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Abstract

In the recent years, chemical and biochemical process modelling has dominated
the research and development. There are various targets of the developed mod-
els such as steady-state and dynamic simulation in order to better investigate
and understand the process, process design, process control, process optimiza-
tion and even more recently fault monitoring and diagnosis.

In this thesis the main reason to develop process models is to first better
understand the behavior of the enzymatic reaction network and to possibly
identify the bottle-necks and limitations. The secondary objective and equally
important was and still is to optimize the operating conditions of the system
of biotransformations (SBT) in order to maximize the yield. Moreover in order
to move to the production on a larger scale the reactor design can become an
important target.

There is a need however for different tools that the end-user needs in order
to advance faster in this very time consuming task of building dynamic process
models.

The contribution of this thesis is therefore twofold at least. The first way is
toward the model development for the enzymatic reaction network in form of
stochastic differential models. The second way is toward the necessary system-
atic methodology and tools needed at various steps in this process.

One important step is assessing the possibility of estimating the model param-
eters from real life data once the a model has been formulated. In addressing
this issues a systematic methodology has been set up. Given a model structure,
a set of measured states and perturbed inputs this methodology provides the
parameters which can be at least theoretically estimated.

Another important step is represented by qualitative experimental design
which aims at determining the optimal set of measured states and perturbed
inputs. By optimal we mean either the case of minimum number of measured
states and perturbed inputs rendering all model parameters estimable or at
least as many parameters as possible.

A related step is designing the experimental conditions, sometimes called
quantitative experimental design, for the optimally selected set of measured
states and perturbed inputs. Typically, the initial values of measured states, the
optimal sampling points, the input profiles are searched for, within a dynamic
optimization problem framework formulation.

In terms of software, a computer program to determine the optimal quanti-
tative experimental design for models described by stochastic differential equa-
tions has been developed. The program called Continuous Time Stochastic
Modelling (CTSM) Kristensen et al. (2004b) previously developed, has been
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further extended to be more flexible in handling experimental data obtained
under different conditions and in estimating each of the the parameters either
globally for all the experiments or locally for each experiment, allowing varying
parameters.



Resumé p̊a dansk

I de seneste år har kemisk og biokemisk procesmodellering domineret forskn-
ing og udvikling. Der er forskellige form̊al med de udviklede modeller s̊asom
steady-state og dynamisk simulering af en given proces for bedre at kunne un-
dersøge og forst̊a processen, procesdesign, procesregulering, procesoptimering
samt overv̊agning og diagnose af procesfejl.

I dette arbejde har det primære form̊al med udviklingen af procesmodeller
været at øge forst̊aelsen af det enzymatiske reaktionsnetværk og om muligt
identificere flaskehalse og begrænsninger. Det sekundære form̊al af lige s̊a stor
vigtighed har været og er stadig at optimere procesbetingelserne for systemet
af biotransformationer (SBT) for at optimere udbyttet. Derudover, kan reak-
tordesign blive en vigtig applikation af modellen ved opskalering af processen.

Der er et behov for forskellige værktøjer, som kan hjælpe brugeren til hur-
tigt at n̊a fremskridt under den uhyre tidskrævende opgave det er at opbygge
dynamiske procesmodeller.

Bidraget i dette arbejde er derfor mindst tofoldigt. Dels i retning af model ud-
vikling for det enzymatiske reaktionsnetværk i form af stokastiske differential-
ligninger. Dels i retning af en nødvendig systematisk metodologi og værktøjer,
der er behov for under de forskellige trin i processen.

Et vigtigt trin er at vurdere muligheden af at estimere model parametre fra
virkelige forsøg n̊ar en model er blevet formuleret. For at h̊andtere dette er en
systematisk metodologi blevet sat op. Givet en modelstruktur, et sæt af m̊alte
tilstande og pertuberede inputs giver denne metodologi de parametre, som i
det mindste teoretisk kan blive estimeret.

Et andet vigtigt trin og intet andet end et udvidet identificerbarhedsprob-
lem er repræsenteret ved kvalitative eksperimentelle designs, som søger at
bestemme det optimale sæt af m̊alte tilstande og pertuberede inputs. Med op-
timale menes enten det tilfælde hvor alle eller s̊a mange parametre som muligt
kan blive estimeret ud fra det mindste mulige antal m̊alte tilstande og pertu-
berede inputs.

Et beslægtet trin omhandler design af de eksperimentelle betingelser, ofte
benævnt kvantitativt eksperimentelt design, for det valgte sæt af m̊alte til-
stande og pertuberede inputs. Typisk søges der efter begyndelsesværdierne af
de m̊alte tilstande, de optimale tidspunkter for prøveudtagning samt inputpro-
filerne indenfor en dynamisk optimeringsproblem framework formulation.

Vedrørende software er et computer program til bestemmelse af det opti-
male kvantitative eksperimentelle design for modeller beskrevet ved stokastiske
differentialligninger blevet udviklet. Dette tidligere udviklede (Kristensen et
al. 2004b) program, Continuous Time Stocastic Modelling (CTSM) er blevet
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videre udviklet til at være mere fleksibelt ved h̊andteringen af eksperimentelle
data erhvervet under forskellige betingelser og i estimeringen af parametre enten
globalt for alle eksperimenter eller lokalt hvilket tillader varierende parametre.
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Introduction

The purpose of this chapter is to motivate, to define the hypotheses and the
objectives of this thesis. Moreover, a brief overview of the state of the art
for each of the main areas dealt with in the following chapters is given. Each
chapter contains a section, where the state of the art, is review and presented
in more detail. A section describing the organization of the thesis closes this
chapter.

1.1 Modelling issues

Over the last years, a significant effort has been put into modelling the various
process that both the industry and academia has to deal with. The effort
meaning both time and money. The model application drives usually the model
development, thus any methods and tools that can facilitate and ease the model
development is highly relevant.

As far as the applications are concerned there are various reasons to build
and develop process models. One basic and fundamental application is un-
derstanding the process under investigation, the developed model helping the
investigator by process simulation. A different application is process design
and optimization. In many cases e.g. for reactor or bio-reactor design a good
kinetic model is required. Mathematical optimization uses the model as its
workhorse besides the optimization routine. Yet another application is process
control where a model is used to compute the optimal input trajectories.

In the description above the focus was on general dynamic process models
but in this thesis the focus is on dynamic process models described by stochas-
tic differential equations or grey-box models. The scope of this thesis is thus on
improving grey-box stochastic models by introducing parameter identifiability
analysis, qualitative and quantitative experimental design. The main applica-
tion for these tools is represented by an enzymatic reaction network denoted
in this thesis a system of bio-transformation (SBT). The starting point in this
work is represented by an existing grey-box modelling framework proposed by
(Kristensen et al. 2004b). A graphical description of this modelling framework
is given below in Figure 1.1.

This methodology focused upon utilizing existing experimental data. More-
over the assumption is that the data are sufficient from the statistical point of
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Figure 1.1: Existing grey-box modelling framerok Kristensen et al. (2004b)

view such that it is possible to recover the states and model parameters ap-
propriately. In this situation it is possible to identify the model deficiencies by
assessing the significance of the diffusion terms which represent a key feature
of the available methodology Kristensen et al. (2004b).

Another key feature of the existing grey-box stochastic modelling framework
is that by applying state estimation and nonparametric modelling it is possible
to reveal how to model the deficient parts of the model, i.e. the kinetic rates
for the enzymatic reaction network.

However if the data are insufficient then it is difficult to estimate the model
parameters and thus it is not really clear which of the diffusion terms are
significant. Secondly, when performing state estimation and nonparametric
modelling if the data series are not sufficient, then the obtained dependencies
between various process variables may be biased and thus the model correction
may not go in the right direction.

In the present thesis the focus is therefore on designing experiments to bet-
ter estimate the model parameters and the diffusion terms and thereby ease
the identification of model deficiencies. Moreover the state estimation used
for nonparametric modeling should be more accurate thus facilitating model
reformulation and correction.

1.2 Motivation

This section gives an overview of the state of the art for the various fields
covered in this thesis and gives the motivation for the work performed during
this PhD study. There are several different points to be discussed. The first
point to be discussed is modelling of the SBT described above. The second
point is that of using grey-box models to model this system. The third point
regards performing identifiability analysis and qualitative experimental design.
Finally, quantitative experimental design for grey-box models will be discussed.
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1.2.1 Modelling purpose

This enzymatic reaction network renders a very complex system, partly known
through measurements with a series of feed-back and feed-forward mechanisms.
In order to be able to run this SBT in an optimal way with respect to produc-
tivity of the desired compound, DHAP, it is necessary to optimize the design
and the operation of network. Several means are used in practice to achieve
this goal. One way regards the identification of the possible bottlenecks and
their removal when possible. This can be done using reaction network analysis,
knowledge about the enzymes and their manipulation, i.e. saturation constants
which can be modified by manipulating the proteins and their corresponding
genes and finally the operation may be optimized based on simulation studies of
a model with good prediction properties developed for this enzymatic reaction
network.

Another way used, is by performing a schedule of experiments organized
based on a trial and error and heuristics approach. These experiments may be
designed based again on a model of the process. There are at least two types of
model based experimental design. The first type regards collecting information
about estimation of the model parameter. The second type regards collecting
data in order to differentiate between few potential candidates models. These
cases all requires a fairly good model of SBT.

1.2.2 Grey-box stochastic modelling of SBT

Modelling chemical and biochemical processes the most common way is the first
principle engineering modelling, sometimes called white box modelling. The
main idea is to start with the general principles of mass, energy and momen-
tum conservation and derive the model equations. However, more knowledge
is required in terms of transfer phenomena parameters i.e. heat, mass transfer
coefficients, diffusion coefficients or when it comes to reaction engineering var-
ious kinetic equations and parameters. Most often this information is partly
known or only an educated guess of the reaction kinetics in terms of structure
and parameters values is available. Even so, when trying to validate the devel-
oped model for the particular process under investigation against experimental
data, it is assumed that the model structure is correct. Thus, by estimating the
model parameters, the total error will be absorbed depending on the estimation
scheme and on the way the measurement errors is considered.

Another situation when developing process models is the case when nearly
nothing is known about the whole process or just part of it. In this situation,
black box modelling may be used. In black box modelling various polynomial
models linking the input and the output variables are proposed and the model
polynomials are estimated using a standard estimation scheme as output error
or prediction error method. The performance of these models is best for short
time horizon but depends upon estimation method and weightings used.

In order to utilize both the knowledge available and the experimental data
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for model development, grey-box modelling has been proposed. The workhorse
of these models is represented by stochastic differential equations. The aim is
to use all the knowledge available from first principle engineering and simulta-
neously account for model uncertainties and deficiencies, input uncertainties,
by assuming stochastic evolution of the states. Thus the models are developed
as first engineering principles models incorporating stochastic terms denoted as
diffusion terms. Grey box modelling may be viewed as founded on fundamental
behavior of molecules but here applied on macroscopic systems.

The particular feature, of combining the available knowledge with stochastic
variables motivates the use of stochastic differential equation for modelling.
The framework developed by Kristensen et al. (2004a), describes a system-
atic methodology for improving this kind of models. This framework will be
employed and further developed here.

1.2.3 Identifiability analysis and qualitative experimental
design

In order to evaluate the model performance it is necessary to estimate the
model parameters. However estimation of model parameters may be difficult
if data is not informative and impossible if the parameters are not identifiable.
Consequently, analysis of the properties of the parameter estimation problem
may be highly beneficial prior to both experimental design and to undertak-
ing actual estimation of model parameters in practice. Hence it is desirable
to evaluate whether the parameters of a given model are identifiable and to
perform experimental design aimed at developing most beneficial conditions
for identifying unknown model parameters.

Experimental design may be decomposed into two steps: qualitative experi-
mental design and quantitative experimental design. Qualitative experimental
design concerns first selection of the operation mode, secondly, which input
variables should be varied, and thirdly, which outputs should be measured in
the experiments in order to render the unknown model parameters identifi-
able. The first author to define the concept of qualitative and quantitative
experimental design and their relationship with identifiability analysis, mainly
working with linear or linearized models, seems to be Walter and Pronzato
(1987), Vajda et al. (1989) and Walter and Pronzato (1990).

One approach to address the structural identifiability problem is based on
state isomorphisms. If indistinguishable state space systems exist then one
can try to parameterize the equivalence classes by the admissible state space
isomorphisms. And if one can show that there is an identity, then global iden-
tifiability follows under certain conditions as outlined by Peeters and Hanzon
(2005).

A second approach to structural identifiability analysis is based on differential
algebra proposed by Ljung and Glad (1994), which has been further developed
by Audoly et al. (2001), Saccomani et al. (2003) and Saccomani (2004). Here
a set of algebraic equations denoted the exhaustive summary is obtained and
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this set is solved by algebraic methods e.g. the Buchberger algorithm.
The third approach to structural identifiability analysis reviewed here is based

on power series expansion of the model outputs as a function of inputs and time
(Pohjanpalo (1978), Fliess (1980), Fliess and Lagarrigue (1980) and Walter
and Pronzato (1996)). Two types of expansions may be used, one is based on
Taylor series and the other based on generating series. In a more recent paper,
(Walter et al. 2004), an optimization based method is presented. The classical
definitions of identifiability are slightly modified by defining a validity domain
for the model parameters.

In the case of practical, or a-posteriori identifiability analysis, several meth-
ods are available. The first method is the local or global (multi local) sensitivity
analysis (Sarmiento Ferrero et al. (2006), Kontoravdi et al. (2005)), which is a
widely used method for large models.

The second method for establishing practical identifiability, is an optimization-
based approach, proposed by Asprey and Macchietto (2000). In principle, the
idea is to maximize the distance between two parameter vectors that essentially
give the same model output. If the maximized distance is smaller than some
threshold then the model is deemed identifiable. In a more recent paper, the
optimization based approach is modified and combined with the multi-local
sensitivity analysis into what is called the perturbation algorithm (Sidoli et al.
2005).

A systematic approach to identification of complex reaction networks was
developed by Brendel et al. (2006). Their model development is decomposed
into steps, where each subsequent step is related to only one part of the model
but all possible model candidates are considered. On the other hand, methods
based on sensitivity analysis or perturbation study tend to be more applicable
to real life applications, but they require a substantial computational effort
and are only black box methods which do not directly provide insight into the
nonlinearities of the dynamic model.

Even though the two problems mentioned above for nonlinear dynamic sys-
tems have attracted attention for a long time it seems that there is still a need
to develop methods which can address development of systematic methodolo-
gies for structural identifiability of parameters and qualitative experimental
design at different stages in model development more efficiently.

It is the focus of chapters 3 and 4 to provide an attempt toward development
of a systematic methodology for qualitative experimental design based upon
the notion of structural identifiability. The presented methodology focuses
upon reaction networks since the determination of approximate kinetics can be
very beneficial for subsequent reactor design and development of operational
strategies.

1.2.4 Quantitative experimental design

The parameter estimation problem mentioned above in section 1.2.3 can be
greatly improved by using quantitative experimental design for parameter pre-
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cision improvement.
A review on the topic is provided by Walter and Pronzato (1990) where the

focus is mainly on linear models. When performing quantitative experimental
design, however, for linear dynamic systems another way is to convert the model
from time domain into the frequency domain Sadegh et al. (1994), Sadegh et al.
(1995) and then determine the optimal set of frequencies for inputs. This study
focuses on stochastic differential equation models. For nonlinear dynamic mod-
els which are nearly linear, a common approach is to linearize the model around
the operational state of the process and then apply the same method as for dy-
namic linear models. Körkel et al. (1999) and Bauer et al. (2000), were among
the first to develop the concepts and algorithms for quantitative experimen-
tal design for dynamic models of systems of ordinary differential equations
or differential-algebraic equations. Asprey and Machietto, in a series of pa-
pers: Asprey and Macchietto (2000), Asprey and Macchietto (2002) address
the problem of robust quantitative experimental design for nonlinear dynamic
systems.

Two approaches are usually taken when considering the prior available knowl-
edge about the model parameters.

The first approach takes into account the a-priori uncertainty in the model
parameters θ. The parameters are assumed to belong to a population with
a known distribution p (θ). The experiments designed in this way are good
on average but can be poor for some values of the parameters (Walter and
Pronzato (1987), Asprey and Macchietto (2000)).

The second approach aims to determine experimental designs ΦWC , that op-
timize the worst possible performance for any value of θ ∈ Θ the only prior
information about θ is the admissible domain Θ. In this way the design at-
tempts to ensure acceptable performance for all possible values of θ. The WC
approach had a limited usage due to burdensome computation. In order to cir-
cumvent this problem Asprey and Macchietto (2000), Asprey and Macchietto
(2002) proposed a sequential algorithm derived from the worst case approach
and they denote this as R-optimal experimental design.

Benabbas et al. (2005) included a criterion containing information about the
curvature of the response surface. In order to further account for non-linearity
of the system a criterion based on global sensitivity analysis has been introduced
in recent paper by Rodriguez-Fernandez et al. (2007).

Thus it seems like, a methodology addressing the problem of quantitative ex-
perimental design for stochastic differential equations is still open. The reason
to develop such a methodology, concerns the estimation of model parameters in
models described by stochastic differential equations, especially because using
different terms for state noise (diffusion terms) and measurement variance it is
possible to separate the influences of the model error and measurements error.

The development of an algorithm (procedure) and its implementation as soft-
ware for performing quantitative experimental design for parameters estimation
for processes described by stochastic differential equations is the focus of chap-
ter 5. The classical D-optimal design criterion from the linear models theory
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is employed here Atkinson and Donev (1996).

1.3 Hypotheses of the thesis

After introducing the motivation and the state of the art it is appropriate to
state the hypotheses of this thesis:

1. In order to facilitate efficient optimization of a production process it is
most beneficial to develop a reasonably accurate process model where
information about model uncertainty is available

2. A structural identifiability analysis step, before the parameter estimation
step will guide the model parameters estimation and will reduce both the
time and the number of estimations by focusing only on the theoretically
identifiable process parameters

3. A qualitative experimental design step will guide the experimentalist to
focus on measuring only the relevant states and on perturbing only the
relevant inputs in order to identify structurally identifiable process pa-
rameters

4. A quantitative experimental design step for grey box stochastic models
will improve the parameter estimation step by providing the experimental
data containing the maximum amount of information

1.4 Structure of the thesis

The introduction discussed the motivation of this thesis, then it briefly reviewed
the state of the art for the main aspects dealt with and then established the
hypothesis of the work. Following the hypothesis, the grey box stochastic
modelling of SBT is presented in two chapters.

In chapter 2 the modelling concepts and tools are introduced together with
two developed models, Model I and Model II. The chapter describes the model
development process for an enzymatic reaction network, the so-called system
of bio-transformation. Various grey box stochastic models for SBT, usually
increasing in complexity are presented discussed and validated against labora-
tory data. The performance of the models gradually improves from version to
version.

Chapter 3 introduces and illustrates the identifiability analysis algorithm
developed for assessing the possibility of estimating the model parameters from
the available data for reaction network models. The identifiability analysis is
applied for the simplest developed model in chapter 2. A validation of the
correctiveness of the results is provided as well.

Chapter 4 continues and expands the ideas presented in chapter 3 into the
problem of qualitative experimental design. The analyzed model is Model I
introduced in chapter 2 and provides a completion of the analysis.
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Chapter 5 develops quantitative experimental design for grey box stochastic
models. After introducing the work-flow and the methodology, the algorithm
is illustrated on a simple model mainly for testing and comparison.

In chapter 6 an improved version of the grey-box stochastic modelling frame-
work is introduced. The methodologies presented in chapters 3–5 have been
incorporated in the proposed framework. One more model, Model III is devel-
oped and discussed.

A second approach for qualitative experimental design is proposed and illus-
trated on Model III. Parts of the results obtained from this analysis were used
to establish which parameters can be estimated during model development.

An optimal quantitative experimental design for parameter estimation for
Model III is performed as well.

Chapter 7 describes the software contributions related to the work presented
here.

Finally, chapter 8 closes the thesis by briefly reviewing the hypothesis for-
mulated in this introductory section and by reviewing the contributions to
the grey box stochastic modelling framework. This closing chapter includes a
short discussion about the software implementations and provides suggestions
for future work.

1.5 Publications

The work presented in this thesis has been presented in several publications as
reviewed journal papers, reviewed conference papers, various oral presentations
and posters. Below, the most important are listed, and the connection with
the various parts of the thesis is described.

1.5.1 Reviewed journal papers

The content of chapter 3 has been submitted for publications as:

1. Davidescu Florin Paul, Jørgensen Sten Bay, ”Structural parameter iden-
tifiability analysis for dynamic reaction networks”, Chemical Engineering
Science, volume 28, pp 4754-4762, Elsevier 2008.

1.5.2 Reviewed conference papers

Small parts of the work presented in chapter 6 has been already presented as
contribution for the ESCAPE 16 proceedings volume as:

1. Florin Paul Davidescu, Madsen Henrik, Schümperli Michael, Heinemann
Matthias, Panke Sven, Jørgensen Sten Bay, ”Stochastic Grey Box Mod-
eling of the enzymatic biochemical reaction network E. coli mutants”,
Computer-Aided chemical engineering, volume 24, Elsevier 2006.
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The work in chapters 3 and 4 contains some of the work presented at ESCAPE
17 in proceedings volume:

1. ”Systematic qualitative experimental design based upon identifiability
analysis”, Computer-Aided chemical engineering, volume 25, Elsevier
2007.

2. Florin Paul Davidescu, Henrik Madsen, Sten Bay Jørgensen, ”Using Lie
algebra to study the parameters identifiability and to perform experimen-
tal design”, ECCE 7 abstract

1.5.3 Oral presentations and posters

Regarding oral presentations and posters the content of chapters 3 and 4 has
been presented in the following contributions also:

Different aspects of chapter 6 have been presented in the following contribu-
tions also:

1. Florin Paul Davidescu, Henrik Madsen, Sten Bay Jørgensen, ”Production
of complex fine chemicals using a system of bio-transformation”, CAPEC
consortium annual meeting, held at Kob æk Strand, Denmark, June 2006

2. Florin Paul Davidescu, Sten Bay Jørgensen, ”Stochastic grey-box model-
ing of a system of biotransformations”, DK2, held at Technical University
of Denmark Kgs. Lyngby June 2006, published in the proceedings con-
ference volume

3. Florin Paul Davidescu, Henrik Madsen, Sten Bay Jørgensen, ”System-
atic improvement of grey-box stochastic modelling of sequential contin-
uous cultivations”, NPCW 13, at Technical University of Denmark Kgs.
Lyngby January 2006, included in the workshop proceedings

4. Florin Paul Davidescu, Henrik Madsen, Sten Bay Jørgensen, ”Grey-box
stochastic modelling of a an enzymatic reactions network for biotransfor-
mation”, presented in session 656b Applied Mathematics in Bioengineer-
ing II, at AICHE annual meeting, San Francisco, November 2006

5. Florin Paul Davidescu, Sten Bay Jørgensen, ”Qualitative And Quanti-
tative Experimental Design For An Enzymatic Reaction Network”, pre-
sented in session 10B01 Process Monitoring and Identification - I, at
AICHE annual meeting, Salt Lake city, November 2007
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2

Reaction Network
Modelling within Grey Box

Framework

Abstract

Key elements of a grey-box stochastic modelling framework are (reviewed and)
applied for preliminary model development of an enzymatic reaction network.
The main purposes are to illustrate and pinpoint the properties and limitations
of the grey box stochastic modelling methodology identifying essential targets in
the reaction network for maximizing productivity of the network. Experimental
data for four measured compounds of the enzymatic reaction network are avail-
able as time series data collected during batch experiments. Two models for
the system of bio-transformation are developed. The first model assumes mass
action type kinetics for the main pathway. The second model incorporates addi-
tional reactions and more complex kinetics for the main pathways. The models
are developed by using the grey-box modelling framework for combining infor-
mation embedded in experimental data with first principle engineering knowl-
edge. Various statistical tests are used to assess statistical quality of the model
and parameter estimates. Limitations of the present grey box framework are
pinpointed in an effort to identify areas for improving the grey box modelling
framework.

2.1 Introduction

The main objective of this work is to develop an improved modelling method-
ology for dynamic systems which can provide models with good long term
prediction properties of relatively large complexity. The starting point is rep-
resented by an existing grey-box modelling framework (Kristensen et al. 2004a).
Along with the methodology development, a model for an enzymatic reaction
network constitutes the secondary objective of this work. The considered case
is of large complexity showing multiple recirculations.
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2.1.1 Why using stochastic differential equations?

The motivation to use stochastic differential equations (SDEs) is primarily dis-
cussed based on the main application represented by the enzymatic reaction
network. Enzymatic reaction networks in general represents nonlinear dynamic
systems of large complexity. First engineering principles to develop dynamic
models represents the preferred choice by several authors Chassagnole et al.
(2002), Bali and Thomas (2001) for modelling enzymatic reaction networks in
E-coli microorganisms. However the kinetic mechanism and the subsequent
kinetic equation for many enzymatic reactions have been investigated for pu-
rified enzymes only. The influence of the other enzymes and cofactors on the
particular enzymatic kinetic mechanism is not clarified for many enzymes, thus
model uncertainty is present. Moreover, the enzymatic reaction network (SBT)
considered in this study is an in-vitro realization since the cells are destroyed
after the cultivations and the (most relevant) enzymes used for synthesis of the
desired compound in batch of fed-batch operation. The first principles engi-
neering models assume the kinetic equations to be correct, thus model error
may be absorbed in the parameter estimates. By using SDEs with a pure dif-
fusion term or random walk, a possibility to account for model deficiency is
provided.

The experimental points are collected only at discrete points in time and
only for a subset of the model states. Thus for ODE models in general and
for enzymatic networks described by ODE models the model errors are most
often serially correlated - i.e. the difference between the data and the model
predictions are correlated in time. This correlation has to be accounted for by
any estimation procedure, and by using a maximum likelihood procedure the
likelihood function is well known to be constructed as a product of conditional
densities. In this (one-step) conditional densities the autocorrelation must be
taken into account, and this is most adequately done by considering SDEs
instead of ODEs. When working with enzymatic networks, some random effects
occur in reality which the first principles engineering models can not account
for. While simulating the enzymatic reaction network it is not possible to
simulate most real life systems in a realistic manner without using SDEs.

If inputs are perturbed, then even these inputs contain some uncertainty.
SDEs allow for measurement errors for the input variables - and this is then
accounted for by the diffusion part. For both ODE and SDE models it is
well known that errors of the dependent (output) variable is described by the
observation error in the measurement equation of the state space model, but
only SDEs allow for measurement errors in the input variables.

If the scope of the current work is broaden, there are a few other advantages
of using SDEs. If the developed models are to be used for developing model
based controllers the following differences need to be mentioned. For ODEs
the future of the states is assumed to be known exactly - and this is rarely
the situation. For SDEs the uncertainty in general increases as the prediction
horizon increases, and a knowledge of the uncertainty about future values of
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the states is very important. For forecasting applications, the SDEs allow
for a simpler (often more ’operational’) model than ODEs since the model
approximation is implicitly described by the diffusion part of the model.

Finally the SDEs are important in order to enable statistical methods for
model estimation, model identification, model validation and falsification.

2.1.2 Review of the existing grey-box stochastic mod-
elling framework

The grey-box stochastic modelling framework is based upon stochastic differ-
ential equation models. The purpose of the framework is to enable a number
of powerful mathematical and statistical tools to assist the model development
in a systematic way. Using first principle engineering the model equations are
derived in a form of a set of ordinary differential equations, and then comple-
mented with diffusion terms to obtain the set of stochastic differential equa-
tions. The diffusion terms account for model errors and/or for the un-modeled
effects of the system plus the noisy input.

By considering the model as a system of stochastic differential equations and
by introducing a pure diffusion process or random walk enables a possibility
to identify variation not recognized at a certain point in the model building
thereby establishing possibilities for pinpointing the model error in several steps
(Kristensen et al. 2004a). The measurement equations include measurements
errors as well, thus in this approach it is possible to distinguish between mea-
surement and process errors.

In the next step the set of unknown parameters together with the diffusion
terms and the measurements variances are estimated from experimental data
using a maximum likelihood or a maximum a-posteriori method in a prediction
error setting. More details about the estimation scheme are given in Section
2.2.

The model is (un-)falsified using different statistic tests. Then, the model is
reformulated and the iterations continued until the model is un-falsified given
available data i.e. the information contained in the data is extracted. In the
original framework the statistical test for significance applied to the diffusion
terms together with some residual analysis are used to pinpoint the model
deficiencies and to formulate hypotheses about the deficiencies. Once the de-
ficiencies have been identified non-parametric tools are used to improve the
deficient part of the model.

The remaining part of the chapter is organized as follows: Section 2.2 de-
scribes in some detail the parameter estimation scheme, Section 2.3 describes
the experimental data, Section 2.4 describes the development of Model I for an
enzymatic reaction network using the grey box stochastic modelling methodol-
ogy. Section 2.5 presents a second model, Model II. A validation of Model II is
performed in section 2.5.1. The chapter is closed by a discussion of the results
and modelling methodological deficiencies and the conclusions are drawn.
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2.2 Methods and Software

In this section, a brief review of theoretical aspects related to the parame-
ter estimation scheme based on maximum likelihood estimation for stochastic
differential equations is provided for convenience. A short description of the
software tool used is given before the grey box stochastic modelling methodol-
ogy is summarized.

2.2.1 Model structure of SDE

A continuous-discrete stochastic state space model consists in the general case
of a set of non-linear discretely, partially observed (Jazwinski 1970), Itô SDE’s
with measurement noise, i.e.:

dxt = f (xt, ut, t, θ) dt+ σ (ut, t, θ) dωt (2.1)

yk = h (xk, uk, tk, θ) dt+ ek (2.2)

In the above formulation:

• t ∈ R is the time variable;

• xt ∈ X ⊂ Rn is a vector of state variables;

• ut ∈ U ⊂ Rm is a vector of input variables;

• yt ∈ Y ⊂ Rl is a vector of output variables;

• θ ∈ Θ ⊂ Rp is a vector of (possibly unknown) parameters;

• f (·) ∈ Rn represents the deterministic (or drift) functions of the SDE
model;

• σ (·) ∈ Rn×n represents the stochastic (diffusion) functions of the SDE
model;

• h (·) ∈ Rl are known non-linear functions representing the measurement
equations;

• {ωt} is an n-dimensional standard Wiener process (Jazwinski, 1970);

• {ek} is an l -dimensional white noise process with ek ∈ N (0,S (uk, tk, θ)).

The diffusion term of Eq. 2.1 is assumed to be independent of the process
states and in the grey-box modelling framework (Kristensen et al. 2004a) the
Σ matrix of the equation set is formulated in a diagonal form, one term for
each state. The Σ matrix is a matrix whose diagonal elements are the σ (·)
parameters while the off-diagonal elements are zero. The Σ matrix can have
any parametrization, however the diagonal form enables the possibility of pin-
pointing the model deficiencies as the cross coupling to the other states is
neglegted.
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2.2.2 Parameter estimation

The solution to Eq. set 2.1, is a Markov process with an estimation method of
the unknown parameters of the model in Eqs. 2.1–2.2, e.g. maximum likelihood
(ML) or maximum a posteriori (MAP).

The latter method can be applied when prior information about the parame-
ters is available. For a stochastically independent sequence set of S consecutive
measurements (Kristensen et al. 2004b):

Y =
[
Y1
N1
,Y2

N2
, . . . ,Yi

Ni
, . . .YS

NS

]
(2.3)

each sequence is:
Yi
Ni

=
[
yiNi

, . . . , yik, . . . , y
i
1, y

i
0

]
(2.4)

Denote p(θ) as a prior probability density function for the parameters. In the
general case, estimates of the parameters in Eqs. 2.1–2.2 can then be found as
the parameters θ that maximize the joint posterior probability density function
given in the general form:

p (Y |θ) =

(
S∏
i=1

p
(
Yi
Ni
|θ
))

p
(
yi0|θ

)
p (θ) (2.5)

or equivalently:

p (Y|θ) =
S∏
i=1

(
Ni∏
k=1

p
(
yik|Y

i
k−1, θ

))
p
(
yi0|θ

)
p (θ) (2.6)

where the conditional probability rule P (A∩B) = P (A|B) ·P (B) was applied
successively in order to form a product of conditional probability functions.
This formulation allows MAP estimation on multiple data sets. If the p (θ) is
uniform, then the equation 2.6 becomes:

p (Y|θ) =
S∏
i=1

(
Ni∏
k=1

p
(
yik|Y

i
k−1, θ

))
p
(
yi0|θ

)
(2.7)

which allows ML estimation.
In order to obtain an exact evaluation of the likelihood function in Eq. 2.5, a
general nonlinear filtering problem has to be solved (Jazwinski 1970), but this
is computationally infeasible in practice.

However, since the increments of the standard Wiener process {ωt} driving
the SDE in Eqs. 2.1 are Gaussian, it is reasonable to assume that the condi-
tional probability densities in Eq. 2.5 can be well approximated by Gaussian
densities, which means that a method based on the extended Kalman filter
(EKF) can be applied (Kristensen et al. 2004b). The Gaussian density is com-
pletely characterized by its mean and covariance. Introducing the following
notation:
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ŷik|k−1 = E{yik|Y
i
k−1, θ} (2.8)

Rik|k−1 = V {yik|Y
i
k−1, θ} (2.9)

εik = yik − ŷik|k−1 (2.10)

The εik is denoted the innovations since this represents the new information
which is not predicted based on previous information. By replacing Eqs. 2.8–
2.10 in Eq. 2.6 and assuming a Gaussian pdf the likelihood function becomes:

p (Y|θ) =
S∏
i=1

 Ni∏
k=1

exp
(
− 1

2

(
εik
)T (

Rik|k−1

)−1 (
εik
))

√
det
(
Rik|k−1

) (√
2π
)l

 p
(
yi0|θ

)
p (θ) (2.11)

Then further conditioning on:

y0 =
[
y1

0 , y
2
0 , . . . , y

i
0, . . . y

S
0

]
(2.12)

and applying nonlinear optimization and finding the minimum of the negative
logarithm of the function in Eq. 2.11 the set of parameters θ are obtained.

θ̂ = argminθ∈Θ {−ln (p (θ|Y, y0))} (2.13)

For each set of the parameters θ in the optimization operation, the innovations
εk and their covariances Rk|k−1 are computed recursively by means of the EKF
(Kristensen et al. 2004b).

2.2.3 Statistical tests

An estimate of the uncertainty of the parameter estimates is obtained by using
the fact that by the central limit theorem the estimator in Eq. 2.13 is asymp-
totically Gaussian with mean θ and covariance matrix Σθ̂ = H−1 where the
matrix H is given by Eq. 2.14:

hij = −E
{

∂2

∂θi∂θj
ln (p (θ|Y ; y0))

}
; i, j = 1, . . . , p (2.14)

An approximation to H can be obtained from :

hij = −
(

∂2

∂θi∂θj
ln (p (θ|Y ; y0))

)∣∣∣∣
θ−θ̂

; i, j = 1, . . . , p (2.15)

which represents the Hessian matrix evaluated at a minimum of the objective
function.
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The asymptotic Gaussianity of the estimator in Eq. 2.15 also allows t-tests
to be performed to test the hypothesis:

H0 : θj = 0 (2.16)

against the corresponding alternative:

H1 : θj 6= 0 (2.17)

i.e. to test whether a given parameter θj is marginally insignificant or not. The
test quantity is the value of the parameter estimate divided by the standard
deviation of the estimate, and under H0 this quantity is asymptotically t-
distributed with a number of degrees of freedom DF that equals the total
number of observations minus the number of estimated parameters (Kristensen
et al. 2004b).

The Hessian matrix in Eq. 2.15, represents the observed Fisher Information
Matrix while the definition in Eq. 2.14 represents the definition of the Fisher
Information Matrix. In this way, a direct connection between the parame-
ter estimate uncertainty and quantitative experimental design is given by the
Kramer-Rao inequality.

