERWK�FKDQJHV� LQ� WUDQVFULSW�

DQG�SURWHLQ� OHYHOV��1DPHO\��ZH�KDG�D�FKDQFH� WR�H[SDQG�QHWZRUN�DQDO\VLV� LQFOXGLQJ� WKH� WUDQVODWLRQDO�

UHODWLRQVKLS�EHWZHHQ�HDFK� WUDQVFULSW� L� DQG� WKH�FRUUHVSRQGLQJ�SURWHLQ� L�� �&KDQJHV� LQ�SURWHRPH� OHYHOV�

ZHUH�XVHG�WR�VFRUH�SURWHLQ�QRGHV��ZKLOH�WUDQVFULSWRPH�GDWD�ZDV�XVHG�WR�VFRUH�JHQH�QRGHV��7KHUHIRUH��

WKH� UHVXOWLQJ� KLJK�VFRULQJ� VXEQHWZRUNV� UHYHDOHG� FRQQHFWHG� FLUFXLWV� EHLQJ� VLJQLILFDQWO\� UHJXODWHG� DW�

JHQH�� WUDQVODWLRQ� DQG� SURWHLQ� OHYHOV�� � )LUVW� 6QI�� NLQDVH� QHLJKERXUV� �6QI��LQWHUDFWLQJ� SURWHLQV��� WKDW�

ZHUH�LGHQWLILHG�XVLQJ�'2*0$�VXEQHWZRUN�DQDO\VLV��DUH�OLVWHG�LQ�6,�7DEOH��������

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
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����6XSSOHPHQWDU\�7DEOHV�

�

6,�7DEOH����<HDVW�6DFFKDURP\FHV�FHUHYLVLDH�VWUDLQV�XVHG�LQ�WKLV�VWXG\�

�
7KH� VWUDLQV� ZHUH� GHULYHG� IURP� WKH� SDUHQWDO� ODERUDWRU\� &(1�3.� EDFNJURXQG� VWUDLQ� �9DQ� 'LMNHQ�� HW� DO� ��������

(Q]\PH�0LFURE�7HFKQRO��

�
Institut für Mikrobiologie, Frankfurt, Germany�

�
�6WUDLQ�GHVLJQ�DQG�FKDUDFWHULVWLFV�KDYH�EHHQ�SUHYLRXVO\�SXEOLVKHG��8VDLWH��HW�DO���������-�%LRWHFKQRO� 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6WUDLQ
�
� 1DPH�LQ�WH[W� *HQRW\SH� 6RXUFH�5HIHUHQFH�

&(1�3.������'� ZLOG�W\SH� 0$7D��85$��+,6��753��/(8��68&��0$/���
�

�
3URYLGHG�E\��
P. Kötter

�

&(1�3.������&� VQI��
0$7D��85$��+,6��753��/(8��68&��0$/���

�

�
VQI������������OR[3�.DQ�OR[3�

3URYLGHG�E\��
P. Kötter�

&(1�3.������%� VQI��
0$7D��85$��+,6��753��/(8��68&��0$/���

�

�
VQI�����������OR[3�.DQ�OR[3�

3URYLGHG�E\��
P. Kötter�

,%7������� VQI� VQI��
0$7D��85$��+,6��753��/(8��68&��0$/���

�

�
VQI�����������VQI�����������OR[3�.DQ�OR[3�

8VDLWH�HW�DO
�
�
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6,�7DEOH����1XPEHUV�RI�VLJQLILFDQWO\�FKDQJHG�SURWHLQV��WUDQVFULSWV�DQG�PHWDEROLWHV
�
�

��
VQI�� VQI�� VQI� VQI�� 7RWDO�TXDQWLILHG�

7UDQVFULSWV
�
� ����� ����� ����� �����

3URWHLQV
�

���� ���� ���� �����
0HWDEROLWHV

�
��� ��� ��� ���

�
6LJQLILFDQWO\�FKDQJHG�DEXQGDQFH�ZDV�GHWHUPLQHG�EDVHG�RQ�D�W�WHVW�DQG�D�WKUHVKROG�RI�3��������IRU�WKH�GDWD�RI�

WKH� VQI��� VQI��DQG� VQI� VQI��VWUDLQV�YHUVXV�WKH�GDWD�RI�WKH�ZLOG�W\SH�VWUDLQ��

�
*HQH�H[SUHVVLRQ�GDWD�LV�DYDLODEOH�RQ�7KH�$UUD\([SUHVV��DFFHVVLRQ�QXPEHU�LV�(�0(;3�������

�
�3URWHRPH�GDWDVHW�LV�SUHYLRXVO\�GHVFULEHG��8VDLWH��HW�DO���������-�3URW�5HV��DQG�DYDLODEOH�RQ�KWWS���SXEV�DFV�RUJ�

�
�0HWDEROLWHV��GHWHFWHG�LQ�RQH�RXW�RI�WZR�VWUDLQV�RI�FRPSDULVRQ�DUH�DOVR�LQFOXGHG�DPRQJ�VLJQLILFDQWO\�FKDQJHG��6,�

7DEOHV����

 

