

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

AIR Tools - A MATLAB Package of Algebraic Iterative Reconstruction Techniques
Version 1.0 for Matlab 7.8

Hansen, Per Christian; Saxild-Hansen, Maria

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Hansen, P. C., & Saxild-Hansen, M. (2010). AIR Tools - A MATLAB Package of Algebraic Iterative
Reconstruction Techniques: Version 1.0 for Matlab 7.8. Kgs. Lyngby, Denmark: Technical University of
Denmark, DTU Informatics, Building 321. (IMM-Technical Report-2010-15).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13733956?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/air-tools--a-matlab-package-of-algebraic-iterative-reconstruction-techniques(fb7bb602-755b-4bf4-a64e-0c4d501b90b0).html

AIR Tools

A MATLAB Package of Algebraic

Iterative Reconstruction Techniques

Version 1.0 for Matlab 7.8

Per Christian Hansen

Maria Saxild-Hansen

Department of Informatics and Mathematical Modelling
Building 321, Technical University of Denmark

DK-2800 Lyngby, Denmark

October 2010

Abstract

This collection of MATLAB software contains implementations of several Algebraic Iterative
Reconstruction methods for discretizations of inverse problems. These so-called row action
methods rely on semi-convergence for achieving the necessary regularization of the problem.
Two classes of methods are implemented: Algebraic Reconstruction Techniques (ART) and
Simultaneous Iterative Reconstruction Techniques (SIRT). In addition we provide a few
simplified test problems from medical and seismic tomography. For each iterative method,
a number of strategies are available for choosing the relaxation parameter and the stopping
rule. The relaxation parameter can be fixed, or chosen adaptively in each iteration; in the
former case we provide a “training” algorithm that finds the optimal parameter for a given
test problem. The stopping rules provided are the discrepancy principle, the monotone error
rule, and the NCP criterion; for the first two methods “training” can be used to find the
optimal discrepancy parameter. The corresponding manuscript is:

• P. C. Hansen and M. Saxild-Hansen, AIR Tools – A MATLAB Package of Algebraic It-
erative Reconstruction Techniques, submitted to Journal of Computational and Applied
Mathematics.

Notation

All vectors are columns vectors, aj is the jth column of A, ai is the transposed of the ith row
of A, ⟨x, y⟩ = xT y is the standard inner product, and ρ(·) is the spectral radius (the largest
positive eigenvalue).

Acknowledgements

This work is part of the project CSI: Computational Science in Imaging, supported by grant
no. 274-07-0065 from the Danish Research Council for Technology and Production Sciences.
We are grateful to Jakob Heide Jørgensen for providing efficient MATLAB code to compute
the sparse matrix in the test problems, and to Klaus Mosegaard for suggesting the seismic
travel-time tomography test problem. We also thank Tommy Elfving for encouragement and
advice during the development of the package, and Jim Nagy for pointing out the need for
nonnegativity constraints.

Overview of the Package

Iterative ART Methods

kaczmarz Kaczmarz’s method, aka the Algebraic Reconstruction Technique (ART)
randkaczmarz The randomized Kaczmarz method
symkaczmarz The symmetric Kaczmarz method

Iterative SIRT Methods

cav Component Averaging (CAV) method
cimmino Cimmino’s method
drop Diagonally Relaxed Orthogonal Projections (DROP) method
landweber Landweber’s method
sart Simultaneous Algebraic Reconstruction Technique (SART)

Training Routines

trainDPME Training strategy to find the best parameter τ when discrepancy prin-
ciple or monotone error rule is used as stopping rule

trainLambdaART Training strategy to find the best constant relaxation parameter λ for a
given ART method

trainLambdaSIRT Training strategy to find the best constant relaxation parameter λ for a
given SIRT method

Test Problems

fanbeamtomo Creates a 2-D fan-beam tomography problem
paralleltomo Creates a 2-D parallel-beam tomography problem
seismictomo Creates a 2-D seismic tomography problem

Demo Scripts

ARTdemo Illustrates the simple use of the ART methods
nonnegdemo Illustrates the use of nonnegativity constraints
SIRTdemo Illustrates the simple use of the SIRT methods
trainingdemo Illustrates the use of the training routines as pre-processors for the SIRT

and the ART methods

Auxiliary Routines

calczeta Calculates the roots of the polynomial gk(z) of degree k
rzr Removes zero rows from A and corresponding elements of b

3

The Demo Scripts

This MATLAB package includes four demo scripts which illustrate the use of the remaining
functions in the package.

The demo ARTdemo illustrates the use of the three ART methods kaczmarz, symkaczmarz
and randkaczmarz. First the demo creates a parallel-beam tomography test problem using
the test problem paralleltomo. For this test problem noise is added to the right-hand side
and the noisy problem is then solved using the ART methods with 10 iterations. The result
is shown as four images, where one contains the exact solution and the remaining images
illustrate the solutions computed by means of the three ART methods.

The demo nonnegdemo illustrates the use of nonnegativity constraints in the cimmino and
kaczmarz methods. The demo creates a parallel-beam test problem, adds noise and solves
the problem without and with the constraints. The exact solution and the results from the
methods are shown.

The demo SIRTdemo illustrates the use of the five SIRT methods landweber, cimmino,
cav, drop, and sart. First the demo creates a parallel-beam tomography test problem using
the test problem paralleltomo. For this test problem noise is added to the right-hand side
and the noisy problem is then solved using the SIRT methods with 50 iterations. The result
is shown as seven images, where one contains the exact solution and the remaining images
illustrate the solutions computed by means of the five SIRT methods.

The demo trainingdemo illustrates the use of the training functions trainLambdaART,
trainLambdaSIRT, and trainDPME followed by the use of an ART or a SIRT method. In
this demo the used SIRT method is cimmino and the used ART method is kaczmarz. First
the demo function creates a parallel-beam tomography test problem using the test prob-
lem paralleltomo, and noise is added to the right-hand side. Then the training strategy
trainLambdaSIRT is used to find the relaxation parameter for cimmino and trainLambdaART

is used to find the relaxation parameter for kaczmarz. Including this information the stop-
ping parameter is found for each of the methods, where cimmino uses the ME stopping rule
and kaczmarz uses the DP stopping rule. After this we solve the problem with the specified
relaxation parameter and stopping rule. The result is shown as three images, where one
contains the exact image and the remaining images illustrate the found solutions.