When it comes to discriminating a model between two or more models, e.g.
one model being a simplification of another model, a statistical test can be used.
The test is called the log-likelihood ratio test (the Wilk test) and is described in
the following. The asymptotic behavior of the quantity −2logλ (Y ) converges
to a χ2 distribution with nd degrees of freedom DF and a quantile value of
1 − α, where α is to be specified by the user. The degrees of freedom are
represented by the difference between the number of parameters for the two
compared models. The λ is determined by computing the ratio of the log-
likelihood function values for the two models. The numerator is considered to
be the value of the log-likelihood function for the model containing a smaller
parameter set. Thus the general hypothesis is formulated as follows:

H0 : θ ∈M(I) (2.18)

and the alternative hypothesis:

H1 : θ ∈M(II) (2.19)

The hypothesis H0 is that the θ vector is the first model parameter vector
and the alternative hypothesis Ha

0 is that the θ vector is the second model
parameter vector.

2.2.4 Software

The methods described above for parameter estimation in stochastic differential
equations are implemented in a software toolbox for continuous time stochas-
tic modeling by previous authors (Madsen and Melgaard (1991), Kristensen
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et al. (2004a)). The software has been used in several applications already, for
example in the case of modeling of heat dynamics of a building (Madsen and
Holst 1995), modeling of a green-house dynamics (Nielsen and Madsen 1998),
modeling of pharmaceutical processes, (Tornøe et al. 2004) In the current work
the software has been modified and complemented to allow for the possibility
of having multiple data sets starting with different initial conditions consid-
ered simultaneously. From the algorithm point of view, when computing the
maximum likelihood function given in Eq. 2.11 an extra outer loop was added
to include all the different experimental data sets. That is, when parameter
estimation is performed, in the final estimate of the parameters, information
from different experiments is included simultaneously. Clearly some parame-
ters may belong just to one data set, while other parameters may be common
for all data. The performance of this extended version was tested and later
used when multiple different experiments were used to provide complementary
information for the parameter estimation.

2.3 Experimental data

The experiments have been conducted at ETH Zurich (Schümperli et al. 2007).
In phase I, fed-batch (semi-batch) fermentations of E. coli LJ110 tpi are con-
ducted until the optical density (OD) in the bioreactor reaches a preset value
of 600. The broth is centrifuged and the cells are resuspended in SBT-buffer:
100 mM HEPES, 0.84 mM KCl, 1 mM ZnSO4 and at pH = 7. The cells are
disrupted by high-pressure homogenization. The remaining solids are elim-
inated by centrifugation/filtration and the liquid extract is recovered. The
total protein concentration is determined by Bradford analysis and adjusted to
the desired concentration by dilution with the SBT buffer. The liquid extract
contains the enzymes and compounds present in the cell at the time when the
fermentation was stopped. In phase II, a volume of 5 ml of SBT extract is used
for each experiment. Defined amounts of hexokinase and Lactate-DH as well
as ATP and NAD+, are added. The reactions are initiated by adding Glucose.
Samples are collected according to a previously defined time plan. The experi-
ments are terminated after 300 or 360 minutes. First, the proteins are removed
by precipitation with HCl (1M) followed by centrifugation. The samples are
analyzed by enzymatic assays. First Glucose-6-Phosphate is determined, and
then Glucose and Glucose-6-Phosphate are determined together by addition of
Glucose-6-Phosphate-de-hydrogenase and hexokinase to form NADPH which is
determined spectro-photometrically. Di-Hydroxy-Acetone-Phosphate is deter-
mined by addition of Glycerol-3-Phosphate-dehydrogenase and measuring the
NADH consumption spectro-photometrically. ATP is measured as well. Each
experiment is defined by the SBT extract design, by the initial concentrations
of Glucose, cofactors, Phosphate and enzymes, by the sampling times and by
the end time. The samples were collected frequently in the beginning (between
1-15 minutes) and less frequent towards the end of the batch and the total
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time was 360 minutes. The initial concentration of the enzymes, cofactors,
phosphate and glucose is also known, with some uncertainty. As experimental
data, time series data are initially available for four measured compounds. The
first measurement consists of the sum of Glucose and Glucose-6-Phosphate the
second represents Glucose-6-Phosphate, the third represents DHAP and the
fourth ATP.

In the Table 2.1 a summary of the conditions defining each experiment is
given. For each experiment two reactors with a volume of 5.5 ml were used and
for each of the reactors, two samples were taken for each measurements, which
means four duplicates for each of the samples. Each time series consists of 12
samples. Thus the two reactors constitute different realizations.

Experiment ID Exp.17 A

Hexokinase U/ml 0.01
Lactate-DH U/ml 1

Glc mM 11.1
PO4 mM 11.1
ATP mM 11.5

NAD+ mM 5.75
Prot.tot. mg/ml 10

T 37
c-AMP mM 10

PPi mM 10

Table 2.1: Conditions defining the experiment 17A

2.4 Model I for an enzymatic reaction network

Since it is not clearly known which reactions occur in the cell free extract, a
simplified reaction network of the reactions occurring during the kinetic exper-
iments with the enzymatic extract is depicted in Figure 2.1. The starting point
in establishing the network, represents the central carbon metabolism reaction
network of the E-coli mutants. The reversible reaction between DHAP and
Glyceraldehide-3-Phosphate does not take place since the tpi gene which is
responsible for the expression of the enzyme catalyzing this reaction has been
knocked-out. Since it is desired to have all the reactions regenerating the cofac-
tors required in the first reaction it is necessary to include the genes catalyzing
the reactions after Glyceraldehide-3-Phosphate that are responsible for ATP re-
generation. NAD+ is consumed and then produced during ATP regeneration.
A simple generic reaction for spontaneous degradation of ATP was included
to account for the ATP degradation due to the numerous enzymes present in
the extract. Efforts are made to isolate further only the necessary enzymatic
reactions in order to reduce the fast consumption of ATP toward undesired
reactions. The compounds marked with a star, Glucose, Glucose-6-Phosphate,



28 Reaction Network Modelling within Grey Box Framework

Figure 2.1: Reaction network used for Model I development with the measured
species indicated by a ∗
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DHAP and ATP are measured during the SBT batch experiments. Thus four
full measurement sequences are available along with the initial conditions for
NAD+, PO4.

The first reaction considered in Model I, r1 is the enzymatic transformation
from Glucose to Glucose-6-Phosphate. The second reaction considered is the
reaction from Fructose-1,6-Biphosphate to Glyceraldehide-3-Phosphate and Di-
Hydroxy-Acetyl-Phosphate, r2 which is catalyzed by aldolase. The reactions
consuming the Glyceraldehyde-3-Phosphate towards Pyruvate were all lumped
in the model into one single reaction denoted r3. The reaction producing
Lactate from Pyruvate was included as reaction r4. The reason to include
these two reactions was already mentioned. As a decrease for DHAP has been
observed in the experimental data, a degradation of DHAP was considered
in the enzymatic reaction by r6. The reaction consuming the ATP cofactor
is reaction r5. Two enzymatic transformations from Glucose-6-Phosphate to
Fructose-1,6-Biphosphate were considered as a single reaction in the network
denoted r7.

2.4.1 Model I equations and validation

Based on the above simplified enzymatic reaction network a first model of the
enzymatic reaction network is formulated as follows in terms of an ordinary
differential model. The time evolution of each individual chemical species is
described by a continuous time dynamic mass balance as given in Eqs. 2.20.
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dcGL
dt

= −r1

dcF16B

dt
= r7 − r2

dcDHAP
dt

= r2 − r6

dcG3P

dt
= r2 − r3

dcPY R
dt

= r3 − r4

dcLAc
dt

= r4

dcATP
dt

= −r1 − r7 + 2r3 − r5

dcNAD
dt

= −r3 + r4

dcPO4

dt
= −r3 + r5

dcG6P

dt
= r1 − r7

dcADP
dt

= r1 + r7 − 2r3 + r5

dcNADH
dt

= r3 − r4 (2.20)

Since many of the reactions described above are in fact sequences of enzymatic
reactions and considering the present limited availability of information about
the system in terms of experimental data, simple mass action kinetic models
are assumed, as given in Eqs. 2.21. Improvement of both the kinetic model
for each of the enzymatic reactions considered and the general model structure
represents the the focus of this work.

r1 = r1maxfcGLcATP − r1maxbcG6P cADP

r2 = r2maxfcF16B − r2maxbcDHAP cG3P

r3 = r3maxfcG3P cNADcPO4cADP − r3maxbcPY RcNADHcATP

r4 = r4maxfcPY RcNADH − r4maxbcLACcNAD

r5 = r5maxfcATP − r5maxbcADP

r6 = r6maxfcDHAP

r7 = r7maxfcG6P cATP − r7maxbcADP cF16B (2.21)

The model equations, Eqs. 2.20–2.21 are converted into a system of stochastic
differential equations (Kristensen et al. 2004a) by adding the diffusion terms
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multiplied by a standard Wiener process. The set of stochastic differential
equations appears as in Eqs. 2.22.

dcGL = (−r1) dt+ σ11dω

dcF16B = (r7 − r2) dt+ σ22dω

dcDHAP = (r2 − r6) dt+ σ33dω

dcG3P = (r2 − r3) dt+ σ44dω

dcPY R = (r3 − r4) dt+ σ55dω

dcLAc = (r4) dt+ σ66dω

dcATP = (−r1 − r7 + 2r3 − r5) dt+ σ77dω

dcNAD = (−r3 + r4) dt+ σ88dω

dcPO4 = (−r3 + r5) dt+ σ99dω

dcG6P = (r1 − r7) dt+ σ1010dω

dcADP = (r1 + r7 − 2r3 + r5) dt+ σ1111dω

dcNADH = (r3 − r4) dt+ σ1212dω (2.22)

To complete the model it is necessary to include the equations for discrete
measurements. Four equations for each measurement variable will be con-
sidered: Glucose, Glucose-6-Phosphate, DHAP and ATP. The measurement
equations are given in set 2.23, where the S11 − S44 parameters represent the
variances of the measured experimental data.

yGLC = cGLC + e, e ∈ N (0, S11)
yG6P = cG6P + e, e ∈ N (0, S22)

yDHAP = cDHAP + e, e ∈ N (0, S33)
yATP = cATP + e, e ∈ N (0, S44) (2.23)

The second step in the grey-box stochastic methodology framework represents
estimation of the parameters given Model I discussed above and the available
experimental data. Using Continuous Time Stochastic Modelling (CTSM) soft-
ware, (Kristensen et al. 2004b), selected sets of parameters have been estimated
and statistical tests for significance of individual parameters have been applied
in order to determine which parameters are significant in a preliminary step.
Along with this information, CTSM provides an estimate of the covariance
matrix of the parameters that is used to check the parameter correlation. A
few parameter estimation attempts showed that many parameters were corre-
lated and insignificant while for other runs it was not even possible to achieve
convergence.

A preliminary local sensitivity analysis was used to check which of the model
parameters are impossible to estimate using available experimental batch data,
where the initial amount of ATP was varied. From the identifiable parameters
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several subsets of parameters have been considered for estimation. Moreover,
as a measure of simultaneous significance of parameters a statistic test based
on the ratio of the log-likelihood function value is used as discussed in Section
2.2.3.

The experimental data obtained in Experiment 17A, see conditions in table
2.1, have been used for parameter estimation. One reactor has been used in
this experiment and two time series data sets have been collected. Tables 2.2
contains the value of the log likelihood function and the number of estimated
parameters.

Set LogL Npar

1 -1.155707605130632E+01 14
2 -1.174498134588278E+01 15
3 -1.189327118730689E+01 16
4 -1.189328815830789E+01 17
5 -1.222756558170784E+01 17

Table 2.2: Log-likehood function value for the estimation results for Model I
when estimating different number of parameters, using data from Experiment
17A, set 1 and 2, reactor I

For these results, the log-likelihood ratio test presented in section 2.2.3 has
been applied in order to statistically determine the most significant number
of estimated parameters. Table 2.3 presents the result of the log-likelihood
ratio test for some of the pairings of estimated parameters considered from the
results presented in Table 2.2.

Each row represents the results of the application of the log-likelihood ratio
test for two sets of parameters. For example, in the first row of the Table 2.3,
the hypothesis is H0 : the parameter vector θ is represented by the parameter
set 5 from Table 2.2, while the alternative hypothesis is H1 : the parameter
vector θ is represented by the parameter set 1 from the Table 2.2. First column
contains the log-likelihood ratio λ (Y ), used to compute the statistical quantity
used for the test −2logλ (Y ). The degrees of freedom DF is given by the column
#θ0 −#θ1. The quantile of the χ2 distribution for an alpha = 0.05 is given as
well in the next column. The last column contains the selected true hypothesis,
for this comparison the true hypothesis being the alternative hypothesis since
the value of the statistical quantity −2logλ is much lower than the quantile.

It looks like the case when less parameters have been estimated is favored
by the log-likelihood ratio test, while the t-test statistics shows that some
parameters are insignificant when more parameters are estimated. Based on the
results presented in Tables 2.2-2.3, a good compromise between the uncertainty
of the parameters estimates and the value of the log-likelihood function seems
to be set 2. Strictly following the results of the log-likelihood ratio test, the
set 1 should be selected, however there were insignificant changes in model
performance (results not shown).

The estimation results corresponding to set 1 are given in the following Tables
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H1/H0 λ (Y ) −2logλ (Y ) #θ0 −#θ1 χ2 (#θ0 −#θ1, 0.95) True hypothesis
1/5 0.945 0.0489 3 7.8147 H1, 1
3/5 0.972 0.024 1 3.8415 H1, 3
1/4 0.945 0.0489 3 7.8147 H1, 1
3/4 0.999 7.3E-7 1 3.8415 H1, 3
1/2 0.9839 0.014 1 3.8415 H1, 1

Table 2.3: Loglikelihood ratio test applied for estimation results for Model I
using data from Experiment 17A, set 1 and 2, reactor I

2.4–2.7.

Value of objective function -1.174498134588278E+01
Value of prior function -1.843101136264748E+01
Value of penalty function 5.897797922664172E-04
Negative logarithm of determinant of Hessian -1.312117454303914E+02
Number of iterations 35
Number of objective function evaluations 60

Table 2.4: Estimation results for Model I, set 2 from Table 2.2

In Table 2.4 the objective function represents the log-likelihood function cor-
responding to the MAP estimation scheme, the prior function represents the
term related to the prior probability density function for parameters θ, p(θ).
In the CTSM software program, the bounds on the parameters to be estimated
are converted into an open interval by a mathematical transformation and the
corresponding optimization problem becomes an unconstrained optimization
problem. A penalty function is therefore necessary to force the solution to
remain in the feasible interval. The program gives as results the value of the
negative logarithm of the determinant of Hessian also, which is a measure of
the parameter uncertainty. The last two rows in Table 2.4 shows the number
of iterations and the number of log likelihood function evaluations needed to
achieve convergence.

Name Value Name Value Name Value

cGL0 11.1 cG6P 0 1.0E-5 r7maxf 9.0
cF16B0 1.0E-5 cADP 0 1.0E-5 ln(σ44) -8.0
cDHAP 0 1.0E-5 cNADH0 1.0E-5 ln(σ55) -8.0
cG3P 0 1.0E-5 r1maxb 9.5355E-9 ln(σ66) -8.0
cPY R0 1.0E-5 r2maxb 1.8581 ln(σ88) -8.0
cLAC0 1.0E-5 r3maxb 0.01 ln(σ99) -8.0
cATP 0 11.5 r4maxb 0.00855 ln(σ1111) -8.0
cNAD0 5.75 r5maxb 0.15 ln(σ1212) -8.0
cPO40 11.1 r6maxf 1.0E-12

Table 2.5: Fixed parameters values for Model I

The model parameter which have been fixed during the estimations are given
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in Table 2.5. The values of the initial states are given as well. For the com-
pounds which are added to the reactor the values from the actual experiments
have been assigned. For the rest of the compounds it was assumed that initially
they are not present and only will be formed later after the reactions are initi-
ated. A value of 1.0E − 5 represents zero value. Since not much information
about the diffusion terms was available for the unmeasured states they were
assumed to be very small. For the results shown here, in fact, instead of the
normal values of the diffusion terms σ due to robustness issues their natural
logarithm was used/estimated. As for the fixed kinetic parameters educated
guess have been used. Generally, the range of values for similar enzymatic
reactions have been used, or alternatively the values obtained from previous
optimizations.

Name Estimate Std. dev. t-score p(> |t|) dF/dPar dPen/dPar
r1maxf ML 1.1606E-01 2.6920E-02 4.3111 0.0000 0.0000 0.0000
r2maxf ML 6.3043E-02 1.1785E-02 5.3494 0.0000 -0.0000 0.0000
r3maxf ML 5.5181E-03 1.6963E-03 3.2531 0.0016 -0.0000 0.0000
r4maxf ML 9.2214E-02 3.4610E-02 2.6644 0.0091 -0.0000 0.0000
r5maxf ML 2.1798E+00 5.5699E-01 3.9136 0.0002 -0.0000 0.0000
r7maxb ML 9.4748E-02 2.6147E-02 3.6237 0.0005 0.0000 0.0000
ln(σ11) MAP -1.0000E+01 9.9928E-03 -1000.7194 0.0000 0.0000 0.0001
ln(σ22) MAP -6.0000E+00 1.0018E-02 -598.9330 0.0000 0.0000 0.0000
ln(σ33) MAP -6.0000E+00 9.9367E-03 -603.8229 0.0000 -0.0000 0.0000
ln(σ77) MAP -5.0002E+00 9.9931E-03 -500.3612 0.0000 -0.0000 0.0000
ln(σ1010) MAP -6.0000E+00 1.0022E-02 -598.7078 0.0000 0.0000 0.0000
S11 ML 1.2233E-02 4.1473E-03 2.9497 0.0040 0.0000 0.0000
S22 ML 3.9002E-02 1.1130E-02 3.5043 0.0007 0.0000 0.0000
S33 ML 5.3089E-02 1.4798E-02 3.5875 0.0005 -0.0000 0.0000
S44 ML 2.2945E+00 6.9438E-01 3.3045 0.0014 -0.0000 0.0000

Table 2.6: Estimation results for Model I using data from Experiment 17A, set
1 and 2, reactor I

Table 2.6 contains the parameter estimates along with the evaluated standard
deviations and the values of the t-test quantity. The probability of a parameter
to be insignificant is given in the fourth column. The last two columns contain
the partial derivative of the log-likelihood function with respect to each pa-
rameter and the partial derivative of the penalty function with respect to each
parameter. The first derivative is an indication for convergence and the second
derivative indicates wether the estimate is very close to one of the bounds on
the parameters.
The pure simulation residuals have been plotted in Figure 2.3.

Generally, for these estimates, the correlation matrix shows limited correla-
tions between parameters, except one pairing showing a correlation higher than
0.99, e.g. r1maxf and r5maxf . Only a few more pairs have a correlation higher
than 0.5.

The performance of these estimates is explored by plotting the one step ahead
and the pure simulation data. Figure 2.2 shows these for experimental data
from Experiment 17A set 1.



2.4. Model I for an enzymatic reaction network 35

r 1
m
a
x
f

r 2
m
a
x
f

r 3
m
a
x
f

r 4
m
a
x
f

r 5
m
a
x
f

r 7
m
a
x
b

ln
(σ

1
1
)

ln
(σ

2
2
)

ln
(σ

3
3
)

ln
(σ

7
7
)

ln
(σ

1
01

0)
S

1
1
1
1

S
2
2

S
3
3

S
4
4

r 1
m
a
x
f

1
r 2
m
a
x
f

-0
.0

55
3

1
r 3
m
a
x
f

-0
.0

04
2

-0
.9

63
0

1
r 4
m
a
x
f

-0
.7

84
3

0.
46

45
-0

.5
15

3
1

r 5
m
a
x
f

0.
99

73
-0

.0
17

4
-0

.0
38

3
-0

.7
72

7
1

r 7
m
a
x
b

-0
.9

59
8

0.
10

46
-0

.0
36

3
0.

76
83

-0
.9

54
2

1
ln

(σ
1
1
)

-0
.0

05
6

0.
00

58
-0

.0
03

8
0.

00
83

-0
.0

06
7

0.
00

82
1

ln
(σ

2
2
)

0.
00

44
0.

00
40

-0
.0

01
6

-0
.0

06
1

0.
00

46
-0

.0
03

3
0.

00
05

1
ln

(σ
3
3
)

0.
00

78
-0

.0
05

5
0.

00
33

-0
.0

11
0

0.
00

93
-0

.0
10

9
0.

00
45

-0
.0

00
0

1
ln

(σ
7
7
)

-0
.0

00
4

0.
00

57
-0

.0
05

6
0.

00
20

0.
00

03
0.

00
25

-0
.0

04
2

0.
00

39
0.

00
35

1
ln

(σ
1
0
1
0
)

0.
00

05
0.

01
64

-0
.0

10
9

0.
00

20
-0

.0
00

2
0.

00
53

-0
.0

00
8

0.
00

46
0.

00
34

0.
00

08
1

S
1
1

-0
.3

47
2

0.
20

93
-0

.1
75

5
0.

33
62

-0
.3

32
0

0.
33

61
-0

.0
01

2
0.

00
47

0.
00

10
0.

00
10

0.
00

62
1

S
2
2

0.
19

59
-0

.1
69

8
0.

18
07

-0
.2

72
9

0.
19

09
-0

.1
74

3
-0

.0
03

6
0.

00
28

0.
00

58
-0

.0
00

8
-0

.0
02

5
-0

.1
19

9
1

S
3
3

-0
.0

85
9

-0
.0

19
6

-0
.0

05
4

0.
11

34
-0

.0
86

4
0.

06
18

-0
.0

16
7

0.
00

53
0.

01
81

-0
.0

05
4

-0
.0

15
0

0.
06

10
-0

.0
49

0
1

S
4
4

0.
18

79
0.

01
34

-0
.0

40
3

-0
.1

06
5

0.
18

61
-0

.1
76

1
-0

.0
14

5
0.

00
22

0.
02

16
0.

00
08

-0
.0

14
0

0.
01

78
0.

05
66

-0
.0

03
0

1

T
ab

le
2.

7:
C

or
re

la
ti

on
m

at
ri

x
of

th
e

es
ti

m
at

es
fo

r
M

od
el

I
us

in
g

da
ta

fr
om

E
xp

er
im

en
t

17
A

,
se

t
1

an
d

2,
re

ac
to

r
I



36 Reaction Network Modelling within Grey Box Framework

Figure 2.2: Simulation of Model I against Experiment 17A, set 1; pure
simulation-red line, one step ahead prediction-blue line

Figure 2.3: Residuals of Model I simulation for Experiment 17A, set 1
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2.4.2 Discussion of Model I

Inspecting the estimates for the diffusion terms, σ, in Table 2.6 it can be noticed
that are very small and based upon the t-test values are significant. Obtaining
small values for the diffusion terms renders nearly no difference between one
step ahead prediction and pure simulation data, as seen in the Figure 2.2. Hav-
ing only a relatively low number of data points in the time series could hinder
the correct evaluation of the diffusion terms and the t-test in fact can lead to a
wrong conclusion about the significance. This is an indication that is necessary
to have longer time series data to obtain a good estimate of the diffusion term.
The measurement variances seems to be important as well, since their values
are significant. Within the existing grey box stochastic modelling framework if
a diffusion term is significant, that indicates that a model deficiency is present
in the corresponding drift term of the stochastic differential equation. Thus the
original methodology for grey-box stochastic modelling framework developed
by Kristensen et al. (2004a) cannot be applied directly.

The main limitation of Model I, as can be seen in Fig. 2.2, concerns the ability
to reproduce the dynamic trajectory for Glucose-6-Phosphate and ATP con-
centrations when performing pure simulations. Analyzing the residuals shown
in Figure 2.3 is likely that there is at least a model deficiency in the balances
for Glucose-6-Phosphate and for ATP. Since it is not very clear what should
be the starting point in investigating these deficiencies in the way described in
the original framework, a more general attempt to improve the model will be
pursued in the following.

The following reasoning is used to motivate the model reformulation. It
is known from the literature, (Chassagnole et al. 2002) that there are many
more reactions in which ATP is not only cofactor but a direct reactant or
product therefore in the reformulated model additional ATP reactions will be
considered. By inspecting the mass balance for Glucose-6-Phosphate r7 and r1

seems to be deficient as well, therefore an improved kinetic expression for r7

and r1 will be investigated.
r2 is a reaction catalyzed by aldolase and throughout the literature there has

been a long debate about the mechanism of this enzymatic reaction thus all
the available knowledge about this enzyme kinetics will be incorporated as well.
Since the fourth reaction is a single reaction and kinetic model is available in
the literature this knowledge is going to be incorporated as well in the model.
There is no direct connection, however, between the obtained results and the
fact that an improved kinetic rate shall be used for r4.

2.5 Model II, Improved kinetics

Based upon the discussion given in section 2.4.2 the model is reformulated as
described in the following. The reaction network considered for Model II is
given in Figure 2.4.
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Figure 2.4: The simplified reaction network for Model II including the discussed
additions
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• In order to address the lack of fit for Glucose-6-Phosphate an extra re-
action r8, is included. This new reaction represents the isomerization
of Glucose-6-Phosphate to Fructose-6-Phosphate which is catalyzed by
phosphoglucoisomerase. A kinetic equation based on the kinetics pre-
sented by Chassagnole et al. (2002) has been included.

• More reactions related to the ATP chemistry have been incorporated in
the reaction network as shown in the new reaction scheme in Figure 2.4.
A reversible reaction where ATP is involved as reactant is catalyzed by
the adenylate cyclase enzyme to form cyclic-AMP and Poly-phosphate.
This reaction is reaction r9 in Figure 2.4. Adenylate kinase is the enzyme
catalyzing the reversible reaction of ATP production along with an AMP
molecule from 2 molecules of ADP; in the network this is reaction r10.
A reaction degrading ADP to AMP and PO4 is included and denoted
reaction r13. Poly-phosphate is an unstable compound and therefore it is
assumed that a decomposition reaction to PO4 occurs as reaction r12. An
extra reaction r11 converting cyclic-AMP into AMP is included, although
there is only limited evidence in the literature for its presence.

• The reaction r1 is catalyzed by hexokinase. Several authors, Bali and
Thomas (2001), Teusink et al. (2000), Viola et al. (1982), Ning et al.
(1969), Hanson and Fromm (1967), have investigated the kinetic mecha-
nism for hexokinase at physiological conditions. It seems plausible that
the reaction kinetics is described by a rapid equilibrium random mech-
anism. Similar values for the saturation constants KADP , KATP , and
KGL as well as KG6P have been found for different types of hexokinases.
Since hexokinase is not naturally present in E-coli, is added in a small
amount to the SBT. As for the kinetic parameters, the values from the
literature have been used to define the search space and the mean value
of the interval as initial value for parameter estimation.

• For the reaction producing DHAP, which is catalyzed by aldolase a more
complex kinetic model considering saturation for Glyceraldehide-3-Phos-
phate is considered. Since all literature sources found referred either to
isolated purified enzyme Zgiby et al. (2000), (2002) or the in-vivo behavior
(Teusink et al. (2000), Rizzi et al. (1996)), only an educated guess for
the parameters e.g. saturation constants, inhibition constants, maximal
velocities, could be established. The values found in the literature have
been used to establish the search interval for estimation where a mean
value is used as initial guess.

• Now, r7 concerns transformation from Fructose-6-Phosphate to Fructose-
1,6-Bisphosphate. This reaction is catalyzed by phosphofructokinase ki-
nase (PFK). It is known that the enzyme acts in a complex way by being
inhibited by Phospho-enol-Pyruvate, ADP and AMP when operating un-
der in-vivo conditions. Since these compounds are not measured and the
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enzyme is cell free, only a simplified kinetic equation is considered. The
starting point for the simplification was the kinetic equation from Chas-
sagnole et al. (2002), and the results of simplifications are given in the
kinetic Eq. 2.24.

• Reaction four r4, corresponds to a single transformation catalyzed by
lactate-dehydrogenase (LDH) it is possible to find kinetics (Zewe and
Fromm 1965) which have been included in Model II.

The saturation constant for a compound is assumed to be the same for all the
enzymes involved. The main reason for this simplification is that for most of
the saturation constants the numerical values found in the literature are fairly
similar.

After implementing the modifications and additions discussed above the mod-
ified kinetic equations are given in Eqs. 2.24, while completed stochastic dif-
ferential equations are given in Eqs. 2.25.

r1 =
(r1maxf

cGLcAT P

KGLKAT P
− r1maxb

cG6P cADP

KGLKAT PKeqHK
)

(1 + cGL

KGL
+ cG6P

KG6P
)(1 + cAT P

KAT P
+ cADP

KADP
)

r2 =
r2maxf

cF16B

KF16B
− r2maxb

cDHAP cG3P

KF16BKeqALD

1 + cF16B

KF16B
+ cDHAP

KDHAP
+ cG3P

KG3P
+ cF16BcG3P

KF16BKiG3P
+ cDHAP cG3P

KDHAPKG3P

r3 = r3maxfcG3P cNADcPO4cADP − r3maxbcPY RcNADHcATP

r4 =
r4maxf

cP Y RcNADH

KP Y RKNADH
− r4maxb

cLACcNAD

KP Y RKNADHKeqLDH

(1 + cNAD

KNAD
+ cNADH

KNADH
)(1 + cLAC

KLAC
+ cP Y R

KP Y R
)

r5 = r5maxfcATP

r6 = r6maxfcDHAP

r7 =
r7maxfcF6P cATP

((cATP +KATP (1 + cADP

KADP
))(cF6P +KF6P cAMP ))

r8 =
r8maxf

cG6P

KG6P
− r8maxb

cF6P

KG6PKeqP GI

1 + cG6P

KG6P

“
1+

cG6P
KF6P G6P

” + cF6P

KF6P

r9 = r9maxfcATP − r9maxbcPPiccAMP

r10 = r10maxfc
2
ADP − r10maxb

cATP cAMP

KeqAK

r11 = r11maxfccAMP − r11maxbcAMP

r12 = r12maxfcPPi

r13 = r13maxfcADP (2.24)
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dcGL = (−r1) dt+ σ11dω

dcF16B = (r7 − r2) dt+ σ22dω

dcDHAP = (r2 − r6) dt+ σ33dω

dcG3P = (r2 − r3) dt+ σ44dω

dcPY R = (r3 − r4) dt+ σ55dω

dcLAC = (r4) dt+ σ66dω

dcATP = (−r1 − r7 + 2r3 − r5 − r9 + r10) dt+ σ77dω

dcNAD = (−r3 + r4) dt+ σ88dω

dcPO4 = (−r3 + r5 + 2r12 + r13) dt+ σ99dω

dcG6P = (r1 − r8) dt+ σ1010dω

dcADP = (r1 + r7 − 2r3 + r5 − 2r10) dt+ σ1111dω

dcNADH = (r3 − r4) dt+ σ1212dω

dcF6P = (r8 − r7) dt+ σ1313dω

dcAMP = (r10 + r11 + r13) dt+ σ1414dω

dccAMP = (r9 − r11) dt+ σ1515dω

dcPPi = (r9 − r12) dt+ σ1616dω (2.25)

Given the model as described above, a preliminary identifiability analysis based
on sensitivity analysis has been performed in order to determine which param-
eters can be identified. Once a set of potentially identifiable parameters has
been established the parameters have been estimated using the CTSM program
(Kristensen et al. 2004a). Several subsets of parameters have been considered
for estimation. In some cases the estimation was repeated starting from a dif-
ferent initial solution. Experimental data from Experiment 17A set 1 and 2
have been used for these estimations. The statistical tests described in Section
2.2.3 have been applied again.

Table 2.8 contains the value of the log-likelihood function after estimating
the parameters in dependence of the number of estimated parameters in each
case. The log-likelihood ratio test has been applied in order to determine how
many parameters should be estimated form a statistical point of view.

First the hypothesis H0 was: the θ parameter vector is represented by set 3,
while the alternative hypothesis H1 was: the θ parameter vector is represented
by set 7. The alternative hypothesis H1 was true. After testing set 2 against
set 7 it turns out that the alternative hypothesis set 7 with a smaller number
of parameters is true. Finally when testing set 7 against set 6 the hypothesis
having less parameters set 7 is valid. Thus the results obtained when estimating
set 7 will be discussed in the following. The estimation for set 7 is given in
tables 2.10 – 2.13.

The estimation statistics when estimating set 7 is given in Table 2.10. For
this run the ML estimation scheme has been used thus no prior term was added
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Set LogL Npar

1 -6.483216320707882E+01 16
2 -6.483224308069573E+01 17
3 -6.483209530254184E+01 18
4 -6.475481101023928E+01 14
5 -6.476421561113025E+01 15
6 -6.575493616769320E+01 15
7 -6.481667750801653E+01 13
8 -6.481958029720100E+01 14
9 -6.483215873045927E+01 15
10 -6.483216320707882E+01 16

Table 2.8: Log-likelihood function value for the estimation results for Model II
when estimating different number of parameters, using data from Experiment
17A, data set 1 and 2, reactor I

H1/H0 λ (Y ) −2logλ (Y ) #θ0 −#θ1 χ2 (#θ0 −#θ1, 0.95) True hypothesis
7/3 0.99976 2.0848e-4 5 11.0705 H1, 7
7/2 0.99976 2.0848e-4 4 9.4877 H1, 7
7/6 0.98573 0.01248 2 5.9915 H1, 7

Table 2.9: Loglikelihood ratio test applied for estimation results of Model II
using data from Experiment 17A, set 1 and 2, reactor I

Value of objective function -6.481667750801653E+01
Value of penalty function 1.797273227015682E-04
Negative logarithm of determinant of Hessian -1.150425812314553E+02
Number of iterations 46
Number of objective function evaluations 70

Table 2.10: Estimation Results for Model II, using data from Experiment 17A,
data set 1 and 2, reactor I

in the log-likelihood function. The cost function at the optimal point is much
lower than for Model I, see Table 2.4.

The fixed parameters of Model II are listed in Table 2.12. The initial values
of the compounds which are added to the reactor are known and were assigned
to the model states. As for Model I, for the species which are formed during
the reactions the initial concentration was set to zero, or a very small number.
The diffusion terms for the unmeasured compounds were set to a small value.
The saturation constants for the enzymes have been taken from the literature
as mention above. For the maximum velocities, the values used were either
taken from the previous runs and then fixed or educated guesses have been
used.

