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ABSTRACT

This thesis describes time-resolved optical characterization of spontaneous emis-
sion from self-assembled quantum dots in nanophotonic media, with particular
focus on the interpretation of decay dynamics of the spontaneous emission.

The fundamental properties of the quantum dots, i.e., the oscillator strength
and the quantum efficiency are determined. These properties are essential for an
understanding of the light-emitter interaction in complex nanophotonic structures.
The experimental method is based on positioning the quantum dots at various
positions in a medium with a known modification of local density of optical states.
The energy dependence of the oscillator strength and the quantum efficiency is
measured by probing different quantum dots within the quantum dot ensemble.
Superior optical properties are found for quantum dots emitting at low energies.

The relation between the measured oscillator strength and the overlap of the
electron and hole wavefunctions of the quantum dot ground state is established.
This model is used to deduce the energy dependence of the wavefunction overlap
from the measured oscillator strengths.

The decay dynamics is studied under different excitation conditions and ana-
lyzed in a model which takes into account the fine structure of the quantum dot
exciton. From the analysis the intrinsic spin-flip rates between the bright (optically
active) and the dark (optically inactive) exciton states are extracted.

Finally, the strongly modified spontaneous emission from a quantum dot en-
semble embedded in a photonic-crystal membrane is studied. Strong inhibition of
the spontaneous emission is observed within a wide frequency range, in excellent
agreement with the 2D photonic band gap predicted by theory. Enhanced emission
rates are observed on both sides of the band gap as expected from theory. Using
the gained knowledge of the optical properties and the decay dynamics, the first
successful quantitative comparison between experiment and a full 3D calculation

of the local density of optical states is performed.
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RESUME

Denne afthandling beskriver tidsoplgste optiske malinger af spontan emission fra
selvdannede kvantepunkter indlejret i nanofotoniske materialer. Afhandling foku-
serer i saerlig grad pa at opna forstaelse af den spontane emissions henfaldsdy-
namik.

Kvantepunkternes fundamentale egenskaber, d.v.s. deres kvanteeffektivitet og
oscillatorstyrke, bestemmes. En fastlaeggelse af disse egenskaber er ngdvendig for
at kunne opna en forstaelse af vekselvirkningen mellem lys og emittere i komplekse
nanofotoniske strukturer. Den eksperimentelle metode beror pa, at kvantepunk-
terne placeres forskellige steder i en struktur med en kendt variation i den lokale
optiske tilstandsteethed. Energiatheengigheden af kvanteeffektiviteten og oscilla-
torstyrken fastlaegges ved at udfgre tidsoplgste malinger pa forskellige undergrup-
peringer af kvantepunkterne. Det viser sig, at store kvantepunkter, som udsender
lys ved lav energi, besidder bedre optiske egenskaber end sma kvantepunkter. Der
etableres en relation mellem kvantepunktets oscillatorstyrke og overlappet af elek-
tronens og hullets bglgefunktioner. Ud fra denne relation bestemmes overlappets
energiathaengighed.

Den spontane emissions henfaldsdynamik studeres under systematisk varierede
pumpebetingelser og analyseres i en model baseret pa excitonens finstruktur-
niveauer. Ved denne analyse findes den intrinsiske spin flip-rate imellem de optisk
aktive (bright) og de optisk inaktive (dark) excitontilstande.

Endeligt studeres den steerkt modificerede spontane emission fra kvantepunk-
ter indlejret i en membran med fotonisk krystalstruktur. I fuld overensstemmelse
med teoretiske beregninger af et to-dimensionelt fotonisk bandgab observeres en
kraftig undertrykkelse af den spontane emission i et bredt frekvensspektrum samt
en gget emissionsrate pa begge sider af dette. Ved at anvende den opnaede viden
om henfaldsdynamikken foretages den fgrste succesfulde sammenligning mellem
eksperimentelle malinger og en tredimensional beregning af den lokale optiske til-
standsteethed.
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1. INTRODUCTION

One of the fundamental processes in quantum optics is the spontaneous emis-
sion of light. Spontaneous and stimulated emission are two closely related pro-
cesses caused by the coupling between the radiation field and excited emitters,
e.g., atoms, molecules, or quantum dots. Stimulated emission occurs due to in-
teraction with photons, while spontaneous emission is caused by interaction with
so-called virtual photons. The virtual photons are a property of the vacuum field
and are caused by its fluctuations. The fluctuations of the vacuum field can only
be described by a full quantization of the electric field, and spontaneous emission
is therefore a truly quantum mechanical phenomenon. Interesting techniques to
control the dynamics of spontaneous emission, i.e., to inhibit or to enhance the
emission rate, are one of the main foci of quantum optics.

Control over spontaneous emission can play an important role for applica-
tions such as, e.g., efficient light emitting diodes, solar cells, low-threshold lasers,
and single-photon sources for quantum information. The vacuum fluctuations,
which stimulate the spontaneous emission, can be manipulated by structuring the
environment of the emitter. Until recently such intriguing experiments on con-
trolled spontaneous emission were performed only for atomic systems limiting the
connection to applications. However, the ability to fabricate high-quality nano-
structured materials (photonic crystals) with embedded light sources (quantum
dots) has opened a new field of all-solid-state quantum optics.

The solid state implementation of quantum optics has several assets: the emit-
ter properties can be conveniently tailored by quantum dot growth, the emitters
have fixed positions, and the photon dispersion relation can be tailored by proper
design of the photonic crystal. The solid state implementation has a large po-
tential as it allows for strong enhancement of the emission rate while keeping the
extraction efficiency high. This can be obtained in photonic crystal cavities due
to the extremely small mode volumes achievable and a moderate quality factor
or in properly designed waveguides where the slow down of light causes a strong
light-matter interaction. Moreover, the solid state implementation has the clear
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advantage that large-scale realizations of quantum optics devices can take advan-
tage of the very mature semiconductor fabrication technology.

This thesis concerns the study of modified spontaneous emission from quantum
dots embedded in nanophotonic structures. However, before we can perform a
detailed study of the complex nanophotonic environment of a photonic crystal, it
is essential to know the fundamental properties of the embedded light sources, i.e.,
the quantum dots. As a necessity, we therefore start by obtaining the fundamental
properties of the quantum dots, before we focus on the study of the complex
nanophotonic environment in photonic crystals.

The outline of the thesis is as follows. Chapter 2 provides an introductory
background for the thesis. The general properties of spontaneous emission in a
homogeneous medium and in a photonic crystal membrane are reviewed and the
electrical and optical properties of self-assembled quantum dots are discussed. In
Chapter 3 time-resolved spontaneous emission measurements on quantum dots po-
sitioned in a medium with well-known modifications in the vacuum fluctuations are
presented. The measurements allow for an accurate determination of the oscilla-
tor strength and the quantum efficiency of the quantum dots. Chapter 4 concerns
the determination of the overlap of the electron and hole wavefunctions from the
measurements presented in Chapter 3. The measured wavefunction overlap is
compared to numerical calculations. In Chapter 5, a detailed study of the quan-
tum dot decay dynamics under different excitation conditions is presented. The
measurements are discussed in a model involving the bright and dark states of the
quantum dot exciton allowing for a determination of the spin-flip rate. Chapter 6
concerns time-resolved measurements from quantum dot ensembles in a photonic
crystal membrane. The existence of a 2D photonic band gap is clearly demon-
strated. Using the knowledge of the quantum dot properties gained in Chapters 3
to 5 we perform the first successful comparison of experiment and theory. A short
summary of the conclusions and an outlook are given in Chapter 7.



2. CONTROLLING THE SPONTANEOUS EMISSION FROM
QUANTUM DOTS BY PHOTONIC CRYSTALS

In this chapter we discuss modified spontaneous emission in the context of quantum
dots embedded in photonic crystals. Using Fermi’s Golden Rule and the quantized
electromagnetic field we, calculate the rate of spontaneous emission. We stress the
importance of the local density of optical states for the spontaneous emission rate,
and introduce the concept of photonic crystals with emphasis on the properties of
2D photonic crystal slabs. The electronic and optical properties of self-assembled
quantum dots are discussed with focus on the intrinsic decay dynamics of the spon-

taneous emission.

The great interest in photonic crystals was mainly spurred by the theoreti-
cal works of Yablonovitch [1] and John [2] published in 1987. In these papers
the authors point out the potential of photonic crystals as a tool to control the
spontaneous emission. In the following years much effort was put into theoretical
investigations of the band structure for different crystal symmetries and materials
in order to determine structures which would posses a full photonic band gap. It
was later shown that strong inhibition of the spontaneous emission rate also can
occur in photonic crystals without a full photonic band gap; while the total density
of optical states may only be weakly modified, the local density of optical states
(LDOS) at the position of the emitter might still be strongly modified [3].

The first experimental verification of controlled spontaneous emission rates of
emitters placed inside photonic crystals was reported in 2004 by Lodahl et al. [4].
LDOS-caused modifications in the spontaneous emission rates of embedded emit-
ters were actually claimed in two earlier papers [5,6], but the results reported in
both papers were disputed shortly after publication: The modified rates reported
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in Ref. [5] were later ascribed to changes in the chemical environment by authors
working on a similar system [7]. The results reported in Ref. [6] were disputed
both from a theoretical and an experimental point of view: i) due to the low dielec-
tric contrast of the photonic crystal only weak modifications (below 10%) of the
spontaneous emission rate are to be expected, and ii) measurements on a similar
photonic crystal show no modification of the decay rate when compared with the
proper reference [8]. Several groups have recently reported enhancement as well
as inhibition of the spontaneous emission rate [9-17]. The focus of the research
has mainly been on enhanced emission from defect cavities [9,10,13,14,17]. Only
a few groups have performed systematic studies of the strongly modified light-
emitter coupling in photonic crystals without cavities [4,11,18] and the potential
of the modified LDOS in such photonic crystals is surprisingly often overlooked.
However, quantitative comparison to theory has so far been lacking. It is our goal
to obtain a quantitative understanding of the light-emitter coupling in photonic
crystals. This will clarify the potential and set the limits of photonic crystals as

the ultimate tool for control of spontaneous emission.

The measurements reported in Refs. [4, 18] are performed on 3D inverse opal
structures infiltrated with colloidal quantum dots, while the measurements in
Ref. [11] are on PCMs with an embedded quantum well. The PCM-quantum-
well system is not the ideal system for a quantitative study of the light-emitter
coupling in photonic crystal as: i) non-radiative recombination via the surface
states at the edges of the air holes is known to be a serious issue deteriorating the
quantum efficiency [11,19], ii) the non-local property of a quantum well exciton,
i.e., the Bohr radius is larger than for an exciton confined in a quantum dot and it
is moreover possible for the exciton to diffuse in the quantum well plane, resulting
in a non-trivial average over the spatially strongly varying LDOS.

In Refs. [4,18] systematic studies of LDOS effects were presented. However, ob-
taining a quantitative understanding using colloidal quantum dots in inverse opals
is hindered by several factors: i) The main hindrance is the intrinsically multi-
exponential decay of the spontaneous emission [20,21] and the lack of a simple
model capable of describing the multi-exponential decay in terms of non-radiative
and radiative contributions. ii) The random orientation of the quantum dots’ tran-
sition dipole moments and their spatial distribution on the inside of the air spheres
adds to the complexity of the interpretation of ensemble measurements. iii) The
calculation of the 3D LDOS for the inverse opal structure is a tremendous task [18]

as it must be performed for at large subset of positions and orientations on the
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inside of the air sphere to support the interpretation of an ensemble measurement.

We propose to perform the study of the light-emitter coupling in a differ-
ent system, namely, a photonic crystal membrane with embedded InAs quantum
dots. This system is very appealing from a fabricational point of view as it is
compatible with standard semiconductor nano-processing techniques and from an
experimental point of view as it is possible to address single quantum dots using
a high-resolution micro-photoluminescence setup. Before we can obtain a quan-
titative understanding of the complex spontaneous emission from quantum dot
ensembles in photonic crystals, it is essential to have detailed knowledge of the
intrinsic decay dynamics of the quantum dots. To gain this knowledge we start by
a careful study of the spontaneous emission from quantum dot ensembles in much
less complex systems, i.e., quantum dot ensemble positioned at known distances to
a dielectric interface. In this system the LDOS can be calculated exactly, allowing
us to measure important optical properties of the quantum dots necessary for a

quantitative comparison to the LDOS calculations.

2.1 Photonic crystals as a tool to control spontaneous emission

Spontaneous emission is the process by which an emitter undergoes a transition
from an excited state to a state of lower energy by emitting a photon. It is a pure
quantum mechanical phenomenon which must be phenomenologically added if the
light-matter interaction is described in a semi-classical picture [22]. A full quantum
mechanical treatment, in which not only the emitter but also the electromagnetic
field is quantized, is thus needed to give the correct description of spontaneous
emission. In contrast to the classical description of the electric field, the quantized
description leads to a non-zero variance of the field. This implies that even in the
vacuum state the electric field exhibits fluctuations around its mean value of zero.
These vacuum fluctuations, which sometimes are referred to as wvirtual photons,
can stimulate the excited emitter to ’spontaneously’ emit a photon.

Before the work of Purcell in 1946 [23] the rate of spontaneous emission was
generally believed to be an intrinsic property of the emitter. Purcell, however,
discovered that by placing an emitter in a cavity on resonance with the emitter
the emission rate would increase by a factor of Fp = %}‘Z, where @ and V, are
the quality factor and the volume of the cavity respectively. The quantity Fp is
better known today as the Purcell factor. Later Drexhage [24] proved that not only
emitters in resonant interaction with cavities will display a modified decay rate;
emitters placed nearby reflecting interfaces will also exhibit enhancement as well
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as inhibition of their spontaneous emission rates - even though the modifications
are more moderate in this case. Kleppner [25] pointed out that the emission rate
of an emitter in a cavity not necessarily will be enhanced, but that the cavity also
can be used to inhibit the rate of spontaneous emission. The inhibition occurs if
the optical modes into which the spontaneous emission should take place is not
supported by the cavity.

The observed enhancement and inhibition of spontaneous emission rates are
due to variations in the density of optical states (DOS). In a non-homogeneous
environment the electromagnetic waves will scatter on the inhomogeneities and
these scattered waves will interfere with the non-scattered waves. This leads to
both constructive (enhancement of the DOS) and destructive (inhibition of the
DOS) interference depending on the spatial position and the wavelength of concern.
This spatial dependence, which becomes very pronounced in strongly modified
surroundings such as a inside a photonic crystal, is explicitly noted by referring to
the local density of optical states (LDOS) [3].

2.1.1 Spontaneous emission

In this section we will use Fermi’s Golden Rule and the quantized electromagnetic
field as a starting point to obtain the explicit dependence of the spontaneous
emission rate on the LDOS. We define the ground state of our system |g) to
correspond to an unpopulated quantum dot, while the excited state |e) corresponds

to a quantum dot occupied by an exciton.

Description of the atom-field interaction

According to Fermi’s Golden Rule, which can be derived using time-dependent
perturbation theory [26], the radiative transition rate ypaq from an initial state |i)
to a set of final states |f) is given as [22,27]

2 Y
eaa = 1 9 |(F Hineli) "3 = o), (2.1)
f

where H, int 18 the interaction Hamiltonian describing the quantum-dot-field inter-
action and the delta-function ensures that the energy of the system is conserved.
The interaction Hamiltonian is part of the Hamiltonian of the complete system
which can be written as

H = 7:[QD +Hr + Hint, (2.2)
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where the Hamiltonians 7:[QD and Hp describes the uncoupled quantum dot and

field. In second quantization the atomic Hamiltonian can be expressed as

Hop = hwrls, (2.3)
where w = we — wg. The operator 7' = |e)(g| shifts the quantum dot from the
ground state to the excited state, while 7 = |g)(e| performs the reverse tran-

sition. In terms of the photon annihilation ay) and creation d;rd\ operators the
Hamiltonian of the electric field is expressed as

Hr = zk: z}\: hewy, (fl;rdﬁk)\ + %) , (2.4)
where the photon annihilation and creation operators act on photons in the par-
ticular field mode described by the wavevector k (and thus energy fiwy) and po-
larization \.

In the electric dipole approximation, where all higher order multipoles are
neglected, the interaction Hamiltonian is given as the inner product of the dipole
operator & = er and the operator for the quantized electric field E(R):

Hiw = [-ER)=p@F+7) ER). (2.5)

Here e is the electron charge, t denote the position operator for the electron and
R the position of the quantum dot exciton’s centre of mass. Inserting E(R)
expressed in terms of the annihilation and creation operators and the polarization
vector ey for the electric field (and invoking the rotating-wave approximation)

the Hamiltonian can be written as [22]

Hz»m: = IZ Z hgk)\< akAe R &L)\ﬁ'eik'R> R (26)

where the coupling strength gk, between the atom and field is defined as

1 h hwr

= — 2.
Dx = 1\ gy AP (2.7)

Here the factor 4/ 2'“’“ stems from the normalization of the electric field, € is the

dielectric constant of the material surrounding the atom, €q is the permittivity of

vacuum, and V' is the quantization volume.
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Rate of spontaneous emission in a homogeneous medium

To calculate the rate of spontaneous emission we must evaluate Eq. (2.1) for an
initial state |i) = |{0},e) where the quantum dot is in the excited state |e) and
the electric field is given by the vacuum state |{0}). The range of corresponding
final states |f) = |1kx, g) are those where the quantum dot is in the ground state
lg), and the electric field consists of a single photon in an arbitrary mode |1k,).
When operating on the vacuum state with the interaction Hamiltonian (Eq. (2.6))
only the second term leads to a non-zero result, reducing the summation to a

summation over gga:

SR = D0 [(liens g[Hanel {0}, €)
f k A
= ZZ|—ihgk>\e_ik'R|2
k A
= 22|hgk>\|2. (2.8)
k A

In a homogeneous medium with a large volume (V' — co) the summation over
k and A can be substituted according to

2m ™ 00
>3 —>2L3/ d¢/ desine/ dk k? (2.9)
X (2m)* Jo 0 0
whereby the decay rate (Eq. (2.1)) can be expressed as

v
27h 0

2m ™
n 3 ; 2
= d df sin 6 -
(27?)260hc%w /0 ¢/0 sin ek - p

= ———w|ul. (2.10)

27 T oS}
Vrad dgb/ de sin0/ dk k*|hgix|*6 (w)
0 0

In order to obtain Eq. (2.10) it has further been used that ¢ = n? and k =
k| = nk, where n is the refractive index of the surrounding material and co is
the speed of light in vacuum. The unit polarization vector of the electric field
exy = (sin(¢) sin(d), sin(¢) cos(f), cos(¢)) is averaged over the complete solid an-
gle. Equation (2.10) is the well-known result for the decay rate of an emitter in a
homogeneous medium.

The calculations above have been performed using the so-called r-E form of
the interaction Hamiltonian, but an identical result can be obtained using the
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p - A form of the Hamiltonian. In the latter, the interaction is described using the
momentum operator of the electron p and the operator for the vector potential A
which describes the quantized electric field. The interaction Hamiltonian can still
be expressed as in Eq. (2.6), but in this form the coupling strength is defined as

e 1
=\ — P 2.11
gk mo \ 2ecowihV €k\ ' P, ( )

where mg denotes the free electron mass. To calculate the radiative decay rate we
follow the path outlined above and find

ne2

27 ™
Yrad = ( w/ d¢/ d0$iﬂ9|(g|ek>\-f)|e)|2. (212)
0 0

2m)2mieohcd
In order to calculate the decay rate, an integral over the projection of the elec-
tron momentum operator p onto all field modes must thus be evaluated over the
complete solid angle. In Chapter 4 we will return to the exact evaluation of this
integral for the specific case of the ground state transition in InAs quantum dots.

Spontaneous emission rate in an inhomogeneous medium

The rate of spontaneous emission for a dipole emitter in an inhomogeneous medium,
which is characterized by a loss-less and position dependent dielectric constant e(r),
can be calculated elegantly using a Green’s function approach [27,28]. The dyadic
Green’s function (a(r, ro,w) defines the electric field E(r) at position r caused by
an electric dipole emitter p located at ro according to

E(r) = w2u0,u1(8(r, ro,w) - . (2.13)

Here w is the optical transition frequency, ug is the vacuum permeability, and p
is the permeability of the surrounding material. By expressing the electric field
according to Eq. (2.13) it can be shown [27] that the rate of spontaneous emission
can be calculated as

W

3h60|u|2pﬂ(r07w)7 (214)

Yrad =

where the projected LDOS p,(ro,w) is defined by the dyadic Green’s function
(evaluated at the origin of the dipole) as

pue, ) = 25 T { @ (x0, 0,0} m]. (2.15)

2
0
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This projected LDOS differs from the DOS, p(w), as it depends explicitly on po-
sition ry and on the orientation of the transition dipole n,. For a dipole emitter
with a fixed dipole axis n,, the orientation of the dipole axis will be important as
the coupling to the different field modes, described by k and A, is determined by
the projection of the mode’s polarization vector onto the dipole axis: exy -n,.

In an inhomogeneous medium the dyadic Green’s function can be obtained as
the sum of two dyadic Green’s function: a free space (homogeneous) Green’s func-
tion ao(r, ro,w) and a scattering Green’s function G(r,rg,w), where the latter
describes the additional electric field caused by scattering on the inhomogeneities.
As the contribution from the free space Green’s function is the usual density of

states, the ratio p,(ro,w)/p(w) can be written as

Pu/()l('fd,)w) =14+ 67711'50 [0, -Im{as(ro, ro,w)} 1] (2.16)

In order to obtain the normalized LDOS it is thus only necessary to calculate the

scattering Green’s function 85 (ro,ro,w).

2.1.2 Photonic crystals

An ingenious way to modify the LDOS, and thus control the spontaneous emis-
sion, is by the using photonic crystals [1,2,29]. A photonic crystal is a periodic
dielectric structure in which the refractive index varies on a length scale compa-
rable to the wavelength of light. By proper design of a full 3D spatial periodicity
of the refractive index, light will be Bragg reflected in all directions, whereby its
propagation will be completely inhibited. In complete analogy with the electronic
band gaps in solids in which the propagation of electrons is forbidden [30], this
corresponds to the creation of a photonic band gap. Such a photonic band gap,
i.e., the complete absence of any electromagnetic modes within a given energy
interval, corresponds to a DOS which is identically zero.

Only a few structures, feasible to fabricate on a scale comparable to the wave-
length of light, exhibit a full photonic band gap. These structures are: the wood-
pile structure [31,32], the inverse opal structure [33,34] and stacks of 2D photonic
crystal slabs [35]. However, strong modification of the emission rate can also be
obtained for structures without a complete photonic band gap [3]; even though
the DOS at a given energy may by slightly enhanced, there can be specific po-
sitions in the structure for which the LDOS will be strongly reduced. The rate
of spontaneous emission from an emitter placed at such a position will thus be
strongly inhibited. Two-dimensional photonic crystals are technologically much
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Fig. 2.1: (a) A sketch of a Bragg stack with period a and refractive indices n1, no. The
dispersion relations for light propagating at normal incidence to the Bragg stack
are shown for alternating layers of GaAs-GaAs (b) and GaAs-air (c). In the
latter case a 1D band gap opens up a the zone edge. As the dispersion relations
are plotted in reduced-zone scheme, i.e., only showing the k vectors belonging
to the irreducible Brillouin zone, the lines are folded back into the zone when
they reach its edge.

more compatible with standard semiconductor nano-fabrication techniques and
offer a great and versatile platform for the incorporation of embedded emitters in
the form of quantum dots. The dominant implementation of photonic crystals in
semiconductors is thus the realization of 2D photonic crystals in slab waveguides
suspended in air [14,16,17,36-42]. These structures, known as photonic crystal
membranes (PCMs), do not exhibit a complete photonic band gap, but they are
capable of strongly modifying the spontaneous emission due to a strongly modified
LDOS.

One-dimensional band gaps in photonic crystals

The appearance of band gaps is most easily understood by taking a brief look
at the simplest photonic crystal at hand: the Bragg stack. The Bragg stack
consists of alternating layers of dielectric materials with different refractive indices,
cf. Fig. 2.1(a). The lattice vector (period) of the stack is denoted by a. In
Figs. 2.1(b) and (c) are shown the dispersion relation for light propagating at
normal incidence to the Bragg stack. The wavevector k (abscissa) is normalized
to the reciprocal lattice vector K = 27 /a while the reduced frequency (ordinate)
is given by a/\ = wa/2mwcy. In Fig. 2.1(b) the dispersion relation is shown for
the trivial case of identical refractive indices of the two alternation layers. The
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Fig. 2.2: Sketch of a photonic crystal membrane with a triangular lattice of air holes.
The thickness of the membrane is denoted by d, while r denotes the radii of the
air holes and a the lattice parameter.

dispersion relation is as expected found to be linear, w = kco/n. By changing
the refractive index of one of the two materials, a 1D photonic band gap will
open up as the degeneracy of the dispersion relation is lifted at the zone edge
where the Bragg condition is met. This is shown in Fig. 2.1(c). At the zone edge
the only extended waves in the Bragg stack will be standing waves. There are,
however, two possible ways to centre these standing waves: either concentrated
in the high index material or in the low index material. The two standing waves
will thus experience different averaged refractive indices, and their frequencies will
correspondingly be different resulting in a splitting of the dispersion relation at the
zone edge [43]. However, only light propagating at normal incidence to the Bragg
stack will experience this band gap; we refer therefore to it as a 1D photonic band

gap, while a full 3D band gap will be referred to simply as a photonic band gap.

Dispersion relation in a photonic crystal membrane

A sketch of a photonic crystal membrane (PCM), i.e., a waveguide slab suspended
in air into which a 2D photonic crystal is defined, is shown in Fig. 2.2. The air
holes are arranged in a triangular lattice with lattice constant a and hole radii r
while the thickness of the membrane is d. Despite that the PCMs are only of a 2D
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Fig. 2.3: Band diagrams for in-plane propagation within a photonic crystal membrane
with 7/a = 0.3, d/a = 0.585. The band diagrams are calculated for optical
modes with in-plane polarization (a) and out-of-plane polarization (b). Inset:
The first Brillouin zone (BZ). The irreducible BZ is shaded light-blue and the
high symmetry points I', M and K are indicated on the figure.

character they are still able to strongly modify the propagation of light; for the
proper choice of the geometrical parameters (a, 7, d) in-plane propagation will be
strongly Bragg diffracted while total internal reflection causes strong confinement
within the slab. The projected LDOS is found to be much stronger modulated in
a PCM than in a ideal 2D photonic crystal extended to infinity in all three spatial
directions [44]. The less pronounced LDOS modulation in the latter case is due to
contributions from the modes allowed to propagate along the air cylinder which
are only weakly affected by the photonic crystal, such modes cannot exist in the
PCM.

