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Abstract

The work presented in this thesis concerns numerical and experimental studies of flow
induced deformation of drops suspended in a second and immiscible liquid.

In the numerical part a model is implemented which is based on a Finite Element (FE)
Stokes solver coupled with a Volume of Fluid (VOF) tracking procedure. The FE solver
is based on Q2P0 elements while the VOF procedure is based on PLIC (Piecewise Linear
Interface Calculation) interface reconstruction and a split operator Lagrangian advection
procedure which conserves mass rigorously. The model is fully 3D and can be used for sim-
ulating the transient behavior of two phase liquid systems with moving interface topologies.
In order to include interfacial tension in the flow calculations both the Continuous Surface
Stress (CSS) model of Lafaurie, Nardone, Scardovelli, Zaleski & Zanetti (1994) and the
Continuous Surface Force (CSF) model of Brackbill, Kothe & Zemach (1992) are imple-
mented. Due to the high interface curvatures associated with highly deformed drops it
is necessary to use a high resolution mesh for our calculations. This leads to extensive
computation times mainly due to factorization and back substitution of the discretized
flow field equations. In order to reduce the computational cost a 2-level procedure is im-
plemented where the fluid tracking algorithms are associated with a fine VOF mesh while
the flow field variables are associated with a coarser FE mesh. In the 2-level algorithm the
calculation of interfacial tension terms is carried out as a summation of contributions from
the VOF mesh. This corresponds to letting the curvature vary within elements of the FE
mesh.

The implemented model is tested in terms of spatial and temporal convergence by
simulating the deformation of a single drop in a simple shear flow field. Furthermore wall
effects are also investigated by varying the size of the computational domain which consists
of a box with variable mesh size. In the center of the domain, where the drop resides, the
mesh consists of a fine region whereas closer to the walls the elements gradually increase
in size. Tests show that wall effects are negligible when the distance from a drop with
initial radius r0 to the domain boundaries is 24r0. In the spatial convergence tests the
resolution of the fine mesh region is varied and it is found that a VOF mesh with side
lengths hvof = r0/18 is adequate when the viscosity ratio, λ, between the drop and the
continuous phase is one. More thorough tests are carried out both in simple shear and
planar elongation. These simulations include dependence of steady-state deformations on
the capillary number, drop-break and drop merging. Generally the test results agree well
with results reported in the literature. However, simulations carried out for λ different
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from one indicate that the resolution of the FE mesh needs to be increased compared
to simulations carried out with λ = 1. This is probably related to the method used for
calculating the viscosity in elements which include both liquid phases.

In the experimental part of the thesis the deformation of a single drop suspended
in liquid undergoing a complex dispersing flow is studied. The experimental setup is
based on a rotor-stator device consisting of two concentric cylinders with teethed walls. In
order to monitor the drop deformation and drop position a twin camera system is applied.
In the subsequent data analysis the recorded movies are analysed using an automated
image analysis procedure which leads to the deformation history of the drop and the drop
trajectory in the device. However, due to the geometric complexity of the rotor-stator
device numerical calculations are necessary in order to obtain the generated flow field.
The obtained experimental data is analysed by two different methods. In the first method
the recorded drop deformations are time averaged and compared to a defined apparent
shear rate which does not rely on numerical flow field calculations. The results from this
analysis indicate that there is a relationship between the average drop deformation and the
apparent shear rate.

In the second method the experimentally obtained particle track is used together with
numerical calculations in order to obtain the local flow experienced by the drop along its
track. The data from these calculations lead to time-dependent shear and elongation rates
which are used for generating time dependent boundary conditions for the FE-VOF simu-
lations. By using this procedure the flow field experienced by the drop in the rotor-stator
device is emulated in the computational box used for carrying out drop shape simulations.
Comparison of simulated and experimentally obtained deformations show that in general
the agreement is acceptable on a qualitative level. However, the simulations predict defor-
mations which are up to 100% larger than experimentally observed. We have also compared
our FE-VOF simulations with results from Boundary Integral (BI) simulations and find
good agreement between the two numerical methods.

A number of the conducted experiments resulted in drop break-up. The break-up
behavior in the rotor-stator device is analyzed qualitatively by relating the configuration
of the cylinders with the initiation of the break-up sequence. Here we observe that drop
break-up is initiated when a drop travels from a region of minimum gap width into a region
with maximum gap width where there is a relaxation in the flow field. Furthermore we
observe that for small viscosity ratios (λ � 0.1) tip streaming is predominant while for
larger viscosity ratios either binary or capillary break-up is predominant.
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Dansk resumé

Denne afhandling omhandler numeriske og eksperimentelle studier af dråbedeformationer
i dispergerede systemer, hvor der er påtrykt et flydefelt.

Den implementerede model er baseret på en Finite Element (FE) Stokes løser, som er
koblet til en Volume of Fluid (VOF) sporingsprocedure. Til diskretisering af beregnings-
domænet anvendes Q2P0 elementer, mens VOF algoritmerne er baseret på PLIC (Piece-
wise Linear Interface Calculation) grænsefladerekonstruktion og en såkaldt "split opera-
tor" Lagrange transportprocedure. Den implementerede transportalgoritme er i stand til
at bevare volumenet af den dispergerede væskefase indenfor 0.01% i.f.t. det oprindelige
volumen. Modellen er implementeret for 3D problemer og kan anvendes til at simulere den
tidsafhængige opførsel af to-fase problemer med bevægelige grænseflader. Grænseflade-
spændingen beregnes enten v.h.a. Continuous Surface Stress (CSS) modellen (Lafaurie
et al. 1994) eller Continuous Surface Force (CSF) modellen (Brackbill et al. 1992). Da der
opstår regioner med stor krumning i.f.m. stærkt deformerede dråber, er det nødvendigt at
anvende et meget fininddelt net i beregningerne. Dette medfører imidlertid lange beregn-
ingstider, især pga. det store antal ligninger, der er forbundet med løsningen af flydefeltet.
For at reducere den nøvendige beregningstid anvendes en 2-niveaus (2-level) metode. I
denne metode anvendes et fint net (VOF-nettet) til de algoritmer, som anvendes til at
spore den dispergerede væskefase, mens et grovere net (FE-nettet) anvendes at bestemme
flydefeltet. Når 2-niveaus metoden anvendes, beregnes grænsefladespændinger som en sum
af bidrag fra VOF-nettet, hvilket i princippet betyder, at krumningen af grænsefladen får
lov at variere i et givent element i FE-nettet.

Den implementerede model er blevet undersøgt mht. forfinelse af netindelingen samt
forfinelse af tidsskridtet. Ved disse simuleringer studeres deformationen af en enkelt dråde
i et simpelt forskydningsfelt. Herudover er vægeffeketer blevet undersøgt ved at variere
størrelsen af beregningsdomænet, som består af en kasse indelt i et net med variable el-
ementstørrelser. I midten af denne kasse, hvor dråber befinder sig, anvendes et fint net
med konstante elementsidelængder. Tættere på væggene stiger elementstørrelsen grad-
vist. Simuleringerne viser, at vægeffekterne kan negligeres, når afstanden fra dråben til
beregningsdomænets vægge er 24r0 (r0 er dråbens begyndelsesradius). Simuleringerne med
forfinelse af netindelingen viser, at et VOF-net, hvor sidelængden af VOF elementerne i den
fine del af nettet er hvof = r0/18, er tilstrækkeligt når viskositetsforholdet mellem dråben
og den kontinuerte fase er 1. Mere indgående undersøgelser af modellen er udført i simple
forskydningsfelter og i forlængelsesfelter. Disse simuleringer er blevet udført ved forskellige
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kapillartal og viskositetsforhold og inkluderer også dråbeopsplitning og sammensmeltning
af to dråber. Resultaterne fra simuleringerne stemmer generelt godt overens med resul-
tater beskrevet i litteraturen. Men simuleringerne viser også, at når viskositetsforholdet er
forskelligt fra 1, er det nødvendigt at anvende et finere FE-net sammenlignet med resul-
tater opnået med ens viskositet af begge faser. En af grundene til dette beror sandsynligvis
på den metode, som anvendes til at beregne viskositeten i elementer, der indeholder begge
væskefaser.

Den eksperimentelle del af afhandlingen omhandler deformationen af en enkelt dråbe,
som påvirkes af et kompliceret flydefelt. Den eksperimentelle opstilling er baseret på et
såkaldt rotor-stator apparat som består af to concentriske cylindre med tænder på væggene.
Dråbens deformation og position i apparatet overvåges vha. et system bestående af to dig-
itale kameraer. De indspillede videosekvenser behandles efterfølgende vha. automatiseret
billedanalyse for at måle den tidsafhængige deformationsgrad samt dråbens partikelbane i
apparatet. Pga. apparatets komplekse geometri er det imidlertid nødvendigt at anvende
numeriske beregninger til at bestemme flydefeltet. To metoder anvendes til at analysere
de målte data. Den første metode er baseret på gennemsnitlige værdier af deformations-
graden, som sammenholdes med en forskydningshastighed defineret ud fra geometrien af
apparatet (apparent shear rate). Denne forskydningshastighed beror ikke på numeriske
beregninger af flydefeltet. De opnåede resultater fra denne analyse indikerer, at der er en
sammenhæng mellem den definerede apparent shear rate og gennemsnitsdeformationen.

I den anden metode anvendes den eksperimentelt opnåede partikelbane sammen med
numeriske beregninger til at bestemme dråbens lokale flydefelt i rotor-stator apparatet. Fra
disse beregninger fås tidsafhængige forskydnings- og forlængelseshastigheder, som efterføl-
gende anvendes til at påtrykke tidsafhængige grænsebetingelser til simuleringer af dråbe-
deformationen. Ideen med denne procedure er at efterligne dråbens lokale flydefelt i vores
kasseformede beregningsdomæne, der anvendes til at simulere dråbens form. Den kvalita-
tive overensstemmelse mellem de simulerede og eksperimentelt opnåede dråbedeformationer
er acceptabel, selvom simuleringerne generelt resulterer i større deformationer sammen-
lignet med eksperimenterne. Resultater fra den implementerede FE-VOF model er også
blevet sammenlignet med resultater fra en Boundary Integral (BI) metode. Resultaterne
fra de to numeriske metoder stemmer godt overens.

En række af de udførte eksperimenter resulterede i dråbeopslitning. Selve opsplit-
ningsforløbet er analyseret kvalitativt ved at sammenholde konfigurationen af rotor-stator
apparatet med udviklingen af dråbens form. Her ses typisk, at opslitningsforløbet finder
sted, når dråben passerer fra et område med en lille vægafstand til et område med en
stor vægafstand. Herudover viser forsøgene, at når viskositetsforholdet er lavt (λ � 0.1)
fås typisk et opsplitningsforløb, hvor små dråder knibes af enderne på hoveddråben (tip
streaming). For større viskositetsforhold er forløbet karakteriseret enten ved binær- eller
kapillæropsplitning.
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Chapter 1

Introduction

The term emulsion is the general designation for liquid-liquid two-phase systems wherein
one phase is dispersed as drops in the second continuous phase. Emulsions appear in a
number of industries as process intermediates and/or final products, e.g. in connection
with the production of foodstuffs, pharmaceuticals, cosmetics and in polymer processing.
The micro-structure of an emulsion, particularly the drop size distribution and drop phase
concentration, is of major significance to the properties of the emulsion based system, e.g.
rheology and texture. In order to control (or tailor make) the micro structure one or more
dispersion processes are usually applied. Such processes include static mixing, extrusion
and pumping. The purpose of these processes is, through the applied flow field, to alter
the drop size distribution through coalescence and break-up of the dispersed droplets.
The stresses associated with the applied flow will tend to deform the dispersed drops and
depending on flow type and strength the stresses can also induce drop break-up. The
opposite process can also occur, i.e. the merging of two drops as a result of a flow induced
collision. Hence there is a close interaction between the process conditions and the micro
structure (morphology) during a dispersion process. In order to optimize a dispersion
process with respect to the final micro structure it is of major importance to understand the
relationship between flow and drop deformation behavior. This problem has been subject
to numerous investigations since the seminal work of G. I. Taylor in the 1930’s where he
carried out both theoretical and experimental work on drop deformation behavior in simple
model flow fields (Taylor 1932, Taylor 1934). In his work Taylor studied the deformation
of a single drop suspended in a second imiscible liquid undergoing either simple shear or
planar elongation. The experimental setups were based on the shear band apparatus and
on the 4-roll mill, cf. Figure 1.1 (a) and (b).

The research on dispersion phenomena following Taylor’s work, has mainly concentrated
on single drop studies in well defined and homogeneous flows. In real dispersing devices
the flow is, however, generally highly complex and inhomogeneous. The theoretical and
empirical principles obtained from the model flow fields can therefore in general not be
extended to real process applications. The subject of this thesis is to setup and implement
a full 3D numerical method for the direct simulation of drop deformation behavior in general
laminar flows. The purpose of the model is to use it as a tool for analyzing flow induced

1
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2 Chapter 1. Introduction

(a) (b)

Figure 1.1: The shear band apparatus (a) and four roll mill (b)

drop deformations in real dispersing flows (except for turbulent flows). One important
requirement to the model is that it has to be able to handle large deformations and also
drop break-up and drop merging.

In addition to the modeling work, experimental investigations of drop behavior in com-
plex flow fields have been carried out. The experimental results are also compared to
numerical simulations.

In the following subsections results reported in the literature concerning the understand-
ing of flow induced drop deformations are described. In section 1.1 focus is on experimental
and theoretical work while in section 1.2 the focus is on direct numerical methods used for
simulating the behavior of dispersed systems.

1.1 Drop deformation: Experiments and theories

Due to the simplicity of the simple shear and planar elongation flow fields they have been
used extensively as model flows for studying droplet deformations. In order to characterize
the strength of the flow working to deform the drop relative to the strength of the interfacial
tension forces working to resist the deformation, the capillary number is defined as:

Ca =
Gr0μc

σ
(1.1-1)

In (1.1-1) G is the strength of the flow field, e.g. shear rate γ̇ for simple shear, r0 is the
initial drop radius, μc is the viscosity of the continuous phase and σ is the interfacial tension
coefficient. In addition to the capillary number the viscosity ratio λ between the drop phase
and the continuous phase has a large impact on the drop deformation behavior. Taylor’s
theoretical treatment which is based on the small deformation assumption relates the degree
of deformation to the capillary number and viscosity ratio (Taylor 1932, Taylor 1934):

L − B

L + B
= D = Ca

19λ + 16

16λ + 16
(1.1-2)

In (1.1-2) L is the length of the drop along its major axis and B is the breadth of the drop,
cf. Figure 1.2.
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1.1. Drop deformation: Experiments and theories 3

L

B

Figure 1.2: Definition of length L and breadth B of a deformed drop.

If the strength of the flow field exceeds a certain critical value which leads to a critical
capillary number Cacrit, the drop will no longer be able to withstand the deformation and
eventually breaks up into a number of smaller drops. Very coarsely the break-up process
can be classified as either binary or capillary. In binary break-up a drop breaks up into two
new drops of equal size with a number of smaller drops in between. In capillary break-up
the drop is first deformed into a very long and thin liquid thread before it breaks up into
a large number of smaller drops. The two break-up types are sketched in Figure 1.3.

Binary break-up

Capillary break-up

Figure 1.3: Sketch illustrating binary and capillary break-up.

In addition to equation 1.1-2 Taylor also gave an expression for the critical capillary
number which for shear flow is:

Cacrit =
8λ + 8

19λ + 16
(1.1-3)

The critical capillary number for planar elongation is half of that in shear flow. The
type of break-up, i.e. binary or capillary, depends on the type of flow field, the capillary
number and the viscosity ratio. For example if the capillary number is much larger than
the critical value the drop is typically elongated into a thin thread (threading) before it
breaks up. The threading phenomena is also seen for low viscosity ratios in simple shear.
For λ = O(1) and Ca above but close to the critical value binary break-up is observed in
simple shear. In elongational flows capillary break-up is observed if the viscosity of the
drop phase is comparable to or smaller than the continuous phase viscosity.

The theoretical work of Taylor, which is valid for λ = O(1), has been verified exper-
imentally by e.g. Taylor (1934) and Rumscheidt & Mason (1961). An improvement to
Taylor’s theoretical description was made by Chaffey & Brenner (1967) by including sec-
ond order terms of the deformation in their calculations. This theory is frequently termed
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4 Chapter 1. Introduction

second order theory while Taylor’s (1934) is termed first order theory. A direct extension
of Taylor’s first order theory to include arbitrary values of the viscosity ratio λ and cap-
illary number was made by Cox (1969). In his analysis the only requirement is that λ
and Ca have such values that the resulting drop deformation is low. Torza, Cox & Mason
(1972) compare experimental results with the theory by Cox (1969) and find reasonable
qualitative agreement. However, Rallison (1980) clarifies and makes some corrections to
the theory which leads to predictions which are in better quantitative agreement with the
experimental results of Torza et al. (1972).

At the 3rd Engineering Conference on Mixing in 1971 H. P. Grace presented experimen-
tal results on critical capillary numbers for a very large range of λ, both in simple shear and
planar elongation. The results were later published in (Grace 1982). His results are shown
in Figure 1.4 and amongst other things it can be seen that the critical capillary number
is always lower for elongation than for shear. Furthermore, the data also show that, in
simple shear break does not occur for λ � 4. This behavior was also seen by Taylor (1934).
As mentioned above a drop will deform into a long thin thread before break-up when λ is
small. Thus the small deformation theory is no longer valid.

Planar elongation (α = 1)
Simple shear (α = 0)

λ

C
a

c
r
it

10310210110010−110−210−310−410−510−610−7

1000

100

10

1

0.1

Figure 1.4: Experimental data from (Grace 1982). The curves show the critical capillary
number as a function of the viscosity ratio for experiments carried out in simple shear and
planar elengation.

In order to handle the deformation behavior at low viscosity ratios (λ < 0.1) slender
body theory was developed by Taylor (1964) with later work by Buckmaster (1972, 1973),
Acrivos & Lo (1978), Rallison & Acrivos (1978) and Hinch & Acrivos (1979, 1980). The
slender body theory allows for prediction of the drop shape at large deformations as well
as the following criteria for the critical capillary number
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1.2. Drop deformation: Direct numerical methods 5

Simple shear (Hinch & Acrivos 1980):

Cacrit = 0.0541λ−2/3 (1.1-4)

Planar elongation (Hinch & Acrivos 1979):

Cacrit = 0.15λ−1/6 (1.1-5)

In 1986 Bentley & Leal (1986a) presented a computer controlled version of the 4-roll mill
device which utilized camera technology and computerized image analysis. One of the great
advantages of this device is that as well as pure elongation and pure shear flows mixtures of
both can be generated. The amount of elongation relative to shear is determined through a
parameter α. A series of experiments have been carried out in this apparatus for α ∈ [0; 1],
e.g. (Bentley & Leal 1986b, Stone, Bentley & Leal 1986). These give detailed information
about the effect of the flow field on the deformation behavior and the relationship between
the critical capillary number and α.

Computer controlled versions of the shear band apparatus have also been developed,
e.g. (Guido & Villone 1998, Birkhofer, Eischen, Megias-Alguacil, Fischer & Windhab
2005) which allow for extended experimental times and experiments with time dependent
shear rates. In the shear flow cell of Guido & Villone (1998) the full 3D drop shape can
be analyzed, i.e. both in the vorticity direction and in the flow direction. Some recent
experimental studies on drop deformation are reported in (Guido & Villone 1998, Guido,
Greco & Villone 1999, Guido, Minale & Maffetone 2000, Guido & Greco 2001, Megias-
Alguacil, Feigl, Dressler, Fischer & Windhab 2005).

Both the small deformation theory and the slender body theory give good predictions of
the critical capillary number in homogeneous and steady flow fields. However, as discussed
earlier, the flow in industrial dispersion devices is usually complex and unsteady. Thus
the theoretical and experimental results based on the model flows cannot be used for the
design of emulsion processes except maybe for ’rule of thumb’ parameters. Furthermore
no theory is able to predict the drop shape accurately during the break-up process and
thus detailed information on final drop size distributions in general flow situations cannot
be extracted from theory. In order to overcome this problem the development of direct
numerical methods for the simulation of drop deformations has been pursued during the
last 25 years - and with success.

1.2 Drop deformation: Direct numerical methods

In order to simulate the shape of a dispersed drop deformed by a flow field the applied
numerical method has to be able to handle two-phase systems with large distortions of
the drop interface. Furthermore in order to simulate drop break-up and drop merging, the
method also needs to be able to handle separation and coalescence of interfaces. The most
widely used methods in connection with simulation of dispersed systems is the Boundary
Integral (BI) method and the Volume of Fluid (VOF) method. In the BI method a calcu-
lational mesh is applied onto the boundary of the drop. This mesh is then deformed with

29



6 Chapter 1. Introduction

the flow field. The BI method has been used for studying the deformation and break-up
of single drops in shear flows (Rallison 1981, Kennedy, Pozrikidis & Skalak 1994, Kwak
& Pozrikidis 1998, Cristini, Blawzdziewicz & Loewenberg 2001, Cristini, Guido, Alfani,
Blawzdziewicz & Loewenberg 2003) and for studying systems consisting of multiple drops
(Loewenberg & Hinch 1996, Loewenberg & Hinch 1997, Cristini et al. 2001, Cunha &
Loewenberg 2003). Furthermore a numerical method is described in (Feigl, Kaufmann,
Fischer & Windhab 2003) where the drop deformation behavior in a time dependent dis-
persing flow is analyzed using a combination of the BI method and flow field calculations
along streamlines. We will return to this method in chapter 5 where more details are
given. The BI method has also been used for investigating the effects of surfactants on
drop deformation behavior, e.g. (Yon & Pozrikidis 1998, Pozrikidis 2001). One drawback
of the BI method is that break-up and merging of drops cannot be handled in a ’natural’
way since the onset of break-up or coalescence needs to be defined by the user.

The VOF method is a volume tracking method where, for two phase systems, the
position of one of the phases is defined through a VOF function (or color function). The
method requires a flow solving routine and a volume tracking routine. A number of studies
on drop deformation and particularly drop break-up have been carried out using the VOF
method, e.g. (Mashayek & Ashgriz 1995, Li, Renardy & Renardy 2000, Renardy, Cristini
& Li 2002, Renardy & Renardy 2002, Renardy, Renardy & Cristini 2002, Khismatullin,
Renardy & Renardy 2006, Renardy 2007). These studies include investigations of the
effect of inertia on drop shape (Li et al. 2000), drop size distributions after drop break-
up (Renardy, Cristini & Li 2002), effects of domain confinement on the critical capillary
number (Renardy 2007) and effects of non-Newtonian continuous and drop phase liquids
(Khismatullin et al. 2006) (based on the Giesekus constitutive equation). Furthermore
Renardy, Renardy & Cristini (2002) present a method for including surfactants in VOF
interfacial tension calculations. One main advantage of the VOF method compared to the
BI method is that drop break-up and coalescence does not need any special consideration
from the user which makes it very well suited for studying problems involving break-up
and merging. On the other hand it requires a full 3D time dependent flow solver and
thus can become very computationally expensive. In our work we have chosen to base our
numerical model on the VOF method due to the ease with which drop break-up can be
handled. In our implementation we have devoted a great deal of attention on minimization
of computational cost without loosing (too much) accuracy.

It is noted that other numerical methods exist for handling two-phase flows, these
include particle marker methods, level-set methods and Arbitrary Eulerian-Lagrangian
(ALE) finite element methods. However, each of these methods present some severe lim-
itations in their use for the simulation of droplet deformations. For example the particle
marker methods are too time consuming in 3D problems, the level-set method gives rise
to difficulties when drop break-up occurs and does not conserve volume rigorously and the
ALE methods requires extensive remeshing in order to handle the large interface distortions
associated with large drop deformations.

In order to facilitate the presentation of the numerical model in the forthcoming chapters
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1.3. Introduction to the VOF method 7

the next section will be devoted to a brief introduction to the VOF method.

1.3 Introduction to the VOF method

For a two-phase system consisting of disperse droplets we define the VOF function F (x) to
be the volume fraction of the disperse phase at position x in the domain. In practice F is
a discrete function which is associated with a mesh consisting of a finite number (Nvof ) of
VOF cells with volumes Ωi, i = 1, . . .Nvof . The value of F in a given cell then corresponds
to the volume fraction of the disperse phase in the cell. In summary we have:

Fi =

{
0 if Ωi is outside the disperse phase

1 if Ωi is inside the disperse phase

0 < Fi < 1 if Ωi holds part of the interface

(1.3-6)

Figure 1.5 shows a sketch of part of an interface and the corresponding F -field (not
exact). Here it is seen that the interface between the disperse phase and the exterior
phase is not sharply defined through the F -function and that F is discontinuous across the
interface.
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Figure 1.5: 2D sketch of an arbitrary interface (solid curve) described by the discrete VOF
function Fi on VOF volumes Ωi.

In order to track the movement of the disperse phase using the VOF method it is nec-
essary to be able to transport the F -function in a given flow field. Details in transport
methods will not be given here since this is the subject of sections 2.4.1 and 2.4.2. However,
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8 Chapter 1. Introduction

it is noted that all transport algorithms (advection algorithms) rely on some sort of recon-
struction of the interface from the F -function. Two such reconstructions are illustrated in
Figure 1.6 where the interface is reconstructed with line segments locally in each interface
VOF cell. The left figure shows a reconstruction with line segments parallel to the VOF
cell sides and right figure shows line segments with arbitrary orientation. The reason why
interface reconstruction is needed is to avoid numerical diffusion (smearing) of the disperse
phase. More details about reconstruction algorithms are given in section 2.4.1.
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Figure 1.6: 2D sketch indication how the interface in figure 1.5 can be reconstructed
using line segments which are either parallel to the VOF cell sides (left) or have arbitrary
orientation (right). Sketch is not exact.

The VOF method is usually accredited to Hirt & Nichols (1981). However, DeBar
(1974) and Noh & Woodward (1976) describe methods which bear a close resemblance
to the method of Hirt & Nichols (1981) the main differences being details in the flux
calculations when transporting the VOF function in the flow. In this thesis all volume
tracking methods based on the transport of a scalar VOF function will be denoted as VOF
methods regardless of the details in the actual transport algorithm.

The flow field in which to advect the VOF function is obtained using a flow solver.
The flow solver is coupled to the position of the two phases relative to each other through
differences in physical parameters such as viscosity μ and density ρ and also through the
presence of interfacial tension. In Figure 1.7 a coarse overview of the main algorithms
and information flows associated with the implementation of VOF methods can be seen.
Inputs to the model are the viscosities and densities of the continuous phase (subscript c)
and drop phase (subscript d), the interfacial tension coefficient σ and the flow field applied
onto the domain boundaries. Hereafter the interfacial tension forces and suitable values of
the viscosity and density are calculated and used in the flow solver. When the flow field
has been solved the interfaces are reconstructed from the F -function where after a new
position of the drop phase is obtained when F has been transported in the flow field. The
distance the disperse phase is transported depends on the size of a time step parameter
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1.3. Introduction to the VOF method 9

Δt. The procedure is repeated until the final simulation time is reached.

∑
Δt = tfinal

∑
Δt < tfinal

(boundary conditions)

Calculate:

interfacial tension,

μ̄, ρ̄

Reconstruct interface

Advect F-function

Solve flow field

μc, μd, ρc, ρd, σ
Input parameters:

Define flow field

Figure 1.7: Flow chart showing the main algorithms and information flow of the imple-
mented model.

The flow solver can be based on a number of different discretization schemes. In the
older literature finite difference schemes were applied (these were the ones available at the
time), e.g. (DeBar 1974, Hirt & Nichols 1981). In more recent VOF implementations Finite
Volume schemes (Ginzburg & Wittum 2001) and Finite element schemes have become
widely used. Especially the implementation of VOF methods with FE solvers has become
popular due to the strength of FE methods in connection with complex domain geometries,
e.g. (Mashayek & Ashgriz 1995, Wu, Yo & Jiang 1998, Shin & Lee 2000, Wang 2002,
Pantuso, Jiang, Shankar & Skokov 2003). For this reason we have also chosen to base our
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10 Chapter 1. Introduction

flow solver on the FE method.

1.4 The lay-out of the thesis

The work presented in this thesis consists of a modeling part and an experimental part. In
the modeling part we begin by presenting the governing flow equations and their transfor-
mation into the finite element formulation (sections 2.1 and 2.2). Then the implemented
flow solver is tested and its solution verified in terms of spatial convergence (section 2.3).
Section 2.4 is concerned with the VOF algorithms, these include surface reconstruction and
fluid advection (section 2.4.2), coupling of the flow field obtained from the flow solver to the
VOF mesh (section 2.4.2.4) and tests of the advection algorithm in predefined flow fields
(section 2.4.3). Since the exact position of fluid interfaces is not known when using the
VOF method a special method needs to be applied in order to include interfacial tension
forces in the flow calculations. The inclusion of interfacial tension is the subject of section
2.5 with some simple tests given in section 2.7 and 2.8. Finally the full model, includ-
ing interfacial tension, is tested in terms of spatial and temporal convergence in section
3.2. Further tests and example simulations on drop deformation behavior in simple flow
fields are given in section 3.3 and 3.4. These simulations include drop break-up and drop
coalescence.

The experimental work carried out is based on studies of drop deformation behavior
in complex flow fields. The experimental setup and procedure are presented in section 4.1
and 4.3. A key part of the data analysis involves an automated image analysis procedure
which is explained in section 4.4. Due to the complexity of the flow field generated in the
experimental apparatus, numerical calculations are required in order to obtain the flow
field. The analysis of the experimental data is split up into two parts. The first part
(section 4.5.1) is based on time averaged values of the deformation and a geometry based
apparent shear rate. In these data no information regarding the real flow field is used.
In the second part (chapter 5) the flow field is calculated numerically for a number of
experiments. Following the procedure described in (Feigl et al. 2003) the flow field is then
used for carrying out simulations of the time dependent drop shape using the implemented
VOF model. The results from the VOF model are compared to the experimentally obtained
drop deformations (section 5.2) and to results obtained using a well established BI code1

(section 5.3).
Finally the thesis is concluded with an overall summary of the work carried out and

possibilities for future work.

1The original code is developed by (Loewenberg & Hinch 1996) and has later been adapted by Feigl
et al. (2003) to handle time dependent flow conditions.
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Chapter 2

The Finite Element-Volume of Fluid

model

In this chapter the details of the Finite Element-Volume of Fluid (FE-VOF) method im-
plemented in this project are presented. The model derivation and implementation can be
separated into two distinctive parts. The first part is to solve the flow field given some
domain boundary conditions and fluid properties. The second problem is to track the two
fluids relative to each other in the flow. The flow field solution is linked to the configura-
tion of the two fluid phases through differences in physical properties and the existence of
interfacial tension associated with the interface separating the two fluids.

We will begin with the description of the equations governing the flow field with inter-
facial tension absent. Then the finite element discretization of these equations is explained
and the resulting equation system is outlined. However, when solving fluid dynamics prob-
lems in 3D domains it is crucial that memory efficient storage schemes are used and that
the solution procedure is highly optimized because the number of independent variables
usually is very large in realistic problems. The solver and storage scheme used are explained
after the discretization section and finally the solver is tested in terms of convergence.

In the second part details of the implemented VOF algorithms are given. Here emphasis
is on the advection procedure and calculation of interfacial tension. In our implementation
we have added the choice of using a 2-level algorithm in which different mesh element
concentrations are used for the calculational mesh and the VOF mesh. An explanation of
our 2-level algorithm is given in subsections 2.4.2.4 and 2.5.2.2. A discussion of divergence
free interpolation used for interpolating the velocities from the calculational mesh onto the
VOF mesh is also given. In section 2.4.3 the advection algorithm is tested in predefined
flow fields (no interfacial tension) while in sections 2.7 and 2.8 some simple tests of the
implemented interfacial tension models are carried out. More comprehensive tests of the
full FE-VOF code is the subject of chapter 3.

11

35



12 Chapter 2. The Finite Element-Volume of Fluid model

2.1 Governing equations

The mathematical description of fluid motion is obtained through the conservation of mo-
mentum (the equation of motion) and conservation of mass (the continuity equation). The
underlying physics of these conservation laws and their transformation into mathematical
models can be found in standard text books on transport phenomena and fluid dynamics
such as (Bird, Stewart & Lightfoot 2002) and (Bird, Armstrong & Hassager 1987). In the
following these models, which form the basis for the flow solver, are presented.

2.1.1 The equation of motion

In tensor notation the equation of motion is given by (Bird et al. 2002):

∂

∂t
ρv = −[∇ · ρvv] −∇p − [∇ · τ ] + f (2.1-1)

In (2.1-1) ρ is density, p is pressure, v is the velocity vector, τ is the molecular (or viscous)
stress tensor and f represents external body forces, e.g. gravitational forces. For an
incompressible Newtonian fluid with constant density the viscous stress tensor τ is given
by:

τ = −μ(∇v + (∇v)T) (2.1-2)

where μ is the viscosity and (∇v)T is the transpose of the velocity gradient tensor. It is
noted that in the above v and p are functions of time t and position x = (x1, x2, x3). In
creeping flows, i.e. for small Reynolds numbers (Re << 1), the first term on the RHS
of equation 2.1-1 which is quadratic in the velocity and represents inertial effects can be
neglected. The flow situations which we will focus on are not necessarily in the creeping flow
limit. However, in many cases the local flow surrounding a dispersed drop is characterized
by very small drop Reynolds numbers (Red) where Red is given by:

Red =
ρcGr2

0

μc
(2.1-3)

In equation 2.1-3 ρc is the density of the continuous phase, G is the rate of strain, r0 is the
initial drop radius and μc is the viscosity of the continuous phase. We therefore neglect
the non-linear term in our calculations as it is the local flow in the proximity of the drop
which is of main interest. Furthermore we solve the fluid advection as a quasi steady state
problem which means that we need only to solve the steady state momentum balance in
each time step. The flow problem thus consists of solving the Stokes equation:

0 = −[∇ · π] + f (2.1-4)

where π = pI + τ and I is the identity tensor. Written out into its 3 components using
Einstein notation the Stokes equation in Cartesian coordinates is given by:

0 = −∂πk,j

∂xj
+ fk, k = 1, . . . , 3 (2.1-5)
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2.2. Finite element discretization 13

where ∂/∂xj is the spatial derivative in the jth direction.

2.1.2 The continuity equation

Conservation of mass is described by the continuity equation

∂ρ

∂t
= −(∇ · ρv) (2.1-6)

For a constant density fluid equation 2.1-6 reduces to

0 = (∇ · v) (2.1-7)

or ∂vj/∂xj = 0, j = 1, . . . , 3 in Einstein notation.

2.2 Finite element discretization

In this section we will derive the finite element formulation of the Stokes equations (mo-
mentum balance) and the equation of continuity. In the present implementation we have
chosen to use quadratic finite element shape functions for the velocity field and discon-
tinuous constant pressures for the pressure field. This combination of velocity and pres-
sure approximations is known to yield stable equation systems, e.g. (Elman, Silverster &
Wathen 2005). We will begin by describing the relevant shape functions and derivatives
thereof. Hereafter the momentum balance and equation of continuity are cast into their
respective finite element formulations and discretized.

2.2.1 The velocity shape functions

Finite element discretization involves diving the domain of interest into a number of sub-
domains in which the variables, i.e. velocity and pressure, are approximated locally by
some type of interpolation (or shape) function. One great advantage of the finite element
method is that one can choose from a class of standard geometrical shapes (elements) as
representatives of the sub-volumes. This makes the finite element method ideal for problems
involving complex geometries. In our case we use hexahedral elements as these types of
elements are the ones that are the most ’compatible’ with the VOF method, e.g. compared
to tetrahedral elements. The element used in the present implementation is the 20 node
brick element, cf. figure 2.1. Here all nodes are positioned on the boundary of the element.
This element differs from the standard quadratic Lagrange element in which additional
nodes are positioned on the faces of the element and in the element centre (Zienkiewicz &
Taylor 2000). However, by using the 20 node element one reduces the number of degrees
of freedom (DOF) in the final system of equations compared to the standard Lagrange
element while still locally approximating the velocities quadratically.
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14 Chapter 2. The Finite Element-Volume of Fluid model

Velocity nodes

Figure 2.1: 20 node hexahedral element. ◦ symbolizes the position of quadratic nodes.
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Figure 2.2: Mapping from the calculational domain onto the parent element

Interpolation within a given element is carried out by an iso-parametric mapping from
the calculational domain onto a parent element defined in the local coordinate system
(ξ, η, ζ), cf. figure 2.2.

The parent element is given by ([−1, 1] × [−1, 1] × [−1, 1]) with the nodes residing at
the following positions:

Node (ξ, η, ζ) Node (ξ, η, ζ)
1 (+1,−1,−1) 2 (+1,−1, +1)
3 (−1,−1, +1) 4 (−1,−1,−1)
5 (+1, +1,−1) 6 (+1, +1, +1)
7 (−1, +1, +1) 8 (−1, +1,−1)
9 (+1,−1, 0) 10 (0,−1, +1)
11 (−1,−1, 0) 12 (0,−1,−1)
13 (+1, +1, 0) 14 (0, +1, +1)
15 (−1, +1, 0) 16 (0, +1,−1)
17 (+1, 0,−1) 18 (+1, 0, +1)
19 (−1, 0, +1) 20 (−1, 0,−1)
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2.2. Finite element discretization 15

Interpolation within an element is then carried out using locally defined shape functions.
At a given point (ξ, η, ζ) in the parent element the shape functions are given by (Zienkiewicz
& Taylor 2000):

Corner nodes, ξi = ±1 ηi = ±1 ζi = ±1

Ni(ξ, η, ζ) =
1

8
(1 + ξ0)(1 + η0)(1 + ζ0)(ξ0 + η0 + ζ0 − 2), i = 1, . . . , 8 (2.2-8)

Mid-side nodes, ξi = 0 ηi = ±1 ζi = ±1

Ni(ξ, η, ζ) =
1

4
(1 − ξ2)(1 + η0)(1 + ζ0), i = 10, 12, 14, 16 (2.2-9)

Mid-side nodes, ξi = ±1 ηi = 0 ζi = ±1

Ni(ξ, η, ζ) =
1

4
(1 − η2)(1 + ξ0)(1 + ζ0), i = 17, . . . , 20 (2.2-10)

Mid-side nodes, ξi = ±1 ηi = ±1 ζi = 0

Ni(ξ, η, ζ) =
1

4
(1 − ζ2)(1 + ξ0)(1 + η0), i = 9, 11, 13, 15 (2.2-11)

where in (2.2-8) through (2.2-11) the variables ξ0, η0 and ζ0 are given by

ξ0 = ξξi η0 = ηηi ζ0 = ζζi

and i = 1, . . . , 20 are the element nodes. Velocities can then be interpolated everywhere
within an element by:

v̂k(ξ, η, ζ) =

20∑
i=1

Ni(ξ, η, ζ)v̂k,i , k = 1, . . . , 3 (2.2-12)

where v̂k,i is velocity component k at local node i and v̂k is the interpolated velocity.
Globally the velocities can be approximated using global shape functions, i.e.

v̂k(x) =

Nn∑
I=1

φv
I(x)v̂k,I , k = 1, . . . , 3 (2.2-13)

where I = 1, . . . , Nn corresponds to the global nodes. The global shape function φv
I is

defined in terms of the local shape functions:

φv
I(x) =

⎧⎪⎨
⎪⎩

Ni(I,n)(ξ(x), η(x), ζ(x)) , x ∈ ⋃Ne

n1=1

{
Ωn1

if node I ∈ element n1

∅ otherwise

0 , otherwise

(2.2-14)
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16 Chapter 2. The Finite Element-Volume of Fluid model

In (2.2-14) I and n refer to the global node and the relevant element number respectively.
Since we use iso-parametric elements the geometrical mapping between an element in

the calculational domain and the local system (ξ, η, ζ) is given by:

x̂k(ξ, η, ζ) =
20∑
i=1

Ni(ξ, η, ζ)x̂k,i , k = 1, . . . , 3 (2.2-15)

where x̂k,i are nodal coordinates of the element in question. The derivative of the shape
functions with respect to the global coordinates can be obtained through the chain rule:

∂Ni

∂ξ
= ∂Ni

∂x1

∂x1

∂ξ
+ ∂Ni

∂x2

∂x2

∂ξ
+ ∂Ni

∂x3

∂x3

∂ξ
∂Ni

∂η
= ∂Ni

∂x1

∂x1

∂η
+ ∂Ni

∂x2

∂x2

∂η
+ ∂Ni

∂x3

∂x3

∂η
∂Ni

∂ζ
= ∂Ni

∂x1

∂x1

∂ζ
+ ∂Ni

∂x2

∂x2

∂ζ
+ ∂Ni

∂x3

∂x3

∂ζ

(2.2-16)

Since we can write

∂xj

∂ξ
=

∂

∂ξ

(
20∑
i=1

Nix̂j,i

)
=

20∑
i=1

∂Ni

∂ξ
x̂j,i, j = 1, . . . , 3 (2.2-17)

and similarly for ∂xj/∂η and ∂xj/∂ζ , the local derivatives of the shape functions can be
written as ⎡

⎢⎣
∂Ni

∂ξ
∂Ni

∂η
∂Ni

∂ζ

⎤
⎥⎦ = J

⎡
⎣

∂Ni

∂x1

∂Ni

∂x2

∂Ni

∂x3

⎤
⎦ (2.2-18)

where J is the Jacobian matrix given by:

J =

⎡
⎢⎣
∑

∂Ni

∂ξ
x̂1,i

∑
∂Ni

∂ξ
x̂2,i

∑
∂Ni

∂ξ
x̂3,i∑

∂Ni

∂η
x̂1,i

∑
∂Ni

∂η
x̂2,i

∑
∂Ni

∂η
x̂3,i∑ ∂Ni

∂ζ
x̂1,i

∑ ∂Ni

∂ζ
x̂2,i

∑ ∂Ni

∂ζ
x̂3,i

⎤
⎥⎦ (2.2-19)

The global derivatives are then obtained by inverting equation 2.2-18:

⎡
⎣

∂Ni

∂x1

∂Ni

∂x2

∂Ni

∂x3

⎤
⎦ = J

−1

⎡
⎢⎣

∂Ni

∂ξ
∂Ni

∂η
∂Ni

∂ζ

⎤
⎥⎦ (2.2-20)

As will be evident later we will need to transform the integrals arising from the finite
element formulation of the momentum balance and the continuity equation from the global
to the local coordinate system. This requires evaluation of the determinant of the Jacobian
matrix which is given by

detJ =
∂x1

∂ξ

∂x2

∂η

∂x3

∂ζ
+

∂x1

∂ζ

∂x2

∂ξ

∂x3

∂η
+

∂x1

∂η

∂x2

∂ζ

∂x3

∂ξ

− ∂x1

∂ζ

∂x2

∂η

∂x3

∂ξ
− ∂x1

∂ξ

∂x2

∂ζ

∂x3

∂η
− ∂x1

∂η

∂x2

∂ξ

∂x3

∂ζ

(2.2-21)
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2.2. Finite element discretization 17

where the derivatives of the global coordinates with respect to the local coordinates are
calculated according to equation 2.2-17.