 

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
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6,�7DEOH����6QI��NLQDVH�ILUVW�QHLJKERXUV�LGHQWLILHG�XVLQJ�KLJK�VFRULQJ�VXEQHWZRUN�DQDO\VLV�

�
�*HQH�H[SUHVVLRQ�FKDQJH�LV�H[SUHVVHG�DV�D�ORJ � �RI�WKH�IROG�FKDQJH��FDOFXODWHG�IRU�D�PXWDQW�YHUVXV�WKH�ZLOG�W\SH�

VWUDLQ��)ROG�FKDQJH�PDUNHG�LQ�EROG�UHSUHVHQW�E\�W�WHVW�LGHQWLILHG�VLJQLILFDQW��3���������H[SUHVVLRQ�FKDQJH�

�
� /LVWHG� 6QI�� LQWHUDFWLRQV� DUH� EDVHG� RQ� %LR*5,'� GDWDEDVH� �%,2*5,'�6DFFKDURP\FHVBFHUHYLVLDH� Y�����������

7\SHV� RI� LQWHUDFWLRQV�� �+� –� WZR�K\EULG�� $&�06� –� DIILQLW\� FDSWXUH�PDVV� VSHFWURPHWU\�� $&�:� –� DIILQLW\� FDSWXUH�

ZHVWHUQ�� %$�–� ELRFKHPLFDO� DFWLYLW\�� &R3�–� FR�SXULILFDWLRQ�� '/�–� GRVDJH� OHWKDOLW\��'5�–� GRVDJH� UHVFXH��3K(�–�

SKHQRW\SLF�HQKDQFHPHQW��5&�–� UHFRQVWUXFWHG�FRPSOH[��6*'�–�V\QWKHWLF�JURZWK�GHIHFW��6/�–�V\QWKHWLF� OHWKDOLW\��

65�–�V\QWKHWLF� UHVFXH�� � ,QWHUDFWLRQV��ZKLFK�ZHUH� LGHQWLILHG�XVLQJ�RQO\�JOREDO�VFDOH�VWXGLHV��DUH�PDUNHG� LQ� LWDOLF���

5HIHUHQFHV� WKDW� VXSSRUW� HDFK� LQWHUDFWLRQ� FDQ� EH� IRXQG� DW�

KWWS���ZZZ�WKHELRJULG�RUJ�6HDUFK5HVXOWV�VXPPDU\�������

�

�

�

*HQH�H[SUHVVLRQ�ORJ � �IROG�
�

3URWHLQ� 25)�
∆VQI�� ∆VQI�� ∆VQI�∆VQI��

,QWHUDFWLRQ��%LR*5,'�
	

%IU�� <25���&� ���� � � %$�
%PK�� <'5���:� � ����� � $&�06�
'EI�� <*5���:� � � ����� $&�06�
)DV�� <./���:� � ������ ������ 65�
)NV�� </5���:� ����� � � 6/�
+VS��� <3/���&� ������ ������ ������ 6/�
/KS�� <'/���:� � ����� � %$�
0GP��� <*/���&� � � ������ 6*'��3K(�
0LJ�� <*/���&� ������ ������ ������ $&�:���+��%$��3K(��65�
0LJ�� <(5���&� ������ ������ � %$��'/��65�
0VQ�� <'5���:� � ����� � '5�
1UJ�� <'5���&� � ������ � $&�:��65�
3GH�� <25���&� � ����� � '5��6*'�
3KR�� <)5���&� ����� � ����� $&�06�
3KR��� <3/���&� � ������ � 6/��65�
3KR��� <15���&� � � ����� %$�
5DG�� <*/���:� ����� � � 6*'��3K(�
5GV�� <3/���&� � ������ ������ %$�
5PG�� <(5���&� � ������ � 6*'��3K(�
5QU�� <*5���&� � � ������ 3K(�
6FS���� <-/���&� � � ����� %$�
6HF�� <'5���&� � ����� � $&�06�
6LW�� <'/���:� � ����� � 65�
6NW�� <%/���&� ����� ����� � %$�
6PS�� <05���&� ������ � � %$�
6PW�� <'5���:� � ����� � $&�06�
6QI�� <*/���:� �� �� �� $&�06��5&���+��6*'��65��'5��&R3�
6VI�� <'5���:� ����� � � %$�
6VQ�� <3/���&� � � ������ 65��$&�:���+�
7HV�� <-5���&� � ������ � %$�
7UP�� <'5���&� � ����� ����� %$�
<DW�� <(5���:� ������ � � %$ 
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6,�7DEOH����6QI��NLQDVH�ILUVW�QHLJKERXUV�LGHQWLILHG�XVLQJ�'2*0$�VXEQHWZRUN�DQDO\VLV�

3URWHLQ�H[SUHVVLRQ�ORJ � �IROG�
	

3URWHLQ
�

25)�
∆VQI�� ∆VQI�� ∆VQI�∆VQI��

,QWHUDFWLRQ��%LR*5,'�



$FF�� <15���&� ������ ������ ������ 65�
$UI�� <'/���:� � � ����� $&�06�
$WJ�� <*/���:� ������ ������ � '5�

%IU�� <25���&� ����� ����� ����� %$�
&DW�� <0/���:� ������ ������ ������ 65�
&QD�� </5���&� ������ � � 6*'�

)DV�� <./���:� ������ ������ ������ 65�
)R[�� <.5���&� ������ ������ ������ %$�
*V\�� </5���:� ������ ������ ������ 3K6�
+RJ�� </5���:� ����� � � 3K(�
+VI�� <*/���:� ������ � � �+��%$�
+VS��� <3/���&� ������ ������ ������ 6/�

/KS�� <'/���:� � ����� � %$�

0VQ�� <'5���:� ����� � � '5�

3KR��� <3/���&� ����� � � 6/�65�

5QU�� <*5���&� � � ������ 3K(�
5SO�D� <+/���&� ������ � � %$�
5VS�� <(5���:� ������ � ������ %$�

6FS���� <-/���&� � � ������ %$�

6HF�� <'5���&� � � ������ $&�06�
6KV�� <'/���:� � ����� � %$�

6LW�� <'/���:� ����� ����� � 65�

6QI�� <*/���:� �� �� �� $&�06��5&���+��6*'��65��'5��&R3�
6VD�� <$/���&� � ������ � $&�06�
6WP�� </5���:� ����� � ����� %$�

7HV�� <-5���&� � � ������ %$�

7UP�� <'5���&� ����� � � %$�

<DW�� <(5���:� ������ ������ ������ %$�
<FN�� <+5���&� ������ � � '5�

�
�3URWHLQV�PDUNHG�LQ�EROG�ZHUH�DOVR�LGHQWLILHG�LQ�KLJK�VFRULQJ�VXEQHWZRUN�DQDO\VLV��6,�7DEOH����

�
�3URWHLQ�H[SUHVVLRQ�FKDQJH�LV�H[SUHVVHG�DV�D� ORJ � �RI� WKH�IROG�FKDQJH��FDOFXODWHG�IRU�D�PXWDQW�YHUVXV�WKH�ZLOG�

W\SH�VWUDLQ��)ROG�FKDQJH�PDUNHG�LQ�EROG�UHSUHVHQW�E\�W�WHVW�LGHQWLILHG�VLJQLILFDQW��3���������H[SUHVVLRQ�FKDQJH�

�
� /LVWHG� 6QI�� LQWHUDFWLRQV� DUH� EDVHG� RQ� %LR*5,'� GDWDEDVH� �%,2*5,'�6DFFKDURP\FHVBFHUHYLVLDH� Y�����������

7\SHV�RI� LQWHUDFWLRQV���+�–� WZR�K\EULG��$&�06�–�DIILQLW\�FDSWXUH�PDVV�VSHFWURPHWU\��%$�–�ELRFKHPLFDO�DFWLYLW\��

&R3�–�FR�SXULILFDWLRQ��'5�–�GRVDJH�UHVFXH��3K(�–�SKHQRW\SLF�HQKDQFHPHQW��3K6�–�3KHQRW\SLF�6XSSUHVVLRQ��5&�

–� UHFRQVWUXFWHG� FRPSOH[�� 6*'� –� V\QWKHWLF� JURZWK� GHIHFW�� 6/� –� V\QWKHWLF� OHWKDOLW\�� 65� –� V\QWKHWLF� UHVFXH���

,QWHUDFWLRQV��ZKLFK�ZHUH�LGHQWLILHG�XVLQJ�RQO\�JOREDO�VFDOH�VWXGLHV��DUH�PDUNHG�LQ�LWDOLF���5HIHUHQFHV�WKDW�VXSSRUW�

HDFK�LQWHUDFWLRQ�FDQ�EH�IRXQG�DW�KWWS���ZZZ�WKHELRJULG�RUJ�6HDUFK5HVXOWV�VXPPDU\�������

�

�

�

�
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6,�7DEOH����5HSRUWHU�(IIHFWRUV�LGHQWLILHG�IRU�WKH�'VQI���'VQI��DQG�'VQI�'VQI��VWUDLQV�

*HQH�H[SUHVVLRQ�ORJ � �IROG�
�

5HSRUWHU�
(IIHFWRU

 25)�
∆VQI�� ∆VQI�� ∆VQI�∆VQI��

%DV�
�

<.5���:� ������ �� ��
&DW�� <05���&� ������ �� ������
&FU�� <$/���&� �� �� ������
&VH�� <15���:� �� �� ������
&\F�� <%5���&� �� �� �����
(GF�� <*/���&� ����� �� ��
*FQ�� <(/���&� �� �� �����
*FQ�� <*5���:� �� �� �����
*FU�� <3/���:� �� �� �����
*FU�� <1/���&� ������ ������ ��
*WV�� <*/���:� �� �� ������
+DO�� <2/���&� ������ �� ��
+RJ�� </5���:� �� ����� �����
+[N�� <*/���:� ����� �� ��

Imp2’� <,/���&� ������ �� ��

,VZ�� <25���:� ����� �� ��
,WF�� <*/���:� ����� �� ��
/HX�� </5���:� �� ����� ��
0EI�� <25���&�$� �� �� ������
0FP�� <05���:� �� ������ ��
0LJ�� <*/���:� �� ������ ��

0LJ�� <(5���&� �� ������ ��

0NV�� <1/���:� �� �� �����
0VQ�� <05���&� ����� �� ������
0VQ��� <./���:� ����� �� �����
1GG�� <25���&� �� ����� ��
2DI�� <$/���:� �� ������ ��
3JG�� <*/���&� �� �� ������
3KR�� <'/���&� ����� �� ��
3KR��� <3/���&� �� ������ ��

3LS�� <25���&� �� ����� ��
5GU�� <25���:� ������ �� ��
5GV�� <3/���&� ������ �� ��

5R[�� <%/���&� �� �� ������
5VF�� <*5���:� �� �� ������
6LQ�� <1/���:� ������ ������ �����
6NQ�� <+5���:� ����� �� ��

6QI�� <'5���:� �� �� ��

6QI��� <15���:� �� �� ������
6SW��� <*/���:� �� ����� ��
6SW�� <'5���:� �� �� �����
6SW�� <*5���:� ����� �� ��
6SW�� <%5���&� �� �� �����
6WE�� <+5���:� �� ����� ��
6ZL�� <3/���:� ����� �� ��
6ZL�� <(5���&� ����� �� ��
6ZL�� </5���:� �� ����� ��
7RU�� <-5���:� �� �� ������
7XS�� <&5���&� ����� �� ��
<DS�� <0/���:� ����� �� �����
<LO���Z� <,/���:� �� ����� ��
<UU�� <25���&� �� ������ ��

�
�5HSRUWHU�(IIHFWRUV�ZHUH�LGHQWLILHG�XVLQJ�5HSRUWHU�(IIHFWRU�DQDO\VLV��VHH�6XSSOHPHQWDU\�0HWKRGV��

�
�*HQH�H[SUHVVLRQ�FKDQJH�LV�H[SUHVVHG�DV�D�ORJ � �RI�WKH�IROG�FKDQJH��FDOFXODWHG�IRU�D�PXWDQW�YHUVXV�WKH�ZLOG�W\SH�
VWUDLQ��)ROG�FKDQJH�PDUNHG�LQ�EROG�UHSUHVHQW�E\�W�WHVW�LGHQWLILHG�VLJQLILFDQW��3���������H[SUHVVLRQ�FKDQJH�

�
�5HSRUWHU�(IIHFWRUV�PDUNHG� LQ� LWDOLF�ZHUH� LGHQWLILHG� LQ�+DUELVRQ�HW� DO�&KLS�&+,3�VWXG\� �+DUELVRQ��HW� DO� ��������

1DWXUH���WKH�UHVW�KDYH�FRQILUPDWLRQ�LQ�<3'�GDWDEDVH�DW�ZZZ�SURWHRPH�FRP�GDWDEDVHV��

�
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6,�7DEOH����5HSRUWHU�0HWDEROLWHV�LGHQWLILHG�EDVHG�RQ�JHQH�H[SUHVVLRQ�GDWD

'VQI��YHUVXV�ZLOG�W\SH� � 'VQI��YHUVXV�ZLOG�W\SH� � 'VQI�'VQI��YHUVXV�ZLOG�W\SH�

0HWDEROLWH
 1R�� RI�

JHQHV
� 3�

YDOXH
� � 0HWDEROLWH�

1R�� RI�
JHQHV

3�
YDOXH 

 0HWDEROLWH�
1R�� RI�
JHQHV

3�
YDOXH�

8'3�*DO1$F� �� �(���� � 2�$FHW\OFDUQLWLQHP�� �� �(���� � /�$ODQLQH� ��� �(����
2�$FHW\OFDUQLWLQHP�� �� �(���� � &DUQLWLQHP�� �� �(���� � /�*OXWDPDWH� ��� �(����
&DUQLWLQHP�� �� �(���� � *OXWDWKLRQH� ��� �(���� � $QWKUDQLODWH� �� �(����

3(3� �� �(���� � 6XOIDWH� �� �(���� � α�NHWRJOXWDUDWH� ��� �(����

/�$ODQLQH� ��� �(���� � 6XFFLQDWH� �� �(���� � /�7\URVLQH� ��� �(����
6$,&$5� �� �(���� � ,VRFLWUDWH� �� �(���� � /�+LVWLGLQH� �� �(����
6(5 H[W�� �� �(���� � ��,VRSURS\OPDODWH� �� �(���� � /�3KHQ\ODODQLQH� �� �(����

*OF1$F���3� �� �(���� � /�&\VWDWKLRQLQH� �� �(���� � $/$ H[W�� �� �(����

G$'3� �� �(���� � &RSURSRUSK\ULQRJHQ� �� �(���� � ,PLGD]ROH�DFHWRO�3� �� �(����
2[LGL]HG�WKLRUHGR[LQ� �� �(���� � 2�$FHW\OFDUQLWLQH� �� �(���� � �/�P\R�,QRVLWRO���3� �� �(����

�
� 8'3�*DO1$F� VWDQGV� IRU� 8'3�1�DFHW\O�'�JDODFWRVDPLQH�� 3(3� �� ��3KRVSKRQRR[\S\UXYDWH�� 6$,&$5� –� ����
�

3KRVSKRULERV\O����DPLQR����1�VXFFLQRFDUER[DPLGH��LPLGD]ROH�� *OF1$F���3� –� 1�$FHW\O�'�JOXFRVDPLQH� ��

SKRVSKDWH��,PLGD]ROH�DFHWRO�3������,PLGD]RO���\O����R[RSURS\O�SKRVSKDWH��P� �PLWRFKRQGULDO��H[W� �H[WUDFHOOXODU�

�
 “No. of genes” indicateV�WKH�QXPEHU�RI�JHQHV�ZLWK�DOWHUHG�WUDQVFULSW� OHYHOV�ZKLFK�HQFRGH�HQ]\PHV�LQYROYHG�LQ�

WKH�V\QWKHVLV�RU�GHJUDGDWLRQ�RI�WKH�UHSRUWHU�PHWDEROLWH�

�
�0HWDEROLWHV�ZHUH�RUGHUHG�DFFRUGLQJ�WR�WKH�3�YDOXH�VFRUHG�LQ�WKH�JHQRPH�VFDOH�PHWDEROLF�PRGHO�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
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6,�7DEOH����5HSRUWHU�0HWDEROLWHV�LGHQWLILHG�EDVHG�RQ�SURWHLQ�H[SUHVVLRQ�GDWD