In Figs. 2.3(a) and (b) the dispersion relations for the confined modes of a
PCM are shown. The calculations, obtained with the freely-available software
MIT Photonic Bands (MPB) [45], are done for a triangular lattice of air holes in
a GaAs slab (egaas = 13) suspended in air. In the calculation the hole radii r and
the thickness d are chosen to be r/a = 0.3 and d/a = 0.585, respectively, while the
lateral dimensions of the membrane extend to infinity. We are only considering
confined modes which propagate within the slab and thus appear below the light
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cone indicated by the shaded areas. The calculations are performed for points on
the edge of the irreducible Brillouin zone, shown in the inset in Fig. 2.3(b), as the
band extrema are known to appear along these high-symmetry lines. The band di-
agram for modes polarized in the plane of the membrane (parallel to the membrane
surface) is shown in Fig. 2.3(a), while the band diagram for the modes with an
out-of-plane polarization is shown in Fig. 2.3(b). For the in-plane polarized modes
two 2D band gaps appear as indicated by the light-green shaded areas; a wide
gap at a/A = 0.3 and a narrow one just below a/A = 0.6. In case of out-of-plane
polarization only a narrow 2D photonic band gap is found just above a/A = 0.4. It
is thus readily recognized that no complete photonic band gap exists in the PCM
as the 2D photonic band gaps for the orthogonal polarizations do not coincide.
However, the coincidence of the band gaps for the two polarizations would still
not be enough to create a full photonic band gap, as we have not considered any
modes not confined to the membrane. The DOS can be obtained directly from the
band calculations, when all modes, i.e., including those propagating out of plane,
are taken into account. However, for an emitter placed at a given position inside
the PCM it is not the DOS, but the LDOS which is of relevance, i.e., the local
density of optical modes at the particular emitter position and projected onto the
orientation of the dipole emitter. Rigorous calculations of the projected LDOS for

a similar PCM structure have been presented in Ref. [44].

Scalability of Maxwell’s equations

An experimentally very important feature of photonic crystals is their scalability
inherited from Maxwell’s equations: as long as the system is macroscopic there is
no fundamental length scale of the photonic crystals. This offers the advantage
that instead of tuning the emitter wavelength, the size of the photonic crystal can
be varied. This is of great experimental importance as the limitations imposed
by a narrow tuning range of the emitter and by variations in the emitter prop-
erties caused by such tuning, can be completely avoided. In the measurements
discussed in Chapter 6, the lattice parameter of photonic crystal is correspond-
ingly varied while we keep probing quantum dots emitting at the same wavelength
and thus probe identical sub-ensembles of the quantum dot ensemble. This is es-
pecially important as it will be shown in Chapter 3 that the quantum efficiency
and the oscillator strength of quantum dots depend sensitively on their emission

wavelength.
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2.2 Electronic and optical properties of self-assembled quantum
dots

Epitaxially grown semiconductor quantum dots have attracted significant atten-
tion recently as nano-scale light sources for use in solid state quantum electro-
dynamics. The quantum dots offer well-defined and tunable emission energies,
nano-scale sizes and moreover the epitaxial growth facilitates spatial control in at
least one dimension®', which is highly desirable in photonic crystal membranes.
In this section we will briefly discuss how the electronic structure of quantum
dots arises and which consequences the self-assembly process has on the electronic
properties. The decay dynamics of the lowest energy level in the quantum dot is
discussed in the usual two-level model, followed by a discussion of the effects of

the exciton fine structure on the decay dynamics.

2.2.1 Electronic band structure of quantum dots

The electronic properties of solids are determined by the electrostatic potential of
the crystal lattice caused by the atoms at the individual lattice sites. The potential,
which inherits the periodicity and symmetry of the crystal lattice, will determine
the dispersion relation of the electrons propagating in the crystal. Similar to the
photonic band diagram shown in Fig. 2.1, a band diagram describing the electrons’
dispersion relation in the solid can be calculated. The band structure provides a
convenient way to describe the microscopic behaviour of the electrons and holes in
the solid. Semiconductors differ from other solids by the existence of an electronic
band gap between the highest occupied electron band (the valence band) and the
lowest unoccupied electron band (the conduction band). In a direct semiconductor,
e.g., GaAs or InAs, the maximum of the valence band and the minimum of the
conductance band coincides at the origin of the Brillouin zone I'. Near the origin,
at which the wavevector of the electron is zero (k = 0), the dispersion relation
can be approximated as parabolic - similar to the dispersion relation for a free
electron. The only difference in the two cases the curvature of the parabolic
bands, which is accounted for by describing the electron by an effective mass
instead of the free electron mass. This approach to a description of the motion of

electrons in semiconductors is known as the effective mass approzimation [30]. The

I Spatial control in three dimensions is immensely attractive as it allows for the precise lateral
positioning within, e.g., cavities in PCMs. Impressive results have been attained by aligning the
photonic crystal to a pre-measured quantum dot position [17].
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effective mass approximation is also readily applicable to the motion of holes in
the valence band, but in contrast to the conduction band the valence band is two-
fold? degenerate at k = 0. As the curvatures of the two bands are not identical the
bands are described by different effective masses and are correspondingly termed
the heavy hole and the light hole bands. The complexity of the valence bands is
moreover increased as the effective masses assigned to the bands are anisotropic

and thus depend on the direction of the wavevector.

Quantization of energy levels and excitonic effects

Confinement of the charge carriers can be obtained by embedding a semiconduc-
tor with a small band gap in a semiconductor with a larger band gap, hereby
effectively creating a potential well in which the carriers will be trapped. Such
heterostructures can be designed to confine the carriers in one, two or three direc-
tions. When the spatial width of the confinement potential is on the order of the de
Broglie wavelength of the electron, the confinement will result in quantized energy
levels and the structures confining the carriers in one, two and three dimensions
are thus called quantum wells, quantum wires and quantum dots respectively. The
quantization energy in these structures is not only dependent on the width of the
confinement potential, but also on the barrier height and the effective mass of the
carriers.

For free carriers in bulk semiconductors the Coulomb interaction between the
electron and hole results in the formation of an electron-hole pair, known as an
exciton. The motion of an exciton® can be separated into the motion of the centre
of mass and the relative motion of the electron and hole. While the centre-of-mass
motion is governed by the equations of motion for a free particle, the relative
motion can be described by the Schrédinger equation for the hydrogen atom. In
analogy with the case of the hydrogen atom, an exciton Bohr radius and the
corresponding binding energy can be calculated. The exciton Bohr radii for the
relevant semiconductors, i.e., GaAs and InAs, are 14nm and 50 nm respectively
[46, chap. 4], corresponding to binding energies of 5meV and 1meV. The sizes
of the quantum dots considered in this thesis are small (rqp ~ 15nm) compared

to the respective exciton Bohr radii and the exciton binding energies are thus

2 In fact, the valence band is three-fold degenerate, but the third band, known as the split-off
band, is permanently shifted towards lower energies due to spin-orbit coupling.

3 We will only be concerned with weakly bound excitons, the so-called Wannier excitons, since
Frenkel excitons are absent in InAs and GaAs as the electrons in the valence band screen the
Coulomb interaction [30].
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Fig. 2.4: (a) An emission spectrum from an ensemble of quantum dots showing the in-
homogenously broadened ground state (E:) and first excited state (E2). The
red line is a fit of two Gaussian distributions, each shown by the dashed blue
lines. Inset An atomic force microscopy image of an uncapped layer of InAs
quantum dots. (b) A schematic band diagram of a quantum dot. The contin-
uum of electronic states in the GaAs is indicated by the grey shaded area. The
wetting layer (WL) state is shown by the green-coloured level and two quan-
tized energy levels with the energies E1, E» indicated in the quantum dot. An
exciton (electron-hole pair) is placed on each of the two levels.

negligible compared to the quantization energies in the quantum dot (~ 200 meV).
The quantum dots are thus referred to as being in the regime of strong confinement
and the exciton binding energy is safely neglected [46].

2.2.2  Strain induced formation of self-assembled InAs/GaAs quantum dots

The quantum dots which we use as our preferred light emitters are so-called self-
assembled InAs/GaAs quantum dots. They are grown using molecular beam epi-
taxy (MBE) and the term self-assembled refers to their spontaneous formation
during deposition of InAs on GaAs. Due to a large mismatch of the lattice con-
stants of InAs and GaAs (6.06 A and 5.65 A respectively [47]), the InAs will be
under a heavy compressive strain. The energy associated with the strain increases
layer-by-layer until it reaches a critical value at which it is energetically more
favourable to form extra surfaces than to form an extra InAs layer. Under the
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proper growth conditions this results in the formation of dislocation-free 3D is-
lands (quantum dots) on top of a few monolayers of heavily strained InAs (wetting
layer) [46]. An atomic force microscopy image of such 3D islands is shown in the
inset in Fig. 2.4(a). The wetting layer forms a very thin quantum well with en-
ergy levels just below the band gap of the GaAs. After formation of the quantum
dots they are capped by a layer of GaAs, whereby the quantum dots are fully
embedded in GaAs barriers. The self-assembly process results in the formation of
quantum dots with slightly varying sizes and to some extend also with variations in
chemical composition and shape. These variations will affect the quantized energy
levels of the quantum dots causing an inhomogeneous broadening of the ensemble’s
emission spectrum, as shown in Fig. 2.4(a). The measured spectrum is very well
modelled by the sum of two Gaussian distributions corresponding to the emission
from two inhomogenously broadened states of the quantum dot ensemble. These
states are the lowest lying states in the quantum dots and will thus be referred to
as the exciton ground state and the first excited state. A schematic band diagram
for a quantum dot is shown in Fig. 2.4(b) in which the wetting layer level, the first
excited state, and the exciton ground state are indicated.

The compressive strain of the InAs leads to a deformation of the crystal lattice
resulting in a loss of crystal symmetry. This affects the band structure causing a
shift in the positions of the conduction and valence bands, changes in the effective
masses, and also lifts the degeneracy of the light hole and heavy hole bands. In
the case of compressive strain the light hole band is effectively shifted to higher
energies [47], allowing us to assume that the quantum dot ground state is purely
heavy hole like [48]. For all other states the picture becomes more complicated
due to a possible mixing of the heavy and light hole bands [49,50]. Whether the
first excited state is predominantly of heavy hole or light hole character is thus an
open question.

2.2.3 Calculations of the electronic properties of self-assembled quantum dots

The electronic properties of an idealized quantum dot, i.e., a quantum dot which
can be described by a full rotational-symmetric potential, are easily obtained fol-
lowing the approach of any textbook on quantum mechanics, see e.g. Ref. [26].
For the colloidal CdSe/ZnS quantum dots discussed in Sec. 3.6 the use of such
a model directly yields energy levels similar to those obtained in measurements.
This is not surprising as the colloidal quantum dots are rotational symmetric and
composed of unstrained materials. In the case of self-assembled quantum dots
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the success of such an approach is, however, limited. This is mainly due to the
complex strain distribution within and around the quantum dot and the spatial
variations in intermixing of the quantum dot material and the surrounding barrier
material [51,52]. However, incorporating spatial distribution of strain as well as
the chemical composition is only the first steps towards a more successful model
and this demands knowledge of the exact geometrical shape of the quantum dot.
Advanced atomistic models such as tight-binding models [53] or the empirical
pseudo-potential approach [50,54] might be the most promising approaches to a
more successful modelling of quantum dots’ electronic properties. These models
do, however, still require knowledge of geometrical shape and size of the overgrown
quantum dots, parameters which are not easily obtained. Moreover, due to the
complexity such models can be hard to connect to physical quantities. In Chap-
ter 4 we will discuss theoretical calculations of the electron and hole wavefunctions

and compare our results to detailed experimental results.

2.2.4 Decay dynamics of quantum dot excitons

Quantum dots are often modelled as ideal two-level systems for which the decay
dynamics is a simple single-exponential decay. Real quantum dots are however far
from being ideal two-level systems and hence the decay dynamics shows a more
complex behaviour. One of the causes for this increased complexity is the fine
structure of the ground state exciton. The internal carrier dynamics among the
individual fine structure levels of the exciton and their initial populations will
have a significant influence on the decay curves [55]. In the present section we
will discuss the decay dynamics of a two-level system with loss, and the decay
dynamics of a three-level system based on the exciton fine structure levels.

Decay dynamics of a two-level system with loss

The decay dynamics of the ground state exciton is in the simplest model approx-
imated as an ideal two-level system, in which we only consider the following two
states: a populated and an unpopulated quantum dot ground state. A decay of the
excited state will directly 'populate’ the ground state. Here, we will immediately
introduce loss into the system, i.e., the decay of the excited state can also occur
without populating the ground state. For the sake of clarity, we have switched
from describing the quantum dot using the electron and hole band structures to a
description using the exciton level scheme. In the exciton level scheme the ground
state |g) corresponds to the the crystal ground state, i.e., no excitons in the quan-
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Fig. 2.5: (a) The two-level exciton scheme consists of the crystal ground state (no exci-
tons) |g) and the exciton ground state |e). The populations of the excited state
(exciton ground state) can decay by radiative recombination (7yrad) or non-
radiative processes (Vnrad). Not all non-radiative processes imply a transition
to the ground state |g) as indicated. (b) The equivalent band diagram.

tum dot, while the excited state |e) corresponds to the exciton ground state of the
quantum dot, i.e., having an exciton in the ground state of the quantum dot. The
excited state can decay by either radiative recombination (spontaneous emission)
or by non-radiative processes, as shown schematically in Fig. 2.5(a) where the two
processes have been assigned the rates vraq and vnradq, respectively. The equivalent
band structure diagram is shown in Fig. 2.5(b) for comparison. While a radiative
recombination directly implies a transition to the ground state, a non-radiative
decay may lead to a transition to the ground state. The non-radiative rate in-
cludes loss of the exciton due to loss of the electron or the hole as well as loss due
to non-radiative recombination of the exciton; only the latter implies a transition
to the ground state.

In order to stress some basic points we will set up the rate equation for this
simple system. Denoting the population probability of the excited state by pe the
rate equation reads:

%D s + s (1), (2.17)

From Eq. (2.17) the time evolution of the excited state population probability is
readily identified as:

pe(t) = pe(0)e= (raatrnraa)t, (2.18)

The total rate at which the exciton ground state decays is thus given by the sum
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of the radiative and non-radiative decay rates. The photon flux from an ensemble
of M quantum dots is given by the product of the radiative decay rate and the
population:

L(t) = YraaMpe(t) = 'Vradee(0)3_(%ad+%md)t- (2.19)

The signal detected in time-resolved measurements (number of counts/second) is
thus given as

N(t) = nyraa M pe (0)e~ (matrucaa)t, (2.20)

where 77 denotes the total detection efficiency of our system, i.e., it takes into
account the radiation pattern of the quantum dots, the collection efficiency of
the optical setup and the detection efficiency of the detector. The time-resolved
spontaneous emission from M quantum dots will thus decay single exponentially
by a rate given by the total decay rate (Vrad + Yurad), and the signal strength will
be proportional to the radiative decay rate Yyaq-

The quantum efficiency of the quantum dots is given as the ratio of the radiative
decay rate to the total decay rate: QFE = ﬁ This can also be obtained
more rigorously by calculating the ratio of the number of excitons which decay by

radiative decay to the total number of excitons initially in the system

fooo L(t) dt — fooo 7radee(0)8_(%ad+%"ad)t: dt _ Yrad

E= = .
Q Mpe(O) Mpe (0) Yrad + Vnrad

(2.21)

Decay dynamics in the presence of exciton fine structure

The ground state exciton is formed from the single-particle basis spanned by the
electron (Se =1/2, S, = £1/2) and the heavy hole (Jy, = 3/2, Jpn,. = £3/2).
The light hole band (J;, = 1/2, Jin,» = £1/2) can safely be neglected as the
degeneracy of the light hole and heavy hole bands is lifted by the strain causing the
formation of the quantum dots. The four exciton states, formed from the single-
particle basis, are characterized by the projection of their total angular momentum
onto the growth axis, M, = Se . + Jup,z, which can attain the values of either +1
or £2.# As photons carry an angular momentum of +1, they can only couple
to excitons which have a total angular momentum of +1. These exciton states
are thus termed bright, while the optically inactive states with a total angular

momentum of +2 are termed dark excitons.

4 The total spin angular momentum can take on values £1 (dark excitons) and 0 (bright
excitons).
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Fig. 2.6: The three-level scheme consists of a bright |b) and a dark |d) state, which couple
through the spin-flip rates ypq and yqp. Radiative recombination (7raq) is only
possible for the bright state, while both the bright (’yErad) and the dark state
(74..4) can decay non-radiatively.

The exchange interaction, i.e., the coupling of the electron and hole spins, splits
the energy levels of the bright and dark excitons by the electron-hole exchange
energy A FEpq whereby the bright exciton level is displaced 300 to 400 peV above the
dark exciton level. The two dark states have a splitting on the order of ~ 10 peV,
while the splitting of the two bright states depends on the rotational symmetry of
the quantum dot and vary between 0 peV and 150 peV [48]. A detailed account
of the exciton fine structure is given in Ref. [48]. In practice, the five-level scheme
can be simplified to a scheme with only three levels: the ground state |g), the
bright exciton levels |b), and the dark excitons levels |d), as depicted in Fig. 2.6.
The bright and dark exciton states are coupled via spin flip, denoted by the rates
Yba and yap. Apart from the spin-flip rates, radiative (7;a4) and non-radiative
processes ('yllfrad) lead to a decay of the bright exciton, while the dark exciton
decay only takes place as non-radiative (%(frad).

The rate equations governing the temporal evolution of the bright and dark

population probabilities are given as

9,

5% = —(Vrad + Vraa + T0a)Pb  +  YabPas (2.22)
dpa
o = —(YSaa T Yab)pa  +  Ybapy, (2.23)

where p, and pq are the population probabilities of the bright and dark exciton
levels. The solution of the rate equations yields a bi-exponential decay of the
populations probabilities of both bright and dark exciton states.
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As we shall see in Chapter 5 the spin-flip rates are slow and by assuming
Ybd, Yab K (Vrad + ’ygrad — %?rad) the temporal evolution of the bright state can be
simplified to

Ydb - b
po(t) = [ (0) = ———— 2 (0) O bl
VYrad + Tnrad — Tnrad

7db — (78 tran)t
pa(0)e= Ot
Yrad + rylr?rad - ,VSrad
(2.24)

where pp(0) and pq(0) are the initial population probabilities of the bright and
dark exciton levels, respectively. The bright population will thus undergo a bi-
exponential decay. While the fast decaying term is caused by the direct recombi-
nation of the bright excitons, the slowly decaying term is caused by dark excitons
undergoing a spin flip into bright excitons and then decaying by the bright decay
rate. Due to the slow spin-flip rate the decay rate of the fast (slow) component is
thus mainly given by the decay rate of the bright (dark) excitons:

Y = Yrad T %?rad + Yd = VYrad + %lfrad
Vs = Y aa + Vb ~ Yorad- (2.25)

In accordance with Eq. (2.20), the time-resolved spontaneous emission from

the bright exciton state is given as

N@) = mYaaMpb(t)
= Ape 4 Age (2.26)

where the second line defines the quantities for the fast A¢ and slow Ay amplitude

Ydb
b d
Yrad + Tnrad — Tnrad

db
As = nywaaM z a  Pd (0) (2.27)
Yrad + Tnrad — Tnrad

Ar = m%adM |pp(0) — pa(0)|,

From Egs. (2.26) and (2.27) we can thus conclude that the exciton fine structure
leads to a bi-exponential decay of the spontaneous emission. While the fast rate
is dominated by the decay of the bright excitons, the slow decay is given mainly
by the decay of the dark excitons. However, the decay rates will not only affect
the slopes of the fast and slow components, but also their relative amplitudes A
and Ag. This will be exploited in Chapter 5 to quantify the spin-flip rate vqp.
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2.3 Summary

We have calculated the radiative decay rate of a quantum dot in a homogeneous
medium. The radiative decay rate is expressed both in terms of the transition
dipole moment and in terms of the electron momentum operator. The use of
dyadic Green’s functions to obtain the local density of optical states and thus the
radiative decay rate in an inhomogeneous medium was introduced. The concept
of photonic crystals was discussed and the occurrence of band gaps was explained
in a one-dimensional model. Photonic crystal membranes were introduced and
the calculations of the band diagrams were presented showing a wide in-plane 2D
photonic band gap. The electronic properties of self-assembled quantum dots were
discussed. A detailed discussion regarding the decay dynamics of self-assembled
quantum dots was presented in the context of a simple two-level system and in-
clusion of the exciton fine structure. In the latter case the dynamics was found to

be characterized by a bi-exponential decay.

References to Chapter 2

[1] E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State Physics and
Flectronics, Phys. Rev. Lett. 58, 2059 (1987).

[2] S. John, Strong Localization of Photons in Certain Disordered Dielectric Sup-
perlattices, Phys. Rev. Lett. 58, 2486 (1987).

[3] R. Sprik, B. A. van Tiggelen, and A. Lagendijk, Optical emission in periodic
dielectrics, EPL (Europhysics Letters) 35, 265 (1996).

[4] P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Van-
maekelbergh, and W. L. Vos, Controlling the dynamics of spontaneous emis-
sion from quantum dots by photonic crystals, Nature 430, 654 (2004).

[5] J. Martorell and N. M. Lawandy, Observation of inhibited spontaneous emis-
sion in a periodic dielectric structure, Phys. Rev. Lett. 65, 1877 (1990).

[6] E. P. Petrov, V. N. Bogomolov, L. I. Kalosha, and S. V. Gaponenko, Sponta-
neous Emission of Organic Molecules Embedded in a Photonic Crystal, Phys.
Rev. Lett. 81, 77 (1998).



References to Chapter 2 29

[7]

[12]

[13]

[15]

B. Y. Tong, P. K. John, Y. tang Zhu, Y. S. Liu, S. K. Wong, and W. R.
Ware, Fluorescence-lifetime measurements in monodispersed suspensions of
polystyrene particles, J. Opt. Soc. Am. B 10, 356 (1993).

M. Megens, H. P. Schriemer, A. Lagendijk, and W. L. Vos, Comment on
“Spontaneous Emission of Organic Molecules Embedded in a Photonic Crys-
tal”, Phys. Rev. Lett. 83, 5401 (1999).

A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer,
G. Bohm, and J. J. Finley, Manipulation of the spontaneous emission dynam-

ics of quantum dots in two-dimensional photonic crystals, Phys. Rev. B 71,
241304 (2005).

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka,
Y. Arakawa, Y. Yamamoto, and J. Vuckovi¢, Controlling the Spontaneous
Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crys-
tal, Phys. Rev. Lett. 95, 013904 (2005).

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, Simultaneous In-
hibition and Redistribution of Spontaneous Light Emission in Photonic Crys-
tals, Science 308, 1296 (2005).

K. Kounoike, M. Yamaguchi, M. Fujita, T. Asano, J. Nakanishi, and S. Noda,
Investigation of spontaneous emission from quantum dots embedded in two-
dimensional photonic-crystal slab, Electronic lett. 41, 1402 (2005).

A. Badolato, K. Hennessy, M. Atatiire, J. Dreiser, E. Hu, P. M. Petroff,
and A. Imamoglu, Deterministic Coupling of Single Quantum Dots to Single
Nanocavity Modes, Science 308, 1158 (2005).

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M.
Hsu, Efficient Single-Photon Sources Based on Low-Density Quantum Dots
in Photonic-Crystal Nanocavities, Phys. Rev. Lett. 96, 117401 (2006).

M. Kaniber, A. Kress, A. Laucht, M. Bichler, R. Meyer, M.-C. Amann, and
J. J. Finley, Efficient spatial redistribution of quantum dot spontaneous emis-
sion from two-dimensional photonic crystals, App. Phys. Lett. 91, 061106
(2007).

M. Kaniber, A. Laucht, T. Hiirlimann, M. Bichler, R. Meyer, M.-C. Amann,
and J. J. Finley, Highly efficient single-photon emission from single quantum



30 2. Controlling the spontaneous emission from quantum dots by photonic crystals

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

dots within a two-dimensional photonic band-gap, Phys. Rev. B 77, 073312
(2008).

K. Hennessy, A. Badolato, D. Gerace, M. Atatiire, S. Gulde, S. Filt, E. L.
Hu, and A. Imamoglu, Quantum nature of a strongly coupled single quantum
dot-cavity system, Nature 445, 896 (2007).

I. S. Nikolaev, P. Lodahl, A. F. van Driel, A. F. Koenderink, and W. L. Vos,
Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles
in three-dimensional photonic crystals, Phys. Rev. B 75, 115302 (2007).

H. g, D. Englund, and J. Vuc¢kovié, Ultrafast photonic crystal nanocavity laser,
Nature Physics 2, 484 (2006).

G. Schlegel, J. Bohnenberger, 1. Potapova, and A. Mews, Fluorescence De-
cay Time of Single Semiconductor Nanocrystals, Phys. Rev. Lett. 88, 137401
(2002).

B. Fisher, H.-J. Eisler, N. Stott, and M. Bawendi, Emission Intensity De-
pendence and Single-Exponential Behavior In Single Colloidal Quantum Dot
Fluorescence Lifetimes, J. Phys. Chem. B 108, 143 (2004).

R. Loudon, The Quantum Theory of Light, Oxford University Press, Oxford,
3rd edition (2000).

E. M. Purcell, Spontaneous Emission Probabilities at Radio Frequencies, Phys.
Rev. 69, 681 (1946).

K. H. Drexhage, Influence of a Dielectric Interface on Fluorescence Decay
Time, J. Lumin. 1-2, 693 (1970).

D. Kleppner, Inhibited Spontaneous Emission, Phys. Rev. Lett. 47, 233 (1981).

B. H. Bransden and C. J. Joachain, Physics of atoms and molecules, Longman
Scientific & Technical, Essex (1983).

L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge University
Press, New York (2006).