2.2.2 The pressure shape functions

Since the pressures are constant within each element, the local pressure shape function is
simply given by:

Np
n(ξ, η, ζ) = 1

in element n. The local pressure approximation thus is:

p̂(ξ, η, ζ) = Np
n(ξ, η, ζ)p̂ = p̂n (2.2-22)

Globally the pressure approximation can be written as:

p̂(x) =

Ne∑
n=1

φp
n(x)p̂n

Here the global pressure interpolation function φp(x) is given by:

φp
n(x) =

⎧⎪⎨
⎪⎩

Np
n(ξ(x), η(x), ζ(x)) , x ∈ Ωn\∂Ωn

∅ , x ∈ ∂Ωn

0 , otherwise

(2.2-23)

i.e. the pressure at a given position in the domain is given by the constant and discontinuous
pressure in the relevant element n. However, since the pressures are discontinuous they are
not defined on element boundaries (∂Ωn).

2.2.3 The finite element formulation

Now the momentum balance and the continuity equation are recast into their respective
finite element formulations (i.e. weak form). First the momentum balance, equation 2.1-4,
is multiplied with an arbitrary velocity shape function φv and integrated over the global
domain Ω:

−
∫
Ω

φv[∇ · π]dV +

∫
Ω

φvfdV = 0 (2.2-24)

Partial integration of the total molecular stress term in (2.2-24) leads to:

−
∫
Ω

[∇ · (φvπ)]dV +

∫
Ω

[∇φv · π]dV +

∫
Ω

φvfdV = 0 (2.2-25)

By applying the Gauss-Ostrogradskii theorem to the first term on the LHS of (2.2-25)
one obtains:

−
∫
Γ

φv[n · π]dS +

∫
Ω

[∇φv · π]dV +

∫
Ω

φvfdV = 0 (2.2-26)
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18 Chapter 2. The Finite Element-Volume of Fluid model

where Γ corresponds to a free surface. The surface integral in (2.2-26) can be used for
applying natural boundary conditions on interfaces. This will be used later to incorporate
interfacial tension to the interface between the disperse and continuous phase.

Similarly to the momentum balance the continuity equation is multiplied by an arbitrary
shape function and integrated over the domain. However, in this case the shape function
is associated with the pressure (φp):∫

Ω

φp∇ · vdV = 0 (2.2-27)

2.2.4 The discrete formulation

In order to discretize equation 2.2-26 and 2.2-27 the global integrals are rewritten as sums
of integrals over each finite element, Ωn, n = 1, . . . , Ne. Furthermore the arbitrary shape
functions φv and φp are substituted by the local shape functions and velocities and pressures
are discretized according to (2.2-12) and (2.2-22) (π̂ symbolizes the discrete equivalent to
π). For the momentum balance this results in:

Ne∑
n=1

∫
Γn

Nv
i(I,n)[n · π̂]dS −

Ne∑
n=1

∫
Ωn

[∇Nv
i(I,n) · π̂]dV +

Ne∑
n=1

∫
Ωn

Nv
i(I,n)fdV = 0 (2.2-28)

In (2.2-28) I = 1, . . . , Nn corresponds to the global nodes. It is noted that there is a
unique correlation between the local node i on element n and the global node I.

The continuity equation is treated in the same manner which yields

Ne∑
n=1

∫
Ωn

Np
n∇ · vdV = 0 (2.2-29)

where in practice Np
n = 1 for all n.

The volume integral over the total molecular stress tensor π in the momentum equation
can, in its discrete form, be written as:

Ne∑
n=1

∫
Ωn

∇Nv
i(I,n) · π̂dV =

Ne∑
n=1

3∑
k=1

(
C

i(I,n)
k +

3∑
k1=1

A
i(I,n)
kk1

)
δk (2.2-30)

where e.g. the term A
i(I,n)
11 is given by

A
i(I,n)
11 = −μ

20∑
i1=1

v̂1,i1

∫
Ωn

2
∂Ni(I,n)

∂x1

∂Ni1

∂x1
+

∂Ni(I,n)

∂x2

∂Ni1

∂x2
+

∂Ni(I,n)

∂x3

∂Ni1

∂x3
dV (2.2-31)
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2.2. Finite element discretization 19

and the pressure term C
i(I,n)
k is given by

C
i(I,n)
k = p̂n

∫
Ωn

∂Nv
i(I,n)

∂xk
Np

ndV (2.2-32)

In (2.2-30) δk is the unit vector in coordinate direction k. In appendix A all the terms
are given. Since the local velocity shape functions Nv

i(I,n) are only non-zero locally in each

element (by definition) the only contributions to A
i(I,n)
kk1

and C
i(I,n)
k arise from elements

which share the global node I.
The external force term can be written in a similar manner, i.e.:

Ne∑
n=1

∫
Ωn

Nv
i(I,n)fdV =

Ne∑
n=1

3∑
k=1

f
i(I,n)
k δk (2.2-33)

where

f
i(I,n)
k =

∫
Ωn

Nv
i(I,n)fkdV

Generally the free boundary term is discretized according to the particular Boundary
Conditions (BC’s) applied to the domain. In the present implementation one can chose
between the following type of BC’s:

1. Dirichlet BC’s - i.e. velocities are specified on boundary nodes

2. Symmetry - velocity component normal to symmetry plane is set to 0

3. Periodic BC’s

4. Neutral BC’s - corresponds to a free surface without surface tension (n · π = 0)

5. Interfacial tension associated with liquid-liquid interfaces (section 2.5)

In case of Dirichlet, Symmetry and periodic BC’s the free boundary term does not need
consideration. Furthermore in the case of free domain surfaces we simply apply n · π = 0

and the surfaces integral becomes 0 in this case. However, the presence of interfacial
tension associated with liquid-liquid interfaces also needs to be considered. In this case the
surface integral in (2.2-28) is used to represent the stress difference across the interface.
This problem is addressed in section 2.5. If we for now consider only a system containing
a single fluid bounded in a domain with BC’s 1-4 stated above the problem consists of
calculating the coefficient contained in (2.2-31), (2.2-32) and (2.2-33) and also to include
the equation of continuity which in its discrete form can be written as

Ne∑
n=1

∫
Ωn

Np
n1

(∇ · v)dV =

Ne∑
n=1

3∑
k=1

Dn1

k = 0, n1 = 1, . . . Ne (2.2-34)
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20 Chapter 2. The Finite Element-Volume of Fluid model

where

Dn1

k =

20∑
i=1

v̂k,i

∫
Ωn

∂Nv
i

∂xk
Np

n1
dV

2.2.5 The global equation system

In the global domain there are Nn nodes and Ne non-overlapping elements. Since the
velocities are associated with the global nodes and the pressures are associated with the
elements the total number of DOF is 3Nn + Ne. Similarly there are Nn independent equa-
tions arising from the momentum balance in each coordinate direction and Ne independent
equations arising from the continuity equation. One can thus obtain the nodal velocities
and elemental pressures by solving a linear system with size 3Nn +Ne. If we define a vector
b containing the nodal velocities and the pressures as

b = [v̂1,1, . . . , v̂1,Nn
, v̂2,1, . . . , v̂2,Nn

, v̂3,1, . . . , v̂3,Nn
, p̂1, . . . , p̂Ne

]T (2.2-35)

the structure of the linear system will be⎡
⎢⎢⎣

A11 A12 A13 C1

A21 A22 A23 C2

A31 A32 A33 C3

D1 D2 D3 0

⎤
⎥⎥⎦ b =

⎡
⎢⎢⎣

f1

f2

f3

0

⎤
⎥⎥⎦ =⇒ Mb = f (2.2-36)

The sub-systems of the LHS of equation 2.2-36, i.e. A11, . . . , A33, C1, . . . , C3 and D1, . . . , D3,
can be deduced from the discretization of the momentum balance and continuity equation,
cf. equation 2.2-30 and 2.2-34. If we take subsystem A11 and C1 as examples the elements
are given by

aI,J
11 =

Ne∑
n=1

∫
Ωn

2μ
∂Nv

i(I,n)

∂x1

∂Nv
j(J,n)

∂x1

+
∂Nv

i(I,n)

∂x2

∂Nv
j(J,n)

∂x2

+
∂Nv

i(I,n)

∂x3

∂Nv
j(J,n)

∂x3

dV,

I = 1, . . . , Nn; J = 1, . . . , Nn

(2.2-37)

and

cI,n
1 =

∫
Ωn

∂Nv
i(I,n)

∂x1
dV, I = 1, . . . , Nn; n = 1, . . . , Ne (2.2-38)

Here I and J are global nodes and n is the element number. The coefficients in (2.2-37)
are only non-zero on elements which share both node I and J . Similarly the coefficients
in (2.2-38) are only non-zero for elements sharing node I. The same applies for all the
coefficients in the equation system. The resultant system will therefore be sparse with a
sparsity pattern which is related to the numbering of the nodes and the organisation of
equations system. If one writes up all the coefficients entering the system it is evident that
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the total coefficient matrix M is symmetric, i.e. M = MT, which halves the required
memory for storage of M .

The force terms in (2.2-33) are calculated explicitly and thus enter the RHS of equation
2.2-36.

2.2.6 Numerical integration

In order to evaluate the coefficients in the coefficient matrix M and the force terms in
equation 2.2-36 we need to calculate integrals of the type:∫

Ωn

F (ξ(x), η(x), ζ(x))dV (2.2-39)

However, the integration boundaries are those of the element in the cartesian coordinate
system and can therefore be very complicated. We therefore transform the integral from
the cartesian domain to the local (ξ, η, ζ) domain in which the integration can be carried
out over the simple regular hexahedral parent element. The transformation to the local
coordinate system is carried out using a standard method where the differential volume
element dx1dx2dx3 can be written as (see also (Zienkiewicz & Taylor 2000)):

dx1dx2dx3 = detJdξdηdζ (2.2-40)

The determinant of the Jacobian matrix is calculated from equation 2.2-20. The integral
in (2.2-39) can then be evaluated on the simple parent element, i.e.

1∫
−1

1∫
−1

1∫
−1

F (ξ, η, ζ) detJdξdηdζ (2.2-41)

This greatly simplifies the problem, however, algebraic integration of F̄ usually is far
from trivial and in most cases ’defies our mathematical skill’ as stated by Zienkiewicz &
Taylor (2000). To overcome this problem numerical integration is applied. This numerical
integration is carried out using gaussian quadrature formulas such that

1∫
−1

1∫
−1

1∫
−1

F (ξ, η, ζ) detJdξdηdζ =

Nint∑
i=1

F (ξi, ηi, ζi) detJ(ξi, ηi, ζi)Hi (2.2-42)

In equation 2.2-42 i = 1, . . . Nint correspond to the integration points and Hi are the
corresponding quadrature weights. The weights can be found in e.g. (Abramowitz &
Stegun 1972) or (Zienkiewicz & Taylor 2000). One advantage of using numerical integration
compared to algebraic integration is that the code becomes more general because the same
integration algorithm can be used for different types of finite elements. The accuracy of
the numerical integration depends on the number of integration points Nint used. It is
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22 Chapter 2. The Finite Element-Volume of Fluid model

important that the integration accuracy is sufficiently high in order to obtain the same
rate of convergence with mesh refinement as would be obtained if exact integration was
used. However, since numerical integration results in an increase in computation time the
number of integration points should not be larger than necessary for obtaining the correct
convergence rate. From (Zienkiewicz & Taylor 2000) the appropriate integration formula
for quadratic elements with C0 problems is shown to be the 2× 2× 2 Gauss point formula
(i.e. Nint = 8). In the present implementation the user can choose whether to use 2×2×2
or 3×3×3 integration points. And as will be evident later both integration schemes result
in the same convergence order. However, the error associated with the 8 point scheme is
slightly higher than that associated with the 27 point scheme.

2.2.7 Linear solver and sparse storage scheme

In order to take advantage of the sparsity of the resultant linear system we use the PAR-
DISO sparse linear solver (Shenck, Gärtner & Fichtner 2000, Shenck & Gärtner 2004,
Shenck & Gärtner 2006). This solver is available with no charge for academic purposes
and can handle symmetric definite and indefinite systems as well as non-symmetric sys-
tems. Furthermore the solver is developed for shared memory multiprocessor systems and
computation times can therefore be decreased by using multiple processors in parallel.
In order to save memory associated with the coefficient matrix only non-zero entries are
stored. The storage scheme used is the compressed sparse row format and for a symmetric
matrix only the upper triangular part is stored. This storage scheme requires 2 pointer
arrays and 1 array for storage of the non-zero matrix entries. If we take the symmetric
8 × 8 matrix given below as an example⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 0 0 a15 0 a17 0
a12 a22 a23 0 0 a26 0 0
0 a23 a33 0 0 0 0 a38

0 0 0 a44 a45 0 a47 0
a15 0 0 a45 a55 0 0 a58

0 a16 0 0 0 a66 a67 a68

a17 0 0 a47 0 a67 a77 0
0 0 a38 0 a58 a68 0 a88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

the non-zero entries of the upper triangle are stored in array A in row order, i.e.

A = [a11, a12, a15, a17, a22, a23, a26, a33, a38, a44, a45, a47, a55, a58, a66, a67, a68, a77, a88]

An array IA is used as a pointer for the row indices such that for a given row, I, IA(I)
gives the position in A of the first non-zero entry of row I in the upper triangle of the full
system. For the above example IA is given by:

IA = [1, 5, 8, 10, 13, 15, 18, 19]

The column indices are stored in array JA:
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2.3. Convergence of the Stokes solver 23

JA = [1, 2, 5, 7, 2, 3, 6, 3, 8, 4, 5, 7, 5, 8, 6, 7, 8, 7, 8]

This means that for a given row I in the coefficient matrix the non-zero entries can be
found in A(IA(I):IA(I+1)-1) with column indices JA(IA(I):IA(I+1)-1).

2.2.8 Boundary conditions

The types of BC’s we apply onto the boundaries of the global domain have been mentioned
above. Here some notes on the implementation of velocity BC’s and periodic BC’s are given.
Specification of some or all the velocity components on a boundary results in a decrease in
the DOF’s and the equations associated with such boundary nodes are removed from the
equation system. Furthermore, terms in the remaining equations which arise from nodes,
on which velocities are specified, are multiplied by the specified velocity in question and
moved to the RHS of the system.

In the case of periodicity source and destination boundaries need to be specified. The
nodes on the source boundary are then copied and replaced by the nodes on the destination
boundary. This type of boundaries then represent repetitions of the geometry extending
from each periodic ’wall’. In Figure 2.3 a sketch of a 2D domain with a regular mesh can
be seen. Here the right boundary is the source while left boundary is destination. The
Periodicity is in this case simply implemented by making a shift in the node numbering
and copying the numbering from the right wall to the left wall.
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Figure 2.3: Shift in node numbering associated with periodic BC’s.

2.3 Convergence of the Stokes solver

The validity of the implemented Stokes solver is checked by investigating the convergence
behavior of the solution with respect to mesh refinement. In order to carry out such tests

47



24 Chapter 2. The Finite Element-Volume of Fluid model

it is necessary to know the ’real’ flow field of the benchmark problem to compare the
numerical solution with. First an appropriate benchmark problem has to be defined. Here
it is important that the problem is of sufficient complexity such that the solver cannot
reproduce the solution exactly (to machine precision). Second the exact solution to the
problem needs to be evaluated. If possible one can derive the analytical solution otherwise
it needs to be evaluated numerically. In the latter case one can choose to generate a
reference solution on a very fine mesh and then compare solutions on coarser meshes with
the reference solution. The downside to this approach is that even though one obtains
correct convergence behavior one cannot be certain that there is no constant bias in the
solution. Therefore it is preferable to use a problem where an analytical solution exists.
The test problem used in the present project is one which is described in Elman et al.
(2005) and which has an analytical solution. The problem is based on a 2D flow field in a
square domain and has the following analytical solution:

v1 = 20x1x
3
2

v2 = 5x4
1 − 4x4

2

p = 60x2
1x2 − 20x3

2 + c

(2.3-43)

Here c is an arbitrary constant. The flow and pressure fields described by (2.3-43) are
illustrated in Figure 2.4.
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Figure 2.4: Velocity field and pressure distribution represented by equation 2.3-43. (a)
velocity vector plot, (b) pressure distribution with the constant c = 0.

In order to solve this problem using the implemented Stokes solver a rectangular domain
with a regular mesh is used. Since the flow in (2.3-43) is 2-dimensional one velocity
component, say v3, is set to zero on all domain boundaries while the velocities on the
boundaries perpendicular to the x1 and x2 direction are specified according to (2.3-43).
The v1 and v2 velocity components are not specified on boundaries which are perpendicular
to the x3 direction. In order to make sure that the convergence is correct for all flow
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2.3. Convergence of the Stokes solver 25

directions, the test is performed for all 3 planes of flow, i.e. also cases where either v1 or
v2 is set to 0. Here only the results from the analysis with v3 set to 0 is shown as the
results showed identical flow fields (to floating point precision) in all planes as expected.
In order to characterize the error in the velocities we use the 2-norm of the residuals
vector formed by the difference between the analytical and numerical velocities, v and v̂

respectively, on element nodes. The pressure error is found as the 2-norm of the residuals
between the analytical pressure values calculated in the centre of the finite elements and
the numerically calculated pressures (which are constant in each element). In all cases the
2-norm is normalized by the number of DOF for each of the variables. In equation 2.3-44
it is shown how the error in velocity component v1 is calculated as an example:

errorv1
=

||v1 − v̂1||2
Nn

(2.3-44)

where Nn is the number of velocity nodes. In the plane of the flow the number of elements
used is the same in both directions while in the neutral flow direction the number of ele-
ments is always kept at 4. The domain size used in the convergence test has the dimension
[−1; 1] × [−1; 1] in the plane of the flow while the dimension in the neutral direction is
scaled such that all the element side lengths are equal. In Table 2.1 the meshes used in the
convergence analysis can be seen.

Elements 4 × 4 × 4 8 × 8 × 4 16 × 16 × 4 32 × 32 × 4 64 × 64 × 4
Side length h 0.5 0.25 0.125 0.0625 0.03125

Table 2.1: Meshes used in the convergence analysis. Also shown is the corresponding
element side length h.

In figure 2.5 the convergence behavior for mesh refinement can be seen. The figure
shows the error as a function of the element side length h for velocity components v1 and
v2 and pressure p. Also shown in the figure is the reference line Error = h3.

From figure 2.5 it is seen that the convergence order for the error in the velocities is
approximately 3 (by comparison with the reference line). On the other hand the conver-
gence order of the pressure error seems to somewhat smaller. Table 2.2 shows the order in
the error as the element length h is halved. This data indicates that the convergence order
in the velocity approximation approaches 3 as the mesh is refined. Although the conver-
gence order is smaller for the pressure it increases with increasing mesh refinement. This

h Order in v1 Order in v2 Order in p

0.5 → 0.25 3.09 2.56 2.25
0.25 → 0.125 2.11 2.71 2.46

0.125 → 0.0625 2.85 2.84 2.63
0.0625 → 0.03125 2.92 2.92 2.73

Table 2.2: Convergence order of the error with mesh refinement.
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Figure 2.5: Log-log plot of the 2-norm of the error in v1, v2 and p as a function of the
characteristic element side length h. Also shown is Error = h3. 27 point integration was
used in the calculations.

could indicate that the pressure also exhibits third order convergence. For a Qp element,
i.e. an element with the full Lagrange expansion of order p the expected discretization
error is O(h2(p−m)+1) where m is the order of the highest derivative in the expression of
interest (Zienkiewicz & Taylor 2000). For m = 1 one expects O(h3) error for the quadratic
element and O(h) error for constant and discontinuous elements (i.e. P0). In the present
implementation the quadratic serendipity element is used for the velocity approximation
as described earlier and thus we do not have the full tri-quadratic expansion for the ve-
locities. However, the observed convergence order in the velocities is 3 and thus we obtain
the same order of convergence as would be expected from the full expansion. With re-
gards to the pressures the observed convergence order is considerably higher than expected
(O(h)). This behavior cannot be explained at present. However, it is noted that finite
elements based on discontinuous pressures have been reported to yield better results than
e.g. elements with linear pressures due to the conservation of mass on the element level
(Elman et al. 2005). Thus the high convergence order observed might be due to the fact
that elements are forces to be divergence free.

The convergence behavior shown in Figure 2.5 and Table 2.2 is based on the 27 point
integration scheme. Tests using the 8 point scheme showed similar convergence order, c.f.
Table 2.3. However, the error in the velocities was found to be ≈ 0.2% higher for the
8-point scheme compared to the 27-point scheme. The differences in the pressure error for
the two integration schemes was found to be in the order of 0.1% − 0.01%.
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2.4. The Volume of Fluid algorithms 27

Integration points nv1
nv2

np

8 2.70 2.77 2.52
27 2.69 2.76 2.52

Table 2.3: Observed convergence order using 8-point and 27-point integration. The table
shows the exponent of the polynomial fit Error = ahn to the error in v1, v2 and p (all data
points are used in the fit).

In summary the convergence tests carried out on the Stokes solver show close to 3rd
order convergence for both the velocities and the pressures. This behavior is expected for
the velocities while the convergence order for the pressures is considerably higher than ex-
pected. Nevertheless the results indicate that the solution obtained from the implemented
Stokes solver is valid.

2.4 The Volume of Fluid algorithms

In the previous sections the flow solver was described. The next step is to introduce
a second fluid into the computational domain by means of the Volume of Fluid method.
Since the flow solver is based on finite element discretization it can handle complex domain
geometries. Therefore we will use as much as possible of the finite element framework in
our implementation of the VOF method such that this part of the code too can handle
complex domains (at least to some degree). The first part of this section will be on the
fluid tracking problem in a domain which is subdivided into a finite number of hexahedral
VOF cells and where the fluxes across each face of the cells are assumed to be known.
Hereafter we will address the problem of calculating the fluid fluxes from velocities specified
on the finite element nodes. Here the 2-level algorithm will also be presented as this
requires the calculation of fluxes in the interior of the finite elements. Some tests of the
advection algorithm are then carried out in predefined flow fields. Finally interfacial tension
is introduced into the Stokes solver.

2.4.1 Fluid advection reviewed

The conservation of a scalar quantity Φ convected in a flow field is governed by equation
2.4-1. Although this equation seems relatively simple, it represents a hyberbolic conserva-
tion law for which the solution procedure is by no means trivial. The main reason for this
is that direct solution procedures usually lead to extensive numerical diffusion such that Φ
is smeared out as time proceeds.

∂Φ

∂t
+ v · ∇Φ = 0 (2.4-1)

If the flow field is divergence free, i.e. ∇v = 0, equation 2.4-1 can be rewritten into:

∂Φ

∂t
+ ∇ · [Φv] = 0 (2.4-2)
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By integrating equation 2.4-2 over a domain Ω and applying the Gauss-Ostrogradskii di-
vergence theorem one obtains: ∫

Ω

∂Φ

∂t
dV = −

∫
∂Ω

Φn · vdS (2.4-3)

Here ∂Ω is the boundary of the domain. If explicit time stepping is used equation 2.4-3
becomes:

Φk+1 = Φk − Δt

V

∫
∂Ω

Φn · vdV (2.4-4)

where Φk and Φk+1 are the values of Φ at time step k and k + 1 respectively and V is
the volume of the domain under consideration. From equation 2.4-4 it is clear that the
convective transport of Φ amounts to calculating fluxes of Φ across the boundaries of Ω. The
advection of the VOF function F is exactly the type of problem described by equation 2.4-4
and it is the calculation of the boundary fluxes which requires special attention in order
to avoid smearing. This problem has been adressed by numerous researchers and various
solutions procedures have been proposed. Before going into the details of the advection
procedure implemented in the present project we will consider some of the algorithms
described in the litterature.

In order to avoid numerical smearing VOF advection algorithms include geometrical
reconstructions of the interface in order to calculate volume fluxes. The interface recon-
struction is based on an approximation to the interface normal and position in interface
cells. The various advection algorithms can be divided into two main groups. These are
operator split algorithms and non-split algorithms. In the split algorithms equation 2.4-2
is solved in one dimension at a time which requires 3 (or 2 in 2D) advection sweeps per
time step. In the non-split algorithms all 3 dimensions are treated simultaneously. The
split and unsplit algorithms can then be divided further into Eulerian or Lagrangian type
advections.

In its most simple form the reconstruction is based on a local approximation where
the interface is considered to be parallel to one of the VOF-cell faces. This method is
termed the Simple Line Interface Calculation (SLIC) method and was introduced by Noh
& Woodward (1976). This is an operator split algorithm where the interface normal is
approximated from a 3× 1 block of VOF cells aligned in the advection direction and with
the VOF cell under consideration being the center cell in the block. One of the strengths
of this algorithm is that multi (more than two) fluid systems can be treated in a relatively
easy manner, however, due to the coarse interface approximation the algorithm does not
reproduce the interface very accurately, see e.g. (Pilliod & Puckett 2004).

Another algorithm which also is based on interface reconstruction with interface seg-
ments aligned with the VOF grid is the method by Hirt & Nichols (1981) which is based
on a donor-acceptor scheme. In the algorithm by Hirt & Nichols (1981) the orientation of
the interface, which is either horizontal or vertical, is estimated from a 3× 3 (in 2D) block
of VOF cells. The orientation of the interface is then used for determining whether to use

52



2.4. The Volume of Fluid algorithms 29

up-winding or down-winding during the advection. The method by Hirt & Nichols (1981)
is one-dimensional in nature and thus requires operator splitting. However, an extension to
the unsplit 3D case has been carried out by Babaei, Abdollahi, Homayonifa, Varahram &
Davani (2006). The interface approximation in the VOF method of Hirt & Nichols (1981)
is often termed stair-case reconstruction as the geometrical interpretation of the interface
during advection resembles that of a stair case. This method has become widely used
because of its relative simplicity. However, one drawback of the method is the production
of small fluid bodies which are ejected from the surface of the fluid phase tracked by F ,
especially in high vorticity flow fields. In the literature these fluid bodies are often termed
as flotsam.

A major improvement to the SLIC and stair-case methods are methods in which the
interface is reconstructed using line segments (planes in 3D) of arbitrary orientation. DeBar
(1974) was the first to describe such a method. This procedure is based on an operator split
algorithm where the interface is reconstructed locally in each VOF cell using information of
the VOF function in neighbouring cells. However, only neighbouring cells in the advection
direction are considered. Thus the procedure for determining the orientation of the line
segment is one dimensional. When the interface segments have been set up the advection is
carried out in a Lagrangian manner by stretching and compressing the line segments. After
this Lagrangian advection step the VOF cell values of F are updated and the advection is
carried out in the second direction.

Another line segment method is the Flux Line-Segment Model (FLAIR) of Ashgriz &
Poo (1991). However, here the interface segments are set up at the boundaries of neigh-
bouring interface cells. In this method only the two VOF cells shearing the boundary under
consideration are used to determine the orientation of the interface segment. Furthermore
the advection is carried out in an Eulerian manner where the approximated interface posi-
tion is used for calculating the volume passing through each VOF cell boundary - without
stretching or compressing the interface.

A more recent and very popular line (or plane) segment method is the Piecewise Linear
Interface Calculation (PLIC) method described in (Gueyffier, Lie, Nadim, Scardovelli &
Zaleski 1999) for the 3D case. Although the basic idea behind the PLIC method resembles
that of DeBar (1974) it is more formalized. The PLIC interface reconstruction consists of
approximating the normal to the interface from the gradient of the F function, i.e. n = ∇F ,
in the VOF cell under consideration (usually in its centre). The interface plane is then
oriented perpendicular to this normal. Using the known orientation the plane is hereafter
positioned in the cell such that the volume enclosed by the plane and the boundaries of
the VOF cell satisfies the cell value of F . A general procedure for calculating the segment
position is given in (Gueyffier et al. 1999) both for 2D and 3D problems. This problem
will also be addressed in the next section of this thesis.

Various methods exist for calculating the gradient of F and in (Pilliod & Puckett 2004)
a very thorough evaluation of a number of these methods is made in terms of convergence
tests. Pilliod & Puckett (2004) also show that a criterion for a PLIC reconstruction to be
second order accurate with spatial refinement requires that lines in 2D and planes in 3D
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can be reproduced exactly. Some of the most widely used numerical schemes to approxi-
mate the interface normal are the Youngs method (Youngs 1982), the Parker and Youngs
method (Parker & Youngs 1992), the Least squares Volume-of-fluid Interface Reconstruc-
tion Algorithm (LVIRA) by Puckett (1991) and the Efficient Least squares Volume-of-fluid
Interface Reconstruction Algorithm (ELVIRA).

In the Youngs method the normal is first approximated on the vertices of the VOF cell
under consideration using a finite difference scheme. Then the interface normal in the VOF
cell is taken as the average of the vertex normals and thus information from a 3 × 3 × 3
block of cells (in 3D) is used for the normal approximation.

In the Parker and Youngs method a 6-point finite difference stencil is used (4 point
stencil in 2D). However, again information from 3× 3× 3 block of cells is used to generate
average F values at the stencil points. Furthermore a weighting parameter α is introduced
in the calculations of average F values.

The analysis by Pilliod & Puckett (2004) shows that the Parker and Youngs method
does not lead to exact approximations of lines or planes and is at best O(h1) order accurate.

The LVIRA method is based on a least squares minimization of an error function associ-
ated with a reconstructed interface segment. This method requires an iterative scheme and
thus is more computationally expensive than the Youngs and Parker & Youngs methods.
However, as shown in (Pilliod & Puckett 2004) it is fully second order accurate and is able
to reconstruct planes (and lines) accurately (to the tolerance used in the iterative scheme).
In the ELVIRA method a number of candidates for the interface normal are specified (6
in 2D). A minimization procedure is then used for obtaining the best candidate for the
normal. The ELVIRA method is second order accurate.

When the interface has been reconstructed, i.e. when interface normals and interface
segment positions have been calculated, the next step is to advect the F -function in the
flow field. Since the PLIC method is 3D in nature the advection can either be carried
out using an operator split method, e.g. (Gueyffier et al. 1999, Pilliod & Puckett 2004,
Scardovelli & Zaleski 2003) or and un-split method, e.g. (Harvie & Fletcher 2000, Harvie
& Fletcher 2001, Pilliod & Puckett 2004, Biausser, Guignard, Marcer & Fraunié 2004).
Furthermore the advection can be carried out using a purely Lagrangian method (Gueyffier
et al. 1999, Biausser et al. 2004), a purely Eulerian method (Pilliod & Puckett 2004, Harvie
& Fletcher 2000, Harvie & Fletcher 2001) or a mixture of both (Scardovelli & Zaleski 2003)
(Implicit Eulerian-Explicit Lagrangian). One of the problems of solving the advection
problem with an unsplit scheme is to avoid fluxing the same fluid across two cell faces in
the same time step. An example of this problem is sketched in Figure 2.1 (a) where the total
volume which leaves the cell through the north, N , and east, E, boundaries during time
step Δt is marked by the patterned rectangles (calculated by an Eulerian scheme). The
fluid that leaves the cell then corresponds to the overlap between the patterned rectangles
and the filled area, i.e. the area enclosed by the PLIC interface and the cell boundaries.
However, from the figure it is clear that part of the volume is fluxed through both the north
and east boundary. In (Harvie & Fletcher 2001) this problem is overcome by geometrical
considerations which include cell face velocities. Figure 2.1 (b) outlines how the flux
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problem can be avoided. Other methods include integration along streamlines (Harvie &
Fletcher 2000) (the Stream-Scheme) and Lagrangian methods (Biausser et al. 2004).
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vE

vS

vN

ΔtvE

ΔtvN

vE

vS

vN

(a) (b)

Figure 2.1: Sketch showing Eulerian multidimensional 2D flux calculations. (a) Example
of a scheme where part of the volume (area in 2D) is fluxed through two faces during a
given time step Δt and (b) a corrected flux scheme to avoid this problem.

Although the unsplit methods are efficient they are complex to implement for 3D prob-
lems due to geometrical nature of the problem. Furthermore some split algorithms perform
almost as well as the unsplit counterparts except maybe for problems which involve sharp
corners (Pilliod & Puckett 2004). Furthermore if a second order PLIC reconstruction algo-
rithm is used one can obtain second order accuracy in split algorithms by alternating the
advection direction, e.g. (Pilliod & Puckett 2004, Scardovelli & Zaleski 2003).

A parabolic reconstruction method is described in (Renardy, Cristini & Li 2002). In
this method, termed Parabolic Reconstruction Of Surface Tension (PROST), a parabolic
equation is fitted through a 5 × 5 × 5 block of VOF cells. This method leads to very
accurate interface reconstructions and has been developed in order to calculate interfacial
tension forces accurately. Also Ginzburg & Wittum (2001) describe a higher order recon-
struction algorithm, however this algorithm is based on a combination of PLIC and spline
interpolants.

Now we will turn to our own implementation of surface reconstruction and fluid advec-
tion.
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2.4.2 Surface reconstruction and fluid advection

We have chosen to base our own implementation on a split operator scheme with PLIC
interface reconstruction. Furthermore the approximation used for the interface normal is
somewhat similar to the Youngs method. The main reasons for these choices are:

• Operator split schemes are much easier to implement than their un-split counter-
parts - especially for 3D problems. This out weights the small difference in accuracy
between the two methods.

• Generalized procedures for interface positions calculations are readily available for
the PLIC method.

• The Youngs method for calculating interface normals can be directly extended to the
finite element methodology. It is though noted that it is only O(h1) accurate.

Our split advection algorithm is based on the purely Lagrangian approach described in
(Gueyffier et al. 1999) with some modifications in order to improve volume conservation.
Here we will start by outlining how the interface normal is calculated on a general mesh.

2.4.2.1 Evaluation of n

In order to evaluate the interface normal in a given interface VOF cell, which we hereafter
call the active cell, the F -field is interpolated onto vertices of the cell. First the active
cell and all its neighbouring cells are identified which leads to a 3 × 3 × 3 block with the
active cell in the centre. A ghost mesh is then overlaid this block of cells such that the
vertices of the ghost mesh elements are positioned in the geometrical centre of each VOF
cell. This leads to a ghost mesh with size 2 × 2 × 2. In Figure 2.2 a sketch shows the
procedure (in 2D for simplicity). In the figure full lines represent VOF cells while broken
lines represent the ghost mesh. The idea is now to use the ghost mesh to make a mapping
from the cartesian coordinate system to the local curvilinear system ξ, η, ζ . In order to do
this we use tri-linear finite element shape functions which are defined in terms of the ghost
mesh vertices and are given by (Zienkiewicz & Taylor 2000):

Li =
1

8
(1 + ξ0)(1 + η0)(1 + ζ0), i = 1, . . . , 8 (2.4-5)

where

ξ0 = ξξi, η0 = ηηi, ζ0 = ζζi

We will use the ghost element in the lower right corner in Figure 2.2 as an example, c.f.
also Figure 2.3. The values of the F -function on the ghost element nodes are then given
by the F -values in corresponding VOF cells, i.e. cells 4,5,7 and 8 in Figure 2.3. The F
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2

63 9

8

7

Figure 2.2: A 2d example of the 3 × 3 block of VOF cells used for calculating values of
F on vertices of the central active VOF cell. Solid lines represent the VOF mesh and
broken lines represent the ghost mesh used for the mapping to curvilinear coordinates. •’s
represent linear nodes on the ghost mesh and �’s represent the local linear nodes on the
active VOF element.

function can therefore be interpolated everywhere within the ghost element as (for the 3D
case):

F (x(ξ, η, ζ)) =
8∑

i=1

Li(ξ, η, ζ)Fi (2.4-6)

where Fi are the values of F on the ghost cell nodes.

In order to use equation 2.4-6 to evaluate F on the VOF cell node with global coordinate
x we need to know the position of the node in the local coordinate system, i.e. (ξ, η, ζ) cf.
Figure 2.3. Since we use an isoparametric transformation we can write:

x(ξ, η, ζ) =

8∑
i=1

Li(ξ, η, ζ)xi (2.4-7)

where xi are the global coordinates for the ghost element node points. For the point x

within the ghost element in question the corresponding local coordinates in the curvilinear
system can then be found by solving equation 2.4-7 as a set of 3 equations with the
3 unknowns ξ, η and ζ . However, equation 2.4-7 leads to a nonlinear problem which
includes terms of the form ξηζ and thus the problem cannot be solved directly. In our
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x1(ξ, η), x2(ξ, η)

Figure 2.3: Example of a ghost mesh element used for calculating the value of F at a
vertice on the active VOF cell. Numbers in brackets are local node numbers on the ghost
element.

implementation the solution is obtained iteratively using a Newton-Raphson scheme. Thus
in summary the nodal value of F is found by first calculating the position of the VOF cell
node in the local coordinate system and then interpolating F according to (2.4-6). This
procedure is repeated for all the vertex points of the active VOF cell. The interface normal
is then calculated (in the center of the active cell) as:

nk =
8∑

i=1

∂Li

∂xk

∣∣∣∣
(0,0,0)

Fi, k = 1, . . . 3 (2.4-8)

where Fi and ∂Li

∂xk
here are associated with the VOF cell nodes.