4

calczeta

Purpose:

Calculates the roots of a specific polynomial g(z) of degree k.

Synopsis:

z = calczeta(k)

Description:

This function uses Newton’s method to compute the unique root in the interval (0, 1) of the
polynomial of degree k:

g(z) = (2k − 1)zk−1 − (zk−2 + ...+ z + 1) = 0.

The input k can be given as both a scalar or a vector, and the corresponding root or roots
are returned in the output z.

The function calczeta is used in the functions cav, cimmino, drop, landweber, sart,
and symkaczmarz.

Examples:

Calculate the roots for the degrees 2 up to 100 and plot the found roots.

k = 2:100;

z = calczeta(k);

figure, plot(k,z,’bo’)

See also:

cav, cimmino, drop, landweber, sart, symkaczmarz.

5

cav

Purpose:

Component Averaging (CAV) iterative method.

Synopsis:

[X info restart] = cav(A,b,K)

[X info restart] = cav(A,b,K,x0)

[X info restart] = cav(A,b,K,x0,options)

Algorithm:

For arbitrary x0 ∈ Rn the algorithm for cav takes the following form:

xk+1 = xk + λk A
TDS(b− Axk), DS = diag

(
wi∑n

j=1 sja
2
ij

)
,

where sj is the number of nonzero elements in column j of A.

Description:

The function implements the Component Averaging (CAV) iterative method for solving the
linear system Ax = b. The starting vector is x0; if no starting vector is given then x0 = 0 is
used.

The numbers given in the vector K are iteration numbers, that specify which iterations
are stored in the output matrix X. If a stopping rule is selected (see below) and K = [], then
X contains the last iterate only.

The maximum number of iterations is determined either by the maximum number in the
vector K or by the stopping rule specified in the field stoprule in the struct options. If K is
empty a stopping rule must be specified.

The relaxation parameter is given in the field lambda in the struct options, either as a
constant or as a string that determines the method to compute lambda. As default lambda

is set to 1/σ̃2
1, where σ̃1 is an estimate of the largest singular value of D

1/2
S A.

The second output info is a vector with two elements. The first element is an indicator,
that denotes why the iterations were stopped. The number 0 denotes that the iterations were
stopped because the maximum number of iterations were reached, 1 denotes that the NCP-
rule stopped the iterations, 2 denotes that the DP-rule stopped the iteration and 3 denotes
that the ME-rule stopped the iterations. The second element in info is the number of used
iterations.

The struct restart, which can be given as output, contains in the field s1 the estimated
largest singular value. restart also returns a vector containing the diagonal of the matrix
DS in the field M and an empty vector in the field T. The struct restart can also be given as
input in the struct options such that the program does not have to recompute the contained
values. We recommend only to use this, if the user has good knowledge of MATLAB and is
completely sure of the use of restart as input.

6

Use of options:

The following fields in options are used in this function:

- options.lambda:

- options.lambda = c, where c is a constant, satisfying 0 ≤ c ≤ 2/σ̃2
1. A warning

is given if this requirement is estimated to be violated.

- options.lambda = ’line’, where the line search method is used to compute the
value for λk in each iteration.

- options.lambda = ’psi1’, where the method psi1 computes the values for λk

using the Ψ1-based relaxation.

- options.lambda = ’psi1mod’, where the method psi1mod computes the values
for λk using the modified Ψ1-based relaxation with ν = 2. The parameter ν can
be changed in line 365 in the code.

- options.lambda = ’psi2’, where the method psi2 computes the values for λk

using the Ψ2-based relaxation.

- options.lambda = ’psi2mod’, where the method psi2mod computes the values
for λk using the modified Ψ2-based relaxation with ν = 1.5. The parameter ν can
be changed in line 412 in the code.

- options.nonneg Logical; if true then nonnegativity in enforced in each iteration.

- options.restart

- options.restart.M = a vector with the diagonal of DS .

- options.restart.s1 = σ̃1, the estimated largest singular value of D
1/2
S A.

- options.stoprule

- options.stoprule.type

- options.stoprule.type = ’none’, where no stopping rule is given and only
the maximum number of iterations is used to stop the algorithm. This choice
is default.

- options.stoprule.type = ’NCP’, where the optimal number of iterations
k∗ is chosen according to Normalized Cumulative Periodogram.

- options.stoprule.type = ’DP’, where the stopping index k∗ is determined
according to the discrepancy principle (DP).

- options.stoprule.type = ’ME’, where the stopping index k∗ is determined
according to the monotone error rule (ME).

- options.stoprule.taudelta = τδ, where δ is the noise level and τ is user-chosen.
This parameter is only needed for the stoprule types DP and ME.

- options.w = w, where w is an m-dimensional vector of weights.

7

Examples:

Generate a “noisy” 50 × 50 parallel beam tomography problem, computes 50 cav iterations
and show the last iterate:

[A b x] = paralleltomo(50,0:5:179,150);

e = randn(size(b)); e = e/norm(e);

b = b + 0.05*norm(b)*e;

X = cav(A,b,1:50);

imagesc(reshape(X(:,end),50,50))

colormap gray, axis image off

See also:

cimmino, drop, landweber, sart.

References:

1. Y. Censor, D. Gordon, and R. Gordon, Component averaging: An efficient iterative
parallel algorithm for large sparse unstructured problems, Parallel Computing, 27 (2001),
pp. 777–808.

8

cimmino

Purpose:

Cimmino’s iterative projection method.

Synopsis:

[X info restart] = cimmino(A,b,K)

[X info restart] = cimmino(A,b,K,x0)

[X info restart] = cimmino(A,b,K,x0,options)

Algorithm:

For arbitrary x0 ∈ Rn the algorithm for cimmino take the following form:

xk+1 = xk + λkA
TD(b− Axk), D =

1

m
diag

(
wi

∥A(i, :)∥22

)
.

Description:

The function implements Cimmino’s iterative projection method for solving linear systems
Ax = b. The starting vector is x0; if no starting vector is given, then x0 = 0 is used.

The numbers given in the vector K are iteration numbers that specify which iterations are
stored in the output matric K. If a stopping rule us selected (see below) and K = [], then X

contains the last iterate only.
The maximum number of iterations is determined either by the maximum number in the

vector K or by the stopping rule specified in the field stoprule in the struct options. If K is
empty a stopping rule must be specified.