R. R. Chance, A. Prock, and R. Silbey, Molecular fluorescence and energy
transfer near interfaces, Adv. Chem. Phys. 37, 1 (1978).



References to Chapter 2 31

[29]

[30]

31]

[36]

[37]

V. P. Bykov, Spontaneous Emission from a Medium with a Band Spectrum,
Sov. J. Quant. Elec. 4, 861 (1975).

P. Y. Yu and M. Cardone, Fundamentals of Semiconductors, Springer, Berlin,
3rd edition (2001).

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, Photonic
band gaps in three dimensions: New layer-by-layer periodic structures, Solid
State Comm 89, 413 (1994).

S.-Y. Lin and J. G. Fleming, A three-dimensional optical photonic crystal, J.
Lightwave Tech 17, 1944 (1999).

H. S. Séziier, J. W. Haus, and R. Inguva, Photonic bands: Convergence prob-
lems with the plane-wave method, Phys. Rev. B 45, 13962 (1992).

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, On-chip natural as-
sembly of silicon photonic bandgap crystals, Nature 414, 289 (2001).

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P.
Ippen, and H. I. Smith, A three-dimensional optical photonic crystal with
designed point defects, Nature 429, 538 (2004).

J. Vuckovi¢ and Y. Yamamoto, Photonic crystal microcavities for cavity quan-
tum electrodynamics with a single quantum dot, App. Phys. Lett. 82, 2374
(2003).

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang,
E. Hu, and A. Imamoglu, A Quantum Dot Single-Photon Turnstile Device,
Science 290, 2282 (2000).

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper,
C. Ell, O. B. Shchekin, and D. G. Deppe, Vacuum Rabi splitting with a single
quantum dot in a photonic crystal nanocavity, Nature 432, 200 (2004).

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and
I. Kim, Two-Dimensional Photonic Band-Gap Defect Mode Laser, Science
284, 1819 (1999).

H. Y. Ryu, M. Notomi, E. Kuramoti, and T. Segawa, Large spontaneous
emission factor (> 0.1) in the photonic crystal monopole-mode laser, App.
Phys. Lett. 84, 1067 (2004).



32 2. Controlling the spontaneous emission from quantum dots by photonic crystals

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B.
Kim, and Y. H. Lee, Electrically Driven Single-Cell Photonic Crystal Laser,
Science 305, 1444 (2004).

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. An-
dreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, Self-Tuned Quantum
Dot Gain in Photonic Crystal Lasers, Phys. Rev. Lett. 96, 127404 (2006).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals - Mold-
ing the Flow of Light, Princeton University Press, Princeton NJ (1995).

A. F. Koenderink, M. Kafesaki, C. M. Soukoulis, and V. Sandoghdar, Spon-
taneous emission rates of dipoles in photonic crystal membranes, J. Opt. Soc.
Am. B 23, 1196 (2006).

S. G. Johnson and J. D. Joannopoulos, Block-iterative frequency-domain

methods for Mazwell’s equations in a planewave basis, Opt. Express 8, 173
(2001).

D. Bimberg, M. grundmann, and N. N. Ledentsov, Quantum Dot Heterostruc-
tures, Wiley, Chichester (1999).

S. L. Chuang, Physics of Optoelectronic Devices, Wiley-Interscience, New
York (1995).

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel,
P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reith-
maier, F. Klopf, and F. Schifer, Fine structure of neutral and charged excitons
in self-assembled In(Ga)As/(Al)GaAs quantum dots, Phys. Rev. B 65, 195315
(2002).

S. Cortez, O. Krebs, P. Voisin, and J. M. Gérard, Polarization of the interband
optical dipole in InAs/GaAs self-organized quantum dots, Phys. Rev. B 63,
233306 (2001).

G. A. Narvaez, G. Bester, and A. Zunger, Dependence of the electronic struc-
ture of self-assembled (In,Ga)As/GaAs quantum dots on height and composi-
tion, J. Appl. Phys. 98, 043708 (2005).

I. Kegel, T. H. Metzger, A. Lorke, J. Peisl, J. Stangl, G. Bauer, J. M. Garcia,
and P. M. Petroff, Nanometer-Scale Resolution of Strain and Interdiffusion in
Self-Assembled InAs/GaAs Quantum Dots, Phys. Rev. Lett. 85, 1694 (2000).



References to Chapter 2 33

[52]

D. M. Bruls, J. W. A. M. Vugs, P. M. Koenraad, H. W. M. Salemink, J. H.
Wolter, M. Hopkinson, M. S. Skolnick, F. Long, and S. P. A. Gill, Determi-
nation of the shape and indium distribution of low-growth-rate InAs quantum

dots by cross-sectional scanning tunneling microscopy, App. Phys. Lett. 81,
1708 (2002).

S. Lee, O. L. Lazarenkova, P. von Allmen, F. Oyafuso, and G. Klimeck, Effect
of wetting layers on the strain and electronic structure of InAs self-assembled
quantum dots, Phys. Rev. B 70, 125307 (2004).

L.-W. Wang and A. Zunger, Linear combination of bulk bands method for
large-scale electronic structure calculations on strained nanostructures, Phys.
Rev. B 59, 15806 (1999).

G. A. Narvaez, G. Bester, A. Franceschetti, and A. Zunger, Fzcitonic ez-
change effects on the radiative decay time of monoexcitons and biexcitons in
quantum dots, Phys. Rev. B 74, 205422 (2006).



34 2. Controlling the spontaneous emission from quantum dots by photonic crystals




3. ENERGY DEPENDENCE OF THE OSCILLATOR
STRENGTH AND QUANTUM EFFICIENCY OF INAS
QUANTUM DOTS MEASURED BY A MODIFIED LOCAL
DENSITY OF OPTICAL STATES

In this chapter we present measurements of the radiative and non-radiative de-
cay rates of InAs quantum dots. The rates are measured with an unprecedented
accuracy using a modified local density of optical states. The rates allow for a
determination of important optical properties of the quantum dots, such as e.g.,
the quantum efficiency and the oscillator strength. By probing different emission
energies, we measure the energy dependence of these properties. Surprisingly, the
radiative decay rate and thus the oscillator strength decrease with energy. The
quantum efficiency and the oscillator strength are also found to be dependent on
excitation density. Finally a series of time-resolved measurements of the sponta-

neous emission from colloidal CdSe quantum dots are presented.

3.1 Introduction

Quantum dots are very interesting light sources for use in solid state quantum op-
tics experiments [1-6] as well as in future quantum optics devices. Exciting exper-
iments have culminated in the demonstration of strong coherent coupling between
a single quantum dot and the optical mode of a cavity [1-3]. These experiments
are based on the control of spontaneous emission obtained by nano-structuring
the dielectric environment surrounding the quantum dots. The dielectric nano-
structures, i.e., photonic crystals, micro-pillars, and micro-discs, modify the local
density of optical states (LDOS) [7], and hereby affect the radiative recombination
rate of the embedded quantum dots.

The degree to which spontaneous emission is controlled is determined by three
factors: i) the magnitude of the LDOS modifications, ii) the oscillator strength
of the quantum dot transition, and iii) the non-radiative decay rate of the quan-
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tum dot transition. While the modifications of the LDOS is controlled by the
surrounding environment, the oscillator strength and the non-radiative decay rate
are intrinsic properties of the quantum dot. The oscillator strength determines the
strength of the coupling between the quantum dot transition and the optical field,
and thus a decisive parameter in obtaining strong coupling. The oscillator strength
may be ingeniously tailored due to the size dependence of the exciton wavefunc-
tions [8,9] or by the application of an electric field, causing a separation of the
electron and hole wave functions [10,11]. The non-radiative decay is unaffected
by modifications of the LDOS and therefore sets an upper limit on the lifetime
of the quantum dot exciton state. An upper bound on the inhibition of sponta-
neous emission rate is thus set by the quantum efficiency, i.e., the contribution of
non-radiative processes to the total decay of the quantum dot. Surprisingly, the
exact size dependence of the optical properties, i.e., the oscillator strength and the
quantum efficiency, of the quantum dot exciton has remained an open question.
Understanding these optical properties is essential to optimally engineer quantum

dots for enhanced light-matter interaction.

In this chapter we present accurate measurements of the quantum efficiency
and the oscillator strength of the quantum dot exciton ground state. We further-
more determine their dependence on emission energy and thus obtain knowledge
of their size dependence. The measurements are performed by employing the mod-
ifications in the LDOS caused by a nearby interface. The simple system, i.e., the
dielectric interface, offers the great advantage that the LDOS can be calculated
exactly [12,13], whereby the quantum efficiency and the oscillator strength are de-
termined without any adjustable parameters. The only parameter to be specified
is the distance between the quantum dots and the interface which can be mea-
sured accurately. In contrast, alternative methods for determining the oscillator
strength, e.g., absorption measurements [14-16], require estimates of parameters
such as the density of quantum dots and the beam waist of excitation beam, which
is hard to do accurately.

Recently the interface method has been employed to obtain knowledge of the
quantum efficiency in two different material systems: ensembles of Si nanocrys-
tals [17] and individual CdSe colloids [18]. In contrast to Ref. [17] our detailed
understanding of the decay dynamics of InAs quantum dots allow us to directly ex-
tract physically meaningful parameters, i.e., the radiative and non-radiative rates,
and thus obtain both the quantum efficiency and the oscillator strength. The
measurements reported in Ref. [18] are performed on a single quantum dot and
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it is therefore only possible to obtain two data points. This limit is not imposed
on the ensemble measurements as they rely on the statistically averaged ensemble
properties. For large sub-ensembles these properties can safely be assumed to be
identical. We can thus obtain measurements for many different distances whereby
the validity of the model can be confirmed. We do indeed identify a range of
distances close to the interface in which the validity of the model is compromised.
This readily suggests that several data points much be acquired for an indisputable
determination of the decay rates.

3.2 Dipole emission near a dielectric interface

The total decay rate of an excited emitter is the sum of the radiative and the
non-radiative decay rates, c.f. Sec. 2.2.4. To separate these two contributions,
we exploit the periodic variation in the LDOS caused by reflections of the electric
field in a nearby interface. While the non-radiative decay rate is expected to be
constant, the radiative decay rate depends linearly on the LDOS and will thus
depend explicitly on the distance to the interface. This method was pioneered
by Drexhage who studied the radiation pattern and lifetime of europium ions
positioned at known distances in front of a silver mirror [12]. Drexhage and co-
workers demonstrated that the presence of the interface altered the lifetime of
the molecules substantially. For large distances to the interface the lifetime was
observed to oscillate as a function of the distance. The oscillation occurs since part
of the emitted field is reflected in the interface, and arrives back at the position of
the emitter where it interferes with the directly emitted field.

The behaviour of an emitter near a dielectric interface can be modelled exactly
by calculating the projected LDOS as a function of the distance to the interface.
From a classical point of view this corresponds to calculating the electric field at
the dipole position caused by the dipole emission itself, i.e., taking into account
both the emitted field and the reflected field. This can be done elegantly by using
the dyadic Green’s functions formalism as rigorously derived in Refs. [19] and [20]
and briefly discussed in Sec. 2.1.1. In Fig. 3.1 calculations of the normalized LDOS
are shown as a function of distance to an air-GaAs interface. The calculations,
which are performed for two different dipole orientations, are obtained using ex-
perimentally relevant parameters: emission energy, hw = 1.20eV and refractive
index, ngaas = 3.5. The Dyadic Green’s functions for a dipole emitter near a di-
electric interface is derived in [20, Chap. 10], which the reader is asked to consult

for further details regarding the calculation.
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Fig. 3.1: The calculated LDOS normalized to the density of optical states in bulk GaAs.
The calculation has been performed for an air-GaAs interface, an emission en-
ergy of 1.20 eV and for two different dipole orientations: parallel to the interface
(solid, blue line) and perpendicular to the interface (dashed, red line).

The total decay rate of an emitter placed at a distance z to the interface is given
as the sum of the non-radiative and radiative decay, where the latter is related to
the LDOS by Fermi’s Golden Rule (Eq. (2.14))

Y(w,2) = Yorad (W) + Yrad(w, 2)
Tw 9
) + g ()P :2), (31)

where p(w) is the (energy dependent) transition dipole moment and p,(w,2) is
the projected LDOS. By defining the radiative decay rate for an emitter in a

homogeneous medium oM (w) = e | w(w)|?p(w), where p(w) is the usual density
of optical states (DOS) in a homogeneous medium, the measured total decay rate
can be expressed as

_ w hom w pN(wVZ)
’Y(W:Z) - ’anad( )+7rad( ) p(LU) - (32)

As pu(w,z)/p(w) can be calculated exactly, Y201 (w) and Yyrada(w) can be deter-

mined with high accuracy. The superscript hom is used to underline that 'yf;ﬁ“ (w)

is the radiative decay rate for an emitter in a homogeneous medium.
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Fig. 3.2: Left: A sketch of 8 samples. The thin red layer indicates the quantum dot
layer, while the surrounding GaAs is shown in blue. The distance z is varied
between 30 nm and 300 nm for the different samples, while the distance d to the
underlying AlAs layer is 650 nm, identical for all samples. Right: An atomic
force microscopy scan of a uncapped layer of InAs quantum dots grown using
identical parameters as for the quantum dot layer embedded in the GaAs. A

2

quantum dot density of ~ 300 pm™" is found.

3.3 Measuring the oscillator strength and quantum efficiency of
InAs quantum dots

To determine the radiative and non-radiative decay rates of InAs quantum dots we
have performed a series of time-resolved measurements of the spontaneous emission
from quantum dots placed at 30 different distances to a air-GaAs interface. This
experiment is very well suited for the epitaxially grown InAs quantum dots as the
layer containing the quantum dot ensemble is very well defined within the wafer

structure as well as the quantum dots are identically oriented.

3.3.1 Sample preparation

The wafer used for the experiments (NBI-167) is grown by molecular beam epi-
taxy on a GaAs (100) substrate where 2.0 monolayers of InAs are deposited at
524° C followed by a 30s growth interrupt and deposition of a 300 nm thick GaAs

cap. The quantum dot density is measured to be ~ 300 um 2

using atomic force
microscopy (AFM) on an uncapped quantum dot layer grown for this purpose, cf.

Fig. 3.2(b). A 50 nm thick layer of AlAs is deposited 650 nm below the quantum
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dots for an optional epitaxial lift-off. The wafer is processed in 5 steps consist-
ing of standard UV lithography and wet chemical etching, whereby samples with
different distances between the quantum dots and the interface are fabricated on
the same wafer, see Figure 3.2(a). To obtain smooth surfaces and keep the etch
rates low a mixture of H3PO4(85%) : Ho02(30%) : DIH-0 in the ratio 3:1:60 was
used [21]. In total, 30 samples are obtained covering distances from 30 to 300 nm.
For the sample with the larges distance (not etched) a value of z = 302.3 £2.1 nm
is determined using secondary ion mass spectroscopy (SIMS) and surface profiling.
The distances for the remaining samples are determined by surface profiling com-
bined with the SIMS measurement. Five successive surface profiles are acquired

on each sample whereby a typical precision of £3.0 nm is obtained.

3.3.2 Experimental setup

The setup used for the experiments is depicted in Fig. 3.3. The sample is placed
inside a closed-cycle cryostat keeping the sample temperature at 12 K. The quan-
tum dots can be optically excited using either a wavelength-tunable mode-locked
Ti:sapphire laser (Mira 900) delivering ~ 300 fs long pulses at a repetition rate of
82 MHz or a pulsed laser diode (PicoQuant, PDL-800) with a variable repetition
rate between 5 to 80 MHz and a fixed wavelength of 781 nm (1.59eV). The spon-
taneous emission is collected by the lens L2, c.f. Fig. 3.3. The effective numerical
aperture is 0.32 limited by the cryostat windows. The lens system consisting of L2
and L3 image the sample onto the pinhole (PH) magnified by a factor of 10. The
pinhole is used for spatial selection and can be changed depending on the size of
the studied structures. A flip mirror (M) can be inserted in front of the pinhole
to direct the image onto a CCD camera used for positioning the sample. The lens
system consisting of L4 and L5 creates an image of the sample (pinhole) on the
entrance slit of the spectrometer (SpectraPro, SP-2500i). The magnification is
0.4, resulting in a total magnification of 4 whereby the numerical aperture of the
spectrometer (0.077) is matched. The spectrometer is used with a 150 g/mm grat-
ing and with an entrance slit width of either 60 or 150 pm depending on whether
spectra are acquired using the CCD array, or the avalanche photo diode (APD) is
used for time-resolved single-photon counting. This results in spectral resolutions
of 1.0meV and 2.6 meV. Two different APDs can be used: i) a fast APD (Micro
Photon Devices, PDM-50CT) with a full-width at half-maximum value of the in-
strument response of 48 ps but a low detection efficiency of 5.5% (at 900 nm), and
ii) an APD (PerkinElmer, SPCM-CD3226) with a high detection efficiency of 25%
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Fig. 3.3: Sketch of the experimental setup used throughout this thesis. The lenses L2
(f = 75mm) and L3 (f = 750mm) creates a 10-fold enlarged image of the
sample on the pinhole (PH) which is used for spatial selection. To match the
numerical aperture of the spectrometer the lenses L4 (f = 150 mm) and L5 (f =
60 mm) image the sample (pinhole) on the entrance slit with a magnification of
0.4. The focusing optics for the excitation beam is simplified to one lens L1. In
pratice this lens can be exchanged to obtain different sizes of the excitation spot
and to accommodate the different beam waist of the two lasers. The size of the
excitation spot is obtained by imaging the photoluminescence on the CCD via
the flip mirror (M).

(at 900 nm) and a full-width at half-maximum value of the instrument response
of 310 ps. The APDs are connected to a time-correlated single-photon counting
system (PicoQuant, PicoHarp300) with a resolution of 4ps and a dead time of
~ 83 ns.

3.3.3 Spontaneous emission from InAs quantum dots

Time integrated emission spectra acquired at different excitation densities are
shown in Fig. 3.4(a). For the lowest excitation density the spectrum corresponds
to emission from the inhomogenously broadened ground state transitions. As the
excitation density is increased the emission spectrum broadens towards higher
energies due to emission from the excited states. At high intensities emission from
the wetting layer (denoted by D in the figure) is dominating. Three additional
peaks appear in the spectra. Denoted by: A) is the band gap exciton of GaAs at
1.513eV, B) is the emission from carbon defects in GaAs at 1.493eV [22], and C)
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Fig. 3.4: Emission spectra from the quantum dot ensemble under various excitation in-
tensities: at 0.3 W/cm2 only emission from the ground state is observed, at 5
W /cm? additional emission from the excited states appears, and at 75 W /cm?
emission from the wetting layer (D) becomes dominant. The peaks indicated
by arrows A, B and C are related to bulk GaAs, see text for further details.

is a phonon replica of B) at 1.457eV.

From the time-resolved measurements, we find that decay of spontaneous emis-
sion from the quantum dot ground state excitons can be well described by a bi-
exponential model when it is studied within a time range of ~ 13ns™!. This
is in accordance with the bi-exponential decay derived from the rate equations
in Sec.2.2.4. In Fig. 3.5(a) the time-resolved photoluminescence from two quan-
tum dot ensembles positioned at distances of z = 109nm and z = 170nm from
the GaAs-air interface are shown. The fits of a bi-exponential model, N(t) =
Are~ Tt 4 AjeTst 4 O to the data are shown by the red lines. The background
level C' is determined by the measured dark-count rate and after-pulsing proba-
bility of the detector. The choice of a bi-exponential model is confirmed by the
weighted residuals (c.f. Figs. 3.5(b) and (c)) as they are randomly distributed
around a mean value of zero and thus result in low x%-values of 1.17 and 1.11.1

! The weighted residual is defined as W) = %}w, where N(t;) are the measured
data, Nc(ty) the calculated model, o} = \/W the standard deviation, and the subscript &
denotes that the data is assigned discrete times. The model is fitted to the data using a least-
squares approach in which the goodness-of-fit parameter y? = >k W,f is minimized. Here the

sum over k runs over all n data points in the decay curve. Since x2 depends on the number of
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Fig. 3.5: (a) Decay of the spontaneous emission recorded at 1.204eV for two different
distances to the interface of z = 109 nm (green, upper curve) and z = 170 nm
(blue, lower curve). The solid red lines are bi-exponential fits (b) The weighted
residual for the bi-exponential fit for z = 109 nm (green, upper curve) resulting
in a y%-value of 1.17. (c) The weighted residual for the bi-exponential fit for
z = 170 nm (blue, lower curve) resulting in a x%-value of 1.11.

The specific measurements shown in Fig. 3.5(a) are obtained for optical excitation
in the wetting layer states and detected for an emission energy of 1.204 eV, but
similar y%-values close to unity are obtained for excitation in the GaAs barrier
states. The fast decay takes place on a time scale of about 1 ns corresponding to the
decay of bright ground state excitons in InAs quantum dots [23]. The slow decay
time is approximately 10ns and is due to recombination of dark excitons [24, 25]
as will be discussed in detail in Chapter 5. In the present section we will only

focus on the fast decay rate.

Experimental conditions

To measure the oscillator strength and quantum efficiency of the ground state
transition accurately, it is important to keep a low and constant excitation density
for all samples. The density must be kept low to avoid population of the bi-

X2
n—p’
where n is the number of data points and p is the number of adjustable parameters in the model.

data points, the reduced x? is a better measure of the goodness of fit. It is defined as X?{ =
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exciton and excited states, since this affects the oscillator strength, c.f. Sec. 5.3.
A constant density is needed as the fast decay rate is weakly dependent on the
excitation density, as will be discussed in Sec. 5.3. A constant excitation density
is most easily obtained by exciting electron-hole pairs in the wetting layer states,
as the thickness of the wetting layer is constant for all 30 samples, as opposed to
the GaAs barriers. The excitation is therefore performed at an energy of 1.45eV,
corresponding to the energy of the wetting layer states, using the mode-locked
Ti:sapphire laser. The excitation spot has a diameter of ~250 um and the excita-
tion density is kept at 7W/ cm?’. By comparing the intensity and spectrum with
those obtained for optical pumping of the GaAs barrier states, we find that this
corresponds to an excitation density of less than 0.3 excitons per quantum dot.?
With such low excitation densities the formation of bi-excitons and the filling of
higher excited states can be neglected, i.e., only light from the quantum dot ground
state is observed. The calculated excitation density is also supported by emission
spectra acquired at different excitation intensities. The spectra stays unaffected
for an excitation intensity < 15W/ cmz, while the excited states appear for higher
densities. The detection energy is varied between 1.170eV and 1.272eV to probe
different sub-ensembles of the inhomogenously broadened ground state. The time
resolution is 48 ps and the spectral resolution of the monochromator (2.6 meV) is
narrow relative to the bandwidth of the LDOS changes.

Data analysis

The two decay curves shown in Fig. 3.5 show a clear change with distance to the
interface. The complete series of decay rates obtained from the measurements
acquired at an energy of 1.204 eV are presented in Figure 3.6(a) as a function of
distance from the quantum dots to the interface. A damped oscillation of the
total decay rate with distance is observed. The data are compared to the LDOS
calculated for GaAs (assuming n = 3.5) and projected onto a dipole orientation
parallel to the interface (solid blue line). Only the parallel projection is relevant,
since the orientation of the transition dipole moments has been observed to be
predominantly in the plane parallel to the interface [26]. This is also consistent
with the formation of the ground state exciton from a hole in the heavy hole
band and an electron in the conductance band, resulting in an in-plane polarized
emission pattern. The low x%-values obtained from the respective fits of the bi-
exponential model are shown in Fig. 3.6(b), confirming that all the different decay

2 See. App. A for further details.
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Fig. 3.6: (a) Measured decay rates versus distance z to the GaAs-air interface (squares),
acquired at E = 1.204 eV. Calculated LDOS projected onto a dipole orientation
parallel to the interface (solid blue line). Calculated LDOS including dissipation
at the surface (dashed red line). (b) The x%-values obtained for the various
fits.

curves are well described by the bi-exponential model.

For distances of z > 75nm we find an excellent agreement between the mea-
sured decay rates and theory. This explicitly confirms the validity of the theoretical
model, thus it can be used to reliably extract properties of the emitter. For quan-
tum dots closer than 75nm to the GaAs-air interface the measured decay rates
are systematically larger than the calculated rates. We identify three different
processes which could lead to an increase of the decay rate near the surface: i)
tunnelling of carriers from the quantum dot to the surface, ii) absorption and
scattering at the interface caused by surface roughness, or iii) a breakdown of the
dipole approximation since the size of the emitter (~ size of the quantum dot)
becomes non-negligible when the distance to the interface becomes small. We rule
out tunnelling as a possible cause; surface-induced tunnelling of quantum dot car-
riers has been reported to be important only within distances of less than ~ 15 nm
from the surface [27]. In order to examine whether case ii) could be a plausible
cause, we include a thin absorbing surface layer in the LDOS calculations. We
obtain qualitative agreement between theory and measurements by including a
5nm thick layer with refractive index of 3.5 +11.0 as shown by the dashed line
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in Fig. 3.6(b). iii) The measurements reported by Drexhage [12] and rigorously
analysed by Chance et al. [13] concern emitters (molecules) which are very small
compared to the size of the InAs quantum dots. The finite size of the quantum
dots can have an effect on the decay rate, but for a realistic quantum dot radius
of 10nm and in the case of an air-semiconductor interface the effect has been
evaluated to be negligible [28].