2.4.2.2 Interface segment position

When the interface normal is estimated in all interface VOF cells the next step is to set up
the corresponding interface plane segments. For a given interface VOF cell the orientation
of the interface plane segment is perpendicular to the normal and thus is locked. The
position of the plane segment is then determined by requiring that the volume bounded by
the interface segment and the boundaries of the VOF cell agrees with the value of F in the
considered cell. This evaluation is entirely geometric in nature as it requires the calculation
of intersections between planes and evaluation volumes of polyhedras. In a non-regular
mesh defined in the global coordinate system this would involve some rather complex
geometry. Therefore we will instead base these calculations on a square parent VOF cell
defined in the local coordinate system (ξ, η, ζ). This parent VOF cell is equivalent to the
parent finite element in Figure 2.2 with its vertex positions at ([−1, 1]× [−1, 1]× [−1, 1]).
First the interface normal is transformed from the global to the local coordinate system as:

n(ξ,η,ζ) = J |(0,0,0) · n(x) (2.4-9)
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where J is the Jacobian transformation matrix as defined earlier, cf. equation 2.2-19 (with
Ni interchanged with Li). In fact this means that no transformation between the global
and local coordinate system is necessary when the normal is calculated as described above,
cf. equation 2.4-8. Thus in this case the normal in terms of local coordinates is calculated
simply as

nξ =
8∑

i=1

∂Li

∂ξ

∣∣∣∣
(0,0,0)

Fi (2.4-10)

and similarly for the other local coordinate directions. However, we will later use equation
2.4-8 in connection with interfacial tension calculations. Let us now use m to designate
the interface normal in the local coordinate system. All planes with normal m can then
be described by:

m1ξ + m2η + m3ζ = α (2.4-11)

where the parameter α determines the position of the plane. In (Gueyffier et al. 1999) and
in (Scardovelli & Zaleski 2000) a general formula for calculating the volume enclosed by
an arbitrary plane and 3 or more sides of a cuboid with side lengths c1, c2, c3 is given. This
formula is restated in equation 2.4-12 below:

V =
1

6m1m2m3

[
α3 −

3∑
k=1

H(α − mkck)(α − mkck)
3

+

3∑
k=1

H(α − αmax + mkck)(α − αmax + mkck)
3

] (2.4-12)

In equation 2.4-12 H(.) is the Heaviside step function and αmax = m1c1 + m2c2 + m3c3.
Furthermore it is noted that when using equation 2.4-12 it is assumed that all components
of the normal vector m are positive. The geometric interpretation of equation 2.4-12 is as
follows: If we take a given plane m1ξ + m2η + m3ζ = α with positive mi and positive α
and plot it in the coordinate system ξ, η, ζ with origin (0, 0, 0) it will cut the coordinate
axes at (α/m1, α/m2, α/m3), cf. Figure 2.4. Thus the total volume bounded by CIJK in
Figure 2.4 is given by:

Vtot =
1

6

α3

m1m2m3

which gives the first term in the brackets on the RHS of equation 2.4-12. If now a cuboid
with side lengths c1, c2 and c3 is placed with its sides parallel to the coordinate axes the
plane will cut some of the sides of this cuboid if α < αmax = m1c1 + m2c2 + m3c3. Figure
2.5 shows an example where α < αmax.

With reference to Figure 2.5 the ’cut volume’, or volume bounded by the plane and
the sides of the cuboid is given by ABCDLMNK. This volume is obtained by subtracting
the volume of tetrahedras OJBN and IPDL from the total volume Vtot. These volumes are
calculated by the second term in the brackets of the RHS of equation 2.4-12. However,
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J
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ξ

ζ

η

α/m1

α/m3

α/m2

Figure 2.4: Intersection between the coordinate axes and the plane m1ξ + m2η +m3ζ = α.

the volume AOPM is subtracted twice and needs to be added back which is done by the
third term in equation 2.4-12. The Heaviside step function is used for only subtracting
(and adding back) volumes outside the cuboid.

Given the normal vector and parameter α it is thus possible to calculate the volume
bounded by the plane segment and sides of a VOF cell using equation 2.4-12. However,
until now we only know the orientation of the plane but not its position so it is the inverse
problem which is of interest, namely to calculate the position (α) when we know the volume
(from F ) and the normal. This means that we need to solve equation 2.4-12 for α. This can
be done numerically using e.g. bisection (first order) or Newton’s method (second order).
Bisection is used in the current implementation due to its robustness (this should though
be changed in the future). A good initial guess for the numerical procedure is obtained by
the following considerations: First we rearrange the indices such that

m1c1 ≤ m2c2 ≤ m3c3
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Figure 2.5: Illustration showing the ’cut volume’ calculated by equation 2.4-12. The volume
enclosed by the plane and the cuboid is given by ABCDLMNK. Figure is redrawn after
(Gueyffier et al. 1999).

Then we first set α = m1c1 which means that the plane will go through the point (ξ, η, ζ) =
(c1, 0, 0), but not protrude the sides of the element, cf. Figure 2.6 (a). If now the known
volume V is less than (or equal to) the volume V ∗ calculated by equation 2.4-12 with
α = m1c1 then we know that 0 < α ≤ m1c1. If this is not the case we set α = c2m2, cf.
Figure 2.6 (b), compute the volume again and compare it to the known volume. In case
V < V ∗ we know that m1c1 < α ≤ m2c2. This procedure is repeated until we find the
correct range of α, cf. Figure 2.6 (a)-(g). When the appropriate range is found it is used
as input for the bisection routine.

In case one of the normal components is zero equation 2.4-12 cannot be used. However,
since this problem corresponds to the case where the plane is parallel to one of the element
sides it can be treated using the 2 dimensional equivalent to equation 2.4-12 which is given
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Figure 2.6: Plane positions at various values of α.
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Figure 2.6: Continued.
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by e.g. Scardovelli & Zaleski (2000). If we arrange indices such that m3=0 the ’cut volume’
is given by:

V =
1

2m1m2

[
α2 −

2∑
k=1

H(α − mkck)(α − mkck)
2

]
c3 (2.4-13)

Since this is a second order polynomial in α it it solved analytically. First it is checked
how many terms in the square bracket on the RHS of equation 2.4-13 need to be taken
into account (there are 3 cases) and then the appropriate polynomial is solved. In practice
a normal component is treated as zero if it is smaller than some tolerance tol.

The last and simplest case is where 2 components of the normal vector are zero, say
m2 and m3, in which case α = (V m1)/(c2c3).

It is noted that when calculating α the absolute values of the normal components
are used. The correct plane segment position and orientation is then obtained by proper
rotation and/or mirroring. Furthermore, the positioning of the interface segment is only
based on the value of the F in the active cell and thus there is no requirement that the
interface is continuous across VOF cell boundaries. This means that generally there will
be a discontinuity of the interface segments across each cell boundary.

Due to the mapping from the global to local coordinate system the geometrical problems
associated with the calculation of the ’cut volume’ in the global mesh are avoided. However,
the fact that the PLIC reconstruction is made in the parent element means that if the
corresponding element in the global domain is distorted, then if one transforms the PLIC
face from the parent element back to the global element the interface segment will be
curved to some degree - dependent on the degree of distortion of the element. In Figure
2.7 this is illustrated where in figure (a) a plane with m = [0.6 1.0 0.3]T and α = 1.0 is
shown and in figure (b) the corresponding segment is shown in a distorted VOF cell. The
transformation from the local to global coordinates is carried out by using:

xs
k =

8∑
i=1

Li(ξ
s, ηs, ζs)xk,i, k = 1, . . . , 3 (2.4-14)

where xs
k and ξs, ηs, ζs refer to plane segment coordinates in the global and local coordinate

system respectively. In practice this means that, unless the VOF mesh consists of cells
with only right angles, the reconstruction leads to curved surfaces in the global domain.
However, since the reconstruction is only performed with the purpose of advecting the F -
function and the advection is also carried out in the local coordinate system, the interface
is never reconstructed in the global coordinate system (except for plotting purposes).

2.4.2.3 Advection

In order to facilitate the explanation of the advection algorithm we will begin by looking at
the 2D case for a mesh with rectangular elements. As mentioned earlier the implementation
is based on the purely Lagrangian approach using a split operator technique. We start here

64



2.4. The Volume of Fluid algorithms 41

−1
−0.5

0
0.5

1 −1
−0.5

0
0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ζξ

η

−0.5
0

0.5
1

1.5
2 0

0.2
0.4

0.6
0.8

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
3x

1

x 2

(a) (b)

Figure 2.7: (a) interface segment reconstructed using PLIC. (b) interface segment when
mapped back to the global coordinate system.

by restating the procedure described in (Gueyffier et al. 1999). Let us take an advection
step with time step Δt along the x1 direction as an example. Suppose we have an interface
VOF cell with fluxes fW and fE on the west and east (left and right) boundaries then the
corresponding boundary flux velocities are found as vW = fW/

∫
ΓW

dS and vE = fE/
∫

ΓE

dS

where the integral just is the length (area in 3D) of the cell boundary, see also Figure
2.8 top. It is then assumed that the velocity inside the cell varies linearly along the x1

direction. If for simplicity it is assumed that the west cell face has coordinate xW = 0 and
the east face has coordinate xE = h then the velocity inside the cell in the x1 direction is
given by:

v1(x1) = vW

(
1 − x1

h

)
+ vE

x1

h
(2.4-15)

For points initially at x1 it is assumed that the velocity is constant and given by equation
2.4-15 during the advection step. This means that the x1-coordinate of all points on the
interface segment will change to new values given by:

x∗
1 = x1 + v1(x1)Δt =

[
1 +

vE − vW

h
Δt

]
x1 + vWΔt (2.4-16)

During the advection, coordinate x2 remains constant (in 3D x3 is also constant). If the
initial coordinate x1 is isolated in equation 2.4-16 one obtains:

x1 =
x∗

1 − vWΔt

1 + ((vE − vW )/h)Δt)
(2.4-17)

The original line segment before advection is given by:

m1x1 + m2x2 = α (2.4-18)
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If now x1 from equation 2.4-17 is inserted into equation 2.4-18 one obtains:

m1

[
x∗

1 − vW Δt

1 + ((vE − vW )/Δt)

]
+ m2x2 = α =⇒ m∗

1x
∗
1 + m2x2 = α∗ (2.4-19)

where

m∗
1 =

m1

1 + ((vE − vW )/h)Δt
(2.4-20)

and

α∗ = α +
m1vW Δt

1 + ((vE − vW )/h)
(2.4-21)

Hence the advection changes the m1 component of the interface segment normal into m∗
1

and the position α into α∗. In Figure 2.8 an example shows the advection procedure. The
top figure shows an interface segment before advection. In the bottom figure the interface
has been advected with the above described method. Here the left and right edges of the
interface are advected the distances Δtv∗

W and Δtv∗
E respectively during time step Δt. The

velocities v∗
W and v∗

E are those interpolated onto the edges of the interface before advection.

Δtv∗W

vW vE

Δtv∗E

Figure 2.8: 2D split operator Lagrangian advection. Top illustration shows an interface
line segment before advection and bottom figure shows the interface after advection.

66



2.4. The Volume of Fluid algorithms 43

It is straight forward to extend the procedure to the 3D case, since, only one direction
is considered at a time. Thus in 3D equations 2.4-19 is just replaced by its 3D counterpart.
When an interface segment has been advected in a given VOF cell it is necessary to calculate
the volume which has left the cell if the interface has protruded into neighbouring cells.
Furthermore the remaining volume in the cell also needs to be evaluated. These volumes
are calculated using equation 2.4-12 with the new values m∗

1 and α∗ and appropriate values
of c1, c2 and c3, see e.g. (Gueyffier et al. 1999) for more details. When this procedure has
been carried out for all active VOF cells we know what volume remains in the cells and
what volume has left the cells. The final step is to update F by adding the volume entering
from the neighbouring cells. After advection is carried out completely in one direction the
interface normals and positions are updated and the advection is carried out in the second
direction (and then in the third direction for 3D problems). Thus for 3D problems each
time step requires three runs through the PLIC and advection algorithms.

One of the main advantages with the Lagrangian approach is that the requirement
0 ≤ F ≤ 1 is always fulfilled and thus no extra care has to be taken in order to avoid
overshoots or undershoots in F . However, one problem with the method is that it does
not conserve volume accurately. This is a severe drawback especially in our case where we
want to simulate the deformation of dispersed droplets because if the volume changes the
effective capillary number also changes. It is easy to show that the method is not volume
conserving by considering a simple 2D example consisting of a square VOF cell with side
lengths h and origin at (0, 0), cf. Figure 2.9 (a). Let us assume that the velocities on the
east and north boundaries and time step are such that vEΔt = −vNΔt = 1/4h while the
west and south velocities are zero. Furthermore the components of the outward directed
normal vector are m1 = 1 and m2 = 1 and α = 1/2h. Then if advection is carried, say,
in the x1 direction, the component of the normal vector will, according to equation 2.4-19,
change to m∗

1 = 1/(1 + 1/4) while α∗ = α. Hence due to the stretching of the interface
the interface will now intersect with the south boundary of the VOF cell at 1/2h + 1/4h.
Similarly advection in the x2 direction will move the line segment downwards such that
it intersects the west boundary of the VOF cell at 1/2h − 1/4h, see Figure 2.9 (b). The
initial value of F in the VOF cell was 1/8 while it after advection is 3/32 and thus volume
is lost even though the sum of the cell boundary fluxes is zero.

In order to overcome the problem associated with volume conservation in the split
Lagrangian approach Scardovelli & Zaleski (2003) device a scheme which is based on a
combined Eulerian-Lagrangian procedure. In this scheme advection is carried out using
Eulerian flux calculations in the first direction and Lagrangian flux calculation in the second
direction. The details of the scheme will not be restated here, however, the procedure does
indeed result in exact volume conservation. It is though noted here that this method is only
applicable to 2D problems because using either the Eulerian or Lagrangian method in the
third direction would destroy the volume conservation. One might, however, improve the
average volume conserving character of the method by alternating between the Eulerian
and Lagrangian approach in the third direction.

In stead of using a mixture of the Eulerian and Lagrangian method we will make a
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Figure 2.9: Sketch of a simple example showing that the Lagrangian advection algorithm in
(Gueyffier et al. 1999) is not volume conserving. (a) before advection, (b) after advection
in both the x1 and the x2 direction.

modification to the assumption that the velocity of a point with initial position x1 will
have a constant velocity during the advection step. Let us say that we have the situation
depicted in Figure 2.8 top and we want to advect the interface in, say, the x1-direction.
If we still assume that the velocity varies linearly from the west to the east wall but now
instead say that as a given interface point initially at x1, moves with the flow it changes
velocity due to linear dependence of velocity on position. At any position x1 the velocity
is given by equation 2.4-15 thus one can write:

dx1

dt
= vW

(
1 − x1

h

)
+ vE

x1

h
(2.4-22)

Solving this first order ODE with initial condition x1(t = 0) = x1 yields

x∗
1 = x1 exp

(
vE − vW

h
Δt

)
+

hvW

vE − vW

(
exp

(
vE − vW

h
Δt

)
− 1

)
(2.4-23)

If now a new time step variable Δt∗ is defined as

Δt∗ =
h

vE − vW

(
exp

(
vE − vW

h
Δt

)
− 1

)
(2.4-24)

then equation 2.4-23 can be written as

x∗
1 =

[
1 +

vE − vW

h
Δt∗
]

x1 + vW Δt∗ (2.4-25)

68



2.4. The Volume of Fluid algorithms 45

which is identical to equation 2.4-16 but with Δt replaced by Δt∗. Thus we can now use
equation 2.4-20 and 2.4-21 but with Δt replaced by Δt∗. However, we note that Δt∗ is
undefined when vE = vW in which case Δt∗ = Δt should be set. If we return to the simple
test problem outlined in Figure 2.9 (a) and calculate Δt∗ for the x1 direction we obtain:

Δt∗x1
=

h

vE − vW

(
exp

(
1

4

)
− 1

)

where vEΔt = 1/4 has been used. Inserting Δt∗x1
in place of Δt in equation 2.4-20 yields

m∗
1 = exp(−1/4)

while α∗ = α since vW = 0. This means that the line segment intercepts the south boundary
of the cell at x∗

1 = 1/2h exp(1/4). Similarly Δt∗ in the x2 direction is given by

Δt∗x2
=

h

vN − vS

(
exp

(
−1

4

)
− 1

)

where now vNΔt = −1/4 has been used. Thus m∗
2 becomes

m∗
2 = exp(1/4)

which means that the interface will intercept the west boundary of the cell at x∗
2 =

1/2h exp(−1/4). Hence the area enclosed by the line segment after advection is

h

2

h

2
exp

(
1

4

)
1

2
exp

(
−1

4

)
=

1

8
h2

which is exactly the initial area. If, in a given advection direction k, the velocity vk

varies linearly with position xk then Δt∗ is constant from element to element since the
1D divergence term ∂vk

∂xk
is constant. In this case application of the adjusted time step

parameter ensures that the volume is globally conserved. However in a general flow Δt∗

will vary from element to element and therefore care has to be taken not to overfill (F > 1)
elements when adding volumes entering a cell from its neighbours. This is done by scaling
the volume entering a cell with the ratio Δt∗in/Δt∗out where subscripts in and out refer to the
cell into which volume enters and cell from which volume leaves respectively. Therefore we
can only expect the advection to be globally volume conserving in linear flow fields - and
not in general. Later we will investigate the volume conserving properties of the method
with some numerical experiments.

The advection procedure outlined above requires that the velocity is defined on the
VOF cell faces and that the velocity is constant on each face. In practice these velocities
are obtained by dividing the face fluxes with the face areas, i.e.

vj,i =
fj,i

Aj,i
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where fj,i is the flux on face i of VOF cell j and Aj,i is the face area. In the next section
it is explained how the fluxes are calculated. For now we assume that we know the face
fluxes and the face areas. Since the interface advection is carried out in the local coordinate
system it is necessary to make sure that the amount of fluid fluxed across a given interface
in the local coordinate system agrees with flux in the global system. For a given face
velocity vj,i, the volume which is fluxed across face j, i during time step Δt relative to the
total VOF cell volume is given by:

V F rel
j,i =

vj,iΔtAj,i

Vj

In order to obtain the same relative flux in the local coordinate system a geometry based
factor βj,i is defined such that

vj,iΔtAj,i

Vj
= βj,i

vj,iΔtAloc

Vloc

or

βj,i =
Aj,iVloc

VjAloc

where Aloc and Vloc is the face area and cell volume in the local system. Thus if face
velocities in the local system are scaled by βj,i the volumetric flux per cell volume will
be the same in the local and global coordinate systems. In our case we use the standard
element ([−1, 1] × [−1, 1] × [−1, 1]) in the local system and thus:

βj,i = 2
Aj,i

Vj

To summarize the procedure of calculating the fluxes the following procedure is used:

1. VOF cell face velocities are calculated from the face fluxes.

2. Based on the VOF cell volumes and face areas in the global system, βj,i is calculated.

3. Face velocities are transformed from the global to the local system using βj,i.

4. Interface segments are advected in the local coordinate system using the split operator
Lagrangian procedure.

It is noted that since the advection is carried out in the local coordinate system the adjusted
time step Δt∗ is based on the transformed velocities. Furthermore one has to take into
consideration that adjacent cells do not necessarily have the same volume in the global
system. This means that the volume V Fin entering a cell with total volume Vin and
volume V Fout leaving a cell with total volume Vout must be scaled in the local system.
Recalling from earlier the V Fin also needs to be scaled with the ratio Δt∗in/Δt∗out in order
to avoid overfilling cells. Therefore the volume entering a cell is given by:

V Fin = V Fout
Δt∗inVout

Δt∗outVin
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where V Fout is the volume leaving the adjacent cell due to the Lagrangian advection of the
interface segment.

Since the advection procedure is purely lagrangian in nature there is in principle no
restriction on the time step size used. Here we define a CFL number (Courant number) as:

CFL = max

(
fj,i

Vj

)
Δt, j = 1, . . . , Nvof , i = 1, . . . 6 (2.4-26)

The CFL number in (2.4-26) is thus given by the maximum cell face flux relative to the
cell volume times the time step size. Therefore if CFL > 1 then the advection routine has
to be able to track an interface segment a distance greater than a cell width. This feature
has not been implemented in our code and thus the time step should be restricted such
that CFL ≤ 1. Furthermore since it is actually Δt∗ which is used during the advection it
is the CFL number based on Δt∗ which should be less than one (CFL∗ < 1). It is possible
to set a criterion on the CFL number such that CFL∗ ≤ 1 always. This is done by noting
that for compression (i.e. ∂vk

∂xk
< 0) Δt∗ < Δt and vice versa for expansion. Thus if we

designate the face velocity on the face with maximum flux relative to VOF cell volume
vmax then the maximum expansion possible in this VOF cell is obtained if the opposite
cell face has velocity −vmax. Then given a cell width h the maximum 1D divergence term
becomes 2vmax/h. If we set Δtvmax/h = CFL and Δt∗vmax/h = CFL∗ = 1 then from
equation 2.4-24 one obtains:

1

2CFL
(exp(2CFL) − 1)CFL = 1 =⇒ CFL = ln(3)/2

Thus if CFL ≤ ln(3)/2 then CFL∗ ≤ 1. It is noted that in practice only interface cells
and their nearest neighbours need to be considered during the advection step (since CFL
is chosen to be less than one).

2.4.2.4 Calculation of fluxes

In order to carry out the advection in a flow field generated by the Stokes solver the fluxes
on the VOF cell faces need to be calculated. This requires that we introduce our 2-level
procedure where we use a VOF mesh which is finer than the finite element mesh. The
refined VOF mesh is obtained by subdividing each finite element into a number of smaller
VOF cells. For this we specify the parameters N1, N2 and N3 such that each finite element
corresponds to a N1 × N2 × N3 block of VOF cells. The subdivision itself is carried out
in the local coordinate system such that for a given finite element its parent element is
divided into smaller hexahedral elements with side lengths hξ, hη, hζ = 2/N1, 2/N2, 2/N3.
In Figure 2.10 (a) a 2D example is shown for the division of the parent finite element when
N1 = 3 and N2 = 2.

The global coordinates of the VOF cells are readily found using the quadratic finite
element shape functions since from its definition we know that each VOF cell is completely
bounded by a finite element and we know the ξ, η, ζ coordinates of all VOF cells, cf. Figure
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Figure 2.10: 2D sketch illustrating the subdivision of a finite element into VOF cells with
N1 = 3 and N2 = 2. (a) Division of the finite element in local coordinates and (b) the
VOF cells in the global coordinate system (sketch is not exact). The broken lines indicate
VOF cell boundaries while the full lines indicate the finite element boundary.

2.10 (a) and (b). However, this requires that we know which finite element a given VOF
cell belongs to and what local position this VOF cell has in the parent finite element. This
is done by setting up a table which for each VOF cell points to the corresponding finite
element and also specifies the local VOF cell number.

Now we return to the problem of calculating the fluxes on the VOF cell faces which is
done by using:

f =

∫
Γ

n · vdS (2.4-27)

where Γ refers to the face boundary of the VOF cell. This boundary integral can be
transformed to the local coordinate system by (Zienkiewicz & Taylor 2000):

f =

η1∫
η0

ξ1∫
ξ0

v ·

⎧⎪⎨
⎪⎩

∂x1

∂ξ
∂x2

∂ξ
∂x3

∂ξ

⎫⎪⎬
⎪⎭×

⎧⎪⎨
⎪⎩

∂x1

∂η
∂x2

∂η
∂x3

∂η

⎫⎪⎬
⎪⎭ dξdη (2.4-28)

In this case the boundary under consideration has constant ζ . Similar expressions can be
used for the case where either ξ or η is constant. The integral in equation 2.4-28 is calculated
numerically using a Gaussian quadrature formula. This means that for each integration
point the derivative of the global coordinates with respect to the local coordinates, i.e.
terms of the type ∂xk

∂ξ
and ∂xk

∂η
, and also the velocity components need to be evaluated.

Since we know that the face boundary in question either is inside or on the boundary of
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the finite element the velocities can simply be interpolated from the finite element nodes
onto the integration points using the quadratic shape functions. In order to evaluate the
cross-product in equation 2.4-28, 2D quadratic shape functions N2D

i are defined on the face
in question such that e.g.

∂xk

∂ξ
=

8∑
i=1

∂N2D
i

∂ξ
xk,i , k = 1, . . . , 3 (2.4-29)

where xk,i are the global coordinates of the quadratic nodes on the face under consideration.
These shape functions are the 2D equivalents of the 3D shape functions used for the Stokes
solver. They are given e.g. in (Zienkiewicz & Taylor 2000). Since the subdivision is carried
out in the local coordinate system the global coordinates xk,i of these quadratic nodes on
the VOF cell faces can be calculated directly from the shape functions associated with
the finite element mesh. It is noted that the integration weights, used in the numerical
integration, are scaled linearly to match the integration boundaries in equation 2.4-28,
i.e. the integration boundary is not from -1 to 1 in the general case. The sign of the
flux calculated according to 2.4-28 depends on the node numbering direction used on the
element faces. A thorough explanation of this problem is given in e.g. (Henriksen 1991)
and will not be discussed further here. However, it is noted that the node numbering is
chosen such that positive fluxes indicate volume leaving a cell and vice versa.

2.4.2.5 Flux adjustment

Due to the application of constant discontinuous pressures in the finite element formulation
each finite element is divergence free. Thus the fluxes on the boundary of each finite element
sum to zero. However, this does not mean that each finite element is point-wise divergence
free and thus the flux calculations on the faces of the VOF cells will not necessarily result in
volume conservation within each VOF cell (except if N1 = N2 = N3 = 1). In order not to
loose or accumulate volume of the disperse phase it is therefore necessary to introduce an
adjustment to the calculated fluxes such that the VOF cells become divergence free. The
correction method implemented here is to some extent based on the method described in (Li
& Li 2004). If we for simplicity take an example with a 2D finite element subdivided into
6 VOF cells as shown in Figure 2.11, the procedure is as follows: For a given finite element
the fluid fluxes are first calculated on the faces of all the VOF cells using the procedure
described in the previous section. With reference to Figure 2.11 we designate these fluxes
as f1, . . . , f17. The sign of these fluxes depends on which VOF cell is considered. Since
the finite element is divergence free we know that

∑10
i=1 fi = 0 and use this information

to adjust the internal fluxes f11, . . . , f17 such that all cells become divergence free. Let us
start by adjusting f12 and f13 which is done by first calculating the residual flux

δf =

4∑
i=1

fi + f12 + f13

73



50 Chapter 2. The Finite Element-Volume of Fluid model
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Figure 2.11: Schematic drawing to illustrate the flux adjustment method.

which is then subtracted from f12 and f13 such that the change in flux pr. area is the same
on face 12 and 13, i.e.

f ∗
12 = f12 − δf

A12 + A13
A12

and

f ∗
13 = f13 − δf

A12 + A13
A13

where A12 and A13 are the areas (lengths in 2D) of face 12 and 13 respectively. It is then
straight forward to calculate flux f11. Using f ∗

12 and f ∗
13 the same procedure can be used

to adjust the remaining fluxes. It is noted that this method is direction dependent such
that the final result will depend on if one starts by adjusting fluxes in the horizontal or in
the vertical direction. The procedure can be extended to the 3D case directly, however,
in this case there are 6 different combinations of fluxing directions which lead to different
final results. In order to reduce any skewness in the final adjusted flux field the adjusted
fluxes are calculated using all 6 combinations where after the average is used in further
calculations. One of the problems with such an adjustment is that the flow field is altered in
a way that is not governed by the equations of motions, thus it is to some degree physically
incorrect. In section 3.5 an alternative method for calculating the fluxes on the VOF cell
faces is discussed.

2.4.3 Tests of the advection algorithm

In this section the advection procedure is investigated in terms of accuracy with respect
to spatial convergence. Furthermore the volume conservation behavior is also investigated
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in various kinds of flow fields and the volume error is investigated in terms of temporal
convergence. It is noted that all advection tests are carried out on a VOF mesh which
coincides with the finite element mesh (i.e. 1-level) and that the adjusted time step pa-
rameter Δt∗ is used unless otherwise stated. The implications of using the 2-level method
will be investigated later when interfacial tension is present and the flow is calculated using
the finite element Stokes solver. Here we will investigate the advection algorithm in flow
fields which are pre-defined on finite element nodes. Fluxes on VOF cell faces are then
calculated as explained earlier. The first test problem we will use is a 3D variant of the
Zalesak’s slotted disk rotation originally introduced in (Zalesak 1979). Using this problem
the behavior of the error is analyzed in terms of mesh refinement. Hereafter the volume
conserving behavior of the advection scheme is investigated in some simple flows and also
in a highly non-linear and time dependent flow field. All tests have been carried out in a
mesh with regular hexahedral elements and thus the performance of the reconstruction and
advection algorithms has not been tested in a domain with irregular VOF cells. However,
if the code is to be used in the future for simulations in irregular domains such tests should
be performed.

2.4.3.1 Zalesak’s slotted disk rotation

This problem was designed to test the error associated with VOF type advection algorithms
in 2D domains. The test consists of translating and rotating a disc with a slot cut into it,
c.f. Figure 2.12.

Figure 2.12: Zalesak’s slotted disc.

The width of the slot is 1/3 of the disk radius and the distance from the slot end to
the disk face is the same as the width. The disk is then rotated and translated in a flow
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mesh 1 mesh 2 mesh 3 mesh 4
Mesh size 16 × 16 × 8 32 × 32 × 16 64 × 64 × 32 128 × 128 × 64

Table 2.1: Meshes used in the slotted sphere tests. The 1-level method is used (i.e. the FE
and VOF mesh are the same).

defined by

v1 = −ω̇x2 + ω̇x2,0

v2 = ω̇x1 − ω̇x1,0

where ω̇ is the angular frequency. In (Zalesak 1979) the centre of the disc is (x1,0, x2,0) =
(0.5, 0.75) and the radius is 0.15. Since ∂v1

∂x1

= 0 and ∂v2

∂x2

= 0 for this flow field the
volume will be conserved exactly during advection. This test it therefore not suited for
investigating the volume conserving behavior of the method which will be investigated later
using other types of flow fields. The slotted disc problem has been used for testing a number
of advection procedures, e.g (Harvie & Fletcher 2000, Harvie & Fletcher 2001, Scardovelli
& Zaleski 2003, Pilliod & Puckett 2004). Although the test has been designed for 2D
problems we will use it here for our 3D advection procedure. In order to do this a sphere
with radius r0 is used in stead of a disk. A slot with width 1/3r0 is then cut all the way
through the sphere in the x3 direction. For simplicity we will place the slotted sphere in
the centre of the domain such that only rotation takes place. We will later investigate the
advection performance in a complex flow which includes both rotation and translation. It
is noted that the geometry of the slotted sphere includes discontinuities along the points
where the slot cuts the surface of the sphere and in the groove of the slot. In the PLIC
reconstruction these discontinuities are smoothed as a consequence of the smoothing effect
associated with the interface normal calculation. The error associated with the rotation is
investigated in terms of mesh refinement. This problem is symmetric across the (x1, x2)-
plane at x3 = 0 and thus only half the domain needs to be considered. The meshes used
in this test are shown in Table 2.1.

The time step in all three experiments is given by:

Δt =
2π

377

while the angular frequency is ω̇ = 1s−1. Hence it takes 377 time steps to complete one
rotation of the slotted sphere. The computational domain is given by the box ([−1, 1] ×
[−1, 1] × [−1, 1]) and the radius of the sphere is r0 = 0.75. Furthermore, the x3 direction
is kept neutral, thus v3 = 0.

In Figure 2.13 (a)-(c) the slotted sphere on mesh 1,2 and 4 before rotation is plotted
using the PLIC reconstruction. Here one sees that going from (a) to (c) the accuracy in the
description of the discontinuity where the slot cuts the sphere surface increases. It is noted
that although the groove of the slot seems to be perfectly described, this is not the case,
it is merely a consequence of the way the spheres are plotted. In Figure 2.13 (d) - (f) the
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Figure 2.13: The PLIC reconstruction of the slotted sphere before and after one rotation.
The view is perpendicular to the (x1, x2)-plane. (a), (d) mesh 1 before and after rotation;
(b), (e) mesh 2 before and after rotation; (c), (f) mesh 4 before and after rotation.
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Mesh Error Order
1 0.163

1.54
2 0.0561

1.28
3 0.0231

1.07
4 0.0110

Table 2.2: Error in F after one rotation of the slotted sphere. Also shown is the order of
the error decrease going from one mesh to the next.

slotted spheres are shown after one rotation. In all cases it is seen that the discontinuities
at the slot edges are smoothed and that the vertical walls of the slot become distorted -
especially in Figure 2.13 (d). This deformation behavior of the slot is typical for this type
of test and is described e.g. in (Scardovelli & Zaleski 2003, Pilliod & Puckett 2004). The
error associated with the rotation is defined as

Error =

∑Nvof

j=1 Fj − F̃j∑Nvof

j=1 Fj

where Nvof is the number of VOF cells, Fj is the value of F in cell j before advection and F̃j

is the value after advection. In table 2.2 the error obtained after one rotation of the slotted
sphere can be seen. Also shown is the order at which the error decreases with h. From
these results it is seen that the error decreases as the mesh is refined but that the order
also decreases. It is not possible to make any conclusions on the order of the advection
procedure from the results in Table 2.2. However, it is noted that error is a combination
of the error introduced by the PLIC reconstruction and that of the advection procedure.
Since the normal estimation is carried out using a method which for a completely regular
mesh is comparable to Youngs method, which is first order accurate, we cannot expect
the advection to be much better than first order. Therefore in order to investigate the
true convergence order of the advection scheme a second order reconstruction method like
LVIRA or ELVIRA, see e.g. (Pilliod & Puckett 2004), should be implemented. However
this has not been done at the present time because these methods are not directly extensible
to non-regular meshes.

2.4.3.2 Advection in pre-defined simple flow fields

Here a sphere is deformed in either simple shear, planar elongation or extensional flow, i.e.:

Simple shear

v1 = x2; v2 = 0; v3 = 0
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Planar elongation

v1 = x1; v2 = −x2; v3 = 0

Uni-axial extension

v1 = x1; v2 = −1

2
x2; v3 = −1

2
x3

The purpose of these tests is to check how well volume is conserved and if the interface
is kept sharp. The simulations are carried out using a regular 120 × 40 × 20 mesh where
symmetry at x3 = 0 is applied. The domain size is [−3, 3] × [−1, 1] × [−1, 0] and the time
step size is chosen such that CFL = 1/4. In Figure 2.14 (a)-(c) the deformation from the
initial sphere with radius r0 = 0.8 can be seen for each of the three flow fields.
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Figure 2.14: Advection in simple flow fields. (a) simple shear (b) planar elongation and
(c) pure extension. Deformation after 101 time steps in all cases.

Although this is not a quantitative test it shows that the interface is kept sharp through-
out the advection procedure. In all test cases the relative change in volume of the advected
phase after 101 time steps is on the order of 10−8 %. Here a tolerance of 10−8 is used in the
PLIC reconstruction (bisection iteration). If the tolerance is changed to 10−12 the relative
change in volume is in the order of 10−12 % and thus we can conclude that the volume is
conserved within the tolerances used in the interface reconstruction for the 3 flow fields
tested. It is noted that if the time step is not adjusted according to equation 2.4-24 (i.e.
Δt∗) then the relative change in the volume of the advected phase is in the order of 10−2 %
for planar elongation. Tests have also been performed for various flows which are linear in
position, i.e. flows of the type:

vk = akx1 + bkx2 + ckx3, k = 1, . . . , 3

where a1 +a2 +a3 = 0. For brevity the results will not be shown here, however, in all cases
the volume was conserved within the tolerances used in the PLIC reconstruction indicating
the volume is exactly conserved in linear flow fields.
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mesh 1 mesh 2 mesh 3 mesh 4
Number of Cells 20 × 20 × 6 40 × 40 × 9 80 × 80 × 15 160 × 160 × 27

Table 2.3: Meshes used for the single vortex tests. The 1-level method is used.

2.4.3.3 Advection in the reversed single vortex flow

In order to investigate the performance of the advection algorithm more rigorously, tests
have been carried out in a 2D non-uniform vorticity flow given by:

v1 = 2 sin(πx2) cos(πx2) sin2(πx1) cos

(
πt

T

)

v2 = 2 sin(πx1) cos(πx1) sin2(πx2) cos

(
πt

T

)

This test flow was originally used by Rider & Kothe (1998) to investigate the performance
of 2D advection algorithms and has later been used by e.g. (Harvie & Fletcher 2000,
Scardovelli & Zaleski 2003, Pilliod & Puckett 2004) also to test 2D advection algorithms.
The 2D domain is given by the unit square [0, 1] × [0, 1] in which the flow is characterized
by a single vortex which is rotating and stretching about the centre (x1, x2) = (0.5, 0.5) of
the domain. In the 2D case a circle is placed at (x1,0, x2,0) = (0.5, 0.75) such that the centre
will translate with the flow. The flow is time dependent and changes direction when the
time is half the amplitude T , i.e. t = T/2. Here the deformation is also at its maximum.
At t = T the circle is (should be) back at its original position. In our case we want to test
the algorithm in 3D. In order to do this the same flow field is used while the x3 component
of the velocity is zero. Here a computational box with size [0, 1] × [0, 1] in the x1 and x2

direction is used while the size in the x3 direction is specified such that the VOF cells have
equal side lengths. Furthermore since x3 is neutral the problem is symmtric at x3 = 0.5.
The maximum deformation increases with increasing amplitude T . The initial position if
the sphere is the same as that used in (Rider & Kothe 1998) (see also above). First the
error is examined with respect to mesh refinement using a constant Δt. For this purpose
we use the meshes given in Table 2.3.

We use an amplitude of T = 4 in our tests. In Figure 2.15 the reconstructed PLIC
segments can be seen at various times during the advection stage for mesh 3 in Table 2.3.
Going from (a)-(c) in Figure 2.15 the initial sphere is advected from its initial shape to its
maximum deformation in (c). Figure 2.15 (d)-(f) shows the deformation after the flow is
reversed which eventually leads to the initial spherical shape (approximately). The spatial
error is calculated at t = T and is in this case defined as (in agreement with Rider & Kothe
(1998)):

Error =

Nvof∑
j=1

h3|Fj − F̃j|

where h3 is the VOF cell volume.
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Figure 2.15: Advection of an initially spherical body in the single reversed vortex flow
field. (a) t = 0, (b) t = 1/4T , (c) t = 1/2T , (d) t = 3/4T , (e) t = 7/8T and (f) t = T .
Mesh 3 in Table 2.3 was used in the simulation and the sphere was initially centered at
(x1, x2, x3) = (0.5, 0.75, 0.375). The amplitude was T = 4.
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Mesh Error Order Verr%
1 4.59e − 3 3.26e − 2

2.20
2 1.00e − 3 3.30e − 2

1.97
3 2.55e − 4 3.28e − 2

1.64
4 8.19e − 5 3.28e − 2

Table 2.4: Error in F and average relative error in volume Verr from advection of a sphere
in the reversed single vortex flow with T = 4. The error is calculated using the initial
F -field and the final F -field at t = T .