The relaxation parameter is given in the field lambda in the struct options, either as a
constant or as a string that determines the method to compute lambda. As default lambda
is set to 1/σ̃2

1, where σ̃1 is an estimate of the largest singular value of D1/2A.
The second output info is a vector with two elements. The first element is an indicator

that denotes why the iterations were stopped. The number 0 denotes that the iterations were
stopped because the maximum number of iterations were reached, 1 denotes that the NCP-
rule stopped the iterations, 2 denotes that the DP-rule stopped the iteration and 3 denotes
that the ME-rule stopped the iterations. The second element in info is the number of used
iterations.

The struct restart, which can be given as output, contains in the field s1 the estimated
largest singular value. restart also returns a vector containing the diagonal of the matrix
M in the field M and an empty vector in the field T. The struct restart can also be given as
input in the struct options, such that the program do not have to recompute the contained
values. We recommend only to use this, if the user has good knowledge of MATLAB and is
completely sure of the use of restart as input.

Use of options

The following fields in options are used in this function:

- options.lambda:

9

- options.lambda = c, where c is a constant, satisfying 0 ≤ c ≤ 2/σ̃2
1. A warning

is given if this requirement is estimated to be violated.

- options.lambda = ’line’, where the line search method is used to compute the
value for λk in each iteration.

- options.lambda = ’psi1’, where the method psi1 computes the values for λk

using the Ψ1-based relaxation.

- options.lambda = ’psi1mod’, where the method psi1mod computes the values
for λk using the modified Ψ1-based relaxation with ν = 2. The parameter ν can
be changed in line 371 in the code.

- options.lambda = ’psi2’, where the method psi2 computes the values for λk

using the Ψ2-based relaxation.

- options.lambda = ’psi2mod’, where the method psi2mod computes the values
for λk using the modified Ψ2-based relaxation with ν = 1.5. The parameter ν can
be changed in line 418 in the code.

- options.nonneg Logical; if true then nonnegativity in enforced in each iteration.

- options.restart

- options.restart.M = a vector with the diagonal of M .

- options.restart.s1 = σ̃1, the estimated largest singular value of M1/2A.

- options.stoprule

- options.stoprule.type

- options.stoprule.type = ’none’, where no stopping rule is given and only
the maximum number of iterations is used to stop the algorithm. This choice
is default.

- options.stoprule.type = ’NCP’, where the optimal number of iterations
k∗ is chosen according to Normalized Cumulative Periodogram.

- options.stoprule.type = ’DP’, where the stopping index k∗ is determined
according to the discrepancy principle (DP).

- options.stoprule.type = ’ME’, where the stopping index k∗ is determined
according to the monotone error rule (ME).

- options.stoprule.taudelta = τδ, where δ is the noise level and τ is user-chosen.
This parameter is only needed for the stoprule types DP and ME.

- options.w = w, where w is an m-dimensional vector of weights.

Examples:

Generate a “noisy” 50× 50 parallel beam tomography problem, computes 50 cimmino itera-
tions and show the last iterate:

[A b x] = paralleltomo(50,0:5:179,150);

e = randn(size(b)); e = e/norm(e);

b = b + 0.05*norm(b)*e;

10

X = cimmino(A,b,1:50);

imagesc(reshape(X(:,end),50,50))

colormap gray, axis image off

See also:

cav, drop, landweber, sart.

References:

1. G. Cimmino, Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari, La
Ricerca Scientifica, XVI, Series II, Anno IX, 1 (1938), pp. 326–333.

2. C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000.

11

drop

Purpose:

Diagonally Relaxed Orthogonal Projections (DROP) iterative method.

Synopsis:

[X info restart] = drop(A,b,K)

[X info restart] = drop(A,b,K,x0)

[X info restart] = drop(A,b,K,x0,options)

Algorithm:

For arbitrary x0 ∈ Rn the algorithm for the drop method takes the following form:

xk+1 = xk + λkS
−1ATM(b− Axk), M = diag

(
wi

∥A(i, :)∥22

)
,

where S = diag (sj) and sj is the number of nonzero elements in column j of A for i = 1, . . . , m.

Description:

The function implements the Diagonally Relaxed Orthogonal Projections (DROP) iterative
method for solving the linear system Ax = b. The starting vector is x0; if no starting vector
is given, then x0 = 0 is used.

The numbers given in the vector K are the iteration numbers, that specify which iterations
are stored in the output matrix X. If a stopping rule is selected (see below) and K = [], then
X contains the last iterate only.

The maximum number of iterations is determined either by the maximum number in the
vector K or by the stopping rule specified in the field stoprule in the struct options. If K is
empty a stopping rule must be specified.

The relaxation parameter is given in the field lambda in the struct options, either as a
constant or as a string that determines the method to compute lambda. As default lambda
is set to 1/ρ̃, where ρ̃ is an estimate of the spectral radius of S−1ATM A.

The second output info is a vector with two elements. The first element is an indicator,
that denotes why the iterations were stopped. The number 0 denotes that the iterations were
stopped because the maximum number of iterations were reached, denotes that the NCP-
rule stopped the iterations, 2 denotes that the DP-rule stopped the iterations and 3 denotes
that the ME-rule stopped the iterations. The second element in info is the number of used
iterations.

The struct restart, which can be given as output, contains in the field s1 the estimated
largest singular value. restart also returns a vector containing the diagonal of the matrix
M in the field M and the diagonal of the matrix S in the field T. The struct restart can also
be given as input in the struct options, such that the program do not have to recompute
the contained values. We recommend only to use this, if the user has good knowledge of
MATLAB and is completely sure of the use of restart as input.

12

Use of options

The following fields in options are used in this function:

- options.lambda:

- options.lambda = c, where c is a constant, satisfying 0 ≤ c ≤ 2/ρ̃. A warning
is given if this requirement is estimated to be violated.

- options.lambda = ’line’, where the line search method is used to compute the
value for λk in each iteration.

- options.lambda = ’psi1’, where the method psi1 computes the values for λk

using the Ψ1-based relaxation.

- options.lambda = ’psi1mod’, where the method psi1mod computes the values
for λk using the modified Ψ1-based relaxation with ν = 2. The parameter ν can
be changed in line 381 in the code.