For quantum dots sufficiently far away from the interface, the influence of any
surface effects is negligible, and the data can be used to reliably extract the radia-
tive and non-radiative decay rates. The measured decay rates (from Fig. 3.6(a))
are shown in Fig. 3.7(a) as a function of the LDOS calculated for the respec-
tive distances. The measured rates clearly display the expected linear relation
on the LDOS. To determine which data points are influenced by surface effects
unaccounted for by Eq. (3.2) a linear regression analysis is used. The linear cor-
relation parameters |r| obtained as the data close to the interface are excluded
point by point are shown in Fig. 3.7(b). After exclusion of the seven closest data
points the correlation parameter converges to unity (> 0.99), hence Eq. (3.2) is
valid. By fitting Eq. (3.2) to the remaining data points we determine the radia-
tive and non-radiative decay rates at 1.204eV to be y20m = 0.95 £+ 0.03ns™! and
Yarad = 0.11 £ 0.03ns 1. It should be noted that by fitting Eq. (3.2) to the data,
the phase and period of the oscillation shown in Fig. 3.6(a) are given by the dis-
tance and the emission energy. Thus, only the offset (the non-radiative rate) and
the amplitude (the radiative rate) are obtained from the fitting.

Having obtained the radiative and non-radiative decay rates the quantum effi-
ciency is readily determined to be QE = 90 £ 4% for ground state excitons having
an emission energy of 1.204 eV. This result confirms that the InAs quantum dots
have a high quantum efficiency, even though the non-radiative contributions can-
not be neglected. An even higher intrinsic quantum efficiency can be obtained by
selecting the quantum dots emitting on the red side (low energy) of the inhomoge-
nously broadened ground state spectrum as will be discussed below.

The oscillator strength is a dimensionless measure of the transition strength rel-
ative to the transition strength of a classical electrical oscillator, i.e., a sinusoidally
oscillating electron with resonance frequency w which is embedded in a dielectric
material characterized by € (= n?). Using the radiative decay rate of a classical
electrical oscillator 'yggo, the oscillator strength can be expressed as [29, Chap. 2]:

3
_ Yrad _ O6mmgency _ 2mow, |y
fosc = “CEO — Yrad = 27, | |

rad €

; (3.3)

ne2w?
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Fig. 3.7: (a) Measured decay rates versus the LDOS calculated for the respective dis-
tances. (b) The linear correlation parameter, which is obtained as the data
close to the interface are excluded point by point, converges towards unity for

exclusion of seven or more data points.

where the decay rate in a homogeneous medium (Eq. (2.10)) has been used to
express the oscillator strength in terms of the transition dipole moment. For
the quantum dots emitting at 1.204eV, the measured value of 2o results in
an oscillator strength of fosc = 13.0 £0.4.3 For comparison various estimates of
the oscillator strength based on absorption measurements have been reported in
the literature and are generally in the range of fosc=5-10 [14,15]. However, the
technique implemented here provides unprecedented precision since it only relies
on accurate measurements of the distance of the quantum dots to the interface

and is independent of, e.g., the quantum dot density.

3.4 Energy dependence of the oscillator strength and quantum
efficiency

We determine the energy dependence of the oscillator strength and the quantum
efficiency by performing the time-resolved measurements for different emission
energies. The inhomogeneous broadening of the emission spectrum reflects the
different sizes of quantum dots, i.e., small quantum dots have a large quantiza-
tion energy and hence high emission energies and vice versa. By probing different

3 This corresponds to a transition dipole moment of (10.3 & 0.15)-10~2°Cm or equivalently
30.9 +£0.4D.
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Fig. 3.8: Decay rates versus distance for all six detection energies (solid symbols) and
the corresponding theory curve (lines). Each curve is offset by an additional

0.1ns ! for clarity.

energies we can thus probe quantum dots of different sizes. The measured decay
rates versus distance are shown in Fig. 3.8 together with the respective theoret-
ical calculations for all six energies. Using the method described in the previous
section, we derive the radiative and non-radiative decay rates (shown in Fig. 3.9)
and obtain their dependence on emission energy.

Surprisingly, the radiative decay rate is found to decrease with increasing en-
ergy as opposed to the total decay rate which, caused by the drastic increase in
the non-radiative recombination rate, increases slightly with increasing energy.
The reduction of the radiative decay rate with energy can only be explained by
a reduction in the overlap of the electron and hole wavefunctions as the size of
the quantum dot is reduced; this will be discussed in details in Chapter 4. The
increased non-radiative recombination rate at higher energies (small quantum dot
sizes) could indicate trapping of carriers at the quantum dot’s surface, since the
relative importance of the surface is large for small quantum dots. While such a
size dependence would be general for all quantum dots, the absolute values of the
non-radiative rates would most likely depend on sample growth.

The energy dependence of the oscillator strength and the quantum efficiency
are presented in Figure 3.10. Both quantities are seen to decrease with increasing
energy. The measured oscillator strengths are in good agreement with the theo-



3.4. Energy dependence of the oscillator strength and quantum efficiency 49

1.2 T T T T T 1.2
— 1.0 * 11
B2
c . 41.0 g
>
0.8 P
8 i 4 Jog &
(5]
2067 4 Radatie {088
- ® Non-radiative D
:% 0.4 m  Total 0.7 5"
c 02?,
2
0.2
£ i i § ¢ 401
0.0 , , , 0.0
1.16 1.18 1. 1.26 1.28

20 1.I22 1.24
Energy [eV]

Fig. 3.9: Left axis: Photoluminescence from the inhomogenously broadened ground state
measured at z = 281 nm (solid line). Right axis: Radiative (green triangles),
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Fig. 3.11: Spectra acquired under excitation intensities of 0.3 W/cm® (solid black line)
and 15 W/cm” (dashed red line). While the spectrum obtained at weak exci-
tation corresponds to emission from the ground state, the emission from the
excited states can be obtained by subtracting the ground state emission from
the emission spectrum (dotted blue line).

retical calculation shown by the solid red line. The calculation will be explained
in details in Chapter 4. The quantum efficiency decreases from around 95% to
80% and the oscillator strength from 14.5 to 11 over the emission spectrum. This
result shows that large quantum dots with a high exciton confinement potential
possess much better optical properties than small quantum dots. We thus make
the general statement that strong coupling is most easily obtained for large InAs
quantum dots.

3.5 Oscillator strength and quantum efficiency probed under strong

excitation

To study how the oscillator strength and the quantum efficiency are affected by
additional carriers in and around the quantum dot, a series of measurements are
performed under a strong excitation of ~ 20 excitons per quantum dot.



3.5. Oscillator strength and quantum efficiency probed under strong excitation 51

Experimental conditions

The excitation is done by introducing carriers in the GaAs barrier at an energy of
1.63eV. Apart from the excitation energy the remaining experimental parameters
are kept as in Sec. 3.3. To compensate for the various thickness of the GaAs barrier,
which will cause variations in the excitation density, the intensity is adjusted in
order to obtain similar spectra from the different samples. The intensity is thus

% and 30 w/ cm”. This method does, however, result in

varied between 12 W /cm
relative large uncertainties on the excitation densities, and it would have been
preferable to obtain the high excitation densities by excitation in the wetting layer
instead. For these measurements the spectral resolution of the monochromator is
adjusted 0.7meV and the time-resolution of the setup is 310 ps .

Two emission spectra from the sample with z = 302 nm are shown in Fig. 3.11.
For excitation intensities < 0.3 W/ cm?® the spectrum is independent of excitation
intensity, and it can thus be concluded to correspond to emission from the inho-
mogenously broadened ground state. At an excitation intensity of 15 W/ cm” the
emission spectrum clearly displays emission from the excited states causing the
spectrum to broaden towards higher energies. The difference of the two spectra,
shown by the dotted blue line, corresponds to the emission spectrum stemming
from the excited states. Time-resolved measurements are performed at six dif-
ferent emission energies in the range from 1.184eV to 1.322eV as marked by the
arrows in Fig. 3.11. At the three lowest energies the excited states do not con-
tribute substantially to the luminescence, while they become successively more

and more dominating for the three highest energies.

Time-resolved measurements

The spectral overlap of the ground and excited states for energies above ~ 1.24eV
is also apparent in the time-resolved measurements. In Fig. 3.12(a) two decay
curves obtained for the sample with z = 159nm at energies of 1.201eV and
1.322eV are shown. At 1.201eV, where the contribution from excited states is
negligible, the decay curve is again very well modelled as a bi-exponential decay
resulting in a weighted residual which is randomly distributed around zero, c.f.
Fig. 3.12(b). The rates obtained for the fast (~ 1ns™!) and slow (~ 0.1ns™!)
components are similar to those found in the weak excitation regime. When the
contribution from the excited states becomes substantial, as exemplified by the de-
cay curve obtained at 1.322 eV, an initial fast decay appears in the measurements.
We attribute this initial decay to spontaneous emission from the excited states.
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Fig. 3.12: (a) Decay curves obtained for the sample with z = 159 nm at 1.201eV (blue
triangles) and 1.322eV (green squares). (b) The weighted residual for the
triple-exponential fit for 1.32eV (green, upper curve) resulting in a x%-value
of 1.11. (c) The weighted residual for the bi-exponential fit for 1.32eV (blue,
lower curve) resulting in a x%-value of 1.17. The models have only been fitted
to the data in the ranges indicated by the residuals, but to verify the proper
adjustment of the time axis, the models are calculated and shown over the

complete time range.

The initial decay is very well accounted for by adding a third term to the model
whereby it becomes triple-exponential, N (t) = Aexe lext + Ape 1t + Age Vst + O
Here the subscripts ex denotes the contribution from the excited states. The fit of
the triple-exponential model is shown by the solid red line, and the corresponding
weighted residual is shown in Fig. 3.12(c).

Excited states

The decay rates of the excited states T'ex, shown in Fig. 3.13(a), do not display
any clear variations which immediately can be attributed to LDOS variations.
The expected LDOS dependence of the excited state’s decay rate is however not
as simple as is the case for the ground state exciton. A schematic diagram of the
energy levels of the quantum dot is shown in Fig. 3.13(c). As indicated in the
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Fig. 3.13: Left: (a) The initial decay rates versus distance at 1.263eV, 1.290eV and
1.322eV. (b) The fast decay rate from the ground state transitions. Ac-
quired at 1.201 eV. Right: Schematic level diagram showing a quantum dot

populated by three excitons and the decay channels for the excited state.

figure, the excited state can decay through three distinct channels: the radiative
channel (7£Y;), the non-radiative channel (7£X,,), and a relaxation channel down
to the bi-exciton level (yre1). The total decay rate is thus given as a sum of the
three rates, v = v + 7554 + Yret. While the non-radiative contribution is
independent of the LDOS, both the radiative decay rate and the relaxation rate
will depend on the LDOS as will be explained below.

Due to mixing of the heavy and light hole bands for the excited states [26,30]
the nature of the transition dipole moment is more complex than in the case for
the ground state exciton. The emission pattern of the excited state depends on
the exact mixture of light and heavy holes forming the exciton. It is, however, far
from a trivial task to determine the exact composition, so here we will assume that
the transition dipole of the excited state is heavy-hole like, and the radiative decay
rate ye.q will correspondingly be modelled to follow the variations in the parallelly
projected LDOS. The relaxation channel ¢ will only open after a decay of the
bi-exciton. When the channel is open, this intra-dot relaxation is expected to be
very fast compared to the decay of the bi-exciton. In this case the relaxation rate
~rel Will be dominated by the decay rate of the bi-exciton, which is dominated by
radiative decay and thus depends on the LDOS.

In Fig. 3.13(a) two theoretical calculations for the decay rate of the excited state
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at 1.290 eV are shown. The calculations are based on the following assumptions: i)
the relaxation rate is given by the decay rate of the bi-exciton, which is assumed to
be 1.5 times faster than the ground state exciton [31], ii) the corresponding ground
state is ~ 90meV below the exited state (1.201eV), and iii) the transition dipole
of the excited state is parallel to the interface. The solid line is calculated for a
negligible ¢

°x 4> While the dashed line is calculated using the ratio y$¥, /7%, = 10.

nrad
However, the quality of the present data does not allow us to determine whether

the excited state is dominated by non-radiative or radiative decay.

Exciton ground states

The fast decay rates of the ground state, 'y, oscillate in accordance with the
projected LDOS as shown in Fig. 3.13(b). An analysis similar to the one described
in Sec. 3.3 is used to obtain the radiative and non-radiative decay rates for the
six different transition energies. Based on the findings from the previous section
the data obtained for distances z < 75nm are excluded in the data analysis. The
radiative and non-radiative rates are shown in Fig 3.14(a) together with the rates
obtained in the weak excitation regime. For increasing energy the non-radiative
decay rate is found to increase, while the radiative decay rate is found to decrease.
This is identical with the behaviour observed in the weak excitation regime and
results in a decrease of the quantum efficiency with energy.

The non-radiative decay rates obtained in the strong excitation regime are
substantially faster than in the weak excitation regime. We suggest that this is
due to scattering of the quantum dot excitons on, e.g., excess excitons captured in
the quantum dot, carriers trapped at defect centres in the GaAs or at the quantum
dot’s surface. Quite remarkably, the radiative decay rate is also affected by the
excitation density. A reduction in the oscillator strength of ~ 20% is found by
comparing the obtained values, shown in Fig 3.14(b), to the radiative decay rates
obtained under weak excitation. A possible cause could be a loss of overlap between
the electron and hole wavefunctions caused by perturbations of the wavefunctions
by excess carriers in the quantum dot. Introducing excess carriers or even an extra
exciton will affect the wavefunctions of the ground state exciton already present,
this could maybe lead to a reduction in the oscillator strength of ~ 20%.
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Fig. 3.14: (a) Radiative (filled symbols) and non-radiative (open symbols) decay rates
obtained in the strong excitation regime (black squares) compared to those
obtained under weak excitation (red triangles). (b) The quantum efficiency
obtained under strong excitation (black squares) is significantly lower than

under weak excitation (red triangles).

3.6 Experiments on colloidal CdSe quantum dots

Another type of quantum dots are nanocrystalline semiconductor colloids, often
referred to as colloidal quantum dots or nanocrystals. Typical materials used for
colloidal quantum dots are: CdSe, CdS, CdTe, PbSe. The quantum dots can
be fabricated using wet-chemical synthesis, and they are commercially available
in solutions with high monodispersity resulting in well-defined emission energies
with a full width at half maximum of ~ 5% [32]. Fabrication by wet-chemical
synthesis results in the colloids being covered by molecular ligands. The quantum
dots consist thus in general of an inorganic core, e.g., CdSe, encapsulated by a shell
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of organic molecular ligands. The ligands can function as molecular bounds to,
e.g., binding sites in biological systems and the colloidal quantum dots can thus be
used for biological labelling [33]. The fluorescence of the colloidal quantum dots
are however strongly influenced by the ligands as charge carriers in some cases
will be transferred to the ligands whereby the luminescence is quenched [34]. To
passivate the surface and thus avoid this charge transfer, the colloids can be coated
by an inorganic shell of a material with a higher band gap. The colloidal quantum
dots studied in this section are CdSe overcoated by a few monolayers of ZnS to
passivate the surface states.

In this section we present time-resolved measurement of CdSe/ZnS quantum
dot ensembles positioned at various distances to an Ag-SiO- interface. As discussed
previously, measurements for a single CdSe/ZnS quantum dot near an interface
have been reported in Ref. [18]. In contrast to that work, our purpose is to obtain
the ensemble-averaged properties for several emission energies and to perform the
measurements for several positions. The latter in order to validate the theoretical
interpretation.

3.6.1 Properties of CdSe quantum dots

The colloidal CdSe quantum dots differ from MBE-grown InAs quantum dots on
two points which will increase the complexity of the time-resolved measurements:
i) the individual quantum dots are randomly oriented and ii) the spontaneous emis-
sion from single quantum dots exhibits a multi-exponential decay. The random
orientation is a direct consequence of the quantum dots being in suspension. The
intrinsic multi-exponential decay of single quantum dot is not fully understood. It
is, however, a commonly accepted hypothesis that it is caused by fluctuations in
the non-radiative decay rate of the single quantum dot caused by charge carriers
trapped at the surface [18,35,36].

To extract physically meaningful parameters from a multi-exponential decay is
in itself a non-trivial task. Moreover, by placing an ensemble of randomly oriented
quantum dots in an environment with an anisotropic LDOS, the complexity of
the decay curve is increased as the radiative decay rate of the individual quantum
dot will depend on its orientation. The properties of an ensemble of CdSe placed
close to an interface differ thus strongly from the properties of the InAs quantum
dots studied in the previous sections. Where the spontaneous emission from an
energetically identical ensemble of InAs quantum dots displays a well understood
bi-exponential decay, an ensemble of CdSe will display a complex decay being a
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Fig. 3.15: Left: A schematic drawing of the sample. Courtesy of M. Leistikow. Right:
The 2D dipole of the CdSe quantum dots. The dipole plane is perpendicular to
the crystal axis c. The angle § between an axis perpendicular to the interface

and the c-axis describes the quantum dot orientation.

sum of multi-exponential decays from the individual quantum dots.
To interpret the complex multi-exponential decay, we adopt the approach of

modelling the decay using a log-normal distribution of decay rates:

> InT —In D)’
N(t) = Ay / o(D)e "t dl,  o(T) = Cexp [ - <w> ] . (34)
0 w
Here T'y,¢ is the most frequent decay rate, corresponding to the maximum of o (T).
w is a dimensionless width parameter from which the 1/e width can be determined
as AI' = 2I'py¢ sinh w. The normalization constant C' ensures that fooo ol)dl'=1.

3.6.2 Sample preparation

The samples, depicted in Fig. 3.15(a), consist of a glass substrate on which is
evaporated an optically thick silver layer (500 nm) followed by the evaporation
of a layer of SiO2. The thickness of the SiOy layer is varied from sample to
sample to obtain different distances between the quantum dots and the Ag-SiOy
interface. On top of the SiOy layer a suspension of CdSe/ZnS quantum dots?
and polymethyl methacrylate (PMMA) dissolved in toluene is spin coated. This
results in a thin PMMA layer (1445 nm) in which the randomly oriented quantum

4 The quantum dots (ED-C11-TOL-0600) are supplied by Evident Technologies.
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dots are embedded. Finally a 1um thick layer of polyvinyl alcohol (PVA) is spin
coated on top of the quantum-dot-PMMA layer in order to shift the PMMA-air
interface further away from the quantum dots. The SiO, alloy and the PVA
are the choice for the layers surrounding the quantum dots as their refractive
indices resemble the one of the PMMA, i.e., the three layers effectively appear as
a single homogeneous optical layer. The refractive indices are: ngjo, = 1.554+0.01
(measured by ellipsometry), npyva = 1.49+0.01 and npya = 1.50+0.01. At the
quantum dot emission energy the refractive index of silver is nag = 0.266 +14.00
[37].

Due to the random orientation of the quantum dots, it is necessary to consider
the nature of the transition dipole. The hexagonal crystal structure of CdSe re-
duces the degeneracy of the valence band whereby the lowest excitonic energy level
is only two-fold degenerate. The projection of the angular momentum of these two
states along the c-axis of the crystal can acquire the values A [38]. This results
in the transition dipole to be 2D degenerate and located in a plane perpendicu-
lar to the c-axis [38,39] as observed in single-quantum dot studies performed at
both cryogenic and room temperature [18,40,41]. Since the samples have rota-
tional symmetry about an axis perpendicular to the interface, the orientation of
the dipole planes can be describe solely by the angle 6 as sketched in Fig. 3.15(b).

3.6.3 Experimental setup

The quantum dots are optically pumped at 2.33eV using 75 ps long pulses at a
repetition rate of 8.4 MHz created by a Cougar laser (Time Bandwidth). The
spectral selection is obtained using a Carl Leiss prism monochromator adjusted
to a resolution of 6 nm. The spontaneous emission directed onto a microchannel
plate photomultiplier tube (MCP-PMT, Hamamatsu R3809U) used for the single
photon detection. The collecting optics of the setup has an effective numerical
aperture of 0.09. To avoid photo-oxidation® the samples are placed in a nitrogen-

purged chamber during measurements.
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Fig. 3.16: (a) Spectra of CdSe/ZnS quantum dots positioned 80 nm from the Ag-SiO»
interface. The five emission energies probed are indicated by the arrows. (b)
Decay of the spontaneous emission from CdSe quantum dots for 80 nm (green
squares) and 173 nm (blue triangles). (c) The weighted residuals from the fit
of a log-normal model to the data (solid red lines in (b)).

3.6.4 Time-resolved measurements of spontaneous emission from CdSe/ZnS

quantum dots

We have acquired time-resolved measurements on six different samples for which
the distance z between the quantum dot layer and the Ag-SiO, interface is varied
between 80 nm and 173 nm. At each distance the decay curves are acquired for five
different emission energies as indicated in Fig. 3.16(a) where the emission spectrum
from the CdSe ensemble (z = 80nm) is shown. Two decay curves acquired at an
emission energy of 2.082eV are shown in Fig. 3.16(b) for the distances z = 80 nm
(green squares) and z = 173nm (blue triangles). As in the case of InAs quantum
dots, a clear effect of the LDOS variations can be observed.

The solid red lines shown in Fig. 3.16(b) are fits of a log-normal model to the
data, resulting in the randomly distributed residuals shown in Fig. 3.16(c). The
X% -values for the two fits are 0.72 and 1.44 respectively. In Fig. 3.17(a) the most-
frequent decay rates I'y¢ obtained from log-normal fits to the data acquired at

2.082¢eV are shown. Together with the data the most-frequent decay rates calcu-

5 Photo-oxidation is caused by oxygen, which penetrates the ZnS shell and reacts with the
CdSe core forming of an oxide layer. The process is photo induced and results in quenching of
the luminescence and a blue-shift of the emission spectrum as the size of the core is reduced [42].
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Fig. 3.17: (a) The most-frequent decay rate obtained at 2.08 eV for the various distances.
The decay rate calculated for a projection of the normalized LDOS onto a
dipole plane parallel, § = 0° (solid blue line) and perpendicular, § = 90°
(dashed red line). The dotted, black line is the average of the two rates. (b)
The 1/e width corresponding to the I,y shown in (a). The solid red line is
the difference between the rates for § = 0° and 6 = 90°.

lated for the LDOS projected onto dipole plane which is either parallel (6 = 0°) to
the interface or perpendicular (§ = 90°) to the interface are shown. Let us recapit-
ulate the ensemble properties: The spontaneous emission from each quantum dot
displays a multi-exponential decay. The spontaneous emission from the ensemble
of randomly oriented quantum dots is thus a sum of multi-exponential decays.
To obtain quantitative information, this sum of multi-exponentials is fitted by a
single log-normal distribution of decay rates. As the most-frequent decay rate is
an ensemble property, it is not expected to follow the most-frequent decay rates
calculated for neither a dipole plane parallel nor perpendicular to the interface.
Instead it is expected to be given by a weighted average of the two, where the
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weights depend on the dipole radiation pattern. Here we neglect the specific de-
pendence of the weights on the radiation patterns, and model the most-frequent
decay rate for the ensemble by the average of the decay rates obtained for the
two orientations of the dipole planes. This rate is shown by the dotted black line
in Fig. 3.17(a) and is indeed in good agreement with the measured most-frequent
decay rates.

The 1/e widths obtained from the log-normal fits are shown in Fig. 3.17(b).
In correspondence with the interpretation described above, the difference in the
most-frequent decay rates obtained for different orientations of the dipole planes
is expected to affect the width of the distribution. This difference is shown by
the solid red line in Fig. 3.17(b). The additional radiative broadening of the
distributions caused by the orientation of the dipole planes is small compared to
the intrinsic non-radiative broadening. It is thus not possible to determine whether

this additional broadening is present or not.
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Fig. 3.18: The radiative (red triangles) and non-radiative decay rate obtained from the
most-frequent decay rates. The shaded area indicates unphysical (negative)

rates.

The radiative and non-radiative decay rates obtained from the measured most-
frequent decay rates (using Eq. (3.2)) are shown in Fig. 3.18(a) as a function of
energy. The radiative decay rate varies between 0.067 ns~! and 0.081ns~! for en-
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ergies between 2.00 and 2.20 €V, showing no clear dependence on emission energy.
The non-radiative decay rate shows an overall increase from a value of —0.010ns™*
at 2.00eV to 0.023ns~! at 2.20eV. The unphysical negative decay rates could in-
dicate a failure of the model which most likely could be due to the log-normal
distribution failing to model the ensemble decay correct. However, the average
values for the radiative and non-radiative decay rates correspond to a radiative
life time of ~ 13.3ns and a high quantum efficiency of 0.97. This is in good
agreement with measurements on single quantum dots showing mono-exponential
decay [18]. It should be noted here that by analyzing the most-frequent decay
rate, we are effectively selecting the quantum dots with high quantum efficiency.
This is probably the reason for the good correspondence to the results obtained

on mono-exponentially decaying single quantum dots.

3.7 Conclusion

In summary, we have measured the radiative and non-radiative decay rates of InAs
quantum dots by employing the modified LDOS near a dielectric interface. The
oscillator strength and quantum efficiency of the quantum dots and their depen-
dence on the emission energy were accurately determined in two different excitation
regimes. The radiative decay rate decreases with increasing energy corresponding
to a reduction of the oscillator strength. In contrast, the non-radiative recombina-
tion rate increases with increasing energy. Consequently, quantum dots emitting
on the low-energy side of the inhomogenously broadened ground state transition
attain the highest oscillator strength and the highest quantum efficiency. Thus the
low-energy quantum dots are most suitable as nanophotonic light sources due to
their better optical properties. Under strong excitation the radiative decay rates
are found to be slower, while the non-radiative decay rates are faster. This corre-
sponds to a reduction of both the quantum efficiency and the oscillator strength
of the quantum dot under strong excitation.

The effect of LDOS variations was also studied for the case of colloidal CdSe
quantum dots. Due to the intrinsic multi-exponential decay dynamics and random
orientation of the individual quantum dots the decay of spontaneous emission from
an ensemble possess a high complexity. Despite this, we are able to obtain a good
agreement between the measured and calculated most-frequent decay rates. This
is obtained by calculating the average of the LDOS projected onto dipole planes
either parallel or perpendicular to the interface.
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4. MEASURING THE OVERLAP OF THE ELECTRON AND
HOLE WAVEFUNCTIONS

The transition matriz element of the ground state transition in an InAs quantum
dot is evaluated in the effective mass approzimation, whereby the measured oscil-
lator strength can be related to the overlap of the electron and hole wavefunctions
in the quantum dot. We investigate the energy dependence of the wavefunction
overlap and find a reduction with increasing energy. The experimental findings are
ezplained by theoretical calculations of the electron and hole wavefunctions. The
different energy dependence of the radiative decay in InAs and CdSe/ZnS quan-
tum dots is explained by comparing wavefunction calculations on the two different

systems.