The time step, which is kept constant for all simulations, is chosen to be

Δt =
1

320

This time step corresponds to CFL≈ 1/2 at t = 0 on mesh 4. In Table 2.4 the error in the
F -field at t = T is shown for the various meshes. Furthermore the relative error (or change)
in volume of the advected phase is also shown. Here the average (of absolute values) is
taken over all time steps. From Table 2.4 we see that the error in F decreases with mesh
refinement while the relative error in the total volume is more or less constant. The order
in which the error in F decreases is, as was also the case with the slotted disc experiments,
decreasing with increased mesh refinement. A similar convergence behavior is described by
Rider & Kothe (1998) in their tests on 2D advection algorithms. Unfortunately it was not
possible to carry out the advection test on a finer mesh than mesh 4 in Table 2.3 within a
reasonable computational time. Therefore it was not possible to investigate if the order of
the error stabilized as the mesh is refined.

In order to investigate the effect of the time step size on the performance of the advection
algorithm, simulations are carried out using mesh 2 with various CFL numbers. The
results can be seen in Table 2.5. The basis time step is Δt0 = 1/73 which corresponds
approximately to CFL=0.5 based on the flow field at t = 0. From Table 2.5 it is seen that
the error in the F -distribution increases with decreasing time step size. This behavior is also
observed by Scardovelli & Zaleski (2003) using various types of 2D advection algorithms
and is explained by the increasing number of reconstructions needed as the time step size
is decreased. The average error in the total volume of the advected fluid is seen to increase
when going from Δt = 1/2Δt0 to Δt = 1/4Δt0. For smaller time steps the volume error
decreases with decreasing step size. However, the decrease in the volumetric error with
time step size seems to be somewhat oscillating with large decreases at certain time step
sizes, e.g. 1/8Δt0 to 1/16Δt0. Nevertheless the volumetric error is quite small and does
decrease with step size.

In (Scardovelli & Zaleski 2003) it is indicated that one problem with purely Lagrangian
advection is that the method leads to a phase error. This means that for the reversed single
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Time step Error in F Verr%
Δt0 7.98e − 4 7.69e − 2

1/2Δt0 9.27e − 4 9.43e − 2
1/4Δt0 1.00e − 3 2.35e − 2
1/8Δt0 1.02e − 3 2.23e − 2
1/16Δt0 1.03e − 3 5.84e − 3
1/32Δt0 1.04e − 3 8.37e − 4
1/64Δt0 1.04e − 3 5.24e − 4
1/128Δt0 1.05e − 3 2.05e − 4

Table 2.5: Error in F and average relative error in volume Verr on mesh 2. Verr is based
on the average (of absolute values) of all time steps. The basis time step is Δt0 = 1/73.

vertex flow the final position of the circle (2D) is out of phase with the initial position.
The reason for this is that the procedure is explicit in all advection directions. However,
in the present implementation the explicit nature of the method is adjusted through the
time step parameter Δt∗, cf. equation 2.4-24. It is therefore interesting to compare the
results obtained using the Lagrangian advection procedure with and without the adjusted
time step parameter Δt∗. Therefore the same simulations as those used for studying the
influence of the time step size, cf. Table 2.5, are carried out again but without using Δt∗.
First we take a look at the qualitative differences obtained when using the two methods.
In Figure 2.16 (a) a slice through the symmetry plane of the sphere after one period of
advection (i.e. t = T ) can be seen for advection with no time step adjustment (broken
curve) and with time step adjustment (dotted curve). Also shown is the initial position of
the sphere (solid circle). From this figure it is clear that the simulation carried out with no
time step adjustment seems to be out of phase with the initial position. This problem is
not observed when Δt∗ is applied. In Figure 2.16 (b) the results from the two methods are
shown when the time step size is Δt = 1/8Δt0. Here it is seen that the simulation carried
out without the adjusted time step parameter is no longer out of phase with the original
position of the sphere. Furthermore it is seen that the results from the two simulations
lie much closer than in Figure 2.16 (a). This indicates that the results obtained from the
two methods approach each other as the time step Δt decreases. In Table 2.6 the error
in the final F -distribution and the error in volume can be seen for the simulations carried
out without the adjusted time step parameter. By comparing the results in Table 2.6
with those in Table 2.5 it is seen that for Δt ≥ 1/4Δt0 the error in the F -distribution is
larger when no adjustment is made to Δt. For smaller time steps the error in the final
F -distribution is more or less the same for the two methods. However, if we compare the
volume error associated with the two methods it is clear that when Δt∗ is applied volume
conservation is much more rigorous (approximately 2 orders of magnitude).

It is noted that it is not expected that the final F distribution will converge towards
the initial F distribution for the numerical experiments shown in Table 2.5 and 2.6 because
the error also depends on the mesh density.
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Figure 2.16: (x1, x2)-slice at symmetry plane after advection in the reversed single vortex
flow at t = T where T = 4. The solid curve is the original position of the sphere. The
dotted curve is the position after advection using the lagrangian advection scheme with the
adjusted time step parameter and the dashed curve is the position after advection using
lagrangian advection without the adjusted parameter Δt∗. (a) Δt = Δt0, (b) Δt = 1/8Δt0.
In the simulations Δt0 = 1/73 was used.

Time step Error in F Verr%
Δt0 2.03e − 3 3.66

1/2Δt0 1.22e − 3 1.57
1/4Δt0 1.06e − 3 8.26e − 1
1/8Δt0 1.03e − 3 4.71e − 1
1/16Δt0 1.02e − 3 2.17e − 1
1/32Δt0 1.03e − 3 1.12e − 1
1/64Δt0 1.04e − 3 5.54e − 2
1/128Δt0 1.04e − 3 2.77e − 2

Table 2.6: Error in F after 1 period of advection in the reversed single vortex flow without
time step adjustment. Also shown is the average error in volume of the advected fluid when
simulations are carried out with Δt. Δt0 = 1/73 and T = 4 was used in the simulations.
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2.4.4 Summary of the interface reconstruction and advection rou-

tines

In this work a 3D purely Lagrangian split operator advection scheme has been implemented.
The interface is reconstructed using the Piecewise Linear Interface Calculation (PLIC)
method. In order to increase accuracy and especially volume conservation behavior during
advection the explicit Lagrangian method described in e.g. (Gueyffier et al. 1999) for
the 3D case has been modified. This is done by letting the velocity of a point within a
VOF cell vary with time. This results in a adjusted time step Δt∗ which includes the
original time step Δt and the 1D velocity divergence term of the cell under consideration.
Therefore the adjusted time step varies from VOF cell to VOF cell. This also requires
some extra care not to overfill cells by scaling volumes entering a cell with the ratio of
the adjusted time step of the cell which accepts the volume and the cell which donates
the volume. In the implementation all calculations are carried out in the local curvilinear
coordinate system wherefore fluxes are scaled appropriately before advection is carried
out. Furthermore the interface normal is transformed from the global to local coordinates
before advection is carried out. A number of advection tests have been carried out on VOF
cell meshes with regular hexahedral elements. These tests include rotation of a slotted
sphere, advection of a sphere in various linear flow fields and advection of a sphere in the
reversed single vortex flow proposed by Rider & Kothe (1998). The tests indicate that the
combined interface reconstruction (PLIC) and Lagrangian advection schemes are between
first and second order accurate with mesh size h. Comparison between results obtained for
advection with and without the adjusted time step parameter Δt∗ show that considerably
more accurate results are obtained at large to medium time steps when Δt∗ is used in place
of Δt. Furthermore, volume conservation is much more rigorous for all time step sizes when
the adjusted time step parameter is applied. In practice this means that larger time steps
can be used in our algorithm compared to the original Lagrangian procedure while still
obtaining the same accuracy in both interface position and volume conservation.

Since all advection tests are carried out using a mesh based on regular hexahedral ele-
ments the performance of the implemented advection routine in non-regular cell geometries
needs to be tested if calculations are to be performed in complex geometries. However,
the simulations on drop deformation and break-up behavior carried out in this project are
all based on rectangular geometries wherefore advection tests in non-regular domains have
not been carried out.

This concludes the section on interface reconstruction and volume advection in pre-
defined flow fields. In the forthcoming sections we will concentrate on the inclusion of
interfacial tension.
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2.5 Interfacial tension

One implication of the VOF method is that the interface is not sharply defined in the
domain and typically has a finite thickness of 1-2 VOF cells. The inclusion of interfacial
tension forces therefore requires some special treatment where interfacial tension is not
applied onto interfaces but rather as a volumetric force in interface elements (and possibly
their neighbours). Two models developed for VOF methods are available. These are the
Continuous Surface Force (CSF) model of Brackbill et al. (1992) and the Continuous Sur-
face Stress (CSS) model of (Lafaurie et al. 1994). Both models have been implemented,
however, most simulations have been carried out using the CSS model as this only requires
calculation of first order derivatives of the F -field while the CSF model requires the cal-
culation of second order derivatives. Therefore we will focus on the CSS model here while
details on the CSF model are presented in Appendix B. In the following subsections it is
shown how the CSS model is implemented. Hereafter results from simulations with a static
drop will be given both for the CSS and CSF model. These simulations are carried out
as a preliminary check in order to verify that correct pressure distributions are obtained.
Also the magnitude of the spurious (or anomalous) currents which are always present in
VOF calculations with interfacial tension will be investigated. The phenomena is seen as
an artificial flow field with circulation zones in the vicinity of the surface of a sphere even
though no external flow field is applied. The reason for this is related to errors in the
approximation of the gradient of the discontinuous function F . Methods are available to
reduce these artifacts which will be discussed later. It is though noted that no work has
been carried out to overcome or reduce this problem in the present implementation which
thus is a possible subject for future work.

2.5.1 The CSS interfacial tension model

If a fluid system consists of two or more immiscible fluid phases a pressure jump will exist
across the interfaces separating the various fluids if interfacial tension is present. Let us
concentrate on two-fluid systems and denominate the two fluids as phase 1 and phase 2.
Then the momentum balance in its finite element formulation given by equation 2.2-26 can
be written as the sum:

2∑
i=1

⎛
⎝−

∫
Γi

φv[ni · πi]dS +

∫
Ωi

[∇φv · πi]dV +

∫
Ωi

φvf idV

⎞
⎠ = 0 (2.5-30)

The volume integrals in equation 2.5-30 have been discussed earlier and need not be
reconsidered here. If we concentrate on the surface integrals instead and note that n2 =
−n1 everywhere on Γ1 = Γ2 = Γ12 the surface terms can be written as:

−
∫
Γ1

φv[n1 · π1]dS −
∫
Γ2

φv[n2 · π2]dS = −
∫

Γ12

φv[n1 · (π1 − π2)]dS (2.5-31)

86



2.5. Interfacial tension 63

In equation 2.5-31 the integrand [n1 · (π1 − π2)] is the difference or jump in the total
molecular stress tensor across the interface and thus is directly related to the interfacial
tension. In case of constant interfacial tension coefficient σ the stress jump can be written
as:

[n1 · (π1 − π2)] = [κσn1] (2.5-32)

where κ is the curvature of the interface. It is noted that if the interfacial tension coefficient
is position dependent the gradient of σ needs to be added to the RHS of equation 2.5-32,
see e.g. (Szabo 1994). By using equation 2.5-32 the surface integral in equation 2.5-31 is
written as:

−
∫

Γ12

φv[n1 · (π1 − π2)]dS = −
∫
Γ

φv[κσn̂]dS (2.5-33)

where for simplicity indices 12 and 1 have been omitted on the RHS and n̂ is the unit
normal pointing from phase 1 to phase 2. In the discrete case the integral on the RHS
of equation 2.5-33 can be readily calculated if the interface position is defined on finite
elements faces, e.g. as in Lagrangian finite element methods. However, as mentioned
earlier this is not the case when the interface is tracked by the VOF method. Here the
interface position is only known implicitly from the F -distribution and even if the interface
is reconstructed e.g. by PLIC the interface segments do not coincide with the faces of the
finite element mesh. It is therefore necessary to make some approximations to the integral
on the RHS of equation 2.5-33. First it is noted that the RHS of equation 2.5-33 can be
written as a volume integral by applying a delta function δs such that:

−
∫
Γ

φv[κσn̂]dS = −
∫
Ω

φv[κσn̂]δs(n̂(x − xs))dV (2.5-34)

Here xs are interface coordinates. We now denote the term [κσn̂]δs on the RHS of (2.5-34)
as the interfacial tension force per unit volume F s. According to the CSS interfacial tension
model, F s can be written as the divergence of a capillary pressure tensor T (Lafaurie
et al. 1994):

F s = [κσn̂]δs = −∇T (2.5-35)

where T is given by:

T = −σ(I − n̂ ⊗ n̂)δs (2.5-36)

Here I is the identity tensor and δs is the previously defined delta function. The problem
now consists of calculating the unit interface normals n̂ and the function δs. In order for
the discrete interfacial tension calculations to be consistent with the continuum case in
(2.5-34) any discrete evaluation of the interfacial tension term should obey:

lim
h→0

∫
Ω

[κσg(x, h)]dV =

∫
Γ

[κσn̂]dV (2.5-37)
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where g(x) is the discrete evaluation of [n̂δs] and h is the thickness of the interface which
is on the order of the mesh size used in the discretization. The limiting property in (2.5-37)
is usually achieved by smoothing the F -field by a smoothing kernel prior to the evaluation
of the interface normals and defining (Brackbill et al. 1992, Lafaurie et al. 1994):

δs =
∣∣∣∇F̃

∣∣∣
where F̃ is the smoothed F -field. The discretely calculated interface unit normal n̂s is
then found as:

n̂s =
∇F̃∣∣∣∇F̃
∣∣∣

However, as discussed by Brackbill et al. (1992) in their CSF method, the force arising from
the interfacial tension calculations should be localized to the proximity of the interface and
thus using the non-smoothed F -field for approximating δs should be an advantage. This is
also supported by Lafaurie et al. (1994) who find that smoothing the F -field does not lead
to appreciable better results compared to the non-smoothed case. In our implementation
we do not smooth F in connection with the interfacial tension calculations and thus the
unit interface normal and the delta function are approximated as:

n̂s =
∇F

|∇F | , δs = |∇F |

In order to incorporate the CSS model into the flow solver, equation 2.5-35 is inserted
into equation 2.5-34 which combined with equation 2.5-33 leads to:

−
∫

Γ12

φv[n1 · (π1 − π2)]dS =

∫
Ω

φv∇ · T dV (2.5-38)

Applying partial integration and the Gauss-Ostrogradskii divergence theorem on the RHS
of equation 2.5-38 leads to:∫

Ω

φv∇ · T dV =

∫
Γ12

φv[n1 · (T 1 − T 2)]dS −
∫
Ω

∇φvT dV (2.5-39)

Here indices 1 and 2 refer to fluid phase 1 and 2 respectively and n1 is the interface unit
normal pointing from fluid 1 into fluid 2. Since n1 = −n2 and T 1 = T 2 the surface integral
in equation 2.5-39 is zero and equation 2.5-33 becomes:

∫
Γ12

φv[(π1 − π2) · n1]dS =

∫
Ω

∇φvT dV (2.5-40)
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Thus when interfacial tension is implemented using the CSS model the momentum balance
simply yields: ∫

Ω

[∇φv · (π − T )]dV +

∫
Ω

φvfdV = 0 (2.5-41)

where the capillary pressure tensor is only non-zero in the proximity of the interface.
Hence when the CSS model is used only first order derivatives of the F -field need to be
calculated. Since the F -field is not smoothed prior to the calculation of interface normals
in our implementation the capillary pressure tensor is calculated as:

T = −σ

(
I |∇F | − ∇F ⊗∇F

|∇F |
)

(2.5-42)

In summary the CSS interfacial tension model is included into the momentum balance as
follows:

• The surface integral is approximated according to equation 2.5-40.

• The capillary stress tensor T is calculated according to equation 2.5-42.

2.5.2 Discretization of the interfacial tension terms

In this section more details on the discretization of the interfacial tension model is given.
Here an explanation is also given on the calculation of interfacial tension when the 2-level
method is applied. We will start by going through the discretization procedure for the CSS
model in the case where the finite element and VOF mesh coincide.

2.5.2.1 Discretization of the CSS model

Since the CSS model only requires calculation of first order derivatives of the F -field the
procedure explained in section 2.4.2 for calculating the interface normal can be used di-
rectly. Hence the F -field is first interpolated onto the linear nodes of the VOF cells using
the ghost mesh. This leads to a new F -field, say F ∗, such that the interface normal at any
position inside an element m belonging to the interface region can be calculated as:

nk =
∂F ∗

∂xk

∣∣∣∣
xm

=

8∑
i=1

∂Li

∂xk

∣∣∣∣
xm(ξ,η,ζ)

F ∗
i , k = 1, . . . 3 (2.5-43)

If we denote the discretely calculated capillary stress tensor T s then the discrete equivalent
of the RHS of equation 2.5-40 becomes:

Ne∑
n=1

3∑
k=1

⎛
⎝ 3∑

k1=1

∫
Ωn

∂Nv
i(I,n)

∂xk1

T n
s,k1kdV

⎞
⎠ δk, k = 1, . . . 3 (2.5-44)
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Then equation I in the global equation system will get a contribution from interfacial
tension if node I is connected to elements which have one or more vertex nodes with
0 < F < 1.

Equation 2.5-44 is calculated using numerical integration as explained in section 2.2.6.
It is noted that since the interfacial tension calculations are based on nodal values of the
F -field, i.e. F ∗, a smoothed F -field can be applied directly without any changes to the
code simply by applying the smoothed F -field onto the nodes of the VOF cells. In fact the
interpolation procedure based on the ghost mesh does have a smoothing effect because the
resultant field F ∗ is less discontinuous across the interface than the original F -field.

2.5.2.2 Interfacial tension calculations and the 2-level method

When the 2-level algorithm is applied each finite element is subdivided into N1N2N3 number
of smaller VOF cells, cf. section 2.4.2.4. This means that in finite elements where a part
of the interface resides the F -field will in general not be constant as the value of F varies
from VOF cell to VOF cell. In order to use the information on the VOF cell level in our
finite element calculations, contributions from each VOF cell in a given finite element are
summed together. For a given finite element n, equation 2.5-44 becomes:

3∑
k=1

⎛
⎝ 3∑

k1=1

∫
Ωn

∂Nv
i(I,n)

∂xk1

T n
s,k1kdV

⎞
⎠ δk =

3∑
k=1

⎛
⎝ 3∑

k1=1

N1N2N3∑
m=1

∫
Ωm

∂Nv
i(I,n)

∂xk1

T̂ m
s,k1kdV

⎞
⎠ δk,

I = 1, . . . NN,

N1N2N3∑
m=1

Ωm = Ωn (2.5-45)

Hence when the 2-level algorithm is applied equation I in the global system of equa-
tions will get a contribution from interfacial tension if it is connected to one or more
finite elements with an interior VOF cell which can be regarded as part of the interface
region. When the integral in equation 2.5-45 is evaluated numerically appropriate integra-
tion points and weights need to be defined. This is done by scaling the integration points
and weights, used for the standard square hexahedron ([−1, 1] × [−1, 1] × [−1, 1]), such
that they apply for a rectangular element with side lengths (2/N1, 2/N2, 2/N3) positioned
somewhere inside the standard element. The values of the quadratic finite element shape
functions and the values of the gradients of F are then evaluated at the integration points
defined in the interior of the VOF cells. It is noted that Rudman (1998) and Li et al.
(2000) have also used a 2-level approach in connection with VOF calculations. However, in
both these methods the VOF mesh is restricted to being twice as fine as the calculational
mesh. Furthermore the main purpose of these 2-level algorithms is to increase accuracy
during advection.
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2.6 Viscosity and density

For a given finite element n the viscosity and density are scaled linearly with the volume
fraction Fn of the ’disperse’ phase:

μn = Fnμ2 + (1 − Fn)μ1

and
ρn = Fnρ2 + (1 − Fn)ρ1

where index 2 refers to fluid 2 which is defined as the fluid tracked by the F -function and
index 1 refers to the other fluid. Fn is in this case the value of F in finite element n which
is calculated as:

Fn =

∑N1N2N3

m=1 FmVm

Vn

where Fm is the value of F in ’local’ VOF cell m and Vm is the total volume of VOF cell
m. Vn is the total volume of finite element n.

This means that the viscosity and density are calculated as being constant in each finite
element also when the 2-level approach is used.

It is noted that for interface finite elements one could base the calculations of the
coefficients in the momentum and continuity equations on summations over the VOF sub
volumes and thereby letting μ and ρ vary within each interface finite element. This is
discussed further in section 3.3.2.

2.7 Verification of interfacial tension: Internal pressure

of a static drop

For a 3 dimensional stagnant drop with radius r0 and surface tension σ the difference
between the internal and external pressure is given by Laplace’s law, i.e.:

p =
2σ

r0

This simple problem will be used here as a first validation of the Stokes flow calculations
with the presence of interfacial tension. Due to symmetry only 1/8 of the total geometry
needs to be considered in this problem. On the domain boundaries the normal components
of the velocities are set equal to zero and the domain size is [0, 0.5] in all directions while
the drop radius is r0 = 0.25. The interfacial tension is σ = 1N/m and the viscosity of the
drop and the surroundings is μ = 1Pas. Tests are made with both the CSS model and the
CSF model. In both cases meshes with three different resolutions are tested. The mesh
elements have side lengths h = 1/12, h = 1/24 and h = 1/48 respectively. Furthermore a
test is made of the 2-level method. In this test the medium calculational mesh (h = 1/24)
is used. Calculations are carried out using VOF meshes which are two, four and eight times
as fine as the calculational mesh.
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In Figure 2.17 (a) and (b) the pressure distributions for the drop on the (x1, x2)-
symmetry plane obtained using the CSS and CSF methods can be seen (external pressure
specified to zero). Here the medium mesh is used. The pressures in the figure are normal-
ized by the Laplace pressure p0 = 8Pa. In both Figure 2.17 (a) and (b) the interior drop
pressure is approximately constant with p = p0. However, when comparing the results
from the CSS and CSF model, differences in the pressure distribution along the interface
region are observed. Especially one sees considerably larger fluctuations in the pressure
along the drop interface when the CSS model is used. Hence for this problem the CSF
model yields a more uniform internal pressure distribution than the CSS model. In Table
2.7 the normalized interior drop pressure can be seen on all three meshes for both methods.
These pressures are calculated as the average of the pressures in the interior elements of
the sphere, i.e. elements which are not part the interface region. Comparison of the results
from the CSS and CSF model does not reveal any large differences in the average internal
drop pressure between the two methods. It is noted that one can obtain smoother pressure
distributions by smoothing the F -field before calculating the interfacial tension forces, see
e.g. (Brackbill et al. 1992). From these tests we can, however, conclude that the implemen-
tation of both interfacial tension methods gives the correct drop (bubble) pressure when
the 1-level method is used.
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Figure 2.17: Pressure distribution on the (x1, x2)-symmetry plane of a stagnant drop. (a)
pressure distribution obtained using the CSS interfacial tension model and (b) Pressure
distribution obtained with the CSF model. The pressures are normalized with the Laplace
pressure p0 = 8Pa for a sphere with r0 = 0.25 and σ = 1N/m (medium mesh).

The next step is to investigate how the 2-level method affects the pressure distribution.
Here the medium mesh is used for the finite element discretization. In Figure 2.18 the pres-
sure distributions obtained using the CSS (a) and CSF (b) models with the 2-level method
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Element size h p/p0 CSS p/p0 CSF

1/12 1.079 1.096
1/24 0.992 0.999
1/48 0.975 0.977

Table 2.7: Interior drop pressure normalized by the Laplace pressure p0 obtained using the
CSS and CSF interfacial tension models.

hFE/hV OF p/p0 CSS p/p0 CSF

2 0.972 0.979
4 0.970 0.992
8 0.970 1.020

Table 2.8: Interior drop pressure normalized by the Laplace pressure p0 obtained using the
CSS and CSF interfacial tension models with various VOF cell sizes hV OF . The medium
mesh (hFE = 1/24) was used for the FE discretization.

can be seen. Here the VOF mesh was eight times as fine as the FE mesh. Comparing the
results in Figure 2.17 (a) and 2.18 (a) which are based on the same FE mesh but different
VOF meshes indicates that the pressure near the drop interface is more uniform when the
CSS model is used with the 2-level method. Furthermore the pressure transition region
seems to be smaller in the 2-level case. In order to give a better illustration of this the
pressures from Figure 2.17 (a) and Figure 2.18 (a) along the (x1, 0, 0)-line are plotted in
Figure 2.19. This figure clearly shows a change in the pressure distribution even though
the FE meshes are the same for both simulations. The most striking difference is that, in
the 2-level case, the interface becomes more sharp in terms of the pressure distribution.
On the other hand comparison of 2.17 (b) and 2.18 (b) shows the opposite behavior when
the CSF method is used. However, in all cases the internal pressure is constant and p � p0.
In Table 2.8 the internal drop pressure relative to the Laplace pressure can be seen from
simulations with the two interfacial tension models and various 2-level meshes. Here it is
seen that when the CSS model is used, the relative pressure is more or less constant at
p/p0 = 0.97, which is close to the pressure obtained using the 1-level method and the finest
mesh, c.f. Table 2.7. When the CSF model is used together with the 2-level method the
pressure increases as the VOF mesh is refined. It is noticed that the results from the 2-level
simulation where the VOF mesh is twice as fine as the FE mesh yields an average internal
pressure which is close to that obtained on the finest mesh with the 1-level method (the
VOF mesh resolution is the same for those 2 cases). Hence the tests carried out here show
that the implemented interfacial tension models lead to pressure distributions which are in
good agreement with the theoretical result also when the 2-level approach is used.
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Figure 2.18: Pressure distribution on the (x1, x2)-symmetry plane of a stagnant drop when
the 2-level method is applied. In the simulations the VOF mesh was eight times finer than
the medium FE mesh. (a) pressure distribution obtained using the CSS interfacial tension
model and (b) Pressure distribution obtained with the CSF model. The pressures are
normalized with the Laplace pressure p0 = 8Pa for a sphere with r0 = 0.25 and σ = 1N/m.

2.8 Spurious currents

The spurious currents associated with the CSS and CSF models will be explored here.
Results are presented both for the 1-level and 2-level procedures. It is noted that all
results presented in this subsection were obtained using the simulations in the previous
subsection and that the results are based on the first time step (i.e. t = 0s).

In Figure 2.20 (a)-(c) the spurious currents on the (x1, x2)-symmetry plane obtained
using the CSS method on the three different meshes are shown. Figure 2.20 (d)-(f) shows
the corresponding results obtained using the CSF method. When going from (a) to (c)
and (d) to (f) one sees that the flow becomes more localized to the vicinity of the interface.
Furthermore the maximum magnitude of the velocity vector seems to decrease somewhat
with mesh refinement. If results obtained using the CSS and CSF method are compared the
most distinct difference is that the CSS method seems to produce a flow which is somewhat
more uniform around the interface than the CSF method. Typically the magnitude of
the spurious currents is quantified by calculating the maximum (or infinity) norm, e.g.
(Brackbill et al. 1992, Lafaurie et al. 1994, Renardy, Cristini & Li 2002), although the
1-norm and 2-norm are also used. Here we will use the maximum norm. In Table 2.9
the maximum norm of the velocity can be seen for the 1-level results. These results show
that the CSF method leads to a smaller maximum velocity than the CSS method on all
three meshes. Furthermore one observes that the maximum velocity decreases as the mesh
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Figure 2.19: Pressure variation along the (x1, 0, 0)-line when the CSS model is used with
the medium mesh. Shown are pressures obtained using the medium mesh with 1-level
calculations and 2-level calculations with hFE/hV OF = 8.

Element size h ||v||∞ CSS ||v||∞ CSF

1/12 0.0536 0.0288
1/24 0.0352 0.0181
1/48 0.0279 0.0148

Table 2.9: Maximum norm of the spurious current velocities obtained using the CSS and
CSF model with the 1-level method.

is refined. It is noted here that usually the magnitude of the spurious currents does not
converge towards zero with mesh refinement unless some special methods are applied. One
such method is the PROST method of Renardy, Cristini & Li (2002) where the spurious
currents are at least two orders of magnitude smaller than those obtained with the CSS
and CSF methods. For the CSS and CSF models, numerical experiments carried out by
e.g. Lafaurie et al. (1994), Scardovelli & Zaleski (1999) and Renardy, Cristini & Li (2002),
show that the maximum velocity of the spurious currents is on the order of 0.01σ/μ. In
our simulations σ/μ = 1 and thus the results in Table 2.9 agree with the scaling found in
the literature.

In Figure 2.21 velocity vector plots of the spurious currents from the 2-level calculations
with the CSS and CSF models can be seen. Figure 2.21 (a)-(c) shows the CSS results where
the VOF mesh is two times, four times and eight times as fine as the FE mesh (medium
mesh). Figure 2.21 (d)-(f) shows the corresponding CSF results. The velocity plots from
the 2-level CSS calculations indicate that the flow becomes more localized to the true
interface position as the VOF mesh is refined. This is especially evident by comparing the
1-level result in Figure 2.20 (b) and the 2-level result in Figure 2.21 (c). The velocity plots
in Figure 2.21 (d) and (e) show a similar behavior when compared to the 1-level result
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Figure 2.20: Velocity vector plots showing spurious currents on the (x1, x2)-symmetry plane
of the drop. (a)-(c) results obtained using the CSS model on the coarse, medium and fine
mesh respectively. (d)-(f) results obtained using the CSF model. The 1-level method was
used in all simulations.
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in 2.20 (e). On the other hand the result in Figure 2.21 (f) shows a large increase in the
magnitude of the velocities when the finest VOF mesh is used. This behavior indicates
that increasing the hFE/hV OF ratio does not necessarily lead to better results. In Table
2.10 the maximum norms of the velocities can be seen from the 2-level experiments. Here
we see that the maximum velocity does not change with VOF mesh refinement when the
CSS method is used. Furthermore the maximum velocity is comparable to that obtained
from the 1-level calculation on the finest mesh, cf. Table 2.9. The results from the CSF
calculations in Table 2.10 show that the smallest maximum velocity is obtained when the
VOF mesh is four times finer than the FE mesh which Figure 2.21 (e) also indicates. Again,
as Figure 2.21 (f) suggests, the maximum velocity is largest on the finest VOF mesh.
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Figure 2.21: Velocity vector plots showing spurious currents on the (x1, x2)-symmetry plane
of the drop when the 2-level approach is used. (a)-(c) results obtained using the CSS model
with hFE/hV OF = 2, 4 and 8 respectively. (d)-(f) results obtained using the CSF model.
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hFE/hV OF ||v||∞ CSS ||v||∞ CSF

2 0.0244 0.0202
4 0.0244 0.0167
8 0.0244 0.0247

Table 2.10: Maximum norm of the spurious current velocities obtained using the CSS and
CSF model with the 2-level method. The medium mesh was used in the FE discretization.

The implication of the spurious currents is that the interface topology of an otherwise
stagnant drop will change with time. One can relate the viscous and interfacial tension
forces through the Ohnesorge number:

Oh =
μ√
σρr0

When the Ohnesorge number is combined with the scaling of the spurious currents with in-
terfacial tension and viscosity the order of the Reynolds number based on spurious currents
becomes:

Re =
0.01

Oh2

and thus for small Ohnesorge numbers the spurious currents will be large. In practice this
means that for a drop undergoing deformation in an externally applied flow the spurious
currents can lead to flow instabilities if the Ohnesorge number is small and the applied
flow is weak, cf. also (Renardy, Cristini & Li 2002).

In summary this investigation of the spurious currents associated with the implemented
CSS and CSF models agrees well with numerical experiments carried out by other re-
searchers, e.g. (Brackbill et al. 1992, Lafaurie et al. 1994, Scardovelli & Zaleski 1999, Re-
nardy, Cristini & Li 2002). Furthermore when the CSS model is used some decrease in
the magnitude of the spurious currents is observed for the 2-level results compared to the
1-level results. This behavior is also seen for the CSF model for some FE-VOF mesh com-
binations. However, an increase in the velocity field is seen when the CSF method is used
together with the finest VOF mesh and thus care has to be taken when using the 2-level
method with highly refined VOF meshes.
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Chapter 3

Simulations of single drop deformations

In order to investigate the validity of the implemented FE-VOF algorithms a number of
simulation tests are carried out on single drops suspended in a second immiscible liquid on
which a flow is applied. These tests consist of checking boundary wall effects (subsections
3.2.1) effects of mesh type (subsection 3.2.2), temporal convergence (subsection 3.2.3),
spatial convergence of 1-level and 2-level meshes (subsection 3.2.4), simple shear simulations
with drop break-up and merging (section 3.3) and simulations in planar elongation (section
3.4). In all simulations the CSS interfacial tension model is used and the adjusted time
step parameter Δt∗ is used during the advection step - unless otherwise stated. Before
we proceed to the results from these tests an introduction to the computational domain,
boundary conditions and time step size needs to be given.

3.1 The computational domain, BC’s, and time step size

All simulations carried out in this project are based on a simple hexahedral computational
domain (a computational box). Figure 3.1 shows an example of a finite element mesh
used for the discretization of the domain. In order to save necessary computation time
the mesh consists of elements with variable side lengths. Elements are then concentrated
in the region where the drop is expected to be during the simulations, typically in the
centre, while the element density decreases as one approaches the walls of the box. The
computational box thus consists of a fine region with regular hexahedral elements in the
center and a coarse region with hexahedral elements extending from the fine region towards
the walls. The dimensions of the domain are ([−L1, L1]× [−L2, L2]× [−L3, L3]) where L1,
L2 and L3 are the half lengths of the box, cf. Figure 3.1. In principle one can generate many
types of flow fields in the computational box by applying appropriate boundary conditions.
However, here we will focus on planar flow fields of the type:
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v1 = αGx1 + (1 − |α|)Gx2

v2 = −αGx2

v3 = 0 (3.1-1)

where G = |ε̇| + |γ̇| and α = ε̇/G. Here ε̇ is an elongation rate and γ̇ is a shear rate. If
γ̇ = 0 the flow corresponds to planar elongation and if ε̇ = 0 the flow corresponds to pure
shear. If both the shear and elongation rates are larger than zero the flow is a mixture of
both. It is noted that due to the definition of the flow field the shearing direction does
not depend on the sign of γ̇. However if ε̇ is negative the elongational contribution to the
flow changes direction. For any combination of ε̇ and γ̇ the flow will have a stagnation
point in the centre (x1, x2, x3) = (0, 0, 0) of the box. In all single drop simulations the
drop is initially placed in the centre of the domain which guaranties that the drop will not
translate out of the box. It is noted that a symmetry plane exists at x3 = 0 which halves
the required number of elements.

In order to generate this flow by the Stokes solver the velocity is specified according
to (3.1-1) on boundary nodes at x1 = −L1, x1 = L1, x2 = −L2 and x2 = L2. On the
symmetry plane and the wall at x3 = −L3, v3 = 0 is specified while the remaining velocity
components are unspecified. The motivation for this choice of BC’s is that one can easily
control the flow field ranging from pure shear to pure planar elongation just by changing
the shear and elongation rate. This also means that one can specify time dependent shear
and elongation rates which we will use later to simulate more complex flow situations.
Unless otherwise stated a variable time step is used during the simulations. Since, only
interface cells and their nearest neighbours, i.e. the active cells, need to be considered
during a given advection step a routine searches through all the active cells to find the
CFL number:

CFL = max

( |fj,i|
Vj

)
Δt, j = 1, . . . , Nactive

where Nactive is the number of active cells, Vj are VOF cell volumes and fj,i are VOF cell
face fluxes. The user then specifies a priori what the CFL should be. Thus for, say time
step number k, the time step size is:

Δtk =
CFL

max
(

|fj,i|

Vj

)k

where CFL is a user input. It is noted that if the flow at some point ceases, e.g. due to
reversal in the flow direction, the time step becomes infinite. Therefore a maximum time
step-size needs to be specified.
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Figure 3.1: Structured mesh with variable mesh size. The dimensions of the rectangular
domain are given by half side lengths L1, L2, L3. The mesh shown has a central fine region
with constant element size and a variable coarse part which extends out to the domain
boundaries.

3.2 Convergence of the FE-VOF code

In order to check the convergence behavior of the FE-VOF code a standard numerical
experiment (benchmark problem) is constructed. This benchmark is based on pure shear
of a drop with initial radius r0 = 0.25 and viscosity μd = 1Pas suspended in a second liquid
with viscosity μc = μd. The interfacial tension coefficient is σ = 0.625N/m and the shear
rate is γ̇ = 1s−1. Furthermore the drop is neutrally buoyant. These parameters correspond
to Ca = 0.40 and λ = 1 which is approximately 10% below the critical point for a drop
sheared in an infinite medium, i.e. no wall effects. The reason for the choice of these test
conditions is as follows:

1. Flow field: Both experimental and numerical results on single drop deformation
behavior in simple shear are readily available in the literature.

2. Ca number: In order to quantify the deformation of the drop it is advantageous
that the drop reaches a steady-state and that the deformation is as large as possible

101



78 Chapter 3. Simulations of single drop deformations

but still quantifiable by the Taylor deformation parameter. This should ensure good
accuracy in the deformation calculations.

3. Viscosity ratio: As the coefficient matrix is constant for λ = 1 factorization needs only
to be carried out once outside the time integration loop which speeds up computation
considerably.

A characteristic drop time is defined as t̂ = r0μc/σ which is used for defining a di-
mensionless time as t∗ = t/t̂. The dimensionless time will be used when transients are
studied.

3.2.1 Wall effects

The mesh used in these tests is as follows: The size of the fine mesh region is [−24hfine, 24hfine]×
[−8hfine, 8hfine]× [−8hfine, 0]) where hfine = r0/7. The coarse part of the mesh consists of
4 elements extending from the fine mesh region towards each wall. The coarse mesh region
is set up by halving the element side lengths when going from the walls to the fine region.
The side lengths of the elements closest to the boundaries are then chosen in such a way
that the size of the coarse mesh region agrees with the size of the region extending from
the fine mesh to the walls. Hence, as the wall separation is changed the fine mesh region
is unaltered while the sizes of the elements in the coarse region are scaled. In these tests
the variable time step size is chosen such that CFL = 1/4.

In Figure 3.2 an example of the results obtained during the shear experiment can
be seen. The figure shows both the 3D drop shape (PLIC faces), figure (a)-(c), and the
(x1, x2)-slice through the symmetry plane of the drop, figure (d)-(f), for three dimensionless
times during the deformation. Also shown is the flow field on the symmetry plane. In this
example the size of the computational domain is (L1, L2, L3) = (24r0, 24r0, 24r0). From
Figure 3.2 it is seen that as the drop deforms from its initial spherical shape the flow
field starts to circulate in the interior of the drop. This circulation of the fluid eventually
results in a steady state where the drop shape no longer changes (c) and (f). By measuring
the length L and breadth B of the drop on the symmetry plane at every time step one
can obtain the transient deformation parameter D. Two series of experiments have been
carried out. In the first series the total domain length in the x1 direction is kept constant
at 24r0 while the length in the x2 and x3 direction is varied from 2r0 to 24r0. In the second
experimental series the length in the x1 direction is varied while the x2 and x3 lengths are
kept constant at 24r0.

In Figure 3.3 the deformation as a function of the dimensionless time can be seen for
the simulations carried out with varying L2 and L3. The data in the figure show that when
(L2, L3) = (2r0, 2r0) and (L2, L3) = (4r0, 4r0) the deformation does not reach a limiting
value and the drop will at some point break up (break up occurs at around t∗ = 20 and
t∗ = 130 for the two cases). For the remaining geometries the drop does reach a limiting
deformation Ds. In these cases the deformation curve is seen to increase fast in the initial
part of the experiments (t∗ < 5). Hereafter the curves start leveling out and at around
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Figure 3.2: Deformation of a drop in simple shear flow at dimensionless times t∗ = 0,
t∗ = 3 and t∗ = 70. The dimensions of the computational box were (L1, L2, L3) =
(24r0, 24r0, 24r0). Ca = 40 and λ = 1. (a)-(c) PLIC face reconstruction of the the in-
terface. (d)-(f) cross-sectional slice through symmetry plane of the drop, also shown is a
vector plot of the velocities. It is noted that only a part of the domain is shown.
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t∗ = 40 a steady state is reached. From these data it is clear that the limiting value of
D decreases as the wall separation is increased, however, for (L2, L3) = (16r0, 16r0) and
(L2, L3) = (24r0, 24r0) the curves almost overlap, indicating that wall effects are becoming
negligible. In Table 3.1 the steady-state deformation values (Ds) taken at the end of the
numerical experiments are given. From the table it is seen that we obtain Ds = 0.5803
when (L1, L2, L3) = (24r0, 24r0, 24r0).
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Figure 3.3: Influence of wall separation in the x2 and 3 direction. The length of half of the
domain is L1 = 24r0 in all simulation.