Analyzing the results of the estimates and the t- test statistics in Table 2.11
it is clear that the estimated parameters are significant and the uncertainty
of the estimates is small. Analyzing the parameter correlations in Table 2.13
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Name Estimate Std. dev. t-score p(> |t|) dF/dPar dPen/dPar
r1maxf ML 1.0549E+01 2.5235E-01 41.8049 0.0000 0.0007 0.0000
r2maxf ML 1.1136E+00 2.5257E-02 44.0902 0.0000 0.0009 0.0001
r5maxf ML 2.3145E-01 5.9657E-03 38.7960 0.0000 0.0004 0.0000
r8maxb ML 1.0294E+00 5.4740E-02 18.8056 0.0000 0.0002 0.0000
KeqPGI ML 3.1166E-01 1.0314E-02 30.2173 0.0000 -0.0008 0.0001
σ11 ML 2.7117E-06 8.0005E-07 3.3894 0.0010 0.0000 0.0000
σ22 ML 7.0537E-05 2.1971E-05 3.2105 0.0018 -0.0000 0.0000
σ33 ML 3.4870E-02 7.3341E-03 4.7544 0.0000 -0.0000 0.0000
σ1010 ML 6.9409E-05 1.9851E-05 3.4965 0.0007 0.0000 0.0000
S11 ML 5.5295E-02 1.1962E-02 4.6224 0.0000 0.0000 0.0000
S22 ML 8.8041E-03 1.5465E-03 5.6929 0.0000 0.0001 0.0000
S33 ML 9.8563E-03 3.2709E-03 3.0133 0.0033 0.0001 0.0000
S44 ML 3.2140E-02 6.2343E-03 5.1555 0.0000 0.0000 0.0000

Table 2.11: Estimation results for set 7 from Table 2.9 part 1

Name Parameter Name Parameter Name Parameter

cGL0 11.1 KADP 0.14524 r9maxf 0.0020
cF16B0 1.0E-5 KF16B 0.88 r9maxb 0.0010983
cDHAP 0 1.0E-5 r2maxb 0.050572 r10maxf 0.019706
cG3P 0 1.0E-5 KeqALD 0.4395 r10maxb 0.0010
cPY R0 1.0E-5 KDHAP 1.22 KeqAK 0.35
cLAC0 1.0E-5 KG3P 1.0 r11maxf 1.0E-8
cATP 0 11.5 KiG3P 0.325 r11maxb 1.0E-8
cNAD0 5.75 r3maxf 3.1115E-4 r12maxf 1.0E-5
cPO40 11.1 r3maxb 0.0010 r13maxf 1.0E-5
cG6P 0 1.0E-5 r4maxf 0.0044597 σ44 1.0E-5
cADP 0 1.0E-5 KPY R 0.854 σ55 1.0E-5
cNADH0 1.0E-5 KNADH 0.044 σ66 1.0E-5
cF6P 0 1.0E-5 r4maxb 0.012525 σ77 1.0E-5
cAMP 0 1.0E-5 KeqLDH 10.0 σ88 1.0E-5
ccAMP 0 10.0 KNAD 1.285 σ99 1.0E-5
cPPi0 10.0 KLAC 50.0 σ1111 1.0E-5
KGL 0.1 r6maxf 1.0E-8 σ1212 1.0E-5
KATP 1.5733 r7maxf 3.9651 σ1313 1.0E-5
r1maxb 0.1 KF6P 0.28047 σ1414 1.0E-5
KeqHK 7250.0 r8maxf 15.309 σ1515 1.0E-5
KG6P 0.090873 KF6PG6P 0.2 σ1616 1.0E-5

Table 2.12: Fixed parameters value for Model II

it can be noticed that there are still four pairs having correlation higher than
50 %, that is the pair r1maxf –r5maxf , r8maxb–KeqPGI , r5maxf–r8maxb and
r8maxb–S33. But these are all below 70 %. The performance of the model is
illustrated in the following by plotting both the one step ahead prediction (blue
line) and pure simulation data (red line) in Figure 2.5 and comparing these to
experimental data from Experiment 17A set 1. It can be seen that there is a
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slight difference between one step ahead and pure simulation data for DHAP.
The diffusion term, σ33 for this equation is much larger than any other values.
This indicates a possible model deficiency in the drift term of this equation,
however the difference is rather small.

Figure 2.5: Simulation of Model II against Experiment 17A set 1; pure
simulation-red line, one step ahead prediction-blue line

The residuals of this model for pure simulation data (red line) have been
plotted in Figure 2.6. For this fit the sequence of residuals looks more like
white noise compared to the residuals for obtained for pure simulation data
(red line) of Model I plotted in Figure 2.3. Thus the estimation has extracted
the available information in the data.

2.5.1 Validation of Model II

In order to assess the validity of Model II described above, a validation test
is performed using the estimated parameters listed in Table 2.11. The results
are shown in Figure 2.7 as plots of the pure simulation (red line) and one step
ahead prediction (blue line).

Experimental data obtained during Experiment 17B set 1 have been used
for validation while Experiment 17A set 1 and 2 were used for estimation.
Thus, the validation has been performed on data obtained under experimental
conditions where 50% of the intial ATP was used. Analyzing the graphical
results it seems as if there still is a small systematic error either in the model
structure or in the model parameters for Glucose-6-Phosphate.
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Figure 2.6: Residuals for Model II simulation and Experiment 17A set 1

Figure 2.7: Validation of Model II using data from Experiment 17B set 1; pure
simulation-red line, one step ahead prediction-blue line
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2.5.2 Multiple sets of experimental data

In order to improve the prediction performance of Model II experimental data
obtained from different experimental data sets are used for estimating the pa-
rameters of the model. It was assumed that the model structure as well as
the fixed parameters are correct, which means that the diffusion term and the
measurements variations will be estimated as having a single global value for
the two different experiments. Experimental data obtained during Experiment
17A and B, four time series of data each with four measured variables have
been used for estimation.

The second assumption is that some of the reactions occur at different max-
imal velocities depending on the initial amount of ATP present in the system,
which means that the corresponding parameters will have different values and
they will be estimated locally for each experiment.

Value of objective function -76.32745746
Value of penalty function 0.00038834
Negative logarithm of determinant of Hessian -184.38995603
Number of iterations 128
Number of objective function evaluations 185

Table 2.14: Estimation results for Model II using data from Experiment 17A
set 1 and 2, and Experiment 17B set 1 and 2

Table 2.14 shows the statistic of the estimation for the case where both
Experiments 17A and B have been used for estimation. Comparing the value of
the minimized negative logarithm of the log-likelihood function with the case
where only data from Experiment 17 A was used, see Table 2.10, then a smaller
value was obtained when using more experimental data, thus it makes sense to
use experimental data obtained under different experimental conditions. The
estimation results obtained are given in Table 2.15.

The pure simulation prediction together with the one step prediction data
are plotted for both experiments below in Figures 2.8–2.9.

The first reaction influenced by ATP is reaction r1. Analyzing the parameter
estimates from Table 2.15, it can be seen that the estimate for r1maxf for Ex-
periment 17A is nearly half of r1maxf for Experimental 17B. Another reaction
where ATP is involved is reaction r5. The parameter estimates related to this
reaction rate are fairly similar. The parameter estimates for r2maxf , in Experi-
ment 17B is approximately half of the value for Experiment 17A. It seems that
the reactions where ATP is involved are influenced by the initial concentration.
The reaction producing DHAP is clearly influenced as well.

All the estimated diffusion terms when estimated using only the experimental
data stemming from a single experiment, Experiment 17A, see Table 2.11, sig-
nificant. However after estimating them using experimental data obtained from
two different experiments only σ33 remained significant while the rest became
insignificant, see Table 2.15. This observation, together with the graphical
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Name Estimate Std. dev. t-score p(> |t|) dF/dPar dPen/dPar
r1maxf ML 0.627865E+01 0.238603E+00 26.3142 0.0000 0.59E-06 0.11E-03
r2maxf ML 0.121157E+02 0.643749E+01 1.8821 0.0613 0.80E-07 0.24E-04
r5maxf ML 0.321098E+00 0.759980E-02 42.2508 0.0000 0.44E-06 0.34E-05
r8maxf ML 0.180458E+02 0.737216E+00 24.4783 0.0000 -0.11E-05 0.56E-04
σ11 ML 0.402606E-23 0.454404E-19 0.0001 0.9999 -0.24E-10 -0.25E-10
σ22 ML 0.448364E-06 0.319173E-03 0.0014 0.9989 0.33E-09 0.90E-11
σ33 ML 0.590991E-01 0.599582E-02 9.8567 0.0000 0.50E-06 0.12E-05
σ1010 ML 0.443131E-08 0.508128E-05 0.0009 0.9993 -0.30E-09 0.89E-13
S11 ML 0.664381E+00 0.139934E+00 4.7478 0.0000 -0.53E-07 0.76E-05
S22 ML 0.106647E-01 0.208694E-02 5.1102 0.0000 -0.40E-06 0.11E-06
S33 ML 0.724092E-21 0.204366E-17 0.0004 0.9997 0.00E+00 -0.14E-12
S44 ML 0.293980E-01 0.630407E-02 4.6633 0.0000 -0.45E-06 0.30E-06
r1maxf ML 0.916814E+01 0.607950E+00 15.0804 0.0000 -0.14E-05 0.31E-03
r2maxf ML 0.685951E+01 0.216262E+01 3.1718 0.0018 -0.34E-06 -0.45E-05
r5maxf ML 0.385214E+00 0.195990E-01 19.6548 0.0000 0.74E-05 0.42E-05
r8maxf ML 0.189876E+02 0.117089E+01 16.2164 0.0000 -0.25E-05 0.63E-04

Table 2.15: Estimation results for Model II using data from Experiment 17A
set 1 and 2, and Experiment 17B set 1 and 2

Figure 2.8: Simulation of Model II against data from Experiment 17A set 1;
pure simulation-red line, one step ahead prediction-blue line

results from Figures 2.8–2.9 points to some model deficiency present in the
balance for DHAP.
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Figure 2.9: Simulation of Model II against data from Experiment 17B set 1;
pure simulation-red line, one step ahead prediction-blue line

2.6 Discussion on Model II

Generally, the modifications proposed in section 2.5 improved the pure simu-
lation prediction properties of the model. Thus Model II clearly represents an
improvement over Model I. The validation performed in section 2.5.1 showed
improved performances since the pure simulation obtained for a slightly dif-
ferent experiment (Experiment 17 B) are fairly good. Analyzing the plots in
Figure 2.7, there is hardly any difference between one step ahead and pure
simulation prediction. The Glucose and Glucose-6-Phosphate outputs indicate
a systematic deviation from the experimental data indicating that a model de-
ficiency may still be present. This can be noticed when comparing the plots in
Figure 2.7 with Figures 2.8–2.9. Similar systematic deviations are observed for
the Glucose and Glucose-6-Phosphate outputs.

When estimating the parameters using experimental data from two different
experiments, Experiment 17 A and B and considering some of the model pa-
rameters to have different values for each of the experimental conditions showed
a slight improvement in the fit. Interestingly, most of the diffusion terms which
have been estimated globally for all experiments became insignificant, while σ33

still remained significant. This fact reduces the doubts about model deficiency
of the corresponding mass balance. Moreover this was reflected in the plots
for the two experiments where there is a difference between one step ahead
prediction and pure simulation, Figures 2.8–2.9.
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Note that the parameter estimates for r1maxf , and r2maxf obtained by esti-
mating them individually for each experiment are indeed different.

Based upon these remarks, it is obvious that there is a need for perform-
ing experimental design to improve the data available for estimation of kinetic
parameters. Such an experimental design may be base upon obtaining quali-
tative information on structural parameter identifiability prior to carrying out
quantitative experimental design thereby obtaining a sound basis for decision
making.

2.7 Conclusions

Two grey-box stochastic models have been developed using the grey-box stochas-
tic modelling methodology including the available experimental data and knowl-
edge. The grey-box approach used facilitates the use of statistical procedures
for selecting the most reasonable model while considering the experimental
data.

Regarding the grey-box stochastic modelling methodology, some limitations
have been encountered. The first limitation observed during its application is
that it requires some minimum number of data points available in the measured
time series. This minimum number depends on the case. However it is clearly
related to the number of measured compounds and the number of unknown
parameters in the kinetic model. This was noticed particulary to be related to
the difficulty of estimating the diffusion terms.

A second limitation concerns obtaining parameter estimates which are both
significant and uncorrelated as a prerequisite to apply the tools available in the
grey-box stochastic modelling methodology. It takes sometimes many iterations
just to get a set of estimated uncorrelated parameters and only then it is
possible to meaningfully apply the significance test to the diffusion terms in
order to check for model deficiencies.

Clearly some desirable and useful features have been identified. The key
feature is related to the possibility of determining a-priori which parameters
can at least be potentially estimated from the available experimental data.
Such a tool for qualitative identifiability analysis may prove very useful. This
leads directly to a second desirable feature which concerns the possibility of
subdividing experimental design into a qualitative and a quantitative phases.
Thereby facilitating clarifying some structural aspects before executing the
computationally more burdensome quantitative experimental design in order
to facilitate reliable estimation of the model parameters.
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Structural parameter
identifiability analysis for

dynamic reaction networks

Abstract

A fundamental problem in model identification is to investigate whether un-
known parameters in a given model structure potentially can be uniquely recov-
ered from experimental data. This issue of global or structural identifiability is
essential during nonlinear first principles model development where for a given
set of measured variables it is desirable to investigate which parameters may
be estimated prior to spending computational effort on the actual estimation.
This contribution addresses the structural parameter identifiability problem for
the typical case of reaction network models. The proposed analysis is performed
in two phases. The first phase determines the structurally identifiable reaction
rates based on reaction network stoichiometry. The second phase assesses the
structural parameter identifiability of the specific kinetic rate expressions using
a generating series expansion method based on Lie derivatives. The proposed
systematic two phase methodology is illustrated on a mass action based model
for an enzymatically catalyzed reaction pathway network where only a limited
set of variables is measured. The proposed two phase methodology clearly pin-
points the structurally identifiable parameters in dependence of the given mea-
surements and input perturbations.

3.1 Introduction

Process models are applied increasingly for design, control, optimization and
risk analysis within bio- and chemical engineering. For many such applica-
tions, which include batch and fed-batch operation, it is highly desirable to
develop quantitative dynamic process models with good long term prediction
properties over a wide operating region. During process model development,
an important issue is to determine a suitable model structure, e.g. by selection



52 Structural parameter identifiability analysis for dynamic reaction networks

from a set of possible structures for a given application purpose. To facilitate
model selection it is necessary to evaluate the model performance and for this
purpose it is necessary to estimate the model parameters. However, estima-
tion of model parameters may be quite time consuming. Consequently analysis
of the properties of the parameter estimation problem may be highly benefi-
cial prior to both experimental design and to undertaking actual estimation of
model parameters in practice. Therefore it is desirable to evaluate whether the
parameters of a given model are structurally identifiable.

A property is said to be structural or generic if it is true for almost any
parameter value excluding some atypical hyper surface and possibly false on
a parametric subspace of zero measure. Such a property may also be labeled
qualitative as opposed to quantitative. When performing a priori or structural
identifiability analysis, following Walter and Pronzato (1997), it is possible to
distinguish between the following types of identifiability:

• Global identifiability: The structural identifiability analysis problem yields
a unique solution

• Local identifiability: The structural identifiability analysis problem yields
multiple solutions

• Unidentifiable: The structural identifiability analysis problem does not
yield any feasible solution

In contrast, during quantitative parameter estimation, an a posteriori anal-
ysis may be performed, based on collected experimental information, where
however only local identifiability results may be obtained. Thus practical iden-
tifiability analysis is defined as a posteriori quantitative analysis based upon
numerical parameter estimation.

While structural parameter identifiability only has received some attention
in the literature, there has been a substantial interest in practical identifiabil-
ity analysis. Here the main literature on structural identifiability of nonlinear
dynamics systems is reviewed while only related approaches based upon practi-
cal identifiability are covered. Subsequently, identification of reaction networks
is reviewed before the purpose of this article is stated. One approach to ad-
dress the structural identifiability problem is based on state isomorphism’s,
which uses the fact that under certain conditions, indistinguishable state space
systems have locally isomorphic state spaces. If indistinguishable state space
systems exist then one can parameterize the equivalence classes by the ad-
missible state space isomorphisms. If an identity can be shown, then global
identifiability follows under certain conditions (Peeters and Hanzon 2005).

A second approach to structural identifiability analysis is based on differential
algebra (Ljung and Glad 1994), which has been further developed by Audoly
et al. (2001), Saccomani et al. (2003) and Saccomani (2004). A set of algebraic
equations denoted the exhaustive summary is obtained, and solved by algebraic
methods e.g. the Buchberger algorithm.
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The third approach to structural identifiability analysis reviewed here is based
on power series expansion of the model outputs as a function of inputs and time
(Pohjanpalo 1978), (Fliess 1980), (Fliess and Lagarrigue 1980) and (Walter and
Pronzato 1996). This approach has been applied by e.g. Dochain et al. (1995)
and Petersen (2000). Two types of expansions may be used, one is based on
Taylor series and the other based on generating series. In the case of Taylor
series, the output vector and its time derivatives are typically developed around
the initial time. Successive time derivatives starting with the zeroth order term
and going up to the nth order (where n is the number of parameters) are used
to form an algebraic equation system. Then identifiability is assessed by in-
vestigating whether the algebraic equation system is solvable symbolically, by
determining the number of solutions for the parameter set under investigation
(Walter and Pronzato 1996). In the generating series case, the model output
is expanded into a series whose coefficients are computed using Lie derivatives.
A set of algebraic equations corresponding to the number of unknown param-
eters is formed to investigate structural identifiability. In a more recent paper,
(Walter et al. 2004), a guaranteed optimization based method is presented.
The classical definitions of identifiability are slightly modified by defining a
valid domain for the model parameters.

In the case of practical, or a-posteriori identifiability, several methods are
available. The first method is the local or global (multi local) sensitivity anal-
ysis (Brun et al. 2002), (Sarmiento Ferrero et al. 2006) and (Kontoravdi et al.
2005), which is a widely used method for large models. The second method for
establishing practical identifiability, is an optimization-based approach, pro-
posed by Asprey and Macchietto (2000). In principle, the idea is to max-
imize the distance between two parameter vectors that essentially give the
same model output. If the maximized distance is smaller than some threshold
then the model is deemed identifiable. In a more recent paper, the optimiza-
tion based approach is modified and combined with the multi-local sensitivity
analysis into what is called the perturbation algorithm (Sidoli et al. 2005).

For identification of complex reaction networks Brendel et al. (2006) devel-
oped a systematic approach, where the model development is decomposed into
steps. Each subsequent step is related to only one part of the model. The
steps included are: stoichiometry, reaction rates, reaction kinetics and kinetic
parameters. However the analysis of structural identifiability of reaction ki-
netic parameters is not considered. Instead, all possible model candidates are
considered. After estimating the parameters for each model candidate the sta-
tistically insignificant model parameters or model candidates are eliminated.
Another potential drawback is that each individual reaction rate is considered
independently, thus interaction effects between reactions are neglected.

The main advantage of the structural identifiability analysis methods based
on the differential algebra or power series expansions is that these methods may
provide a global identifiability test. Another advantage is that they provide
insight concerning the nonlinearities of the dynamic model. The applicability
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of methods based on differential geometry for real life applications such as
enzymatic reaction networks is limited by the fact that the complexity of the
derived equations grows exponentially, when the number of model states and
parameters grows. On the other hand, methods based on sensitivity analysis
or a perturbation study tend to be more applicable to real life applications,
but they require a very substantial computational effort. The present article
aims at combining an extension of structural parameter identifiability analysis
with a structural rate identifiability analysis based upon stoichiometry analysis
(Bonvin and Rippin 1990) to obtain a methodology which provides information
on qualitative parameter identifiability for specific models.

The article is organized with a Section 3.2 presenting the methodology and
the developed algorithm. Section 3.3.1 describes a model for an enzymatic
reaction network on which the application of the methodology is illustrated in
Section 3.3.2. In Section 3.5 the results and their limitations are discussed and
the conclusions are drawn in Section 3.6.

3.2 Methodology

The methodology implemented in this work combines identifiability analysis of
reaction rates in dependence of the available measurements with a structural
parameter identifiability analysis for the parameters in the proposed kinetic
expressions for the identifiable reaction rates. The background for the two
types of analysis is outlined first, and the work flow of the global identifiability
algorithm is presented second.

3.2.1 Reaction rate identifiability

Following the notation of Brendel et al. (2006), the stoichiometric matrix for
the reaction network is denoted N ∈ RnR×nS , the part corresponding to chemi-
cal species being measured is denoted Nm ∈ RnR×nSm , and for the unmeasured
species Nu ∈ RnR×nSu . The matrix containing the true reaction rates is de-
noted R ∈ RnQ×nR . The matrix containing the measured reaction fluxes is
denoted F rm ∈ RnQ×nSm .
Vo is a diagonal matrix containing the reactor volume measurements (nQ ×

nQ), nQ being the number of samples.
For the case where all reaction rates are identifiable, (Rank(Nm)=nR) then

Bonvin and Rippin (1990) estimates the reaction rates from the measured flux
rates:

R̂ = V −1
o · F̂ rm ·N+

m (3.1)

Here, N+
m is the Moore Penrose inverse defined by N+

m = NT
m

(
NmN

T
m

)−1.
For the case where not all the reaction rates are identifiable (i.e. Rank(Nm) <
nR), Brendel et al. (2006) introduces an identifiability criterion based on the
difference between Nm ·N+

m and I:
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∆r =
[
NmN

+
m − I

]
(3.2)

The identifiability criterion ∆r, computed using Eq. 3.2, states that a re-
action rate rj is structurally identifiable if the corresponding column in ∆r is
represented by the null vector.

Thus, in order to determine whether a vector of reaction rates is identifiable
or not, it is necessary to form the corresponding stoichiometric matrix from
the full Nm matrix and then to compute the identifiability criterion vector ∆r

using Eq. 3.2.

3.2.2 Structural Parameter Identifiability Analysis

In a given input affine model structure M(θ) (Eq. 3.3), the f functions repre-
sent the part of the right hand-side of the equations which are unaffected by
the inputs; while the parts affected by the affine inputs, are represented by the
functions gi (i=1,..m).

M(θ) :


dx(t)
dt = f (x (t) , θ) +

m∑
i=1

ui (t) gi (x (t) , θ) , x (0) = x0 (θ)

y (t, θ) = h (x (t) , θ)
(3.3)

For such a given input-output behavior M (θ), it is of interest to investigate
if identical behavior for the plant parameters θ∗ and for the model parameters
θ̂, imply that the parameters are identical. Thus three structural identifiability
situations can occur:

1. A model parameter θi will be structurally globally identifiable, if, for
almost any θ∗, M(θ̂) = M(θ∗) → θ̂i = θ∗i . The structure M will
be structurally globally identifiable if all its parameters are structurally
globally identifiable.

2. A model parameter θi will be structurally locally identifiable, if, for al-
most any θ∗, there exists a neighborhood V (θ∗) such that θ̂ ∈ V (θ∗) and
M(θ̂) = M(θ∗) → θ̂i = θ∗i . The structure M will be structurally locally
identifiable if all its parameters are structurally locally identifiable.

3. The parameter θi is structurally unidentifiable if for almost any θ∗ there
is no neighborhood V (θ∗) such that θ̂ ∈ V (θ∗) and M(θ̂) = M(θ∗) →
θ̂i = θ∗i . The structure M will be structurally unidentifiable if at least
one of its parameters is structurally unidentifiable.

A generating series expansion can be written based on the Lie derivatives
where the model output is expanded in a series with respect to inputs and time
(Fliess and Lagarrigue 1980), (Fliess et al. 1983), (Pohjanpalo 1978), (Walter
and Pronzato 1996) around an initial time denoted by subscript 0. If the initial
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time does not provide sufficient information, that is, all the derivatives are zero
Pohjanpalo (1978), then alternatively, a different time for which the values of
the states are known can be chosen.

Index m represents the number of inputs, and d is the maximum order of
derivation. The Lie derivative of h, Lfh along the vector field f is:

Lfh (x (t) , θ) =
n∑
j=1

fj (x (t) , θ)
∂

∂xj
h (x (t) , θ) (3.4)

For a mixed term, where the inputs are involved, the equation can be written
as:

Lgi
Lfh (x (t) , θ) =

n∑
j=1

gi,j (x (t) , θ)
∂

∂xj
Lfh (x (t) , θ) (3.5)

where n is the number of states and index j is the jth element of the f or
g functions vector, while i represents the ith input. The above determined
Lie derivatives represents the vector of the coefficients of the corresponding
generating expansion. These are loaded into vector s(θ) = {sk(θ)} with k ∈
(0,m × n × d). Then the identifiability analysis follows from (Walter and
Pronzato 1996):

Proposition 1 For two arbitrary parameterizations θ̂ and θ̃, the identity M(θ̂) ≡
M(θ̃) translates into s(θ̂) ≡ s(θ̃).

Consequently one can test the structural identifiability of the model param-
eters M(θ) by analytically, e.g. symbolically determining the number of solu-
tions for θ̂ of the set of equations s(θ̂) ≡ s(θ̃). The determination of the number
of analytical solutions to the above equation set can be further facilitated by
the following corollary:

Corollary 1 Determining the number of analytical solutions to the system of
equations s(θ̂) ≡ s(θ̃) is equivalent to determining the number of analytical
solutions for s(θ) = k where k is an arbitrary constant vector.

Proof 1 The set of equations s(θ̂) ≡ s(θ̃) is split into two systems of equations
s(θ̂) ≡ k and s(θ̃) ≡ k, where k is an arbitrary constant. By solving these
analytically, both equation systems will provide the same solution(-s). Hence it
is sufficient to solve only one set symbolically.

If the above underlying system of equations has only one solution, then the
parameter set is structurally globally identifiable; if there are more solutions,
then the parameters at best may be structurally locally identifiable and if the
system has no solution the parameters are structurally unidentifiable. Once
the Lie derivatives have been computed i.e. the vector s(θ̂) is determined, then
a system of algebraic equations is obtained. The elements in the parameter
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vector θ are the model parameters possibly including the initial state values.
It should be mentioned, that if two parameters e.g. a and b are unidentifiable,
then an arbitrary combination of the two, e.g. the sum or the ratio may be
structurally identifiable. For batch models, applying the generating series the
obtained set of equations is similar to the set obtained by applying Taylor
series, but for fed-batch models, the set obtained by applying generating series
is less complex than that obtained by applying Taylor series. Therefore the
former is applied in this work.

Although structural identifiability analysis thus seems most appealing, it is
limited by the ability to solve the above algebraic equation set. Obtaining this
solution analytically is in general not feasible. While symbolic methods provide
a help, they cannot overcome this fundamental limitation. Hence alternative
approaches should be investigated. This fundamental limitation implies that
the number of solutions are not easily determined in general. However for
polynomial kinetic expressions the algebraic equations are in principle solvable,
and in practice also by computational symbolic methods for low order cases.

Next the work flow of the structural identifiability algorithm is described.

3.2.3 Structural identifiability algorithm

The work-flow of the developed algorithm is illustrated in Figure 3.1. The steps
are detailed in the following.

The algorithm is composed of two main phases where each phase encompasses
several steps. The first phase concerns structural identifiability of the reaction
rates given the reaction network and the measured species. The second phase,
investigates parameter identifiability of the kinetic models for the identifiable
reaction rate set.

• Step 1 and 2 of the algorithm presented in the Figure 3.1 concerns model
formulation for a reaction network for the process under investigation
based upon physical knowledge including the reaction stoichiometry.

• Step 3 concerns determination of the structurally identifiable reaction
rates. In order to determine which reaction rates are identifiable a crite-
rion introduced by Brendel et al. (2006) Eq. 3.2 is used. The criterion
utilizes only the information related to the reaction stoichiometry.

• After the possible combinations of identifiable reaction rates have been
determined, the kinetic expressions together with the associated param-
eters are introduced in step 4, where the parameter vector to be investi-
gated for identifiability is formulated for each combination of identifiable
reaction rates.

• The first order Lie derivatives which represents the first term of a power
series expansion are derived in Step 5. If the model comes from a fed-
batch or continuous reactor where perturbed inputs to the process may
be present, then,
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Figure 3.1: Work-flow of the structural identifiability analysis
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• step 6 concerns calculation of mixed first order Lie derivatives terms with
respect to such inputs.

• step 6 is skipped if no perturbed inputs are present.

• Step 7 deals with computing higher order Lie derivatives if necessary in
order to form a fully determined system of equations.

• step 8 concerns selection of the equations to be included in the algebraic
system. When a selection is being performed, the lower order Lie deriva-
tives, being the simplest are given priority. If inputs are present, priority
is given to the derivatives containing inputs. If no possible unique solution
has been found, the system of equations will be expanded by considering
including higher order terms as well.

• In step 9 the equation system considered in the previous step is solved
for the parameter set containing npar parameters. If a unique solution
is found, then the parameter set is globally identifiable. If the system
of equations solved in step 9 did not provided a unique solution, then
returning to step 7, equations obtained from higher order Lie derivatives
are included in the equation vector.

The procedure is iterated until all possible combinations including highest
order Lie derivation mlo have been considered. For practical reasons mlo is
set to 3, and the main reason is that the obtained solutions (when obtained)
become complex.

The loop of computing additional derivatives and solving for the various pa-
rameter combinations, is terminated if a unique solution has been found for the
parameters considered in step 4 or when all the possible equation combinations
have been analyzed.

3.3 Example Process

There is an increasing interest in producing complex intermediates and expen-
sive fine chemicals in the pharmaceutical industry using biochemical synthesis.
Presently, only a few bio-transformation steps are involved in complex synthe-
sis in industry, although enzymes are widely known as being specific, fast and
working under mild conditions. To develop a purely enzymatic synthesis for
complex molecules from simple substrates, often relatively large reaction net-
works are necessary. One way to achieve such a functional network is by using
a so-called System of Bio-Transformations (SBT). An SBT is based on parts
of the metabolic network of a microorganism containing the synthesis pathway
including cofactor regeneration reactions down to the desired product, which
most often is an intermediate in the metabolic network. Suitably genetically
modified mutants of E-coli are here used to produce the metabolic network
for an SBT (Schümperli et al. 2007). The mutants are grown up to a certain



60 Structural parameter identifiability analysis for dynamic reaction networks

level. Deletion of the genes for enzymes catalyzing reactions which compete
with the desired pathway is triggered a short while before the cultivation is
stopped. Subsequently the cells are isolated by centrifugation. The cells are
then resuspended in a buffer. The cell walls are destroyed by high pressure ho-
mogenization and the resulting particles are then separated by filtration. The
cell free liquid extract is recovered and then the desired protein concentration
is obtained by dilution with a buffer solution. The bio-transformations are
performed with the cell free extract in the production phase, combining the
easy handling of a viable culture for producing the desired enzymes with the
advantages of in vitro bio-transformations. For this example, the key product
is Di-hydroxy-acetone phosphate (DHAP), which represents an important pre-
cursor for the production of phosphorylated, non-natural carbohydrates. The
DHAP-producing SBT contains all the enzymes for the glycolysis reactions ex-
cept the ones corresponding to the genes which were deleted prior to cessation
of cultivation, leading to a system of high complexity. Below, the developed
structural parameter identifiability analysis is illustrated on a relatively simple
mass action model for the SBT.

3.3.1 Model formulation

Since the system described above is a system of high order dynamics and com-
plexity which is intended to operate at a substantially higher concentration
level than in the microbial cell, it is not considered to be realistic to develop a
”perfect model” using purely first principle engineering methods. Thus, in this
work a grey-box stochastic model development framework (Kristensen et al.
2004b) is used. The idea behind this methodological chain is to be able to
combine the limited amount of data for measured states with available first
principle engineering knowledge. A very large model considering all the pos-
sible intermediates of glycolysis, will inherently contain a very large number
of parameters which in practice would be impossible to validate against the
limited available data. Thus for many parameters only an educated guess can
be used. For practical reasons this article only describes the deterministic part
of the grey-box model. A network representing the most important reactions
occurring in the SBT is given in Figure 3.1. The network will form the basis
for formulating the mass balance model equations which constitute the model.

Based upon the pathway shown in Figure 3.2, there are 7 enzymatic reactions
included in this network. It is further assumed that except degradation of
DHAP the remaining reactions are reversible. It is assumed that the kinetics
can be described by simple mass action terms as follows:



3.3. Example Process 61

Figure 3.2: The simplified reaction network investigated in this analysis

r1 = r1maxfcGLcATP − r1maxbcG6P cADP

r2 = r2maxfcF16B − r2maxbcDHAP cG3P

r3 = r3maxfcG3P cNADcPO4cADP − r3maxbcPY RcNADHcATP

r4 = r4maxfcPY RcNADH − r4maxbcLACcNAD

r5 = r5maxfcATP − r5maxbcADP

r6 = r6maxfcDHAP

r7 = r7maxfcG6P cATP − r7maxbcADP cF16B (3.6)

For each chemical compound a dynamic mass balance is formulated as shown
below. Since the bio-transformation reactor is a batch reactor, it does not
include any perturbed input flow-rate. The corresponding terms therefore will
not appear in the equations and thus will not be used in the further analysis.
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dcGL
dt

= −r1

dcF16B

dt
= r7 − r2

dcDHAP
dt

= r2 − r6

dcG3P

dt
= r2 − r3

dcPY R
dt

= r3 − r4

dcLAC
dt

= r4

dcATP
dt

= −r1 − r7 + 2r3 − r5

dcNAD
dt

= −r3 + r4

dcPO4

dt
= −r3 + r5

dcG6P

dt
= r1 − r7

dcADP
dt

= r1 + r7 − 2r3 + r5

dcNADH
dt

= r3 − r4 (3.7)

In the analysis, it is assumed that only four states are measured. Using the
notation introduced above in Eq. 3.7 the nSm measurement equations for this
case are simply the states which are being measured:

y1 (c) = cGL

y2 (c) = cG6P

y3 (c) = cDHAP

y4 (c) = cATP (3.8)

3.3.2 Structural identifiability analysis for the enzymatic
reaction network (SBT)

This section presents an application of the algorithm presented in Section 3.2.3
for the enzymatic reaction network model described above. The analysis is
practically started from step 2 of the algorithm since the reaction network and
the associated model were already formulated in the previous section. The full
stoichiometric matrix N associated with the network, in Figure 3.2 is given in
Table 1.
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GL ATP G6P ADP F16B DHAP G3P PO4 NAD NADH PYR LAC
r1 -1 -1 1 1 0 0 0 0 0 0 0 0
r2 0 0 0 0 -1 1 1 0 0 0 0 0
r3 0 2 0 -2 0 0 -1 -1 -1 1 1 0
r4 0 0 0 0 0 0 0 0 1 -1 -1 1
r5 0 -1 0 1 0 0 0 1 0 0 0 0
r6 0 0 0 0 0 -1 0 0 0 0 0 0
r7 0 -1 -1 1 1 0 0 0 0 0 0 0

Table 3.1: Full stoichiometric matrix N for the reaction network

The seven reactions considered in the network are independent since the
rank of the stoichiometric matrix is 7. The matrix is split into two matrices
corresponding to the species measured and unmeasured respectively. The ma-
trix containing the measured species is denoted Nm (Table 3.2), and the one
containing the unmeasured species Nu, (Table 3.3).

GL ATP G6P DHAP

r1 -1 -1 1 0
r2 0 0 0 1
r3 0 2 0 0
r4 0 0 0 0
r5 0 -1 0 0
r6 0 0 0 -1
r7 0 -1 -1 0

Table 3.2: Stoichiometric matrix Nm for the measured species

ADP F16B G3P PO4 NAD NADH PYR LAC

r1 1 0 0 0 0 0 0 0
r2 0 -1 1 0 0 0 0 0
r3 -2 0 -1 -1 -1 1 1 0
r4 0 0 0 0 1 -1 -1 1
r5 1 0 0 1 0 0 0 0
r6 0 0 0 0 0 0 0 0
r7 1 1 0 0 0 0 0 0

Table 3.3: Stoichiometric matrix Nu, for the unmeasured species

If Nm is not full rank, then only a subset of the rates will be identifiable.
The rank of the Nm matrix is 4. Thus it is possible to identify a maximum of
four independent reaction rates. In order to apply Eq. 3.2 the Nm ·NT

m matrix
has to be invertible, thus it is necessary to have a full matrix with four rows
and it will be obtained using four rows from the original matrix Nm matrix;
this matrix will be denoted Nmr and replaces Nm in Eq. 3.2. All the possible
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combinations of four reaction rates obtained from the full set composed of seven
reaction rates are determined first. The identifiable combinations of parameters
for each of the identifiable reaction rate sets are obtained, secondly.

The structural rate identifiability criterion presented in Eq. 3.2 was applied
for all the combinations described above. The criterion was fulfilled for a series
of combinations as shown in Table 3.4.

For other combinations it was not possible to invert the matrix Nmr, which
is required to calculate the pseudo-inverse N+

mr and thus the corresponding
combinations have been rejected from the analysis.