4.1 Introduction

The electronic properties of quantum dots and other confining structures are de-
termined by the confined particles’ wavefunctions. The wavefunctions are thus a
very important key in obtaining fundamental understanding of the properties of
quantum dots. Performing measurements which directly yields knowledge of the
wavefunctions is a difficult task. However, having obtained the oscillator strength
of the ground state transition, we have acquired knowledge which allows us to
obtain a fundamental property of the electron and hole wavefunctions, namely,
the overlap of the wavefunctions. The measured energy dependence of the oscil-
lator strength is therefore able to determine the energy (size) dependence of the
wavefunctions overlap.

Different approaches to modelling the size dependence of the wavefunction
overlap in self-assembled quantum dots leads to different conclusions: while k- p
theory predicts an increase in the overlap for decreasing quantum dot size [1],
the atomistic pseudo-potential approach predicts the opposite trend [2]. Different
reports of the measured decay rates’ dependence on the energy (size) also result
in a unclear picture: both an decrease [3], a constant [4], and an increase [5,6] in
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the decay rate with increasing energy are observed for InAs quantum dots. We
suggest that these diverging observations partly are due to different non-radiative
contributions. As we discussed in the previous chapter, the measured total decay
rate experience an increase with energy while the radiative decay rate decreases
with energy.

In order to obtain the correct oscillator strength, and thus the wavefunction
overlap, a separation of the non-radiative and radiative decay rates must be per-
formed. Using the carefully derived radiative decay rates from the previous chap-
ter, we are able to experimentally determined the wavefunction overlap without

invoking any unjustified omission of the non-radiative decay rates.

4.2 FEvaluation of the transition matrix element

To establish the relation between the oscillator strength and the wavefunction
overlap, we must evaluate the transition matrix element for InAs quantum dots.
Using the p-A form of the interaction Hamiltonian derived in Sec. 2.1.1, the
radiative decay rate can be expressed as (Eq. (2.12))

n€2

27 ™
Yrad = Ww/o d¢/0 df sin 0| (glexx - p|e)|*- (4.1)
where ek, is the polarization vector of the electric field and p is the momentum
operator of the electron which must be evaluated for the transition from state
le) to state |g). In the calculation of the radiative decay rate of the quantum
dot ground state exciton the state |g) is the crystal ground state (no excitons in
the quantum dot) and |e) is the state with one exciton in the quantum dot (the
quantum dot exciton ground state).

To evaluate the transition matrix element in Eq. (4.1) for a quantum dot tran-
sition two assumptions must be made: i) the Coulomb interaction between the
electron and the hole can be neglected, and ii) the electron and hole wavefunc-
tions of the quantum dot can be described in the effective mass approximation.
In the strong confinement regime where the excitonic Bohr radius is smaller than
the size of the quantum dot, the energy associated with the Coulomb interaction
is much smaller than the quantization energy [7, Chap. 5]. Thus, the Coulomb in-
teraction can be safely neglected and the exciton can be described by uncorrelated
electron and hole wavefunctions. The use of the effective mass approximation for
small structures as quantum dots has been examined and validated by Burt et
al. [8]. Thus, the wavefunctions can be expressed in the effective mass approxima-
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tion as products of a Bloch function® u(r) and an envelope function F(r). Having

justified the two assumptions, the transition matrix element can be written as

(glexr - Ple) = (Fh(r)uy(r)|exs - P|Fe(r)uc(r)), (4.2)

where Fe(r) (Fy(r)) is the envelope function of the electron (hole) and u.(r) (uy(r))
is the Bloch function of the conduction band electron (valence band hole). Recog-
nizing the differential properties of the momentum operator, p = —ihV, Eq. (4.2)

can be rewritten using the product rule for differentiation

(glexr-ple) = (Fa(r)uy(r)uc(r)|ex - p|Fe(r)) +
(Fn(r)uy (r) Fe(r)lew - Pluc(r)).  (4.3)

The integrals, denoted by the Dirac brackets, must be performed over the complete
crystal volume V. Since the envelope functions are slowly varying over the unit
cell while the Bloch functions are strongly varying over the unit cell, this integral
can be split into a product of two integrals where one is taken over the volume of
the unit cell while the other is taken over the crystal volume, c.f. [9, Chap. 9]:

(gler-ple) = (uy(r)uc(r))(Fu(r)lexs -plFe(r))  +
(Fh (0)| Fe (r)) (uy (r)[excx - Pluc(r)).  (44)

The expression can be simplified further since the valence and conduction band
Bloch functions are orthogonal (uy(r)|uc(r)) = 0. The evaluation of the the tran-
sition matrix element is thus reduced to an evaluation of the electron and hole
wavefunctions’ overlap (Fj,(r)|Fe(r)) and an evaluation of the momentum matrix

element (uy(r)|exy - Pluc(r)):
(glerx-ple) = (Fu(r)|Fe(r))(uy (r)exx - Pluc(r))- (4.5)

It is important to notice that the evaluation of the momentum matrix element only
involves the Bloch functions and thus does not depend on the symmetry or the size
of the quantum dot but only on the bulk semiconductor properties. The effect of
the quantum dot size, shape and symmetry is accounted for by the wavefunctions
|Fe) and |Fi). In the following the explicit r dependence of the Bloch and the
envelope functions will be omitted to simplify the notation.

! In the weak confinement regime the excitonic wavefunction is more conveniently expressed
in Wannier functions.
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4.2.1 The momentum matrix element in strained InAs

In the case of self-assembled quantum dots, the strain of the InAs will lift the
degeneracy of the light hole and heavy hole bands whereby the heavy hole states
become the highest lying hole states. The evaluation of the momentum matrix
element thus only includes transitions from the conduction band to the heavy hole

valence band:
(uv|exr - Pluc) = (Unnlexxr - Pluc). (4.6)

The valence band Bloch functions (|uns), |win), |use)) can be written as linear
combinations of the basis functions (Jus), |uy), |uz)) which carry the same sym-
metry properties as the p-orbitals [10]. In particular if the electron’s k-vector is
directed along the z-axis, i.e., the growth axis which is normal to the quantum dot
layer?, the two spin degenerate combinations for the heavy hole spin up |ups) and

spin down |@pp) are

) = —%(W Cilw)) ) = %(w ~ila,)). (@.7)

In the dipole approximation the only allowed transitions are those between an
electron and a hole state of opposite spin, c.f., Sec. 2.2.4. Here we consider the
case of spontaneous emission, i.e., the recombination of an electron with a given
spin with a hole with the opposite spin. Hence, only one of the heavy-hole spin
states is of relevance. By expressing ex) and p in Cartesian coordinates Eq. (4.6)
can thus be written as

1 sin @ cos ¢ Px
(uy|exr - Pluc) = ——=((ua| — i(uy|) |sinfsing | - |py| |uc). (4.8)

V2 :

cosf Py
The only non-zero elements of the inner product in Eq. (4.8) are those for which
the momentum operator and the wavefunction have the same symmetry, i.e.,

(u;|pjlucy # 0 only if ¢ = j. Using the definition of the Kane energy

2 o _
By = —|(uilpiluc)?|, 0= {z,y,2} (4.9)
mo
the square of the momentum matrix element simplifies to
" . . mol, . .
[{ug lexx - Bluc)* = % sin® 6. (4.10)

2 In our case the growth axis corresponds to the crystal axis [001].
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The evaluation of the momentum matrix element has thus been simplified to the
evaluation of a basic trigonometric function.
4.2.2  Wavefunction overlap in InAs/GaAs quantum dots

The radiative decay rate can now be obtained by substituting Eq. (4.10) and
Eq. (4.5) into Eq. (4.1):

2mne’E, . o [T 3
O R A DL / db sin® 9
ne’E, .
= ——L w|{F(w)|F. 2, 4.11
St (@) F) (4.11)

The radiative decay rate is thus found to depend linearly on the emission fre-
quency w and on the overlap of the electron and hole wavefunctions |(Fj, (w)|Fe(w))|?.
Expressed in terms of the oscillator strength, Eq. (4.11) can be put on the more

elegant form

fose(@) = T2 F (@) (@) (412)

For InAs the Kane energy has a value of EII)nAs =22.2eV [11].

4.3 Measurements of wavefunction overlap in InAs quantum dots

With the use of Eq. (4.12) the measured oscillator strengths (shown in Fig. 3.10)
are thus capable of providing insight into the energy dependence of the overlap of
the electron and hole wavefunctions. The energy dependence of the wavefunctions
is due to the size dependence inherited by all quantum dot properties. Strictly
speaking, it is in fact the size of the quantum dot which determines the wave-
function and thus the quantization energy related to the wavefunction. For large
quantum dots the quantization energy is low and the wavefunction is very well
confined to the quantum dot hardly penetrating into the barriers. On the con-
trary a small quantum dot has a large quantization energy and the wave function
will penetrate deeper into the barriers, i.e., the effective barrier height will appear
smaller. Clearly, the barrier height and the mass of the carriers will also influence
the energy levels.

From the measured oscillator strength, presented in the previous chapter, we
have calculated the overlap of the wavefunctions as shown in Fig. 4.1. The overlap
decreases from about 0.75 at 1.17eV to 0.63 at 1.27eV. This reduction in the
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Fig. 4.1: Measured (squares) overlap of the envelope wavefunctions of electrons and holes
obtained using Eq. (4.12). The calculated overlaps (red solid line) readily re-

produce the measured energy dependence.

wavefunction overlap for increasing energy corresponds to an increasing mismatch
between the electron and hole wavefunctions with decreasing quantum dot size.
A different size dependence of the electron and hole wavefunctions can readily be
explained by the difference in their respective effective masses: The low effective
mass of the electron (m} 1, = 0.023mg, m} g,a, = 0.067mg) compared to the
effective mass of the hole (my}, 1,45 = 0.40mo, m};, 1,4 = 0.50mp) results in more
sensitive size dependence of the hole wavefunction than of the electron wavefunc-
tion. As the size of the quantum dot is decreased the electron wavefunction will
only be weakly modified, while the extent of the hole wavefunction will follow the
quantum dot size. This will cause a reduction of the overlap [12].

To examine whether this is a plausible explanation for the observed energy
dependence of the oscillator strength, the deduced overlaps are compared to cal-
culations of the wavefunction overlap. For this purpose, we implement a rotation-
ally symmetric quantum dot model within the framework of the effective mass
approximation. The finite element method?® is used to calculate the electron and
hole wavefunctions, from which both the emission energy and the wavefunction
overlap are obtained. The wavefunctions calculated for a lens-shaped quantum
dot with a radius of 7nm and a height of 2.6 nm and 1.6 nm are shown in Fig. 4.2

and Fig. 4.3 respectively. The electron wavefunctions are shown to the left, while

3 FemLab version 3.1i is used for the calculations.
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Fig. 4.2: The electron (left) and hole (right) wavefunctions calculated for a dot height of
2.6 nm resulting in an emission energy of 1.177eV and an overlap of 0.79.
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Fig. 4.3: The electron (left) and hole (right) wavefunctions calculated for a dot height of
1.6 nm resulting in an emission energy of 1.283 eV and an overlap of 0.61.
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Tab. 4.1: Energies and effective masses used in the calculations.

Ing.75Gag.25As-QD | GaAs-barrier
Egap 0.647 ¢V 1518V
m 0.034myg 0.067 myg
e 0.44mq 0.50 1mo

the hole wavefunctions are shown to the right and the cross section of the quantum
dot is indicated by the black lines. The colour scale, identical for all four plots, in-
dicates the amplitude of the wavefunction. In general, the hole wavefunctions are
found to be spatially localized within the quantum dot, while the electron wave-
functions penetrate into the barrier material. Reducing the quantum dot height
from 2.6 to 1.6 nm (going from Fig. 4.2 to Fig. 4.3) the extent of the electron is
hardly affected while the the hole wavefunction is found to be strongly bounded
by the quantum dot height, causing a reduction in the spatial extend. This readily
leads to a reduction in the overlap of the wavefunctions, as the quantum dot size
is reduced. The curve in Fig. 4.1 displays the wavefunction overlap calculated for
heights varying between 1.6 nm and 2.6 nm. Very good agreement with the exper-
imental data is observed, and theory clearly confirms a pronounced reduction of
the electron-hole wavefunction overlap as the size of the quantum dot is decreased.
The following parameters are used in the calculations: a wetting layer thickness
of 0.3nm, 60% of the band edge discontinuity is in the conduction band, and the
GaAs content in the quantum dots is taken to be 25%. The energies and effective
masses used are tabulated in Tab. 4.1. The general validity has been tested by
calculating for different sizes, shapes, and amount of GaAs content in the quantum
dot, and they all show a decrease of overlap with increasing energy. The same be-
haviour is also obtained from more involved quantum dot models which also take

into account the effect of strain [13].

This is, to the best of our knowledge, the first comparison between experimen-
tally determined wavefunction overlap and theory. It is important to stress that
this comparison is only worthwhile due to our knowledge of the radiative decay
rates obtained in the previous chapter.
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4.4  Wavefunctions in colloidal CdSe/ZnS quantum dots

Interestingly, the radiative rate of CdSe quantum dots has been reported to dis-
play the opposite dependence on energy as InAs quantum dots, i.e., an increase
in the radiative rate with increasing energy [14]. However, this report is based on
the assumption of a negligible non-radiative decay rate. To make an indisputable
conclusion on the energy dependence it is necessary to quantify the non-radiative
contributions for the various energies. Unfortunately, the data presented in Sec. 3.6
on CdSe/ZnS quantum dots did not allow for an accurate determination of the
radiative decay rate, hence we can not experimentally determine the energy de-
pendence of the radiative decay rate.

Under the assumption that it is the energy dependence of the radiative decay
rate which is measured and reported in [14], the conclusion illustrates a striking
difference in the optical properties of colloidal quantum dots compared to self-
assembled quantum dots. The reported behaviour of colloidal CdSe could be
explained by a wavefunction overlap which is independent of emission energy (size).
In this case the radiative decay rate will increase linearly with energy according
to Eq. (4.11). Comparing the colloidal CdSe/ZnS quantum dots with the self-
assembled InAs quantum dots, it is immediately noted that the quantum dots
are smaller, their confinement potential is larger, and the effective mass of the
electron is heavy. These properties leads to wavefunctions which are strongly
confined in the core of the quantum dots, i.e., the extent of the wavefunctions is
strictly bounded by the size of the quantum dot core.

We have calculated the electron and hole wavefunctions for a spherical CdSe/ZnS
quantum dot. The core radius is varied between 3.5 nm and 2.5 nm while the ZnS
shell thickness is kept at 2.0nm. These values correspond well with the actual
sizes of chemically synthesized CdSe/ZnS quantum dots as specified by the sup-
plier. The band gap and effective masses used for the calculations are tabulated
in Tab. 4.2. The electron and hole wavefunctions obtained for core radii of 3.5 nm
and 2.5 nm are shown in Fig. 4.4(a-b) and Fig. 4.4(c-d) respectively. The emission
energies are calculated to be 1.938 eV and 2.117eV. The obtained energies corre-
spond remarkably well with those obtained in the measurements in Sec. 3.6. In
contrast to the case of InAs quantum dots, both the electron and hole wavefunc-
tions are strongly localized within the core of the quantum dot hardly extending
into the ZnS shell. This difference is brought along by a reduction of the effective
mass ratio mj,/m? by a factor ~ 3 and an increase of the potential difference

Epartier — EAD by a factor of ~ 2 when comparing to InAs quantum dots. As the
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Fig. 4.4: The electron (a) and hole (b) wavefunctions calculated for a core radius of

3.5 nm resulting in an emission energy of 1.938 eV. The electron (c) and hole

(d) wavefunctions calculated for a core radius of 2.5 nm resulting in an emission

energy of 2.117eV.

Tab. 4.2: Energies and effective masses used in the calculations.

CdSe-QD | ZnS-barrier
Egap 1.72eV 3.54eV
m; 0.15myg 0.42 mg
my 0.60 myg 0.61myg

electron and hole wavefunctions dependence on the quantum dot size are similar,

the overlap is independent of the quantum dot size, and the values obtained for

the overlap deviate from unity by less than 10~*. Judging from these calculations

alone, it is plausible that the radiative decay rate increases linearly with increasing

energy.

4.5 Conclusion

We have described how to evaluate the quantum dot transition matrix element

in the effective mass approximation and hereby obtain the relation between the

oscillator strength and the overlap of the electron and hole wavefunctions. The

measurements presented in Chap. 3, thereby enables us to quantify the energy
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dependence of the wavefunction overlap for InAs/GaAs quantum dots. It is im-
portant to stress that this is only possible due to our explicit knowledge of the
radiative decay rates. The overlap is reduced from 0.75 at 1.17eV to 0.63 at
1.27eV. The experimental findings are supported by theoretical calculations and
the reduction of the wavefunction overlap is determined to stem from a different
sensitivity of the electron and hole wavefunctions to the quantum dot size. To
the best of our knowledge, this the first comparison of experimentally determined
wavefunction overlap and theory. The observation of improved wavefunction over-
lap for large quantum dots is important for optimization of the strong coupling in
QED experiments.

The energy dependence of the wavefunction overlap in self-assembled InAs
quantum dots is compared to the energy dependence calculated for colloidal CdSe/ZnS
quantum dots. In the latter case the wavefunction overlap is found to be indepen-
dent on size, which explains the observed [14] difference in the energy dependence
of the radiative decay rate for the two different quantum dot types.

References to Chapter 4

[1] O. Stier, M. Grundmann, and D. Bimberg, Electronic and optical properties
of strained quantum dots modeled by 8-band k.p theory, Phys. Rev. B 59, 5688
(1999).

[2] G. A. Narvaez, G. Bester, and A. Zunger, Ezcitons, biexcitons, and trions
in self-assembled (In,Ga)As/GaAs quantum dots: Recombination energies,
polarization, and radiative lifetimes versus dot height, Phys. Rev. B 72, 245318
(2005).

[3] T. F. Boggess, L. Zhang, D. G. Deppe, D. L. Huffaker, and C. Cao, Spectral
engineering of carrier dynamics in In(Ga)As self-assembled quantum dots,
App. Phys. Lett. 78, 276 (2001).

[4] H. Yu, S. Lycett, C. Roberts, and R. Murray, Time resolved study of self-
assembled InAs quantum dots, App. Phys. Lett. 69, 4087 (1996).

[5] S. Malik, E. C. Le Ru, D. Childs, and R. Murray, Time-resolved studies of
annealed InAs/GaAs self-assembled quantum dots, Phys. Rev. B 63, 155313
(2001).



78

[6] L. Y. Karachinsky, S. Pellegrini, G. S. Buller, A. S. Shkolnik, N. Y. Gordeev,
V. P. Evtikhiev, and V. B. Novikov, Time-resolved photoluminescence mea-
surements of InAs self-assembled quantum dots grown on misorientated sub-
strates, App. Phys. Lett. 84, 7 (2004).

[7] D. Bimberg, M. grundmann, and N. N. Ledentsov, Quantum Dot Heterostruc-
tures, Wiley, Chichester (1999).

[8] M. G. Burt, On the validity and range of applicability of the particel in a box
model, App. Phys. Lett. 65, 717 (1994).

[9] S. L. Chuang, Physics of Optoelectronic Devices, Wiley-Interscience, New
York (1995).

[10] P.Y. Yu and M. Cardone, Fundamentals of Semiconductors, Springer, Berlin,
3rd edition (2001).

[11] P. Lawaetz, Valence-Band Parameters in Cubic Semiconductors, Phys. Rev.
B 4, 3460 (1971).

[12] G. A. Narvaez, G. Bester, and A. Zunger, Dependence of the electronic struc-
ture of self-assembled (In,Ga)As/GaAs quantum dots on height and composi-
tion, J. Appl. Phys. 98, 043708 (2005).

[13] A. D. Andreev and E. P. O‘Reilly, Optical matriz element in InAs/GaAs
quantum dots: Dependence on quantum dot parameters, App. Phys. Lett. 87,
213106 (2005).

[14] A. F. van Driel, G. Allan, C. Delerue, P. Lodahl, W. L. Vos, and D. Van-
maekelbergh, Frequency-Dependent Spontaneous Emission Rate from CdSe
and CdTe Nanocrystals: Influence of Dark States, Phys. Rev. Lett. 95, 236804
(2005).



5. DECAY DYNAMICS OF BRIGHT AND DARK EXCITONS

The decay dynamics of quantum dot ensembles is studied using time-resolved spec-
troscopy. Within a time span of ~ 13ns the decay is very well described by a
bi-exponential model which arises from the fine structure of the exciton. The in-
trinsic spin-flip rate between bright and dark excitons can be determined, and we
find ensemble averaged spin-flip rates in the range between 2 and 50 us='. The
spin-flip rate displays a clear dependence on excitation density, excitation energy,
the presence of a nearby interface, and temperature.

5.1 Introduction

Quantum dots are often considered as artificial atoms due to their atom-like prop-
erty, i.e., their discrete spectrum of electronic states. The standard approach of
studying the decay dynamics of atoms is in terms of single exponential decay.
This approach has conveniently been adopted for the study of quantum dot decay
dynamics. Real quantum dots are however far from being ideal two-level emit-
ters causing the decay dynamics to reveal a much richer complexity. One of the
reasons for the complex decay dynamics is the exciton fine structure which, as
discussed in Sec. 2.2.4, leads to a bi-exponential decay. Obtaining knowledge of
the decay dynamics of quantum dots is important to improve and expand their
potential as nanophotonic light sources in quantum electrodynamics experiments
and devices. This has most recently been exemplified by the suppression of dark
exciton creation leading to the highest reported repetition rate of a quantum dot
based single-photon emitter [1]. Knowledge of the decay dynamics cannot only
facilitate improvement of devices, but is crucial to interpret experiments involving
inhibition of the spontaneous emission as will be evident in Chapter 6.

We present here a detailed analysis of the time-resolved measurements acquired
over time spans of 13ns and 200ns. The knowledge gained in Chapter 3 serves
as a basis for the analysis, i.e., an omission of the non-radiative decay rate leads
to an inconsistent picture. To identify the processes affecting the radiative and
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non-radiative decay rates, we study the dynamics under different excitation condi-
tions, temperatures and at different distances to the dielectric interface introduced
previously. The time-resolved measurements are analysed by employing the model
based on the fine structure of the quantum dot ground state derived in Sec. 2.2.4.
This careful analysis allows us to determine the intrinsic spin-flip rate between
the bright and dark exciton states.

The coherence properties and dynamics of the spin states have drawn much at-
tention since the proposal of quantum bit gates based on the spin states of electrons
in quantum dots [2]. Different time-resolved schemes, based on the spontaneous
decay of polarisation, have been used to deduce the spin-flip rate of the individual
carriers [3-6]. Using these schemes the intrinsic spin-flip rate can however only
be deduced under strictly resonant excitation as reported in Ref. [6], only. The
specific method applied in Ref. [6] is based on the presence of an additional car-
rier in the quantum dot which could affect the spin-flip rate, e.g., by an increased
carrier-carrier scattering. Moreover, the measurements are acquired over a short
time span < 2.5ns which only allows for a direct determination of rates higher
than ~ 0.2ns™!.

The method presented here exploits the bi-exponential nature of the decay dy-
namics. The spin-flip rate can be determined from the ratio of photon counts in
the fast and slow components. The lowest spin-flip rate which can be measured
is thus not limited by the repetition rate of the excitation source. Furthermore,
as no restrictions apply to the excitation energy (resonant / non-resonant) or to
excitation intensity, we are able to study the intrinsic spin-flip rate as a function of
both excitation energy and intensity. To reveal the bi-exponential decay the time-
resolved measurements must be performed over long time spans. Recently, only
a few groups have presented time-resolved measurements of spontaneous emission
from single quantum dots performed over more than just a few ns [7-9]. However,
the purpose of these studies have been to display control over the spin-flip rate
by an applied gate voltage [7], to report the existence of a strikingly high bright-
bright spin-flip rate in some individual InAs quantum dots [8], and to study the
temperature dependence of spontaneous emission from CdSe/ZnS colloidal quan-
tum dots [9].

In this chapter we present extensive studies of the decay dynamics and thus the
spin-flip rate of an ensemble of quantum dots under various excitation densities
and energies, various distances to an interface, and various temperatures. The
spin-flip rates can be determined correctly only by recognizing the existence of the
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non-radiative decay, and are thus based on our findings from Chapter 3.

5.2 Obtaining the spin-flip rate from the bright-dark model

In Sec. 2.2.4 the decay dynamics of the ground state exciton was discussed in a
model including the exciton fine structure, i.e., the bright and dark exciton states.
The outcome of the model is a bi-exponential decay of the luminescence from the
bright state

N(t) = Ape " + Age™ et (5.1)
where the fast and slow rates are defined by

Y= Yrad + %E’rad + Ybd
Vs rygrad + Ydb- (52)

and the corresponding fast and slow amplitudes are defined as

Ydb
A = nnaaM |pp(0) — 5 —ra(0)],
Yrad + Tnrad ~ Vnrad
As = nywaaM Jdb Pd(O)- (53)

b d
Yrad + Tnrad — Tnrad

This bi-exponential decay of the luminescence arises due to the spin-flip coupling
between the bright and the dark states; while the initial population of the bright
excitons will contribute directly to the spontaneous emission through radiative
decay, the dark excitons must flip their spin before they can decay radiatively and
thus contribute to the spontaneous emission. The model was derived under the
assumption that the spin-flip rate yap was slow compared to the radiative decay
rate. If the opposite was the case, the fast spin-flip rate would bring the two
exciton populations into equilibrium and the spontaneous emission would decay
mono-exponentially. It can thus be argued from the mere appearance of the bi-
exponential decay that the spin-flip rate yq, must be slow compared to the fastest
rate causing de-population of the bright and dark excitons, i.e., the radiative decay
rate of the bright excitons 7.