- options.lambda = ’psi2’, where the method psi2 computes the values for λk

using the Ψ2-based relaxation.

- options.lambda = ’psi2mod’, where the method psi2mod computes the values
for λk using the modified Ψ2-based relaxation with ν = 1.5. The parameter ν can
be changed in line 428 in the code.

- options.nonneg Logical; if true then nonnegativity in enforced in each iteration.

- options.restart

- options.restart.M = a vector containing the diagonal of M .

- options.restart.T = a vector containing the diagonal of S−1.

- options.restart.s1 = σ̃1, where σ̃1 =
√
ρ̃.

- options.stoprule

- options.stoprule.type

- options.stoprule.type = ’none’, where no stopping rule is given and only
the maximum number of iterations is used to stop the algorithm. This choice
is default.

- options.stoprule.type = ’NCP’, where the optimal number of iterations
k∗ is chosen according to Normalized Cumulative Periodogram.

- options.stoprule.type = ’DP’, where the stopping index is determined ac-
cording to the discrepancy principle (DP).

- options.stoprule.type = ’ME’, where the stopping index is determined ac-
cording to the monotone error rule (ME).

- options.stoprule.taudelta = τδ, where δ is the noise level and τ is user-chosen.
This parameter is only needed for the stoprule types DP and ME.

- options.w = w, where w is an m-dimensional vector of weights.

13

Examples:

Generate a “noisy” 50× 50 parallel beam tomography problem, computes 50 drop iterations
and show the last iterate:

[A b x] = paralleltomo(50,0:5:179,150);

e = randn(size(b)); e = e/norm(e);

b = b + 0.05*norm(b)*e;

X = drop(A,b,1:50);

imagesc(reshape(X(:,end),50,50))

colormap gray, axis image off

See also:

cav, cimmino, landweber, sart.

References:

1. Y. Censor, T. Elfving, G. Herman, and T. Nikazad, On diagonally relaxed orthogonal
projection methods, SIAM J. Sci. Comput., 30 (2007/08), pp. 473–504.

14

fanbeamtomo

Purpose:

Creates a two-dimensional fan-beam tomography test problem.

Synopsis:

[A b x theta p R w] = fanbeamtomo(N)

[A b x theta p R w] = fanbeamtomo(N,theta)

[A b x theta p R w] = fanbeamtomo(N,theta,p)

[A b x theta p R w] = fanbeamtomo(N,theta,p,R)

[A b x theta p R w] = fanbeamtomo(N,theta,p,R,w)

[A b x theta p R w] = fanbeamtomo(N,theta,p,R,w,isDisp)

Description:

This function creates a two-dimensional tomography test problem using fan beams. A 2-
dimensional domain is divided into N equally spaced intervals in both dimension creating N2

cells. For each specified angle theta, given in degrees, a source is located with distance RN

to the center of the domain. From the sources p equiangular rays penetrate the domain with
a span of w between the first and the last ray. The default values for the angles is theta =
0:359. The number of rays p have the default value equal to round(

√
2N). The distance from

the center of the domain to the sources is given in the unit of side lengths and default value
of R is 2. The default value of the span w is calculated such that from (0,RN) the first ray
hits the point (−N/2,N/2) and the last hits (N/2,N/2). If the input isDisp is different from
0 then the function also creates an illustration of the problem with the used angles and rays
etc. As default isDisp is 0.

The function returns a coefficient matrix A with the dimension length(theta) ·p×N2, the
right hand side b, and the phantom head reshaped as a vector x. The figure below illustrates
the phantom head for N = 100. In case that default values are used the function also returns
the used angles theta, the number of used rays for each angle p, the used distance from the
source to the center of the domain given in side lengths R and the used span of the rays w.

Algorithm:

The element aij is defined as the length of the ith ray through the jth cell with aij = 0 if ray
i does not go through cell j. The exact solution of the head phantom is reshaped as a vector
and the ith element in the right hand side bi is

bi =

N2∑
j=1

aijxj , i = 1, . . . , nA · p.

Examples:

Create a test problem and visualize the solution:

N = 64; theta = 0:5:359; p = 2*N; R = 2;

[A b x] = fanbeamtomo(N,theta,p,R);

15

imagesc(reshape(x,N,N))

colormap gray, axis image off

See also:

paralleltomo, seismictomo.

References:

1. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, SIAM,
Philadelphia, 2001.

Shepp−Logan Phantom, N = 100

16

kaczmarz

Purpose:

Kaczmarz’s iterative method also known as algebraic reconstruction technique
(ART).

Synopsis:

[X info] = kaczmarz(A,b,K)

[X info] = kaczmarz(A,b,K,x0)

[X info] = kaczmarz(A,b,K,x0,options)

Algorithm:

For arbitrary starting vector x0 ∈ Rn one iteration of the algorithm kaczmarz takes the
following form:

x← x+ λk
bi −

⟨
ai, x

⟩
∥ai∥22

ai

Description:

The function implements Kaczmarz’s iterative method for solving the linear system Ax = b.
The starting vector is x0; if no starting vector is given then x0 = 0 is used.

The numbers given in the vector K are iteration numbers, that specify which iterations
are stored in the putput matrix X. If a stopping rule is selected (see below) and K = [], then
X contains the last iterate only.

The maximum number of iterations is determined either by the maximum number in the
vector K or by the stopping rule specified in the field stoprule in the struct options. If K is
empty a stopping rule must be specified.

The relaxation parameter is given in the field lambda in the struct options as a constant.
As default lambda is set to 0.25.

The second output info is a vector with two elements. The first element is an indicator
that denotes why the iterations were stopped. The number 0 denotes that the iterations
were stopped because the maximum number of iterations were reached, 1 denotes that the
NCP-rule stopped the iterations and 2 denotes that the DP-rule stopped the iterations.

Use of options:

The following fields in options are used in this function:

- options.lambda = c, a constant satisfying 0 ≤ c ≤ 2. A warning is given if this
requirement is estimated to be violated.

- options.nonneg Logical; if true then nonnegativity in enforced in each step.

- options.stoprule

- options.stoprule.type

17

- options.stoprule.type = ’none’, where no stopping rule is given and only
the maximum number of iterations is used to stop the algorithm. This choice
is default.