Combination Identifiable Rates

1 r1 r5 r6 r7
2 r1 r3 r6 r7
3 r1 r2 r5 r7
4 r1 r2 r3 r7

Table 3.4: Identifiable combinations of reaction rates for the enzymatic reaction
network

A simple check for the validity of the results is that the matrix Nmr is full
rank. The Nmr matrix for the four combinations are given below in Tables 3.5
–3.8.

Rates GL ATP G6P DHAP ∆r

r1 -1 -1 1 0 0
r5 0 -1 0 0 0
r6 0 0 0 -1 0
r7 0 -1 -1 0 0

Table 3.5: Reduced stoichiometric matrix — first set

Rates GL ATP G6P DHAP ∆r

r1 -1 -1 1 0 0
r3 0 2 0 0 0
r6 0 0 0 -1 0
r7 0 -1 -1 0 0

Table 3.6: Reduced stoichiometric matrix — second set

The rank of all four matrices is 4 and the determinant different from zero,
i.e. det(M) = −1, 2,−1 and 2 respectively. Thus the selected combinations of
reaction rates are indeed identifiable.

For each of the combinations in Table 3.4,steps 4 – 9, have been performed
in order to asses the global identifiability of the parameters involved in the
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Rates GL ATP G6P DHAP ∆r

r1 -1 -1 1 0 0
r2 0 0 0 1 0
r5 0 -1 0 0 0
r7 0 -1 -1 0 0

Table 3.7: Reduced stoichiometric matrix — third set

Rates GL ATP G6P DHAP ∆r

r1 -1 -1 1 0 0
r2 0 0 0 1 0
r3 0 2 0 0 0
r7 0 -1 -1 0 0

Table 3.8: Reduced stoichiometric matrix — fourth set

corresponding kinetic expressions. For illustration purpose the first identifi-
able combination of reaction rates will be detailed below. For the remaining
combinations the results will only be given in tabular form.

3.3.2.1 Combination r1, r5, r6, r7

The parameters included in the kinetic expressions for this case include r1maxb,
r1maxf , r5maxb, r5maxf , r6maxb, r6maxf , r7maxb, r7maxf . In step 5, the first
order Lie derivatives are computed for the four measured states of the model
as follows:

Lfh1 = f1
∂h1

∂cGL

∣∣∣∣
0

= −r1maxfcGLcATP + r1maxbcG6P cADP

Lfh2 = f10
∂h2

∂cG6P

∣∣∣∣
0

= r1maxfcGLcATP − r1maxbcG6P cADP − r7maxfcG6P cATP

+r7maxbcADP cF16B

Lfh3 = f3
∂h3

∂cDHAP

∣∣∣∣
0

= r2maxfcF16B − r2maxbcDHAP cG3P − r6maxfcDHAP

Lfh4 = f4
∂h4

∂cATP

∣∣∣∣
0

= −r1maxfcGLcATP + r1maxbcG6P cADP − r7maxfcG6P cATP

+r7maxbcADP cF16B + 2r3maxfcG3P cNADcPO4cADP

−2r3maxbcPY RcNADHcATP − r5maxfcATP + r5maxbcADP (3.9)
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Since there is no perturbed input present in the process operation, step 6
is skipped. Following the algorithm presented in Figure 3.1 it is necessary to
include additional equations since neq < npar. Thus, the second order Lie
derivatives are computed. For the higher order terms only the compact form
of the equations are shown in equations 3.10.

LfLfh1 = f1
∂Lfh1

∂cGL

∣∣∣∣
0

+ f7
∂Lfh1

∂cATP

∣∣∣∣
0

+ f10
∂Lfh1

∂cG6P

∣∣∣∣
0

+ f11
∂Lfh1

∂cADP

∣∣∣∣
0

LfLfh2 = f1
∂Lfh2

∂cGL

∣∣∣∣
0

+ f7
∂Lfh2

∂cATP

∣∣∣∣
0

+ f10
∂Lfh2

∂cG6P

∣∣∣∣
0

+ f11
∂Lfh2

∂cADP

∣∣∣∣
0

+ f2
∂Lfh2

∂cF16B

∣∣∣∣
0

LfLfh3 = f2
∂Lfh3

∂cF16B

∣∣∣∣
0

+ f3
∂Lfh3

∂cDHAP

∣∣∣∣
0

+ f4
∂Lfh3

∂cG3P

∣∣∣∣
0

LfLfh4 = f1
∂Lfh4

∂cGL

∣∣∣∣
0

+ f7
∂Lfh4

∂cATP

∣∣∣∣
0

+ f10
∂Lfh4

∂cG6P

∣∣∣∣
0

+ f11
∂Lfh4

∂cADP

∣∣∣∣
0

+ f2
∂Lfh4

∂cF16B

∣∣∣∣
0

+ f4
∂Lfh4

∂cG3P

∣∣∣∣
0

+ f8
∂Lfh4

∂cNAD

∣∣∣∣
0

+ f9
∂Lfh4

∂cPO4

∣∣∣∣
0

+ f5
∂Lfh4

∂cPY R

∣∣∣∣
0

+ f12
∂Lfh4

∂cNADH

∣∣∣∣
0

(3.10)

In step 8, several systems of seven equations may be formed using the first
and second order Lie derivatives. No combination was found to render a unique
solution using equations formed with first and second order Lie derivatives. Lie
derivation has been applied once more and various combinations of equations
have been solved for the parameters. The only combination of 7 equations that
rendered a unique solution for the parameter set is listed in Table 3.9.

Comb. r1maxb r1maxf r5maxb r5maxf r6maxf r7maxb r7maxf

1 Lfh2 Lfh1 Lfh3 Lfh4 LfLfh2 LfLfLfh1 LfLfLfh4

Table 3.9: One combination of Lie derivatives for which a unique solution was
found

For the combination of reaction rates considered, it was possible to find a
unique solution for various system of equations formed with Lie derivatives up
to the third order originating from the four measurement functions. Thus, the
investigated parameter set is deemed to be structurally globally identifiable.
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The analysis is repeated for all the other vectors of identifiable rates given in
Table 3.4.

3.3.2.2 Combination r1, r3, r6, r7

For this combination of parameters, steps 4–9 were performed again. The
combinations for which a unique solution was found, is given below in Table
3.10.

A unique solution could be found for several combinations of the Lie deriva-
tives, one combination is shown in Table 3.10. This time it was possible to
obtain a unique solution by using only the first and the second order Lie deriva-
tives. Thus the parameter set is deemed to be globally identifiable.

Comb. r1maxf r1maxf r3maxf r3maxb r6maxf r7maxb r7maxf

1 Lfh1 Lfh3 LfLfh1 Lfh4 LfLfh2 LfLfh4 LfLfh3

Table 3.10: One combination of first and second order Lie derivatives for which
a unique solution was found

3.3.2.3 Combination r1, r2, r5, r7

For the third combination of reaction rates a combination of Lie derivatives for
which a unique solution was found when solved for the full parameter set is
given in Table 3.11. Here, however third order Lie derivatives were required.
Since a unique solution has been found, the parameter set is deemed to be
globally identifiable.

Comb. r1maxb r1maxf r2maxb r2maxf r5maxb r5maxf r7maxb r7maxf

1 Lfh1 Lfh3 LfLfh2 LfLfh3 LfLfh1 LfLfLfh4 LfLfLfh3 Lfh4

Table 3.11: One combination of first, second, and third Lie derivatives for which
a unique solution was found

3.3.2.4 Combination r1, r2, r3, r7

One combination of Lie derivatives for which a unique solution was found when
considering the full parameter vector of eight parameters is given in Table
3.12. The parameter set for the last combination of identifiable reaction rates
is deemed to be structurally globally identifiable.

3.4 Validation of the algorithm

The validation is undertaken with the specific understanding that structural
identifiability as defined in this work is concerned with the possibility of de-
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Comb. r1maxb r1maxf r2maxb r2maxf r3maxb r3maxf r7maxb r7maxf

1 Lfh1 Lfh3 Lfh2 LfLfh3 LfLfh1 LfLfh4 LfLfLfh1 LfLfLfh4

Table 3.12: Combination of Lie derivatives for which a unique solution was
found

termining the model parameters. To quantitatively determine the parameter
values requires that suitable parameter sensitivity information is available in
the experimental design, which in this article thus far has been assumed given.
For cases where such parameter sensitivity information is not available then
a minimization may be performed but high correlations may result. To illus-
trate the qualitative identifiability result an arbitrary example based upon the
reaction network modelled in this article is used.

The idea is to first simulate the noise free model with initial conditions which
do provide information from different parts of the network with a given set of
parameters and then to use these data to estimate the parameters.

A set of 100 data points was obtained by simulating the model given in
Eqs. 3.6–3.8. The same value of 0.1 was used for all the model parameters.
The initial concentration used for this simulation are given in Table 3.13. As
measured compounds, the four measurements in Eqs. 3.8 have been considered.

Compound Concentration Compound Concentration

c0GL 11.1 [mM/L] c0ATP 11.5 [mM/L]
c0F16B 1e-5 [mM/L] c0NAD 5.75 [mM/L]
c0DHAP 1e-5 [mM/L] c0PO4 11.1 [mM/L]
c0G3P 1e-5 [mM/L] c0G6P 1e-5 [mM/L]
c0PY R 1e-5 [mM/L] c0ADP 1e-5 [mM/L]
c0LAC 1e-5 [mM/L] c0NADH 1e-5 [mM/L]

Table 3.13: Initial conditions for simulation

The parameter sets given in Tables 3.10–3.12 were estimated from the sim-
ulated data. A Levenberg-Marquardt method was used for the estimation of
the parameters using the COPASI software program Hoops et al. (2006). The
estimation has been performed using the interval [0, 100]. A set of three dif-
ferent initial guesses of parameters 1, 5 and 10 have been used. However very
similar results were obtained in all the cases.

The Table 3.14 gives the results obtained for the set r1, r5, r6, r7.
The objective function used, was the standard least squares estimator and

the value for it was Obj = 3.1839e− 010.
The computed correlation matrix for the estimates is given in Table 3.15.

However the correlation matrix reveals that a quantitative experimental design
is desirable to reduce the three high parameter correlations between the forward
and backward rate constants.
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Parameters LowerB Initial UpperB Estimate σD

r1maxf 0 10 100 0.1 1.84456e-007
r1maxb 0 10 100 0.1 1.98921e-007
r5maxf 0 10 100 0.1 6.27943e-008
r5maxb 0 10 100 0.1 6.39445e-008
r6maxf 0 10 100 0.1 1.27507e-008
r7maxf 0 10 100 0.0999997 1.76717e-007
r7maxb 0 10 100 0.0999997 1.9734e-007

Table 3.14: Estimation results

r1maxf r1maxb r5maxf r5maxb r6maxf r7maxf r7maxb

r1maxf 1 0.99872 -0.517642 -0.519229 -0.0893252 -0.538386 -0.536762
r1maxb 0.99872 1 -0.509737 -0.510993 -0.0866214 -0.538004 -0.537169
r5maxf -0.517642 -0.509737 1 0.999352 0.0437292 -0.107299 -0.101635
r5maxb -0.519229 -0.510993 0.999352 1 0.0440764 -0.107957 -0.10211
r6maxf -0.0893252 -0.0866214 0.0437292 0.0440764 1 0.191113 0.210542
r7maxf -0.538386 -0.538004 -0.107299 -0.107957 0.191113 1 0.99867
r7maxb -0.536762 -0.537169 -0.101635 -0.10211 0.210542 0.99867 1

Table 3.15: Correlation matrix

3.4.1 Combination r1, r3, r6, r7

The estimation results for this combination of parameters is given in Table
3.16.

Parameters LowerB Initial UpperB Estimate σD

r1maxb 0 10 100 0.1 1.9942e-007
r1maxf 0 10 100 0.1 2.13465e-007
r3maxb 0 10 100 0.0999986 2.84563e-006
r3maxf 0 10 100 0.0999988 2.84651e-006
r6maxb 0 10 100 0.1 1.32055e-008
r7maxb 0 10 100 0.0999992 2.46808e-007
r7maxf 0 10 100 0.099999 2.89585e-007

Table 3.16: Estimation results

The objective function used, was the standard least square estimator and
its value was Obj = 3.1824e − 010. The computed correlation matrix for the
estimates is given in Table 3.17.

3.4.2 Combination r1, r2, r5, r7

The estimation results for this combination of parameters is given in Table
3.18.

The objective function used, was the standard least square estimator and its
value was Obj = 3.17734e − 010. The computed correlation matrix for the
estimates is given in Table 3.19.
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r1maxf r1maxb r3maxf r3maxb r6maxf r7maxf r7maxb

r1maxf 1 0.998777 -0.534569 -0.529313 -0.1671 0.693731 -0.702641
r1maxb 0.998777 1 -0.526384 -0.521379 -0.164697 -0.684436 -0.693112
r3maxf -0.534569 -0.526384 1 0.999852 0.250377 0.178101 0.224431
r3maxb -0.529313 -0.521379 0.999852 1 0.251812 0.16639 0.212359
r6maxf -0.1671 -0.164697 0.250377 0.251812 1 0.121849 0.137729
r7maxf -0.693731 -0.684436 0.178101 0.16639 0.121849 1 0.997507
r7maxb -0.702641 -0.693112 0.224431 0.212359 0.137729 0.997507 1

Table 3.17: Correlation matrix

Parameters LowerB Initial UpperB Estimate σD

r1maxf 0 10 100 0.1 2.02008e-007
r1maxb 0 10 100 0.1 2.16843e-007
r2maxf 0 10 100 0.1 4.2731e-008
r2maxb 0 10 100 0.1 8.07845e-008
r5maxf 0 10 100 0.1 7.08752e-008
r5maxb 0 10 100 0.1 7.20201e-008
r7maxf 0 10 100 0.0999993 2.88396e-007
r7maxb 0 10 100 0.0999992 3.35906e-007

Table 3.18: Estimation results

r1maxf r1maxb r2maxf r2maxb r5maxf r5maxb r7maxf r7maxb

r1maxf 1 0.998863 -0.277813 0.0618174 -0.250194 -0.253889 -0.510127 -0.52624
r1maxb 0.998863 1 -0.27424 0.0562994 -0.248757 -0.252145 -0.503898 -0.519858
r2maxf -0.277813 -0.27424 1 0.63551 -0.444459 -0.44141 -0.0955138 -0.0158406
r2maxb 0.0618174 0.0562994 0.63551 1 -0.177082 -0.176897 -0.673023 -0.641941
r5maxf -0.250194 -0.248757 -0.444459 -0.177082 1 0.999481 -0.128604 -0.162374
r5maxb -0.253889 -0.252145 -0.44141 -0.176897 0.999481 1 -0.127623 -0.160973
r7maxf -0.510127 -0.503898 -0.0955138 -0.673023 -0.128604 -0.127623 1 0.995729
r7maxb -0.52624 -0.519858 -0.0158406 -0.641941 -0.162374 -0.160973 0.995729 1

Table 3.19: Estimation results

3.4.3 Combination r1, r2, r3, r7

The estimation results for this combination of parameters is given in Table
3.20.

Parameters LowerB Initial UpperB Estimate σD

r1maxf 0 10 100 0.1 2.005e-007
r1maxb 0 10 100 0.1 2.15011e-007
r2maxf 0 10 100 0.1 5.33221e-008
r2maxb 0 10 100 0.0999993 1.51572e-007
r3maxf 0 10 100 0.0999938 3.79976e-006
r3maxb 0 10 100 0.0999947 3.80691e-006
r7maxf 0 10 100 0.0999994 3.02979e-007
r7maxb 0 10 100 0.0999992 3.48642e-007

Table 3.20: Estimation results

The objective function used, was the standard least square estimator and its
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value was Obj = 3.14981e − 010. The computed correlation matrix for the
estimates is given in Table 3.21.

r1maxf r1maxb r2maxf r2maxb r3maxf r3maxb r7maxf r7maxb

r1maxf 1 0.998777 -0.129228 0.0632667 -0.262375 -0.26111 -0.579635 -0.605234
r1maxb 0.998777 1 -0.129683 0.0689804 -0.25525 -0.254352 -0.574832 -0.600227
r2maxf -0.129228 -0.129683 1 0.583089 -0.687561 -0.691127 -0.342496 -0.284492
r2maxb 0.0632667 0.0689804 0.583089 1 -0.339403 -0.35967 -0.592717 -0.570033
r3maxf -0.262375 -0.25525 -0.687561 -0.339403 1 0.999661 0.288198 0.275173
r3maxb -0.26111 -0.254352 -0.691127 -0.35967 0.999661 1 0.292927 0.279581
r7maxf -0.579635 -0.574832 -0.342496 -0.592717 0.288198 0.292927 1 0.996537
r7maxb -0.605234 -0.600227 -0.284492 -0.570033 0.275173 0.279581 0.996537 1

Table 3.21: Estimation results

Analogous results were obtained when estimating parameters for the other
three reaction rate combinations as can be seen in the Tables 3.16–3.20. Very
similar solutions were obtained within the shown standard deviations, thus
enforcing the fact that indeed unique solutions are obtained in each case.

3.5 Discussion

For the example illustrated above it was possible to find combinations of Lie
derivatives rendering a unique analytical solution for the parameter set under
investigation for each combination of identifiable rates. When analyzing each
individual combination of identifiable reactions, since the model is nonlinear,
the number of required Lie derivatives to achieve a system of equations ren-
dering the parameters structurally identifiable was different from combination
to combination. For one of the combinations of identifiable rates it was possi-
ble to conclude structural identifiability using only first and second order Lie
derivatives.

Since the available number of measured states in the presented example is
low compared to the number of independent reactions a fairly large number
of combinations of identifiable reactions was determined as can be seen in
Table 3.4. The higher the number of measured states, the fewer combinations
of structurally identifiable reaction rates will be obtained, each containing a
larger number of reactions.

An important drawback is that there is no upper bound for the order of
the Lie derivation required to achieve a system of algebraic equations which
would render the parameter set structurally identifiable. For the case where
inputs may be perturbed the number of equations available is much larger even
when using only first and possibly second order Lie derivatives to form the
system of algebraic equations. The complexity of the equations is thus reduced
significantly and the need for the higher order derivative information is reduced.

A limitation of the methodology is related to the complexity of the model
equations. Due to high complexity of the subsequent algebraic equations it
may not be possible to solve the system of equations analytically.
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The attempted validation presented in section 3.4 exhibited large quanti-
tative correlations for some parameter pairs. However to provide a proper
validation of the qualitative identifiability requires design of the experimental
(or simulation) conditions, in order to ensure reliable parameter estimates.

Moreover changing these variables represents in fact the objective for quan-
titative experimental design, which is the scope of chapter 5.

3.6 Conclusions

This article introduces a methodology and an application of structural iden-
tifiability analysis as a step towards developing more efficient tools for estab-
lishing parameter identifiability for quantitative mathematical models. The
article illustrates potential benefits of such a methodology, even though there
is a fundamental limitation in the suggested method. The proposed approach
complements the approach of Brendel et al. (2006), by introducing a structural
identifiability test for the parameters of proposed kinetic expressions of identifi-
able reaction rates. The key feature of the combined methodology for assessing
structural parameter identifiability for reaction network models is the partition-
ing of the main problem into two sub problems. The first sub problem aims
at finding the structurally identifiable reaction rates based on stoichiometric
analysis. The second sub problem aims at finding the structurally identifiable
kinetic parameters involved in the identifiable reaction rates based on the gen-
erating series method. The methodology thus combines knowledge about the
reaction network in terms of stoichiometry and reaction kinetics with a gen-
erating series expansion in order to facilitate global identifiability assessment
of the model parameters in a systematic manner. The methodology is limited
by the ability to determine the number of solutions of an algebraic equation
set. Even though computer algebra is used there also are fundamental limita-
tions to this problem. Hence a search for alternative formulations of structural
identifiability is relevant.

The presented systematic methodology is illustrated through a case of an
enzymatic reaction network where a simple model is derived and global identi-
fiability investigated for a few measurements.

Having established the influence of measurements and perturbed inputs upon
structural identifiability renders it possible, in the cases where the algebraic
problem is solvable, to perform qualitative experimental design prior to exper-
imental work. This aspect significantly adds to the application potential of the
structural identifiability methods.



4

Qualitative experimental
design for nonlinear

dynamic reaction networks

Abstract

For design, control and optimization it is desirable to develop quantitative pro-
cess models which exhibit good long term prediction properties over the intended
operating region. During nonlinear process model development an important
step is to design experiments for testing model validity for the intended appli-
cation and for enabling reliable estimation of model parameters. Experimental
design may be subdivided into two main steps where the first qualitative step
is to select the measured states and to decide which inputs to perturb. Thus
this first step is labeled qualitative experimental design. The second step aims
at quantitative determination of initial state values, the input profiles and the
measurement times. This contribution aims at development of a systematic
methodology for qualitative experimental design for dynamic reaction networks.
Qualitative experimental design is particularly appealing and important since
this may be carried out a-priori. The core of the developed methodology is
based upon ensuring global parameter identifiability through appropriate selec-
tion of measurement set and input perturbations by ensuring that a certain set
of algebraic equations can be solve symbolically. The developed methodology
is illustrated through application to qualitative experimental design of an en-
zymatic reaction network developed for the production of Di-Hydroxy-Acetone-
Phosphate (DHAP) where the enzymes are extracted from genetically modified
E-coli cells.

4.1 Introduction

For design, control and optimization, within bio- and chemical engineering it is
desirable to develop quantitative process models which exhibit good long term
prediction properties over the intended operating region. During model devel-
opment, an important step, is to ensure identifiability of model parameters.
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Experimental design aims at developing most beneficial conditions for iden-
tifying unknown model parameters and for enabling discrimination between
candidate models. Experimental design may be performed in two steps: qual-
itative experimental design and quantitative experimental design (Walter and
Pronzato 1990). Qualitative experimental design concerns selection of first the
operation mode, secondly which input variables should be varied (and how)
and thirdly, which outputs should be measured in the experiments in order to
be able to render the unknown model parameters identifiable.

Quantitative experimental design concerns determining the actual input pro-
files, the initial values of the states and the optimal sampling instants for the
measurements to provide maximum information for quantitative determination
of the unknown parameters.

The concepts of qualitative and quantitative experimental design and their
relationship with identifiability analysis appear first to be treated by Vajda
et al. (1989). Walter and Pronzato (1990) introduced qualitative experimental
design for linear or linearized models. Subsequently very few attempts have
been published dealing with input affine nonlinear models .

Based upon a recently developed structural identifiability analysis method-
ology presented in chapter 3 which establishes the influence of measurements
and perturbed inputs on structural identifiability, the purpose of the present
chapter is to present a systematic methodology for performing qualitative or
structural experimental design.

This chapter provides an attempt towards development of a systematic method-
ology for qualitative experimental design based upon the notion of qualita-
tive identifiability. The presented methodology focuses upon reaction networks
where determination of approximate kinetics can be very beneficial for subse-
quent reactor design and control.

The chapter is organized as follows. Section 4.2 describes the proposed
methodology and the work-flow of the systematic algorithm is given in Sec-
tion 4.3. Section 4.4 describes the enzymatic reaction network model, Section
4.5 illustrates the application of the proposed algorithm. Finally, Section 4.9
concludes the paper.

4.2 Methodology

The methodology developed in this chapter is based on ensuring structural
parameter identifiability. The aim is to define the necessary measurement sets
and desirable inputs perturbations in order to render a maximum number of
parameter structurally identifiable in a selected model.

In principle, the methodology, formulates and solves iteratively, a series of
smaller problems then it builds around the results by considering more com-
plex subproblems until the aim is reached or the possible measurements and
perturbation sets are exhausted. Each subproblem represents a qualitative ex-
perimental design problem where a subset of measured states and/or perturbed
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inputs are considered simultaneously. Each qualitative experimental design
subproblem is solved by a two phase approach. The first phase, determines
which reaction rates are identifiable based upon a stoichiometric analysis. In
the second phase, for the identifiable rates, a method based on Lie derivatives is
employed to determine which parameters are structurally globally identifiable
and which are not. Both tools have been introduced in chapter 3. In this way
for each proposed set of measured states and perturbed inputs a set of struc-
turally identifiable parameters is determined. Once the subproblem is solved
then the vectors of measured states and perturbed inputs are augmented with
new candidates and a new problem is formulated and subsequently solved.

There are two cases considered for qualitative experimental design. In the
first case, the model has been formulated but there is neither specification
concerning which states are measured nor which inputs are to be perturbed.
In this case, the algorithm starts simply by considering a single measured state
and successively the number of measured states is increased. For perturbing
inputs a similar strategy is applied e.g. no input is varied at the beginning.
Then, one extra input is considered etc.

The second case deals with retrofitting an experimental design where it is
assumed that, some settings are given already where a series of states are
already being measured and the analysis starts from there and then builds
around this set of measurements.

4.3 Workflow of structural experimental design

In Figure 4.1, the work-flow of the structural experimental design methodology
is outlined. The steps are detailed for each of the two phases.

Phase 1:

• Step 1 and step 2 of the algorithm presented in Figure 4.1 concerns for-
mulation of the reaction network under investigation based upon physical
knowledge together with the associated stoichiometry.

• Step 3 establishes the number of the species measured. It can be only
one in the first case, as discussed above, or larger if there are already
some states which are being measured in the retrofit case. This step is
user dependent, which means the user can decide how many states are to
be considered.

• Step4. In this step, given the number of measured species and based on
the stoichiometry, all the possible combinations of species rendering a
number of identifiable rates equal to the number of measured species are
computed and listed.

• In Step 5 from the complete list of possible combinations of measured
species, the preferred species will be selected by the user. For instance,



76 Qualitative experimental design for nonlinear dynamic reaction networks

some experimental setup may already exist and can provide measure-
ments for the specific states considered.

• Step 6 Determines the identifiable reaction rates for the selected measured
species. A criterion introduced by Brendel et al. (2006) utilizing only the
information related to the reaction stoichiometry is used.

• In step 7 The kinetic expressions together with the associated parameters
are now considered. The parameter vectors to be investigated for identifi-
ability are formulated for each combination of identifiable reaction rates.
The parameter vector corresponding to one selected set of identifiable
reaction rates is investigated in the subsequent steps.

• Step 8 computes the first order Lie derivative which represents the first
term of a power series expansion.

• In step 9 terms related to the perturbed inputs may be included. The
number of parameters included in the current parameter subset is set
equal to the number of measured states n.

• In step 10 a subset of parameters ipset, equal to the number of equations,
is chosen from the full parameters set to be investigated.

• In step 11 a system of equations is formed by stacking together the first
order Lie derivatives, during the first iteration. When following the loop
the second or third time the system of equations will be formed by con-
sidering higher order terms as well.

• In step 12 the equation system formed during the previous step is solved
analytically for all possible combinations of parameter subsets containing
ipset parameters taken from the full parameter set. If a unique solution
is found, then the parameter set is structurally globally identifiable. Af-
ter solving for all the possible combinations, the number of parameters
included in the analysis is increased by one and correspondingly an extra
Lie derivative term is included in step 11.

• Step 13 includes higher order Lie derivatives if necessary in order to form
a fully determined system of equations.

• If the system of equations solved in step 12 did not provided a unique
solution, in step 14, equations obtained from higher order Lie derivatives
are considered in the equation vector.

• Step 15 After all measured states are investigated, then potential addi-
tional measured states are considered by reiteration to step 6.

The procedure is iterated until all possible combinations of higher ipset are
considered. The whole loop of computing additional derivatives and solving for
the various parameter combinations, is terminated if the number of parameters
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Figure 4.1: Workflow of qualitative experimental design methodology I
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Figure 4.2: Workflow of qualitative experimental design methodology II
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Figure 4.3: Workflow of qualitative experimental design methodology III
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considered is equal to the number of parameters included in the full parameter
set (npar) defined in step 7, or if the maximum order of the Lie derivation has
been reached.

If perturbed inputs are present initially, the work-flow is almost similar except
during steps 9,10 and 14 as discussed below.

Step 9 concerns the calculation of mixed first order Lie derivatives with re-
spect to the inputs.

In step 10 and step 14 where the different equations are selected to form
the system of equations, the mixed Lie derivatives containing the influence of
the input(s) are considered with priority to lower order Lie derivatives without
inputs if they are less complex.

At this point the analysis is completed for the given inputs and the selected
measured states selected in step 5. Thus, it is necessary to choose whether
the analysis should proceed by considering an extra input and/or an extra
measured state.

The way to choose the extra state is as follows. In step 15 all the possible
combinations of nms + 1 measured states are determined. In a screening step,
only combinations containing the nms previously measured states in the Xm

vector species will be selected. The extra states are stored in the Nmset vector.
This screening step reduces drastically the number of possible extra species to
be measured. In an extra loop the extra species are tested individually one at
the time. First, a state Xadd is selected if it was not previously rejected and
then added to the vector of measured states Xm. In step 16 the first order Lie
derivative is computed for this state, and then all the inner loops after step 9
are followed again but with the new settings.

If an extra input is considered, in step 17 the extra mixed first order Lie
derivative is computed and then the inner loops are followed accordingly.

Once the new set of measured states is analyzed, some possible results can
occur.

• The first case occurs when the extra state does not render any extra
parameter identifiable. Then the state Xadd will be included in the vector
Xnot which stores the rejected measured state candidates.

• The second case occurs when extra parameters could be rendered identi-
fiable but there are still some potentially identifiable parameters, ipset <
npar. Then the newly added state is kept in Xm. Subsequently an input
is considered to render these parameters identifiable.

• The third case occurs when all remaining parameters are rendered iden-
tifiable, then the newly added state is kept in Xm.

The procedure continues until all the measured states and all possible inputs
are included or until all the model parameters are found to be structurally
identifiable. The value of npar will increase with every new state accepted to
be measured.
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4.4 Example Process

There is an increasing interest in producing complex intermediates and expen-
sive fine chemicals in the pharmaceutical industry using biochemical synthesis.
Presently, only a few bio-transformation steps are involved in complex synthe-
sis in industry, although enzymes are widely known as being specific, fast and
working under mild conditions. To develop a purely enzymatic synthesis for
complex molecules from simple substrates, often relatively large reaction net-
works are necessary. One way to achieve such a functional network is by using
a so-called System of Bio-Transformations (SBT). An SBT is based on parts
of the metabolic network of a microorganism containing the synthesis pathway
including cofactor regeneration reactions down to the desired product, which
most often is an intermediate in the metabolic network. Suitably genetically
modified mutants of E-coli are here used to produce the metabolic network
for an SBT (Schümperli et al. 2007). The mutants are grown up to a certain
level. Deletion of the genes for enzymes catalyzing reactions which compete
with the desired pathway is triggered a short while before the cultivation is
terminated. Subsequently the cells are isolated by centrifugation. The cells
are then resuspended in a buffer. The cell walls are destroyed by high pres-
sure homogenization and the resulting particles are removed by filtration. The
cell free liquid extract is recovered and then the desired protein concentration
is obtained by dilution with a buffer solution. The bio-transformations are
performed with the cell free extract in the production phase, combining the
easy handling of a viable culture for producing the desired enzymes with the
advantages of in vitro bio-transformations. For this example, the key product
is Di-hydroxy-acetone phosphate (DHAP), which represents an important pre-
cursor for the production of phosphorylated, non-natural carbohydrates. The
DHAP-producing SBT contains all the enzymes for the glycolysis reactions ex-
cept the ones corresponding to the genes which were deleted prior to cessation
of cultivation, leading to a system of high complexity. Below, the developed
structural parameter identifiability analysis is illustrated on a relatively simple
mass action model for the SBT.

4.4.1 Model formulation

Since the system described above is a complex dynamic system, it is not realistic
to develop a ”perfect model” using purely first principle engineering methods.
Thus, in this work a grey-box stochastic model development framework (Kris-
tensen et al. 2004b) is used to develop a grey-box stochastic state space model
for the purpose of reaction network de-bottlenecking. The idea behind devel-
oping such a model is to have the possibility to combine the limited amount
of data e.g. measured states with available first principle engineering knowl-
edge. A large model considering all the possible intermediates will inherently
contain a large number of parameters which in practice would be impossible to
validate against limited available data. In such cases only an educated guess
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can be used for many parameters and estimating them will lead to uncertain
estimates. For practical reasons this section only describes the deterministic
part of the grey-box model. A sketch representing the most important reac-
tions occurring in the SBT is given in Figure 4.4. The sketch will form the
basis for formulating the model equations.

Figure 4.4: The simplified reaction network used in this analysis

There are 7 enzymatic reactions included in this network in Figure 4.4. It
is assumed that except degradation of DHAP the remaining reactions are re-
versible. It is assumed that the reversible reaction kinetics can be described by
simple mass action terms as follows:

r1 = r1maxfcGLcATP − r1maxbcG6P cADP

r2 = r2maxfcF16B − r2maxbcDHAP cG3P

r3 = r3maxfcG3P cNADcPO4cADP − r3maxbcPY RcNADHcATP

r4 = r4maxfcPY RcNADH − r4maxbcLACcNAD

r5 = r5maxfcATP − r5maxbcADP

r6 = r6maxfcDHAP

r7 = r7maxfcG6P cATP − r7maxbcADP cF16B (4.1)

For each chemical compound a dynamic mass balance is formulated as shown
below. Since the reactor is a (fed-)batch reactor the model does include an input
flow-rate.
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Measurements equations are included as well, in practice one individual state
or some simple combinations of more states are measured. Four species are
currently measured during the batch experiments while for the last two mea-
surement equations only the initial conditions are known. In the analysis, it
is thus considered that only the four states are measured. Using the notation
introduced above the y equations for this case are simply the states which are
being measured:

y1(cGL) = cGL

y2(cG6P ) = cG6P

y3(cDHAP ) = cDHAP (4.3)
y4(cATP ) = cATP
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4.5 Qualitative experimental design for the en-
zymatic reaction network (SBT)

In the following, the methodology described in section 4.2 is illustrated on the
enzymatic reaction network model described above. The analysis uses the case
where a set of species are already being measured in a given setting i.e. the
second case according to Section 4.2. Initially, no new (i.e besides the initially
supplied amounts of substrates and cofactors) perturbing input is considered.
The full stoichiometric matrix for the network described above is given below.

1 2 3 4 5 6 7 8 9 10 11 12
GL ATP G6P ADP F16B DHAP G3P PO4 NAD NADH PYR LAC

r1 -1 -1 1 1 0 0 0 0 0 0 0 0
r2 0 0 0 0 -1 1 1 0 0 0 0 0
r3 0 2 0 -2 0 0 -1 -1 -1 1 1 0
r4 0 0 0 0 0 0 0 0 1 -1 -1 1
r5 0 -1 0 1 0 0 0 1 0 0 0 0
r6 0 0 0 0 0 -1 0 0 0 0 0 0
r7 0 -1 -1 1 1 0 0 0 0 0 0 0

Table 4.1: Full stoichiometric matrix N for the reaction network

The seven reactions considered in the network are independent since the rank
of the stoichiometric matrix is 7. The matrix is split into two matrices cor-
responding to the species measured and unmeasured respectively. The matrix
containing the measured species is denoted Nm, and the one containing the
unmeasured species Nu.

GL ATP G6P DHAP

r1 -1 -1 1 0
r2 0 0 0 1
r3 0 2 0 0
r4 0 0 0 0
r5 0 -1 0 0
r6 0 0 0 -1
r7 0 -1 -1 0

Table 4.2: Stoichiometric matrix Nm for the four originally measured species

First, all the possible combinations of four reaction rates obtained from the
full set composed of seven reaction rates. The identifiable combinations of
rates, for which the identifiability criterion, Eq. 3.2, was fulfilled are given
below in Table 4.4:

For each of the combinations present in Table 4.4, the analysis has been per-
formed. The combinations of parameter with maximum of parameters rendered
identifiable are given below in tabular form.
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ADP F16B G3P PO4 NAD NADH PYR LAC

r1 1 0 0 0 0 0 0 0
r2 0 -1 1 0 0 0 0 0
r3 -2 0 -1 -1 -1 1 1 0
r4 0 0 0 0 1 -1 -1 1
r5 1 0 0 1 0 0 0 0
r6 0 0 0 0 0 0 0 0
r7 1 1 0 0 0 0 0 0

Table 4.3: Stoichiometric matrix Nu, for the unmeasured species

Combination Identifiable Rates

1 r1 r5 r6 r7
2 r1 r3 r6 r7
3 r1 r2 r5 r7
4 r1 r2 r3 r7

Table 4.4: Identifiable combinations of reaction rates for the enzymatic reaction
network with the four original measurements

4.5.1 Combination r1, r5, r6, r7

The Lie derivatives as introduced in chapter 3, Eqs: 3.4-3.5, are formulated in
order to obtain the algebraic equations required for the structural identifiability
analysis. The algebraic equations are grouped and solved analytically in order
to assess the identifiability property of the parameters.