(L2, L3) (24r0, 24r0) (16r0, 16r0) (8r0, 8r0) (4r0, 4r0) (2r0, 2r0)

Ds 0.5803 0.5825 0.59463 unstable unstable

Table 3.1: Steady-state values of D for various domain sizes in the x2 and x3 direction. L2

and L3 correspond to half the total height and width of the domain. The length L1 of the
domain is 24r0 in all cases.

In Figure 3.4 the transient deformation can be seen for the second experimental series,
i.e. where (L2, L3) are kept constant at 24r0. The steady-state deformations from these
simulations can be seen in Table 3.2. By comparing Figure 3.4 with Figure 3.3 it is seen
that the results obtained in the second experimental series are similar to those obtained
for the first series. The drop is stable in all cases except when L1 = 4r0. Furthermore we
again see that the curves more or less overlap when L1 = 16r0 and L1 = 24r0.

These numerical experiments thus suggest that a wall separation corresponding to
(L1, L2, L3) = (24r0, 24r0, 24r0) leads to negligible wall effects. In the VOF computa-
tions of Li et al. (2000) the steady state deformation at Ca = 0.40 and λ = 1 is found to
be 0.541, however, in their calculations the F -field is smoothed prior to interfacial tension

104



3.2. Convergence of the FE-VOF code 81

706560

0.6

0.58

L1 = 4r0

L1 = 8r0

L1 = 16r0

L1 = 24r0

Dimensionless time t∗

D
ef

o
rm

a
ti
o
n
,
D

80706050403020100

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 3.4: Influence of boundary effects in the x1 direction. The half height and width of
the domain is (Ly, Lz) = (24r0, 24r0) in all simulations.

Lx 16r0 8r0 4r0

Steady-state D 0.5812 0.5927 unstable

Table 3.2: Steady-state values of D for various domain lengths in the x1 direction. L1

corresponds to half the total length of the domain. The half-height L2 and half-width L3

of the domain are 24r0 in all simulations.

calculations. It is noted that Li et al. (2000) find that a domain size of (8r0 × 16r0 × 4r0)
is sufficient to neglect wall effects. However, in their simulations a regular finite difference
grid is used and thus all elements have equal size. Furthermore they apply periodic BC’s
in the x1 and x3 direction which of course changes the way the walls affect the flow. In the
current implementation it is also possible to apply periodic BC’s on these walls, however,
here we are not interested in that because we want to be able to carry out simulations in
mixed flow fields.

3.2.2 Refinement of the coarse part of the mesh

In order to investigate how the mesh concentration in the coarse mesh region affects the
flow field, simulations are carried out on three different meshes. In these simulations the
fine mesh region is the same as that used in the previous subsection while the coarse region
consists of either 2, 4 or 6 elements extending from the fine region out to domain boundary.
These meshes are denoted Ncoarse = 2, Ncoarse = 4 and Ncoarse = 6 and a (x1, x2)-slice of
the lower left part of the meshes can be seen in Figure 3.5.

The dimensions of the domain are (L1, L2, L3) = (24r0, 24r0, 24r0) and the variable time
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(a) (b) (c)

Figure 3.5: Bottom left slice in the (x1, x2)-plane of the meshes used for studying the effect
of refinement on the coarse mesh region. (a) Ncoarse = 2, (b) Ncoarse = 4, (c) Ncoarse = 6.

step is specified by setting CFL = 1/4. In Figure 3.6 the transient deformation obtained
from the simulations can be seen. The results show that when Ncoarse = 2 a steady state
is not obtained and the drop will therefore eventually break-up. The simulation with
Ncoarse = 4 is the same as the one carried out in the previous section with (L1, L2, L3) =
(24r0, 24r0, 24r0) and thus reaches a steady state. By comparing the transient deformation
data for Ncoarse = 4 and Ncoarse = 6 it is seen that the difference is very small which
together with the results in the previous section indicates that a mesh with Ncoarse = 4
and (L1, L2, L3) = (24r0, 24r0, 24r0) is adequate for carrying out the shear experiment with
negligible wall effects.

3.2.3 Influence of time-step size

The influence of the time step size Δt is investigated by carrying out simulations with
CFL ranging from 1/2 to 1/8. The mesh used in these simulations is Ncoarse = 4 and
(L1, L2, L3) = (24r0, 24r0, 24r0) with the fine region being the same as that described in
subsection 3.2.1. The results can be seen in Figure 3.7. Here it is evident that for the mesh
and parameters used there is practically no difference in the results when going from the
largest to smallest time step tested. The relative loss in volume of the advected fluid is
9.3·10−2 % for largest time step and 6.5·10−3 % for the smallest time step. In (Li et al. 2000)
a loss of 2.6 · 10−3 % is reported. However, our largest time step is approximately 2 orders
of magnitude larger than that used in (Li et al. 2000). The results obtained here therefore
suggest that CFL = 1/2, which is close to the maximum time step allowed, is adequate.
However, it is noted that if a mesh with a coarser fine region is used care must be taken
because the actual time step will be larger than that used for generating the results in
Figure 3.7, i.e. the CFL number depends on the mesh element size.
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Figure 3.6: Influence of element refinement on the coarse part of the mesh. Each simulation
is carried out with the same number of coarse elements in all principal directions, i.e.
Ncoarse,1 = Ncoarse,2 = Ncoarse,3 = Ncoarse.

mesh hfine CFL DOF

1 r0/3 1/16 8815
2 r0/6 2/16 32809
3 r0/9 3/16 80203
4 r0/12 4/16 158773

Table 3.3: Element side lengths of the fine mesh region for the four meshes used for testing
spatial convergence of the 1-level method. Also shown are the CFL numbers specified for
each mesh and the total number of DOF associated with each mesh.

3.2.4 The fine mesh region and the 2-level algorithm

Now the convergence with respect to mesh refinement of the fine mesh region is investigated.
These tests include both the 1-level and 2-level methods. In the 1-level tests, simulations
are carried out on four meshes with different mesh concentration in the fine region. The
dimensions of the fine region are those given in subsection 3.2.1 while the mesh element
side lengths (hfine) are varied from r0/3 to r0/12, cf. Table 3.3. All meshes used have
Ncoarse = 4 and (L1, L2, L3) = (24r0, 24r0, 24r0). In order to obtain time step sizes, which
are approximately the same in all simulations, mesh dependent CFL numbers are specified,
these are given in Table 3.3.

In Figure 3.8 the transient deformation can be seen for the simulations carried out using
the 1-level method. The simulations show that the drop is unstable when the coarsest mesh
is applied. For the remaining meshes the drop is stable and the results show that the steady-
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Figure 3.7: Influence of time-step size on droplet deformation behavior.

mesh Ds

1 Unstable
2 0.598
3 0.560
4 0.550

Table 3.4: Steady-state deformation parameters obtained from simulations with the meshes
in Table 3.3.

state deformation parameter decreases as the mesh is refined, cf. also Table 3.4. The data
in Figure 3.8 also indicate that the transient drop shape converges with mesh refinement. In
the last column of Table 3.3 the DOF associated with each mesh are also shown. The total
simulation time used for mesh 1 in Table 3.3 was approximately 2 hours while it was on the
order of 3 days for mesh 4 (using 1 processor). And judging from the results in Figure 3.8
and Table 3.4 the mesh needs to be at least as fine as mesh 4 if simulations are to be carried
out in the converged region. This means that in order to carry out realistic simulations
using the 1-level method computation times become exceedingly large. It is noted that
the simulations presented until now are based on relatively small drop deformations. If
simulations are carried out which involve large deformations leading to break-up the fine
mesh region needs to be extended in the deformation direction which requires a larger
number of elements. Furthermore if the two phases have different viscosities each time
step also requires a re-factorization of the coefficient matrix which is very time consuming.
Thus in summary the range of numerical experiments which we can carry out using the
1-level method is heavily limited by the computational costs.

This brings us to the 2-level method because here one can choose a relatively coarse
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Figure 3.8: Transient deformation obtained on meshes with different element concentra-
tions in the fine region (1-level).

computational mesh while still having a fine resolution on the VOF mesh level. Since, for a
given time step, all the VOF calculations are limited to interface cells and their neighbours
these calculations are generally very fast relative to the flow field calculations (usually less
than 5% of the total computation time). This though of course depends on how fine the
VOF mesh is relative to the FE mesh. It is noted that the interface normal and interface
advection calculations are localized to a given VOF cell and thus it should be possible to
parallelize this part of the code efficiently - this though has not been carried out here. In
order to investigate the accuracy of the 2-level method compared to the 1-level method a
number of simulations have been carried on various combinations of FE and VOF meshes.
In all cases each finite element is divided into equally many VOF cells in each direction,
i.e. N1 = N2 = N3 = Nv. The combinations of meshes used are given in Table 3.5. The
numbers in the table are used for identifying the various meshes while minuses indicate
combinations which have not been used. It is noted that the 1-level meshes (mesh 1, 5, 9
and 12 in Table 3.5) are the same as those in Table 3.3. By comparing results obtained on
2-level meshes with the corresponding 1-level mesh it is possible to get a measure of the
accuracy of the 2-level method. In all simulations the size of the fine mesh region is the
same as in the previous tests and the initial drop radius is also the same, i.e. r0 = 0.25.
For the finest FE-mesh with Nv = 2 the variable time step is chosen such that CFL=1/2.
The time steps used for the other meshes are then scaled relative to this mesh such that
the total number of time steps is approximately the same for all simulations.

The results from the 2-level simulations are presented in 3 different ways. First the
interface of the drops after steady state is reached will be investigated on a qualitative
level. This is carried out in order to investigate how the subdivision of the FE mesh into a
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hfine,fem Nv = 1 Nv = 2 Nv = 3 Nv = 4

r0/3 1 2 3 4
r0/6 5 6 7 8
r0/9 9 10 11 -
r0/12 12 13 - -

Table 3.5: Combinations of FE and VOF meshes used for investigating the 2-level method.
Nv is the number of VOF cells per finite element in each direction. The numbers in the
table are those used when referring to a given FE-VOF mesh combination. A minus means
that no simulation has been carried out.

finer VOF mesh influences the interface quality compared to the 1-level method. Then the
convergence of the transient drop deformation behavior is investigated in terms of VOF
mesh resolution. Finally we will take a look at the steady-state deformation parameter Ds

for the various mesh combinations tested. Here particular emphasis is on whether or not
results obtained on a 2-level mesh are comparable to those obtained on a 1-level mesh with
the same VOF mesh resolution.

In Figure 3.9 (a)-(c) the drop shape at steady state can be seen for the simulations
carried out using mesh 2-4 in Table 3.5. From the previous results on the 1-level method
it was observed that the drop is not stable when mesh 1 is used. This means that the drop
is stabilized by the increased resolution of the VOF mesh (i.e. the deformation is limited).
By inspection of Figure 3.9 one sees that the interface is sharply defined in all 3 cases,
however, as the VOF mesh gets increasingly refined the smoothness of the interface at the
drop ends seems to decrease. This is especially evident in Figure 3.9 (c) where each finite
element is subdivided into 64 VOF cells. In this case the ends have a somewhat ’wobbly’
structure. In Figure 3.10 the steady state results from mesh 5, 6 and 8 can be seen. Here
the VOF mesh used for generating the result in Figure 3.10 (a) (1-level) is the same as
that used for generating Figure 3.9 (a) (2-level with Nv = 2). Comparison between these
two figures reveals that the 1-level method leads to a steady state drop with a smoother
interface than the 2-level method. However, the agreement between the simulations is
acceptable. Figure 3.10 (b) and Figure 3.9 (c) are also based on the same VOF mesh but
in the former a 2-level mesh with Nv = 2 is used while the latter is based on Nv = 4. In this
case the interface is considerably smoother when Nv = 2 compared to Nv = 4. Especially
the ’wobbly’ ends in Figure 3.9 (c) are much less pronounced in Figure 3.10 (b). The drop
interface seen in Figure 3.10 (c), where Nv = 4, is quite smooth with much less pronounced
end ’wobbling’ compared to the coarser 2-level mesh with Nv = 4 in Figure 3.9 (c).

In Figure 3.11 the result obtained from mesh 9-11 can be seen. Here the VOF mesh
used in Figure 3.11 (a) (1-level) is the same as the one used in Figure 3.9 (b). Again
the agreement is acceptable but with the 1-level mesh leading to a smoother interface. In
Figure 3.11 (b) and (c) the drop interfaces are very smooth.

The results from the simulations carried out on the finest calculational mesh (mesh
12 and 13) can be seen in Figure 3.12 (a) and (b). Here direct comparison can be made
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Figure 3.9: Drop shape after steady state is reached (dimensionsless time t∗ ≈ 70) for mesh
2-4, (a)-(b). Shown is the PLIC reconstruction.
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Figure 3.10: Drop shape after steady state is reached (dimensionsless time t∗ ≈ 70) for
mesh 5,6 and 8, (a)-(b). Shown is the PLIC reconstruction.
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Figure 3.11: Drop shape after steady state is reached (dimensionsless time t∗ ≈ 70) for
mesh 9-11, (a)-(b). Shown is the PLIC reconstruction.
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between Figure 3.12 (a), Figure 3.10 (b) and Figure 3.9 (c). Comparison between the
1-level result in Figure 3.12 (a) and the 2-level result in Figure 3.10 (b) (Nv = 2) shows
good agreement. However, differences in the smoothness of the interface become apparent
if one zooms in on drop end regions of the figures (not shown). Figure 3.12 (b) which is
based on the 2-level method with Nv = 2 shows a very smooth interface. This result can be
compared to Figure 3.10 (c) based on the 2-level simulation with Nv = 4. The agreement
between the results obtained on these two 2-level meshes is good.
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Figure 3.12: Drop shape after steady state is reached (dimensionsless time t∗ ≈ 70) for
mesh 12-13, (a)-(b). Shown is the PLIC reconstruction.

From these qualitative observations of steady state drop shapes obtained on the various
FE-VOF mesh combinations it is evident that increasing the resolution of the VOF mesh
while keeping the FE mesh constant stabilizes the drop on the coarsest FE mesh. However,
when the 2-level method is used together with the coarsest FE mesh the interface is not
very smooth especially when the number of VOF cells per finite element is increased. This
problem is considerably reduced when finer FE meshes are used.

The results from mesh 1-4 and 5-8 are used for investigating how the transient drop
deformation behaves as the VOF mesh is refined on a given FE mesh. In Figure 3.13 (a)
the drop deformations obtained on mesh 1-4 can be seen (here the coarsest FE mesh is
used). This figure indicates that the transient deformation curves converge as the VOF
mesh is refined. In Figure 3.13 (b) the results from mesh 5-8 can be seen. Here the FE
mesh is twice as fine as that in figure (a). Again we see a convergence of the deformation
curves. Comparing the results in Figure 3.13 (a) and (b) with the results from the 1-level
method in Figure 3.8 shows that the general behavior of the deformation curves with VOF
mesh refinement is consistent. Furthermore the steady-state deformation parameter Ds for
a given VOF mesh does not seem to be very dependent on the FE mesh used.

In Figure 3.14, Ds obtained at the end of each simulation can be seen as a function
r0/hvof where hvof is the VOF cell side lengths (the deformation parameters are also given
in table 3.6). Furthermore the degree of finite element sub-division (i.e. Nv) is indicated
for each data point. From the figure it is seen that for constant VOF mesh resolution,
increasing the degree of sub-division (i.e. Nv) leads to a larger Ds when r0/hvof < 18. On
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the other hand the data points for r0/hvof ≥ 18 show very little dependence of Ds on Nv.
It is noted that the 2-level data points at r0/hvof = 6, 9 and 12 with Nv = 2, 3 and 4 are
based on the coarsest FE mesh. From the qualitative analysis of the interface smoothness
above it was observed that these simulations resulted in a somewhat ’wobbly’ interface
at the drop ends. This of course will have an influence on the accuracy of the interfacial
tension calculations and might explain a part of the deviation observed between the 2-level
and 1-level results (circles in Figure 3.14). Hence one can argue that the accuracy in the
finite element discretization is not sufficient when the coarsest mesh is used. Nevertheless
the results in Figure 3.14 give a clear indication that one can improve the performance
of the program by using the 2-level algorithm and that Ds converges as the VOF mesh is
refined. From Table 3.6 the limiting deformation parameter is seen to be around 0.54 when
the VOF resolution is in the converged region which is obtained for r0/hvof ≥ 18. In these
numerical experiments only one type of flow field and set of parameters are used. Therefore
the analysis carried out here is somewhat restricted. However, our result Ds ≈ 0.54 agrees
very well with the results of Li et al. (2000) where Ds = 0.541 was obtained with the same
parameters (though not the same mesh resolution). Boundary integral calculations by
Rallison (1984) and by Kwak & Pozrikidis (1998) yield a limiting deformation parameter
of 0.46 and 0.5 respectively and thus the discrepancy between our result and their result
is somewhat larger.
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Figure 3.13: Transient drop deformations for (a) mesh 1-4 in Table 3.5 and (b) mesh 5-8.
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Figure 3.14: The steady-state deformation parameter Ds obtained using the meshes in
Table 3.5 as a function of the VOF cell side lengths hvof (in the fine mesh region).

hfine,fem Nv = 1 Nv = 2 Nv = 3 Nv = 4

r0/3 unstable 0.601 0.564 0.556
r0/6 0.598 0.553 0.541 0.538
r0/9 0.560 0.541 0.539 -
r0/12 0.550 0539 - -

Table 3.6: Steady-state deformation parameters Ds obtained on the various combinations
of FE and VOF meshes used for testing the 2-level algorithm.
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3.3 Simulations in simple shear flow

In order to test the FE-VOF model further a number of simulations have been carried out
in simple shear with various values of the capillary number and viscosity ratio. These sim-
ulations include drop break-up, merging of 2 drops and near collision of 2 drops. However,
we will begin with results obtained from simulations with λ = 1 and Ca varying from 0.1
up to just above the critical value. The results from our simulations are then compared to
results reported in the literature.

3.3.1 Simple shear, λ = 1

All simulations carried out here are based on a finite element mesh with hfine = r0/6
and the 2-level method with Nv = 3 (i.e. hvof = r0/18) - unless otherwise stated. This
corresponds to the converged region of Figure 3.14. Furthermore the time-step size is based
on the setting CFL=1/2. The dimensions of the fine mesh domain depend on how much
the drop is expected to deform, but in all simulations the coarse mesh region consists of 4
elements spanning from the fine region to the domain boundaries. The dimension of the
calculational domain is (L1, L2, L3) = (24r0, 24r0, 24r0).

In Figure 3.15 (a)-(d) the steady velocity field and drop shape on the (x1, x2)-symmetry
plane can be seen for simulations with Ca = 0.1, 0.2, 0.3 and 0.4. This figure shows how
the interfacial tension perturbs the applied shear flow and results in a rotating flow field in
the interiour of the drop. The dimensions of the fine region is [5r0,−5r0]×[−7/6r0, 7/6r0]×
[−7/6r0, 0] in all simulations. Besides the obvious increase in the degree of deformation with
increasing Ca number, Figure 3.15 (a)-(d) also shows that the angle between the major drop
axis and the x2 = 0 plane decreases with increasing capillary number as expected by theory,
e.g. (Cox 1969). One can compare Figure 3.15 (a)-(d) with Figure 5 in (Li et al. 2000)
where the same types of plots are given. From a qualitative inspection our results are in
good agreement with the results of Li et al. (2000). In order to make a more quantitative
comparison the steady state deformation parameter Ds and the steady state angle of the
drop relative to the x1-axis are presented in Figure 3.16 (a) and (b) together with literature
data. It is noted that similar figures are presented in (Kwak & Pozrikidis 1998) and (Li
et al. 2000). For small capillary numbers (Ca < 0.2) the steady state deformation data in
Figure 3.16 (a) agree well with the small deformation asymptote. However as the capillary
number increases beyond 0.2 the spread in the values of Ds increases. Especially one sees
that both BI methods lead to somewhat smaller deformations than the VOF methods. On
the other hand it is seen that our 2-level VOF method is in excellent agreement with the
VOF calculations of Li et al. (2000) up to Ca = 0.4. It is noted that because the mesh
used in our simulations corresponds to the converged region in Figure 3.14 increasing the
resolution does not change the final result significantly. From this we can conclude that
our steady deformation results agree with the VOF calculations of Li et al. (2000) for all
capillary numbers up to 0.4 while the agreement with BI methods is somewhat worse for
high capillary numbers. Although only three data points are present, the experimental
results of Rumscheidt & Mason (1961), also plotted in Figure 3.16 (a), can be seen to
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deviate from the small deformation limit of Cox (1969) with increasing Ca in the same
manner as the numerical calculations. In Figure 3.16 (b) the drop angle at steady state
can be seen for the same data points as in (a). The figure shows 45◦ − θ as a function of
Ca where θ is the angle between the drop major axis and the x1 coordinate axis. From the
figure some spread in the data is seen for all capillary numbers. Furthermore the deviation
between the small deformation asymptote and the data points is considerable for all values
of Ca. It is though noted that for small deformations it is difficult to obtain accurate values
of the drop angle as the major axis of the drop is difficult to identify precisely. This is,
however, not a problem for large deformations (Ca>0.1). The results on the steady state
angle from our VOF calculations are in good agreement with those of Li et al. (2000) for
Ca > 0.1. The discrepancy at Ca = 0.1 is probably due to inaccuracy in determining the
major drop axis.
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Figure 3.15: Velocity vector plots and drop shapes at steady state on the (x1, x2)-symmetry
plane for simulations with (a) Ca = 0.1, (b) Ca = 0.2, Ca = 0.3 and Ca = 0.4. λ = 1 and
Nv = 3 was used in all simulations.

In Table 3.7 some values of the critical capillary number reported in the numerical
literature for λ = 1 are given. Here it is seen that the there is some spread in the literature
data, however, the ’true’ critical capillary number is usually taken to be around 0.42-
0.43, e.g. (Kwak & Pozrikidis 1998). As shown by Renardy, Cristini & Li (2002) (VOF)
the resolution of the mesh has a large impact on whether or not a drop will break up
for capillary numbers in the vicinity of Cacrit. They have carried out simulations with
Ca = 0.44 and various mesh resolutions and show that for a mesh with element side lengths
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Figure 3.16: Drop deformation in simple shear with λ = 1 and varying capillary number.
Comparison of the steady drop deformation parameter (a) and steady drop angle (b) with
values reported in the literature. + 2-level VOF with Nv = 3 (also indicated with a
broken curve in (a)); � VOF calculations of Li et al. (2000); × BI calculations of Kwak &
Pozrikidis (1998); � BI calculations of Rallison (1984); ◦ experiments by Rumscheidt &
Mason (1961); solid curve is the asymptotic result by Cox (1969) for small deformation.
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Numerical method Cacrit Reference

BI 0.42 (Rallison 1984)
BI 0.37 (Kennedy et al. 1994)
BI 0.42 (Kwak & Pozrikidis 1998)
BI 0.43 (Cristini et al. 2003)

VOF 0.42 (Li et al. 2000)

Table 3.7: Values of the critical capillary number for λ = 1 reported in the literature.

h = r0/8 the drop is stable whereas for h = 3r0/32 the drop breaks-up. Furthermore they
show that refining the mesh further results in a faster break-up process. Results from BI
calculations are also quite sensitive to the resolution of the boundary mesh as noted in
(Cristini et al. 2003). Thus the variation among the reported critical capillary numbers
can probably be explained, at least partially, by differences in mesh resolutions used in the
simulations.

It is noted that from the Taylor small deformation theory the predicted critical capillary
number is 0.457 when λ = 1, cf. (Taylor 1932).

In order to investigate how our code handles drop break-up and what the predicted
critical capillary number is, simulations have been carried out for Ca = 0.42, 0.44 and 0.46.
In these simulations the dimension of the fine mesh region is [−8r0, 8r0]× [−7/6r0, 7/6r0]×
[7/6r0, 0]). Since we now operate in the critical region the Taylor deformation parameter is
not useful for quantifying the deformation and instead the half length of the drop relative
to the initial radius is used as a measure of the deformation. The shear rate is γ̇ = 1s−1 in
all simulations. For transient events the time is made dimensionless using the shear rate,
i.e. t+ = tγ̇, and not the characterisitc drop time as earlier which is more suitable for small
deformations.

The simulation carried out with Ca = 0.42 did not lead to drop break-up. The final
drop shape can be seen in in Figure 3.17. It is noted that when plotting 3D drop shapes
the iso-surface based on the 0.5 contour of the F -field will be used from now on instead of
the PLIC faces used earlier. This is done in order to enhance the 3D view of the drop.

The evolution of the drop shape for the simulation carried out with Ca = 0.44 can be
seen in Figure 3.18 (a) through (f). Here it is seen that as the drop deforms a neck starts
to form as evident in Figure 3.18 (c) (t+ = 50). As time proceeds this neck increases which
leads to a thread connecting the two major drops. Figure 3.18 (e) shows the drop shape
just before the main drops pinch off the thread. After pinch-off the thread starts to retract
which leads to a single drop in the centre and some debris between the central drop and
the two main drops. It is not possible, given the resolution of the VOF mesh, to determine
if the debris formed is an artifact stemming from the numerical method or if it corresponds
to sub-cell sized droplets. The final drop size distribution can be seen in Figure 3.18 (f).
Except from the debris this behavior is typically observed in simple shear when λ = 1 and
the capillary number is close to the critical value, see e.g. (Li et al. 2000, Renardy, Cristini
& Li 2002).
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Figure 3.17: Steady state drop shape in simple shear with Ca = 0.42 and λ = 1. (a) 3D
drop shape and (b) flow field and drop shape on the symmetry plane.

In Figure 3.19 (a) through (d) the drop shape at times t+ = 10, 30, 50 and 60 is shown
for the simulation with Ca = 0.46. Here it is seen that the break-up process proceeds
considerably faster compared to Ca = 0.44 (cf. Figure 3.18). Furthermore the drop now
becomes more extended before pinch-off of the main drops, see Figure 3.19 (c). At t+ = 60
the break-up process has completed leading to the final drop distribution shown in Figure
3.19 (d). Thus for Ca = 0.46 we obtain 5 drops which can be resolved by the VOF mesh,
i.e. two main drops, a smaller central drop with two satellite droplets on each side. Hence
increasing the Ca-number from 0.44 to 0.46 leads to different drop size distribution.

In Figure 3.20 the evolution of the half drop length L/r0 with dimensionless time can
be seen for the simulations shown in Figure 3.17, 3.18 and 3.19. From Figure 3.20 it is
seen that initially (t+ < 2) the rate of deformation is the same for all three simulations.
For t+ > 2 the deformation curves start to diverge with Ca = 0.42 leading to a stationary
drop shape while Ca = 0.44 and Ca = 0.46 lead to drop break-up. It is also seen that the
deformation is faster for Ca = 0.46 compared to Ca = 0.44 which as discussed above leads
to a more extended drop when pinch off occurs.

In order to investigate if the size of the fine mesh region and the BC’s applied at the
end walls (x1 = −L1 and x1 = L1) have any influence on the critical capillary number two
more simulations have been carried out with Ca = 0.42. In one simulation the size of the
fine region is increased in the x2 and x3 direction such that the total size is [−8r0, 8r0] ×
[−10/6r0, 10/6r0] × [−10/6r0, 0]. In the second simulation periodic BC’s are imposed on
the end walls. The dimensionless drop length L/r0 as a function of the dimensionless time
t+ for these simulations can be seen in Figure 3.21. Also shown in this figure is the result
from Figure 3.20 for Ca = 0.42. The figure shows that increasing the size of the fine mesh
region or changing the end wall BC’s to periodic does not result in any significant change
in the drop shape evolution history. This indicates that the critical capillary number in
our case is larger than 0.42 (with λ = 1). In fact the slow drop shape evolution obtained
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(a) (b)

(c) (d)

(e) (f)

Figure 3.18: Simple shear simulation with Ca = 0.44 and λ = 1. Figures (a) to (f) show
the drop at dimensionless times t∗ = 10, 30, 50, 60, 65 and 76.
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(a) (b)

(c) (d)

Figure 3.19: Simple shear simulation with Ca = 0.46 and λ = 1. Figures (a) to (d) show
the drop at dimensionless times t+ = 10, 30, 50 and 60.
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Figure 3.20: Evolution of the drop half length L/r0 with dimensionless time t+ for simula-
tions with Ca = 0.42, 0.44 and 0.46 and λ = 1.

for Ca = 0.44 suggests that Cacrit ≈ 0.44 in our case.

Since the computations become considerably more time consuming when the viscosity
ratio is different from one (due to factorization at each time step) the tests carried out for
λ different from one are somewhat less extensive. Here we will start by presenting results
from simulations with λ = 0.1.

3.3.2 Simple shear λ = 0.1

In Figure 3.22 (a) the steady state drop shape and velocity field on the symmetry plane
can be seen for a simulation with Ca = 0.40 and λ = 0.1. The resolution of the finite
element mesh and the VOF mesh used in this simulation is the same as in the previous
section, i.e. hfine = r0/6 and Nv = 3 (hvof = r0/18). The obtained Taylor deformation
parameter at steady state is Ds = 0.51. Comparison of the steady state drop shape in
Figure 3.22 (a) with that obtained for λ = 1 in Figure 3.15 (d) reveals that the drop ends
become somewhat more pointed in the case where λ = 0.1. Furthermore it is evident
that the rotational motion of the flow inside the drop is stronger when λ = 0.1. This is
expected because the drop is much less viscous than the continuous phase when λ = 0.1.
Comparison of our result with results in (Li et al. 2000) (Figure 10) shows good qualitative
agreement with regards to flow field behavior and drop shape. However, Li et al. (2000)
report Ds = 0.44 which is considerably lower than our result. In order to investigate how
the resolution of the finite element mesh influences the results when λ is different from one,
the simulation shown in Figure 3.22 (a) has been carried out on a finite element mesh with
a higher resolution. In this simulation the side lengths of the finite elements in the fine
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Figure 3.21: Evolution of the drop half length L/r0 with dimensionless time t+ for simula-
tions with Ca = 0.42 and λ = 1. The curves correspond to simulations carried out with the
tight fine mesh region (Lfine,1, Lfine,2, Lfine,3) = (8r0, 7/6r0, 7/6r0), the ’loose’ fine mesh
region (Lfine,1, Lfine,2, Lfine,3) = (8r0, 10/6r0, 10/6r0) and periodic BC’s on the end walls.

mesh region were decreased to r0/8. The 2-level method with Nv = 3 was again used and
thus the resolution of the VOF mesh is also increased compared to the simulation in Figure
3.22 (a). In Figure 3.22 (b) the drop shape obtained on the finer mesh is compared to the
drop shape obtained on the coarser mesh. Here it is clear that the finer mesh leads to a
less deformed drop. The steady state deformation parameter on the fine mesh is Ds = 0.48
which is closer to the results of Li et al. (2000). These results thus indicate that when λ is
different from one the resolution of the finite element mesh needs to be higher compared to
when λ = 1. Due to time limitations a full convergence test has not been carried out for λ
different from 1. It is recalled that for interface finite elements the viscosity (and density)
are calculated simply from average values of the F -field. In order to increase the accuracy
of the calculations one could instead use a procedure similar to the one used for the 2-level
interfacial tension calculations (section 2.5.2.2). Thus for each finite element interface cell,
the momentum balance terms should be based on a summation of VOF cell contributions.
Although this procedure would increase the necessary computation time for setting up
the coefficient matrix, the reduction in necessary factorization and back substitution time
could reduce the total computational cost.

In his experimental work Grace (1982) found that for simple shear the critical capillary
number is at its minimum somewhere around λ = 0.6. Furthermore his data suggest that
the critical capillary number at λ = 0.1 is approximately the same as when λ = 1. The
BI simulations of (Cristini et al. 2003) show a minimum around λ = 0.5, however, in their
simulations the critical capillary number for λ = 0.1 is Cacrit ≈ 0.53 which is somewhat
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Figure 3.22: Steady state drop shape for Ca = 0.40 and λ = 0.1. (a) cross-sectional slice
at the (x1, x2)-symmetry plane showing interface location and velocity field at steady state
when the coarse finite element mesh is used. (b) Comparison of steady state drop shape
when the coarse finite element mesh (full curve) and fine finite element mesh (broken curve)
are used.

higher than for λ = 1 (Cacrit ≈ 0.43).
In order to investigate how reducing λ from 1 to 0.1 affects the drop deformation when

Ca ≈ Cacrit a simulation has been carried out with λ = 0.1 and Ca = 0.46. In this
simulation the fine mesh from the Ca = 0.4 simulation above is used. The time step size is
determined from setting CFL=1/2. The results from this simulation can be seen in Figure
3.23 which shows that the drop does break up. Figure 3.23 (a) which shows the drop shape
just before break-up indicates that the drop is elongated less before break-up when λ = 0.1
compared to λ = 1, cf. Figure 3.19. However, the final drop size distribution for λ = 0.1
resembles the one obtained for λ = 1, i.e. two major drops with a smaller central drop
with satellite drops on each side.

(a) (b)

Figure 3.23: 3D drop shape simulated with Ca = 0.46 and λ = 0.1. (a) t+ = 40 and (b)
t+ = 47.

In Figure 3.24 the drop shape on the (x1, x2)-symmetry plane, just before break-up, is
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compared for λ = 0.1 and λ = 1. Here the differences in elongation is very clear. It is,
however, noted that the mesh used in the λ = 0.1 simulation has a higher resolution than
the mesh used for λ = 1. The differences in the drop shape can therefore be partly due
to mesh resolution differences. Nevertheless the simulation with λ = 0.1 shows that the
model is able to handle drop break-up for viscosity ratios smaller than 1.
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Figure 3.24: Comparison of drop shape just before break-up in simple shear with Ca = 0.46.
Broken curve shows the drop shape when λ = 1 while the full curve is obtained for λ = 0.1.

3.3.3 Simple shear λ = 25

In order to test the model for λ > 1 a simulation is carried out with Ca = 1.52 and λ = 25.
These parameters correspond to one of the datasets from the experimental series carried out
by Torza et al. (1972). Furthermore this dataset has also been used by Rallison (1980) in
connection with validation of theoretical work. It is noted that for simple shear flow and λ >
4 it is not possible to induce drop break-up regardless of the flow field strength, e.g. (Grace
1982). The transient deformation behavior for reaching the steady state is on the other
hand more complicated than for small values of λ. The high viscosity of the drop results in
an oscillating behavior of the drop angle and the deformation parameter. The frequency,
amplitude and damping depend on the viscosity ratio and capillary number. Theoretical
expressions for the drop angle and deformation as a function of time for large viscosity
ratios are e.g. given by Cox (1969) and Rallison (1980). These are based on the small
deformation assumption. Here we will compare the results from our simulations with the
experimental data by Torza et al. (1972) and the theoretical prediction by Rallison (1980).
In the VOF simulation the resolution of the fine finite element mesh region corresponds to
the fine mesh used for the λ = 0.1 simulation. Again the 2-level procedure with Nv = 3 is
applied for the VOF mesh.

In Figure 3.25 the results from the simulation can be seen. Furthermore the theoretical
results of Rallison (1980) and the experimental results of Torza et al. (1972) are also shown.
In the top figure the angle between the drop major axis and the x2-coordinate axis can
be seen while the bottom figure shows the Taylor deformation parameter. The results
in Figure 3.25 show that the experimental results lead to larger amplitude and smaller
frequency in the deformation and angle oscillations compared to the VOF simulation and
the theoretical prediction. However, comparison between our VOF simulation and the
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102 Chapter 3. Simulations of single drop deformations

small deformation prediction is quite good both with respect to amplitude and frequency.
It is though noted that the oscillation frequency is slightly higher in the VOF simulation.
Better agreement might be obtained if a finer finite element mesh is used. Nevertheless
the agreement between the simulated transient drop shape behavior and that predicted by
theory is satisfactory.

3.3.4 Collision of two drops in simple shear flow

An extensive numerical study of droplets en route to collision in simple shear flow has
been carried out by Loewenberg & Hinch (1997). In this study the near contact region of
two drops flowing past each other is investigated in terms of the relationship between drop
distance and the capillary number and viscosity ratio. However, none of their numerical
simulations results in coalescence of the two drops. Here we will show the results from
two simulations where two drops of equal size approach each other in simple shear. In the
first simulation (simulation 1) the drop interfaces do not come in contact with each other
while in the second simulation (simulation 2) the drop merge to form a stable larger drop.
The motivation for the simulations is to test how the model handles drop-drop interactions
and drop merging. In Figure 3.26 (a) the initial position of the two drops is sketched for
simulation 1. The drops are initially separated by 5r0 and the drop centres are offset from
the x1 axis by the distance 1/2r0 and −1/2r0 respectively. Figure 3.26 (b) shows the initial
drop positions for simulation 2. Here the initial drop distance is 3r0, and the offset from
the x1 axis is 1/3r0 and −1/3r0. Thus in simulation 2 the drops have to travel further in
the vertical (x2) direction within in a shorter distance in the horizontal (x1) direction in
order to avoid collision. In both simulations λ = 1 and the capillary number of each drop
is Ca = 0.3. The finite element side lengths are hfine = r0/6 and the 2-level method with
Nv = 3 is used. The time step size is determined from the setting CFL=1/2.

Figure 3.27 left shows the 3D drop shapes at times t+ = 2, 4, 5 and 6 for simulation 1.
The right figure shows the corresponding flow field and the drop shape on the symmetry
plane. From the plots in Figure 3.27 it is seen that initially the interfacial tension induces
a circulation zone close to the lower tip of the left drop and upper tip of the right drop (top
figure). As the drops approach each other the flow starts to circulate in the region between
the drops which results in a ’flattening’ of the interfaces in the near contact region (the
two middle plots). The result is that the drops slide past each other due to the interface
’flattening’ and due to a vertical diffusion of the drops. Hence the drops do not come into
contact with each other.

In Figure 3.28 the results are shown for simulation 2. Now the two drops are placed
closer to each other initially and the offset between the x2-axis and the drop centres is
smaller. Here we also see circulation zones close to the drop tips and a net flow in the
vertical direction. However, the small initial separation between the drops prevents them
from sliding past each other. At around t+ = 4 the interfaces of the two drops start to
merge. The symmetry plane plot reveals that as the interfaces merge some of the continuous
phase liquid gets trapped in the interior of the drops. This is probably a consequence of
the VOF method which cannot resolve two interface segments lying within the same VOF
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Figure 3.25: The drop angle (with the x2-coordinate axis) and deformation parameter as
a function of time for λ = 25 and Ca = 1.52. Solid curve is our VOF result, broken curve
is the theoretical result of Rallison (1980) and × is the experimental result of Torza et al.
(1972).
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Figure 3.26: Sketch showing the initial position of the two spherical drops. (a) the distance
between the centres of the two drops is 5r0 while the offset between the drop centres and
the x1 axis is 1/2r0 and −1/2r0 respectively. (b) drop distance is 3r0 and offset is 1/3r0

and −1/3r0 respectively.

element. Thus when the distance between the interfaces is below the VOF cell size they
are automatically merged and whatever void volume is left in the VOF cell remains in the
interior of the drops. At t+ = 4.5 the two drops are almost fully merged and the flow
shows a strong tendency to smooth out the large curvatures seen along the region where
the drops are merging. At t+ = 6 the two drops have merged completely into one drop
and we see two small drops of the continuous phase within the disperse phase. Although
not shown here these two drops are spiralling towards each other and eventually form a
single drop in the centre of the disperse phase. It is noted that the total volume of the
merged drop is twice that of the initial drop (if we neglect the inclusion of the continuous
phase). This means that the capillary number of the final drop is 0.38 which is below the
critical value and thus the formed drop is stable in the flow field. The simulations carried
out here show that the model is able maintain the integrity of drop interfaces during close
drop-drop interactions and during merging of two drops.