We would like to stress that had we neglected the the non-radiative decay and
thus assumed a quantum efficiency of 100% the slow rate 75 in Eq. (5.1) would be
given alone by the spin-flip rate vq,. However, as we have verified the presence of
the non-radiative decay rate, we can conclude that the slow rate is given by the
sum of the non-radiative decay rate and the spin-flip rate.
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The spin-flip rate can be obtained by taking the ratio of the fast and slow
amplitudes stated in Eq. (5.3) and rearranging the terms leading to

A A
_ b .d s ~ _ S
7dbp (0) - ('Yrad +7nrad ranad)Af + As — (7f rYS)Af + As . (54)

To express the spin-flip rate solely with parameters obtained from the bi-exponential
model (Ag, As, ¢, ¥s), the following approximation has been used Yrad + Y2 g —
Ydoa =% — % = (Trad + V2ag + Wa) — (7904 + Yab). By carefully analysing the
measurements, we are thus able to obtain knowledge of the spin-flip rate and the
ratio of the initial populations.

It should be noted that to obtain quantitative knowledge from the amplitudes it
is necessary to take into account that the histograms forming the decay curves are
built over many consecutive excitation events. The ratio of the initial populations
will be affected by the repetitive nature of the experiment, i.e., the population of
the slowly decaying dark excitons will not be negligible at the arrival time of the
next excitation pulse. In the weak excitation regime this effect can be accounted
for solely by correcting the measured slow amplitude for emission events caused
by earlier excitations. The correction is given by a geometric series whereby the
corrected amplitude Ag can be expressed as

As = As(]- - eXp(_’YsT))a (55)

where T is the excitation period and A refers to the measured amplitude. The
slow amplitudes As and the total number of counts in the slow component Ng

reported here will all be corrected according to Eq. (5.5).

5.2.1 Spin-flip processes in quantum dots

In bulk III-V semiconductors the valence band states possess a mixed spin char-
acter as the spin-orbit coupling mixes the degenerate heavy and light hole valence
band states [10]. Any scattering from one state to another can thus result in a
relaxation of the spin. This mechanism, known as the Elliot-Yafet mechanism, is
dominant near the band edge in bulk semiconductors where the large density of
states enhances the probability of scattering on phonons, other carriers, defects,
etc. At room temperature this rapid spin-flip channel provided by the Elliot-Yafet
mechanism results in spin-flip times as short as ~ 110fs for holes in bulk GaAs [11].

The removal of the degeneracy of the light and heavy hole bands and the
discretisation of the energy levels in quantum dots are expected to drastically
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reduce or even eliminate the efficiency of this spin-flip channel. Several other spin-
flip mechanisms are known, but the exact mechanisms actually causing the spin
flip of carriers and excitons in quantum dots are still being discussed [10]. The
predominant point of views are that the spin-flip can be explained either by spin-
orbit interaction combined with phonon scattering [4,12,13] or by the hyperfine
interaction of the spin with the spins of the lattice nuclei [14].

Several studies [15-17] have focused on the spin flip between the two bright
exciton states, i.e., the spin-flip of both the electron and the hole. In case of
sequential spin flip the spin-flip rate between the two bright states will be given
by the slowest of the two. In the model presented here we are only concerned with
the spin flip between the bright and the dark states and vice-versa. This rate is
on the contrary given by the fastest of the two spin-flip processes. In our case the
spin flip is most likely to be explained by the spin-orbit coupling as the hyperfine
interaction of the electron! spin with the lattice nuclei can be neglected in the
case of neutral (uncharged) excitons for which the field caused by the exchange
interaction with the hole is stronger than the effective field created by the lattice
nuclei [14].

5.3 Excitation intensity dependence of the spin-flip rate

Experimental conditions

Two different measurement series are acquired: one in which the quantum dots are
excited through pumping in the GaAs barriers states at 1.64 eV and one in which
the excitation is performed by pumping in the wetting layer states at 1.45eV.
For the case of barrier pumping the intensity is varied over more than 4 orders
of magnitude from 3mW/ cm’ to 70 w/ cm” corresponding to a variation in the
excitation density in the GaAs barrier from 0.003 to 70 excitons per quantum
dot. The count rates obtained for the various excitation densities are shown in
Fig. 5.1(b). A deviation from a linear dependence on excitation density (shown
by the solid red line) sets in for densities around ~ 1 exciton per quantum dot

supporting the estimate of the excitation density?. In the case of wetting-layer

L The hole spin is only weakly coupled to the lattice due to the p-symmetry of the wavefunc-
tions. [14]

2 For excitation densities above ~ 5 excitons per quantum dot the emission from the GaAs-
exciton increases super-linearly, i.e., at strong excitation densities a larger fraction of the created
excitons will not be captured into the quantum dots, but emitted from the bulk GaAs and the
wetting-layer states.
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Fig. 5.1: (a) Decay curves (excitation in GaAs barrier) for a series of measurements for
excitation densities between 0.05 and 15.0 excitons. The decay curves have been
scaled to the decay curve obtained at an excitation density of 0.05 excitons per
quantum dot at ¢ = 1.0ns. (b) Count rate versus excitation density. (c) The
ratio of the total number of photon counts in the fast and and slow components.
As the excitation density is increased the photon counts are redistributed from
the slow to the fast component.

excitation the density is varied between 0.03 and 7 excitons per quantum dot.
The wafer used in the experiment (NBI-167) is the same as used in the previous
chapters and the sample chosen for the measurements is the one furthest away
from the interface, z = 302nm. The measurements are performed at 1.201eV.

Time-resolved measurements

The decay curves for a series of measurements for excitation densities between
0.05 and 15 excitons per quantum dot are shown in Fig. 5.1(a). The five decay
curves show a clear dependence on the excitation density; as the excitation density
is increased the slow component is suppressed. By visual inspection we find that
the decay curves saturate in the lower limit as well as in the upper limit of the
excitation densities (not shown in Fig. 5.1(a)). This observation is confirmed
by the saturation of the ratio of the total number of photons in the fast and slow
components shown in Fig. 5.1(c) in both the weak and the strong excitation limits.
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Fig. 5.2: (a) The fast and (b) the slow decay rates obtained from the bi-exponential fits

and (c) the corresponding y&-values.

The total number of photons in the fast and slow components are readily calculated
from the bi-exponential model as N; = fooo A;exp(—it)dt = A;/v;, where i =
s,f. A redistribution of photon counts from the slow to the fast component is
readily observed with increasing excitation intensity. This redistribution is mainly
attributed to changes in the population probabilities of the bright and dark states
as will be explained in details below. However, part of this redistribution is caused
by changes in the spin-flip rate.

The fast and slow decay rates obtained from the bi-exponential model fitted to
the data are shown in Figs. 5.2(a) and 5.2(b) respectively. In accordance with this
model we assign the fast rate to the total decay of bright excitons, i.e., the sum of
the radiative decay rate, the non-radiative decay rate, and the spin-flip rate from
bright to dark excitons: I't = Ypaq + ’ygrad + Yba, while the slow rate is due to the
total decay of the dark excitons, i.e., the sum of the non-radiative decay rate and
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the spin-flip rate from dark to bright excitons: I's = y9_, + vap. The fast decay
rate exhibits an interesting non-monotonically dependence on the excitation den-
sity. This suggests the existence of two competing processes: one which decreases
with excitation density and one which increases with excitation density. We iden-
tify two processes which could cause an increased rate with increased excitation:
i) carrier-carrier scattering, leading to an increase in the non-radiative or spin-flip
rates, ii) radiative recombination of bi-excitons, which are known to decay faster
than the excitons [18-20]. The reduction in the decay rate with increasing exci-
tation density could be due to a reduction of the wavefunction overlap as more
and more carriers are introduced into the quantum dots. While the qualitative
behaviour is identical for excitation in the GaAs barrier and in the wetting layer,
the quantitative variations are strikingly different: in the case of wetting layer
excitation the variation is about 2% while the excitation in GaAs results in much
stronger variations on the order of 20%. In both cases a minimum rate is found at
an excitation density of ~ 0.2 excitons per quantum dot. We have not identified
a plausible cause for this quantitative deviation. However, it excludes radiative
recombination of bi-excitons (ii) as a possible cause of the increased decay rate
with increasing excitation density; for a given excitation density the possibility for

a quantum dot to be populated by a bi-exciton is similar in the two cases.

The slow decay rate experiences a monotonically five-fold increase with an
increase in the excitation density from 0.003 to 1 excitons per quantum dot af-
ter which it settles at a value of ~ 0.14ns™!. Again an increased carrier-carrier
scattering could be the process behind, causing an increase in the non-radiative
or spin-flip rate. The fact that the rate settles at a constant value for excita-
tions above 1-2 excitons per quantum dot indicates a relation to the filling of the
ground state exciton level, i.e., the decay rate saturates as the possibility of the
dark exciton being created by the non-radiative decay of a bi-exciton becomes
dominant. For the slow decay rate there is no quantitative deviation between the
rates obtained under different excitation energy.

The spin-flip rate ~yq, can be obtained from Eq. (5.4) if the ratio of the ini-
tial populations is known. This ratio depends in general on the exact excitation
conditions, i.e., excitation energy and density. However, in the case of weak exci-

tation in the GaAs (non-resonant), the probability of generating bright and dark
pa(0) _
pu(0)
the observation of non-geminate capture of carriers into quantum wells under non-

excitons can be assumed to be equal: 1. This assumption is based on

resonant excitation [21] and a very rapid hole-spin relaxation prior to capture into
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Fig. 5.3: Left axis: ~yap zzggg deduced from the bi-exponential fit. Right axis: ﬁ:ggg cal-

culated using a numerical five level model.

the quantum dot states [10]. In the weak excitation regime the spin-flip rate is
thus accordingly determined to be ygp = 7 us™!. This is in agreement with an up-
per limit of vqp, < 20 us~! deduced from measurements on electrically gated single
quantum dots [7] and with single quantum dot measurements at 5 K for which rates
of 5us™t and 70 us~! are reported [8]. The low value of the spin-flip rate clearly
justifies the assumption of Ypq, Yab <K Vrad + ’ygrad - ’ygrad made in Sec. 2.2.4. The
measured rate is in strong contrast to the high spin-flip rates (> 5ns~!) reported
in [3-5] obtained under non-resonant excitation. This large discrepancy readily
displays the difference between the intrinsic spin-flip rate and the decay rate of
the spin-polarization during relaxation in the quantum dot. These results thus
confirm a fast spin relaxation either during the short time in the bulk prior to
capture into the quantum dot or during the energy relaxation through the excited

states.

In Fig. 5.3 we plot ~yap zzggg deduced from the measurements at the various

excitation densities. In the weak excitation limit (z:—ggg = 1) the spin-flip rate is
1

readily seen to attain a value of vq, = 7us™ . By calculating the dependence of
the ratio of the initial populations on excitation density, it is possible to obtain
knowledge of the spin-flip rate’s dependence on the excitation density. The initial

populations are calculated by solving a five-level rate equation which apart from
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the ground, bright and dark states include the bi-exciton level and a reservoir level.
The model is discussed in Appendix B, so here the results will be used without
further justification. The ratio of the calculated initial populations is shown by
the solid blue line in Fig. 5.3. The ratio decreases from its initial value of unity
to a value of ~ 0.05 for excitation densities above ~ 3 excitons per quantum dot.
The change in population ratio is due to the different possibilities of the bi-exciton
decay leaving either a bright or a dark exciton behind. A radiative decay of the
bi-exciton will always leave a bright exciton behind, while a non-radiative decay
results in equal possibilities of leaving either a bright or a dark exciton behind.
The possibility of the quantum dot being in a bright or a dark exciton state after
a decay of the bi-exciton is thus given by the quantum efficiency of the bi-exciton.

The reduction in the ratio of the calculated initial populations can qualitatively
pa(0)
pb(0)
0.01 exciton per quantum dot. Assuming a quantum efficiency of 0.9 (0.8) for

for densities above

explain the corresponding decrease in the measured gy

the bi-exciton® we obtain a spin-flip rate of ygp = 95us™! (45 us™1) in the limit
of strong excitation. While the precise determination of the spin-flip rate in the

strong excitation limit is difficult, it can safely be concluded that the spin-flip rate

pa(0)

PXO) must

increases with increasing excitation density as the initial increase in yqp
be due to a corresponding increase in 7yqp.
The same qualitative dependence of the spin-flip rate on excitation density is

observed under the two different excitation conditions. However, the wetting layer
pa(0)
1 (0)
those obtained under excitation in the GaAs barrier. It is not likely that the spin-

excitation results in values of vqp which are approximately 4 times lower than
flip rate will be so strongly affected by a change in the excitation energy. The
difference is more likely due to a change in the ratio of the initial populations.
When the excitation energy is resonant with the wetting layer states and thus
close to the energy levels of the quantum dots, it is plausible that the ratio of the
excitons (germinate) to the individual carriers (non-germinate) which are captured

in the quantum dot increases. This would lead to a higher ratio of bright to dark

pa(0)
pb(0) "
From the analysis of the decay dynamics above we can conclude that the spin-

excitons in the quantum dots and thus a lower value of vqp

flip rate is dependent on the excitation density. Under weak excitation we find a

1

spin-flip rate of 4, = 7 us™* which increases for increasing excitation density. By

3 In a first approximation we can assume that the bi-exciton simply inherits the properties of
the excitons, whereby it acquires a radiative decay rate which is twice the radiative decay rate
of the excitons and a non-radiative decay rate which is twice the non-radiative decay rate of the
exciton. The quantum efficiency of the bi-exciton and the exciton will thus be identical.



5.4. Excitation energy dependence of the spin-flip rate 89

assuming identical quantum efficiencies of the exciton and bi-exciton, we find a
spin-flip rate under strong excitation which is vyqp = 95 us~!. While the increase
in the spin-flip rate is substantial, it accounts only partly for the increase in slow
and fast rates shown in Fig. 5.2. We can therefore conclude that the non-radiative
decay rate also increases with increasing excitation density.

5.4 Excitation energy dependence of the spin-flip rate

Sample preparation

The measurements for various excitation energies are performed on a wafer (NBI-
178) containing InAs/GaAs quantum dots which are nominally identical to those
used in the experiments in the previous chapters. The quantum dots under study
have been grown on a GaAs (100) substrate where 2.0 monolayers of InAs are
deposited at 515° C followed by a 30 s growth interrupt and deposition of a 80 nm
thick GaAs cap. The quantum dot density is 250 um~2. A 2 um thick layer of
Aly 7 Gag.3As is deposited 80 nm below the quantum dots for an optional under etch
since the wafer is grown for the purpose of fabricating photonic crystal membranes,
c.f. Chapter 6. The inhomogenously broadened ground state is centred at an

emission energy of 1.264eV.

Experimental conditions

An excitation density of 0.2 excitons per quantum dot is chosen in order to stay
in the weak excitation regime. The density must be similar for all different exci-
tation energies as it will otherwise influence the decay dynamics as discussed in
the previous section. Similar excitation densities are obtained by adjusting the
power to keep the count rates at a constant level (~ 3.4-10* cps) when changing
the excitation energy. A verification of the close-to-constant excitation density is
shown in the inset of Fig. 5.4 where the count rate stemming from the quantum
dot signal is shown as a function of the excitation energy. The variation in the
count rate corresponds to £15%. The excitation energy is varied between 1.319 eV
and 1.531eV and the spectral FWHM of the excitation pulse is typically 10 meV.
The time-resolved measurements are acquired at 1.264 eV, i.e., at the centre of the

ground state emission.
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Fig. 5.4: Decay curves for a series of measurements for excitation energies between
1.319eV and 1.409 eV. The decay curves have been scaled to the decay curve ob-
tained for an excitation density of 1.319eV at ¢t = 1.0ns. Inset: The count rate
for which the laser contribution has been subtracted verifies a close-to-constant

excitation density.

Time-resolved measurements

The excitation energy for the decay curves shown in Fig. 5.4 is varied between
1.319eV and 1.409eV. While the fast rate is almost unaffected by the variation
in the excitation energy, the slow rate exhibits a clear decrease with decreasing
excitation energy. The spectral tails of the excitation laser start to appear in the
decay curves as the separation of the excitation energy and detection energy is
reduced. The bi-exponential model is thus fitted from ¢ = 1.25ns and onward.
The fast and slow rates obtained are shown in Fig. 5.5(a). While the fast decay
rate varies less than +4%, the slow decay rate displays an almost linear increase
with increasing excitation energy below the energy of the wetting layer states. For
excitation energies above the wetting layer the slow rate is nearly constant. The
abrupt change in the dependence of the slow decay rate occurs as the excitation
energy is close-to resonant with the wetting layer. This indicates that the slow

decay rate is dependent on:
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Fig. 5.5: (a) The slow (left) and fast (right) decay rates under various excitation energies.
(b) The product of the spin-flip rate and the ratio of the initial populations.
The GaAs states and the wetting layer states are indicated by the arrows - the

vertical dotted line indicates the bottom of the wetting layer states.

e The relaxation of the excess energy of the initially hot excitons. The mea-
surements are performed under weak excitation and carrier-carrier scattering
are therefore neglected whereby phonon emission is the only process for dis-
sipating the excess energy. The linear dependence is only observed below
the wetting layer, suggesting that only the excess energy dissipated after the
exciton has been captured in the quantum dot which affects the decay rate.
This implies that phonons which are emitted from the exciton while it is
localized in the quantum dot have a clear effect on the slow decay rate.

e The presence of single carriers due non-geminate population capture. While
excitation in the GaAs leads to a random capture of single carriers [21],
strictly resonant excitation corresponds to a direct injection of an exciton
in the quantum dot. The non-geminate carrier capture leads to a equal

population of dark and bright excitons, while strictly resonant excitation
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leads to the formation of bright excitons only. It is thus plausible that
pa(0)
b (0)
the wetting layer, as direct non-geminate capture is not possible at energies

an abrupt change in the dark-bright ratio

will occur at the energy of

below the wetting layer.

pa(0)
P (0)
is shown in Fig. 5.5(b) as a function of excitation energy. As in the case of

The product of the spin-flip rate and the ratio of the initial populations yqp

the slow decay rate an increase with increasing energy is observed for energies
below the wetting layer. Above the wetting layer energy the rates do not show
a clear constant level, however, three of the four data points have very similar
values. Unfortunately, we do not have sufficient data to conclude whether the
low value obtained at an excitation energy of 1.47eV is caused by some kind of
resonance. The apparent difference from the value obtained for GaAs excitation
is in qualitative agreement with the deviation observed and discussed in Sec. 5.3.

The nearly linear dependence of the spin-flip rate on excitation energy below
the wetting layer could, as argued above, be due to a direct change in the ratio of
the initial populations, implying a change in the ratio by a factor of ~ 3. Another
possible explanation could be an increase in the spin-flip rate due to scattering on
a non-equilibrium phonon population created during relaxation. The latter has
been suggested as the cause of the drastic reduction in the spin-flip rate under
resonant excitation compared with excitation in the barrier [22].

Since a separation of the spin-flip rate from the ratio of the initial populations

is not possible, we cannot conclude which of the two possible causes is the most
likely.

5.5 Energy and structural dependence of the spin-flip rate

By analysing the data presented in Sec. 3.3, from which we have obtained the
oscillator strength and quantum efficiency in the bright-dark exciton model, the
energy and structural dependence of the spin-flip rates can be obtained. The

experimental conditions and sample preparation are given in Sec. 3.3.
pa(0)
pb(0)
ground state energy since the population of the individual quantum dots are gov-

We expect that the ratio of initial populations is independent of the

erned by Poissonian statistics [23], i.e., the excitons captured in the quantum dot

ensemble are not in thermal equilibrium. The spin-flip rates presented here are
pa(0)
pb(0)
culation shown in Fig. 5.3. The obtained spin-flip rates, shown in Fig. 5.6, display

thus all obtained under the assumption of = 0.8, in accordance with the cal-
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Fig. 5.6: The measured energy dependence of the spin-flip rate (solid black circles). Pre-
dicted energy dependence of the spin-flip rate in case of phonon mediated (blue
solid line) [4] and deformation caused (red dashed line) [24] spin-flip process.

a clear increase with increasing emission energy. This dependence of the spin-flip
rate on the ground state energy may help to identify the mechanisms causing the
spin-flip. In the following we will discuss the energy dependence in the two cases
where the spin-flip is: i) phonon mediate and due to spin-orbit interaction [4],
and ii) due to the interplay between the short-range exchange interaction and
deformation caused by phonons [24, 25].

Phonon-mediated spin-orbit interaction

In this case the hypothesis is that the excited states of the quantum dot have
mixed spin character. Spin flips of the ground state exciton is thus possible by a
transition to the first excited state by absorption of a virtual phonon [4]; as the
spin axis of the excited state does not coincide with the spin axis of the ground
state, there is a finite probability that a transition back and forth will result in a
spin flip. Different observations lend support to the mixed spin character of the
excited states: i) the absorption of light polarized both in-plane and out-of-plan
from the excited states [26], indicating mixing of the light and heavy hole bands,
and ii) calculations using k - p theory as reported in [4].

The spin-flip rate is expected to have an inverse dependence on the level spac-
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ing between the ground and first excited state: yap o< 1/EZ cf. Ref. [4].

The level spacing is, in contrast to the intuitive predictions of an infinite-barrier

—ex?

model, measured to decrease with increasing ground state energy [27]. In full
agreement with our measurements reported in Chapter 4, the measured decrease
in level spacing is explained by a reduction of the overlap of the electron and hole
wavefunctions with increasing ground state energy. This decrease in level spacing
results in an increase in the spin-flip rate with increasing ground state energy, just
as we observe in Fig. 5.6. The theoretical prediction (solid blue line in Fig. 5.6) is
compared to the measured spin-flip rates with the use of the level spacings Ez_cx
reported in Ref. [27]. In order to better compare theory and data, the energy
axis of the theory curve has been scaled by 1.07 to coincide with energy axis of
the measurements. A remarkably good agreement between data and the theory is
observed. Our measurements can thus lend further support to a phonon-mediated
spin-orbit interaction as a possible mechanism causing the spin-flip.

Short-range exchange interaction and phonon-caused deformation

Another possible spin-flip mechanism is the interplay of the short-ranged exchange
interaction and the deformations caused by acoustic phonons as suggested in [24,
25]. The energy dependence of the spin-flip rate is in this case predicted to increase
drastically with an increased electron-hole exchange energy: van x Ep 4/ Eg_ex. In
situations where the symmetry is broken, e.g., under strong magnetic fields, the
electron-hole exchange energy can be measured due to mixing of the bright and
dark states. Exchange energies extrapolated to zero magnetic field are reported to
attain values of 100 to 250 neV and to display an increase with increasing ground
state energy [28]. Using the exchange energies measured in Ref. [28] and the level
spacing measured in Ref. [27] we compare the theory to the experiment. The
theoretical prediction is shown by the dashed red line in Fig. 5.6. The energy scale
of the data reported in Ref. [28] has been scaled by 0.92 in order to coincide with
the energy range of the experiment. The drastic E,; dependence predicted by
theory is not in correspondence with our measurements.

In relation to the measured exchange energies [28], it should be noted that
dependence of the exchange energy on ground state energy is explained by a direct
proportionality between the exchange energy and the probability of the electron
and hole being at the same position [29,30], i.e., the overlap of the electron and
hole wavefunctions. The results reported thus imply that the wavefunction overlap
must increase with increasing ground state energy as also argued by the authors;
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Fig. 5.7: The spin-flip rates versus distance for six different energies. For all distances
the spin-flip rate is highest for high-energy quantum dots. A clear structural
dependence is observed: quantum dots close to the interface exhibit larger spin-

flip rates. The rates are obtained using z:ggg =0.8.

however, from our measurements and calculations of the wavefunction overlap, c.f.
Sec. 3.3, we can readily conclude that the opposite is the actual case. Furthermore,
for the data reported in [31] a linear relation between the exchange energy and the
wavefunction overlap implies that the wavefunction overlap should be reduced by
more than than 60% going from high-energy to low-energy quantum dots which

seems implausible.

5.5.1 Structural dependence of the spin-flip rate

An inspection of the spin-flip rates (Zzgg; = 0.8) obtained for all the 30 distances,

shown in Fig. 5.7, reveals a surprising structural dependence. The energy depen-

dence of the spin-flip rate discussed above is verified for all distances. However,
the absolute value of the spin-flip rate depends on the distance to the interface;
that is, as the quantum dots are getting closer to the interface the spin-flip rate
increases. Furthermore, the dependence on the distance is found to be more and

more pronounced with decreasing emission energy.
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The ratio of the initial populations is expected to be independent on the dis-
tance as the excitation is done by excitation in wetting layer states, i.e, the varying
thickness of the top-most GaAs layer is of no concern. Again, we turn to the spin-
flip rate for a possible explanation of the the distance dependence. We suggest
that the dependence could be caused by either surface acoustic phonons or band
bending due to electronic surface states at the interface. Surface acoustic phonons
with an energy corresponding to the exchange splitting could mediate the spin-flip
process. Another cause could be band bending of the conduction and valence band
due to electronic surface states at the air-GaAs interface. Such a band bending
would lead to a deformation of the wavefunctions and a possible change in both
the electron-hole exchange splitting and the level spacing. However, if this was the
case we would expect to observe modifications in the oscillator strength and thus
the decay rate within the same distance to the interface. The measured decay rates
shown in Sec. 3.3 do exhibit a pronounced deviation close to the interface, how-
ever, only for distances shorter than 70 nm, for the spin-flip rate the characteristic

length scale is ~ 200 nm.

5.6 Detailed study of the decay dynamics over long time scales

A more detailed study of the slow components is facilitated by reducing the rep-
etition rate of the excitation source. This directly results in the possibility to
measure slower rates, but it also results in a larger dynamic range allowing for a

better resolution of the different decay rates.