Table 4.5 contains all the combinations of equations formed with Lie deriva-
tives for which a unique solution was found for the first combination of identi-
fiable rates.

Comb. r1maxb r1maxf r5maxb r5maxf r6maxf r7maxb r7maxf

1 Lfh2 Lfh1 Lfh3 Lfh4 LfLfh2 LfLfLfh1 LfLfLfh4

Table 4.5: One combination of Lie derivatives for which a unique solution was
found with the four original measurements

4.5.2 Combination r1, r3, r6, r7

When selecting all the seven parameters appearing in the selected set of reaction
rates kinetic equations a unique solution could be found for multiple combi-
nations of the Lie derivatives. This time it was possible to obtain a unique
solution by using only the first and the second order Lie derivatives. Table 4.6
contains one combination of equations formed with Lie derivatives for which a
unique solution was found for the second combination of identifiable rates.
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Comb. r1maxf r1maxf r3maxf r3maxb r6maxf r7maxb r7maxf

1 Lfh1 Lfh3 LfLfh1 Lfh4 LfLfh2 LfLfh4 LfLfh3

Table 4.6: One combination of Lie derivative for which a unique solution was
found

4.5.3 Combination r1, r2, r5, r7

Table 4.7 contains one of the combinations of equations formed with Lie deriva-
tives for which a unique solution was found for the third combination of iden-
tifiable rates. It can be noticed that all the eight parameters were rendered
identifiable.

Comb. r1maxb r1maxf r2maxb r2maxf r5maxb r5maxf r7maxb r7maxf

1 Lfh1 Lfh3 LfLfh2 LfLfh3 LfLfh1 LfLfLfh4 LfLfLfh3 Lfh4

Table 4.7: One combinations of Lie derivatives for which a unique solution was
found

4.5.4 Combination r1, r2, r3, r7

Table 4.8 contains one of the combinations of equations formed with Lie deriva-
tives for which a unique solution was found for the last combination of identifi-
able rates. It can be noticed that for this combination all the eight parameters
were rendered identifiable.

Comb. r1maxb r1maxf r2maxb r2maxf r3maxb r3maxf r7maxb r7maxf

1 Lfh1 Lfh3 Lfh2 LfLfh3 LfLfh1 LfLfh4 LfLfLfh1 LfLfLfh4

Table 4.8: One combination of Lie derivatives for which a unique solution was
found

Having analyzed all four identifiable reaction rate combinations, and deter-
mined that all the parameters could be structurally identifiable for the third
and fourth combinations. Thus the question is which additional state to mea-
sure?

4.5.5 One extra measured state

The method will be illustrated using the fourth combination r1, r2, r3, r7 above.
It is desired first to investigate r4 to be included included in the set of identi-
fiable reaction rates. Considering the five reaction rates, all possible combina-
tions of 5 measured species including the original ones have been determined
and are listed in Table 4.9. In the following, number 12 is for Lactate, 11 for
Pyruvate, 10 for NADH and 9 for NAD. according to the stoichiometric matrix,
Table 4.1.
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No Species

1 GL ATP G6P DHAP LAC
2 GL ATP G6P DHAP PYR
3 GL ATP G6P DHAP NADH
4 GL ATP G6P DHAP NAD

Table 4.9: Combinations of species rendering the five reaction rates identifiable

For practical reasons, i.e. ease of measurement, Pyruvate is preferred to other
compounds that would render the five reaction rates identifiable. Analyzing the
results in Tables: 4.5 and 4.8, it seems that Lfh1 , Lfh2, Lfh3 occurs in all the
combinations rendering a unique solution. Lfh4 occurs in almost all the com-
binations. Thus all the first order terms will be considered. As for the second
order terms LfLfh2, LfLfh3, LfLfh4 occurs quite frequently. LfLfh1 occurs
alternating with Lfh4. Thus these eight equations will be used with priority.
First and second order Lie derivative are computed for Pyruvate Lfh5. Hav-
ing four measured species rendered 8 parameters globally identifiable. Thus
is expected to have at least 9 parameters globally identifiable after including
Pyruvate as a new measurement. When considering combinations of 9 param-
eters simultaneously it was indeed possible to find a unique solution for many
parameter sets. Table 4.10 contains one set of globally identifiable parameters.

Eq Lfh5 Lfh2 Lfh1 Lfh3 LfLfh1 LfLfh2 LfLfh3 LfLfh4 LfLfh5

1 r1maxb r1maxf r2maxb r2maxf r3maxb r3maxf r4maxb r4maxf r7maxb

Table 4.10: One combination of parameters for which a unique solution was
found

In the next step an unfruitful attempt was performed to solve for all 10
parameters occuring in the corresponding kinetic equations. Including higher
order Lie derivatives in the equation set did not render all the parameters to
be globally identifiable either. Thus one extra parameter was rendered globally
identifiable and Pyruvate is included in the measured states vector.

4.5.6 Glucose feed input and five measured states

An input perturbation to the process is considered at this moment. The con-
sidered perturbed input is the Glucose feed. By considering the input to the
process, the parameter vector to search for remains the same, but it is ex-
pected that at least one extra parameter becomes globally identifiable. Besides
the first order mixed terms, first and second order Lie derivatives are used
when forming the system of equations. One of the combinations of equations
rendering all 10 parameters globally identifiable is given in the Table 4.11. In
Table 4.11, the mixed Lie derivative is denoted with a g corresponding to the
input function.

Based upon the information in Table 4.11 only one mixed term was necessary
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No r1maxf r1maxb r2maxb r2maxf r3maxb r3maxf r4maxb r4maxf r7maxb r7maxf

2 Lfh1 Lfh3 Lfh4 Lfh5 LfLfh1 LfLfh2 LfLfh3 LfLfh4 LfLfh5 LgLfh3

Table 4.11: One combination of Lie derivative for which a unique solution was
found for ten parameters when perturbing Glucose feed with five measurements

to render all 10 parameters identifiable. In fact the search could have been
stopped as soon as one combination of equations rendering all the parameters
globally identifiable was found.

4.6 Considering a sixth measured state

The aim is now to render six reaction rates identifiable. In order to do so
one extra state is included in the set of measured states. A few options are
available after determining again all the possibilities in terms of extra states to
be measured. First of all the aim is to render r5 identifiable. Table 4.12 gives all
the possible combinations of six measured species, including the aforementioned
five.

No Species

1 GL ATP G6P DHAP PYR LAC
2 GL ATP G6P DHAP PYR PO4
3 GL ATP G6P DHAP PYR G3P

Table 4.12: Combinations of species rendering six reaction rates identifiable
with six measurements

Analyzing the results it seems like there are three possibilities. In the follow-
ing Table 4.1 component number 12 is Lactate, 8 is Phosphate (PO4) and 7 is
G3P.

4.6.1 Lactate as sixth measured state

In a first attempt, Lactate (LAC) is considered as additional measured state.
The procedure is followed first without input and then considering a perturbed
input. For the case with no input perturbation, the first two order Lie deriva-
tives have been computed Lfh6 and LfLfh6. Having no input, at least ten
parameters should be globally identifiable, thus the search starts with 10 pa-
rameters. Table 4.13 lists the equations rendering a unique solution and the
combination of parameters founded to be globally identifiable.

No Lfh1 Lfh2 Lfh3 Lfh5 LfLfh1 LfLfh2 LfLfh3 LfLfh4 LfLfh5 LfLfh6

1 r1maxf r1maxb r2maxf r2maxb r3maxf r3maxb r4maxf r4maxb r7maxf r5maxf

Table 4.13: One combination of ten parameters for which a unique solution
was found with six measurements
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An attempt to find 11 parameters globally identifiable related to the con-
sidered six reaction rates was unfruitful. Instead, only multiple solutions have
been found, thus rendering the parameter set to be only locally identifiable.

4.6.2 Six measured states and the Glucose input

Considering Lactate as the sixth measured state a perturbed input is inves-
tigated. However including this input, no more than 10 parameters could be
rendered globally identifiable, thus Lactate is discarded as a candidate for mea-
sured states.

4.6.3 G3P as sixth measured state

When including another sixth measured state, according to Table 4.12 a second
possibility is G3P. Again, the first and second order Lie derivatives have been
computed and included in the selected equations. This time the search was
initiated with a parameter vector containing 11 parameters related to the six
reaction rates. The search for a globally identifiable set of parameters was
fruitful and the list of parameters/equations used are included in Table 4.14.

No. Lfh1 Lfh2 Lfh3 Lfh5 LfLfh1 LfLfh2 LfLfh3 LfLfh4 LfLfh5 LfLfh6 Lfh6

1 r1maxf r1maxb r2maxf r2maxb r3maxf r3maxb r4maxf r4maxb r5maxf r7maxf r5maxb

Table 4.14: A combination of eleven parameters for which a unique solution
was found with six measured states

The search for a set of 12 parameters globally identifiable was un-fruitfull. As
results only multiple solutions have been found, thus the parameter set could
be deemed to be only locally identifiable.

4.6.4 Six measured states and the Glucose input

The Glucose input perturbation is included again in the analysis. The first
order mixed term of the Lie derivatives is included and a set of equations
containing one mixed term is found to render a unique solution for a parameter
set of 12 parameters.

Lfh1 Lfh2 Lfh3 Lfh5 LfLfh1 LfLfh2 LfLfh3 LfLfh4 LfLfh5 LfLfh6 Lfh6 LgLfh5

r1maxf r1maxb r2maxf r2maxb r3maxf r3maxb r4maxf r4maxb r5maxf r5maxb r7maxf r7maxb

Table 4.15: Parameter sets for which a unique solution was found with six
measured states and an input perturbation

Thus including G3P and considering an input perturbation rendered all the
parameters related to the six reaction rates to be globally identifiable.
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4.7 Seven measured states

There is only one reaction rate and one parameter left thus it is desirable to
include an extra measured state. The procedure is reiterated and the com-
binations of seven measured species containing the previous six, have been
determined and listed in Table 4.16.

No Species

1 GL ATP G6P DHAP G3P PYR LAC
2 GL ATP G6P DHAP G3P PYR PO4
3 GL ATP G6P DHAP G3P PYR F16B

Table 4.16: Combinations of species rendering the seven reaction rates identi-
fiable

When analyzing for all the seven reaction rates then, three combinations
were found to theoretically render all the seven reaction rates identifiable. All
of them contains the previous six measured species. Number 8 corresponds to
Phosphate, number 5 corresponds to F16B and finally number 12 to Lactate.
Since Lactate did not improved the identifiability previously it will not be
considered again. Thus two possibilities are left.

4.7.1 PO4 included as measured state

According to the stoichiometric matrix for the measured species, including
PO4 in the measured states should render all 7 reaction rates identifiable. In
other words it should be possible to find a globally identifiable parameter set
containing parameters from all the seven rates, i.e. at least a parameter set
containing r6maxf should be globally identifiable. A set of 12 parameters was
found to be globally identifiable but the parameters set did not included any
parameter related to r6. An attempt to find a reduced set of 11 parameters
to be globally identifiable, containing r6maxf was performed but it was un-
fruitful. Only multiple solutions were obtained and therefore the parameter
set, including the r6maxf is locally identifiable.

4.7.2 PO4 included and the Glucose input

In an attempt to render all the parameters globally identifiable an input as Glu-
cose feed is considered. Several combinations of equations have been used and
solving them, only resulting in multiple or undetermined solutions. However
by no means it was possible to render a combination of at least 12 parameters
containing r6maxf to be globally identifiable.

4.7.3 F16B instead of PO4

The last available possibility is the inclusion of F16B in the measured states.
F16B was considered as measured state and the first and second order Lie
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derivatives have been computed. The search was initiated with combinations
of 11 parameters including r6maxf but no combination was found to be globally
identifiable. Again only multiple solutions were found thus the parameter sets
are only locally identifiable.

4.7.4 F16B instead of PO4 and Glucose input

The last attempt to render a set of parameters at least containing r6maxf

was to include an input perturbation. Considering the Glucose input did not
help either in finding a unique solution for the parameter set. At least with
the considered combinations of equations. By considering a seventh measured
species it was not possible to render r6maxf globally identifiable together with
the rest of the parameters. Neither including PO4 as a measured species,
nor including F16B could render the parameter set including r6maxf globally
identifiable. However including PO4 as a measured state helped identifiability
of the rest of parameters. By using the Lie derivatives obtained from this state
it was possible to render all the remaining 12 parameters globally identifiable
without including a Glucose feed input perturbation.

4.8 Discussion

First, the four measured states were considered in the analysis. Pyruvate was
included in the measured states and it improved the identifiability by render-
ing a maximum of nine parameters globally identifiable. The ninth parameter
compared with the previous step was a parameter related to r4 which was in
accordance with the conclusions of the stoichiometry analysis. In the next step
the Glucose input has been considered additionally. Including the input per-
turbation improved again the identifiability for 10 parameters corresponding to
the reaction rates: r1, r2, r3, r4, r7. In order to investigate the identifiability
of the parameters of r5, the stoichiometric analysis showed that LAC or G3P
could be included in the measured states. G3P was considered in the set of
measured species and rendered one extra parameter globally identifiable. An
input perturbation has been considered again and this helped the identifiability
by rendering all parameters related to reaction rates: r1, r2, r3, r4, r5, r7 glob-
ally identifiable. According to stoichiometric analysis applied for 7 measured
species PO4 or F16B could be included in the measured states. Including PO4
improved the identifiability, by rendering 12 parameters globally identifiable
without input perturbation but the parameter set did not contained r6maxf .
Considering the input again did not bring new qualitative information either.
The fact that having PO4 measured rendered extra parameters globally iden-
tifiable shows interactions that the stoichiometric analysis could not detect.

The last step was repeated for F16B as an additional measured state. This
choice did not improve the identifiability since not even a combination of 11
parameters became globally identifiable using Lie derivatives derived from this
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state. Considering a perturbed input did not help either. The optimal set of
outputs-inputs that can render maximum of 12 parameters identifiable is five
measured states: GL, G6P, ATP, DHAP, G3P and the glucose input or the six
measured states GL, G6P, ATP, DHAP, G3P and PO4.

The fact that the parameter set containing r6maf can not be rendered globally
identifiable can be related to the fact that for the reaction degrading DHAP no
product is defined. The analysis could be initiated using a different set of states
or maybe considering perturbation in other inputs. The stoichiometric analysis
shows all the combinations of measured species and reaction rates once the
stoichiometric matrix and the number of measured states is provided. The way
to choose an extra measurement or an input perturbation ultimately depends
on what is more expensive or difficult to perform in practice. Qualitative
experimental design and qualitative identifiability analysis are in fact just two
related issues of model development. Identifiability analysis starts out from a
given setting in terms of measured states and perturbed inputs to determine the
qualitatively identifiable parameters. Qualitative experimental design tries to
determine the minimum number of measured species and(or) perturbed inputs
to render a maximum number of parameters identifiable. Furthermore the
states to be considered for measurement and the inputs to be perturbed are
determined.

The proposed approach for qualitative experimental design has been most
useful for pinpointing which potential model structures and measurement sets
could render the model parameters globally identifiable. However, when work-
ing with more realistic enzyme kinetic expressions the parameter identifiability
analysis becomes more complex in that a rather nonlinear set of equations
should be solved symbolically. Hence for such cases a simpler methodology can
be desirable.

4.9 Conclusions and Future work

A methodology for a-priori assessing structural identifiability of the model pa-
rameters and performing qualitative experimental design for reaction networks
models is introduced. This methodology, is illustrated through a real life case
study on a model derived from an enzymatic reaction network. The methodol-
ogy is based on incorporating knowledge about the reaction network in terms
of reaction stoichiometry and kinetics to ensure global model parameters iden-
tifiability in a systematic manner.

One drawback is that there is no upper bound for the order of the Lie deriva-
tion required to achieve a system of algebraic equations which render the pa-
rameter set globally identifiable. For the case where inputs are perturbed,
the number of equations available is much larger even when using only first
or second order Lie derivatives of the measured states to form the system of
algebraic equations. The complexity of the equations is reduced significantly
and the need for the higher order derivative information is thereby reduced.
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The results of this analysis are qualitative, thus only deterministic aspects are
considered.

However, even with all limitations the results of this procedure provides a
very valuable a-priori basis for quantitative experimental design for parameter
estimation and subsequent model (in-)validation.
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5

Quantitative experimental
design for parameter

estimation

Abstract

An important step during dynamic model development is to design informa-
tive experiments. Design of experiments for dynamic models may be decom-
posed into qualitative experimental design and quantitative experimental de-
sign. Qualitative experimental design determines which states to be measured
and which inputs to be perturbed. While the aim of quantitative experimen-
tal design is to maximize the information for parameter estimation to reduce
the uncertainty of the parameter estimates by experimental design variables
such as the initial values of the system states, the input profiles and the sam-
pling times. The connection between quantitative design of experiments and
parameter estimation is given by the Kramer-Rao inequality which provides a
lower bound for the parameter uncertainty for unbiased estimates. This con-
tribution addresses the problem of quantitative experimental design for models
formulated using stochastic differential equations. The proposed method uses an
iterated extended Kalman Filter for integrating the system of stochastic differ-
ential equations which is an integral part in computing the maximum likelihood
function used further in the evaluation of the Fisher Information matrix. The
method is demonstrated to provide a sound design for a benchmark fed-batch
reactor experimental design.

5.1 Introduction

For many applications such as design, control, optimization, in chemical and
biochemical engineering it is desirable to develop quantitative mechanistic dy-
namic process models used to describe and understand the process under inves-
tigation. In principle physical modeling generates complex nonlinear dynamic
models in the form of systems of ordinary differential algebraic equations or
stochastic differential equations containing many parameters which needs to be



96 Quantitative experimental design for parameter estimation

estimated. For some parameters, like saturation constants if enzymatic cataly-
sis is employed, or diffusion or heat transfer coefficients, numerical values can
be available in the literature or from previous experiments, for others only
limited knowledge is available. It is therefore necessary to perform parameter
estimation and validation of the model performance against experimental data.
Generating and collecting experimental data is an expensive operation and in
order to reduce the amount of data required, experimental design is a prerequi-
site step. Performing model based experimental design implies maximizing the
information content for parameter estimation while minimizing the number of
experiments. Experimental design consists in principle of two phases: qualita-
tive experimental design and quantitative experimental design as discussed in
Chapter 4. Qualitative experimental design concerns determining which input
variables should be varied and which outputs should be measured in the exper-
iment in order to be able to render the unknown model parameters identifiable
assuming a known model structure. Quantitative experimental design, based
upon the selected inputs and outputs, concerns determining the input profiles,
the initial values of the states and the optimal measurement sampling times.

Quantitative experimental design for dynamic models has been addressed by
several authors. A key review on the topic is provided by Walter and Pronzato
(1990) where the focus is mainly on linear models. When performing quanti-
tative experimental design, however, for linear dynamic systems it is possible
to convert the model from time domain into the frequency domain (Sadegh
et al. 1995), and then determine the optimal set of frequencies for inputs. For
nonlinear dynamic models which are nearly linear, a common approach is to
linearize the model around the operational state of the process and then to
apply the same strategy as for linear models. Körkel et al. (1999), Bauer et al.
(2000), developed the concepts and algorithms for quantitative experimental
design for nonlinear dynamic models in forms of systems of ordinary differ-
ential or differential-algebraic equations. Asprey and coworkers, (Asprey and
Macchietto 2000), (Asprey and Macchietto 2002) further address the problem
of quantitative experimental design for nonlinear dynamic systems.

If the models structure is deficient or more model structure candidates are
available, then it is possible to design experiments to discriminate in an optimal
way between two or more possible candidates (Asprey and Macchietto 2000,
2002, Chen and Asprey 2003, Chen et al. 2004).

The focus of this work is however the quantitative experimental design for pa-
rameter estimation. Depending on the level of prior knowledge available about
the model parameters two approaches are considered. In the first approach
some information about the parameter distribution considered in the optimiza-
tion criterion Walter and Pronzato (1990) obtaining either an expected value
design or a classical D design. In this case the choice of experimental decision
variables maximizes the expected value over the population of possible param-
eter values (Asprey and Macchietto 2002). The experiments designed in this
way are good on average but can be poor for some parameter values (Walter
and Pronzato 1987, Asprey and Macchietto 2000).
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In the second approach the idea is to compute a design which tries to max-
imize the informational content for any value of the parameters. Using this
approach the only prior information about θ is the admissible domain Θ. In
this way the design attempts to ensure acceptable performance for all possible
values of θ. The max-min approach have had a limited use due to the bur-
densome computations associated with. In order to circumvent this problem
Asprey and Macchietto (2000), Asprey and Macchietto (2002) proposed a se-
quential algorithm derived from the worst case approach and they denote this
as robust R-optimal experimental design.

In a subsequent paper, Benabbas et al. (2005) investigated a criterion in-
cluding information about the curvature of the response surface. In order to
further account for non-liniarity of the system, a criterion based on global sen-
sitivity analysis has been introduced more recently by Rodriguez-Fernandez
et al. (2007).

However for stochastic differential equation models the topic of quantitative
experimental design constitutes a subject of limited investigations so far. An
approached exploiting the frequency domain has been employed by Sadegh
et al. (1994) for linear systems.

In the present contribution quantitative experimental design is developed for
models described by input affine stochastic differential equations. The purpose
is to address the issue of including prior knowledge about the parameters and
possibly also their distribution function.

The main contribution of this chapter is the development of a procedure
for performing quantitative experimental design for parameters estimation and
model (in-)validation for processes described by stochastic differential equa-
tions. The classical local D-design criterion, i.e. criteria given in Eqs. 5.9–5.10,
is used here based upon on an estimate of the Fisher Information Matrix (FIM)
for SDEs models. The criterion is denoted (SD)-optimal stochastic D design.

The developed software implementation is applied to a simple engineering
example represented by a bio-reactor model as a benchmarking case.

The remainder of the chapter is organized as follows. Section 5.2 describes
the systematic methodology, to perform quantitative experimental design for
stochastic differential equations models, then Section 5.3 presents the work-
flow of the implemented algorithm. Section 5.4 introduces the benchmarking
case study. Section 5.5 discusses the results and concludes the chapter.

5.2 Methodology

The quantitative experimental design for stochastic differential equations is
solved as a dynamic optimization problem where the design variables are the
initial values of the stochastic states, the input profiles, the sampling times
with the objective to maximize the information content in the measurements,
desired for parameter estimation. The information content for a specific model
is stored in the Fisher Information Matrix. The Fisher Information Matrix
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(FIM) is computed as the negative expectation of the second derivative of the
log-likelihood function. The objective function for quantitative experimental
design case is a standard scalar measure of the FIM e.g. the determinant of the
matrix (D criterion), or the ratio of the maximum and the minimum eigenvalues
i.e. the (A criterion) or another metric. Since the experimental data are to be
collected for parameter estimation, initially the focus will be on all parameters,
thus the D-optimal experimental design will be considered in this contribution.
The work-flow used for calculating the design objective is illustrated later in
Figure 5.2 and described in section 5.3 .

In this work the inputs are assumed piecewise constant. The notation used
here:

1. the initial value of the state x0i, i ∈ (0, N)

2. the sampling time tspi, i ∈ (0, nsp)

3. the switching time for the inputs tswi,j , i ∈ (1, nu), j ∈ (1, nsw)

4. the values of the input ui,j , i ∈ (1, nu), j ∈ (1, nsw)

In order to obtain a problem of a manageable size, the sampling time will be
considered the same for all measured states and the switching time will be
considered the same for the inputs. In an extended formulation the sampling
time could be allowed to be different for each of the measured states. The same
can be applied to the switching times. Various constraints can be imposed on
the design variables:

1. bounds on x0
L
i ≤ x0i ≤ x0

U
i , i = 1, . . . ,M

2. bounds on uLi,j ≤ ui,j ≤ uUi,j , i = 1, . . . , nu, j = 1 . . . , nsw

3. inequality constraints ∆tspminl ≤ tspl − tspl−1 ≤ ∆tspmaxl , l = 1, . . . , nsp

4. inequality constraints ∆tswmini,j ≤ tswi,j − tsw−1i,j ≤ ∆tswmaxi,j , i =
1, . . . , nu, i = 1, . . . , nsw

5. tswi,nsw ≤ tspnsp, i = 1, . . . , nu

In this framework the difficulty arises from two points. The first is related to
the nature of the stochastic differential equations and subsequently the evalu-
ation of the log-likelihood function and the second from the evaluation of the
expectation of the second derivative of the log-likelihood function. The opti-
mization problem to be solved is thus a constrained nonlinear and stochastic
optimization problem.
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5.2.1 Optimization

For solving this optimization problem a differential-evolution (DE) based al-
gorithm is employed. The motivation for this choice stems from the fact that
it is a global optimization algorithm, which can handle constraints and the
objective function can be noisy. Moreover it is reported to be one of the fastest
algorithm for a global search in terms of number of function evaluations needed
to achieve acceptable convergence (Storn and Price 1996).

The original version of differential evolution was introduced by Storn and
Price (1995), Storn (1996), Storn (1997). Important extensions for handling
multiple optimization criteria as well as constraints were introduced by Lampinen
(2002). Particularly, Kukkonen and Lampinen (2005) has introduced the so
called generalized differential evolution strategy (GDE), where an arbitrary
number of objectives and constraints can be handled.

Differential evolution works with a population PG, of parameter vectors to
be optimized. Within the population, each member or candidate represents a
vector of the design variables ϕ to optimize. These candidate solutions evolves
over a number of generations Gmax which is specified in advance.

A constant population, consisting of NP individuals characterized by real-
valued vectors ϕi,G, is used. The i indexes the population and the subscript G
designates the population generation, i.e:

PG = (ϕ1,G, . . . , ϕNP,G) , G = 0, . . . , Gmax (5.1)

Furthermore, each vector contains Nϕ real parameters:

ϕi,G =
(
ϕ1,i,G, . . . , ϕNϕ,i,G

)
, i = 1, . . . , NP, G = 0, . . . , Gmax (5.2)

The population PG=0 is initialized with random values chosen from within the
given boundaries:

ϕj,i,0 = randj [0, 1] ·
(
ϕ

(U)
j − ϕ(L)

j

)
+ ϕ

(L)
j i = 1, . . . , NP, j = 1, . . . , Nϕ (5.3)

where randj [0, 1] denotes a uniformly distributed random value within the
range: [0, 1]. The random value is generated for each parameter (j). The
vectors in the current population, PG, are randomly sampled and combined
to create candidate vectors for the next generation population, PG+1. First,
a population of candidates of trial vectors P

′

G+1 containing ϕ
′

i,G+1 vectors
(i = 1, . . . , NP ) and each vector ϕ

′

i,G+1 with the elements = ϕ
′

j,i,G+1, (j =
1, . . . , Nϕ), following the notation of Price (1999), DE/rand/1/bin, is gener-
ated as follows:

ϕ
′

j,i,G+1 =
{
ϕj,r3,G + F · (ϕj,r1,G − ϕj,r2,G) , if randj [0, 1) ≤ CR ∨ j = k
ϕj,i,G, otherwise

(5.4)
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where, i = 1, . . . , NP, j = 1, . . . , Nϕ, ki ∈ {1, . . . , NP}, r1, r2, r3 ∈ {1, . . . , NP},
and r1 6= r2 6= r3 6= i, and CR ∈ [0, 1], F ∈ (0, 1].

The randomly chosen indexes, r1, r2 and r3, are different and also different
from the running index, i. New, random, integer values for r1, r2 and r3, are
chosen for each value of the index i, i.e., for each individual trial vector. The
index, k, refers to a randomly chosen chromosome (a chromosome is an opti-
mization parameter) which is used to ensure that each individual trial vector,
ϕ

′

i,G+1, differs from its counterpart in the previous generation, ϕi,G by at least
one parameter. A new, random, integer value is assigned to k prior to the
construction of each trial vector, i.e., for each value of the index i.
F and CR are the control parameters of the differential evolution (DE) al-

gorithm. Like NP , both values remain constant during the search. F is a
real-valued factor in the range (0, 1] that scales the differential variations. The
upper limit on F has been empirically determined as suggested by Storn (1997)
and is not a strict limit. CR is a real-valued crossover factor in range [0, 1] that
controls the probability that a trial vector parameter will come from the ran-
domly chosen, mutated vector, ϕ

′

i,G+1 (with elements ϕ
′

j,i,G+1), instead of from
the current population vector, ϕi,G. Generally, both F and CR affect the con-
vergence velocity and robustness of the search process (Lampinen 2002). Their
optimal values depend both on the objective function characteristics and on
the population size, NP . Suitable values for F , CR and NP are reported to
be found by trial-and-error after a few trials by Storn and Price (1995).

Once a trial generation ϕ
′

G+1 has been obtained, a selection operation is per-
formed in order to decide which population members will get into the next
generation population ϕG+1. The comparison of a member from the trial pop-
ulation, ϕ

′

i,G+1, with a corresponding member of the current population ϕi,G
is based on the following rules.

1. If ϕi,G and ϕ
′

i,G+1 are infeasible, then the sum of the constraint violation
is computed for both parameter vectors. The vector rendering a smaller
total violation is selected as member in the next generation population
ϕi,G+1 .

2. If ϕi,G is not feasible while ϕ
′

i,G+1 is feasible, the feasible vector is selected
as member in the next generation population ϕi,G+1 . The inverse is valid
as well.

3. If ϕi,G and ϕ
′

i,G+1 are both feasible, then the vector which improves the
cost function is selected as member in the next generation population
ϕi,G+1 .

These selection rules are actually analogous with the concepts of Pareto-
optimality (Kukkonen and Lampinen 2005), (Kukkonen and Lampinen 2006).
It should be mentioned that the cost function is evaluated just for the case
where both parameter vectors are feasible. In case of infeasible solutions, the
selection rule does not compare the objective function values but only the
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evaluation of the constraints is required. In the original generalized differential
evolution algorithm presented in Kukkonen and Lampinen (2005), the way to
discriminate between two infeasible individuals was to compare the violation for
just one of the constraints, however in practice it was noticed that sometimes
for problems with a large number of constraints it is more beneficial to consider
the sum of the violations over all constraints. Therefore for finding the first
feasible solution an effective selection pressure is applied by only accepting
feasible candidates in the next population generation. This results in a fast
convergence to feasible regions of the search space (Kukkonen and Lampinen
2005).

At least six different strategy schemes based on the one reproduced in Eq.
5.4 have been proposed. Various strategies mixing the best candidate obtained
in the current generation with randomly generated members have been im-
plemented and investigated by(Price et al. 2005) . Here the first strategy,
DE/rand/1/bin was used.

5.2.2 Evaluating the design objective

The information content for a specific model is represented by the Fisher In-
formation Matrix. The Fisher Information Matrix (FIM) is computed as the
expectation of the second derivative of the log-likelihood function as given in
Eq. 5.5.

FIM (θ, ϕ) = EY |θ

{(
∂log p (Y|θ,u)

∂θ

)T (
∂log p (Y|θ,u)

∂θ

)}
(5.5)

where Y represents the outputs, u the process inputs, p (·) the density function,
and finally, θ denotes the parameter vector. The vector of ϕ design variables
contains the inputs u as well as the switching time, the initial values of the
states and the samples Y.

The main reason to consider a scalar function of the information matrix is
the well known Kramer-Rao inequality, which under some certain regularity
conditions, states that:

A lower limit of the covariance of every unbiased efficient estimator of θ is
asymptotically given by the inverse of the information matrix.
More precisely (Rao 1973):

V
(
θ̂
)
≥ FIM

(
θ̂
)−1

(5.6)

Depending on the level of prior knowledge available about the model param-
eters, two approaches are considered in defining the optimization criterion. In
the first approach some information about the parameter distribution is con-
sidered in the criterion (Walter and Pronzato 1990). In the second approach
the idea is to compute a design which maximizes the informational content for
any value of the parameters.
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The first approach takes into account the a-priori uncertainty in the model
parameters θ. The parameters are assumed to belong to a population with a
known distribution p (θ). Depending on the parameter estimation scheme, two
criteria can be formulated. One for the maximum likelihood (ML) estimation
scheme and another for the maximum a-posteriori (MAP) estimation scheme.
The criterion for ML can be written as follows (Walter and Pronzato 1987) :

ϕEDML
= arg minϕ∈Φ [−Eθ {log detFIM (θ, ϕ)}] (5.7)

where ϕ is the design variables vector, E {·} denotes the expected value, FIM(θ, ϕ)
represents the Fisher information matrix, θ is within the Θ domain and ϕ is
within the Φ domain. The equivalent criterion for MAP is written as follows
(Melgaard and Madsen 1993):

ϕEDMAP
= arg minϕ∈Φ

[
−Eθ

{
log detFIM (θ, ϕ) /N + Σ−1

pre

}]
(5.8)

The Σ−1
pre matrix represents the prior covariance matrix of the parameters.

Hence (ED)-optimal experiment is one for which the choice of experimental
decision variables maximizes the expected value over the population of possible
parameter values (Asprey and Macchietto 2002). The experiments designed in
this way are good on average but can be poor for some values of the parameters
(Walter and Pronzato 1987, Asprey and Macchietto 2000). With respect to the
parameters space this approach is global .

When no prior information about the parameter distribution is available, it
is possible to use only some nominal values of the parameters which in fact
represent the prior mean values. In this case, the considered approach is local
and the two criteria for ML and MAP mentioned above are further simplified
as follows:

ϕDML = arg minϕ∈Φ [−log detFIM (θ, ϕ)]θ=E{θ} (5.9)

ϕDMAP = arg minϕ∈Φ

[
−log detFIM (θ, ϕ) /N + Σ−1

pre

]
θ=E{θ} (5.10)

In Eq. 5.10, N represents the number of samples.
A second approach aims to determine experimental designs ϕWC , that opti-

mize the worst possible performance for any value of θ ∈ Θ. The criterion is
given in Eq. 5.11.

ϕWC = arg minϕ∈Φmaxθ∈Θ [−log detFIM (θ, ϕ)] (5.11)

Using this approach the only prior information about θ is the admissible do-
main Θ. In this way the design attempts to ensure acceptable performance for
all possible values of θ. The max-min approach have had limited use due to
the associated burdensome computations. In order to circumvent this problem
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Asprey and Macchietto (2000), Asprey and Macchietto (2002) proposed a se-
quential algorithm derived from the worst case approach which they denote as
robust R-optimal experimental design.

The scope of this chapter is limited to the simple local design where the se-
lected optimization criterion is represented by the negative of the determinant
of the FIM as given in equation 5.9. Furthermore, the data collected are in-
tended for parameter estimation using a maximum likelihood (ML) estimation
scheme. In performing experimental design for stochastic differential equations,
one of the difficulties arises from the evaluation of the FIM.

Since it is nearly impossible to compute the FIM analytically for a system of
stochastic differential equations, a method based on Monte Carlo simulations
as proposed by Spall (2004, 2005) will be employed. The main idea is to
generate a large number of Hessian matrices using Monte Carlo simulation.
The efficient simultaneous perturbation stochastic approximation (SPSA) Spall
(2004) algorithm which uses only four values of the log-likelihood function is
used to obtain an estimate of the Hessian. Finally, averaging these Hessian
matrices produces an estimate of FIM. The idea comes from the definition
of FIM which is the expectation of the Hessian matrix of the log-likelihood
function with respect to the model parameter vector θ. As stated by (Spall
2005) each Hessian estimate can be qualitatively very poor, even singular, but
the interest is not in each Hessian estimate but the average obtained using
many of these Hessian estimates. Thus, clearly, there is a difference from the
previous approaches where only the deterministic case was considered in the
evaluation of the FIM for quantitative experimental design.