'VQI��YHUVXV�ZLOG�W\SH� � 'VQI��YHUVXV�ZLOG�W\SH� � 'VQI�'VQI��YHUVXV�ZLOG�W\SH�

0HWDEROLWH
� 1R�� RI�

SURWHLQV
� 3�

YDOXH
� � 0HWDEROLWH�

1R�� RI�
SURWHLQV

3�
YDOXH�

� 0HWDEROLWH�
1R�� RI�
SURWHLQV

3�
YDOXH�

$FHW\O�&R$� ��� �(���� � $FHW\O�&R$� ��� �(���� � 6XFFLQDWH� �� �(����
&R$� ��� �(���� � */& H[W�� ��� �(���� � 1$'+� ��� �(����
1+ � H[W�� �� �(���� � )58 H[W�� ��� �(���� � 1$'

�
� ��� �(����

$F\O�&R$� �� �(���� � 0$1 H[W�� ��� �(���� � &DUEDPR\O�3� �� �(����
*O\FRJHQ� �� �(���� � '�*OXFRVH���3� �� �(���� � *O\FRJHQ� �� �(����

α,α�7UHKDORVH� �� �(���� � '�)UXFWRVH� ��� �(���� � $FHW\O�&R$� ��� �(����

6XFFLQDWH� �� �(���� � α�'�0DQQRVH� ��� �(���� � '�*OXFRVH���3� �� �(����

0DORQ\O�&R$� �� �(���� � *O\FRJHQ� �� �(���� � α,α�7UHKDORVH� �� �(����

��2[RDF\O�&R$� �� �(���� � &R$� ��� �(���� � *O\R[\ODWH� �� �(����

/&&$� �� �(���� � α�'�*OXFRVH� ��� �(���� � /�$VSDUWDWH� �� �(����

�
/&&$�VWDQGV�IRU�D�/RQJ�&KDLQ�&DUER[\OLF�$FLG��H[W�� �H[WUDFHOOXODU�

�
“No. of proteins” indicates the number of proteins with altered abundance levels which are enzymes involved in 

WKH�V\QWKHVLV�RU�GHJUDGDWLRQ�RI�WKH�UHSRUWHU�PHWDEROLWH�

�
0HWDEROLWHV�ZHUH�RUGHUHG�DFFRUGLQJ�WR�WKH�3�YDOXH�VFRUHG�LQ�WKH�JHQRPH�VFDOH�PHWDEROLF�PRGHO�
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6,�7DEOH�����'HWHFWHG�DQG�UHODWLYHO\�TXDQWLILHG�LQWUDFHOOXODU�PHWDEROLWHV�

'VQI��YHUVXV�ZLOG�W\SH� � 'VQI��YHUVXV�ZLOG�W\SH� � 'VQI�'VQI��YHUVXV�ZLOG�W\SH�

0HWDEROLWH ORJ � �IROG�
�

� 0HWDEROLWH� ORJ � �IROG�� � 0HWDEROLWH� ORJ � �IROG��

FLWUDPDODWH� ��� � JO\R[\ODWH�� ���� � ��LVRSURS\OPDODWH� ����
ROHLF�DFLG� ��� � ROHLF�DFLG� ��� � &LWUDPDODWH� ����
3\UXYDWH� ��� � S\UXYDWH� ��� � ODXULF�DFLG� ����
VWHDULF�DFLG� ��� � VWHDULF�DFLG� ��� � ROHLF�DFLG� ���
DVSDUDJLQH� ����� � SDOPLWLF�DFLG� ����� � 3\UXYDWH� ���
LVROHXFLQH� ����� � DVSDUWDWH� ����� � VWHDULF�DFLG� ���

)XPDUDWH� ����� � DVSDUDJLQH� ����� � α�NHWRJOXWDUDWH� �����

*O\FLQH� ����� � 3�HQROS\UXYDWH� ������ � DVSDUDJLQH� �����

JO\R[\ODWH�� ������ � LWDFRQLF�DFLG� ����� � 1$'3�1$'3+� �����

P\ULVWLF�DFLG� ����� � JO\FLQH� ����� � VXFFLQDWH� �����

SKHQ\ODODQLQH� ����� � P\ULVWLF�DFLG� ����� � WKUHRQLQH� �����

SDOPLWLF�DFLG� ����� � SDOPLWROHLF�DFLG� ����� � IXPDUDWH� �����

3�HQROS\UXYDWH� ����� � FLWUDWH� ����� � LVROHXFLQH� �����

/HXFLQH� ����� � O\VLQH� ����� � JO\FLQH� �����

LWDFRQLF�DFLG� ����� � PDODWH� ������ � PDODWH� �����

$VSDUWDWH� ����� � LVROHXFLQH� ����� � LWDFRQLF�DFLG� �����

6HULQH� ����� � VHULQH� ����� � VHULQH� �����

7KUHRQLQH� ����� � α�NHWRJOXWDUDWH� ����� � JOXWDPLQH� �����

SDOPLWROHLF�DFLG� ����� � WKUHRQLQH� ����� � O\VLQH� �����

/\VLQH� ����� � OHXFLQH� ����� � JO\R[\ODWH�� ������

&LWUDWH� ����� � ��LVRSURS\OPDODWH� ����� � YDOLQH� �����

$ODQLQH� ����� � SKHQ\ODODQLQH� ����� � JOXWDPDWH�� �����

JOXWDPLQH� ������ � VXFFLQDWH� ������ � W\URVLQH� �����

��DPLQREXW\ULF�D�� ����� � ��DPLQREXW\ULF�D�� ����� � FLWUDWH� �����

VXFFLQDWH� ����� � DODQLQH� ����� � DODQLQH� �����

D�NHWRJOXWDUDWH� ����� � ODXULF�DFLG� ����� � 3�HQROS\UXYDWH� ������

9DOLQH� ����� � JOXWDPDWH� ����� � SUROLQH� �����
SUROLQH� ����� � W\URVLQH� ����� � DVSDUWDWH� �����
JOXWDPDWH� ����� � YDOLQH� ����� � KLVWLGLQH� �����
ODXULF�DFLG� ����� � 1$'3�1$'3+� ����� � SDOPLWLF�DFLG� �����
0DODWH� ����� � JOXWDPLQH� ����� � ��DPLQREXW\ULF�D�� �����
7\URVLQH� ����� � SUROLQH� ����� � SKHQ\ODODQLQH� �����
2UQLWKLQH� ����� � RUQLWKLQH� ����� � RUQLWKLQH� �����
��LVRSURS\OPDODWH� ����� � KLVWLGLQH� ����� � SDOPLWROHLF�DFLG� �����
+LVWLGLQH� ������ � FLWUDPDODWH� ������ � P\ULVWLF�DFLG� �����
1$'3�1$'3+� ������ � IXPDUDWH� ����� � OHXFLQH� ������

�
� 3HDN� HQXPHUDWLRQ� ZDV� FRQGXFWHG� ZLWK� $0',6� �1,67�� *DLWKHUVEXUJ�� 0'�� ZLWK� GHIDXOW� SDUDPHWHUV�� DQG�

LGHQWLILFDWLRQ�RI�FRQVHUYHG�PHWDEROLWHV�ZDV�FRQGXFWHG�ZLWK�6SHFW&RQQHFW��VSHFWFRQQHFW�PLW�HGX���6W\F]\QVNL��HW�

DO���������$QDO�&KHP����XVLQJ�GHIDXOW�SDUDPHWHUV�DQG�D�VXSSRUW�WKUHVKROG�RI����0HWDEROLWH�DEXQGDQFH�GLIIHUHQFH�LV�

H[SUHVVHG�DV�D�ORJ � �RI�WKH�IROG�FKDQJH��FDOFXODWHG�IRU�D�PXWDQW�YHUVXV�WKH�ZLOG�W\SH�VWUDLQ��)ROG�FKDQJH�PDUNHG�LQ�

EROG�UHSUHVHQWV�E\�W�WHVW�LGHQWLILHG�VLJQLILFDQW��3���������PHWDEROLWH�DEXQGDQFH�GLIIHUHQFH�EHWZHHQ�WZR�VWUDLQV�RI�

FRPSDULVRQ�� )ROG� FKDQJH�PDUNHG� LQ� LWDOLF� UHSUHVHQWV� DVVLJQHG�PHWDEROLWH� DEXQGDQFH� GLIIHUHQFH� EHWZHHQ� WZR�

VWUDLQV�RI�FRPSDULVRQ�� LQ�VXFK�FDVH�� WKH�PHWDEROLWHV� LQGLFDWLQJ�PDVV�VSHFWURPHWU\�SHDNV�ZHUH�GHWHFWHG� LQ�RQH�

VWUDLQ��EXW�QRW�WKH�RWKHU�VWUDLQ�RI�FRPSDULVRQ��

�

�

�
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6,�7DEOH�����([SUHVVLRQ�FKDQJHV�RI�VHOHFWHG�25)V
�
�IRU�'VQI���'VQI��DQG�'VQI�'VQI��VWUDLQV�

*HQH�3URWHLQ�QDPH� VQI�� VQI�� VQI� VQI��
*2�FDWHJRU\� �����25)������

&RPPRQ�
3URWHLQ� � � � *HQH�
H[SUHVVLRQ�ORJ � �IROG�

� 3URWHLQ� � � � *HQH�
H[SUHVVLRQ�ORJ � �IROG��

3URWHLQ� � � � *HQH�
H[SUHVVLRQ�ORJ � �IROG��

%LRORJLFDO�SURFHVV�         
<(/���:� */&�� ������ ������ ������ ����� ������ ������
<)5���&� *6<�� ������ �� ������ ����� �� ������

*O\FRJHQ�
ELRV\QWKHVLV�

</5���:� *6<�� ������ ������ ������ ����� ������ ������

        
<&5���&� &,7�� ����� ����� ����� ������ ����� �����
<(5���&� ,&/�� ������ ������ ������ ������ ������ ������
<2/���&� 0'+�� ������ ������ ������ ������ ������ ������

*O\R[\ODWH�F\FOH�

<1/���:� 0/6�� ������ ������ ������ ������ ������ ������
� � � � � � � �
<+/���&� *87�� ������ ������ ������ ������ �� ������
<,/���&� *87�� ������ ������ ������ ������ ������ ������

*OXFRQHRJHQHVLV�

<05���&� $'+�� ������ ������ ������ ������ ������ ������
� � � � � � � �
<25���:� 6(5�� ����� ����� ����� ����� ����� �����
<*5���:� 6(5�� ����� ����� ����� ����� ����� �����
<(5���:� 6(5�� ����� ����� ����� ����� ����� �����

$PLQR� DFLG�
PHWDEROLVP�

<,/���&� 6(5��� ����� ����� ����� ����� ����� �����
� � � � � � � �
<'5���&� &7$�� ������ ������ ������ ������ ������ ������
<25���:� )$$�� ������ ������ ������ ����� ������ ������

<(5���:� )$$�� ������ ������ ������ ������ ������ ������
<05���
:�

)$$�� ������ ������ ������ ������ ������ ������

<.5���&� )2;�� ������ ������ ������ ������ ������ ������

<,/���&� 327�� ������ ������ ������ ������ ������ ������

�R[LGDWLRQ�RI� IDWW\�
DFLGV�

<*/���:� 32;�� ������ ������ ������ ������ ������ ������

� � � � � � � �
<15���&� $&&�� ������ ������ ������ ������ ������ ������

<./���:� )$6�� ������ ������ ������ ������ ������ ������
<3/���:� )$6�� ������ ������ ������ ������ ������ ������

)DWW\� DFLG�
V\QWKHVLV�

<0/���&� +0*�� ������ ������ ������ ������ ������ ������
� � � � � � � �
<0/���:� &$7�� ������ ������ ������ ������ ������ ������
<$5���:� <$7�� ������ ������ ������ ������ ������ ������

<(5���:� <$7�� ������ ������ ������ ������ ������ �����

&DUQLWLQH� WUDQVIHU�
DQG� PHWDEROLF�
SURFHVV�

<25���&� &5&�� �� ������ �� ������ �� �����

0ROHFXODU�IXQFWLRQ� � � � � � � � �
<*5���:� &77�� �� ������ �� ������ � ������
<%5���:� *3;�� �� ������ �� ������ � ������

<-5���&� 62'�� ������ ������ ������ ������ ����� ������
2[LGRUHGXFWLRQ�
DFWLYLW\�

<+5���&� 62'�� ������ ������ ������ ������ ������ ������

�
 ‘selected ORFs’ are those, which are specifically discussed in the study or used in Figure 2 and 6,�)LJXUH����

�
�3URWHLQ�DQG�JHQH�H[SUHVVLRQ�GLIIHUHQFH�LV�H[SUHVVHG�DV�D�ORJ � �RI�WKH�IROG�FKDQJH��FDOFXODWHG�IRU�D�PXWDQW�YHUVXV�

WKH�ZLOG�W\SH� VWUDLQ�� )ROG� FKDQJH�PDUNHG� LQ� EROG� UHSUHVHQW� E\� W�WHVW� LGHQWLILHG� VLJQLILFDQW� �3� �� ������PHWDEROLWH�

DEXQGDQFH�GLIIHUHQFH�EHWZHHQ�WZR�VWUDLQV�RI�FRPSDULVRQ� 
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