3.4 Simulations in planar elongation

In general, flow fields based on planar elongation are more efficient in bursting drops than
simple shear flow fields. This is reflected in the critical capillary number vs. viscosity ratio
(see the Grace curve in Figure 1.4) where Cacrit is always lower in elongation than in shear.
In this section results are presented from simulations carried out in planar elongation flows.
The simulations are carried out with Ca-numbers ranging from 0.02 to 0.13 and λ = 1. The
critical capillary number for planar elongation and λ = 1 is reported to be in the vicinity of
0.11, e.g. (Grace 1982). Thus our simulation with Ca = 0.13 is above the critical point and
break-up is expected. It is noted that the applied elongation flow is obtained by setting
α = 1 and G = 1 in equation 3.1-1. Thus the applied elongation rate is ε̇ = 1s−1. Although

128



3.4. Simulations in planar elongation 105

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x 2

t+ = 2

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x 2

t+ = 4

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x 2

t+ = 5

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x 2

t+ = 6

Figure 3.27: Simulation of two drops approaching and flowing past each other in simple
shear. On the left figure the 3D drop shapes are shown while on the right figure the flow
field on the x1, x2-symmetry plane is shown for dimensionless time t+ = 2, 4, 5 and 6.
Initially the drops are spherical and separated by 5r0 between their centres. Furthermore
the drop centres are off the plane at x2 = 0 by 1/2r0 and −1/2r0 respectively.
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Figure 3.28: Simulation of two drops approaching and merging with each other in simple
shear. On the left figure the 3D drop shapes are shown while on the right figure the flow
field on the (x1, x2)-symmetry plane is shown for dimensionless time t+ = 2, 4, 4.5 and 6.
Initially the drops are spherical and separated by 3r0 between their centres. Furthermore
the drop centres are off the plane at x2 = 0 by 1/3r0 and −1/3r0 respectively.
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there are three planes of symmetry, i.e. at x1 = 0, x2 = 0 and x3 = 0, in this problem,
symmetry is only applied on the x3 = 0 plane. The reason for this is that later we want to
use the model in a time-dependent planar flow field where α varies between 0 and 1 and
thus here want to carry out tests which are not dependent on the type of applied BC’s.
All simulations carried out with Ca below the critical value are based on a finite element
mesh where the element length in the fine region is hfine = r0/6 and the size of the fine
region is [−8r0, 8r0] × [−7/6r0, 7/6r0] × [−7/6r0, 0]. The total size of the computational
domain is the same as that used in the previous sections. Furthermore the 2-level method
with Nv = 3 is used for the VOF calculations. When the capillary number is above the
critical value the drop deforms into a very thin thread and thus a very long computational
domain with a very fine mesh is necessary in order to resolve the drop. In order to reduce
the necessary computation time a coarser mesh is used for the Ca = 0.13 simulation with
hfine = r0/4, however, Nv = 4 is used in order to increase the resolution of the VOF mesh.
Furthermore the applied flow is stopped when the drop has been deformed approximately
16 times its initial diameter and the drop shape is studied as it begins to retract. In all
simulations CFL=1/2 is specified for calculation of the variable time step size.

Results from the simulation with Ca = 0.02 are presented first because in this case the
spurious currents (cf. section 2.8) arising from the CSS interfacial tension calculations are
dominating the flow close to the interface. In Figure 3.29 the flow field and drop shape on
the (x1, x2)-symmetry plane can be seen for two simulation times. From these figures it is
clear that the spurious currents are dominating the flow and thus leading to a result which
is physically incorrect. Especially one sees that the direction of the velocity field oscillates
with time which results in a ’wobbling’ interface.
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Figure 3.29: Simulation in planar elongation with λ = 1 and Ca = 0.02. The flow field
and drop shape on the (x1, x2)-symmetry plane is shown at dimensionless times t+ = 0.59
and t+ = 0.67.

Figure 3.30 (a)-(c) shows the steady state drop shape and flow field on the symmetry
plane from the simulations with Ca = 0.04, 0.08 and 0.1. Here it is seen that the spurious
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108 Chapter 3. Simulations of single drop deformations

currents are no longer dominating the flow and that a smooth drop interface is obtained
at steady state. Furthermore the figures show that the flow inside the drops is very weak
compared to the external flow and that 4 vortices are formed inside the drops. This
is consistent with the theoretical prediction based on the small deformation theory, see
(Bartok & Mason 1958).
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Figure 3.30: Simulation in planar elongation with λ = 1 and (a) Ca = 0.04; (b) Ca = 0.08;
(c) Ca = 0.1. The flow field and drop shape on the (x1, x2)-symmetry plane is shown after
steady state is reached.

In Figure 3.31 the steady state deformation parameters obtained at the various sub-
critical capillary numbers can be seen from our VOF simulations. Also shown in the
figure is the Taylor small deformation asymptote (Taylor 1934). The results indicate that
for small capillary numbers the VOF simulations converge with the asymptotic result of
Taylor. From our simulations we find that Ca = 0.11 results in a steady drop shape
while Ca = 0.13 does not lead to a steady drop. Thus the VOF model leads to a critical
capillary number somewhere between 0.11 and 0.13 in agreement with the literature, e.g.
(Grace 1982).
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Figure 3.31: Steady state deformation parameter as a function of the capillary number for
planar elongation and λ = 1. + and broken curve is the result obtained from our VOF
simulations while the line is Taylor’s the small deformation asymptote (Taylor 1934).

In the simulation with Ca = 0.13 the applied flow field is, as mentioned earlier, stopped
after the drop has been elongated approximately 16 times its initial diameter. In Figure
3.32 the 3D drop shape is shown during the elongation process at dimensionless times
t+ = 7 (a) and t+ = 9 (b). Here it is seen that the drop shape evolves into a thread like
shape with bulby ends. At t+ = 9 the applied flow ceases and the drop starts to retract.

The development of the drop shape after cessation of the applied flow can be seen
in Figure 3.33. First the drop starts to retract with the formation of spherical drops on
the thread ends (a). After the end drops have pinched off the thread retracts further and
forms new drops at the ends (b). The newly formed drops then pinch off and the remaining
thread starts to break up into 5 equally sized drops (c). In Figure 3.33 (d) the final drop
size distribution can be seen which also includes some sub cell-sized debris in between the
drops.

The results obtained from the simulations carried out in the planar elongation flow
indicate that the implemented model is able to predict the critical capillary number, at
least when λ = 1. Furthermore the steady state deformation as a function of the capillary
number, cf. Figure 3.31, agrees with Taylor’s small deformation asymptote. It is noted
though that if the model is to be used specifically for studying droplet deformations in
planar elongation flows, symmetry conditions should be employed on all three symmetry
planes which would reduce the required computational time significantly (thereby enabling
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(a) (b)

Figure 3.32: Simulation in planar elongation with λ = 1 and Ca = 0.13. (a) t+ = 7 and
(b) t+ = 9, the applied flow is stopped at t+ = 9.

(a) (b)

(c) (d)

Figure 3.33: Drop shape evolution after cessation of the applied elongation flow (λ = 1).
(a) t+ = 2, (b) t+ = 7, (c) t+ = 8 and (d) t+ = 11.
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high resolution simulations).

3.5 Discussion and conclusions

In order to test the ability of the implemented FE-VOF model to handle drop deformation,
drop break-up and drop merging, simulations have been carried out in simple flow fields.
Since we want to simulate flow induced drop deformations in infinite mediums the effects
of wall separation are first investigated. Here it is found that when the distance from the
center of the domain to the walls is 24r0 wall effects are negligible. However, this also
means that the domain is large compared to the drop size and thus a mesh with variable
mesh size is applied. The mesh used has a fine central region with constant element size
and a coarser mesh spanning from the fine region to the walls. The tests show that using
four elements in each direction from the fine region to the walls is adequate. The coarse
region is set up by halving the element length when going from the walls to the fine region.

Temporal convergence tests based on a mesh with hfine = r0/7 and Nv = 1 show that
varying CFL from 1/2 to 1/8 results in the same deformation history when a drop with
Ca = 0.4 and λ = 1 is sheared. This indicates that CFL=1/2 is sufficient when hfine = r0/7
at least when the drop deformation is limited.

Simulations have also been carried out in order to test the 2-level algorithm. In these
tests 1-level and 2-level results are compared both qualitatively and quantitatively. From
the qualitative analysis it is seen that the drop surface becomes somewhat ’wobbly’ at
the drop ends when the 2-level method is used. This is especially evident if the finite
element mesh is coarse and the VOF mesh very fine, i.e. when Nv is high and hfine is
large. The ’wobbly’ ends are not seen when the 1-level method is used. However, the
tests carried out with the 2-level method show that the steady-state drop deformation,
Ds, converges with VOF mesh refinement (while the resolution of the FE mesh is kept
constant). Specifically the tests show that when the VOF element side lengths in the
fine mesh region are hvof � r0/18 the obtained Ds is more or less independent of mesh
resolution.

More thorough tests of the code are carried out in simple shear. Simulations with vary-
ing Ca-numbers and λ = 1 result in steady-state deformations which are in good agreement
with results reported in the literature. This includes the critical capillary number which we
find to be around 0.44 compared to literature values of 0.42-0.43. However, when λ = 0.1
the 2-level method seems to lead to a Ds which is too high, at least compared to the results
of Li et al. (2000). This is probably due to the method used to evaluate the viscosity in
interface finite elements which is quite coarse. This is also supported by comparing simula-
tions carried out with hfine = r0/6 and hfine = r0/8 which suggest that the results obtained
with λ = 0.1 have not converged with respect to FE mesh refinement. A simulation is also
carried out with a high viscosity ratio (λ = 25) which leads to an oscillating drop shape.
By comparing the simulated results with the small deformation results of Rallison (1980)
good agreement is found.

In order to test how the implemented model handles drop-drop interactions, simulations
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have been carried out where two drops are approaching each other in simple shear. In one
case the drops flow past each other. In the second case the drops are positioned closer to
each other and closer to the x1-axis which results in coalescence. During the process of
merging some of the continuous phase liquid gets trapped inside the disperse phase.

Simulations have also been carried out for λ = 1 in planar elongation. Here spurious
currents are seen to be dominant when the capillary number is low (Ca = 0.02) which leads
to non-physical results. For larger capillary numbers the effect of the spurious currents di-
minishes and the simulations lead to smooth interfaces. The steady-state deformation
parameters obtained in the simulations are seen to converge towards Taylor’s small de-
formation asymptote as Ca is decreased. From the simulations a steady drop shape was
obtained for Ca = 0.11 while for Ca = 0.13 the deformation was unbounded. Thus the
critical capillary number is between 0.11 and 0.13 which is in agreement with the experi-
mental results of Grace (1982). In the simulations carried out with Ca = 0.13 the applied
flow is stopped when the drop has elongated 16 times its initial diameter. At this point the
drop shape consists of a cylindrical thread with bulby ends. After cessation of the applied
flow the drop starts to retract which leads to pinch-off at the thread ends leading to the
production of two isolated drops. The remaining thread retracts further with one more
pinch-off sequence. Finally the rest of the thread breaks up into 5 equally sized drops with
some debris in between.

It is noted that in all simulations carried out the difference between the initial and final
volume of the disperse phase is below 10−2 %.

As mentioned above the 2-level method sometimes results in an interface which is
somewhat ’wobbly’ at the drop ends. Here a method, which has not been implemented, is
proposed which might improve the accuracy in the 2-level calculations. If we recall from
section 2.4.2.5 a correction is made to the fluid flux calculations in order to render the VOF
cells divergence free. However, this correction method does not have a physical basis and
thus the flow field used for updating the position of the interface (advection) does not in
general obey the momentum equations. The irregularities of the interface observed when
Nv is large may therefore be related to the interpolated flow field. In order to improve
the accuracy of the flow field on the VOF mesh one could use a post processing procedure
where, after the flow field has been solved, each interface finite element is treated as a sub-
domain discretized by VOF cells. Then the VOF cells belonging to a given interface finite
element are set up with quadratic velocity nodes and constant discontinuous pressure nodes
for which the momentum balance equations can be set up. The BC’s for this subsystem
are obtained by interpolating the velocities from nodes on the finite element in question
and onto the nodes of the VOF cells which lie on the surfaces of the finite element. Since
we know that the finite element is divergence free these boundary condition velocities also
satisfy global mass conservation (of the sub-system). The interfacial tension calculations
on the sub-system are straight forward since the F -field has already been calculated on the
VOF cell vertices. Thus interfacial tension is included as if the 1-level method is applied.
Solving this sub-system for the velocities should then result in a flow field on the VOF
cell level which both obeys the momentum equations and the continuity equation. Fluid
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fluxes can then be calculated directly from the VOF mesh flow field. Another advantage of
this method is that the variation of the viscosity within the interface finite elements can be
taken directly into account, which would probably improve the accuracy of the calculations
when λ is different from one. Although this method could improve the accuracy of the
flow field on the VOF mesh level it would also require more extensive computation times
because a large number of sub-system would need to be solved at each time step (each
finite element belonging to the interface region would need to be considered). On the other
hand, it is noted that each sub-system is independent and thus the method is amenable
for parallelization.

137



138



Chapter 4

Drop deformation experiments in a

rotor-stator device

As discussed in the introduction to this thesis much work has been devoted to the un-
derstanding of flow induced droplet deformation and break-up since the seminal work of
Taylor in the 1930’s (Taylor 1932, Taylor 1934). However, the vast majority of results
reported in the literature are based on simple model flow fields (e.g. simple shear and
planar elongation). Some studies include mixed flows where both shear and elongation
are present, e.g. (Bentley & Leal 1986b, Stone et al. 1986), however, these flows are still
homogeneous and well defined.

Here we want to study the deformation behavior of dispersed droplets in a flow field
which is of comparable complexity to the flow fields present in industrial dispersing de-
vices. More specifically an experimental apparatus which is based on a rotor-stator device
consisting of two concentric cylinders with teethed walls is used for generating the flow.
This device is situated at the ’Laboratory of Food Process Engineering’ at ETH, Zürich,
and is described in detail in (Kaufmann 2002). This experimental work was carried out
during an external research stay at ETH in the fall of 2005/spring 2006 under supervision
of Dr. Peter Fischer. A large part of the work carried out involves algorithm development
for analyzing the raw experimental data which consists of digital movies. In this chapter
the experimental setup is presented in section 4.1 while the material used and the experi-
mental procedure are explained in sections 4.2 and 4.3. Since the data analysis procedure
(automated image analysis) is a key part of the work a detailed description of the method
used for movie analysis is given in section 4.4. In section 4.5 the experimental results are
presented. Here the results in subsection 4.5.1 are based on time averaged values of the
drop deformation parameter and a geometry based apparent shear rate. Thus the exact
flow field generated in the device is not used here (this is the topic of the next chapter). The
results presented in subsection 4.5.2 are concerned with drop break-up in the rotor-stator
device where among other things the influence of viscosity ratio is investigated. Finally
conclusions are given in section 4.6.
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Figure 4.1: Sketch of the teethed concentric cylinders of the rotor-stator device.

4.1 Experimental setup

The rotor-stator device consists of two concentric cylinders having 6 teeth on each cylinder
wall. A sketch of the device is shown in Figure 4.1. The channel in between the cylinders
is filled with a liquid (the continuous phase) and, as the cylinders are rotated, a complex
flow field will form. In Figure 4.2 a photograph of the setup is presented. At the bottom
of the image the teethed cylinders can be seen. The channel depth is approximately 3cm.
The rotation of the cylinders is powered by two independent computer controlled electrical
motors. In the centre of the cylinders a vertical bar is placed which can be rotated manually
and independently from the rotation of the cylinders.

Two digital cameras (Sony DFW V500, Japan) are mounted onto the central vertical
bar. In order to track the drop position in the device it is necessary to have a camera which
records images that include both the drop and parts of the cylinder walls, however, since
the cylinder gap is much larger than the drop, the drop itself is poorly resolved in these
images. In order to make accurate drop deformation calculations it is therefore necessary
with another camera which records images with a magnification of the drop.

The camera used for monitoring the drop deformation (camera 1) is equipped with
an unspecified zoom lens while the camera used for monitoring the position of the drop
(camera 2) is equipped with a Nikon Micro-Nikkor 55mm f/2.8 lens. The vertical position
of the cameras is adjusted such that the desired view angle is obtained. Both cameras
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Figure 4.2: Photograph of the experimental setup.

are connected to computers whereby it is possible to store the camera outputs as movie
streams. On top of the vertical bar a plate is mounted which holds an antenna light source.
Proper positioning of the light source is important for providing adequate contrast between
the drop and the surrounding liquid.

4.2 Materials

All experiments are carried out using Polyglycol B11/700 (HOECHST AG) as continuous
phase while silicone oils (polydimethylsiloxane, Wacker) with different viscosities are used
as drop phase. In Table 4.1 the density (ρ) and viscosity (μ) for the polyglycol and the
silicone oils are given. Due to differences in density between the continuous phase liquid
and drop phase liquid, TiO2 is added to the drop phase to adjust the density. Furthermore
adding TiO2 makes the drop opaque which is necessary in order to distinguish the drop
from the continuous phase. Due to the small amounts of TiO2 added the viscosity of the
drop phase did not change significantly from that of the pure silicone oils (� 5% see also
later).

The interfacial tension coefficient (σ) between the continuous phase and the drop phase
is measured at ambient temperature using the pendent drop method on a Dataphysics
OCA 15 plus. Measurements are carried out on the pure polyglycol/silicone oil system.
Since addition of TiO2 does not add surface active agents to the system, TiO2 should not
affect the interfacial tension, see also (Feigl et al. 2003, Feigl, Megias-Alguacil, Fischer &
Windhab 2007). The measured interfacial tension coefficients are listed in Table 4.2.
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Name ρ [g/cm3] μ[mPa · s] λ

Polyglycol 1.048 3.3·103† -
AK50 0.961 50 0.015
AK100 0.963 100 0.030
AK500 0.972 500 0.152
AK2000 0.974 2000 0.606
AK5000 0.974 5000 1.515

†Measured at ambient temperature.

Table 4.1: Physical data for the continuous phase liquid (polyglycol) and drop phase liquids
(AK50-AK5000) used in the experiments. Density measured at 20◦C. Viscosity for the
silicone oils at 23◦C supplied by manufacturer. Also shown is the viscosity ratio λ for the
polyglycol/AK systems.

System σ [mN/m]

AK50/polyglycol 5.1
AK100/polyglycol 5.2
AK500/polyglycol 5.3
AK2000/polyglycol 5.6
AK5000/polyglycol 5.4

Table 4.2: Interfacial tension coefficients (σ) between droplet phase and continuous phase
measured at ambient temperature.

4.3 Experimental procedure

A single drop is added to the continuous phase using a syringe. In order to avoid boundary
effects from the free surface and the bottom of the cylinder gap when the walls are rotating
the drop is placed as close as possible to the channel centre in the axial direction. A
typical drop size is on the order of 1mm. As indicated in Figure 4.1 the outer cylinder
rotates counter-clockwise while the inner cylinder rotates clockwise. Each experiment is
carried out using approximately the same angular velocity for both cylinders in order to
minimize the movement of the drop which is important for capturing the drop images with
the cameras. The initial position of the drop will determine the particle track it followed
in the device. The time dependent shear and elongational stresses experienced by the drop
will therefore be a function of the initial position as well as the angular velocities of the
rotating cylinders. For each polyglycol/silicone oil system, experiments are carried out
using three different initial (approximate) drop positions while the initial configuration of
the cylinders is the same in all experiments. The three initial drop positions are indicated
in Figure 4.1.

During an experiment the vertical bar holding the cameras is rotated manually in order
to keep the drop within the view angle of both cameras while the output from the cameras
is recorded for subsequent data analysis. Hence the frame of reference for the cameras
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varies as the cameras are rotated. The time scale of an experiment varies depending on the
angular velocity of the cylinders; however, if a drop breaks up the experiment is stopped.
The image data collected during each experiment is subsequently subjected to automated
image analysis.

4.4 Image analysis

Due to the complexity of the flow field generated in the rotor-stator device, the drop
deformation dependence on time will be highly complex. In order to extract deformation
data as a function of time for a given experiment the movie sequence obtained from camera
1 is analysed. Due to the large amount of frames recorded during a single experiment the
image analysis is automated using algorithms based on intrinsic Matlab functions. The first
step in the image analysis is to load a given frame and identify the drop in the frame. This
is done by filtering out objects in the image having pixel values below a pre-set threshold
value. This leads to a binary image containing the drop and possibly some dust particles
and/or light reflections on the surface of the continuous phase fluid. For each independent
object in the binary image, the centre of mass, area, length and breadth are found. The
length and breadth are found by fitting an ellipse to the object. In order to identify the
drop in the image the lengths and breadths of the fitted ellipses are used for calculating the
volumes of the corresponding spheroids which are compared to the volume of the original
non-deformed drop. Furthermore an estimation of how closely an object can be represented
by an ellipse is made by comparing the area of the object to the area of the fitted ellipse.
Thus the drop is identified as the object which is best represented by an ellipse and whose
spheroid volume is closest to the volume of the original non-deformed drop. The original
image is then subjected to a fine filtering where the filter threshold value is set to a low
value only for sharpening the edge of the drop. Since we know the approximate position of
the centre of mass of the drop, the drop can easily be identified in the finely filtered image.
The deformation parameter D is then determined by fitting an ellipse to the drop in the
finely filtered image. In Figure 4.3 (a)-(c) sample images from the deformation analysis are
shown. Figure 4.3 (a) shows the original image from camera 1. In Figure 4.3 (b) the image
has been filtered using a high threshold value while in image (c) the original drop is seen
together with the fitted ellipse. The error in the drop deformation obtained using an ellipse
to fit the drop shape will increase as the drop deformation increases and therefore we only
expect the measured drop deformation at large deformation to be useful for qualitative
analysis.

In order to relate the drop deformation to the flow field it is necessary to know the drop
position in the device at a given time. Figure 4.4 (a) shows a sample image from camera 2
where the drop and part of the teethed walls of the inner and outer cylinders can be seen.
The main problem in determining the drop position in the device consists of relating the
drop position in the image to the global position of the drop in the device. However, since
we know the initial configuration of the system and the angular velocities of the cylinders
we can calculate the configuration of the system at all times. Thus at a given time we use
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120 Chapter 4. Drop deformation experiments in a rotor-stator device

(a) (b) (c)

Figure 4.3: Example images from drop deformation analysis: (a) Original image from
camera 1 showing the drop and part of the teethed walls. (b) Image after filtering out
objects having pixel values lower than the high threshold value. (c) Crop of the drop after
the ellipse fit (Ellipse is fitted to the drop after image (a) has been filtered using the low
threshold value).

information on the thickness of the inner cylinder wall obtained from the corresponding
movie frame to calculate the global coordinates of the drop. The procedure for locating the
drop in the image is the same as described above for the deformation analysis. When the
drop has been identified in the image the original image is filtered using a low threshold
value in order to decrease interference by dust particles. After filtering, the distances in the
y−direction, cf. Figure 4.4 (b), from the drop to the inner and outer cylinder walls together
with the vertical thicknesses of the cylinder walls, Li,0 and Lo,0, are found. Furthermore, in
order to increase the accuracy of the position determination, the lengths Li,1 and Li,2 of the
vertical cross-sections of the inner cylinder are also determined. The horizontal positions of
these ’extra’ lengths are at x0 −β and x0 +β respectively, where β is a predefined distance
in the x-direction and x0 is the x−position of the drop. From a given image we thus have
the vertical thickness of the inner cylinder at three x−positions. It is seen from Figure 4.4
(a) and (b) that on part of the inner wall a line has been drawn. The reason is that in
some parts of the device the wall thickness is constant. However, in order to determine the
drop position uniquely at a given time it is necessary for the wall thickness to be unique in
the proximity of the drop. The measured wall thickness thus corresponds to the distance
in the y−direction spanning from the line to the beginning of the gap. When the image
analysis has been performed for the entire movie sequence a profile of the gap width and
drop position as a function of time is obtained. The next step is to calculate the global
drop position in the device for the time steps from which image data has been extracted.

Calculating the radial position of the drop is straightforward using the lengths Li,0

and d from the image analysis (cf. Figure 4.4). Calculation of the angular position θ is
carried out using a minimization procedure where at time t the three lengths Li,0(t), Li,1(t)
and Li,2(t) are compared to the corresponding lengths (L∗

i ) calculated from the known
configuration of the cylinders. At initial time t0 = 0 the approximate angular position
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(a) (b)

Figure 4.4: Example images from drop position analysis: (a) Original image from camera 2
showing the drop and the teethed walls. (b) Various lengths used for calculating the drop
position in the device.

θ∗(t−1) of the drop is known from the initial positioning of the drop during the experiment.
This position is then corrected by searching in the vicinity of θ∗(t−1) for the minimum

min

√√√√ 2∑
k=0

(
Li,k(tj) − L∗

i,k(tj, θ)
)2

, θ ∈ [θ∗(tj−1) − ε; θ∗(tj−1) + ε] (4.4-1)

where j = 0 for at the initial time and ε is a pre-set angle which determines the search
interval. The initial drop position is thus located at θ = θ∗(t0) where θ∗(t0) is found from
(4.4-1).

The drop position at the next time step tj, j = 1 is then found by first calculating
the new configuration of the cylinders using the known angular velocities. Hereafter the
angular position of the drop is updated by searching and determining the minimum from
(4.4-1) in the vicinity of the drop position from the previous time step tj−1. Thus repeating
this procedure for each time step results in the particle track for the drop. It is noted that
any error in the experimentally measured angular velocities of the cylinders will result in
accumulation of the error between the actual configuration and the calculated configuration
of the system over time. Therefore after the particle track for the drop has been determined
using the inner wall only, the vertical thickness of the outer wall Lo,0(t) is compared to
the corresponding calculated thickness of the outer wall L∗

o(t). If there is a discrepancy
between Lo,0(t) and L∗

o(t) the angular velocity of the outer wall is corrected until agreement
is obtained. In most cases a small correction below 3% is necessary.

Figure 4.5 illustrates a deformation-vs.-time plot for an experiment. Furthermore the
configuration of the cylinders and the drop position in the channel are shown at three
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Figure 4.5: Example plot of drop deformation as a function of time. Also shown is the
configuration of the system and the drop position (white dot) at three experimental times.
The arrow originating from the centre of the cylinders indicates the location of the drop.

experimental times. From this plot it is seen that maxima in D occur when there is a local
minimum in the gap width and that the maximum deformation (last peak) is obtained
when the gap width is close to a global minimum.

4.5 Results and discussion

The presentation of the results is divided into two main parts. The first part is based on
time-averaged values of the experimental data. Here the influence of the various parameters
on the drop deformation is discussed, e.g. the effects of the viscosity ratio and the angular
velocities of the cylinders. In the second part drop break-up in investigated in terms of the
influence of viscosity ratio and the cylinder configurations.

4.5.1 Time averaged deformation

In order to compare experiments carried out using different experimental parameters, e.g.
speed settings of the rotating cylinders, initial drop radius and viscosity ratio λ between
drop phase and continuous phase, we base the analysis here on time averaged values.

In Table 4.3 an overview of the experiments which have been carried out can be seen.
Included in this table are the angular frequencies of the inner (ω̇i) and outer (ω̇o) cylinders
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No System −ω̇i [1/s] ω̇o [1/s] pos 〈γ̇app〉 [1/s] 〈γ̇app〉calc [1/s]

1 AK50 0.0414 0.0382 1 0.52 0.49

2 AK50 0.0621 0.0588 1 - 0.75

3 AK100 0.0414 0.0382 1 0.50 0.49

4 AK100 0.0414 0.0382 2 0.53 0.49

5 AK100 0.0414 0.0378 3 0.47 0.49

6 AK100 0.0621 0.0588 1 - 0.75

7 AK500 0.0414 0.0382 1 0.50 0.49

8 AK500 0.0414 0.0382 2 0.48 0.49

9 AK500 0.0414 0.0382 3 0.54 0.49

10 AK500 0.0828 0.0740 1 - 0.97

11 AK2000 0.0414 0.0382 1 0.50 0.49

12 AK2000 0.0414 0.0382 2 0.47 0.49

13 AK2000 0.0414 0.0382 3 0.53 049

14 AK2000 0.0621 0.0594 1 0.73 0.75

15 AK2000 0.0621 0.0588 2 0.72 0.75

16 AK2000 0.0621 0.0588 3 0.83 0.75

17 AK2000 0.0828 0.0700 1 - 0.95

18 AK5000 0.0414 0.0382 1 0.50 0.49

19 AK5000 0.0414 0.0382 2 0.47 0.49

20 AK5000 0.0414 0.0382 3 0.53 0.49

21 AK5000 0.0621 0.0588 1 0.76 0.75

22 AK5000 0.0621 0.0588 2 0.81 0.75

23 AK5000 0.0621 0.0594 3 0.74 0.75

24 AK5000 0.0828 0.0800 1 1.06 1.01

25 AK5000 0.1035 0.0975 1 1.27 1.25

26 AK5000 0.1242 0.1170 1 - 1.50

Table 4.3: Overview of experiments. The tabulation covers the silicone oil used as drop
phase (System), angular frequency of inner cylinder ω̇i, angular frequency of outer cylinder
ω̇o, the initial position of the drop (pos), cf. Figure 4.1, time averaged apparent shear rate
〈γ̇app〉 at the end of an experiment (values for experiments where drop break-up occurs are
omitted) and calculated time averaged apparent shear rate 〈γ̇app〉calc using r = R̄d.

and the initial position of the drop.

Experiments indicated that higher angular frequencies of the inner and outer cylinders
were necessary in order to induce break-up for the AK5000 system (λ = 1.515) than for
the other systems. The experimental series on AK5000 therefore has the largest span in
terms of angular speed settings of the cylinders which makes these data most suitable for
investigating the relationship between cylinder speeds and drop deformation.

In order to relate the measured drop deformation to the flow in the channel without
knowing the detailed flow field we define an apparent shear rate γ̇app(r, t) as the shear rate
at radial position r obtained in two concentric cylinders with inner radius Ri(t) and outer
radius Ro(t) rotating with angular frequencies ω̇i and ω̇o. The radii Ri(t) and Ro(t) are
found from the lengths Li,0 and Lo,0 in Figure 4.4. At a given time t the flow is assumed
to be steady state with negligible inertial contribution and thus the momentum balance
reduces to:

∂

∂r

(
r

∂

∂r
(rvθ)

)
= 0 (4.5-2)
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By applying the boundary conditions vθ(r = Ri(t)) = ω̇iRi(t) and vθ(r = Ro(t)) = ω̇oRo(t)
the apparent shear rate becomes:

γ̇app(r, t) = γ̇θr = r
∂

∂r

(vθ

r

)
=

2

r2

(
Ro(t)

2Ri(t)
2(ω̇o − ω̇i)

Ro(t)2 − Ri(t)2

)
(4.5-3)

where by definition counter clock-wise is taken as positive angular direction. The apparent
shear rate, γ̇app(t), experienced by the drop at time t is then found by setting r = Rd(t) in
equation 4.5-3 where Rd(t) is the radial position of the drop in the channel. Since the global
geometry of the channel is not taken into consideration in the definition of the apparent
shear rate we do not expect γ̇app(t) to agree in detail with the actual shear rate. Therefore
γ̇app(t) is not suited for investigating the transient local flow. Instead we calculate the time
average apparent shear rate, i.e.

〈γ̇app(t)〉 =
1

t

t∫
0

γ̇app(t
′)dt′ (4.5-4)

Figure 4.6 shows the time averaged drop deformation as a function of time for experi-
ments carried out using AK5000 as drop phase. The experiments shown in Figure 4.6 (a)
were all carried out using position 1 (cf. Figure 4.1) as the initial drop position in the
cylinder channel. For comparing experiments carried out using different cylinder speed
settings a dimensionless parameter ω∗ is defined as:

ω∗ =
ω̇o,k − ω̇i,k

(ω̇o − ω̇i)max

(4.5-5)

which is the difference in the angular frequencies of the inner and outer cylinders for
experiment k relative to the difference of the angular frequencies used in experiment 26,
cf. Table 4.3.

It is seen from Figure 4.6 (a) that after an initial start-up period the fluctuations in the
time averaged drop deformation, 〈D(t)〉, oscillate around a constant 〈D〉 with decreasing
amplitudes as t increases. As expected the average drop deformation increases as the
rotational speed of the cylinders is increased and in the case ω∗ = 1 the drop splits up short
after start-up, hence for this experiment the critical capillary number Cacrit is reached. In
Figure 4.6 (b), 〈D(t)〉 is shown for different initial drop positions. It is seen that the initial
drop deformation influences the initial fluctuations in the average drop deformation but in
all cases these fluctuations seem to die out where after 〈D(t)〉 oscillates around a constant
〈D〉. Unfortunately experiments carried out with the drop initially positioned close to a
cylinder wall cannot be carried out for long experimental times since the particle track
tends to follow the rotation of the closer cylinder wall. This gives rise to experimental
difficulties when following the drop with the cameras. However, comparison of the 〈D(t)〉
curves obtained for the various positions indicate that as time proceeds the time-averaged
deformation tends towards the same limiting value for each ω∗.

Similarly to 〈D(t)〉 the time-averaged apparent shear rate, 〈γ̇app(t)〉, can be plotted as a
function of time. This is shown in Figure 4.7. From this Figure it is seen that as t increases
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Figure 4.6: Time averaged drop deformation (〈D(t)〉) as a function of time for experiments
carried out using the AK5000 silicone oil as drop phase. (a) Experiments 18, 21 and 24-26
from Table 4.3; (b) Experiments 18-23 from Table 4.3

〈γ̇app(t)〉 also oscillates around a constant 〈γ̇app〉 with decaying amplitude. It is also seen
from Figure 4.7 that the time-averaged apparent shear rate, 〈γ̇app〉, seems to scale linearly
with the angular velocities of the cylinders. It is therefore of interest to compare 〈γ̇app〉 to
the shear rate obtained in between two concentric cylinders having radii corresponding to
the average radii of the inner and outer cylinder walls of our device, i.e.

〈γ̇app〉calc =
2

r2

(
R̄2

oR̄
2
i (ω̇o − ω̇i)

R̄2
o − R̄2

i

)
(4.5-6)

where the average cylinder wall radii R̄i and R̄o are calculated by

R̄ =
1

2π

2π∫
0

r(θ)dθ (4.5-7)

Since equation 4.5-6 depends on r, a suitable average drop radius R̄d needs to be defined.
Since we do not know the drop particle track prior to an experiment, we will define it as the
radius to the center of the channel. In Table 4.3 〈γ̇app〉 values, which are chosen as the time
averaged apparent shear rate obtained at the end of each experiment, and similar values
obtained using (4.5-6) are given. These values show that the calculated values are within
10% of the values obtained from the experiments which indicates that on time average
the drop experiences an apparent shear rate similar to one obtained in the centre of the
channel formed by two concentric cylinders of radii R̄i and R̄o. In Figure 4.8 the limiting
time averaged drop deformation 〈D〉 for all AK5000 experiments is depicted as a function
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Figure 4.7: Time averaged apparent shear rate, 〈γ̇app(t)〉, as a function of time. Same
experiments as shown in Figure 4.6 (a).

of the time averaged limiting apparent capillary number defined as

〈Caapp〉 =
〈γ̇app〉calc r0μc

σ
(4.5-8)

Furthermore the Taylor approximation 〈D〉 = 〈Caapp〉 (19μd + 16μc)/(16μd + 16μc) is also
shown. The figure indicates that at small capillary numbers the average drop deformation
can be described by the Taylor approximation. However, as 〈Caapp〉 increases, the linearity
between 〈D〉 and 〈Caapp〉 is lost which is to be expected.

Since the rest of the experiments in Table 4.3 are only carried out for two or three
(AK2000) different settings of the rotational speed of the cylinders they are not suited for
comparison between 〈D〉 and 〈Caapp〉. However, plotting all the measured values of the
time-average limiting deformation as a function of 〈Caapp〉 19μd+16μc

16μd+16μc
gives an impression of

how close to the Taylor approximation 〈D〉 behaves. In Figure 4.9 such a plot can be seen.
From the figure it is clear that at low deformations (〈Caapp〉 19μd+16μc

16μd+16μc
� 0.2), 〈D〉 seems to

be linear for all our systems.

The results presented above indicate that in absence of numerically calculated flow-field
data the drop behavior in the rotor-stator device can, to some extent, be described using
time-averaged values of the deformation and the defined apparent shear rate. One can
therefore predict an approximate value of the average deformation by knowing the average
radii and angular velocities of the cylinders, at least for small Ca numbers. This, though,
does not give any detailed information on maximum values in the drop deformation which,
obviously, is of interest if one needs to analyse the break-up process itself.
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Figure 4.8: Time averaged deformation at steady-state 〈D〉 as a function of the apparent
time averaged capillary number 〈Caapp〉 for experiments carried out using the AK5000
system (λ = 1.515).
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for all experiments.
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Figure 4.10: Investigation of drop-break-up for AK50 experiment 2 in Table 4.3. Full lines
indicate the distance from the center of the cylinders to the inner and outer cylinders walls
while circles indicate distance to the drop center as a function of time. Also shown are
images recorded during the experiment at t = 10s, 15s and 20s.

4.5.2 Drop break-up

Here we will take a closer look at the experiments which resulted in drop break-up. These
are experiments 2, 6, 10, 17 and 26 in Table 4.3. A number of experiments have also been
carried out with the purpose of obtaining break-up. These are not included in Table 4.3,
however, the results and experimental details are given in Figure C.1 - C.3 in Appendix
C. In Figure 4.10 the distance from the center of the cylinders (or radius) to the drop
(circles), inner cylinder wall (lower full curve) and outer cylinder wall (upper full curve)
can be seen as a function of the experimental time for experiment 2 in Table 4.3 (AK50,
λ = 0.015). These distances are obtained directly from the lengths Li,0, d and Lo,0 in
Figure 4.4 (b). Furthermore images of the drop are shown at 10s, 15s and 20s. The plot in
Figure 4.10 gives an indication of the channel configuration relative to the drop position
at any instant. For example the figure shows that at ≈ 14s the drop travels past a tooth
on the outer cylinders and likewise it travels past a tooth on the inner cylinder at ≈ 15.5s.
The break-up sequance shown in Figure 4.10 starts at around 14s where the ends of the
drop start to separate and form small droplets. At 15s thin threads are seen to extend
at the ends of the main drop (can be seen from the inserted images). As these threads
become more stretched they split up into a number of small droplets (see inserted image
at 20s). This break-up process is usually designated tip streaming. In Appendix C Figure
C.1 the result is shown for another break-up experiment with the AK50 silicone oil. Here
tip streaming is also observed.

In Figure 4.11 the drop position relative to the cylinder walls can be seen for experiment
6 in Table 4.3 (AK100, λ = 0.030). Also shown are images of the drop at selected times.
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Figure 4.11: Investigation of drop-break-up for AK100 experiment 6 in Table 4.3. Full
lines indicate the distance from the center of the cylinders to the inner and outer cylinders
walls while circles indicate distance to the drop center as a function of time. Also shown
are images recorded during the experiment at t = 96.3s, 117.4s and 122s.

At t ≈ 96s the drop travels past a tooth on the outer wall and at t ≈ 103s past a tooth on
the inner wall. However, break-up is not seen in these two instances. On the other hand
the drop starts to break-up at around t ≈ 117 where the channel width is very close to a
global minimum. When the drop has traveled past the tooth edges tip streaming is again
observed. Figure C.2 in Appendix C shows the result from another AK100 experiment
which also exhibits tip streaming.