5.2.3 Model structure of SDE

In the general case, a continuous-discrete stochastic state space model is a
model that consists of a set of non-linear discretely, partially observed Itô,
SDE’s with measurement noise, (Jazwinski 1970) i.e.:

dxt = f (xt, ut, t, θ) dt+ σ (ut, t, θ) dωt (5.12)

yk = h (xk, uk, tk, θ) dt+ ek (5.13)

In the above formulation t ∈ R is the time variable; xt ∈ X ⊂ Rn is a vector
of state variables; ut ∈ U ⊂ Rm is a vector of input variables; yt ∈ Y ⊂ Rl

is a vector of output variables; θ ∈ Θ ⊂ Rp is a vector of possibly unknown
parameters; f (·) ∈ Rn, σ (·) ∈ Rn×n and h (·) ∈ Rl are known non-linear
functions; {ωt} is an n-dimensional standard Wiener process (Jazwinski 1970)
and {ek} is an l -dimensional white noise process with ek ∈ N (0,S (uk, tk, θ)).
The diffusion term in Eq. 5.12 is assumed to be independent of the process
states. The Σ matrix containing the diffusion terms σ is assumed to be diagonal.



104 Quantitative experimental design for parameter estimation

5.2.4 Conditional density distribution function

Consider a set S of independent sequence of consecutive random measurements
(Kristensen et al. 2004b):

Y =
[
Y1
N1
,Y2

N2
, . . . ,Yi

Ni
, . . .YS

NS

]
(5.14)

where each sequence is:

Yi
Ni

=
[
yiNi

, . . . , yik, . . . , y
i
1, y

i
0

]
(5.15)

In the general case, if the parameters will be estimated using a ML estima-
tion scheme and no prior information about the parameters density function
is available, then the probability density distribution function is generated as
follows:

p (Y|θ) =

(
S∏
i=1

p
(
Yi
Ni
|θ
))

p
(
yi0|θ

)
(5.16)

or equivalently:

p (Y|θ) =
S∏
i=1

(
Ni∏
k=1

p
(
yik|Y

i
k−1, θ

))
p
(
yi0|θ

)
(5.17)

where the conditional probability rule P (A ∩ B) = P (A|B) · P (B) is applied
successively in order to form a product of conditional probability densities.
In order to obtain an exact evaluation of the likelihood function in Eq. 5.17,
a general nonlinear filtering problem has to be solved (Jazwinski 1970), but
this is computationally infeasible in practice. However, since increments of the
standard Wiener process {ωt} driving the SDE in Eqs. 5.12 are Gaussian, it is
reasonable to assume that the conditional probability densities in Eq. 5.17 can
be well approximated by Gaussian densities which means that a method based
on the extended Kalman filter (EKF) can be applied (Kristensen et al. 2004b).
The Gaussian density is completely characterized by its mean and covariance,
thus introducing the following notation:

ŷik|k−1 = E{yik|Y
i
k−1, θ} (5.18)

Rik|k−1 = V {yik|Y
i
k−1, θ} (5.19)

εik = yik − ŷik|k−1 (5.20)

Where Eq. 5.20 is denoted as the innovation equation then by substituting
Eqs. 5.18–5.20 into Eq. 5.17 the likelihood function becomes:
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p (Y|θ) =
S∏
i=1

 Ni∏
k=1

exp
(
− 1

2

(
εik
)T (

Rik|k−1

)−1 (
εik
))

√
det
(
Rik|k−1

) (√
2π
)l

 p
(
yi0|θ

)
(5.21)

The innovations εk and their covariances Rk|k−1 are computed recursively
by means of the EKF (Kristensen et al. 2004b). Given the initial probabil-
ity density function p (y0|θ) all subsequent conditional densities and hence the
likelihood function can be determined by solving a continuous discrete nonlin-
ear filtering problem. The work-flow of quantitative experimental design for
stochastic differential equation models is presented in Figure 5.2 and the various
steps are detailed in Section 5.3. Having introduced the optimization method-
ology, the stochastic model formulation and solution method the procedure for
quantitative experimental design for SDE models is introduced next.

5.3 The algorithm

This section describes the developed algorithm for quantitative experimental
design for stochastic differential equation models. In Figure 5.1, a work-flow
diagram of the quantitative experimental design is depicted. The work-flow
steps are detailed in this section.

• Step 1 of the main algorithm simply generates a population of vector
members as described in Section 5.2.1.

• In Step 2 of the algorithm the objective function is computed and this
step will be detailed in the sub-steps as detailed in Figure 5.2. The
number of Hessians used in the evaluation of FIM is denoted N .

– In step 2.1 the unknown parameters of interest for experiment de-
sign are selected. In the case of D optimal design, the θ vector is
composed of all unknown model parameters.

– In step 2.2 integration of the system of SDE is performed using
a Kloeden-Platen explicit strong scheme of order 1 (Kloeden and
Platen 1999) with a very small integration step. A set of pseudo
experimental data ȳk is obtained.
Next steps, 2.3 - 2.7 concerns obtaining one of the Hessian matrix
estimates used in the FIM calculation.

– In Step 2.3 two different vectors, ∆ and ∆T of random numbers
of the same size as the θ vector are generated. These vectors are
drawn from a uniform distribution. The more common distributions
such as Gaussian distribution are excluded (Spall 2004). In principle
these vectors are vectors giving the sign for the perturbations.
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Figure 5.1: Proposed work-flow for the optimization algorithm used for quanti-
tative experimental design for systems modelled by stochastic differential equa-
tions
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Figure 5.2: Proposed work-flow for evaluation of the experimental design ob-
jective function in step 2 of quantitative experimental design (Fig. 5.1) for
SDE based models
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– In Step 2.4 the parameter vector θ is perturbed with ±c × ∆ and
±c×∆T respectively in order to obtain four new parameter vectors:
θplus, θminus, θplust and θminust. In the original algorithm for FIM
calculation by Spall (2004), Spall (2005) the c quantity is fixed to a
small value i.e. c = 0.001 and similarly for all the parameters. In
this contribution c was taken as 0.1 % of the nominal value of the
parameters. As discussed by Spall (2004), c is a measure of accuracy
of the estimate.

– In Step 2.5 the log-likelihood function is computed for the sequence
of pseudo experimental data yk. The log-likelihood function is eval-
uated for all four parameter sets independently, and thus four values
of the log-likelihood function: Fplus, Fminus, Fplust, Fminust are ob-
tained. An extended Kalman Filter is used to recursively compute
the log-likelihood function as presented in Section 5.2.4.

– Step 2.6 concerns estimation of the gradient of the log-likelihood
function for two points using the four values of the log-likelihood
function using a central difference. Two values of the gradient Gplus
and Gminus are obtained.

– Step 2.7 evaluates the Hessian matrix using Eq. (3.1) from Spall
(2004) and the two gradient values obtained in Step 2.6.

– Step 2.8 simply makes the estimate symmetric by averaging the
Hessian matrix with its transpose.

– In step 2.9 the updated average Hessian matrix is computed. Steps
2.1 - Steps 2.9 are repeated until the maximum number N of desired
pseudo experimental data sets and the subsequent Hessian matrices
are generated.

– Step 2.10 concludes the FIM computation by computing the square
root of the squared average Hessian matrix (Spall 2004). This oper-
ation is performed to assure a positive definite matrix.

– In step 2.11 the FIM eigenvalues are computed using a singular value
decomposition and then the optimization criterion can be computed
immediately. In this case the determinant of the matrix is computed.

• Returning to the main algorithm (Fig. 5.1), in Step 3, the best member
of the current generation is selected based on the cost function value.

• In step 4 the trial randomly generated population, ϕ
′

i,G+1 is obtained as
discussed in Section 5.2.1, on page 5.2.1.

• In step 5 using the obtained trial population and the selection criterion
mentioned above in Section 5.2.1 the child generation ϕi,G+1 is obtained.

The optimization continues until convergence has been achieved or another
stopping criterion is met e.g. the maximum number of generations, Gmax.
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5.4 Benchmark case

This section presents the application of the described algorithm for a model
described by two coupled stochastic differential equations. The model repre-
sents a fed-batch bio-reactor also used by Asprey and Macchietto (2000). The
system of ordinary differential equations is extended to a system of stochastic
differential equations. The diffusion terms are considered to be states indepen-
dent. The model equations are shown in Eqs. 5.22–5.23 including the stochastic
terms.

dx1 = (r − u1 − θ4) · x1 · dt+ σ1 · dω

dx2 = −r · x1

θ3
+ u1 · (u2 − x2) + σ2 · dω (5.22)

r =
θ1 · x2

θ2 + x2
(5.23)

In Eqs., 5.22-5.23, x1 represents the biomass concentration [g/l], x2 represents
the substrate concentration [g/l], u1 is the dilution rate

[
h−1

]
and u2 is the

feed substrate concentration [g/l]. The experimental conditions are:

1. the initial biomass concentration x01 ∈ [1; 10] [g/l]

2. the dilution rate, u1 ∈ [0.05; 0.2]
[
h−1

]
3. the feed substrate concentration, u2 ∈ [5; 35] [g/l]

The mean initial concentration, x02, is always 0.1 [g/l] and cannot be ma-
nipulated for experimental design purposes. Both x1 and x2 can be measured
during the experiments. The objective is to design an experiment that will
provide the maximum amount of information for estimation of the four model
parameters θ1 to θ4.

5.4.1 Results

The experimental design performed and reported here is equivalent to the first
step of the robust optimal design proposed by Asprey and Macchietto (2002)
. In the original paper the authors are considering also a known interval for
each of the parameters. However the goal of this comparison is merely to test
the algorithm and the developed program rather than a full reproduction of
results and performance. The optimization algorithm used here does not start
with a given initial parameter vector as a local search method but instead with
a uniformly distributed random population as discussed above in section 5.3,
Step 2.

The initial design conditions are given in Table 5.1.
In their paper Asprey and Macchietto (2002), do not mention any value of

the measurement variance. The value of the experimental design criterion for
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Variable Values
x0

1 5.5
tspl, l = 1, . . . , nsp 2.0, 4.0, 6.0, 8.0, 10.0

12.0, 14.0, 16.0, 18.0, 20.0
tsw1,i, i = 1, . . . , nsw1 4.0, 8.0, 12.0, 16.0, 20.0
tsw2,i, i = 1, . . . , nsw2 4.0, 8.0, 12.0, 16.0, 20.0
u1,i, i = 1, . . . , nsw1 0.12, 0.12, 0.12, 0.12, 0.12
u2,i, i = 1, . . . , nsw2 15.0, 15.0, 15.0, 15.0, 15.0

Table 5.1: Initial experimental conditions used by Asprey and Macchietto
(2002)

the initial design (Table 5.1) reported by Asprey and Macchietto (2002) was
det(FIM) = 2.41E + 8.

The initial design given in Table 5.1 was evaluated using the approach de-
scribed in section 5.3, steps 2.1-2.11. All the diffusion terms, see Eq.5.12, were
set to σ (i, i) = 1.0E− 12, and the variance of the measurements, see Eq. 5.13,
to S = 1.0E − 12. The number of stochastic realization, was set to N = 100.
The estimated FIM using the parameters described above was singular.

The selection of N = 100 independent realizations for evaluating the FIM was
made after a series of trials where it was noticed that by increasing this number
significantly, the variance in the FIM estimates remained nearly constant.

The simulation data using the initial design together with the parameters for
diffusion terms and the measurement variances are plotted in Figures 5.3 - 5.4.

The diffusion terms and the measurement variances were set at the values
mentioned above, Σ = 1.0E − 12, S = 1.0E − 12. The optimization algorithm
described in section 5.2.1 with the following parameters G = 50000, NP = 31,
N = 100 and F = 0.9, CR = 0.9 has been run in order to determine the optimal
design. In order to assess the performance of the algorithm the evolution of the
cost function versus the number of iterations is plotted in Figure 5.5. It can
be seen that the value of the objective function is constant for the last many
generations. It can be concluded based on the pattern in Figure 5.5, that the
results are very close to a minimum since an asymptotic evolution is noticed.

The resulting optimal design obtained after running the optimization is given
in Table 5.2.

The design objective function criterion has been improved significantly to
a value of −log(det(FIM)) = −54.2352 or det(FIM) = 3.58E + 23. The
value reported by Asprey and Macchietto (2002) for the D-optimal design is
det(FIM) = 1.278E+ 17 and the ED-optimal design det(FIM) = 5.346E+ 1.

The simulated profile of the obtained optimal experimental design as well as
the values of the inputs and the switching time are plotted in Figures 5.6-5.7.

When comparing with the results obtained by Asprey and Macchietto (2002)
for D optimal design both the minimum value, the optimal input profiles and
subsequently the outputs are different. There are various reason for the differ-
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Figure 5.3: Experimental design - initial design

Figure 5.4: Initial experimental design mean values

ences and apparently one possible cause is the differences in the model formu-
lation, i.e. the inclusion of the standard Wiener processes in the structure of
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Figure 5.5: Progression of the convergence using NP = 31, N = 100 and
F = 0.9, CR = 0.9

Variable Values
x0

1 9.29
tspl; l = 1, . . . , nsp 0.16, 9.66, 10.84, 13.68, 23.86,

25.89, 26.97, 35.1, 37.22, 39.98
tsw1,i; i = 1, . . . , nsw1 3.072, 14.132, 20.164, 31.014, 36.238
tsw2,i; i = 1, . . . , nsw2 0.151, 13.475, 19.91, 25.993, 31.432
u1,i; i = 1, . . . , nsw1 0.104, 0.111, 0.126, 0.132, 0.138
u2,i; i = 1, . . . , nsw2 7.23, 33.158, 24.853, 22.239, 18.646

Table 5.2: Experimental conditions obtained

the model equations; another possible causes are the algorithm used to com-
pute the likelihood function, the optimization algorithm and also due to the
minimum of the likelihood function used in the SD design.

However, when comparing the results obtained using the proposed SD design
algorithm with the results obtained for ED design by Asprey and Macchi-
etto (2002) the results seems to be more similar. The measurement times are
grouped into three series. First sample is placed at the beginning of the exper-
iment, then a short series composed of three samples is placed arount t = 10[h]
where the slope of the substrate concentration is large, then the second series is
located toward the maximum of the substrate concentration and the last series
of three samples is placed towards end of the experiment. The input profiles
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Figure 5.6: Experimental design - final input design using G = 50000, NP =
31, N = 100 and F = 0.9, CR = 0.9

Figure 5.7: Experimental design - final output design using G = 50000, NP =
31, N = 100 and F = 0.9, CR = 0.9
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seems to be different. The dillution rate seems to be nearly constant. In the
optimization it was assumed that after the last switching time both inputs are
zero.

The scheme used to evaluate the FIM is based on the SPSA algorithm which
implies stochastic perturbation of the model parameters using an uniform dis-
tribution. Hence, this explains at least partly the similarity with the results
obtained for the DAE version of the model using the expected value design cri-
terion which accounts for model parameter uncertainty assuming a Gaussian
distribution in Asprey and Macchietto (2002).

5.5 Discussion

In this contribution, a new method for model based quantitative experimental
design for stochastic differential equation models is presented. The method is
based upon minimizing the negative logarithm of the determinant of the Fisher
Information matrix called SD design.

The core of the algorithm is represented by the efficient calculation of the
Fisher information matrix using bootstrapping (Spall 2004) based on the si-
multaneous perturbation stochastic approximation (SPSA). This method is
efficient because it is only using 4 values of the log-likelihood function.

The integration of the system of stochastic differential equations uses an
iterated Kalman Filter approach. Within the integration routine a package for
automatic differentiation (Kedem 1980) is used to evaluate the Jacobians of
the system.

The optimization algorithm is based on a differential evolution strategy for
global optimization with a small modification. The introduced modification
concerns the discrimination between two infeasible individuals when selecting
the new generation population.

The algorithm is applied to a benchmark model for a bio-reactor process. By
applying experimental design it was possible to obtained pseudo experimental
data with a much richer informational content for parameter estimation.

5.6 Conclusion

A new method for quantitative experimental design called SD-design has been
developed. The method is based upon selecting the experimental design vari-
ables which maximizes the information content in the average FIM. The un-
derlying models are stochastic differential equation models. Where the average
FIM is evaluated based upon the probability density distribution function of
the measurements. That includes prior information about parameter distribu-
tions. Thus this method bears similarity with the ED-design method of Asprey
and Macchietto (2002). One of the advantages of the SD design is represented
by the possibility to better evaluate the information content i.e. the Fisher
Information Matrix instead of using just a sort of mean value in the form of
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the Hessian matrix, thus distribution data are incorporated in a natural man-
ner. The main drawback of this approach is represented by the additional
computation burden.
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6

An improved grey-box
stochastic modelling

framework

Abstract

Modelling complex systems such as enzymatic reaction networks is a challenge
for current methodologies. This chapter is concerned with model development
for an enzymatic reaction network under high uncertainty with respect to the
reactions occurring and their kinetic mechanisms. An improved framework for
development of mathematical models is presented and applied to an enzymatic
reaction network. The improvements focus upon ensuring structural identifia-
bility of the reaction kinetic parameters through qualitative experimental design
followed by a quantitative experimental design step to exploit the remaining
degrees of freedom. A stochastic differential equation model for an enzymatic
reaction network is developed, analyzed and statistically validated. Various sta-
tistical tests are used to asses the model and parameters validity.

6.1 Introduction

Current methodologies for identification and model development for dynamic
systems are still unable to handle both partial knowledge about the system and
partial measurements systematically, despite the great efforts that have been
made in this direction.

Among the attempts to systematize the methodology and the available tools
it can be mentioned here one approach for general model development and
identification by Kremling et al. (2004), Gadkar et al. (2005), and by Chen
et al. (2004). However there is a main drawback of their approach, that is, the
assumption that the model structure is correct such that all the error is ab-
sorbed in the measurement errors and in the model parameter estimates. Thus,
the methodology neither pinpoints model deficiencies nor provides information
on how to improve them.

A more systematic methodology for model improvement for nonlinear dy-
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namic processes was developed recently by Kristensen et al. (2004b). By con-
sidering stochastic differential equations this methodology has built in features
that accounts for model errors by the diffusion terms.

However several shortcomings where identified related to the quality of pa-
rameter identifiability. These observations led to subsequent methodological
developments related to experimental design for ensuring qualitative param-
eter identifiability (chapters 3 & 4) and to quantitative experimental design
for ensuring quantitative parameter identifiability through quantitative exper-
imental design (chapter 5). The developed methods are used in this chapter
to facilitate model development for reaction networks described by stochastic
differential equations.

The purpose of the present chapter is to present a modified framework for
development of grey-box stochastic models and to demonstrate its application
on development of a few different stochastic differential equation models for
an enzymatic reaction network for producing Di-Hydroxy-Acetone-Phosphate
(DHAP) from Glucose. The modelling purpose is to improve understanding
for optimizing production from a (fed-)batch production unit.

The remaining of the chapter is organized as follows: Section 6.2 introduces
an improved version of the grey-box stochastic modelling framework. Section
6.3 presents an improved version of the SBT model. Section 6.4 introduces a
method for qualitative experimental design which is applied on the model for
an enzymatic reaction network presented in section 6.3. Section 6.6 presents
a quantitative experimental design for parameter estimation performed on the
model described in section 6.3. Finally, Section 6.7 closes this chapter with
discussion and conclusions.

6.2 An improved framework for grey-box model
development

Two improved grey-box modelling frameworks are proposed. The new frame-
works include the developments presented in chapters 3–5.

The first improvement is represented by the situation where some experimen-
tal data and a first possible model are available. In this case the first step is
to perform an identifiability analysis and determine which parameters can be
estimated. Subsequently follows parameter estimation and residual analysis. If
the model is still falsified the framework simply follows the original framework
proposed by Kristensen et al. (2004b). Figure 6.1 illustrates this modification.
Note that the experimental data used for estimation differs from the data used
for residual analysis etc. as indicated by the hatched line.

The second improvement concerns only an initial version of the model is
available. In this case the improved grey-box stochastic modelling framework
includes two new steps. With a first model at hand a qualitative experimental
design step is used to determine which variables to measure and which input
to perturb to ensure parameter identifiability. The next step is to perform a
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Figure 6.1: Grey-box stochastic modelling framework extended with identifia-
bility analysis

quantitative experimental design in order to increase the information content
of the experimental data required for parameter estimation. The remaining
steps follow the idea of the original framework as proposed by Kristensen et al.
(2004b). A sketch of this proposed algorithm is illustrated in Figure 6.2.

Figure 6.2: Grey-box stochastic modelling framework extended with qualitative
and quantitative experimental design

The proposed framework will be used in this chapter to improve the SBT
models proposed in chapter 2.

6.3 Model III for a simplified SBT

In this section a third model for an enzymatic reaction network is presented.
The sketch of the new reaction network considered is given in Figure 6.3.

This version is motivated by the modifications occurred in the experimental
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Figure 6.3: The simplified reaction network corresponding to Model III

settings. The genes responsible for the expression of enzymes catalyzing the
reaction r9, r11 and r12 were deleted, partly as a consequence of our modelling
attempts. The new model takes these simplifications into account. The reac-
tion r10 is eliminated since the gene for this enzyme is not expressed as well.
The reaction r13 becomes r9 in the new reaction network. The main reaction
consuming DHAP in the SBT has been identified as being the conversion to
Glycerol-Phosphate catalyzed by NADH. The model equations are given in
Eqs. 6.1–6.3.
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r1 =
(r1maxf
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KGLKAT P
− r1maxb

cG6P cADP

KGLKAT PKeqHK
)

(1 + cGL

KGL
+ cG6P

KG6P
)(1 + cAT P

KAT P
+ cADP

KADP
)

r2 =
r2maxf

cF16B

KF16B
− r2maxb

cDHAP cG3P

KF16BKeqALD

1 + cF16B

KF16B
+ cDHAP

KDHAP
+ cG3P

KG3P
+ cF16BcG3P

KF16BKiG3P
+ cDHAP cG3P

KDHAPKG3P

r3 = r3maxfcG3P cNADcPO4cADP

r4 =
r4maxf

cP Y RcNADH

KP Y RKNADH
− r4maxb

cLACcNAD

KP Y RKNADHKeqLDH

(1 + cNAD

KNAD
+ cNADH

KNADH
)(1 + cLAC

KLAC
+ cP Y R

KP Y R
)

r5 = r5maxf
cATP

cATP +KATP
r6 = r6maxfcDHAP cNADH
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cF6P

KG6PKeqP GI
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KG6P

“
1+
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KF6P G6P

” + cF6P
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cADP +KADP
(6.1)
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dcGL =
(

(−r1) +
F

V

(
cGLfeed − cGL

))
dt+ σ11dω

dcF16B =
(

(r7 − r2)− F

V
cF16B

)
dt+ σ22dω

dcDHAP =
(

(r2 − r6)− F

V
cDHAP

)
dt+ σ33dω

dcG3P =
(

(r2 − r3)− F

V
cG3P

)
dt+ σ44dω

dcPY R =
(

(r3 − r4)− F

V
cPY R

)
dt+ σ55dω

dcLAC =
(

(r4)− F

V
cLAC

)
dt+ σ66dω

dcATP =
(

(−r1 − r7 + 2r3 − r5)− F

V
cATP

)
dt+ σ77dω

dcNAD =
(

(−r3 + r4 + r6)− F

V
cNAD

)
dt+ σ88dω

dcPO4 =
(

(−r3 + r5 + r9)− F

V
cPO4

)
dt+ σ99dω

dcG6P =
(

(r1 − r8)− F

V
cG6P

)
dt+ σ1010dω

dcADP =
(

(r1 + r7 − 2r3 + r5 − r9)− F

V
cADP

)
dt+ σ1111dω

dcNADH =
(

(r3 − r4 − r6)− F

V
cNADH

)
dt+ σ1212dω

dcF6P =
(

(r8 − r7)− F

V
cF6P

)
dt+ σ1313dω

dcAMP =
(

(r9)− F

V
cAMP

)
dt+ σ1414dω

dcGP =
(

(r6)− F

V
cGP

)
dt+ σ1515dω (6.2)

dV = Fdt+ σ1616dω (6.3)

6.4 Decoupled qualitative experimental design

Using the ideas and the results from the qualitative experimental design analy-
sis from chapter 4 here a different approach for qualitative experimental design
is pursued. The main motivation for this different approach is that for more
complex models such as Model III, is much more difficult to apply the method-
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ology described in chapter 4.
A decoupled qualitative experimental design is introduced and illustrated on

Model III. In this version of the methodology the target is to determine which
states have to be measured in order to render all the network reaction rates
identifiable. Moreover, process inputs are considered from the beginning of
the analysis. The second phase, where the focus is on assessing the structural
parameter identifiability the problem is subdivided and each measured state
is paired with a reaction rate. In the Tables 6.3–6.11 a collection of potential
sets of identifiable parameters is obtained and the final decision belongs to the
model developer in selecting a parameter set to be quantitatively identified.

The core of the first approach presented in chapter 4 is represented by the
analytical solution of a system of algebraic equations. When formulating this
system of algebraic equations, Lie derivatives for all the measured states are
considered simultaneously, thus nonlinear interactions between the model states
are embedded in the solution. Therefore the obtained analytical solution rep-
resents a global test for identifiability. The approach used in this section, when
formulating the system of algebraic equations considers Lie derivatives obtained
from one measured state at a time. The obtained analytical solution is thus
influenced by just one state. After obtaining the analytical solutions for all the
measured states a set of identifiable parameters is obtained. This set of param-
eters is not obtained as a solution of a unique system of algebraic equations,
thus the solution does not represent a global test for identifiability.

The first phase of the analysis used to identify the sets of measured states
that will render all reaction rates identifiable is identical to the one presented
in Section 4.3. Regarding the second phase of the algorithm which consists of
determining the identifiable parameters set for each of the identifiable reaction
rates a different approach is considered. The idea is to divide the original prob-
lem into smaller subproblems. For each identifiable reaction rate, a measured
state will be assigned. The Lie derivatives will be considered for each of the
measured states at a time. When solving for the parameters, the parameter
sets to be considered will be formed just with parameters related to the con-
sidered kinetic equation. The procedure is applied for all measured states and
considered inputs. As a results, a map of the identifiable parameters will be
obtained showing the identifiable parameter sets. In order to illustrate this
approach a more detailed enzymatic reaction model will be used.

6.4.1 Identifiable rates

The reaction identifiability criterion Brendel et al. (2006) was applied to iden-
tify all the possible sets of measured states rendering all the reaction rates
identifiable. A MATLAB script was used to automate the search of identifiable
sets of identifiable reaction rates by screening all the possible combinations.
A total of 1028 combinations were found to render the 9 reaction rates iden-
tifiable. Table 6.1 contains, the combinations containing the originally four
measured species only, are listed. Measurements of NAD, NADH and GP have



124 An improved grey-box stochastic modelling framework

not been considered for practical reasons.

No. Measurement sets
1 cGL cAT P cG6P cADP cDHAP cG3P cP Y R cAMP cF6P

2 cGL cAT P cG6P cADP cF16B cDHAP cP Y R cLAC cF6P

3 cGL cAT P cG6P cADP cDHAP cG3P cP O4 cP Y R cLAC

4 cGL cAT P cG6P cADP cF16B cDHAP cP O4 cP Y R cLAC

5 cGL cAT P cG6P cADP cF16B cDHAP cG3P cP Y R cLAC

6 cGL cAT P cG6P cADP cDHAP cG3P cP O4 cP Y R cF6P

7 cGL cAT P cG6P cADP cF16B cDHAP cP O4 cP Y R cF6P

8 cGL cAT P cG6P cADP cF16B cDHAP cG3P cP Y R cF6P

Table 6.1: Combinations of measured species rendering all the nine reaction
rates identifiable

6.4.2 Identifiable parameters

The analysis is illustrated with the first set of measured states from Table 6.1.
A reaction rate is associated to each of the measured states. The matching is
based on the reaction network at hand, in the sense that the rate influencing
the measured rate was selected for pairing.

For each corresponding state equation the first three order Lie derivatives
are computed. Thus, a system of three algebraic equations can be obtained
for each corresponding state equation. A maximum of 3 parameters, can be
selected simultaneously to be solved for each of the measured states. Table
6.2 contains the selected pairing between the reaction rates and the measured
species for the first measurement set of the Table 6.1.

Measured sets
cGL cAT P cG6P cADP cDHAP cG3P cP Y R cAMP cF6P

r1 r5 r8 r3 r6 r2 r4 r9 r7

Table 6.2: Correspondence between the reaction rates and the measured species

After generating and solving the systems of algebraic equations certain sub-
sets of parameters could be rendered identifiable. For each pair of identifiable
reaction rate and measured compound, the identifiable parameters are given in
Tables 6.3 – 6.11.

r1 r1maxf r1maxb KADP KG6P KeqHK KAT P KGL

GL

no solution:
4,6,9 3,7,8 1,2,3,4 1,5,6,7 2,5,8,9
unique solution:
1 1
multiple solutions:

Table 6.3: Analysis for subsets of two parameters taken simultaneously

Various combinations of (un)/identifiable sets of parameters have been ob-
tained. In Tables 6.3–6.11 each parameter set has been labeled using a number.
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Table 6.3 contains the results of the analysis for the pairing GL as measured
state and r1 as identifiable reaction rate. After solving the systems of alge-
braic equations, three situations can occur: no solutions, a unique solution,
and multiple solutions. For instance in the row labeled ”unique solution” there
is a label denoted 1, below r1maxf and r1maxb, which means that the set of two
parameters rendered a unique solution while the labels 4,6,9 below the label
”no solution” means that for the corresponding subsets no solution was found.

r2 r2maxf r2maxb KF16B KeqALDO KDHAP KG3P KiG3P

G3P

no solution:

unique solution:
1,2,4,7 1,3,5,8 7,8,9 4,5,6 2,3,6,9
11 12 10,14 11,12,13,14 10 13
multiple solutions:

1 1

Table 6.4: Analysis for subsets of two parameters

r3 r3maxf

ADP

no solution:

unique solution:
1
multiple solutions:

Table 6.5: Analysis for subsets of one parameter

r4 r4maxf r4maxb KeqLDH KP Y R KNADH KNAD KLAC

PY R

no solution:
1,3 1,2 2,3
unique solution:
4,8 3,7 2,6,9 1 5,9 5,6,7,8 1,2,3,4
11,14 10,13 12,13,14 10,11,12
multiple solutions:

3,4 2,4 1,3 1,2

Table 6.6: Analysis for subsets of two parameters taken simulateously

r5 r5maxf KAT P

ATP

no solution:

unique solution:
1
multiple solutions:

1

Table 6.7: Analysis for subsets of one parameter

From the collection of potentially identifiable parameter vectors from the
decoupled qualitative experimental design analysis one set of potentially iden-
tifiable parameters for estimation is selected and given in Table 6.12.
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r6 r6maxf

DHAP

no solution:

unique solution:
1
multiple solutions:
1

Table 6.8: Analysis for subsets of one parameter

r7 r7maxf KADP KAT P KF6P

F6P

no solution:

unique solution:
1,2 1,3 2,3
multiple solutions:

Table 6.9: Analysis for subsets of two parameters

r8 r8maxf r8maxb KF6P G6P KF6P KG6P KeqP GI

G6P

no solution:
2,3 1,3 1,2
unique solution:
3 2 1,2,3 1
multiple solutions:
3 2 1,2,3,4 1 4

Table 6.10: Analysis for subsets of two parameters taken simultaneously

r9 r9maxf KADP

AMP

no solution:
1

unique solution:
1
multiple solutions:

Table 6.11: Analysis for subsets of one parameter

Parameter Parameter Parameter

r1maxf r3maxf KF6P

r2maxf r4maxf r8maxf

KF16B KPY R r9maxf

KG3P r5maxf

Table 6.12: One parameter vector set considered qualitatively identifiable from
the measurement set GL, G6P, DHAP, ATP, ADP, AMP, PYR

Table 6.12 contains in fact only a very limited subset of the full parameter
set. In order to render more globally identifiable parameters, as the qualitative
experimental design pointed out it is necessary to measure more compounds
and to perturb the Glucose input. These two points were used to qualitatively
design a new experiment. Therefore in Experiment 30A a Glucose input per-
turbation was introduced and three more compounds i.e. ADP, AMP, PYR
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have been measured.

6.5 Parameter estimation using data from Exp
30 A

Data collected from Experiment 30A, representing two similar experiments
(two identical reactors I and II) are used for estimation and validation. Since
the experimental conditions have been identical, the data represents two differ-
ent stochastic realizations of the process. Each realization has been measured
twice, thus four sets are available from Experiment 30A reactor I, set 1 and 2
and reactor II, set 1 and 2. These data includes a pulse perturbation of the
Glucose feed, at time 3 hours as a consequence of the results of the qualitative
experimental design.

The raw data are reproduced in Section 6.6.1 in Figure 6.6 and in the Ap-
pendix B. The data from the first reactor (reactor I) are used for estimating
the parameter vector given in Table 6.12. The value of the Glucose feed pulses
is F = 1E-4 [L/min] with a duration of 1 minute and with a constant feed
substrate concentration cGLfeed = 400 [mM/L]. As mentioned in Table 6.13,
the initial volume of the reactor is 1E-2 [L].

The fixed model parameters together with the initial concentration for each
of the compounds and their values are given in Table 6.13. For the saturation
constants, an average of the numerical values found in the literature have been
used. For the difussion terms of the mass balances corresponding to unmea-
sured compounds, small values have been considered. The assumption was that
the equations for these compounds are correct.

Name Parameter Name Parameter Name Parameter

cGL0 1.0E-5 V0 1.0E-2 KLAC 1.291
cF16B0 1.0E-5 KGL 0.08 r6maxf 16.64
cDHAP 0 1.0E-5 KATP 0726 r7maxf 3.9651
cG3P 0 1.0E-5 r1maxb 0.04 r8maxb 1
cPY R0 1.0E-5 KeqHK 7177 KeqPGI 0.312
cLAC0 1.0E-5 KG6P 0.64 KF6PG6P 0.2
cATP 0 11.5 KADP 0.479 σ22 1.0E-2
cNAD0 5.75 r2maxb 0.1368 σ44 1.0E-2
cPO40 11.1 KeqALD 0.1439 σ66 1.0E-2
cG6P 0 1.0E-5 KDHAP 0.96 σ88 1.0E-2
cADP 0 1.0E-5 KiG3P 0.325 σ99 1.0E-2
cNADH0 1.0E-5 KNADH 0.2535 σ1212 1.0E-2
cF6P 0 1.0E-5 r4maxb 0.012 σ1313 1.0E-2
cAMP 0 1.0E-5 KeqLDH 10.0 σ1515 1.0E-2
cGP 0 1.0E-5 KNAD 2.507 σ1616 1.0E-2

Table 6.13: Fixed parameters value for Model III
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Name Estimate Name Estimate Name Estimate

r1maxf 8.24098E-02 r8maxf 1.33909E+00 S11 8.56135E-02
r2maxf 1.54521E+00 r9maxf 1.91085E-02 S22 2.42433E-04
KF16B 1.89134E-01 σ11 2.08442E-05 S33 3.93489E-05
KG3P 6.51939E-01 σ33 6.27604E-02 S44 2.91626E-02
r3maxf 1.13599E-04 σ55 7.17167E-02 S55 4.81779E-05
r4maxf 1.13402E-01 σ77 4.82363E-01 S66 9.18731E-05
KPY R 1.63708E-02 σ1010 1.31088E-05 S77 1.67310E-03
r5maxf 4.03031E-02 σ1111 1.66903E-01
KF6P 1.23720E-01 σ1414 8.85992E-02

Table 6.14: Estimation results for Model III, using data from Experiment 30A,
reactor I set 1 and 2

The estimation has been performed using the differential evolution algorithm
described in chapter 5, with the following parameters NP = 5, CR = 0.5 and
F = 0.8. The computer program CTSM has been modified accordingly to use
this optimizer. The performance of the model has been assessed by using a
validation dataset. The validation data set is represented by the data collected
during Experiment 30A, reactor II, set 1. The estimation results are given in
Table 6.14.