Experimental conditions

The excitation is performed using a laser diode delivering 62 ps long pulses at
a repetition rate of 5 MHz. The excitation energy is 1.59eV corresponding to
excitation in the GaAs-barrier. The excitation spot has a diameter of ~ 75 um
and the measurements are performed at excitation densities of 0.36, 1.1, 3.6, 11,
and 36 excitons per quantum dot. The temperature is adjusted to 10K, 16 K,
25K, 36K, and 50K. The wafer used in the experiment is the one used for
interface experiment presented in Chapter. 3 (NBI-167). The sample chosen for
the measurements is the one with a distance to the interface of z = 263nm. The

measurements are performed at an emission energy of 1.187eV.
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Fig. 5.8: Time-resolved emission acquired over 200 ns. The two artifacts observed in the
decay curve are due to an unavoidable reflection in the APD’s entrance window
(22ns) and after-pulsing events in the detector (80ns). The after pulsing is
accounted for by the instrument response, as readily seen by the fitted models
which reproduce the pump at 80 ns. The time range including the reflection is

removed prior to fitting of the model.

5.6.1 Time-resolved measurements acquired over short and long time spans

The time-resolved emission acquired at an excitation density of 36 excitons per
quantum dot and at a temperature of 50K is shown in Fig. 5.8(a). In contrast
to the data acquired over a shorter time span of 13 ns, a bi-exponential decay
(shown by the solid green line) is no longer able to model the data. This can be
clearly seen from the weighted residual shown in Fig. 5.8(b). The improve dynamic
range resolves that the decay dynamics exhibits a multi-exponential decay. We
suggest that the multi-exponential behaviour is due to a distribution of slow decay
rates within the ensemble; this could be a distribution of either the non-radiative
decay rate or the spin-flip rate. A distribution of the non-radiative decay rate is
plausible if the non-radiative decay rate is related to the surface states as suggested

in Sec. 3.3 and thus is a property of the single quantum dot. Strong variations



98 5. Decay dynamics of bright and dark excitons

in the spin-flip rates obtained on single quantum dots support the suggestion of a
distribution of the spin-flip rate within the quantum dot ensemble [8].

We keep the distinction between the fast and slow decay rates due to their dif-
ferent causes, i.e., the decay of bright and dark excitons, respectively. Variations
in either the non-radiative or the spin-flip rate will only result in minor variations
in the fast decay rate as these variations are small compared to the radiative decay
rate of the bright excitons. The fast decay rate is thus continuously modelled as a
mono-exponential decay. The correct method for describing the multi-exponential
decay of the slow component is to introduce a distribution of slow decay rates
0s(I"). The microscopic distribution is however unknown and as we are interested
in obtaining the properties of the quantum dot ensemble, we instead extract the
average decay time, 7;. This average decay time is well defined and can be calcu-
lated either directly from the decay curve or from a given model N (¢) of the decay.

The average decay rate 7 is calculated as :

1 _ [ N@tdt
TR N A (50)

We model the slow component as a multi-exponential decay from which the
average decay rate and the total number of counts in the slow component are easily
obtained.

The ratios of the number of photon counts in the fast and slow components
are shown for various excitation densities in Fig. 5.9(a). The ratios are compared
to those obtained from measurements acquired under a shorter repetition period
of 13ns. The latter are presented in Sec. 5.3 in more details. The ratios are
in good agreement, displaying the same dependence on excitation density and
attaining similar values. This explicitly verifies that we are indeed able to gain
information on the spin-flip rate from the data acquired over shorter time spans
of only 13ns. The slow decay rates obtained under the two different repetition
periods are shown in Fig. 5.9(b) where they exhibit similar dependencies on the
excitation density. The absolute values of average decay rates (200 ns) are however
approximately a factor of 3 lower than the slow decay rates obtained from the 13 ns
measurements. This is readily understood as only the fastest rates will be evident
in the measurements acquired over short time scales. The observed difference by a
factor of 3 suggests that the spin-flip rates obtained from the data acquired over the
short time span of 13 ns are overestimated by a factor of ~ 3, c.f. Eq. (5.4). This

4 In the case of a mono-exponential decay, N(t) = Aexp(—yat), the average rate is identical
to the decay rate: ¥ = ya.
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Fig. 5.9: Comparison of the ratio of total photon counts in the slow and the fast com-
ponents (a) and the slow decay rate (b) for measurements acquired over time
spans of 13 ns and 200 ns.

implies that the spin-flip rates obtained under low excitation in Sec. 5.3 should be

1 1

corrected to ~ 2us™" instead of 7us™" and in the limit of strong excitation the

1 1

estimated spin-flip rate is corrected to ~ 30 us™ instead of 95 us—".

5.6.2 'Temperature dependence of the spin-flip rate
Time resolved measurements

The spin-flip rates obtained for the various temperatures and excitation densities
are shown in Fig. 5.10. The rates exhibit an overall increase with increasing
temperature for all excitation densities.

Independent of whether the spin-flip arises from a direct phonon-assisted ther-
malization [9] or from a combined effect of the phonon coupling to the hole spin
states and the short range exchange interaction [24], acoustic phonons are needed
to supply the energy difference between the dark and the bright exciton states.
The density of acoustic phonons at an energy of Fj,q is given by the Bose-Einstein
number:

1
B eXp(Ebd/kBT) — ].7

(5.7)

where T denotes the temperature. A linear temperature dependence of the spin-flip
rate is therefore expected for kT > FEyq, i.e., T > 2K for a typical bright-dark
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Fig. 5.10: Spin-flip rates obtained for the various temperatures and excitation densities.

splitting in InAs quantum dots of Enq = 0.250meV [31]. The phonon-assisted
spin-flip rates can thus be described as

Yab = Yo VB, Yba = Y0(NB + 1), (5.8)

where the zero temperature relaxation rate from the bright to the dark states is
given by vp.

For quantitative comparison we have plotted a theory curve calculated for
Epq = 0.250meV and 49 = 0.62us™! in Fig. 5.10. The measurement and theory
display an qualitative agreement. However, for low temperatures we observe a
small increase in the measured spin-flip rates with decreasing temperature. For
an understanding of this effect it would be beneficial to have knowledge of quan-
tum efficiency’s dependence on temperature. Moreover measurements on single

quantum dots would also be of great value.

5.7 Conclusion

We have studied the decay dynamics and obtained the dark-to-bright spin-flip rate
for the exciton ground state in quantum dot ensembles under various excitation
conditions, different emission energies and for various distances to a dielectric in-
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terface. Comparing data acquired over 13 ns and 200 ns we conclude that we are
able to obtain spin-flip rates even over so short time spans as 13 ns; however, the
rates must be corrected by a factor ~ 3 in order to compensate for the weighting
of the fast components. Moreover, we find that the slow decay component ex-
hibits a multi-exponential decay, suggesting that the slow decay rate is given by a
distribution of decay rates within the quantum dot ensemble.

We find that the spin-flip rate is strongly affected by the excitation density

increasing from ~ 2 us™! !

under weak excitation to ~ 30 us™" under strong excita-
tion. Under variation of the excitation energy the slow decay rate and the spin-flip
rate are found to vary strongly. The possible causes for these variations are dis-
cussed in details. We measure an increase in the spin-flip rates with increased
quantum dot emission energy. This observation is discussed in the context of two
different proposals for a spin-flip mechanism. Our measurements lend qualitative
support to the work of Giindogdu et al. [4] in which they suggest the spin-flip
mechanism to be due to scattering by virtual phonons back and forth to the the
excited. We report a structural dependence of the spin-flip rates exhibiting an
increased rate as the quantum dot ensemble approaches an interface. Finally, the
temperature dependence of the spin-flip rate is measured and we find an increase
in the rate with increasing temperature, this is in general agreement with the

spin-flip rate being proportional to the density of acoustic phonons.
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6. INHIBITION AND ENHANCEMENT OF SPONTANEOUS
EMISSION FROM QUANTUM DOTS IN PHOTONIC CRYSTAL
MEMBRANES

We study the modified spontaneous emission rates of InAs quantum dot ensembles
embedded in 2D photonic crystal membranes. We observe both strong inhibition
as well as enhancement of the spontaneous emission rates by varying the lattice
parameter of the photonic crystal. The position of the 2D photonic band gap is in
excellent agreement with LDOS calculations. The multi-exponential decay dynam-
ics is analysed by considering the mean decay rate which is modified up to a factor
of 8 by tuning the lattice parameter. By taking into account the bright-dark exciton
dynamics we are able to extract the ensemble averaged LDOS which shows very
strong modifications of a factor of 18. The spontaneous emission from an ensemble
of quantum dots is simulated using the LDOS calculated for various positions and
orientations within the photonic crystal membrane. This simulation allows for the
first quantitative comparison between time-resolved measurements and a full 3D
calculation of the LDOS. A strikingly good agreement between the simulations and

the measurements is found.

6.1 Introduction

Control over spontaneous emission of photons in semiconductors and the ability
to funnel the emission into a few selected optical modes have a huge potential
in a variety of applications. Potential applications could be: i) the suppression
of re-emission of captured photons in solar cells, ii) the inhibition of emission
at undesired wavelengths and directions in efficient light sources, iii) reduction of
threshold power and noise in lasers, iv) increased directionality and repetition rate
of single-photon sources [1], and v) strong coupling in solid state cavity QED by
the creation of a high-Q cavity [2,3]. The general desire is thus to restrict the
spontaneous emission to occur only in those modes necessary for device operation.
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For this purpose photonic crystals offer a new and very intricate tool, allowing us

to modify and control the spontaneous emission in solid state devices.

Control of spontaneous emission by photonic crystals [4,5] and in particular
photonic crystal membranes (PCMs) [6-8] have indeed resulted in great progress
within the fields of single-photon sources [9-11], strong coupling in solid state
cavity QED [3,12] and miniature lasers [13-16]. The major part of the work
on photonic crystals has focused entirely on the enhanced spontaneous emission
emitted from defect cavities within the photonic crystals [3,6,7,10,12-16]. Only
recently has attention been drawn to the properties and possible device appli-
cations of unmodified PCM, i.e., PCMs without defect cavities [11]. The PCMs
will cause redistribution of the spontaneous emission, also known from 3D pho-
tonic crystals [17-19], and can thus be used to increase the extraction efficiency
of light emitted in high index materials [20]. Moreover, it is often overlooked that
the photonic crystals also cause enhancement - and not only inhibition - of the
spontaneous emission: as the density of states, integrated over energy, must be
conserved the rate of spontaneous emission will be enhanced at certain energies
outside the band gap [21].

While the main focus in the literature has been on enhanced emission from
defect cavities, the only systematic study of spontaneous emission in PCMs has
been performed on quantum wells [8] for which non-radiative recombination via
surface states at the edges of the air holes are known to by a serious issue [8,22].
Moreover, the non-local character of the quantum well exciton, i.e., the relative
large Bohr radius and the possibility of diffusion in the quantum well plane, results

in a non-trivial average over the spatially strongly varying LDOS.

In this chapter we present the first systematic study of time-resolved sponta-
neous emission from quantum dots embedded in PCMs. By systematically varying
the lattice parameter of the PCM, we tune the 2D photonic band gap through the
emission energy of the quantum dots. We observe both enhancement and strong
inhibition directly in the average decay rate which varies by a factor of ~ 8. Using
our knowledge of the bright-dark exciton decay dynamics, we are moreover able to
extract the ensemble averaged LDOS. From numerical calculations of the LDOS,
generously provided by A. F. Koenderink [23], we obtain a suitable theoretical ba-
sis for a comparison to the measured average decay rates and we find a strikingly

good quantitative agreement.
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6.2 Experimental details

We have measured time-resolved spontaneous emission from ensembles of InAs
quantum dots embedded in PCMs. The lattice spacing of the PCM is systemat-
ically varied while the detection energy is kept constant to probe identical sub-
ensembles of the quantum dots. This allows us to directly observe the spontaneous
emission from the quantum dots as the 2D photonic band gap is tuned into and
through their emission energy and all other experimental parameters are kept
fixed.

Sample preparation

The InAs/GaAs quantum dots embedded in the photonic crystal membranes are
nominally identical to those in the previous chapters. The wafer (NBI-178) is
grown on a GaAs (100) substrate where a 2um thick layer of Aly7Gag3As is
deposited. A GaAs slab containing the embedded InAs quantum dots are created
on top of the Aly 7Gag.3As by the deposition of a 75 nm GaAs layer, succeeded by
2.0 monolayers of InAs, and finally the deposition of a 75nm thick GaAs cap. A
triangular lattice of air holes, defined by electron beam lithography, is dry etched
into the 160 nm thick GaAs slab creating the 2D photonic crystal, see Fig. 6.1.
The underlying Aly 7Gag.3As layer is successively removed by wet chemical etching
whereby the photonic crystal membrane, of the dimensions 40 x 40 um?, is left
suspended in air.

We have fabricated a series of PCMs with systematically varying lattice pa-
rameter a and hole radius r. The lattice parameter is well-defined by the design
and is varied between 180 nm and 470 nm in steps of 10 nm. The actual hole radii
depend not only on the design but also on the lattice parameter (e-beam prox-
imity effects), the etch process, etc. For each lattice parameter 15 membranes
with varying hole radii have been fabricated. After fabrication the hole radii are

determined by scanning electron microscopy (SEM).

Experimental conditions

The membranes under study are chosen to have nearly identical r/a-values within
the range of 7/a = 0.313 £ 0.006. This value is chosen as the triangular lattice
is known to exhibit a wide 2D photonic band gap for the guided modes with in-
plane polarization at r/a = 0.3 [24]; the PCMs are thus well suited for inhibiting
spontaneous emission from the ground state exciton which is in-plane polarized,
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Fig. 6.1: (a) SEM images of two membranes showing the periodic arrangement of air
holes in GaAs. Note that the shape and uniformity of the holes are superior
for larger radii. (b) Sketch of membrane top view (left) and side view (right)
indicating the dimensions. (Hole sizes are not to scale.) Position A’ indicated
by the blue dot denotes a possible position for an embedded quantum dot.
LDOS calculations for this position are shown in Fig. 6.3(b).

ctf. Sec. 3.3 and [25]. To facilitate a detailed study of the slow component, we
choose a repetition period of 100ns. The excitation beam is focused to a spot
having a vertical and horizontal FWHM of 47 um and 69 pm, i.e., slightly larger
than the PCMs. To ensure that only light emitted from the centre of the PCM
(d = 25 um) is detected, a fixed pinhole is used for spatial selection, c.f. Sec. 3.3.2.
The excitation energy is 1.59eV and the detection energy is chosen to 1.265eV
corresponding to the centre energy of the ground-state emission. At the detection
energy of 1.265eV (980 nm) the variation in lattice parameter a from 180 to 470 nm
corresponds to a variation in the reduced frequency a/\ between 0.184 to 0.480.
The spectral resolution is 2.6 meV. As the spatial and spectral selection reduces
the number of quantum dots probed to ~ 6 x 103, the excitation intensity is set
to 6 W/ cm? to obtain a satisfactorily signal. This correspond to the creation of

~ 15 excitons in the GaAs barrier per quantum dot.

6.3 Time-resolved measurements on quantum dots in photonic
crystals

Time-resolved measurements for varying lattice parameter a are shown on a nor-
malized scale in Fig. 6.2(a). In the limit of a/A < 1 the effect of the photonic
crystal will disappear as the periodicity of the structure will be small compared
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Fig. 6.2: (a) Normalized decay curves for the various lattice constants a. For clarity
only the first 50 ns are shown. Inhibition of the spontaneous emission within
the range 0.26 < a/A < 0.35 causes the decay dynamics to slow down.

to the emission wavelength. The PCM can thus be considered as a homogeneous
medium which can be described by an effective refractive index. We therefore use
the measurement performed on the PCM with @ = 180nm (a/A = 0.184) as our
reference. Comparing the decay curves (Fig. 6.2(a)) obtained for the different lat-
tice parameters to the reference decay curve, a clear inhibition of the spontaneous
emission is readily observed for samples in the range 0.26 < a/\ < 0.35.

As in the previous measurements acquired over long time spans, the dynamics
of the spontaneous emission exhibits a multi-exponential decay. From the mea-
surements discussed in Sec. 5.6, where the LDOS for all the quantum dots in
the ensemble are identical, we argue that the multi-exponential behaviour of the
ensemble is due to a distribution of non-radiative or spin-flip rates and we fur-
thermore succeed in modelling this by an average slow decay rate. The situation
is, however, more complex when the quantum dot ensemble is placed in a PCM
where the LDOS depends strongly on both position and orientation of the indi-
vidual dipole emitter. First, we expect the decay dynamics of an ensemble to be
characterized by a distribution of decay rates due to the spatial and orientational
distribution of the quantum dots. Second, as the radiative decay rate is expected
to be strongly inhibited, and thus comparable to or even smaller than the non-
radiative decay rate, a clear separation between the radiative and non-radiative
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decay rates cannot be made. As a consequence the analysis applied in Sec. 5.6
can not be used here. Instead, we choose to quantify the decay dynamics of the
spontaneous emission by calculating the mean decay rate vm:
N () tdt

1
— =<7>="Y

Ym JooN(t)dt (6.1)

that is the average rate at which quantum dots in the ensemble make a transition
from the excited state to the ground state. Note that the effect of variations in
the LDOS is expected to be less noticeable in the mean decay rate than in the
pure radiative decay rate, as the mean decay rate also includes the non-radiative
decay rate which is unaffected by the LDOS. Our experimental determination of
the variations in the spontaneous emission rates therefore provides a conservative
estimate of the actual LDOS variation in the PCM.

6.3.1 Measuring the 2D photonic band gap

The mean decay rates are shown in Fig. 6.3(a) as a function of the reduced fre-
quency. The decay rates are normalized to the decay rate obtained at a/A = 0.184
which attains a value of v*f = 0.612ns™!. The PCM strongly affects the de-
cay rates which show both enhancement and strong inhibition of the spontaneous
emission. Within the range 0.26 < a/\ < 0.35 the mean decay rates are inhibited
by a factor 3.4 to 5.9 clearly showing the existence of a 2D photonic band gap.
On both sides of the band gap the mean decay rates are enhanced up to 30%.
There is a good qualitative agreement between the measured mean decay rates
and the calculated LDOS, as exemplified in Fig. 6.3(b) showing the calculations
for two dipole emitters positioned at A’ and oriented along the = and y axes (c.f.
Fig. 6.1). For the mean decay rate as well as the calculated LDOS we observe: i)
enhancement on both sides of the band gap, ii) a slightly stronger enhancement
on the red side than on the blue side, and iii) a decrease in the inhibition within
the gap with increasing reduced frequency. While the band edges at the red side
coincide perfectly, the band edges at the blue side are found to deviate by 6%.
The deviation between the measured and the calculated blue edge of the 2D
photonic band gap is caused by a difference in membrane thickness d. While the
mid-gap inhibition rate stays practically unaffected by reductions in the membrane
thickness below d = 400 nm [23], the band gap shifts towards higher frequencies
and broadens slightly with decreasing thickness [26]. In the LDOS calculations
a, r, and d are kept fixed while A is varied, i.e., both r/a and d/a are thus kept
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Fig. 6.3: (a) Mean decay rates versus reduced frequencies a/\ shown on a log-scale and
normalized to the decay time of the reference. Strong inhibition of spontaneous
emission is observed in the range 0.26 < a/A < 0.35, indicated by the light-blue
shaded area. (b) Numerical calculations for a single dipole emitter at position
A’ aligned either along the z (blue) or the y axes (green), c.f. Fig.6.1(b). A
2D photonic band gap is found in the range 0.26 < a/A < 0.33 as indicated by
the light-green shaded area. The numerical calculation is a courtesy of A. F.
Koenderink [23]. (c) The edges of the band gap (solid red and blue lines) for
various a/d interpolated from calculations by Andreani et al. [26] (solid red and

blue dots). While the LDOS calculations follow the horizontal line a/d = 32922

980 nm
150 nm *

the experimental measurements follow the solid line with slope A/d =
This readily explains the shift of the blue band edge.

constant. In the measurement we keep A and d fixed, while varying a and r to keep
r/a constant. This results in a reduction of the ratio d/a as the lattice parameter is
increased, causing a shift of the band gap towards higher frequencies. To quantify
this shift, the positions of the red and blue edges of the band gap, calculated by
Andreani et al. [26] for r/a = 0.3, are shown in Fig. 6.3(c) for a/d-values of 0,
1.67, and 3.33. Since the edge positions exhibit a linear dependence on 1/d, we
perform linear interpolation to obtain the band edges for various a/d, as shown
by the solid red and blue lines. The band gap is readily observed to shift towards

higher frequencies and broadens as d is decreased. As the LDOS is calculated

for a/d = 323" shown by the horizontal line, the calculations by Andreani et
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al. implies that the band gap in this case lies in the range 0.26 < a/A < 0.33
as indicated by the light-green shaded area. This is fully consistent with the
calculations by Koenderink et al. In the measurements the lattice constant a is
varied while keeping A constant. This corresponds to moving along the solid line
with slope A/d = 22320 As indicated by the light-blue shaded area the band gap
lies in this case in the range 0.26 < a/A < 0.35. This coincides perfectly with the

position of the band gap observed in the measurements, c.f. Fig. 6.3(a). We can

thus conclude that the measured 2D photonic band gap is indeed in full agreement
with the numerical calculations.

As discussed in Sec. 5.6 the mean decay rate is very well defined and inde-
pendent of the fitting model applied. It is thus a very strong signature of the
PCM that we can observe such drastic variations without having to impose any
assumptions regarding model or parameters. Moreover, the qualitative agreement
between the variations in the mean decay rate of the ensemble and the variations
in the LDOS calculated for a single position is surprisingly good. In Sec. 6.4 we

will elaborate on how the experiment compares to quantitative theory.

6.3.2 Determining the ensemble averaged LDOS in PCMs

To make a more quantitative comparison of the level of inhibition / enhancement,
we need to take into account both the interplay between the dark and bright quan-
tum dot states as well as the ensemble nature of the experiment. The implications
of this will be discuss in this section.

Internal bright-dark dynamics

In the 2D photonic band gap the LDOS is expected to attain values between 1/2
to 1/20 depending on the position and orientation of the in-plane dipole emitter,
c.f. Ref [23]. The decay rate will additionally depend strongly on the properties
of the emitter, i.e., the quantum efficiency and the interplay between the fine
structure levels. Here we will consider three cases: i) an ideal two-level emitter
with a quantum efficiency of 100%, ii) an ideal two-level emitter with a quantum
efficiency of 95%, and iii) a quantum dot with both bright and dark states. In
the latter case we employ the bi-exponential model described in Sec. 2.2.4. The
approximation of yqn,vba < b — Y4 is however not implemented as the radiative
decay rate can be strongly inhibited whereby the approximation is not valid. The
parameters used in the bi-exponential model are obtained from the measurements
presented in Sec. 5.6 and given in the figure caption of Fig. 6.4. To compare
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Fig. 6.4: (a) The normalized mean decay rate calculated for i) an ideal two-level emitter
with QE = 1 (solid blue line), ii) an ideal two-level emitter with with QE = 0.95
(solid red line), and iii) taking into account the bright and dark excitons (solid
green line). In accordance with the excitation degree of 15 excitons per quantum

1
)

dot the following parameters are used: Yraq = 1.3108™ %, Ypa = Yab = 35 us~
Vrad = Vorad = 25 us™ L, pu(0) = 0.95, and pq(0) = 0.05. (b) The normalized
LDOS can be obtained from the unambiguous relation between the normalized
mean decay rate and the LDOS shown in (a).

the three cases the mean decay rates, calculated as a function of the LDOS, are
normalized to the mean decay rate for a LDOS identical to unity. The comparison
is shown in Fig. 6.4(a).

e In the trivial case of an ideal emitter with QFE = 100% (blue line) there is a
linear relation between the measured rate and the LDOS.

e If the QF is not unity (red line) the non-radiative decay rate sets a lower
bound for the decay rate, i.e., when the spontaneous emission is completely
inhibited the emitter can decay only by non-radiative decay. The normalized
decay rate will thus approach (1 — QFE) as the LDOS is reduced below unity,
while for increasing LDOS the radiative decay rate will dominate and a
(nearly) linear relation can be found between the LDOS and the mean decay
rate.

e In the third case, which includes the interplay between the bright and dark
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excitons, the dependence of the mean decay rate on the LDOS is always
sub-linear (green line). In the lower limit the normalized mean decay rate
approaches (1—QFE). In the upper limit the mean decay rate saturates as the
total number of photon counts in both the fast and in the slow components
are proportional to the radiative decay rate V;aq-

It is important to note that the interplay between the bright and dark states
leads to a sub-linear dependence of the normalized mean decay rate on the LDOS.
We can thus safely state that observed changes in the mean decay rate are caused
by even larger variations in the LDOS. In relation to the measured variations in
the normalized mean decay rate from 0.17 to 1.33(Fig. 6.3(a)), this means that
the spontaneous emission inside the 2D photonic band gap is inhibited by more
than a factor 5.9 and that the emission on the red edge is enhanced by more than
33%.

However, as both the normalized mean decay rate and LDOS are monotonic
functions, their unambiguous relation allows for a more quantitative analysis, i.e.,
a determination of the ensemble averaged LDOS. Such an analysis demands knowl-
edge of the rates governing the decay and the initial populations which we have
obtained in Chapter 5. In accordance with the excitation degree of 15 exci-
tons per quantum dot, the following parameters are used: the radiative decay

1 1

rate Yaq = 1.3ns™ ", the spin-flip rate y,q = 35us™, the non-radiative decay

rate Yorad = 25us~', and the initial population for the bright and dark states
pp(0) = 0.95 and pq(0) = 0.05 respectively. The ensemble averaged LDOS ob-
tained with these parameters and normalized to the ensemble averaged LDOS
obtained at a/A = 0.184 is shown in Fig. 6.4(b) as a function of the reduced fre-
quency. We find that inside the 2D band gap the LDOS is suppressed by at least
a factor 5.2 and at most a factor of 10.6, while an enhancement by a factor of 1.7

occurs on the the red side of the 2D photonic band gap.