Figure 4.12 shows the break-up results for experiment 10 in Table 4.3 (AK500). Here
the drop deformation is large as the drop travels past the tooth on the outer cylinder at
around 11s. When the drop has passed the tooth edge it keeps deforming slowly. At t = 13s
the drop has deformed into an almost threadlike structure which starts to separate into
individual drops at around 16s. The break up process observed here seems to be something
between binary and capillary break-up. However, as in the previous cases, the break-up
takes place when the drop experiences an expansion in the channel width. The AK500
experiment shown in Figure C.3 in Appendix C clearly show binary break-up.

The AK2000 (λ = 0.61) experiment shown in Figure 4.13 again shows that break-up
takes places after the drop has traveled past a tooth edge. Here a binary break-up process
is observed which yields 4 drops of comparable size and one much smaller drop in the
center.

Finally the result from the AK5000 (λ = 1.51) experiment 26 in Table 4.3 can be seen in
Figure 4.14. Here it is seen that the drop experiences a global minimum in the channel gap
width at around 18s which, as it travels past the tooth edges, results in a highly elongated
drop. However, break-up is not observed until the drop travels past a second tooth at 25s
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Figure 4.12: Investigation of drop-break-up for AK500 experiment 10 in Table 4.3. Full
lines indicate the distance from the center of the cylinders to the inner and outer cylinders
walls while circles indicate distance to the drop center as a function of time. Also shown
are images recorded during the experiment at t = 11s, 13s and 16s.
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Figure 4.13: Investigation of drop-break-up for AK2000 experiment 17 in Table 4.3. Full
lines indicate the distance from the center of the cylinders to the inner and outer cylinders
walls while circles indicate distance to the drop center as a function of time. Also shown
are images recorded during the experiment at t = 12.25s, 18s and 26s.
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Figure 4.14: Investigation of drop-break-up for AK5000 experiment 26 in Table 4.3. Full
lines indicate the distance from the center of the cylinders to the inner and outer cylinders
walls while circles indicate distance to the drop center as a function of time. Also shown
are images recorded during the experiment at t = 18s, 25s and 31s.

where the ends pinch off the main thread. At 31s the break-up process is nearly finished.

4.6 Discussion and conclusions

In this chapter a method for analysing the deformation of single drops suspended in a sec-
ond immiscible liquid undergoing a time-dependent laminar and planar flow is described.
The flow is generated in a rotor-stator device which consists of two concentric cylinders with
teethed walls. By continuously monitoring the drop shape and its position in the device
using two cameras, it is possible to obtain the transient deformation as well as the particle
track of the drop by applying automated image analysis. Experimental results indicate
that the time-averaged drop deformation scales linearly with an average apparent capillary
number based on an apparent shear rate at least for small to medium deformations. Fur-
thermore this linear relationship seems in agreement with Taylor’s small deformation limit
(Taylor 1934). Experiments carried out using different initial drop positions indicate that
the limiting time-averaged drop deformation does not depend on the initial position.

Some of the experiments carried out resulted in drop break-up. From these experiments
it is seen that the break-up process takes place as the drop travels from a minimum gap
width region into a maximum gap width region. This indicates that the break up is induced
by a relaxation of the flow field. The break-up experiments with the AK50/polyglycol and
AK100/polyglycol systems exhibited tip streaming while the other systems either resulted
in binary break-up or something between binary and capillary break-up.
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Chapter 5

Comparison between simulations and

experiments

In the previous chapter the experiments carried out in the rotor-stator device were pre-
sented. These included results based on an apparent shear rate and time-averaged defor-
mation values. However, no detailed information on the flow field was used in the analysis.
Now we will merge results from the rotor-stator experiments with our numerical VOF
model and try to simulate the drop deformation history in the rotor-stator device. In
order to do this we will use a procedure very much similar to the one described in (Feigl
et al. 2003) (which is based on BI calculations). In this procedure the local flow field is first
calculated by a numerical method along the particle track of the drop. In our calculations
the particle track is obtained experimentally as explained in the previous chapter (image
analysis). The local flow field is then used as input for generating time dependent BC’s
for our VOF simulation. Hereby the local flow experienced by the drop in the rotor-stator
device is emulated in the calculational domain used for the VOF simulation. By using this
method the VOF simulations can be carried out in the simple rectangular domain used
previously for the simple shear and planar elongation simulations. More details will be
given on the numerical procedure in the next section. Then in section 5.2 we will compare
experimentally obtained drop deformations and simulated drop deformations. The simu-
lations have also been carried out using a BI method1 and in section 5.3 we compare the
results from our VOF simulations with the BI simulations. Then some of the experimental
results are combined with numerically calculated capillary numbers and compared to the
Taylor small deformation theory in section 5.4. The chapter is ended with a discussion and
some conclusions in section 5.5.

1These simulations were carried out by professor Kathleen Feigl at the Dept. of Mathematical Sciences,
Michigan Technological University
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5.1 Procedure for simulating the drop deformation in

the rotor-stator device

The procedure for simulating the drop deformation can be separated into three steps these
are:

1. Determine the particle track from the experiment.

2. Calculate the local flow numerically (γ̇, ε̇).

3. Simulate the drop deformation.

Step 1 is explained in the previous chapter (section 4.4).
The flow field calculations were carried out by Kathleen Feigl out using an Arbitrary

Lagrangian-Eulerian (ALE) finite element scheme implemented specifically for simulating
the flow in the rotor-stator device (Kikpka 2004). In order to illustrate how the flow field
varies with the configuration of the cylinders, plots of the velocity field for different config-
urations can be seen in Figure 5.1. The simulations shown in Figure 5.1 are based on the
Stokes flow solution of the momentum balance using the commercial Comsol Multiphysics
CFD package and have only been carried out for illustrative purposes. In these example
simulations the outer cylinder rotates counter clockwise while the inner cylinder rotates
clockwise. Both cylinders rotate with angular frequency ω̇ = 1s−1.

The flow field for the initial configuration of the cylinders (at time t = 0s) is shown
in Figure 5.1 (a). Due to the periodicity of the geometry the structure of the flow field
is repeated 6 times. For each period the flow is characterized by a zone where it expands
due to the gap width expansion. This expansion zone increases in size as the cylinders
rotate (b)-(d). However, at the same time the edges of the teeth on the outer and inner
cylinder approach each which results in a narrowing of the channel width along each tooth.
In Figure 5.1 (e) the teeth edges on the outer and inner cylinder are exactly opposite each
other leading to a global minimum in the gap width and the flow is seen to be quite uniform
throughout the channel. In Figure 5.1 (f) the teeth edges have passed each other and the
expansion zone seen in (a) starts to reform. It is noted that the initial configuration of the
cylinders is obtained by rotating the inner cylinder clockwise by 5◦ and the outer cylinder
counter clockwise by 5◦ in Figure 5.1 (f).

During an experiment the particle track depends on the initial location of the drop.
In principle it is possible to calculate the particle track numerically using only the initial
position of the drop and this has also been attempted (not included here). However, one
problem with this procedure is that even a very small inaccuracy in the initial drop position
determination leads to a ’wrong’ particle track which due to the complexity of the flow field
leads to a completely different result compared to the experimental particle track (which is
the real particle track). Therefore all calculations have been based on the experimentally
obtained particle track.

In order to couple the flow field in the rotor-stator device to the VOF simulations the
local flow experienced by the drop along its particle track is decomposed into a shear rate
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Numerically calculated flow field in the rotor-stator device. In the calculations
the angular frequencies of the outer and inner cylinders were ω̇i = −ω̇o = 1s−1. (a) Initial
configuration of the cylinders used in the experiments. In (b) - (f) each cylinder is rotated
by 5◦ relative to the previous figure.
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Figure 5.2: Decomposition of the flow into γ̇ and ε̇.

and an elongation rate. It is noted that the flow in the channel is assumed to be planar,
i.e. zero velocity component in the axial direction (x3-direction). The flow field of interest
is then characterized by the following velocity gradient tensor E:

E =

(
ε̇ γ̇
0 −ε̇

)
= Gα

(
1 0
0 −1

)
+ G(1 − |α|)

(
0 1
0 0

)
(5.1-1)

where G and α are defined in section 3.1. For a given time t the drop will be at position
x(t) along its particle track and moving with velocity v(x), cf. Figure 5.2.

A new coordinate system is defined by the orthogonal unit vectors e1 and e2 with origin
in the center of the drop x(t) and e1 pointing in the direction of the flow. Thus we have:

e1 =
1

||v||
(

v1

v2

)

e2 =
1

||v||
( −v2

v1

)

In order to decompose the flow field at the drop center into the shear and elongation
rates γ̇ and ε̇ a rotational and translational coordinate transformation is applied to the
numerically calculated velocity gradients, which yields (Feigl et al. 2003):

γ̇ = e1 · γ̇ · e2, ε̇ =
1

2
e1 · γ̇ · e1 (5.1-2)

where γ̇ is the numerically calculated rate of strain tensor. Calculations of γ̇ and ε̇ are
carried out along the particle track at discrete time intervals and the results are tabulated.
The third step in the computations is to carry out the VOF simulation of the drop shape.
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This is done by using the tabulated values of the shear and elongation rate to apply time-
dependent BC’s on the domain boundaries. The domain BC’s for the FE-VOF program
are applied through the parameters α and G (equation 3.1-1, section 3.1). Thus for a given
time step in the VOF simulation the shear and elongation rate are found by interpolation
in the previously generated table and used for calculating α and G which now are time
dependent. The relative contributions of elongation to the applied flow field will therefore
vary with time, i.e. α = α(t). Likewise the strength of the applied flow will also vary, i.e.
G = G(t).

5.2 Comparison between numerical and experimental

data

Here comparison is made between experimentally obtained drop deformations and results
from our FE-VOF code using the procedure described in the previous section. The flow
field has been calculated numerically for experiments 11 and 18-20 in Table 4.3. However,
due to the large computation times associated with the VOF simulations (≈ 5 days with
8 processors) drop deformation simulations are carried out for experiment 11 (λ = 0.61)
and 20 (λ = 1.52) only. The size of the fine region mesh used in the simulations is
[−5r0, 5r0]× [−5r0, 5r0]× [−6/5r0, 0]. The element side length of the fine part of the finite
element mesh is hfine = r0/5 and the 2-level method with Nv = 4 is used. The total domain
size is [−24r0,−24r0]× [−24r0,−24r0]× [−24r0, 0] with four finite elements spanning from
the fine mesh region to the domain boundaries in each direction. It is noted that the
orientation of the drop is unknown prior to the simulation and thus the dimension of the
fine mesh domain in the x2-direction has to be large enough to accommodate rotation of
a deformed drop. It is therefore necessary to use a relatively coarse finite element mesh in
order to carry out the simulations within reasonable time. The variable time step size is
based on the setting CFL=1/4.

First an example dataset (experiment 11) obtained from the experiments and numerical
flow field calculations is presented in Figure 5.3. Here the top figure shows the radius to
the wall of the inner cylinder Ri, outer cylinder Ro and drop Rd as a function of time
and indicates how the walls are positioned relative to the drop at any given time. The
middle plot of Figure 5.3 shows the numerically calculated shear and elongation rate as a
function of time. From this plot it is evident that the local flow field is highly complex
with both shear and elongation present. Comparing the top and middle plot indicates that
when the drop closes in on the edge of a tooth the magnitude of the shear rate increases
until the drop travels past the edge, after which the shear rate diminishes. This is not
surprising since the channel gap decreases as the drop approaches a tooth edge. This
behavior is most noticeable when the drop is in between two approaching teeth. Although
present, the magnitude of the elongation rate is somewhat smaller than the magnitude of
the shear rate. However, it is seen that the elongation rate increases when the drop passes a
tooth edge, which is in agreement with the expansion in the channel width occurring after
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each tooth. On the bottom plot of Figure 5.3 the experimentally obtained deformation
as well as the numerically calculated capillary number are plotted as a function of time.
The figure shows that the transient behavior of the numerically calculated Ca-number
and experimentally obtained deformation are very similar with even small variation in Ca
reflected by variations in D in some places.

In Figure 5.4 the results from the numerical calculations of the drop deformation can be
seen for experiment 11 (upper plot) and 20 (lower plot). The top part of each figure shows
measured and calculated deformations, the middle part shows the numerically calculated
capillary number while the bottom part shows the numerically calculated α. Here we recall
that the parameter α gives the relative contribution of elongation in the flow. This means
that for α ∈ [0, 1] the flow corresponds to a mixture of shear and elongation with the
extremes α = 0 and α = 1 corresponding to pure simple shear and pure planar elongation
respectively. If values of α are negative the elongation direction is opposite compared
to positive α’s. Generally both plots in Figure 5.4 show that the numerically calculated
deformation parameters are somewhat higher than those obtained experimentally but that
the general, and in many cases also the detailed, deformation behavior is well described
by the calculations. What is especially interesting is that peaks in the deformation are in
many instances reproduced by the numerical calculations (although larger), e.g. at t � 20s
and t � 70s in the upper plot in Figure 5.4. Correct prediction of the peaks is important
if accurate predictions of drop break-up are to be made.

In both plots in Figure 5.4 the variation in the experimentally obtained deformations
is reflected in the numerically calculated capillary number, this is especially evident in the
lower plot in Figure 5.4 where flow past tooth edges is seen clearly as short timed decreases
in the capillary number and deformation parameter. The decrease in D as the drop travels
past an edge is also caught very well by the simulation shown in th elower plot in Figure
5.4. The variation in α gives a good indication of the flow experienced by the drop. In
the lower plot in Figure 5.4 it is seen that α increases to a maximum and then decreases
abruptly at the same time as the capillary number decreases. The increase in α is due to
narrowing of the flow channel as teeth on the outer and inner wall are approaching, which
results in an increase in elongational flow. When the drop passes a tooth, there is a sudden
broadening of the channel which results in inversion of the elongation direction and thus
a sign change in α. After the expansion, the channel width is constant or only changing
slowly and thus the elongational contribution diminishes, i.e. α � 0. This behavior of α is
also present in the upper plot in the figure but not as evident. It is noted that in the upper
plot in Figure 5.4 the numerically calculated deformation shows a large peak at around
150s which is not seen in the experiment. The simulated drop shape at this peak was
close to break-up with the formation of a neck in the central part of the drop. However,
due to the flow field the drop did not break-up and relaxed back to an ellipsoidal shape.
This behavior was not seen in the experiment. Nevertheless the results indicate that it is
possible to simulate the qualitative transient drop shape in the rotor-stator device using
the three-step procedure outlined in the previous section.
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Figure 5.4: Plots showing the numerically and experimentally obtained deformation pa-
rameters Dnum and Dexp for two different experiments. Also shown are the corresponding
numerically calculated capillary numbers Canum and α-parameters αnum. Upper plot cor-
responds to experiment 11 in Table 4.3 while the lower plot corresponds to experiment 20
in Table 4.3.
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5.3 Comparison between VOF and BI simulations

The drop deformations shown in Figure 5.4 have also been simulated using a BI code. In
Figure 5.5 the results from the VOF simulations and the BI simulations are compared. In
the upper figure the results from the simulations carried out for experiment 11 in Table
4.3 can be seen. Here excellent agreement between the two numerical methods is seen for
most of the deformation sequence with the VOF simulation generally resulting in a slightly
higher deformation compared to the BI simulation. However, there are some noticeable
discrepancies around t = 150s which is where the VOF simulation resulted in a near
break-up event. A similar behavior was also observed from the BI simulation (personal
communication with Kathleen Feigl) and thus the differences in the deformation behavior
here are probably due to differences in how the two methods handle the drop shape near
the break-up limit.

In the lower plot in Figure 5.5 the simulated results for experiment 20 can be seen. Near
perfect agreement is again seen here until t ≈ 110s where after the results start to deviate
considerably. The exact reason for this discrepancy is unknown, however, it is noted that
the VOF result seems to more consistent with the experimental deformation (lower plot in
Figure 5.4) than the the BI result.

With the exception of the results for t > 110s in the lower plot in Figure 5.5 both
methods seem to predict the same drop deformation history which supports the validity
of the implemented VOF model. It is noted that the coarseness of the finite element
mesh used in the VOF simulations probably can explain the slightly higher deformations
obtained compared to the BI simulations, cf. also section 3.3.2.

5.4 Comparison with Taylor theory

As mentioned earlier calculations of the flow field has, in addition to experiment 11 and
20 in Table 4.3, also been calculated for experiment 18 and 19. Since experiments 18-
20 are carried out using the same silicone oil/polyglycol system λ is the same for these 3
experiments. Thus 3 datasets based on the same λ but with various starting positions of the
drop are available. Therefore in order to investigate how closely the numerically calculated
Ca-numbers and the experimentally obtained deformations are related, a plot of D vs. Ca is
given in Figure 5.6 for experiment 18-20. From the figure it is seen that there is considerable
spread in the data points. However, there seems to be a concentration of points along a
single curve indicating that there is a relation between D and the numerically calculated
Ca-numbers. Furthermore this curve seems to superimpose the Taylor small deformation
asymptote as Ca decreases. The spread of the data points can partly be explained by
uncertainties in the deformation measurements due to the manual camera movements which
in some cases results in blurred images when the camera is moved fast relative to the camera
shutter speed. However, it is also noted that the measured deformations are not necessarily
steady state values wherefore one must expect fluctuations in the data.
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Figure 5.5: Comparison of drop deformation results from the VOF and BI simulations.
Upper plot corresponds to experiment 11 and lower plot corresponds to experiment 20.
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5.5 Discussion and conclusions

A three step numerical procedure has been applied in order to simulate the deformation
behavior of a drop suspended in a second immiscible liquid undergoing a flow generated
by a rotor-stator device. The procedure consists of 1) determining the particle path of the
drop from experimental data using automated image analysis, 2) numerical calculation of
the local flow experienced by the drop along its particle path and 3) simulating the drop
deformation in a simple rectangular domain using the previously calculated local flow field
to generate appropriate time dependent BC’s. One of the underlying assumptions in this
procedure is that the real flow field in the proximity of the drop is homogeneous, i.e. the
drop is small relative to the spatial variation of the velocity gradients. Furthermore wall
effects are neglected which is necessary because the drop shape simulations (VOF) are
carried out in a different domain than the ’macroscopic’ flow field calculations.

Comparison of the simulated and experimentally obtained drop deformations shows
that the simulations lead to a somewhat larger deformation than experimentally observed.
However, the qualitative deformation history is generally very well predicted by the simula-
tions. This includes the short timed decreases in the deformation parameter which usually
occurs when the drop passes the edge of a tooth. Furthermore maxima in the deformation
curve are also captured by the simulations although in some cases the maximum in the
simulated curve is more than 100% larger than experimentally observed.

Drop shape simulations have also been carried out using a BI method and the results
are compared to the VOF results. Generally good agreement is found between the two
methods which supports the correctness of the drop shape calculations. The exact reason
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why the simulations lead to a higher deformation than experimentally observed is not
known. However some possible explanations are:

1. Bias in the interfacial tension measurements (i.e. measured σ to low).

2. Bias in the viscosities.

3. Numerical flow field calculations over predict the strength of the flow.

4. The flow field cannot be assumed to be homogeneous throughout the vicinity of the
drop.

1) would explain why the simulated deformation history is over predicted for both
the simulations carried out. It is noted here that the interfacial tension measurements
were carried out using the pure silicone oil (i.e. without TiO2 added). The presence of
TiO2 might interact with the drop interface and change its surface properties, however,
Feigl et al. (2007) show that the effect of TiO2 on interfacial tension is minimal. Re 2)
the drop viscosity used as input for the simulations is that for the pure silicone oil (as
supplied by the manufactorer). Here the presence of the TiO2 particles will increase the
viscosity. However, if the particles are assumed to be spherical a rough estimated of the
viscosity increase using the Einstein viscosity relation is ≈ 5%. This can hardly explain the
differences in the simulated and experimentally observed drop deformations (for λ = O(1)
the steady state deformation is a very weak function of λ, cf. Taylor’s expression in equation
1.1-2). Other possible explanations for the differences in the simulated and experimental
drop deformations are related to the numerical method itself. Nevertheless the results
from this study do indicate that the numerical procedure is applicable for simulating drop
deformation in highly complex and unsteady flows - at least for obtaining qualitative drop
shape predictions.
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Chapter 6

Summary and possibilities for future

work

In this project a numerical model has been implemented for direct simulation of flow
induced deformations of drops suspended in a second and immiscible liquid phase. The
model is intended as a tool for designing emulsion systems. Therefore it is required that the
model is able to handle drop deformations, including break-up and coalescence, in simple
as well as in complex flow fields. For this reason we have chosen to base the modeling
work on the Volume of Fluid (VOF) method combined with the Finite Element (FE)
method. This choice of methods is connected with the ability of the VOF method to track
complex interface geometries including interface separation and folding and the ability of
the FE method to handle complex domain boundaries. However, due to the 3 dimensional
nature of the flow problem the model needs to be fully 3D which requires long computation
times. In order to reduce the computational cost associated with the simulations a 2-level
method has been applied where different meshes are used for the flow field calculations
and the fluid tracking problem. Thus the flow field calculations which are by far the most
computationally expensive part of the code can be carried out on a relatively coarse mesh
while the interface tracking can be carried out on finer mesh.

Tests of the code in simple flow fields such as simple shear and planar elongation,
generally show that results from the model agree well with results reported in the literature.
However, some deterioration of the interface is seen when the resolution of the interface is
much higher than the resolution of the calculational mesh. This is most noticeable when
the calculational mesh is very coarse. A possible solution to this problem is discussed in
section 3.5 and could be a subject of future work.

A generic problem with the VOF method is the production of artificial (or spurious)
currents when interfacial tension is present. These currents manifest themselves as small
circulation zones in the vicinity of the interface of an otherwise stagnant spherical drop.
If the applied flow field is weak compared to the interfacial tension forces, these currents
become significant, which results in an unstable solution. This problem was e.g. observed
in a simulation with low capillary number in planar elongation (section 3.4). Methods
which rely on smoothing of the F -field are known to reduce the magnitude of the spurious
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currents, e.g. (Renardy, Cristini & Li 2002). Applying such a smoothing procedure would
require only small changes to the implemented model and thus a study of the effect of
smoothing of the F -field could be the basis for a small future project.

In the numerical work carried out in this project both liquid phases are considered to be
Newtonian and the interfacial tension coefficient is treated as constant, i.e. no surfactants
are present. Therefore future numerical work could be to implement non-Newtonian effects
in the flow field calculations, see e.g. (Khismatullin et al. 2006), and to implement a model
for surfactant transport and variable interfacial tension, see e.g. (Renardy, Renardy &
Cristini 2002). However, this would require some rather extensive changes/additions to
the implemented code and thus would be suited as basis for larger projects.

In addition to the model implementation and testing a number of experiments have been
carried out in order to study the effect of a complex flow field on the deformation behavior of
single drops. These experiments were carried out using a rotor-stator device. One of the key
elements in this work is a method for analysing the experimental raw data which consists of
2 movie sequences. Among other things, the analysis procedure consists of an automated
image analysis, which is used for obtaining the transient drop deformation and the drop
trajectory in the device. Due to the complexity associated with the boundaries of the rotor-
stator device numerical calculations are necessary in order to obtain the flow field. However,
in order to analyse the data without having to rely on numerical calculations a geometry
based apparent shear rate is defined. The apparent shear rate is then used for analysing
time averaged values of the experimentally obtained drop deformations. The analysis
indicates that it is possible to relate the average drop deformation with the apparent shear
rate. A number of the conducted experiments resulted in drop break-up. The break-
up process is analysed qualitatively by inspection of the recorded movies and by relating
the initiation of the break-up process with the configuration of the apparatus. From this
qualitative analysis it is found that for small viscosity ratios (λ � 0.1) tip streaming is
predominant. For larger viscosity ratios a mixture of binary and capillary break-up is
observed. However, in all cases the break-up process is initiated when the drop travels
past a minimum in the wall separation.

In order to simulate the deformation behavior in the rotor-stator device the three-step
procedure presented in (Feigl et al. 2003) is applied. Here the experimentally obtained drop
trajectory is used together with a numerical procedure to calculate a local flow field for
the drop along its path. This local flow field is then tabulated in terms of time dependent
shear and elongation rates which are used as input for the implemented FE-VOF model.
Comparison between the simulated and the experimentally obtained transient drop defor-
mations shows good qualitative agreement. However, the simulations lead to somewhat
larger deformations than those experimentally observed. Nonetheless the results indicate
that it is possible to predict the transient drop shape qualitatively using the three-step
procedure.

The results from our FE-VOF simulations are also compared to Boundary Integral
(BI) simulations (the BI simulations were carried out prior to the FE-VOF simulations in
(Egholm, Fischer, Feigl & Szabo 2007)). Generally good agreement is found between the
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two methods which supports the validity of the implemented FE-VOF model.
Although simulations of drop break-up in the rotor-stator device was not attempted

with the implemented model (this could be a subject for future studies) the results indicate
that the model can be used as a tool for designing dispersion processes. Specifically the
procedure can be used for investigating the transient drop shape along different particle
tracks in a given dispersing device. For example a commercial CFD package can be used for
obtaining the macroscopic flow field in the device including numerically calculated particle
tracks and the associated time dependent local flow parameters (γ̇ and ε̇). Then by using
the local flow as input for the FE-VOF model the drop shape along each particle track can
be studied numerically. This way one could e.g. study which domains in the dispersing
device result in drop break-up and also study the break-up type and resultant drop size
distribution.
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Appendix A

Derivation of the discrete equations

The total molecular stress tensor π is given by π = τ + pδ where

τ = −μ
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In the discrete case the spatial derivatives of the velocity components are approximated
by the finite element shape functions. Hence the element-wise volume integral over the
total molecular stress tensor and the external force term becomes:
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In the above equations the subscripts i and j refer to local nodes on element n. It is noted
that given a global node I located on element n there is a unique corresponding local node
i and vice versa. The similar is of course also true for a local and global node j and J
respectively. From the equations deduced above one sees that there are 3Nn equations
associated with the momentum balance. Furthermore since there are Nn velocity nodes in
the domain there are also 3Nn velocity unknowns.
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Appendix B

The CSF interfacial tension model

In the procedure described by Brackbill et al. (1992) (The CSF model) interfacial tension
is included through the volume force:

F s = [κσn̂]δs

where κ is the interface curvature, n̂ is the interface normal and δs is the interface delta
function. Thus the jump in the total molecular stress tensor across the interface can be
written as: ∫

Γ12

φv[n1 · (π1 − π2)]dS =

∫
Ω

φv[κσn̂]δs(n̂(x − xs))dV

The interface curvature κ is given by:

κ = −∇ · n̂ =
1

|n|
[(

n

|n| · ∇
)
|n| − ∇ · n

]
(B.1)

The interface normal is calculated either as the gradient of the original F -field or as the
gradient of a smoothed F -field F̃ . Similarly δs is defined either by

δs =
∣∣∣∇F̃

∣∣∣
or

δs = |∇F |
However, as discussed in the main text (section 2.5.1) Brackbill et al. (1992) argue that
the latter method is better. It is noted that in our implementation no smoothing is carried
out. To summarize we calculate the force Fs as:

F s = σκn = σ
1

|∇F |
[( ∇F

|∇F | · ∇
)
|∇F | − ∇ · ∇F

]
∇F (B.2)

Discretization of the CSF model

In order to obtain the discrete derivatives of F we use a procedure where first ∇F is
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calculated at the linear nodes on the interface VOF cells. This is done using the following
way:

First the cell under consideration (active cell) and all its neighbouring cells are identified
which leads to a 3 × 3 × 3 block with the active cell in the centre. A ghost mesh is then
overlaid this block of cells such that the vertices of the ghost mesh elements are positioned
in the geometrical centre of each VOF cell. This leads to a ghost mesh with size 2× 2× 2
(see Figure 2.2 in section 2.4.2 for reference). A mapping from the cartesian coordinate
system to the local curvilinear system ξ, η, ζ is then made using tri-linear finite element
shape functions associated with the ghost mesh. The F -field can therefore be interpolated
everywhere within a ghost element as (for the 3D case):

F (x(ξ, η, ζ)) =

8∑
i=1

Li(ξ, η, ζ)Fi (B.3)

And similarly we can determine the gradient of F within the ghost element as
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The derivatives of the linear shape functions with respect to the global coordinates ∂Li

∂xk
are

calculated according to ⎡
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where the jacobian matrix is given by equation 2.2-19 but with the quadratic shape func-
tions Ni interchanged by the linear shape functions Li (and i = 1, . . . , 8).

In order to evaluate ∇F according to equation B.4 we first calculate the position of the
vertex point in the local coordinate system as described in section 2.4.2 (cf. also Figure
2.3). Hereafter equation B.4 can be used directly. The interface normal (n = ∇F ) can
now be estimated everywhere within the VOF cell m using tri-linear interpolation functions
associated with the VOF cell, i.e.:

∂F

∂xk

∣∣∣∣
xm

=
8∑

i=1

Li(xm(ξ, η, ζ))(∇F )k,i, k = 1, . . . 3 (B.6)

where (∇F )k,i is k component of the gradient of F on local node i.
The divergence of ∇F everywhere within the active VOF cell is calculated as:

∇ · (∇F )|(ξ,η,ζ) =

3∑
k=1

8∑
i=1

∂Li

∂xk

∣∣∣∣
(ξ,η,ζ)

(∇F )i (B.7)
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where ∂Li

∂xk
now is associated with the VOF cell (and not the ghost cell).

We now denote the curvature calculated according to equation B.2 with the discrete
derivatives of F based on equation B.6 and B.7 as κ̂. Similarly the discrete interface normal
is denoted ns (= ∇F ). The discretized version of equation B.2 then becomes:

Ne∑
n=1

3∑
k=1

⎛
⎝∫

Ωn

Nv
i(I,n)σκ̂nnn

s,kdV

⎞
⎠ δk, I = 1, . . . Nn (B.8)

where I = 1, . . . , Nn is the number of global finite element nodes. Thus equation I will get
a contribution from the interfacial tension if global node I it is connected to elements in
which ns is non-zero.
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Appendix C

Drop break-up

Results from rotor-stator experiments which resulted in drop break-up. The figures show
the distance from the center of the cylinders to the inner and outer walls (solid curves) and
the drop center (circles). Also shown are drop images at selected experimental times.

2 3 4 5 6 7 8 9 10 11

120

140

160

t [s]

D
is

ta
n

c
e

fr
o

m
c
e

n
te

r
[m

m
]

Figure C.1: Drop break-up experiment with AK50 (λ = 0.0152, σ = 5.1), ω̇i = 0.1242s−1,
ω̇o = 0.1176s−1, r0 = 590μm
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Figure C.2: Drop break-up experiment with AK100 (λ = 0.0303, σ = 5.2), ω̇i = 0.0621s−1,
ω̇o = 0.0588s−1 r0 = 570μm
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Figure C.3: Drop break-up experiment with AK500 (λ = 0.152, σ = 5.3), ω̇i = 0.0828s−1,
ω̇o = 0.0784s−1 r0 = 479μm
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Appendix D

The FE-VOF program

Here an explanation of the implemented algorithms is given. This includes a brief descrip-
tion of all the global variables and parameters and a description of the various subroutines.
Furthermore the full program, which is written in Fortran 90/95, consists of 6 modules.
These modules are:

Module name Description

parameters.f90 : Definition of parameters.
globals.f90 : Definition of global variables/arrays.
mainfem.f90 : Main Finite Element (FE) code. Includes all subroutines

used for setting up the coefficient matrix. Furthermore
the main time stepping loop resides in the program part
of this module where calls are made to the PARDISO
solver and the VOF routines.

femmesh.f90 : Routines for setting up the finite element mesh used for
the simulations in this project. Here boundary condi-
tions are also specified.

vofmesh.f90 : Routines for setting up the Volume of Fluid (VOF) mesh
and for carrying out the advection procedures. Further-
more the subroutines associated with the interfacial ten-
sion calculations also reside in this module.

vofnormals.f90 : Some routines used for calculating interface normals.

Here we will start by listing parameters and global variables.
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D.1 List of variables and parameters

All non-integers are specified as double precision using implicit double precision(a-h, o-z),
i.e. all arrays are double precision except those whose name starts with i,j,k,l,m or n

which are integers. It is noted that in Fortran there is no distinction between upper-case
and lower-case characters.

Variable Description

alphavof(i) : The value of α from the PLIC reconstruction
in VOF cell i (cf. equation 2.4-12).

ALx : Half length of the computational box in the
x1-direction (cf. Figure 3.1).

ALy : Half length of the computational box in the
x2-direction (cf. Figure 3.1).

ALz : Half length of the computational box in the
x3-direction (cf. Figure 3.1).

AR(*) : Coefficient matrix stored in compressed
sparse row format (cf. section 2.2.7).

CFL : A CFL number specified by the user (deter-
mines the variable time step size).

cntroid(i,k) : Coordinate component k of the geometrical
center in VOF cell i.

cntrlocnormal(i,k) : Interface normal component k in local coor-
dinates in center of VOF cell i. Used for the
PLIC reconstruction.

dFnode(i,k) : Component k of the gradient of the F -field
on linear node i of the VOF-mesh. Used
only when the CSF interfacial tension model
is applied.

Djac(i,m) : Determinant of the Jacobian matrix at inte-
gration point m in finite element i (cf. equa-
tion 2.2-21).

dLdglob_vof_node(i,iloc,jloc,k) : Global derivative of the linear shape function
associated with local ghost mesh node jloc

and evaluated at local node iloc on VOF
cell i. Index k is the differentiation direction.
Used for calculating the values in dFnode.
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Variable Description

dLdglob(iloc,m,i,k) : Value at integration point m of component
k of the global derivative of the linear shape
function associated with local node iloc. i=
1, . . . , N1N2N3 is the local VOF cell number
in a given finite element.

dLdloc(iloc,m,k) : Component k (local coordinate) of the local
derivative of the linear shape function asso-
ciated with local node iloc evaluated at in-
tegration point m.

dNdeta(m,iloc) : Local derivative with respect to η of the
quadratic shape function associated with lo-
cal finite element node iloc evaluated at in-
tegration point m.

dNdface(iloc,m,iface,k) : Local derivative with respect to coordinate
k of the 2D quadratic shape function associ-
ated with local node iloc. m is the integra-
tion point where the derivative is evaluated
and iface is the element face under consid-
eration (cf. equation 2.4-29).

dNdglob(i,m,iloc,k) : Component k of the global derivative of the
quadratic shape function associated with lo-
cal node iloc on local VOF cell i. The value
is evaluated on integration point m (c.f. equa-
tion 2.5-44).

dNdlocvof(i,m,iloc,k) : Component k of the local derivative of the
quadratic shape function associated with lo-
cal node iloc on local VOF cell i. The value
is evaluated on integration point m (used for
evaluating dNdglob).

dNdxi(m,iloc) : Local derivative with respect to ξ of the
quadratic shape function associated with
with local finite element node iloc at inte-
gration point m.

dNdzeta(m,iloc) : Local derivative with respect to ζ of the
quadratic shape function associated with
with local finite element node iloc at inte-
gration point m.
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Variable Description

dNdx(iloc,m,i) : Global derivative with respect to x1 of the
quadratic shape function associated with lo-
cal node iloc on finite element i. Evaluated
at integration point m.

dNdy(iloc,m,i) : Global derivative with respect to x2 of the
quadratic shape function associated with lo-
cal node iloc on finite element i. Evaluated
at integration point m.

dNdz(iloc,m,i) : Global derivative with respect to x3 of the
quadratic shape function associated with lo-
cal node iloc on finite element i. Evaluated
at integration point m.

elongrate(*) : Array for storing elongation rates which are
read in from a data file (only relevant for ex-
ternally determined time dependent elonga-
tion rates).

ematrixAR(iloc,jloc,k1,i) : Local element matrices associated with the
velocity terms. Used for building the coeffi-
cient matrix. iloc and jloc are local node
indices, k1= 1, . . . , 9 corresponds to a given
sub-system and i is the finite element num-
ber.

ematrixp(iloc,k1,i) : Local element matrices associated with the
pressure term. Used for building the co-
efficient matrix. iloc is a local node in-
dex, k1= 1, . . . , 3 corresponds to a given sub-
system and i is the finite element number.

eta(*) : Array with local η-coordinates used for set-
ting up the VOF mesh (i.e. in association
with the 2-level procedure).

etaInt(m) : Local coordinate η for integration point m.
F(*) : The F -field.
fluxmax : Maximum flux on the finite element mesh.
Fnode(*) : The F -field interpolated onto the VOF-cell

nodes.
gacc(k) : Gravitational acceleration in direction k.
H(m) : Integration weight at integration point m.
h_fine(k) : VOF cell side length in the fine mesh region

in direction k.
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Variable Description

IA(*) : Row index pointer array for the sparse coef-
ficient matrix (cf. section 2.2.7).

itensionmet : Input flag. If itensionmet=1 then the CSS
method is used else if itensionmet=2 the
CSF method is used.

iwritedata : Number of time steps between writing output
data to files.

JA(*) : Column index pointer array for the sparse
coefficient matrix (cf. section 2.2.7).

nactive : Number of active VOF cells (i.e. number of
interface cells plus nearest neighbours).

nactiveinterface(*) : Pointer array which points to the interface
VOF cells.

nactiveinterfacefe(*) : Flag array for specifying active finite ele-
ments.

nactivevof(*) : Pointer array which points to active VOF
cells (interface cells plus nearest neighbours).

NAR : Number of non-zero entries in coefficient ma-
trix AR(*).

nb(*,*) : Array for specifying boundary conditions.
nbcfile : Flag. If nbcfile=1 then shear and elon-

gation rates are read in from file else if
nbcfile=0 the specified values of G and a
(α) are used.

nbcnodes(*,k) : Array which points to boundary nodes for
which velocity component k is specified.

nbtot(k) : Total number of specified boundary nodes in
direction k.

ncoordination_table(i,iloc) : Global VOF cell numbers for the 3 × 3 × 3
block of cells with cell i in the center. Index
iloc correspond to the local numbering in
the block of cells.

Nefe : Total number of finite elements.
Nevof : Total number of VOF cells.
Nfe : Total number of velocity nodes.
NFE2VOF(i,iloc) : Global VOF cell number for local VOF cell

iloc in finite element i.
NoInt : Number of integration points used in the flow

solver (paramater). NoInt=27 or 8.

193



170 Appendix D. The FE-VOF program

Variable Description

ninterface : Number of interface VOF cells.
Nnodes : Total number of velocity degrees of freedom.
nobcnodes(k) : Total number of specified velocities for com-

ponent k.
nodalcoordination(*,*) : Pointer array associated with array

ncoordination_table.
nodenumFe(i,n) : Array used for setting up the sparse coeffi-

cient matrix. Here i is a global node. Then
the finite elements which are connected to
node i are given by n= 1, . . . , 8 while the lo-
cal number of node i in each of the connected
finite element is given by n= 9, . . . , 16. Fi-
nally n=17 is the total number of elements
connected to node i.

np(*) : Array used for shifting node numbering when
periodic boundary conditions are applied.

numFe(i,iloc) : Finite element mesh table. Global node
number of local node iloc on finite elment
i.

numFe2(*,*) : Modified Finite element table with specified
boundary nodes exluded. Used for setting up
the sparse coefficient matrix.

numVOF(i,iloc) : VOF mesh table. Global node number of lo-
cal (linear) node iloc (= 1, . . . , 8) on VOF
cell i.

numVOFFEM(i,iloc) : Local VOF mesh table. VOF cell node num-
ber within a finite element (sub-mesh). In-
dex iloc (= 1, . . . , 20) is the local quadratic
node number on local VOF cell i.

NVOF2FE(i) : Table which specifies to which finite element
VOF cell i belongs.

NVx, NVy, NVz : Number of VOF cells in each direction in par-
ent finite element (i.e. N1, N1, N3 cf. section
2.4.2.4).