The plots for pure simulation (blue line) and one step ahead prediction (red
line) are given below in Figure 6.4.

Since the optimization algorithm does not have a convergence criterion, the
evolution of the cost function along the number of generations is plotted in
figure 6.5.

Analyzing the plots in Figure 6.4, the quality of one step ahead prediction is
fairly good, while the pure simulation does not seem to perform well for these
experiments. The most significant difference between the pure simulation and
one step ahead prediction in the case of AMP and PYR. The experimental data
series used for validation for Pyruvate, and plotted in Figure 6.4.g contains few
missing samples before the pulse, which were set to zero. However the one step-
ahead prediction follows the trend observed for the Pyruvate data for reactor
II, data used for estimation, see Figure 6.6.g.

Significant difference between pure simulation and one step ahead prediction
occurs also for, ATP and ADP. The diffusion terms for all the four correspond-
ing drift equations are fairly large indicating potential model deficiencies. The
poor fit can be related to the values of the fixed parameters as well. However
to improve the information content of the data it is desirable to perform a
quantitative experimental design.

A very detailed model (Model IV) has been developed containing all the
known enzymatic reactions. The model equations as well as the reaction net-
work are given in Appendix A.
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Figure 6.4: Simulation of Model III against data from Experiment 30A, reactor
II, set 1; pure simulation-red, one step prediction-blue. Data from Experiment
30A, reactor I, set 1 and 2 used for estimation
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Figure 6.5: Progression of the convergence using NP = 5, N = 100 and
F = 0.79, CR = 0.8
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6.6 Quantitative experimental design for Model
III of SBT

This section presents the application of the quantitative experimental design
method presented in chapter 5 and tested for the simple bio-reactor model, for
Model III of the simplified SBT as developed and presented in Section 6.3. The
starting point for this investigation is the available experimental data collected
prior to experimental design. Firstly, the amount of information available for
parameter estimation present in the given data sets will be evaluated by com-
puting the experimental design criterion i.e. the negative of the determinant of
the FIM. Secondly, a quantitative experimental design will be performed under
similar experimental conditions, with respect to the variance of the measure-
ments.

6.6.1 Evaluating the initial experimental data

The raw experimental data sets already available from the laboratory are plot-
ted in Figure 6.6. These are the data from Experiment 30A, reactor I and II,
sets 1 ans 2 for each of the reactor. Two of the four data series in Figure 6.6.g
for the Pyruvate contains few missing data samples before the pulse, which
were replace with zero values.

Table 6.15 contains the experimental conditions used in Experiment 30. Ini-
tial conditions of the measured compounds, sampling times, switiching time as
well as the input value for the Glucose feed are given.

Variable Values
Initial conc [mM/L] 1.0E-05, 1.0E-05, 1.0E-05, 11.5, 1.0E-05, 1.0E-05, 1.0E-05
Sampling times 1.0, 5.0, 10.0, 15.0, 30.0, 60.0
[min] 90.0, 91.0, 95.0, 100.0, 105.0, 120.0

150.0, 180.0, 240.0, 300.0, 360.0, 420.0
Switching time [min] 0.0, 1.0, 90.0, 91.0
Glucose feed-rate [L/min] 1.0E-04, 0.0, 1.0E-04, 0.0

Table 6.15: Experimental conditions used in Experiment 30A

The standard deviation has been computed and the values will be used to
evaluate the experimental design criterion. Table 6.16 gives the experimentally
determined variances of the measurements for this data sets.

The input profile consists of pulses of Glucose modelled as four constant
intervals. Two of them are proportional with the value of the pulses, while the
other two are zero. The value of the Glucose feed pulses is F = 1E-4 [L/min]
with a duration of 1 minute and a constant feed substrate concentration cGLfeed
= 400 [mM/L]. Using this information and the experimental conditions, i.e.
initial values of the states, sampling times, now the information content will be
evaluated. The value of the objective function evaluated under the conditions
listed above, was −ln(det(FIM)) = -49.2898 or det(FIM) = 2.54856E+21.
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Figure 6.6: Data collected in Experiment 30A, set 1 and 2, reactor I and II

6.6.2 Optimal experimental design

The differential evolution algorithm presented in 5.2.1 was run with a large
number of generations NG with NP = 20, F = 0.9, and CR = 0.9. However,
due to time limitation the algorithm has been stopped after 1900 generations



6.6. Quantitative experimental design for Model III of SBT 133

Measured compound [mM/L] Mean variance
cGL 1.6890E-01
cG6P 6.2325E-04
cDHAP 2.3457E-02
cATP 6.6210E-01
cADP 7.2002E-02
cAMP 5.9781E-02
cPY R 4.8315E-02

Table 6.16: Computed mean variance for data collected in Experiment 30A,
set 1 and 2, reactor I and II

and the results obtained are given as plots. The minimum distance between
sampling time was set to ∆tminspl = 1 minute while the maximum distance
was set to ∆tmaxspl = 402 minutes. The minimum distance between switching
time was set to ∆tminsw = 5 minutes and the maximum distance ∆tmaxsw = 402
minutes. The experiment duration was assumed to be similar to the one of the
Experiment 30, i.e. 420 minutes. For the Glucose feed flow-rate a maximum
value of 1.1E-03 [L/min], higher than the value of the pulses perfomed in
Experiment 30. The feed Glucose concentration remained constant as before
at cGLfeed = 400 [mM/L]. The value of the objective function value reached to
−ln(det(FIM))=-9.66E+01 or det(FIM)=8.62E+41. The simulated output
profiles and the sampling points for the measured compounds using the optimal
experimental settings are plotted in Figure 6.7.

Table 6.17 presents the experimental conditions obtained after 1900 genera-
tions.

Variable Values
Initial conc [mM/L] 1.27E+01, 1.43E+01, 6.2E+00, 5.11E-02

1.38E+01, 2.01E+00, 5.24E+00
Sampling times 9.36E-02, 6.63E+00, 3.26E+01, 6.13E+01, 9.78E+01, 1.37E+02
[min] 2.60E+02, 2.72E+02, 2.9E+02, 3.06E+02, 3.21E+02, 3.8E+02

3.99E+02, 4.03E+02, 4.08E+02, 4.17E+02, 4.18E+02, 4.2E+02
Switching time [min] 2.21E+02, 3.64E+02, 3.99E+02, 4.2E+02
Glucose feed-rate [L/min] 1.096E-03, 5.51E-04, 6.51E-04, 7.82E-04

Table 6.17: Optimized experimental conditions obtained after 1900 generations

Since the optimization algorithm does not have a measure of convergence,
the evolution of the cost function along the number of generations is presented
in Figure 6.8.

The obtained results shown above, indicates a grouping of the sampling points
in three series. The first group is placed at the beginning of the experiment,
then the second group in the middle of the experiment and the last group at the
end of the experiment. The minimum difference between two measurements
times constraints is active between the third and second last sampling times .
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Figure 6.7: Simulated profiles for optimal experimental design for Model III,
obj func =-9.66E+01 after 1900 generations

The feed flow-rate of Glucose, Figure 6.7.h is very high in the first half of the
experiment, reaching the upper limit, then is reduced significantly for approx-
imately 150 minutes and then is increased again first to approximately half
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Figure 6.8: Progression of the convergence using NP = 20, N = 100 and
F = 0.9, CR = 0.9

of the initial value and then at the end to almost the same value as in the
beginning of the experiment. All the design variables, e.g the initial values of
the concentrations, the input profile, and the sampling times have been var-
ied significantly during the optimization. It needs to be mentioned that the
measurement times were the same for all the measured compounds, thus the
optimizer went for a trade off between the sensitivities of the measurements and
the input profile, this might explain the large value of the Glucose concentra-
tion. The obtained metabolite concentrations are also significantly higher than
the pulsed fed batch Experiment 30. Therefore it is desirable to investigate the
availability of enzymes in the SBT such that the optimization can be suitably
constrained.

It would be interesting however to allow in the optimization different mea-
surement times for each measured compound, however by doing this the number
of design variables increases significantly.

6.7 Conclusion

An improved grey-box stochastic modelling framework has been proposed. A
grey-box stochastic model for an enzymatic reaction network has been validated
using the proposed improved grey-box stochastic modelling framework. The
model has been developed by combining first principle engineering knowledge
with experimental data in an iterative way.
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The qualitative experimental design performed in section 6.4 has been used
in defining the input perturbation as well as selection of extra measured com-
pounds applied in Experiment 30A. The qualitative experimental design results
have been applied in the selection of the parameters to be estimated as well.
Here the qualitative experimental design has been used mere as qualitative
identifiability analysis.

The performance of Model III, in terms of pure simulation and one step ahead
prediction could be further improved, thus it shows that there is a need for
quantitative experimental design for parameter estimation. In order to address
this issue, a quantitative experimental design for parameter estimation has been
performed as well. Clearly, a very different design was obtained thus enriching
the informational content of the data. It would be desirable to perform this
optimal designed experiment in the laboratory and then use the collected data
to (re-)estimate the model parameters.
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Software issues

This section discusses the software tools used or developed for the work pre-
sented in the thesis.

7.1 CTSM software

The CTSM program (Kristensen et al. 2004a) is a program developed pre-
viously by a joint collaboration between CAPEC, Department of Chemical
Engineering and Department of Informatics and Mathematical Modelling at
Technical University of Denmark. The program aims mainly at estimating pa-
rameters of models described by stochastic differential equations. However, it
can be used for performing state estimation, filtering or simulation of stochastic
differential equations.

In this work, the parameter estimation results reported in chapter 2 and 6
were obtained using CTSM.

Moreover, in order to handle experimental data obtained under different con-
ditions, e.g. different initial conditions simultaneously, the program has been
extended in order to allow this possibility. A parameter or a subset of the
model parameters can be estimated either globally across all the experimen-
tal data sets or individually as having a different values for each experiment.
Thus rendering the program much more flexible. The program has been also
extended by including a global optimizer based on the differential evolution
algorithm presented in chapter 5.

7.2 EXPDSGN

The algorithm presented in chapter 5 has been implemented in a software tool
called EXPDSGN using the FORTRAN programming language. The program
has been utilized to determine the optimal experimental design for the case
studies presented in chapters 5–6. The routines computing the log-likelihood
function for a system of stochastic differential equations based on the Kalman
Filter approach has been reused from the CTSM code. The optimization rou-
tine has been developed starting with a freely available on-line MATLABTM

implementation which was converted into FORTRAN code. Furthermore the
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extension for handling constraints discussed in chapter 5 has been implemented
also.

7.3 Maple code

Parts of the identifiability analysis algorithm developed in chapters 3 and 4 have
been implemented as MAPLETM scripts. Particularly the steps calculating
the Lie derivatives and solving the nonlinear algebraic system of equations
symbolically have been implemented. However since the user has to intervene
if the machine gets stuck while solving symbolically the system of algebraic
equations, implementation of a fully automated algorithm was prohibited.



8

Conclusions and Future
work

This chapter reviews the general hypotheses defined in the beginning of the
thesis in chapter 1, then briefly resumes the new contributions. Finally the
chapter is closed by a section collecting all the suggestions for future work.

8.1 General conclusions on hypotheses

This section will briefly review the hypotheses and each of them will be com-
mented here.

The first hypothesis was: In order to facilitate efficient optimization of a
production process it is most beneficial to develop a reasonably accurate process
model where information about model uncertainty is available.

At the end of chapter 6 a grey box stochastic model has been obtained. How-
ever in order to really validate this hypothesis a more accurate model would
be required. It was considered that by investigating the model simulations
would possible to help the SBT development by indicating which genes could
be knocked out.

The second hypothesis: A structural identifiability analysis step, preferably
before the estimation step will guide the model parameters estimation and will
reduce both the time and the number of estimations by focusing only on the
theoretically identifiable process parameters.

The results obtained in chapter 3 regarding the structurally identifiable pa-
rameters improved the parameter estimation steps performed in chapters 2 and
6 by considerably reducing the parameter vector to be estimated. The results
obtained supports the validity of the hypothesis.

The third hypothesis: A qualitative experimental design step will guide the
experimentalist to focus on measuring only the relevant states and on perturb-
ing only the relevant inputs in order to identify structurally identifiable process
parameters.
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The first series of experimental data contained only two measured com-
pounds, way below the minimal necessary number of measured compounds
for identifying the parameters. After informing the experimentalist, more com-
pounds were measured and it was possible to estimate more parameters of the
model. Moreover, after performing the qualitative experimental design study
in chapter 4, in order to render more parameters identifiable, the need for an
input (Glucose) perturbation became clear. Once the input perturbation was
introduced in the experiments, the new experimental data allowed estimation
of extra parameters. It can be concluded that the hypothesis was at least partly
confirmed.

The last hypothesis was: A quantitative experimental design step for grey box
stochastic models will improve the parameter estimation step by providing the
experimental data containing the maximum amount of information.

The experimental design step performed in chapter 6 provided inputs for the
next series of experiments. The limited time framework made the iterations to
stop here. Thus the last hypothesis could not be proved in practice. In principle
it can at least be proved by estimating the parameters using the simulated data.

Some of the suggestions for future work will address inherently the validation
and prove of the last two hypotheses.

8.2 New contributions

This section briefly reviews the new contributions of this thesis.
A new and more systematic and practical methodology for parameter identifi-

ability analysis and qualitative experimental design is developed and presented
in chapters 3–4. The scope of the methodology is limited to dynamic models
originating from reaction networks since, the stoichiometric data is necessary
in the first stage of this methodology. However, the theory behind is not new.

Another novelty introduced in this thesis is quantitative experimental design
for stochastic differential equation. The new methodology presented in chap-
ter 5 has been implemented in software tool called EXPDSGN. However the
theory behind most of the elements used in this methodology are not new. For
example the algorithm for computing the Fisher Information Matrix has been
already introduced by Spall (2003). The optimization algorithm used has been
introduced few years ago but is one of the latest research developments in the
area of global stochastic optimization. The criteria and the approach for the
design of experiments is a classic one.

With respect to applications, chapter 6 contains grey-box stochastic models
for the system of bio-transformations.
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8.3 Suggestions for future work

This section gathers all the possible suggestions for future work.

8.3.1 Further modelling

One direction for future work regarding the modelling part of the work is
to investigate model IV mentioned in chapter 6 and presented in Appendix
A which represents a maximum extension of model given in section 6.3. Of
course a minimum condition is to obtained more extensive experimental data.
These new data sets should be obtained after applying the methodology for
qualitative experimental design. By performing this task before collecting more
experimental data actually would help proving the third hypothesis further.
The experimental data should be reacher in terms of data points for each of
the collected time series in order to really be able to use the grey-box modelling
framework, i.e. in order to be able to estimate the variance of the model states.

Another natural continuation is to perform an actual experiment using the
optimal experimental design conditions obtained in chapter 6 and then re-
estimate the model parameter in order to really prove the last hypothesis and
implicitly the first one, by having a better and more detailed validated model.

Some extensions for quantitative experimental design can be suggested.

8.3.2 Parameter independent experimental design

The algorithm presented in chapter 5, has one limitation regarding the un-
certainty of the model parameter values. In essence, the assumption is, that
the model parameters values are the true ones. This assumption is in practice
unrealistic, and usually the interval where the true value of the parameters is
located is approximately known, or perhaps something about the distribution
can be said.

The Expected value criterion mentioned above in Section5.1 is one way to
deal with this situation.

One other approach to deal with this situation is the so-called robust frame-
work for design of experiments as defined by Asprey and Macchietto (2000),
Asprey and Macchietto (2002) which converts the Expected value design into
a maxmin problem. Thus, a further extension of the quantitative experimental
design is to incorporate the SD criterion, presented in 5, into an outer loop
where together with an extra optimization problem whose variables are the
model parameters will render a criterion providing the maximum amount of
information for any value of the model parameters. This is in fact the similar
to the robust design criterion as described in Asprey and Macchietto (2000),
Asprey and Macchietto (2002) for systems described by DAE or ODE’s. As for
one of the future developments it will be interesting to investigate this crite-
rion for stochastic differential equations. The time frame limit prevented this
extension in the present work.
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8.3.3 Experimental design for model discrimination

In the work presented in this thesis different models have been developed and
presented starting with a simple case and then building in more and more com-
plexity. When discriminating and modifying the model, various reasonings have
been applied. Either extra physical knowledge, or experimental conditions and
data or statistical test and residual analysis have been applied during the pro-
cess of model development. The situation is often where there are more model
candidates available with similar performance with respect to the available ex-
perimental data and therefore in this situation it is useful to design experiments
to differentiate among the available models. The idea of experimental design
for model discrimination is to maximize the gap between the outputs of the two
models by manipulating the inputs, the switching times, the initial value of the
states and the sampling times. This class of experimental design for dynamic
models was introduced by Asprey and Macchietto (2000). This problem can
be reformulated as follows: the log-likelihood function is computed for each of
the to model candidates and then a criterion related to the ratio (or difference)
of the two log-likelihood functions is maximized.

The development of the algorithm and the software tool for the class of models
represented by stochastic differential equations can constitute an interesting
future work. However the main difficulty is the evaluation of the log-likelihood
function for the stochastic differential equations. In the work presented in this
thesis, an Iterated Extended Kalman Filter based implementation (Kristensen
et al. 2004a) is used to solve the propagation equations and to evaluate the
log-likelihood function.
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A very detailed kinetic
model

This appendix presents a very detailed model which represents the highest level
of detail for this enzymatic reaction network. Much more data are required to
estimate and validate this model. Figure A.1 presents the complete reaction
network. For development of the kinetic models, numerical values and the
kinetic expressions have been cited from Chassagnole et al. (2002) and Teusink
et al. (2000) .
The model equations with the extensions and additional kinetic data are re-
produced in Eqs. A.1–A.2. The reason to include this model in the study is
that it is important to evaluate the kinetic parameters as the SBT performs
at quite different conditions than the ones found in a living cell. This model
validation represent a future work since the model can only be validated once
more compounds in the SBT experiments will be measured.
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Figure A.1: The simplified reaction network used in this analysis
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dcGL = −r1 + σ11dω

dcF16B = r7 − r2 + σ22dω

dcDHAP = r2 − r6 + σ33dω

dcG3P = r2 − r3 + σ44dω

dcPY R = r12 − r4 + σ55dω

dcLAC = r4 + σ66dω

dcATP = −r1 − r7 − r5 + r9 + r12 + σ77dω

dcNAD = −r3 − r14 + r4 + r6 + σ88dω

dcPO4 = −r3 + r5 + r13 + σ99dω

dcG6P = r1 − r8 + σ1010dω

dcADP = −r9 − r12 + r1 + r7 + r5 + σ1111dω

dcNADH = r3 − r4 + r14 + r6 + σ1212dω

dcF6P = r8 − r7 + σ1313dω

dcAMP = r13 + σ1414dω

dcBPG = −r9 + r3 + σ1515dω

dc3PG = r9 − r10 + σ1616dω

dc2PG = r10 − r11 + σ1717dω

dcPEP = r11 − r12 + σ1818dω

dc6PG = r14 + σ1919dω

dcPG = r6 + σ2020dω (A.2)
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Experimental data

The experiments have been conducted at ETH Zurich (Schümperli et al. 2007).
In phase I, fed-batch (semi-batch) fermentations of E. coli LJ110 tpi are con-
ducted until the optical density (OD) in the bioreactor reaches a preset value
of 600. The broth is centrifuged and the cells are resuspended in SBT-buffer
(100 mM HEPES, 0.84 mM KCl, 1 mM ZnSO4 and at pH = 7). The cells
are disrupted by high-pressure homogenization. The remaining solids are elim-
inated by centrifugation/filtration and the liquid extract is recovered. The total
protein concentration is determined by Bradford analysis and adjusted to the
desired concentration by dilution with SBT buffer. The liquid extract contains
the enzymes and compounds present in the cell at the time when the fermenta-
tion was stopped. In phase II, a volume of 5 ml of SBT extract is used for each
experiment. Defined amounts of Hexokinase and Lactate-DH as well as ATP
and NAD+, are added. The reactions are initiated by adding the substrate
glucose. Samples are collected according to a previously defined time plan. The
experiments are terminated after 300 or 360 minutes. First, the proteins are re-
moved by precipitation with HCl (1M) followed by centrifugation. The samples
are analyzed by enzymatic assays. First Glucose-6-Phosphate is determined,
and then Glucose and Glucose-6-Phosphate are determined together by addi-
tion of Glucose-6-Phosphate-dehydrogenase and Hexokinase to form NADPH
which is determined spectro-photometrically. Di-Hydroxy-Acetone-Phosphate
is determined by addition of Glycerol-3-Phosphate-dehydrogenase and measur-
ing the NADH consumption spectro-photometrically. ATP is measured as well.
Each experiment is defined by the SBT extract design, by the initial concen-
trations of Glucose, cofactors, Phosphate and enzymes, by the sampling time
and by the end time. The samples were collected frequently in the beginning
(between 1-15 minutes) and less frequent towards the end of the batch and the
total time was 360 minutes. The initial concentration of the enzymes, cofactors,
phosphate and glucose is also known, with some uncertainty.
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B.1 Experimental procedure

SBT production or phase 1

• The E-coli tpi KO mutant fermentation is performed using a 3 Liters
reactor and operated in fed-batch mode.

• When the optical density (OD) reaches the value of 20 units the cultiva-
tion is stopped.

• The reactor broth is pumped out and cooled to 4◦C.

Kinetic experiments or phase 2

• The broth is centrifuged and the solid (the cells) is recovered

• The cells are suspended in the SBT buffer. The SBT buffer composition
is: 100 mM HEPES, 0.84 mM KCl, 5mM MgCl, 1 mM ZnSO4 at pH = 7

• Cell walls are rupted by high-pressure homogenization

• The solid particles are eliminated using filtration and the liquid is recov-
ered

• Total protein concentration is measured and the desired protein concen-
tration is corrected by adding SBT buffer solution

• Take a volume of 5 ml and feed it in the beaker

• Add the components (enzymes + ATP + NAD+ + PO4) that correspond
to the desired concentration

• Start reaction by adding the glucose amount corresponding to its desired
initial concentration

• Take samples after 15, 30, 60, 90, 120, 180, 240, 300 etc min.

• Prepare the sample for enzymatic analysis

- Add HCl to change the pH to 1 and precipitate all the proteins

- Bring the pH back to neutral

- Filter by centrifugation to remove the precipitated proteins

• Perform enzymatic assay of the samples

B.2 Experiment 1

4 parallel measurements have been taken for each point in time from 2 reactors.
The reactors were 2 beakers in a shaker.



B.2. Experiment 1 149

Comp Exp. No. Exp. 1 A Exp. 1 B
Hexokinase U/ml 1 1
Lactate-DH U/ml 1 1

Glc mM 11.1 11.1
PO4 mM 11.1 11.1
ATP mM 11.5 11.5

NAD+ mM 11.5 11.5
Prot.tot. mg/ml 20 20

T 30 30
Strain LJ110-tpi wild type

Table B.1: Experiment 1 description

Time DHAP GL
0 0.7 0.69 0.82 0.72 7.28 7.26 7.5 7.34
30 3.92 3.81 4.11 3.98 -0.39 -0.27 -0.31 -0.16
60 5.75 5.33 9.82 7.86 -0.27 -0.44 -0.13 0.04
90 6.05 6.18 7.1 6.31 -0.38 -0.37 -0.28 -0.31
120 6.67 6.34 7.01 7.05 -0.44 -0.53 -0.32 -0.66
180 7.18 7.26 6.96 7.58 -0.37 -0.16 -0.21 -0.33
240 7.6 7.42 7.9 7.77 -0.41 -0.25 -0.21 -0.28
300 7.02 7.59 7.39 7.45 -0.35 -0.41 -0.28 -0.33

Table B.2: Experiment 1A

Time DHAP GL
0 0.06 -0.02 0.03 0.06 8.93 9.26 8.94 9.22
30 0.44 0.32 0.37 0.42 1.06 1.03 1.12 1.04
60 0.32 0.4 0.44 0.43 0.5 0.07 0.44 0.25
90 0.28 0.28 0.38 0.36 0.19 0.04 0 0.09
120 0.24 0.29 0.32 0.32 0.09 -0.08 -0.03 0.9
180 0.18 0.19 0.14 0.25 -0.35 -0.46 1.62 -0.28
240 0.12 0.1 -0.13 -0.08 -0.39 -0.26 -0.48 -0.26
300 0.12 -0.05 0.01 0.07 -0.45 -0.49 -0.13 -0.47

Table B.3: Experiment 1B
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B.3 Experiment 2

In experiment 2 the protein concentration was varied from 2 [mg/ml] to 20
[mg/ml] in three batch experiments.

Comp Exp. No. Exp. 2 A Exp.2 B Exp. 2 C
Hexokinase U/ml 1 1 1
Lactate-DH U/ml 1 1 1

Glc mM 11.1 11.1 11.1
PO4 mM 11.1 11.1 11.1
ATP mM 11.5 11.5 11.5

NAD+ mM 11.5 11.5 11.5
Prot.tot. mg/ml 20 10 2

T 30 30 30
Strain LJ110-tpi LJ110-tpi LJ110-tpi

Table B.4: Experiment 2 description

Time DHAP GL
0 0.34 0.24 0.24 0.34 8.7 8.98 10.44 10.37
30 2.72 2.63 2.98 2.82 -0.13 -0.23 -0.34 -0.51
60 4.19 1.56 4.22 4.19 -0.4 -0.66 -0.41 -0.55
90 5.29 5.24 5.06 5.05 -0.64 -0.92 -0.43 -0.53
120 5.96 6.04 5.55 5.1 -1.77 -0.67 -0.58 -0.64
180 6.78 6.77 6.06 6.36 -0.59 -0.9 -0.7 -0.59
240 7.25 7.22 6.35 6.3 -0.46 -0.56 -0.08 -0.36
300 7.39 7.37 6.77 6.75 -0.21 -0.63 -0.71 -0.7

Table B.5: Experiment 2A, 20 [mg/ml]
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Time DHAP GL
0 0.13 0.1 0.13 0.07 9.26 9.66 11.61 11.54
30 1.51 1.54 1.59 1.43 1.7 1.75 3.08 3.06
60 2.62 2.44 2.4 2.39 0.08 -0.04 0.88 0.81
90 3.04 3 3.12 2.98 -0.31 -0.31 -0.06 -0.07
120 3.61 3.69 3.63 3.61 -0.21 -0.42 -0.36 -0.09
180 4.26 4.19 4.36 4.24 -0.42 -0.33 -0.15 -0.11
240 4.66 4.59 4.78 4.65 -0.29 -0.07 -0.14 0.18
300 4.74 4.64 4.95 4.78 -0.28 -0.4 -0.31 0.06

Table B.6: Experiment 2B, 10 [mg/ml]

Time DHAP GL
0 0 -0.46 -0.05 -0.04 9.85 10.41 10.18 10.64
30 0.29 -1.59 0.16 0.23 6.02 5.86 5.76 6.26
60 0.56 0.31 0.53 0.55 4.96 4.79 4.43 4.38
90 0.76 0.65 0.83 0.83 3.63 3.62 3.51 3.64
120 0.96 1.03 0.8 1.05 2.86 2.79 2.88 3.11
180 1.37 1.34 1.39 1.45 1.98 1.51 2.07 1.94
240 1.68 1.58 1.29 1.3 1.22 1.34 0.82 0.88
300 1.95 2.05 2.03 1.9 0.83 1.04 0.85 0.77

Table B.7: Experiment 2C, [2 mg/ml]



B.3. Experiment 2 153



154 Experimental data

B.4 Experiment 3

In experiment 3 the temperature was varied and while keeping the same amount
of hexokinase.

Comp Exp. No. Exp. 3 A Exp. 3 B Exp. 3 C
Hexokinase U/ml 1 1 1
Lactate-DH U/ml 1 1 1

Glc mM 11.1 11.1 11.1
PO4 mM 11.1 11.1 11.1
ATP mM 11.5 11.5 11.5

NAD+ mM 11.5 11.5 11.5
Prot.tot. mg/ml 10 10 10

T 37 30 25
Strain LJ110-tpi LJ110-tpi LJ110-tpi

Table B.8: Experiment 3 description

Time DHAP GL
0 0.22 0.14 0.19 0.09 8.97 8.94 9.27 9.26
15 1.66 1.68 1.62 1.6 1.91 1.72 1.77 1.65
30 2.69 2.62 2.65 2.64 0.21 0.14 0.13 0.11
60 4.1 4.06 3.99 3.81 0.39 -0.09 0.21 -0.22
90 5.06 5.03 4.85 4.74 -0.12 -0.25 -0.27 -0.46
120 5.72 5.76 5.25 5.3 -0.09 0.02 -0.34 -0.24
180 6.97 6.75 5.85 5.78 -0.27 0.04 -0.34 -0.33
240 6.45 6.31 5.93 5.89 0.21 -0.38 -0.24 -0.32
300 7.35 7.19 6.33 6.22 1.78 -0.21 -0.33 -0.3

Table B.9: Experiment 3A, 37 C
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Time DHAP GL
0 0.19 0.09 0.18 0.15 8.7 8.8 8.39 8.24
15 1.18 1.1 1.17 1.08 3.33 3.43 3.18 3.4
30 1.87 1.93 1.82 1.83 1.02 1.3 0.82 0.97
60 2.96 2.83 2.79 2.78 -0.15 -0.18 -0.49 -0.22
90 3.82 3.55 3.62 3.59 -0.23 -0.27 -0.14 -0.28
120 4.26 4.12 4.09 4.14 -0.31 -0.27 -0.45 -0.29
180 4.95 5.02 4.79 4.85 -0.22 0.02 -0.4 -0.27
240 5.39 5.21 5.11 4.99 -0.1 -0.27 -0.54 -0.27
300 5.71 5.64 5.4 5.15 -0.27 -0.27 -0.25 -0.04

Table B.10: Experiment 3B, 30 C

Time DHAP GL
0 0.05 0.05 -0.01 -0.09 9.1 9.69 8.98 8.83
15 0.73 0.73 0.7 0.73 4.08 4.4 4.22 4.16
30 1.46 1.46 1.23 1.22 2.88 2.41 2.19 2.34
60 2.14 2.14 2.1 2.02 0.5 0.36 0.2 0.35
90 2.72 2.72 2.63 2.63 -0.07 0.03 -0.1 -0.06
120 3.18 3.18 3.19 3.17 -0.11 -0.35 -0.2 -0.14
180 3.87 3.87 3.92 3.89 -0.34 -0.24 -0.47 -0.24
240 4.23 4.23 4.38 4.38 -0.39 -0.37 -0.35 -0.21
300 4.53 4.53 4.53 4.54 -0.17 -0.22 -0.31 -0.12

Table B.11: Experiment 3C, 25 C
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B.5 Experiment 4

For experiment 4 the amount of hexokinase has been reduced from 1 [U/ml] to
0.06 [U/ml]. In this experiment the amount of ATP has been varied from 11.5
[mM/ml] to 1.15 [mM/ml] stepwise.