- options.stoprule.type = ’NCP’, where the optimal number of iterations
k∗ is chosen according to Normalized Cumulative Periodogram.

- options.stoprule.type = ’DP’, where the stopping index is determined ac-
cording to the discrepancy principle (DP).

- options.stoprule.taudelta = τδ, where δ is the noise level and τ is user-chosen.
This parameter is only needed for the stoprule type DP.

Examples:

Generate a “noisy” 50× 50 parallel beam tomography problem, computes 10 kaczmarz iter-
ations and show the last iterate:

[A b x] = paralleltomo(50,0:5:179,150);

e = randn(size(b)); e = e/norm(e);

b = b + 0.05*norm(b)*e;

X = kaczmarz(A,b,1:10);

imagesc(reshape(X(:,end),50,50))

colormap gray, axis image off

See also:

randkaczmarz, symkaczmarz.

References:

1. G. T. Herman, Fundamentals of Computerized Tomography, Image Reconstruction from
Projections, Springer, New York, 2009.

2. S. Kaczmarz, Angenäherte Auflösung von Systemen linearer Gleichungen, Bulletin de
l’Académie Polonaise des Sciences et Lettres, A35 (1937), pp. 355–357.

18

landweber

Purpose:

The Classical Landweber iterative method.

Synopsis:

[X info restart] = landweber(A,b,K)

[X info restart] = landweber(A,b,K,x0)

[X info restart] = landweber(A,b,K,x0,options)

Algorithm:

For arbitrary x0 ∈ Rn the algorithm for landweber takes the following form:

xk+1 = xk + λk A
T (b− Axk).

Description:

The function implements the Classical Landweber iterative method for solving the linear
system Ax = b. The starting vector is x0; if no starting vector is given then x0 = 0 is used.

The numbers given in the vector K are iteration numbers, that specify which iterations
are stored in the output matrix X. If a stopping rule is selected (see below) and K = [], then
X contains the last iterate only.

The maximum number of iterations is determined either by the maximum number in the
vector K or by the stopping rule specified in the field stoprule in the struct options. If K is
empty a stopping rule must be specified.

The relaxation parameter is given in the field lambda in the struct options, either as a
constant or as a string that determines the method to compute lambda. As default lambda
is set to 1/σ̃2

1, where σ̃1 is an estimate of the largest singular value of A.

The second output is a vector with two elements. The first element is an indicator, that
denotes why the iterations were stopped. The number 0 denotes that the iterations were
stopped because the maximum number of iterations were reached, 1 denotes that the NCP-
rule stopped the iterations, 2 denotes that the DP-rule stopped the iterations and 3 denotes
that the ME-rule stopped the iterations. The second element is info is the number of used
iterations.

The struct restart, which can be given as output, contains in the field s1 the estimated
largest singular value. restart also returns an empty vector in both the fields M and T. The
struct restart can also be given as input in the struct options, such that the program does
not have to recompute the contained values. We recommend only to use this, if the user has
good knowledge of MATLAB and is completely sure of the use of restart as input.

Use of options:

The following fields in options are used in this function:

- options.lambda:

19

- options.lambda = c, where c is a constant, satisfying 0 ≤ c ≤ 2/σ̃2
1. A warning

is given if this requirement is estimated to be violated.

- options.lambda = ’line’, where the line search method is used to compute the
value for λk in each iteration.

- options.lambda = ’psi1’, where the method psi1 computes the values for λk

using the Ψ1-based relaxation.

- options.lambda = ’psi1mod’, where the method psi1mod computes the values
for λk using the modified Ψ1-based relaxation with ν = 2. The parameter ν can
be changed in line 308 in the code.

- options.lambda = ’psi2’, where the method psi2 computes the values for λk

using the Ψ2-based relaxation.

- options.lambda = ’psi2mod’, where the method psi2mod computes the values
for λk using the modified Ψ2-based relaxation with ν = 1.5. The parameter ν can
be changed in line 353 in the code.

- options.nonneg Logical; if true then nonnegativity in enforced in each iteration.

- options.restart

- options.restart.s1 = σ̃1, where σ̃1 is the estimated largest singular value of A.

- options.stoprule

- options.stoprule.type

- options.stoprule.type = ’none’, where no stopping rule is given and only
the maximum number of iterations is used to stop the algorithm. This choice
is default.

- options.stoprule.type = ’NCP’, where the optimal number of iterations
k∗ is chosen according to Normalized Cumulative Periodogram.

- options.stoprule.type = ’DP’, where the stopping index k∗ is determined
according to the discrepancy principle (DP).

- options.stoprule.type = ’ME’, where the stopping index k∗ is determined
according to the monotone error rule (ME).

options.stoprule.taudelta = τδ, where δ is the noise level and τ is user-chosen.
This parameter is only needed for the stoprule types DP and ME.

Examples:

We generate a “noisy” 50× 50 parallel beam tomography problem, computes 50 landweber

iterations and show the last iterate:

[A b x] = paralleltomo(50,0:5:179,150);

e = randn(size(b)); e = e/norm(e);

b = b + 0.05*norm(b)*e;

X = landweber(A,b,1:50);

imagesc(reshape(X(:,end),50,50))

colormap gray, axis image off

20

See also:

cav, cimmino, drop, sart

References:

1. L. Landweber, An iteration formula for Fredholm integral equations of the first kind,
American Journal of Mathematics, 73 (1951), pp. 615–624.

21

paralleltomo

Purpose:

Creates a two-dimensional parallel-beam tomography test problem.

Synopsis:

[A b x theta p w] = paralleltomo(N)

[A b x theta p w] = paralleltomo(N,theta)

[A b x theta p w] = paralleltomo(N,theta,p)

[A b x theta p w] = paralleltomo(N,theta,p,w)

[A b x theta p w] = paralleltomo(N,theta,p,w,isDisp)

Description:

This function creates a two-dimensional tomography test problem using parallel beams. A 2-
dimensional domain is divided into N equally spaced intervals in both dimensions creating N2

cells. For each specified angle theta, given in degrees, p parallel rays, arranged symmetrically
around the center of the domain, such that the width from the first to the last ray is w,
penetrate the domain. The default values for the angles are theta = 0:179. The number of
rays p has the default value equal to round(

√
2N). The default value of the width between the

first and the last ray w is
√
2N. If the input isDisp is different from 0 then the function also

creates an illustration of the problem with the used angles and rays etc. As default isDisp
is 0.