6.4 Quantitative comparison to LDOS calculations

The ensemble character of the derived LDOS (Fig. 6.4(b)) must be considered in
order to make a quantitative comparison to numerical calculations; as we are mea-
suring on ensembles, only ensemble averaged properties can be extracted from the
measurements. The LDOS, to which the individual quantum dots couple, will de-
pend strongly on their exact position and the orientation of their transition dipole

moments and must thus be calculated for each possible position and orientation.
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The spontaneous emission from the ensemble can then be simulated by summing
the decay curves (Eq. (2.24)) from a large number of emitters placed at different
locations r and with different orientations O:

N(t) = Z 77(1‘7 6)’Yrad (I‘, G)Mpb (’Yrad (I‘, 6)7 t)' (62)
r,©

Here the position and orientation dependence of the collection efficiency n, the
radiative decay rate 7;aq, and the bright exciton population p;, are explicitly de-
noted. A theoretical basis suitable for a direct comparison with the measured
mean decay rates can successively be obtained by calculating the first moment
(Eq. (6.1)) of Eq. (6.2). However, to simulate the overall decay dynamics it is
necessary to consider: i) the orientational properties of the transition dipole, i.e.,
is O fixed at a given orientation or does it ’diffuse’ and thus performs an effective
average over the LDOS, and ii) the dependence of the collection efficiency on r

and ©. These two points of consideration will be discussed below.

Dipole orientation

The time-resolved measurements on quantum dot ensembles near a dielectric in-
terface, c.f. Sec. 3.3, and the clear appearance of a 2D photonic band gap which
coincides with the calculated in-plane 2D photonic band gap, allow us to conclude
that the ground-state emission is polarized in the plane of the membrane. The
question which remains is whether the transition dipoles can be considered to stay
at fixed in-plane orientations within the exciton lifetime or if they ’diffuse’ around
in the plane. The latter could be caused by a high bright-bright spin flip rate as
light emitted from the two bright states will be polarized along the two orthogonal
principal axes of the quantum dot [27]. In the limit of a fast bright-bright spin flip,
the quantum dot will effectively couple to the average value of the LDOS projected
onto the two principal axes. This will smear out the extrema of the LDOS, in par-
ticular in the 2D photonic band gap where the LDOS projected on two orthogonal
axes in general is found to be anti-correlated, c.f. Fig 1.5 in Ref. [23].

From measurements performed on InAs/GaAs quantum dots to determine the
bright-bright spin-flip rates there are reports of both very slow spin-flip rates
(< 50 us™1) [28] as well as very fast (> 10ns~!) spin-flip rates for some quantum
dots [29]. Based on the LDOS calculations a fast bright-bright spin-flip will reduce
the maximum inhibition inside the band gap to a factor of ~ 6. However, from

measurements on single dots on the same wafer we have obtained decay rates as



116 6. Inhibition and enhancement of spontaneous emission from quantum dots in PCMs

low as 0.05ns™!, i.e., an inhibition by a factor of ~ 20. Such low decay rates
demonstrate that the fast bright-bright spin-flip is not occurring here. In the
following calculations we will thus assume that the orientation of the transition

dipole moment remains fixed within the exciton lifetime.

Collection efficiency and radiation pattern of single quantum dots

The radiation pattern of the individual quantum dots depends on the angular
symmetry of the LDOS projections, i.e., strong inhibition of spontaneous emission
in some directions causes not only reduction in the emission rate but also spatial
redistribution of the spontaneous emission. In fact PCMs have been proposed as a
mean to enhance the poor extraction efficiency of light emitted in semiconductor
structures [20]. To understand in details how the extraction efficiency of the
individual quantum dots will depend on its position and orientation the far-field
emission patterns must be calculated for each possible position and orientation.
This can be achieved by finite difference time domain calculations and a successive
near-to-far-field transformation following the approach of, e.g., Taflove et al. [30].
This is, however, far from a trivial task and we will not pursue it here.

In a more feasible approach, the collection efficiency can be approximated as
follows. The radiative modes, into which the spontaneous emission is emitted, are
divided in two groups: the modes which are confined and propagate in the slab
and the modes which leak out of the slab. Correspondingly, the radiative decay
rate can be expressed as the sum of the decay rates into the two groups of modes:
Yead = Vslab + Vieak- While the 2D photonic crystal strongly affects the decay rate
into the slab ygap(r, ©), it is assumed that the rate into the leaky modes ¥jeax is
completely unaffected by the photonic crystal [8,31]. The collection efficiency is
in this case given by the ratio of the leaky rate to the radiative rate:

~ TVleak _ YVleak
(r, 0) = g71eak + Yslan (r,0) f%rad(l‘, 0)’ (6:3)
where £ denotes the fraction of the leaky modes which are emitted into the nu-
merical aperture of the collection optics. In this approach the collection efficiency
is thus found to be inversely proportional to the decay rate, i.e., if the sponta-
neous emission is strongly inhibited in the plane by the 2D photonic crystal the
emission is redistributed and emitted into the leaky modes. The time-integrated

luminescence from an excited quantum dot is correspondingly given by

Yeak QE
N(r,0 E .
r.0) e o 6 “F > o)

(6.4)
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Fig. 6.5: (a) Intensity versus reduced frequency (solid dots). No signs of redistributed
spontaneous emission are observed; on the contrary a reduction of the intensity
is observed inside the band gap. The two spectra at the band edges (solid
curves) also display suppression for the emission energies within the band gap.
(b) Expected intensity versus reduced frequency in the case of redistribution

(blue dots, left axis) and no redistribution (green dots, right axis).

Measurements on single quantum dots [11,31] and on a quantum well [8] placed
in 2D photonic crystals have shown an increase in time-integrated luminescence
for the emission energies within the band gap. However, we do not observe such
an effect in our measurements. In Fig 6.5(a) the measured intensities, which are
shown as a function of the reduced frequency, display a reduction of the intensity
within the 2D band gap. We note that comparing absolute intensity measurements
among different PCM can be difficult as the sample must be repositioned for each
membrane and moreover the pump beam suffers different Bragg reflection on the
different PCMs due to the variation in lattice parameter [32]. The observed reduc-
tion in the time-integrated intensity is confirmed by the acquired spectra, shown
in Fig. 6.5(b). The two spectra, acquired at the edges of the band gap, exhibit a
clear suppression of the luminescence for energies inside the band gap. This sug-
gest that the reduced time-integrated luminescence within the 2D photonic band
gap is not only due to different effective pumping caused by mis-alignments or
variation in the reflection of the pump beam. The expected variations in time-
integrated ensemble luminescence, given by Eq. (6.4), can by calculated from the
ensemble averaged LDOS shown in Fig. 6.4. These variations are shown together
with the calculated quantum efficiency in Fig. 6.5(a). While there are no simi-
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larities between the time-integrated measurements and the expected emission in
the presence of pronounced redistribution (o %) there seems to be a qualita-
tive agreement between the measurements and the variation in the QE. If no or
moderate redistribution of the emission takes place we expect the time-integrated
luminescence to be proportional to the QE. A possible explanation for the dis-
crepancy between our measurements and those reported in Refs. [11,31] could be
the different size of the numerical apertures in the experimental setups: if redis-
tribution of the emission mainly occurs into modes which leave the membrane at
high angles, a small aperture will not collect those modes, while a high numerical

aperture will. In Refs. [11,31] a high numerical aperture of 0.8 is used.

Calculations of the ensemble averaged decay rates

Based on the LDOS calculations and the bi-exponential model (c.f. Sec. 2.2.4)
we simulate the spontaneous emission arising from an ensemble of quantum dots
placed inside the PCM. The summation over different positions and orientations
includes two orthogonal in-plane dipole orientations and 7 spatial positions'. The
parameters used to model the bi-exponential decay are those already given in
Sec. 6.3.2.

As we do not observe indications of a redistribution of the spontaneous emis-
sion, the calculations are performed both for the case of no redistribution, for

which the ensemble luminescence is given as
N(t) x> Feaa(r, ©)pp(r, 0, 1), (6.5)
r,®©

and in the case of redistribution, for which the ensemble luminescence is given as
N(t) x Y pu(r, 0,1). (6.6)
r,©

The simulated spontaneous emission calculated for the ensemble in both cases is
shown in Fig. 6.6 for 3 different reduced frequencies: below (a/A = 0.204), inside
(a/X = 0.296), and above the 2D photonic band gap (a/A = 0.388). The simulated
emission has been scaled and added a background, corresponding to the measured

values, to facilitate a direct comparison to the measurement shown along the

LI The LDOS is calculated for the three orthogonal dipole orientations and at 16 different
positions along the trajectory of the irreducible unit cell [23]. However, as we only need to
consider in-plane polarization and as our quantum dots are located outside the air holes the
summation is reduced to include only 14 of the 48 different terms.
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Fig. 6.6: The simulated ensemble emission in case of redistribution (magenta) and no
redistribution (green) for 3 different reduced frequencies: below (a/A = 0.204),
inside (a/A = 0.296), and above (a/X = 0.388) the 2D photonic band gap. The
simulations have been scaled and added a background corresponding to the

respective measurements shown by the blue dots.

simulated data. The overall trends observed in the measured data are qualitatively
well represented by the simulations. Inside the band gap the slow decay rates and
in particular the amplitude of the slow components are dominating, while the
slow components are several orders of magnitude weaker than the fast component
outside the band gap. However, just as in Sec. 5.6 the simulated data are not
capable of modelling the smooth transition from the fast to the slow component
observed in the time-resolved measurements precisely. This is most evident outside
the band gap where the fast radiative decay rate can be clearly separated from the
slow non-radiative decay rate. Again, we suggest that this discrepancy is due to a
distribution of the non-radiative or the spin-flip rates. In case of no redistribution
of spontaneous emission, the fast decaying components will be weighted stronger
than the slowly decaying components. This appears as a suppression of the slow
components in simulated emission (green lines) when compared to the simulations
describing the case of redistributed spontaneous emission. Neither of the two
cases can be argued to obtain a better overall agreement with the time-resolved
measurements than the other. We do therefore not find support for rejecting either

of the two cases.
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Fig. 6.7: The mean decay rate as a function of the reduced frequency: measurement
(black solid dots), simulation without redistribution (open blue circles), and

simulation with redistribution (open green circles).

Despite the fact that the simulated decay curves do not perfectly model the
time-resolved measurements, we do achieve a remarkable agreement between the
mean decay rates obtained from the simulations and those measured. All data are
shown in Fig. 6.7. As we simulate the mean decay rate, a direct comparison is
possible without normalising the data. The dashed red line indicates the averaged
decay rate obtained away from the PCM, that is from quantum dots placed in a
GaAs slab. The measured rates vary between 0.10ns~! and 0.82ns~! correspond-
ing to a variation by a factor of 7.9. This is very well matched by the simulations
of the redistributed spontaneous emission resulting in variations between 0.10 ns !
and 1.02ns™! (a factor of 10.7), while the non-redistributed spontaneous emission
leads to a slightly weaker variation by a factor of 7.4, i.e., between 0.15ns™! to
1.10ns~!. This successful comparison of the ensemble decay dynamics to numer-
ical calculations of the strongly position and orientation dependent LDOS is, to
the best of our knowledge, the first successful quantitative comparison between
experiment and full 3D LDOS calculations.
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6.5 Conclusion

We have studied the time-resolved emission from quantum dots embedded in PCMs
while systematically varying the lattice parameter. The mean decay rate is found
to vary strongly by a factor of ~ 8. Strong inhibition of the spontaneous emission
is observed within the 2D photonic band gap which is found in the range 0.26 <
a/A < 0.35 in full agreement with numerical calculations by Koenderink et al. [23].
Using the knowledge gained earlier regarding the interplay between the bright and
dark exciton states, we are able to conclude that the variations in the ensemble
averaged LDOS are even stronger than the variations in the mean decay rate. We
extract this ensemble averaged LDOS, which is found to vary by more than a factor
of 18. Simulating the spontaneous emission from an ensemble of quantum dots
placed in the PCM, we obtain a simulated mean decay rate, which is found to agree
remarkably well with the measured mean decay rates. We have thus succeeded
to make a full quantitative comparison between the numerically calculated LDOS

and the measured ensemble decay dynamics.
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7. SUMMARY AND OUTLOOK

7.1 Summary

In this thesis we present and discuss the decay dynamics of spontaneous emission
from quantum dots embedded in nanophotonic structures. The outcome of the
research is presented in the Chapters 3 to 6 and the main results and conclusions
are emphasized here.

Energy dependence of the oscillator strength and quantum efficiency of InAs

quantum dots measured by a modified local density of optical states

We present time-resolved measurement acquired from InAs quantum dot ensembles
placed in the close vicinity of a dielectric interface. The decay rate of the spon-
taneous emission as a function of distance to the interface is excellently modelled
by theory. This allows for an accurate determination of the radiative and non-
radiative decay rates and thus an accurate determination of the oscillator strength
and quantum efficiency. The energy dependence of the oscillator strength and
quantum efficiency is determined by acquiring the time-resolved measurements for
6 different energies. Both properties are found to decrease with increasing emis-
sion energy (decreasing quantum dot size). From these measurements we conclude
that the optical properties of large quantum dots, emitting at low energies, are
superior and that large quantum dots thus are most suited as nanophotonic light
sources. The measurements are also acquired under stronger excitation intensity,
for which we observe a reduction in the quantum efficiency.

We report a series of measurements on colloidal CdSe/ZnS quantum dots near
as silver-coated interface. The differences between the self-assembled and the
colloidal quantum dots are summarized, and the interpretation of the intrinsically
multi-exponential decay curves from colloidal quantum dots is discussed. Despite
the complexity of the decay dynamics, the measured decay rates are well modelled
by taking into account the two-dimensional character of the dipole.
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Measuring the overlap of the electron and hole wavefunctions

We evaluate the transition matrix element for self-assembled InAs quantum dots,
whereby a relation between the oscillator strength and the overlap of the electron
and hole wavefunctions is established. Using this relation we obtain the wave-
function overlap from the measurements presented in Chapter 3. The overlap is
found to decrease with increasing emission energy (decreasing quantum dot size).
The experimental findings are supported by calculations of the wavefunction over-
lap implemented in the effective-mass approximation. The calculation shows a
reduction in the wavefunction overlap as the quantum dot size is reduced. This
reduction stems from the different masses of the electron and hole which results in
a different sensitivity of the electron and hole wavefunctions on the quantum dot
size.

The energy dependence of the wavefunction overlap in colloidal CdSe/ZnS
quantum dots is also calculated and compared to the case of InAs quantum dots.
For colloidal quantum dots the overlap shows no dependence on quantum dot
size, thereby pinpointing a striking difference between colloidal and self-assembled
quantum dots. The difference readily explains the different energy dependence of
the radiative decay rate which is reported for colloidal quantum dots in Ref. [1].

Decay dynamics of bright and dark excitons

The decay dynamics of quantum dot ensembles is studied under different excita-
tion conditions, different emission energies, and for various distances to a dielectric
interface. The time-resolved emission is analysed in a model which takes into ac-
count the bright and dark excitons and their internal dynamics, allowing for a
determination of the spin-flip rate. We compare data acquired over 13ns and
200ns and conclude that we are able to obtain the spin-flip rates from data ac-
quired over short time spans. However, the rates acquired over 13ns must be
corrected to compensate for the strongly weighted fast rates. The data acquired
over 200 ns reveal that the spontaneous emission exhibit a multi-exponential decay.
We suggest that this is caused by a distribution of non-radiative and/or spin-flip
rates within the quantum dot ensemble.

From the measurements obtained under various excitation intensities, the spin-
flip rate is found to increase with increasing intensity. The spin-flip rate is also
strongly dependent on the excitation energy and the possible causes are discussed
in details. Analyzing the measurements presented in Chapter 3 in the more in-
volved model, the spin-flip rate’s dependence on quantum dot energy is obtained.
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The observed dependence is discussed in the context of two different mechanisms
proposed to be the cause of the spin-flip. Our measurements lend qualitative sup-
port to a spin flip caused by virtual phonon scattering [2]. A surprising structural
dependence of the spin-flip rates is found from the same measurements.

The temperature dependence of the spin-flip rate is also measured and found to
increase with increasing temperature. This is in overall agreement with the spin-
flip rate being phonon-mediated and thus proportional to the density of acoustic

phonons.

Inhibition and enhancement of spontaneous emission from quantum dots in

photonic crystals

We have performed a study of the spontaneous emission from quantum dots em-
bedded in photonic crystal membranes while systematically varying the lattice
parameter. Strong inhibition of the mean decay rate is observed for emission
frequencies within the 2D photonic band gap, while enhancement is observed on
both sides of the band gap. The measured width and position of the band gap
is in excellent agreement with theory. Due to the bright-dark interplay, the di-
rectly measured variation in the mean decay rates is a conservative measure of
the variations in the local density of optical states. We discuss how to perform
a quantitative comparison between local density of states calculations and mea-
surements. Using the knowledge of the quantum dot decay dynamics obtained in
Chapters 3 and 5, we model the mean decay rate for an ensemble of quantum dots
embedded in a photonic crystal membrane. The modelled mean decay rates are
found to agree remarkably well with the measured mean decay rates. This is, to
the best of our knowledge, the first successful comparison between experiment and

a full 3D calculation of the local density of optical states.

7.2  QOutlook

To further improve the understanding of the light-emitter coupling in photonic
crystals, the work presented here could be continued on several fronts:

Numerical calculations of the emission patterns

A theoretical study of the redistribution of spontaneous emission from quantum
dots within the photonic crystal membrane would allow for the correct weighting
of the individual components in the modelled ensemble emission. The calculations
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should be performed for several positions and orientations of the dipole emitter.
Such a study would benefit from similar experimental studies, i.e., measurements
of spontaneous emission from single quantum dots, from which the decay rate could
be related to the intensity, hopefully in agreement with the numerical calculations.

Time-resolved measurements of spontaneous emission from single quantum dots

An experimental study of time-resolved measurements on single quantum dots
within the photonic crystal membrane. From a sufficiently large number of data
points, a distribution of decay rates could be obtained and directly compared to
the calculations of the local density of optical states. In contrast to 3D structures,
photonic crystal membranes are well suited for such experiments as the individual
quantum dots can be addressed from above the membrane.

Suppression of dark exciton creation in doped structures

By incorporation of a highly n-doped semiconductor layer near the quantum dot
layer, the quantum dots can be charged with a single electron. This will suppress
the formation of dark excitons, as the introduction of an exciton in the quantum
dot will result in the formation of a trion (a charged exciton). The trion has no fine
structure [3] and the spontaneous emission decays thus single exponentially [4,5].

Embedding such a layer of pre-charged quantum dots in the photonic crys-
tal membrane should facilitate a more simple analysis of the measured spon-
taneous emission as the individual quantum dots are expected to decay single-
exponentially. The trion may suffer from a large non-radiative decay, and it is
thus necessary to determine the quantum efficiency of the quantum dot trions
before a comparison between experiment and theory can be performed.
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APPENDIX






A. ESTIMATE OF EXCITATION DENSITY

The excitation density is estimated by taking the following parameters into ac-
count: the intensity, reflection at the surface, the energy of the excitation pulse,
the repetition rate of the excitation source, the thickness of the absorbing material
and the absorption coefficient of the material.

The number of photons incident on the sample surface per pulse per quantum
dot is calculated as

TAex

D Al
hCOUQDfrep ( )

Nph
where [ is the intensity, Aex is the wavelength of the excitation source, frep is the
repetition frequency of the excitation source, h is Planck’s constant, cq is the speed
of light and ogp is the (surface) density of the quantum dots.

However, part of the incident light is reflected in the dielectric interface. The
transmitted part can be calculated using Fresnel’s equations as

2
Ny cos B — nq cos By
T=1-

, f, = arcsin <ﬂ sin(91)>, (A.2)

T3 cosf1 — ny cos s o

where ns is the refractive index of GaAs, n, is the refractive index of air, 6; is the
pump angle (pump normal to sample: #; = 0) and 6> is the angle of the refracted
light given be Snell’s Law, as stated above. We have chosen to use a TM-polarized
pump beam as this allows us to pump at the Brewster angle and thus minimize
reflection in the surface. Hence, only the Fresnel equation for TM polarized light
is stated above.

As the GaAs barriers in all our samples are bounded by materials with a higher
electronic band gap, only photons absorbed in the GaAs will have a possibility
of being captured in the quantum dots. For a GaAs barrier of thickness d the
absorption in given by

Lins = [0(1 — exp(—ad)), (A.3)
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where Iy is the incident intensity and « is the wavelength dependent absorption
coefficient, which for GaAs is @ = 1.216-10* cm ! at 1.6eV (826 nm) [1].

Isis important to stress that we estimate the number of excitons absorbed in the
GaAs per quantum dot. This is not identical to the number of excitons captured
in the quantum dots, but an upper estimate. This is evident from the spectra
acquired which show strong emission at the energy corresponding to the carbon
defect even for low excitation densities. Judging from the spectra approximately
half of the excitons are captured in carbon defects even at low powers. As the
excitation density is increased a larger fraction of the created excitons will decay
directly from the GaAs barrier or from the carbon defects and thus not be captured
by the dots.
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B. NUMERICAL SOLUTIONS OF THE FIVE-LEVEL SYSTEM

To calculate the initial population probabilities of the bright and dark states in
the quantum dots (QDs), we set up a five-level model which include the following
levels: the ground state |g), the bright exciton |b), the dark exciton |d), the bi-
exciton |zz), and a reservoir level |R). The levels are coupled as depicted in

Fig. B.1. The rates used here are the total rates, i.e., the sum of the non-radiative
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Fig. B.1: The five-level system consisting of the ground state |g), the bright exciton |b},
the dark exciton |d), the bi-exciton |zz), and a reservoir level |R). The channels

coupling the different levels are denoted by the respective rates.

and radiative decay rates. The system is excited by injecting a population of NV
excitons per quantum dot at the reservoir level |R), from where it relaxes down
and populate the lower lying states. The population probabilities for the ground
state, bright-exciton state, dark-exciton state, bi-exciton state and the reservoir

are denoted by pg, pn, pda, pxx, and pr , respectively, and attain values between 0
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and 1. Moreover pg + pp + pa + pxx = 1.

To set up the rate equations governing the system we start by considering
the processes leading to the population of the bright state. These processes are
indicated by the red arrows in Fig. B.1. A bright exciton can be created in three
ways: (i) an exciton is captured by a QD in the ground state, (ii) a bi-exciton
decays leaving a bright exciton behind, or (iii) a dark exciton undergoes a spin flip

and becomes a bright exciton.

e The rate of process (i) is proportional to
- the number of excitons in the reservoir Npg
- the probability of having a QD in the ground state pg
- the capture rate from the reservoir to the QD ~.

Ye,bPgN PR (B.1)

e The rate of process (ii) is proportional to
- the probability of having a QD in the bi-exciton state pyx
- the decay rate of the bi-exciton Yxxp

Vxxb Pxx (B 2)

e The rate of process (iii) is proportional to
- the probability of having a QD in the bright exciton state pp
- the spin-flip rate of dark excitons gy,

YdbPd (B.3)

The dark state can be populated by similar processes, resulting in similar terms,
the subscripts b and d should just be exchanged.

A bi-exciton can only be created if a QD is in either the bright or the dark state
and another exciton is captured. This process is indicated by the green arrow in
Fig. B.1.

e The probability of the creation of a bi-exciton is proportional to
- the sum of the probabilities of having a QD in either the bright or the dark
exciton state pp + pa
- the number of excitons in the reservoir Npg
- the capture rate from the reservoir to the QD ¢ xx

’YC,XXNPR(Pb + Pd) (B4)
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The only processes which have not been addressed so far are: the decay of
either the bright (v) or the dark (yq) populations resulting in a transition to the
ground state, and the escape of population out of the reservoir (ygr)-

Combining the process mentioned above, we can set up the master equations
describing the temporal evolution of the population probabilities as

d

% = yapa + 1P — (Ve,d + Ye,b)Pg NpR (B.5)
dpy - _ N Npr(B
= sxbPxx T YdbPd = TodPb = TP+ YebPgNPR — Yexxpb pr(B.6)
dpa  _ N Npr(B
= xxdPxc T YbdPb — YabPd = VLA + VedPgN PR — YexxPd pr(B.7)
dpxx

dt = 'Yc,xprR(Pb + Pd) - (rYxxb + Vxxd)pxx (Bg)
dpr

5 = TORPR- (Ye,a + Ye,b)Pg N PR — Ve, xx N pR(PH + pa)- (B.9)
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Fig. B.2: The decay of the population probabilities of the ground state (blue), dark state

(green), bright state (red), bi-exciton state (cyan) and the reservoir (blue). The

following rates are used in the calculation (in units of ns™") : v, = 1, 74 = 0.05,

Yxxd = 0.1, Yaxb = 2, Yeb = Ye,d = Ye,xx = 100, YR =4, Yab = Yba = 0.025.

The rate equations are solved using MatLab’s ordinary-differential equation
solver (ODE45). In Fig. B.2 are shown the temporal evolution of the population
probabilities for the five levels. The calculations are obtained for an initial pop-



138 B. Numerical solutions of the five-level system

ulation of the reservoir level of 0.3 and 3.0, shown in the left and right figure,
respectively.

The decay of the bright exciton (red) exhibits the characteristic bi-exponential
decay while the dark excitons (green) and the bi-excitons (cyan) decay single-
exponentially. For low excitation (left figure) the initial populations of the bright
and dark states are similar, while the initial population of bi-excitons is approxi-
mately an order of magnitude lower. Increasing the excitation density by a factor
of 10 (right plot) the initial population of the bright exciton is higher than both
the bright and the dark initial populations. This directly causes a redistribution
of the initial populations among the bright and dark states, favouring the bright
states as the bi-exciton most likely undergoes a radiative decay. The rates used in
the calculation are given in the figure caption. To obtain the ratio of the initial
dark and bright populations, however, only the decay rates of the bi-exciton are

of importance.
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Fig. B.3: The ratio of the initial populations of the dark and bright states. In the low
excitation limit the bi-exciton creation is very unlikely resulting in a ratio of
unity. In the limit of strong excitation only bi-excitons are created and the

ratio settles at value given by the quantum efficiency of the bi-exciton.

We have obtained the initial populations for various excitation levels and cal-
culated the ratio of the dark and bright initial populations, as shown in Fig. B.3.
In the limit of low excitation the probability of creating bi-excitons is negligible,
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hence the ratio of the initial populations of the dark and bright states are unity. As
the excitation density is increased, the probability of creating bi-excitons increases
and results in a larger fraction of bright excitons. In the limit of strong excitation
only bi-excitons are created, and the ratio therefore settles at a value given by the
quantum efficiency of the bi-exciton.