Nx, Ny, Nz : Number of finite elements in each direction
for the calculation ’box’ used in this project.

nzsym : If nzsym=1 then symmetry in the x3-
direction otherwise nzsym=2.

rho(i) : Average density in finite element i.
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Variable Description

rhoc : Density of continuous phase.
rhod : Density of drop phase.
RHS(*) : Right Hand Side vector.
shapeN(m,iloc) : Quadratic shape function associated with lo-

cal node iloc and evaluated at integration
point m.

shapeNface(iloc,m,iface) : Quadratic shape function associated with lo-
cal node iloc and evaluated at integration
points m (= 1, . . . , 9) on finite element face
iface. Used for calculating fluxes across fi-
nite element boundaries.

shapeNface2(i,iloc,m,iface) : Quadratic shape function associated with lo-
cal VOF cell node iloc on local cell i and
evaluated at integration points m (= 1, . . . , 9)
on VOF cell face iface. Used for calculating
fluxes across VOF cell boundaries.

shapevof(i,m,iloc) : Quadratic shape function associated with lo-
cal finite element node iloc and evaluated
at integration point m in local VOF cell i.
Used for calculating interfacial tension with
the CSF model.

shapeL(iloc,m) : Linear shape function used for interpolating
the interface normal from linear local VOF
node iloc onto integration point m. Used for
calculating interfacial tension with the CSF
model.

shearrate(*) : Array for storing shear rates which are read
in from a data file (only relevant for ex-
ternally determined time dependent shear
rates).

sigma : Interfacial tension coefficient.
simtime : Total simulation time.
time(*) : Array for storing the time variable associ-

ated with elongation and shear rates which
are read in from a data file.

tot_time : Total simulation time.
vel(*) : Nodal velocity vector.
VF0 : Initial volume of disperse phase.
visc(i) : Average viscosity in finite element i.
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Variable Description

viscc : Viscosity of continuous phase.
viscd : Viscosity of disperse phase.
vofcoord(i,k) : Component k of global coordinate for linear

VOF node i.
vofint(i,m,k) : Coordinate k in local coordinates for integra-

tion point m in local VOF cell i.
vofvolarea(i,n) : Volume of VOF cell i when n=1. Index n=

2, . . . , 7 corresponds to area of face 1 to 6 on
VOF cell i.

vofweight(i,m) : Integration weight m in local VOF cell i.
xfe(i) : x1 component of the global coordinate for fi-

nite element node i.
xi(*) : Array with local ξ-coordinates used for set-

ting up the VOF mesh (i.e. in association
with the 2-level procedure).

xiInt(m) : Local coordinate ξ for integration point m.
xint(*,*) : Integration points on finite element faces.
x0 : Position of the left boundary of the compu-

tational ’box’.
yfe(i) : x2 component of the global coordinate for fi-

nite element node i.
y0 : Position of the bottom boundary of the com-

putational ’box’.
zeta(*) : Array with local ζ-coordinates used for set-

ting up the VOF mesh (i.e. in association
with the 2-level procedure).

zetaInt(m) : Local coordinate ζ for integration point m.
zfe(i) : x3 component of the global coordinate for fi-

nite element node i.
z0 : Position of the first boundary in the x3-

direction of the computational ’box’.
w(m) : Integration weight m in the parent finite ele-

ment.

D.2 Subroutines in module femmesh.f90

The subroutines residing in the module femmesh.f90 are described below.
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D.2.1 Femcoord

In this subroutine the coordinates for the quadratic velocity nodes associated with a
regular finite element mesh are set up. The domain consists of a box given by
[-ALx+x0,ALx+x0] × [-ALy+y0,ALy+y0] × [-ALz+z0,(nzsym-1)ALx+x0] where ALx,
ALy, ALz, x0, y0, z0, nzsym are input variables as described in the variable list. The
element density can be varied through the local input variables Ncx, Ncy, Ncz, Nfx, Nfy,
Nfz, ALfx, ALfy, ALfz, alphax, alphay, alphaz where in each case the last character
corresponds to direction x1 x2 and x3 respectively. With reference to Figure 3.1 these
variables have the following meaning:

ALfx, ALfy, ALfz : Size of the fine mesh region which is given
by [-ALfx+x0,ALfx+x0] × [-ALfy+y0,ALfy+y0] ×
[-ALfz+z0,(nzsym-1)ALfx+x0].

Nfx, Nfy, Nfz : Number of elements in the fine mesh region such
that the element side lengths are hfine,1 =ALfx/Nfx,
hfine,2=ALfy/Nfy, hfine,3=ALfz/Nfz.

Ncx, Ncy, Ncz : Number of elements in each direction spanning from the
fine region to the domain walls.

alphax, alphay, alphaz : These variables (0 <> 1) determine how the element
size varies in the coarse mesh region such that when
going from the wall to the fine mesh region the element
side length in, say, the x1 direction is decreased by a
factor alphax for each element.

These mesh parameters are specified in the input file meshparam.dat. It is noted that if a
different mesh is used the code needs to be modified, e.g. by reading in the coordinates
from a data file. The output from the routine are the coordinate arrays xfe(*), yfe(*)
and zfe(*).

D.2.2 LocalToGlobal

This routine is used for setting up the finite element mesh table in array numFE(*,*)

such that the global node number for local node iloc on element i is given by
numFE(i,iloc). The inputs for this routine are the global mesh variables Nx, Ny and Nz

while the output is numFE(*,1:20). This routine is only applicable for regular meshes
with local node numbering as indicated on Figure 2.2.

D.2.3 Boundarycond

Here Boundary Conditions (BC’s) for the computatonal ’box’ are specified. The type of
possible BC’s is discussed in section 2.2.8 and section 3.1. The BC’s are specified by the
user through the following local input variables:
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G : Strain rate, i.e. G = |γ̇| + |ε̇| cf. section 3.1.
a : Relative magnitude of elongation in the flow, i.e. α =

|ε̇| /G cf. section 3.1.
vterm(i,k,j) : Array used for specifying which terms (with sign) in

equation 3.1-1 are included on each wall. Here i=
1, . . . , 6 is the wall number, k= 1, . . . , 3 is the veloc-
ity component and j=1 is the shear term while j=2
is the elongation term. The wall numbering is: 1
wall at x0, 2 wall at 2ALx+x0, 3 wall at z0, 4 wall at
nzsym*ALz+z0, 5 wall at y0 and 6 wall at 2ALy+y0. Val-
ues in vterm(i,k,j) can be either 1, -1 or 0.

nbd(i,k) : Array used for specifying on which walls velocity com-
ponent k is specified. If, say, velocity component 1 is
specified on wall 1 then nbd(1,1)=1 otherwise it should
be 0.

nbp(j) : Array used for specifying periodic BC’s in the x1 (j=1)
and x3-direction (j=2). If periodicity in the x1-direction
then nbp(1)=1 otherwise nbp(1)=0 and similarly with
the x3-direction.

It is noted that the BC’s are set up for planar flow problems where the velocity
component in the x3-direction of the applied flow is zero. Non-planar flows can be
applied by making some minor changes to this subroutine.
In order to illustrate the use of the variables described above a simple example is given.
Here we want to apply a simple shear flow where all velocity components are specified on
walls 1, 2 and 5, 6 while on wall 3 and 4 velocity component v1 and v2 are unspecified
and component v3 is specified to zero. This means that a=0 and G is the shear rate. The
array vterm(i,k,j) is specified as:

vterm(i,k,j):

j=1 j=2
i/k 1 2 3 1 2 3
1 1 0 0 1 -1 0
2 1 0 0 1 -1 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 1 0 0 1 -1 0
6 1 0 0 1 -1 0

This is the standard specification of vterm for planar flows when velocity components v1

and v2 are unspecified on boundary walls 3 and 4.
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The array nbd(i,k) is specified as:

nbd(i,k):

i/k 1 2 3
1 1 1 1
2 1 1 1
3 0 0 1
4 0 0 1
5 1 1 1
6 1 1 1

Since domain periodicity is not specified nbp(1:2)=0. It is noted that using vterm and
nbd as specified above it is possible to apply a planar flow any strength and consisting of
any mixture of shear and elongation by changing G and a (i.e. G and α in equation 3.1-1).
The outputs from the routine are the arrays nb(*,1:2), nbcnodes(*,1:3),
nobcnodes(1:3) and np(*).

D.3 Subroutines in module mainfem.f90

The subroutines residing in the module mainfem.f90 are described below.

D.3.1 Integrationpoints

Integration points and weights are set up for the Gaussian quadrature. Input is the
parameter NoInt which is the number of integration points used. NoInt=8 or NoInt=27.
The outputs from the routine are the arrays H(1:NoInt) (weights), xiInt(1:NoInt),
zetaInt(1:NoInt) and etaInt(1:NoInt) (local coordinates).

D.3.2 dNlocal

The quadratic finite element shape functions and the local derivatives thereof are
evaluated at the integration points. Inputs to the routine are NoInt, xiInt(1:NoInt),
zetaInt(1:NoInt) and etaInt(1:NoInt). The outputs are shapeN(1:NoInt,1:20),
dNdxi(1:NoInt,1:20), dNdeta(1:NoInt,1:20) and dNdzeta(1:NoInt,1:20).

D.3.3 dNglobal

This routine sets up the global derivatives of the finite finite element shape functions at
the integration points. Inputs are the nodal coordinate arrays xfe(*), yfe(*), zfe(*),
the element mesh table numFE(*,1:20) and the local derivatives of the shape functions
dNdxi(1:NoInt,1:20), dNdeta(1:NoInt,1:20) and dNdzeta(1:NoInt,1:20). Outputs
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are the global derivatives of the shape functions dNdx(1:20,1:NoInt,*),
dNdy(1:20,1:NoInt,*), dNdz(1:20,1:NoInt,*) and the determinant of the Jacobian
Djac(*,1:NoInt) (cf. section 2.2.1).

D.3.4 Ematrix

In this routine the element matrices are set up. The inputs are the mesh table
numFE(*,1:20), the total number of finite elements Nefe, the number of integration
points NoInt, the global derivatives of the shape functions dNdx(1:20,1:NoInt,*),
dNdy(1:20,1:NoInt,*), dNdz(1:20,1:NoInt,*), the determinant of the Jacobian
matrix Djac(*,1:NoInt) and the quadrature weights H(1:NoInt). The outputs are the
arrays ematrixAR(1:20,1:20,1:9,*) and ematrixp(1:20,1:9,*). The entries in these
arrays are contributions to the coefficients in the global equation system. It is noted that
the viscosity does not enter in this routine and thus the routine only needs to be called
once outside the time loop.

D.3.5 SetupElementTableBC

Here a new element table numFE2 is set up where boundary nodes which are specified by
BC’s are omitted. This new table is used for setting up the pointing arrays IA and JA.
Inputs to the routine are the total number of finite elements Nefe, the total number of
velocity nodes Nfe, the original mesh table numFe(*,1:20), the array which specifies
velocity BC nodes nb(*,1:2) and the array which specifies periodic BC nodes np(*).
The output is numFe2(*,41). Here numFe2(i(k-1),1:20) specifies global node numbers
for element i which have been shifted in order to omit BC nodes when setting up the
global equation system. numFe2(i(k-1),21:40) specifies the corresponding local node
numbers and numFe2(i(k-1),41) specifies how many nodes are unspecified for element
i. Index k corresponds to the velocity component in question.

D.3.6 Pointingarrays

The pointing arrays IA(*) and JA(*) used in connection with the sparse coefficient
matrix are set up here (cf. also section 2.2.7). The inputs are Nefe, Nfe, the mesh tables
numFe(*,1:20), numFe2(*,1:41) and the BC table nb(*,1:2). The outputs are IA(*),
JA(*), the total number of non-zero entries in the coefficient matrix NAR, the size of the
coefficient matrix Nnodes and an auxiliary array nodenumFe(*,1:17).
It is noted that this routine is only called once outside the time loop. However, it is quite
slow and probably could be optimized.

D.3.7 Element_viscosity

The average viscosity is calculated in each finite element, cf. section 2.6. Inputs are Nefe,
continuous and drop phase viscosities viscc and viscd, number of VOF cells per finite
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element in each direction NVx, NVy and NVz, VOF cell volumes vofvolarea(*,1), the
F -field F(*) and a table which relates local and global numbering of VOF cells
NFE2VOF(*,*). Output is the array visc(*) with average viscosities in each finite
element.
It is noted that this routine is called once each time step (when the viscosity ratio is
different from one).

D.3.8 SetupAR

The non-zero entries in the global coefficient matrix are calculated here using the element
matrices ematrixAR(1:20,1:20,1:9,*) and ematrixp(1:20,1:9,*). The coefficients
are placed in the array AR(*). Other inputs are the pointer arrays IA(*) and JA(*), the
number of non-zeros NAR, the number of elements Nefe, the mesh table numFe2(*,1:41),
the auxiliary array nodenumFe(*,1:17), the BC array nb(*,1:2)+, the size of the
equation system Nnodes and the viscosity array visc(*). The output is the sparse
matrix array AR(*).
It is noted that if the viscosity ratio is different from one the equation system needs to be
setup once for each time loop.

D.3.9 Read_In_Time_Dependent_BC

Externally determined shear and elongation rates are read in from datafile bcdata.dat.
This routine is only used if shear and elongation rates need to be read from a file. Then
the values of G and a (α) specified in the subroutine Boundarycond are overwritten. The
local variable ntimesteps specifies the number of row entries in the data file to be read.
Outputs are time(*), shearrate(*) , elongrate(*).

D.3.10 Time_Dependent_BC

The shear and elongation rates read from a file are used for generating time dependent
BC’s. For a given simulation time t γ̇(t) and ε̇(t) are found from linear interpolation
using the input arrays time(*), shearrate(*) , elongrate(*). These are then used for
specifying the velocities on boundary nodes according to equation 3.1-1. Other inputs are
Nfe, the boundary condition arrays nbcnodes(*,1:3) and nobcnodes(1:3) and the
coordinate arrays xfe(*), yfe(*) and zfe(*). The output is the velocity array vel(*).
It is noted that one call is made to this routine for each time loop if BC’s are based on a
data file.

D.3.11 SetupRHS

Here the RHS vector is setup, i.e. the coefficients associated with boundary nodes on
which velocities are specified are moved to the RHS side. Inputs are Nefe, the mesh
tables numFe(*,1:20) and numFe2(*,1:41), the BC tables nb(*,1:2) and np(*) and
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the element matrices ematrixAR(1:20,1:20,1:9,*) and ematrixp(1:20,1:9,*). The
output is the vector RHS(*).

D.3.12 BCbackInsert

When the flow field has been solved the nodal velocities are placed in the appropriate
positions in the velocity vector vel(*). Inputs are the arrays nb(*,1:2), np(*), RHS(*)
and vel(*). Output is vel(*).

D.4 Subroutines in module vofmesh.f90

The subroutines residing in the module vofmesh.f90 are described below. It is noted here
that the VOF mesh is set up by subdividing each finite element into NVx×NVy×NVz VOF
cells and that the block of VOF cells bounded by a given finite element is referred to as a
VOF sub-mesh. Furthermore in a given sub-mesh a local VOF cell numbering is used
thus when the term local VOF cell number is used it refers to the sub-mesh.

D.4.1 Setup_FE2VOF_and_numVOF

The VOF mesh table numVOF(*,1:8) and the tables NFE2VOF(*,*) and NVOF2FE(*) are
generated. The array NFE2VOF(i,iloc) specifies the global VOF cell number of the local
cell iloc in global finite element i. On the other hand the array NVOF2FE(i) specifies
which global finite element global VOF cell i belongs to. The mesh table numVOF(*,1:8)

relates the global and local node numbering of the linear nodes on the VOF mesh.

Inputs are Nefe, the finite element mesh parameters Nx, Ny and Nz and the VOF mesh
parameters NVx, NVy and NVz. The outputs are numVOF(*,1:8), NFE2VOF(*,*),
NVOF2FE(*), the total number of VOF cells Nevof and the total number of linear VOF
nodes NvofNodes.

It is noted that this subroutine can only be associated with a regular mesh.

D.4.2 Setup_coordination_table

This routine sets up tables which are used for identifying VOF cells surrounding a central
cell and for identifying VOF cell connected to a particular VOF mesh node. These table
arrays are used both for calculating interface normals and for carrying out the interface
advection. The array ncoordination_table(i,n) is used for identifying the n= 1, . . . , 27
VOF cells in the 3 × 3 × 3 block of cells with VOF cell i in the center. For local node
number iloc in a given VOF cell the array nodalcoordination(jloc,iloc) gives the
position in the table ncoordination_table of the jloc= 1, . . . , 8 cells connected to the
node. Thus e.g. local node 1 on VOF cell 20 is connected to cells
ncoordination_table(20, nodalcoordination(1:8,1)). In principle the array
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nodalcoordination(1:8,1:8) is used for specifying the ghost mesh described in section
2.4.2.

The inputs for the routine are the mesh parameters Nx, Ny, Nz, NVx, NVy and NVz. It is
noted that for a regular mesh symmetry in the F -field is imposed by specification of
ncoordination_table(*,1:27). Furthermore this routine has been set up for a regular
mesh and thus needs changes if another mesh is used.

D.4.3 Setup_vofcoord

Here the global coordinates for the linear nodes on the VOF mesh are specified and
stored in array vofcoord(*,1:3). Furthermore the coordinates for the center of each
VOF cell are stored in cntroid(*,1:3). The inputs are Nefe, the VOF mesh parameters
NVx, NVy and NVz, the finite element mesh table numFe(*,1:20), the finite element
coordinates xfe(*), yfe(*) and zfe(*), the array NFE2VOF(*,*), the VOF mesh table
numVOF(*,1:8) and NvofNodes.

The routine calls the subroutine LinearShape which for given local coordinates ξ, η and
ζ in a given parent finite element returns the value of the linear shape function shapeL.
The global coordinates of the VOF nodes are based on interpolation using these linear
shape functions.
This routine can be used for a general mesh.

D.4.4 Linear_shape_functions

Linear shape functions and the local derivative of the linear shape functions are evaluated
at the integration points. Inputs are the number of integration points NoInt, the local
coordinates of the integration points xiInt(1:NoInt), etaInt(1:NoInt), and
zetaInt(1:NoInt). The outputs are the liner shape functions shapeL(1:8,1:NoInt)
and the derivative thereof dLdloc(1:8,1:NoInt,1:3).

D.4.5 Setup_xi_eta_zeta_on_finite_element

The local coordinates of quadratic nodes on the local VOF cells residing in the parent
finite element are set up. These are stored in the arrays xi(*), eta(*) and zeta(*).
Inputs are NVx, NVy, NVz.

D.4.6 Setup_x_y_z_on_finite_element

Routine for calculating the global coordinates of the quadratic VOF cell nodes in a given
finite element. Here the node numbering is based on the sub mesh system defined by the
finite element. Inputs are the finite element in question nelem, the number of quadratic
nodes NN associated with the VOF cells residing in the finite element, the arrays xi(*),
eta(*) and zeta(*) and the finite element mesh table numFe(*,1:20).
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The routine calls an auxiliary routine
QuadraticShape(xi(i),eta(i),zeta(i),quadshape) which calculates the value of the
quadratic finite element shape function at local coordinates xi(i), eta(i) and zeta(i).
Index i is the node number in the sub mesh system. The quadratic shape function is
used in the calculation of the global coordinates of the quadratic nodes. The outputs are
the arrays x(*), y(*) and z(*).

D.4.7 Setup_num_vof_on_finite_element

Here a local VOF mesh table is set up which relates local and ’global’ node numbering for
the sub VOF mesh residing within a finite element. The inputs are the VOF mesh
parameters NVx, NVy and NVz. The output is the array numVOFFEM(*,1:20).

D.4.8 Local_nodes_on_element_faces

This routines sets up the array nlocface(*,*) which specifies the node numbering
convention used on element faces (for face flux calculations). For local node iloc on face
i= 1, . . . , 6, nlocface(iloc,i) specifies the local node number on the 3D parent element.

It is noted that the numbering convention affects the sign of the calculated fluxes and
should only be changed with care.

D.4.9 Integration_points_for_flux_calculations

Sets up the integration points and weights for flux calculations across element faces. The
input is array nlocface(1:8,1:6). The Output is the integration points coordinate
array xint(1:9,1:3) and the integration weights(1:9).

D.4.10 Local_shape_functions_on_element_faces

In this routine quadratic shape functions are evaluated at the integration points on
element faces. The value of the shape function associated with local node iloc= 1, . . . , 20
at integration point m on finite element face iface is given by array
shapeNface(iloc,m,iface). A similar array is set up for the integration points on the
VOF cell faces. These are given by the array shapeNface2(i,iloc,m,iface) where i is
the local VOF cell number. The local derivative of the 2D quadratic shape functions
associated with face iface and evaluated at integration point m is also calculated here
and stored in dNdface(iloc,m,iface,k). For this array iloc= 1, . . . , 8 is the local node
numbering used for each face and k=1,2 are the non-constant components of the local
coordinates for face iface.

Inputs to this routine are the VOF mesh parameters NVx, NVy, and NVz and the array
xint(1:9,1:3).
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D.4.11 Face_normals

Here the face normal vectors on integration points m= 1, . . . , 9 on face iface= 1, . . . , 6
are evaluated. The inputs are the array dNdface(1:8,1:9,1:6,1:2), nodal coordinates
x(*), y(*), z(*), a mesh table num(*,1:20), the number of elements to be treated by
the routine Ne and the array nlocface(1:8,1:6). The output is the array
facenormals(1:Ne,m,k,iface) where k= 1, . . . , 3 are the components of the normal
vector. It is noted that the routine can be used for calculating interface normals on VOF
cells faces or on finite element faces by using appropriate values of the arrays x(*), y(*),
z(*) and num(*,1:20).

D.4.12 Calc_fluxes

This subroutine calculates the volumetric fluxes on the faces of all the VOF cells residing
in a given finite element. Here a call is made to the subroutine Face_normals in order to
evaluate the face normals on the integration points. The procedure for calculating the
fluxes is described in section 2.4.2.4. Inputs are the number of integration points NoInt,
the local mesh table numVOFFEM(*,1:20), the VOF mesh parameters NVx, NVy and NVz,
the quadratic shape functions shapeNface(1:20,1:9,1:6) and
shapeNface2(*,1:9,1:6), the finite element mesh table numFe(*,1:20), the velocity
array vec(*), the array NFE2VOF(*,*), the integration weights w(1:9) and the arrays
xfe(*), yfe(*) and zfe(*). The routine Face_normals is called in order to generate the
necessary face normals used in the flux calculations.
The face fluxes for global VOF cell i are stored in vofflux(i,iface). Furthermore the
face areas are stored in the array vofvolarea(i,iface+1).
When the face fluxes have been calculated for all VOF cells in the finite element under
consideration a call is made to the subroutine Adjust_fluxes_div_free which adjusts
the fluxes such that all VOF cells become divergence free. This subroutine is described
below.

D.4.13 Adjust_fluxes_div_free

This routine adjusts the calculated face fluxes according to the method described in
section 2.4.2.5. The inputs to the routine are the VOF mesh parameters NVx, NVy and
NVz, the finite element which is considered nelem, the array NFE2VOF(*,*), the arrays
vofflux(*,1:6) and vofvolarea(*,1:7). The output is vofflux(*,1:6) where the
fluxes in vofflux(NFE2VOF(nelem,1:NN),1:6) have been adjusted (NN is the number of
VOF cells per finite element).

D.4.14 Setup_Ffield

In this subroutine the F -field is read in from the data file Ffield.dat. The data must be
stored as a column vector in the file such that a given entry corresponds to the VOF cell
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number in the computational domain. The input to the routine is the total number of
VOF cells Nevof while the output is F(*).

D.4.15 Active_vof_interface_cells

Active interface VOF cells, i.e. cells with 0 < F < 1, are identified (or tracked) in this
subroutine. In the first call to the routine a search is made through all VOF cells in order
to find cells with 0 < F < 1. In the succeeding calls the search is limited to cells which
are in the vicinity of the interface since the interface does not move more than a cell
length for a given call to the advection routine (see later). The inputs to the routine are
the total number of VOF cells Nevof, the F -field F(*), the array
ncoordination_table(*,1:27), the number of active VOF cells, nactive, and the
pointing array which points to the active VOF cells nactivevof(*). The outputs are the
total number of interface VOF cells ninterface and the array nactiveinterface(*)

which points to the interface cells.

D.4.16 Active_vof_cells

All active VOF cells are tracked by this subroutine. The active VOF cells are interface
cells include their neighbours. The inputs to the routine are Nevof, F(*),
ncoordination_table(*,27), nactiveinterface(*), ninterface (see previous routine
for description). The outputs are the total number of active VOF cells, nactive, and the
array nactivevof(*) which points to the active cells. It is noted that initially all VOF
cell are defined as active.

D.4.17 Calc_face_flux_on_active_vof_cells

In this routine the face fluxes are calculated on all VOF cells which reside in finite
elements in which one or more VOF cells are active. This routine calls the previously
described subroutine Calc_fluxes in order to calculate the fluxes. Inputs to the routine
are nactive, nactivevof(*), NVOF2FE(*), Nevof and Nefe.

D.4.18 Calc_dFdloc_in_vof_centre

The interface normal in the center of interface VOF cells is calculated in the local
coordinate system. This normal is used in the PLIC reconstruction, cf. section 2.4.2.2.
The interface segment position parameter α is also calculated in this routine via calls to
the subroutine Calc_alpha. Inputs to the routine are ninterface,
nactiveinterface(*), F(*), Fnode(*) and Nevof. The array Fnode(*) holds the values
of the F -field interpolated onto the linear VOF cell nodes. The subroutine for making
this interpolation is specified later (resides in module vofnormals.f90). The outputs from
the routine are the center normals array cntrlocnormal(*,1:3) and the array
alphavof(*) which holds the VOF cell values of α.
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D.4.19 Calc_alpha

Routine for calculating interface segment position α using bisection iteration, c.f. section
2.4.2.2. The subroutine Cut_volume is called for calculating the cut volumes. The inputs
for the routine are F, h(1:3), xn(1:3), tol, tol2. Here F is the value of the F -field in
the VOF cell under consideration, h(1:3) are the element side lengths, xn(1:3) is the
interface normal vector, tol is a tolerance used to determine if components of the
interface normal should be treated as zero and tol2 is the tolerance used in the stopping
criterion for the bisection iteration. The output is alpha, i.e. the α-parameter.

D.4.20 Cut_volume

This subroutine is used for calculating the volume bounded by a plane segment which
intersects the sides of an element, c.f. equation 2.4-12 and equation 2.4-13. The inputs
are the α-parameter alpha, interface normal xn(1:3), element side lengths h(1:3) and
the tolerance tol which has the same meaning as in the subroutine described above. The
output is the cut volume vol.

D.4.21 Advection

This is the main advection routine. The input is the array ns(1:3) which determines in
which order the (split-operator) advection is to be carried out. For example if
ns=[1,2,3] then the F -field is advected in the x1-direction first where after the interface
is reconstructed (new face normals and α’s are calculated). Then this is repeated for the
x2-direction and finally for the x3-direction. The routine first calls the routine
Calc_face_flux_on_active_vof_cells in order to refresh the VOF cell face fluxes.
Then the time step size dt is determined by calling the routine Find_dt. The actual
advection is carried out by calls to the routines Updatecolorfield,
Active_vof_interface_cells and Calc_dFdloc_in_vof_centre where the last routine
updates the interface segment positions after each fractional advection step.

D.4.22 Find_dt

This routine determines the size of the time step size to be used in the advection
procedure at a given time step number. The inputs to the routine are the arrays
nactivevof(*), vofflux(*,1:6) and vofvolarea(*,1:7), the number of active VOF
cells nactive and a user defined CFL number, cf. equation 2.4-26. The output is the time
step size dt.

D.4.23 Updatecolorfield

Here the Lagrangian advection is performed, cf. section 2.4.2.3. Inputs are Nevof,
vofflux(*,1:6), ncoordination_table(*,1:27), nactivevof(*), nactive,

207



184 Appendix D. The FE-VOF program

vofvolarea(*,1:7), cntrlocnormal(*,1:3), alphavof(*), the time step size dt and
the advection direction under consideration kk. In this routine the time step size is
adjusted according to equation 2.4-24. The routine utilizes the subroutine Cut_volume in
order to calculate volumes leaving and entering cells. The output is the updated F -field
F(*).

D.4.24 SetupFaces

This routine writes the coordinates of the PLIC faces to the data file facecoord[nc].dat
where [nc] is the value of the counter nc associated with the time step number. The
routine also makes a call to the subroutine Coordinates which calculates the global
coordinates of the faces. The format of the data file facecoord[nc].dat is as follows: For a
given VOF cell the PLIC face is defined in terms of six coordinates (this is the maximum
number of possible vertices of a given face plane). These six coordinates are written to
the data file as blocks with 6 columns and 3 rows where row 1 corresponds to coordinate
direction 1, row 2 to direction 2 and row 3 to direction 3. Coordinates from one VOF cell
are not separated from coordinates for another cell. Thus when the PLIC faces are
plotted in a post processing routine it is necessary to read the data in a consecutive order.
The total number of faces in the file facecoord[nc].dat is given by the file numfaces[nc].dat.
The Matlab script plotplic.m can be used for plotting the interface PLIC segments.

D.4.25 VOF_integration_points_on_finite_element

Here integration points and weights are set up for the VOF cells in the local coordinate
system and scaled appropriately if the 2-level procedure is applied. The inputs are the
number of integration points NoInt and the VOF mesh parameters NVx, NVy and NVz.
The outputs are the integration points coordinate array vofint(*,1:Noint,1:3) and the
integration weights vofweight(*,1:NoInt). Each VOF cell within the parent finite
element is given a set of integration points and weights such that the local VOF cell i has
integration points vofint(i,1:Noint,1:3).

D.4.26 VOF_dNlocal_on_finite_element

Local quadratic velocity shape functions and derivatives thereof are evaluated at the
integration points in the VOF cells. The inputs are the number of integration points per
cell NoInt, the VOF mesh parameters NVx, NVy and NVz and the integration point
coordinates for the VOF cells vofint(*,1:Noint,1:3). The outputs are the arrays
shapevof(*,1:NoInt,1:20) and dNdlocvof(*,1:NoInt,1:20,1:3). The value of the
quadratic velocity shape function associated with local velocity node iloc and evaluated
at integration point m in local VOF cell i is thus given by shapevof(i,m,iloc). And
similarly for the derivatives of the quadratic shape function dNdlocvof(i,m,iloc,k)

where k is the direction component for which the shape function is differentiated with
respect to (in the local system).
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D.4.27 VOF_dNglobal_on_Finite_Element

This routine evaluates the global derivatives of the quadratic velocity shape functions at
the VOF cell integration points. The routine operates with local numbering of the VOF
cells, i.e. only cells within a given finite element are treated by the algorithm. Inputs are
NoInt, NVx, NVy, NVz, xfe(*), yfe(*), zfe(*), numFe(*,1:20) and the array
dNdlocvof(*,1:NoInt,1:20,1:3) (local derivatives of the shape functions). The
outputs are the array with the global derivative dNdglob(*,1:NoInt,1:20,1:3) and the
determinant of the Jacobian matrix evaluated at the integration points
Djacvof(*,1:Noint). Thus the global derivative with respect to direction component k
of the shape function associated with local velocity node iloc and evaluated at
integration point m in local VOF cell i is given by dNdglob(i,m,iloc,k). It is noted
that this array corresponds to the quadratic velocity shape function in equation 2.5-44.

D.4.28 Calc_vof_element_volumes

In this routine the volume of each VOF cell is calculated and stored in vofvolarea(*,1).
The routine utilizes the Jacobian calculated in the routine
VOF_dNglobal_on_Finite_Element (see above). Main inputs are Nefe and
NFE2VOF(*,*). Furthermore a call is made to VOF_dNglobal_on_Finite_Element for
each finite element in the domain.

D.4.29 dLdglobal

Here global derivatives of the linear VOF cell shape functions are evaluated at the VOF
cell integration points. The routine carries out the calculations for the VOF sub-mesh in
finite element nelem. Other inputs are the coordinates of the linear VOF mesh nodes
vofcoord(*,1:3), the VOF mesh table numVOF(*,1:8), the local derivatives of the
linear shape functions dLdloc(1:8,1:NoInt,1:3), the VOF mesh parameters NVx, NVy
and NVz and the array NFE2VOF(*,*). The output is the array
dLdglob(1:8,1:NoInt,*,1:3) where the global derivative of the linear shape function
associated with local VOF node iloc on local VOF cell i evaluated at point m is given by
dLdglob(iloc,m,i,k) (k is the differentiation direction).
The output array is used for calculating the interface normal at the integration points of
the VOF cells when the CSS interfacial tension model is applied. When the CSF model is
applied the array is used for calculating the interface curvature at the integration points.

D.4.30 Identify_interface_finite_elements

This subroutine is used for searching for finite elements in which one or more active VOF
cells reside. The inputs are nactive, nactivevof(*), and NVOF2FE(*). The output is a
flag array nactiveinterfacefe(i) which has the value 1 if finite element i is part of the
interface region and 0 otherwise.
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D.4.31 Insert_vof_RHS

Here the terms in equation 2.5-44 (CSS) or equation B.8 (CSF) are calculated and added
to the Right Hand Side vector RHS(*). The routine makes a call to the subroutine
Calc_F_at_nodes if the CSS method is used or to dF_at_nodes if the CSF method is
used (both reside in the vofnormals.f90 module). Then for each finite element which is
considered to be part of the interface, the VOF cell contributions to the interfacial
tension are calculated and summed together. It is noted that for each finite element calls
are made to vof_dNglobal_on_Finite_Element and dLdglobal. The inputs for the
routine are Nefe, RHS(*), numFe2(*,1:41), vofweight(*,1:NoInt), NoInt,
shapevof(*,1:NoInt,1:20), Nefe, Djacvof(*,1:NoInt), NVx, NVy, NVz, sigma,
Fnode(*) and dFnode(*). Furthermore the arrays dLdglob(1:8,1:NoInt,*,1:3) and
dNdglob(*,1:NoInt,1:20,1:3) are obtained from routine calls inside the subroutine.
The flag itensionmet controls wheter the CSS (itensionmet=1) or CSF
(itensionmet=2) method is used. The output is the updated RHS vector.

D.5 Subroutines in module vofnormals.f90

The subroutines residing in the module vofnormals.f90 are now described.

D.5.1 Newtonit

This routine finds the local coordinates in the parent element for a given point with
global coordinates coordglob(1:3). This is done by solving the equations arising from
the iso-parametric coordinate mapping between the global and local system using the
linear shape functions, cf. equation 2.4-7. The routine also requires a coordinate array
coord(1:8,1:3) with the global coordinates of the linear nodes and an array
sn(1:8,1:3) with the corresponding local coordinates as input. The output is the vector
coordloc(1:3) with the local coordinates.

D.5.2 dLdglob_at_vof_nodes

Here linear shape functions and global derivatives thereof are evaluated on VOF cell
nodes. For a given node the routine makes a call to Newtonit in order to find the local
coordinates for the node in the ghost cell enclosing it , cf. section 2.4.2.1. Then a call is
made to the auxiliary routine dLdloc_at_xi_eta_zeta which evaluates the shape
function and the local derivatives thereof at the local point given by coordloc(1:3). The
inputs to the routine are Nx, Ny, Nz, NVx, NVy, NVz, cntroid(*,1:3),
nodalcoordination(1:8,1:8), ncoordination_table(*,1:27), numVOF(*,1:8),
vofcoord(*,1:3), Nevof, h_fine(*), x0, y0, z0, ALx, ALy, ALz. It is noted that walls
are treated as symmetric when boundary nodes are considered. This also means that if a
non-regular domain is used some changes need to be made to the routine. The outputs
from the routine are the arrays shapeL_on_VOF_nodes(*,1:8,1:8) and

210



D.6. Input files 187

dLdglob_vof_node(*,1:8,1:8,1:3). Here the linear shape function associated with
local node iloc on the ghost cell and evaluated at local node jloc on VOF cell i is given
by shapeL_on_VOF_nodes(i,jloc,iloc). Similarly the global derivatives of the linear
shape function are given by dLdglob_vof_node(i,jloc,iloc,k) where k is the
differentiation direction.

D.5.3 calc_F_at_nodes

The F -field is interpolated onto the linear nodes on the VOF mesh. Inputs are nactive,
nactivevof(*), numVOF(*,1:8), F(*), nodalcoordination(1:8,1:8),
ncoordination_table(*,1:27) and shapeL_on_VOF_nodes(*,1:8,1:8). The output is
the array Fnode(*).

D.5.4 dF_at_nodes

The gradient of the F -field is evaluated on the linear nodes on the VOF mesh. In-
puts are nactive, nactivevof(*), numVOF(*,1:8), F(*), nodalcoordination(1:8,1:8),
ncoordination_table(*,1:27) and dLdglob_vof_node(*,1:8,1:8,1:3). The output is
the array dFnode(*).

D.6 Input files

The various input parameters which control the behaviour of the program are specified in
one of three input files. These files are: meshparam.dat, bcparam.dat and mainparam.dat. In
the file meshparam.dat all parameters associated with regular mesh set up by the subroutine
Femcoord are specified. The file bcparam.dat is used for specifying which type of BC’s are
applied to the computational domain and in the file mainparam.dat physical paramters
such as viscosity and density are specified. Furthermore in mainparam.dat some parameters
which control the execution of the program are specified. The table below shows which
parameters are specified in each file.

File name Parameters

meshparam.dat : Ncx, Ncy, Ncz, ALx, ALy, ALz, ALfx, ALfy, ALfz, x0, y0,
z0, alphax, alphay, alphaz (see subsection D.2.1 for
further details).

bcparam.dat : G, a, vterm(1:6,1:3,1:2), nbd(1:6,1:3), nbp(1:2)

(see subsection D.2.3 for further details).
mainparam.dat : viscc, viscd, rhoc, rhod, itensionmet (flag),

time_tot, CFL, nbcfile (flag), gacc(1:3),
iwritedata.
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D.7 Some additional notes

During a simulation a considerable amount of data is written to various output files. Since
many of these are problem specific (e.g. mesh type and symmetry planes) they will not
be described in detail. However, Matlab scripts have been written in order to analyse
the output data, e.g. for plotting the PLIC faces and the velocity field. These scripts
should be documented sufficiently in order to understand the purpose and structure of
each data file. In the table below the output files are briefly described and when relevant
the corresponding Matlab script is referenced.

File name Parameters

time.dat : The time step number and simulation time are written
to this file for each time step.

stepnumber.dat : The time step number is written to this file for each in-
crement of nc which is controlled by the input parameter
iwritedata (see also below). Together with the data in
time.dat it is possible to relate the simulation time to
the data files described below.

facecoord[nc].dat : Coordinates for the PLIC interface segments at time
step nc*iwritedata (see also subsection D.4.24). Matlab
script plotplic.m can be used for plotting the interface
segments.

numfaces.dat : Number of PLIC segments at time step nc*iwritedata
(see also subsection D.4.24).

Fout[nc].dat : F -field for the active VOF cells at time step
nc*iwritedata. Matlab script plotFfield.m can be used
for plotting the iso-surface from the F -filed.

velsym[nc].dat : Nodal coordinates and velocity field on the symmetry
plane at time step nc*iwritedata. Can be plotted using
the Matlab script plotvel.m.

psym[nc].dat : Pressure field on the symmetry plane at time step
nc*iwritedata. Can be plotted using the Matlab script
plotpres.m.

vofmesh.dat : VOF mesh center coordinates.
vofmeshsize.dat : VOF mesh size in the x1, x2 and x3 direction.

The main time loop resides in the program part of the module mainfem.f90. Further-
more various arrays are initialized here by calling the appropriate subroutines outside the
time loop. As described in the main text of this thesis the sparse linear solver PARDISO
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is used for solving the flow field variables. The behaviour of the solver is controlled by a
relatively large number of input flags and parameters, e.g. for defining the type of coeffi-
cient matrix, the method used for solving the system, various tolerances and many more.
Details on all the parameters and flags are given in the PARDISO documentation which
can be found at http://www.pardiso-project.org/index.html. However, the input parameters
used for solving linear equations arising in this work are described briefly in the module
mainfem.f90.
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