The function returns a coefficient matrix A with the dimension length(theta) ·p×N2, the
right hand side b, and the phantom head reshaped as a vector x. The figure below illustrates
the phantom head for N = 100. In case the default values are used, the function also returns
the used angles theta, the number of used rays for each angle p, and the used width of the
rays w.

Algorithm:

The element aij is defined as the length of the ith ray through the jth cell with aij = 0 if ray
i does not go through cell j. The exact solution of the head phantom is reshaped as a vector
and the i’th element in the right hand side bi is

bi =
N2∑
j=1

aijxj , i = 1, . . . , nA · p.

For further information see the paper.

Examples:

Create a test problem and visualize the solution:

N = 64; theta = 0:5:179; p = 2*N;

[A b x] = paralleltomo(N,theta,p);

imagesc(reshape(x,N,N))

colormap gray, axis image off

22

See also:

fanbeamtomo, seismictomo.

References:

1. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, SIAM,
Philadelphia, 2001.

Shepp−Logan Phantom, N = 100

23

randkaczmarz

Purpose:

The randomized Kaczmarz iterative method.

Synopsis:

[X info] = randkaczmarz(A,b,K)

[X info] = randkaczmarz(A,b,K,x0)

[X info] = randkaczmarz(A,b,K,x0,options)

Algorithm:

For arbitrary starting vector x0 ∈ Rn one step of the algorithm for randkaczmarz takes the
following form:

x← x+ λ
br(i) −

⟨
ar(i), x

⟩
∥ar(i)∥22

ar(i),

where r(i) is chosen from the set {1, . . . ,m} randomly with probability proportional with
∥ai∥22. One iteration is defined as m steps.

Description:

The function implements the randomized Kaczmarz iterative method for solving the linear
system Ax = b. The starting vector is x0; if no starting vector is given then x0 = 0 is used.

The numbers given in the vector K are iteration numbers, that specify which iterations
are stored in the output matrix X. If a stopping rule is selected (see below) and K = [], then
X contains the last iterate only.

The maximum number of iterations is determined either by the maximum number in the
vector K or by the stopping rule specified in the field stoprule in the struct options. If K is
empty a stopping rule must be specified.

The relaxation parameter is given in the field lambda in the struct options as a constant.
As default lambda is set to 1, since this corresponds to the original method.

The second output info is a vector with two elements. The first element is an indicator
that denotes why the iterations were stopped. The number 0 denotes that the iterations
were stopped because the maximum number of iterations were reached, 1 denotes that the
NCP-rule stopped the iterations and 2 denotes that the DP-rule stopped the iterations.

Use of options:

The following fields in options are used in this function:

- options.lambda = c, a constant satisfying 0 ≤ c ≤ 2. A warning is given if this
requirement is estimated to be violated.

- options.nonneg Logical; if true then nonnegativity in enforced in each step.

- options.stoprule

- options.stoprule.type

24

- options.stoprule.type = ’none’, where no stopping rule is given and only
the maximum number of iterations is used to stop the algorithm. This choice
is default.

- options.stoprule.type = ’NCP’, where the optimal number of iterations
k∗ is chosen according to Normalized Cumulative Periodogram.

- options.stoprule.type = ’DP’, where the stopping index is determined ac-
cording to the discrepancy principle (DP).

- options.stoprule.taudelta = τδ, where δ is the noise level and τ is user-chosen.
This parameter is only needed for the stoprule type DP.

Examples:

Generate a “noisy” 50 × 50 parallel beam tomography problem, compute 10 randkaczmarz

iterations and show the last iterate:

[A b x] = paralleltomo(50,0:5:179,150);

e = randn(size(b)); e = e/norm(e);

b = b + 0.05*norm(b)*e;

X = randkaczmarz(A,b,1:10);

imagesc(reshape(X(:,end),50,50))

colormap gray, axis image off

See also:

kaczmarz, symkaczmarz.

References:

1. T. Strohmer and R. Vershynin, A randomized Kaczmarz algorithm for linear systems
with exponential convergence, J. Fourier Analysis Appl., 15 (2009), pp. 262–278.

25

sart

Purpose:

The Simultaneous Algebraic Reconstruction Technique (SART) iterative method.

Synopsis:

[X info restart] = sart(A,b,K)

[X info restart] = sart(A,b,K,x0)

[X info restart] = sart(A,b,K,x0,options)

Algorithm:

For arbitrary x0 ∈ Rn the algorithm for sart takes the following form:

xk+1 = xk + λkV
−1ATW−1(b− Axk),

where V = diag
(
∥ai∥1

)
and W = diag (∥aj∥1).

Description:

The function implements the SART (Simultaneous Algebraic Reconstruction Technique) it-
erative method for solving the linear system Ax = b. The starting vector is x0; if no starting
vector is given then x0 = 0 is used.

The numbers given in the vector K are iteration numbers, that specify which iterations
are stored in the output matrix X. If a stopping rule is selected (see below) and K = [], then
X contains the last iterate only.

The maximum number of iterations is determined either by the maximum number in the
vector K or by the stopping rule specified in the field stoprule in the struct options. If K is
empty a stopping rule must be specified.

The relaxation parameter is given in the field lambda in the struct options, either as a
constant or as a string that determines the method to compute lambda. The spectral radius
is ρ(V −1ATW−1A) = 1, and as default lambda is set to 1.

The second output info is a vector with two elements. The first element is an indicator,
that denotes why the iterations were stopped. The number 0 denotes that the iterations were
stopped because the maximum number of iterations were reached 1 denotes that the NCP-rule
stopped the iterations, 2 denotes that the DP-rule stopped the iterations and 3 denote that the
ME-rule stopped the iterations. The second element in info is the number if used iterations.
The second element in info is the number of used iterations.

The struct restart, which can be given as output, contains in the field s1 the estimated
largest singular value. restart also returns a vector containing the diagonal of the matrix
W−1 in the field M and the diagonal of the matrix V −1 in the field T. The struct restart can
also be given as input in the struct options, such that the program do not have to recompute
the contained values. We recommend only to use this, if the user has good knowledge of
MATLAB and is completely sure of the use of restart as input.

26

Use of options:

The following fields in options are used in this function:

- options.lambda:

- options.lambda = c, where c is a constant, satisfying 0 ≤ c ≤ 2. A warning is
given if this requirement is estimated to be violated.

- options.lambda = ’line’, where the line search method is used to compute the
value for λk in each iteration.

- options.lambda = ’psi1’, where the method psi1 computes the values for λk

using the Ψ1-based relaxation.

- options.lambda = ’psi1mod’, where the method psi1mod computes the values
for λk using the modified Ψ1-based relaxation with ν = 2. The parameter ν can
be changed in line 362 in the code.

- options.lambda = ’psi2’, where the method psi2 computes the values for λk

using the Ψ2-based relaxation.

- options.lambda = ’psi2mod’, where the method psi2mod computes the values
for λk using the modified Ψ2-based relaxation with ν = 1.5. The parameter ν can
be changed in line 411 in the code.

- options.nonneg Logical; if true then nonnegativity in enforced in each iteration.

- options.restart

- options.restart.M = a vector containing the diagonal of W−1.

- options.restart.T = a vector containing the diagonal of V −1.

- options.restart.s1 = 1.

- options.stoprule

- options.stoprule.type

- options.stoprule.type = ’none’, where no stopping rule is given and only
the maximum number of iterations is used to stop the algorithm. This choice
is default.

- options.stoprule.type = ’NCP’, where the optimal number of iterations
k∗ is chosen according to the Normalized Cumulative Periodogram.

- options.stoprule.type = ’DP’, where the stopping index is determined ac-
cording to the discrepancy principle (DP).

- options.stoprule.type = ’ME’, where the stopping index is determined ac-
cording to the monotone error rule (ME).

- options.stoprule.taudelta = τδ, where δ is the noise level and τ is user chosen.
This parameter is only needed for the stoprule types DP and ME.

27

Examples:

Generate a “noisy” 50× 50 parallel beam tomography problem, compute 50 sart iterations
and show the last iterate:

[A b x] = paralleltomo(50,0:5:179,150);

e = randn(size(b)); e = e/norm(e);

b = b + 0.05*norm(b)*e;

X = sart(A,b,1:50);

imagesc(reshape(X(:,end),50,50))

colormap gray, axis image off

See also:

cav, cimmino, drop, landweber.

References:

1. A. H. Andersen and A. C. Kak, Simultaneous algebraic reconstruction technique (SART):
A superior implementation of the ART algorithm, Ultrasonic Imaging, 6 (1984), pp. 81–
94.

28

seismictomo

Purpose:

Creates a two-dimensional seismic tomography test problem.

Synopsis:

[A b x s p] = seismictomo(N)

[A b x s p] = seismictomo(N,s)

[A b x s p] = seismictomo(N,s,p)

[A b x s p] = seismictomo(N,s,p,isDisp)

Description:

This function creates a two-dimensional seismic tomography test problem. A two-dimensional
domain illustrating a cross section of the subsurface is divided into N equally spaced intervals
in both dimensions creating N2 cells. On the right boundary s sources are located and each
source transmits waves to the p seismographs or receivers, which are scattered on the surface
and on the left boundary. As default N sources and 2N receivers are chosen. If the input
isDisp is different from 0 then the function also creates an illustration of the problem with
the used angles and rays etc. As default isDisp is 0.

The function returns a coefficient matrix A with the dimensions p · s× N2, the right hand
side b and a created phantom of a subsurface as the vector x reshaped. The figure below
illustrates the subsurface created when N = 100. In case the default values are used, the
function also returns the used number of sources s and the used number of receivers p.

Seismic Phantom, N = 100

29

Algorithm:

The element aij is defined as the length of the ith ray through the jth cell with aij = 0 if ray
i does not go through cell j. The exact solution of the subsurface phantom is reshaped as a
vector and the i’th element in the right hand side bi is

bi =

N2∑
j=1

aijxj , i = 1, . . . , s · p.

Examples:

Create a test problem and visualize the solution:

N = 100; s = N; p = 2*N;

[A b x] = seismictomo(N,s,p);

imagesc(reshape(x,N,N))

colormap gray, axis image off

See also:

fanbeamtomo, paralleltomo.

30

symkaczmarz

Purpose:

The symmetric Kaczmarz iterative method.

Synopsis:

[X info] = symkaczmarz(A,b,K)

[X info] = symkaczmarz(A,b,K,x0)

[X info] = symkaczmarz(A,b,K,x0,options)

Algorithm:

For arbitrary starting vector x0 ∈ Rn one iteration of the algorithm for symkaczmarz takes
the following form:

x← x+ λk
bi −

⟨
ai, x

⟩
∥ai∥22

ai, i = 1, . . . ,m− 1,m,m− 1, . . . , 1.

Description:

The function implements the symmetric Kaczmarz iterative method for solving the linear
system Ax = b. The starting vector is x0; if no vector is given then x0 = 0 is used.

The numbers given in the vector K are iteration numbers, that specify which iterations
are stored in the output matrix X. If a stopping rule is selected (see below) and K = [], then
X contains the last iterate only.

The maximum number of iterations is determined either by the maximum number in the
vector K or by the stopping rule specified in the field stoprule in the struct options. If K is
empty a stopping rule must be specified.

The relaxation parameter is given in the field lambda in the struct options, either as a
constant or as a string that determines the method to compute lambda. As default lambda
is set to 0.25.

The second output info is a vector with two elements. The first element is an indicator,
that denotes why the iterations were stopped. The number 0 denotes that the iterations
were stopped because the maximum number of iterations were reached, 1 denotes that the
NCP-rule stopped the iterations, and 2 denotes that the DP-rule stopped the iterations.

Use of options:

The following fields in options are used in this function:

- options.lambda:

- options.lambda = c, where c is a constant, satisfying 0 ≤ c ≤ 2. A warning is
given if this requirement is estimated to be violated.

- options.lambda = ’psi1’, where the method psi1 computes the values for λk

using the Ψ1-based relaxation.

- options.lambda = ’psi2’, where the method psi2 computes the values for λk

using the Ψ2-based relaxation.

31

- options.nonneg Logical; if true then nonnegativity in enforced in each step.

- options.stoprule

- options.stoprule.type

- options.stoprule.type = ’none’, where no stopping rule is given and only
the maximum number of iterations is used to stop the algorithm. This choice
is default.

- options.stoprule.type = ’NCP’, where the optimal number of iterations
k∗ is chosen according to Normalized Cumulative Periodogram.

- options.stoprule.type = ’DP’, where the stopping index is determined ac-
cording to the discrepancy principle (DP).

- options.stoprule.taudelta = τδ, where δ is the noise level and τ is user-chosen.
This parameter is only needed for the stoprule type DP.

Examples:

Generate a “noisy” 50 × 50 parallel beam tomography problem, computes 10 symkaczmarz

iterations and show the last iterate:

[A b x] = paralleltomo(50,0:5:179,150);

e = randn(size(b)); e = e/norm(e);

b = b + 0.05*norm(b)*e;

X = symkaczmarz(A,b,1:10);

imagesc(reshape(X(:,end),50,50))

colormap gray, axis image off

See also:

kaczmarz, randkaczmarz.

References:

1. Å. Björck and T. Elfving, Accelerated projection methods for computing pseudoinverse
solutions of systems of linear equations, BIT, 19 (1979), pp. 145–163.

32

trainDPME

Purpose:

Training strategy to estimate the best parameter when the discrepancy principle
or the monotone error rule is used as stopping rule.

Synopsis:

tau = trainlambda(A,b,x exact,method,type,delta,s)

tau = trainlambda(A,b,x exact,method,type,delta,s,options)

Description:

This function implements the training strategy for estimation of the parameter τ , when using
the discrepancy principle or the monotone error rule as stopping rule. From test solution
x exact and the corresponding noise free right-hand side b s noisy samples are generated
with noise level delta. From each sample the solutions for the given method method are
calculated and according to which type of stopping rule is chosen in type an estimate of tau
is calculated and returned.

A default maximum number of iterations is chosen for the SIRT methods to be 1000 and
for the ART methods to 100. If the this is not enough it can be changed in line 74 for the
SIRT methods and in line 87 for the ART methods.

Use of options:

The following fields in options are used in this function.

- options.lambda: See the chosen method method for the choices of this parameter.

- options.restart: Only available when method is a SIRT method. See the specific
method for correct use.

- options.w: If the chosen method method allows weights this parameter can be set.

Examples:

Generate a “noisy” 50× 50 parallel beam tomography problem. Then the parameter tau is
found using training for DP and this parameter is used with DP to stop the iterations and
the last iterate is shown.

[A b x] = paralleltomo(50,0:5:179,150);

delta = 0.05;

tau = trainDPME(A,b,x,@cimmino,’ME’,delta,20);

e = randn(size(b)); e = e/norm(e);

b = b + delta*norm(b)*e;

options.stoprule.type = ’ME’;

options.stoprule.taudelta = tau*delta;

[X info] = cimmino(A,b,200,[],options);

imagesc(reshape(X(:,end),50,50))

colormap gray, axis image off

33

See also:

cav, cimmino, drop, kaczmarz, landweber, randkaczmar, sart, symkaczmarz.

References:

1. T. Elfving and T. Nikazad, Stopping rules for Landweber-type iteration, Inverse Prob-
lems, 23 (2007), pp. 1417–1432.

34

trainLambdaART

Purpose:

Strategy to find the best constant relaxation parameter λ for a given ART method.

Synopsis:

lambda = trainLambdaART(A,b,x exact,method)

lambda = trainLambdaART(A,b,x exact,method,kmax)

Description:

This function implements the training strategy for finding the optimal constant relaxation
parameter λ for a given ART method, that solves the linear system Ax = b. The training
strategy builds on a two part strategy.

In the first part the resolution limit is calculated using kmax iterations of the iteration
ART method given as a function handle in method. If kmax is not given or empty, the default
value is 100. The first part of the strategy is to determine the resolution limit for the a
specific value of λ.

The second part of the strategy is a modified version of a golden section search in which
the optimal value of λ is found within the convergence interval of the specified iterative
method. The method returns the optimal value in the output lambda.

Examples:

Generate a “noisy” 50 × 50 parallel beam tomography problem, train to find the optimal
value of λ for the ART method kaczmarz and use the found value, when 10 iterations of the
method are computed. Finally the last iterate is shown:

[A b x] = paralleltomo(50,0:5:179,150);

e = randn(size(b)); e = e/norm(e);

b = b + 0.05*norm(b)*e;

lambda = trainLambdaART(A,b,x,@kaczmarz);

options.lambda = lambda;

X = kaczmarz(A,b,1:10,[],options);

imagesc(reshape(X(:,end),50,50))

colormap gray, axis image off

See also:

trainLambdaSIRT

35

trainLambdaSIRT

Purpose:

Strategy to find best constant relaxation parameter λ for a given SIRT method.

Synopsis:

lambda = trainLambdaSIRT(A,b,x exact,method)

lambda = trainLambdaSIRT(A,b,x exact,method,kmax)

lambda = trainLambdaSIRT(A,b,x exact,method,kmax,options)

Description:

This function implements the training strategy for finding the optimal constant relaxation
parameter λ for a given SIRT method, that solves the linear system Ax = b. The training
strategy builds on a two part strategy.

In the first step the resolution limit is calculated using kmax iterations of the iteration
SIRT method given as a function handle in method. If kmax is not given or empty, the default
value is 1000. To determine the resolution limit the default value of λ is used together with
the contents of options. See below for correct use of options.

The second part of the strategy is a modified version of a golden section search in which
the optimal value of λ is found within the convergence interval of the specified iterative
method. The method returns the optimal value in the output lambda.

Use of options:

The following fields in options are used in this function.

- options.restart: See the specific method for correct use.

- options.w: If the chosen mehtod method allows weigths this parameter can be set.

Examples:

Generate a “noisy” 50 × 50 parallel beam tomography problem, train to find the optimal
value of λ for the SIRT method cimmino and use the found value, when 50 iterations of the
method is computed. Finally the last iterate is shown:

[A b x] = paralleltomo(50,0:5:179,150);

e = randn(size(b)); e = e/norm(e);

b = b + 0.05*norm(b)*e;

lambda = trainLambdaSIRT(A,b,x,@cimmino);

options.lambda = lambda;

X = cimmino(A,b,1:50,[],options);

imagesc(reshape(X(:,end),50,50))

colormap gray, axis image off

See also:

trainLambdaART

36