Comp Exp. No. Exp. 4 A Exp. 4 B Exp. 4 C
Hexokinase U/ml 0.06 0.06 0.06
Lactate-DH U/ml 1 1 1

Glc mM 11.1 11.1 11.1
PO4 mM 11.1 11.1 11.1
ATP mM 11.5 5.75 1.15

NAD+ mM 11.5 11.5 11.5
Prot.tot. mg/ml 10 10 10

T 37 37 37
Strain LJ110-tpi LJ110-tpi LJ110-tpi

Table B.12: Experiment 4 description

Time DHAP GL
0 0.13 -0.07 -0.02 -0.08 11.25 11.74 11.28 11.28
15 1.24 1.27 1.29 1.33 4.48 4.65 4.84 4.9
30 2.49 2.33 2.37 2.55 2.1 1.83 2.18 2.2
60 4.05 3.97 4.01 4.35 0.03 0 0.08 -0.01
90 5.08 4.84 5.12 4.92 -0.13 -0.11 -0.17 0.14
120 5.5 5.45 5.88 5.77 -0.41 0.01 -0.01 0.12
180 6.06 5.96 6.66 6.52 -0.14 -0.21 -0.1 -0.13
240 6.84 6.78 7.61 7.05 0.67 -0.17 0.02 0.06
300 7.39 7.44 8.04 7.96 -0.27 -0.37 0.09 -0.12

Table B.13: Experiment 4A, 11.5 mM ATP
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Time DHAP GL
0 0.13 0.14 0.1 0.1 28.49 28.66 20.19 19.74
15 1.22 1.14 0.94 0.93 5.12 5.23 5.79 5.73
30 1.89 1.81 1.57 1.57 4.04 4.43 4.97 4.69
60 2.97 2.77 2.42 2.38 3.1 3.15 4.07 3.86
90 3.58 3.48 2.92 2.9 2.38 1.88 3.11 3.06
120 3.97 3.89 3.26 3.24 1.83 1.82 2.56 2.17
180 4.36 4.2 3.69 3.62 0.98 0.88 1.77 1.78
240 4.56 4.33 3.91 3.89 0.24 0.28 1.33 1.04
300 4.63 4.4 3.87 3.92 0.06 0 0.5 0.67

Table B.14: Experiment 4B, 5.75 mM ATP

Time DHAP GL
0 0.1 0.1 0.08 0.14 18.68 18.34 12.06 11.82
15 0.5 0.37 0.39 0.35 7.67 8.35 8.74 8.9
30 0.67 0.68 0.62 0.62 7.99 7.8 8.56 8.55
60 1.16 1.17 1.07 1.12 7.56 7.58 7.83 7.97
90 1.61 1.39 1.49 1.49 6.69 6.6 6.98 7.02
120 1.92 1.78 1.9 1.87 6.04 6.01 6.2 6.29
180 2.4 2.25 2.37 2.23 4.76 4.75 4.97 4.91
240 2.85 2.77 2.75 2.69 3.85 3.91 4.77 3.72
300 2.97 3.03 2.88 2.87 2.82 3.11 2.86 2.65

Table B.15: Experiment 4C, 1.15 ATP
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B.6 Experiment 5

Comp Exp. No. Exp. 5 A Exp. 5 B Exp. 5 C
Hexokinase U/ml 0.06 0.06 0.06
Lactate-DH U/ml 1 1 1

Glc mM 11.1 11.1 11.1
PO4 mM 11.1 11.1 11.1
ATP mM 5.57 5.75 5.75

NAD+ mM 11.5 5.75 1.15
Prot.tot. mg/ml 10 10 10

T 37 37 37
Strain LJ110-tpi LJ110-tpi LJ110-tpi

Table B.16: Experiment 5 description

Time DHAP GL
0 0.06 0.1 0.05 0.03 9.08 9.49 9.66 9.6
15 0.85 0.87 0.89 0.94 6.1 5.82 5.81 5.81
30 1.49 1.43 1.51 1.53 5.12 5.27 5.25 4.97
60 2.28 2.3 2.39 2.45 3.96 3.96 3.97 3.96
90 2.79 2.78 2.97 2.93 3.47 3.66 3.09 3.13
120 3.18 3.12 3.22 3.08 2.88 3.08 2.78 2.32
180 3.64 3.62 3.64 3.56 2.58 2.7 2.01 1.85
240 4.15 4.13 3.7 3.7 2.28 2.34 1.19 1.14
300 4.5 4.42 3.64 3.6 1.82 1.94 0.66 0.72

Table B.17: Experiment 5A, 11.5 mM NAD
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Time DHAP GL
0 0.03 0.07 0 0 10.12 10.38 10.48 10.56
15 0.92 0.91 0.88 0.9 5.6 5.95 6.06 6.02
30 1.46 1.37 1.49 1.53 4.86 4.94 4.93 4.76
60 2.2 2 3.89 3.86
90 2.75 2.56 3.31 3.32
120 2.86 2.86 2.9 2.82 2.53 2.67 2.67 2.72
180 3.22 3.1 3.4 3.19 2.42 1.93 2.1 2.07
240 3.15 3.3 3.36 3.92 1.28 1.33 1.28 1.42
300 3.16 3.09 3.32 3.97 0.69 1.04 0.9 0.81

Table B.18: Experiment 5B, 5.75 mM NAD

Time DHAP GL
0 -0.17 0.07 0.09 0.07 10.19 10.36 10.57 10.77
15 0.87 0.86 0.81 0.89 5.77 5.91 5.8 5.93
30 1.42 1.24 1.41 1.41 5.03 4.67 5.25 4.91
60 2.17 2.2 2.04 2.11 3.56 3.78 3.99 4.19
90 2.6 2.67 2.69 2.6 3.38 3.05 3.5
120 2.98 2.97 2.81 2.88 2.71 2.87 2.85 3.05
180 3.27 3.18 3.2 3.21 1.95 1.72 2.14 2.09
240 3.49 3.24 3.36 3.26 1.21 1.64 1.5 1.69
300 3.55 3.61 3.64 3.52 1.04 1.04 1.51 1.05

Table B.19: Experiment 5C, 1.15 mM NAD
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B.7 Experiment 6

Comp Exp. No. Exp. 6 A
Hexokinase U/ml 0.06
Lactate-DH U/ml 1

Glc mM 44.4
PO4 mM 44.4
ATP mM 11.5

NAD+ mM 11.5
Prot.tot. mg/ml 10

T 37
Strain LJ110-tpi

Table B.20: Experiment 6 description

Time DHAP GL
0 0.61 0.41 0.59 0.56 37.74 37.02 35.94 36.07
15 1.64 1.73 1.97 1.87 29.93 28.95 31.29 30.61
30 2.54 2.69 2.85 2.77 28.47 28.09 29.93 29.4
60 3.83 3.73 4.11 4.03 25.81 26.02 28.39 27.43
90 4.66 4.53 4.99 4.77 25.22 24.2 27.03 26.19
120 5.21 4.94 5.43 5.38 24.29 23.67 25.37 21.84
180 6.33 6.51 6.37 6.32 21.09 21.46 22.99 23.78
240 6.39 6.26 7.2 7.13 21.42 21.93 22.3 20.14
300 6.89 6.98 7.54 7.55 19.57 19.27 21.22 16.86

Table B.21: Experiment 6A, 44 mM GL
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B.8 Experiment 7

Comp Exp. No. Exp. 7 A Exp. 7 B Exp. 7 C
Hexokinase U/ml 0.06 0.06 0.06
Lactate-DH U/ml 1 1 1

Glc mM 11.1 11.1 11.1
PO4 mM 11.1 11.1 11.1
ATP mM 11.5 11.5 11.5

NAD+ mM 11.5 11.5 11.5
Prot.tot. mg/ml 10 10 10

T 37 37 37
Strain LJ110-tpi LJ110-tpi LJ110-tpi

Table B.22: Experiment 7 description

Time DHAP GL
0 0.55 0.41 0.53 0.58 9.6 9.7 9.88 9.85
15 1.69 1.77 1.68 1.75 5.12 4.61 5.98 5.69
30 2.82 2.75 3.1 2.83 2.61 2.44 3.71 3.48
60 4.29 4.32 4.42 4.08 0.51 0.78 1.4 1.3
90 5.05 5.04 5.06 5.18 0.09 0.08 0.5 0.38
120 5.49 5.24 5.29 5.59 -0.44 -0.24 0.05 -0.04
180 5.84 5.68 5.95 5.81 -0.49 -0.15 0.15 -0.15
240 5.8 5.74 6.1 5.88 -0.5 -0.43 -0.81 -0.44
300 5.94 5.91 6.03 5.98 -0.47 -0.37 -0.35 -0.53

Table B.23: Experiment 7A, nonwashed extract
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Time DHAP GL
0 0.49 0.38 0.45 0.4 8.73 8.94 9.25 8.76
15 1.15 1.19 1.26 1.13 5.51 5.45 5.67 5.71
30 2.07 2.02 2.13 2.05 2.96 3.05 3.66 3.34
60 3.22 3.22 3.3 3.21 1.3 1.02 1.09 1.12
90 4.14 4 4.24 4.12 0.31 0.07 0.25 0.17
120 4.63 4.68 4.57 4.44 0.02 -0.16 -0.32 -0.15
180 5.04 4.82 5.33 4.78 -0.16 -0.16 0.2 -0.19
240 5.25 5.12 5.49 5.05 -0.19 -0.33 -0.03 -0.3
300 5.24 5.42 5.56 5.17 -0.14 -0.22 -0.03 -0.21

Table B.24: Experiment 7B, ultrafiltered extract

Time DHAP GL
0 -0.08 0.01 8.62 7.98
15 0.52 0.48 5.79 7.93
30 1.17 1.16 4.23 4.07
60 2.08 1.93 2.24 2.27
90 2.68 2.47 1.09 1.31
120 3 2.93 0.45 0.7
180 3.52 3.54 0.08 0.31
240 3.95 4.23 -0.41 -0.18
300 4.4 4.22 -0.12 -0.18

Table B.25: Experiment 7C, washed extract
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B.9 Experiment 8

Before experiment 8 a new batch was executed with a double mutant LJ110-
tpi-zwf and then used for the next SBT experiments.

Comp Exp. No. Exp. 8A
Hexokinase U/ml 0.06
Lactate-DH U/ml 1

Glc mM 11.1
PO4 mM 11.1
ATP mM 11.5

NAD+ mM 5.75
Prot.tot. mg/ml 10

T 37
Strain LJ110 tpi-zwf

Table B.26: Experiment 8 description

Time DHAP GL
0 -1.52 0.38 0.32 0.37 0.32 0.31 9.74 10.15 9.2 9.18 8.28 8.75
15 1.67 1.8 1.84 1.71 1.27 1.94 4.72 4.82 4.7 4.94 3.59 3.81
30 2.65 3.03 2.81 2.83 2.85 2.98 3.2 2.76 2.75 2.94 2.28 2.4
60 4.22 4.28 4.15 4.1 4.07 4.36 1.24 1.47 1.46 1.48 0.53 1
90 5.09 5.17 5.02 4.62 5.2 5.18 1.11 1.1 0.94 1.17 0.11 0.55
120 5.23 5.42 5.42 5.6 5.57 5.6 1.11 1.18 1.22 1.21 0.65 0.66
180 5.81 6.14 5.83 5.98 6.08 6.11 2.02 1.44 1.39 1.44 1 1.15
240 5.93 6.4 5.91 5.96 5.87 5.76 1.5 1.57 1.68 1.44 1.11 1.31
300 6.64 6.52 5.49 5.68 5.64 5.69 1.74 1.16 1.69 1.64 1.57 1.36

Table B.27: Experiment 8A, double mutant
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B.10 Experiment 9

In experiment 9, production of 5-deoxy-5-ethyl-xylulose-1-phosphate with the
LJ110 tpi zwf was investigated.

Comp Exp. No. Exp 9A Exp 9B
Hexokinase U/ml 0.06 0.06
Lactate-DH U/ml 1 1

Glc mM 11.1 11.1
PO4 mM 11.1 11.1
ATP mM 11.5 11.5

NAD+ mM 5.75 5.75
Prot.tot. mg/ml 10 10

T 37 37
Strain LJ110 tpi-zwf LJ110 tpi-zwf

Table B.28: Experiment 9 description

LJ110 tpi zwf. Reactor system changed. Stirred double-walled beakers.
Added Aldolase reaction. Production phase starting at 182 min, butanal added

Time DHAP GL
0 0.49 0.39 7.81 0.66
5 0.76 0.81 7.46 7.68
10 1.23 1.29 5.28 4.61
15 1.75 1.83 4.34 4.36
30 2.4 3.09 2.64 2.76
60 4.33 4.57 1.86 2.07
90 4.96 5.31 1.59 1.68
120 5.71 5.84 1.58 1.02
180 6.51 6.88 1.35 1.36
182 6.25 6.44 1.86 1.89
185 6.06 6.24 1.79 1.69
190 6.04 6.41 1.43 1.61
195 6.11 6.12 1.6 1.71
210 5.83 6.18 1.62 1.93
240 5.38 6.03 1.62 1.62
270 5.2 5.73 1.6 1.77
305 5.07 5.34 1.7 1.48

Table B.29: Experiment 9A, double mutant

The production of 5-deoxy-5-ethyl-xylulose-1-phosphate was initiated by adding
an extra reactant, butanal in large amount [10mM/ml], which was supposed to
consume the DHAP present in the reactor. The performance of the reaction
was not so good. The possible causes are:
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- somehow the pool of the aldolase presents in the extract, got saturated
or blocked by one of the reactants, the reaction producing DHAP run at
an acceptable rate;

- the pool of enzyme was just to small to cope with the large amount of
butanal

- butanal, being a non natural reactant made the reaction to be less efficient
than the one with G3P (cleavage of F16B to DHAP and G3P)

LJ110 tpi zwf. Reactor system changed. Stirred double-walled beakers.
Added Aldolase reaction. Production phase starting at 182 min, butanal and
RAMA added.

Time DHAP GL
0 0.06 0.29 8.99 8.56
5 0.81 0.7 7.15 6.91
10 1.32 1.46 5.4 5.52
15 1.91 1.95 4.6 4.63
30 2.52 2.77 3.25 3.34
60 4.27 4.3 1.99 2.05
90 4.95 4.8 1.87 2.06
120 5.56 5.73 1.64 1.85
180 6.87 6.96 1.61 1.67
182 6.04 6.2 1.61 1.6
185 3.93 3.84 1.74 1.81
190 1.21 1.57 1.4 1.45
195 1.41 1.31 1.19 0.96
210 1.47 1.54 0.72 0.52
240 1.72 1.82 0.23 0.16
270 1.97 2.08 0.3 0.2
305 2.1 2.25 0.21 0.31

Table B.30: Experiment 9B, double mutant

A second experiment was performed, when besides butanal, extra amount of
aldolase enzyme was added (RAMA- rabbit muscle aldolase, type I of aldolase).
The production phase was started at 182 min.
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B.11 Experiment 10

Before experiment 10 a new LJ110 tpi batch was produced. In experiment
10 the new reactor system with stirred double-walled beakers was used. G6P
was measured for the first time independently. The amount of hexokinase and
the temperature were maintained constant at the previous values. The ATP
concentration was varied.

Experiments where G6P was measured also.

Comp Exp. No. Exp 10A Exp 10B
Hexokinase U/ml 0.06 0.06
Lactate-DH U/ml 1 1

Glc mM 11.1 11.1
PO4 mM 11.1 11.1
ATP mM 11.5 5.75

NAD+ mM 5.75 5.75
Prot.tot. mg/ml 10 10

T 37 37
Strain LJ110 tpi LJ110 tpi

Table B.31: Experiment 10 description

Time DHAP GL+G6P G6P
0 0.27 0.2 9.39 9.83 0.27 0.38
5 0.8 0.81 6.13 6.58 0.28 0.49
10 1.3 1.33 4.52 4.78 0.33 0.46
15 1.76 1.9 3.07 3.58 0.53 0.63
30 2.57 2.61 1.2 1.21 0.86 0.95
60 3.91 4.24 0.05 -0.51 0.36 0.45
90 4.7 4.99 0.07 0.08 0.89 1.04
120 4.72 4.86 -0.23 -0.15 0.24 0.22
180 5.69 6.12 0.05 0.13 0.28 0.21
240 5.72 6.07 -0.19 -0.1 0.13 0.13
302 5.32 5.9 -0.31 -0.13 -0.01 0.06
360 5.25 5.21 -0.08 -0.09 -0.02 -0.02

Table B.32: Experiment 10A, 11.5 mM ATP, Reactor I
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Time DHAP GL+G6P G6P
0 0.32 0.22 9.09 9.6 0.17 0.14
5 0.73 0.71 7.45 7.49 0.23 0.32
10 0.88 0.97 6.32 5.92 0.37 0.45
15 1.1 1.15 5.64 5.95 0.45 0.36
30 1.57 1.67 5.16 5.57 0.59 0.69
60 2.09 2.12 3.81 3.81 0.56 0.29
90 2.51 2.66 2.9 2.99 0.32 0.5
120 2.79 2.99 2.27 1.88 0.43 0.4
180 3.22 5.42 1.28 1.37 0.25 0.22
240 3.42 3.66 0.66 0.56 0.08 0.23
302 3.6 3.95 -0.01 -0.08 0.16 0.14
360 3.7 3.91 -0.08 -0.28 0.29 0.06

Table B.33: Experiment 10B, 5.75 mM ATP, Reactor II
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B.12 Experiment 11

In experiment 11 the amount of hexokinase was further reduced from 0.06
[U/ml] to 0.01 [U/ml] and the ATP concentration was varied again.

Comp Exp. No. Exp 11A Exp 11B
Hexokinase U/ml 0.01 0.01
Lactate-DH U/ml 1 1

Glc mM 11.1 11.1
PO4 mM 11.1 11.1
ATP mM 11.5 5.75

NAD+ mM 5.75 5.75
Prot.tot. mg/ml 10 10

T 37 37
Strain LJ110 tpi LJ110 tpi

Table B.34: Experiment 11 description

Time DHAP GL+G6P G6P ATP
0 0.41 0.46 9.22 7.37 0.29 0.2 6.95 7.25
5 0.92 0.95 6.17 6.65 0.33 0.4 2.88 3.36
10 1.44 1.72 4.55 4.77 0.5 0.57 1.36 1.32
15 1.93 2.09 3.11 3.59 0.5 0.59 0.73 0.85
30 2.71 2.97 1.37 1.46 0.58 0.76 0.28 0.28
60 4.04 4.54 -0.02 -0.02 0.45 0.8 0.23 0.29
90 4.92 5.34 0.06 -0.01 0.09 0.32 0.22 0.38
120 5.46 6 -0.19 0.05 0.33 0.25 0.16 0.1
188 5.84 6.16 0.38 0.34 0.32 0.14 0.1 0.09
240 5.77 5.93 0 -0.25 0.18 0.05 0.06 0.06
300 5.84 6.46 -0.31 -0.15 0.14 0.03 0.05 0.05
361 5.99 6.36 0.28 -0.03 -0.01 0.04 -0.01 0.03

Table B.35: Experiment 11A, 11.5 mM ATP, reactor I
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Time DHAP GL+G6P G6P ATP
0 0.38 0.38 9.07 10.57 0.27 0.22 3.01 3.36
5 0.7 0.79 7.3 8.02 0.39 0.35 0.53 0.59
10 0.95 1.02 6.62 6.95 0.44 0.46 0.2 0.19
15 1.04 1.03 5.6 6.24 0.31 -0.25 0.11 0.18
30 1.65 1.83 4.93 5.47 0.38 0.37 0.04 0.13
60 2.3 2.59 3.68 4.19 0.32 0.47 0.04 0.07
90 2.84 3.05 3.01 3.06 0.54 0.44 0.05 -0.02
120 3.03 3.34 2.32 2.9 0.75 0.96 0.09 0.01
188 3.2 3.34 1.01 1.1 0.29 0.2 0.06 0.02
240 3.56 3.92 0.39 0.4 0.08 0.22 0.03 0
300 3.89 4.24 -0.06 0.03 0.23 0.2 0.02 0.02
361 3.88 4.16 1.02 0.17 0.13 0.02 0.03 0.06

Table B.36: Experiment 11B, 5.75 mM ATP, reactor II



176 Experimental data



B.13. Experiment 12 177

B.13 Experiment 12

For experiment 12 the hexokinase concentration was kept constant at 0.01
[U/ml]. In this experiment the Glucose initial concentration was doubled (from
11.1 to 22.2 [mM/ml]). Three types of experiments have been performed.

- an experiment with unwashed extract, like in the previous experiments

- an experiment with the extracted prepared as follows. Crude extract
was filtered with an ultra-filter. The concentrate was diluted to original
volume with buffer and the filtrate was discarded. The procedure was
repeated three times.

- an experiment in which the crude extract was filtered and then the con-
centrate was mixed again with filtrate

LJ110 tpi. Stirred double-walled beakers.Reactor IV, filtered I

Comp Exp. No. Exp 12A Exp 12B Exp 12C
Hexokinase U/ml 0.01 0.01 0.01
Lactate-DH U/ml 1 1 1

Glc mM 22.2 22.2 22.2
PO4 mM 11.1 11.1 11.1
ATP mM 11.5 11.5 11.5

NAD+ mM 5.75 5.75 5.75
Prot.tot. mg/ml 10 10 10

T 37 37 37
Strain LJ110 tpi LJ110 tpi LJ110 tpi

Table B.37: Experiment 12 description
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Time DHAP GL+G6P G6P ATP
0 0.44 0.33 17.13 18 0.58 0.53 6.78 7.01
5 0.77 0.88 16.02 16.85 0.25 0.16 2.79 2.92
10 1.17 1.03 14.1 14.71 0.59 0.38 1.85 2.16
15 1.47 1.56 14.49 15.64 0.57 0.49 1.3 1.48
30 2.07 2.32 12.02 13.1 0.92 0.83 0.48 0.53
60 3.48 3.64 11.28 11.89 1.16 1.13 0.08 0.09
90 4.11 4.31 10.81 11.57 1.25 1.18 0.1 0.07
120 4.67 4.7 9.13 9.76 1.07 0.96 0.1 0.13
180 5.16 5.36 9.96 10.72 1.28 1.4 0.05 1.25
259 5.91 6.06 9.07 10.23 1 1.01 0.12 0.87
300 6.25 6.87 8.28 8.7 1.17 1.24 0.19 1.1
360 5.63 5.91 6.55 6.85 -0.01 -0.02 0.01 -0.13

Table B.38: Experiment 12A, unwashed extract, Reactor I

Time DHAP GL+G6P G6P ATP
0 -0.05 -0.05 16.22 17.66 0.38 0.47 7.11 7.88
5 0.21 0.24 17.69 18.99 0.42 0.69 5.59 6.39
10 0.6 0.57 15.78 16.22 0.61 0.63 3.91 4.03
15 0.89 0.96 15.26 15.68 0.67 0.71 3.24 3.49
30 1.54 1.62 12.74 13.38 0.94 0.99 1.55 1.65
60 2.73 2.83 11.71 12.59 1.54 1.66 0.48 0.57
90 3.41 3.6 10.04 10.37 1.63 1.76 0.23 0.29
120 4.16 4.34 9.06 9.41 1 1.04 0.27 0.28
180 4.66 5.08 7.18 7.82 0.73 0.76 0.28 0.33
259 5.75 6.08 6.51 7.07 0.78 0.79 0.25 0.3
300 5.41 5.61 5.77 6.69 0.73 0.77 0.28 0.26
360 6.17 6.26 5.24 5.01 0.63 0.67 0.2 0.21

Table B.39: Experiment 12B, washed extract I, Reactor II
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Time DHAP GL+G6P G6P ATP
0 -0.01 -0.09 17.71 18.32 0.26 0.3 6.7 7.01
5 0.15 0.16 16.91 18.66 0.4 0.41 5.14 5.38
10 0.58 0.71 16.98 17.59 0.54 0.58 4.61 4.94
15 0.95 0.91 15.71 15.71 0.53 0.57 2.92 3.13
30 1.7 1.73 13.65 14.41 0.75 0.8 1.63 1.75
60 2.76 2.71 11.42 12.28 1.17 1.28 0.7 0.47
90 3.3 3.45 10.09 10.81 1.35 1.44 0.24 0.22
120 3.9 4.14 8.8 9.15 0.69 0.72 0.23 0.29
180 5.08 5.46 8.95 9 0.37 0.82 0.34 0.36
259 5.72 6.18 7.04 7.94 0.3 0.64 0.31 0.28
300 5.76 6.38 6.64 7.26 0.27 0.63 0.25 0.28
360 5.97 6.3 6.57 6.54 0.55 0.61 0.21 0.19

Table B.40: Experiment 12A, washed extract II ,Reactor III

Time DHAP GL+G6P G6P ATP
0 0.34 0.28 17.01 17.28 0.11 0.13 6.66 7.07
5 0.51 0.58 16.67 16.79 0.14 0.14 4.74 5.15
10 0.95 0.98 15.08 15.73 0.23 0.24 3.06 3.23
15 1.27 1.43 15.15 15.35 0.3 0.3 2.43 2.63
30 2.11 2.22 13.7 14.75 0.55 0.58 0.99 1.21
60 3.44 3.39 11.08 12.46 0.96 1.05 0.2 0.27
90 4.08 4.26 10.22 11.61 1.07 1.15 0.19 0.14
120 12.21 12.35 26.53 25.49 1.5 1.43 1.46 1.54
180 4.89 5.39 8.33 8.8 0.8 0.89 0.14 0.15
259 5.92 6.06 7.71 8.62 0.82 0.9 0.13 0.16
300 6.01 6.62 7.01 7.41 0.77 0.84 0.11 0.14
360 6.11 6.6 6.72 7.3 0.82 0.85 0.1 0.12

Table B.41: Experiment 12C, filtered extract I, Reactor IV
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Time DHAP GL+G6P G6P ATP
0 0.35 0.33 20.51 21.4 0.09 0.09 6.42 6.68
5 0.64 0.61 19.24 19.62 0.06 0.07 4.34 4.63
10 1 1.09 18.68 19.66 0.26 0.37 2.72 2.89
15 1.36 1.38 17.7 19.02 0.25 0.29 2.08 2.27
30 2.21 2.32 16.54 17.01 0.59 0.64 0.78 0.83
60 3.4 3.63 14.98 15.65 0.91 0.99 0.26 0.27
90 4.22 4.32 13.95 15.19 0.72 1.12 0.14 0.16
120 12.8 11.57 32.86 33.97 1.35 1.31 1.24 1.26
180 5.31 5.53 11.64 11.25 0.7 0.81 0.21 0.2
259 6.33 6.8 11.04 12.33 0.76 0.85 0.16 0.14
300 6.64 7.41 11.9 11.69 0.78 0.88 0.19 0.21
360 6.74 9.02 12.59 12.68 0.87 0.96 0.23 0.24

Table B.42: Experiment 12C, filtered extract II, Reactor V



B.13. Experiment 12 181



182 Experimental data



B.13. Experiment 12 183



184 Experimental data

B.14 Experiment 17

A new experiment, exp 17, was performed after ATP sink was eliminated in the
way described and the initial concentration of ATP was varied. Five reactors
(stirred, double-walled beakers) were used. One reactor for the experiment with
an initial concentration of ATP of 11.5 [mM/ml], two reactors (II and III) with
an initial concentration of 5.75 [mM/ml] and two reactors (IV and V) with 1.15
[mM/ml]. First time when measuring ADP and AMP. AMP measurements
are not reliable. Time delays between ATP and glucose additions and first
sampling: ATP 15 - 20 s; glucose 10 s.

Comp Exp. No. Exp 17A Exp 17BC Exp 17DE
Hexokinase U/ml 0.01 0.01 0.01
Lactate-DH U/ml 1 1 1

Glc mM 11.1 11.1 11.1
PO4 mM 11.1 11.1 11.1
ATP mM 11.5 5.75 1.15

NAD+ mM 5.75 5.75 5.75
Prot.tot. mg/ml 37 37 37

Strain LJ110 tpi LJ110 tpi LJ110 tpi

Table B.43: Experiment 17 description

Time DHAP G6P+Gl G6P ATP ADP
0 0.56 0.53 7.79 7.91 0.18 0.24 6.51 6.27 4.51 0.11
5 1.02 1.07 6.8 7.21 0.57 0.6 3.27 3.6 5.18 -0.03
10 1.45 1.63 4.88 4.94 0.61 0.62 1.76 2.14 4.51 4.49
15 2 2.12 3.96 3.99 0.82 0.81 1.25 1.37 4.18 4.22
30 2.99 3.31 2.15 2.07 1.26 1.32 0.67 0.52 2.87 2.93
60 4.62 4.95 0.44 0.03 1.08 1.2 0.32 0.57 2.04 1.88
90 5.55 6.06 -0.15 -0.24 0.74 0.78 0.49 0.41 1.86 2.16
120 6.42 6.88 -0.22 -0.19 0.57 0.74 0.05 0.31 1.88 2
180 7.02 6.99 0.11 0.19 0.49 0.52 0.45 0.19 2.11 2.16
259 7.38 7.64 0.16 0.25 0.37 0.44 0.3 0.26 1.87 1.92
300 7.82 8.06 -0.3 0.11 0.18 0.19 0.16 -0.02 1.63 1.59
360 8.17 8.35 -0.24 -0.4 0.19 0.17 0.43 0.03 1.58 1.57

Table B.44: Experiment 17A, Stirred double-walled beakers. Reactor I, 11.5
mM ATP
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Time DHAP G6P+Gl G6P ATP ADP
0 0.5 0.52 7.68 7.69 0.15 0.18 2.16 2.49 3.5 3.43
5 0.78 0.85 7.09 7.5 0.43 0.49 0.91 1.14 2.76 2.96
10 1.35 1.22 7.22 6.48 0.39 0.45 0.84 0.84 2.44 2.85
15 1.5 1.76 5.72 5.87 0.74 0.81 0.44 0.22 1.64 1.8
30 2.19 2.39 4.62 4.84 0.88 0.94 0.33 0.32 0.94 1.31
60 3.18 3.3 3.86 4.06 0.93 0.93 0.22 0.36 0.73 0.78
90 4.09 4.42 3.45 3.86 0.92 0.96 0.31 0.1 1.06 1.22
120 5.01 5.48 2.12 2.16 0.63 0.59 0.05 -0.24 0.94 1.14
180 5.45 5.6 1.35 1.32 0.64 0.62 -0.02 -0.07 0.96 1.03
259 6.74 7.01 0.33 0.33 0.53 0.52 0.49 -0.11 0.96 0.98
300 7.2 7.39 -0.13 -0.23 0.25 0.3 0.04 0 1.21 1.18
360 7.26 7.45 -0.16 -0.04 0.17 0.16 0.08 -0.08 1.37 1.34

Table B.45: Experiment 17B. Stirred double-walled beakers. Reactor II, 5.75
mM ATP

Time DHAP G6P+Gl G6P ATP ADP
0 0.51 0.53 7.02 6.77 0.13 0.11 1.19 1.52 3.5 5.77
5 0.74 0.85 6.31 6.99 0.35 0.26 -0.44 0.05 3.21 3.17
10 1.13 1.16 5.71 5.97 0.53 0.47 -0.6 -0.96 2.42 2.6
15 1.24 1.5 4.94 5.31 0.58 0.6 -0.75 -0.68 2.05 2.12
30 2.03 2.27 4.43 6.72 0.81 0.83 -0.94 -0.83 1.43 1.38
60 2.89 3.26 3.51 3.45 0.83 0.89 -0.98 -1.02 1.16 1.06
90 3.98 4.25 2.66 2.6 0.71 0.76 -0.91 -0.97 1.06 0.88
120 4.42 4.75 1.44 1.58 0.58 0.61 -1.05 -0.9 1.12 1.09
180 4.99 5.02 1.08 0.94 0.58 0.7 -0.35 -0.13 1.03 1.15
259 5.8 6.27 -0.08 -0.37 0.29 0.34 -0.05 -0.09 1.02 1.08
300 6.18 6.77 -0.35 -0.6 0.13 0.13 -0.22 -0.32 1.19 1.24
360 6.64 7.26 -0.79 -0.63 0.09 0.07 -0.22 -0.19 1.14 1.2

Table B.46: Experiment 17B. Stirred double-walled beakers. Reactor III, 5.75
mM ATP
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Time DHAP G6P+Gl G6P ATP ADP
0 0.32 0.54 9.56 9.76 0.06 0.07 -0.57 -0.33 0.24 1.56
5 0.62 0.72 8.28 8.41 0.21 0.2 -0.76 -0.53 0.86 0.92
10 0.78 0.9 7.76 7.92 0.25 0.27 -1.18 -0.77 0.76 0.77
15 0.91 1.1 7.63 7.73 0.34 0.35 -1.03 -0.7 0.66 0.67
30 1.36 1.58 6.92 7.27 0.36 0.39 -1.08 -0.82 0.58 0.63
60 1.91 1.97 6.35 6.9 0.43 0.48 -1.05 -0.81 0.62 0.72
90 2.35 2.44 6.29 6.75 0.48 0.43 -1.2 -0.72 0.52 0.71
120 2.94 3.22 5.4 6.22 0.36 0.33 -1.03 -0.71 0.65 0.82
180 3.25 3.34 4.74 5.01 0.37 0.38 -0.21 -0.35 0.71 0.74
259 4.33 4.31 3.12 3.18 0.29 0.34 -0.4 -0.38 0.73 0.74
300 5.07 5.55 1.77 1.84 0.27 0.3 -0.35 -0.48 0.71 0.72
360 6.15 5.84 0.61 0.75 0.27 0.29 -0.43 -0.43 0.78 0.81

Table B.47: Experiment 17C. Stirred double-walled beakers.Reactor IV, 1.15
mM ATP

Time DHAP G6P+Gl G6P ATP ADP
0 0.51 0.55 8.48 9.24 0.06 0.07 0.26 0.38 1.59 1.69
5 0.62 0.99 7.8 8.06 0.23 0.25 0.29 -0.11 1.11 1.03
10 0.8 0.96 7.87 8.11 0.25 0.28 0.34 0 0.89 0.79
15 1.03 1.02 7.85 8.16 0.32 0.33 0.36 0.08 0.87 0.78
30 1.31 1.43 6.86 7.26 0.32 0.38 0.24 0.1 0.85 0.63
60 1.84 1.97 6.54 6.69 0.43 0.45 0.13 0.01 0.75 0.66
90 2.32 2.42 6.42 6.5 0.42 0.45 0.01 -0.03 0.88 0.75
120 2.95 3.25 5.71 5.75 0.4 0.4 -0.07 -0.05 0.94 0.81
180 3.52 3.52 4.04 3.9 0.28 0.3 0.06 0.3 0.8 0.79
259 4.17 4.64 2.39 2.75 0.25 0.29 0.08 -0.42 0.71 0.76
300 5.39 5.41 1.69 1.84 0.3 0.34 0.07 0.08 0.82 0.79
360 5.99 0.13 0.54 0.95 0.3 0.32 0.05 0.05 0.86 0.88

Table B.48: Experiment 17C. Stirred double-walled beakers. Reactor V, 1.15
mM ATP
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B.15 Experiment 20

Comp Exp. No. Exp 20A
Hexokinase U/ml 0.01
Lactate-DH U/ml 1

Glc mM 11.1
PO4 mM 11.1
ATP mM 11.5

NAD+ mM 5.75
Prot.tot. mg/ml 10

T 37
Strain LJ110 tpiA-cyaA

Table B.49: Experiment 20 description

Time DHAP GL+G6P G6P ATP
0 0.57 0.61 9.36 9.79 0.59 0.64 8.57 8.92
5 1.44 1.52 6.79 6.86 0.51 0.42 4.63 4.95
10 2.56 2.6 5.28 5.2 0.47 0.52 2.89 3.02
15 3.36 3.74 3.94 4.52 0.52 0.52 2.02 2.36
30 5.1 5.8 1.14 1.16 0.71 0.81 0.76 0.84
60 6.89 7.07 -0.27 -0.03 0.43 0.41 0.49 0.65
90 7.49 8.03 -0.21 -0.06 0.38 0.4 0.23 0.37
120 8.01 9 0.11 0.16 0.41 0.4 0.17 0.32
180 8.04 8.59 0.2 0.26 0.35 0.34 -0.09 -0.36
240 7.68 7.91 0.18 0.37 0.25 0.28 -0.17 -0.07
300 7.75 8.35 0.19 0.25 0.2 0.21 -0.19 0.02
360 7.35 8.06 0.14 0.07 0.14 0.13 -0.15 0.12

Table B.50: Experiment 20A, reactor I
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Time DHAP GL+G6P G6P ATP
0 0.62 0.64 9.8 10.04 0.59 0.56 9.26 9.53
5 1.35 1.43 7.39 7.49 0.55 0.48 5.15 5.19
10 2.47 2.56 5.41 5.75 0.48 0.51 3.35 3.61
15 3.09 3.35 4.33 4.34 0.52 0.54 2.24 2.52
30 5.06 5.26 1.04 1.1 0.68 0.72 0.71 0.89
60 6.65 7.19 -0.11 0.1 0.46 0.5 0.63 0.58
90 7.54 8.1 -0.16 -0.14 0.33 0.39 0.41 0.35
120 8.83 9.58 0.17 0.15 0.43 0.49 0.16 0.14
180 7.51 8.11 0 -0.03 0.29 0.35 -0.07 0.12
240 7.3 7.97 -0.13 -0.1 0.18 0.18 0.01 0.08
300 7.29 7.78 -0.1 -0.14 0.15 0.14 0.31 0
360 7.04 7.3 -0.29 -0.21 1.59 0.09 0.25 0.07

Table B.51: Experiment 20A, reactor II
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B.16 Experiment 23

Comp Exp. No. Exp 23A
Hexokinase U/ml 0.01
Lactate-DH U/ml 1

Glc mM 11.1
PO4 mM 11.1
ATP mM 11.5

NAD+ mM 5.75
PPi mM 40.00

Prot.tot. mg/ml 10
T 37

Strain LJ110 tpiA-cyaA

Table B.52: Experiment 23 description

Time DHAP GL+G6P
0 0.5 0.5 9.06 9.48
5 0.44 0.43 7.96 8.22
10 0.57 0.53 7.78 8.18
15 0.67 0.81 6.91 6.87
30 1.18 1.35 5.14 5.89
60 2.25 2.3 3.49 3.32
90 2.75 2.96 2.12 2.12
120 3.15 3.35 1.41 1.39
180 4.88 5.23 -0.82 -0.77
240 6.36 6.35 -0.95 -0.92
300 6.54 6.97 -0.53 -1.01
360 6.67 6.7 -1.26 -0.98

Table B.53: Experiment 23A, reactor I
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Time DHAP GL+G6P
0 0.41 0.38 8.13 8.04
5 0.4 0.48 7.35 8.06
10 0.64 0.54 6.72 7.1
15 0.61 0.78 6.76 6.98
30 1.31 1.39 5.37 5.74
60 2.29 2.44 3.27 3.54
90 2.86 3.1 1.66 1.89
120 3.82 3.87 0.33 0.26
180 5.79 6.07 -1.01 -0.95
240 6.93 7.45 -0.72 -0.76
300 7.06 7.42 -0.99 -0.94
360 7.18 7.63 -1.64 -0.99

Table B.54: Experiment 23A, reactor II
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B.17 Experiment 24

Comp Exp. No. Exp 24A Exp 24B Exp 24C
Hexokinase U/ml 0.01 0.01 0.01
Lactate-DH U/ml 1 1 1

Glc mM 11.1 11.1 11.1
PO4 mM 11.1 11,1 11.1
ATP mM 11.5 5.75 1.15

NAD+ mM 5.75 5.75 5.75
cAMP mM 10.00 10.00 10.00

Prot.tot. mg/ml 10 10 10
T 37 37 37

Strain LJ110 tpiA-cyaA LJ110 tpiA-cyaA LJ110 tpiA-cyaA

Table B.55: Experiment 24 description

Time DHAP GL+G6P G6P ATP LAC
0 0.35 0.26 9.54 10.67 0.41 0.82 7.04 7.87 1.32 1.27
5 1 1.22 8.04 8.25 0.35 0.73 4.29 4.42 1.03 1.04
10 2.03 1.95 6.34 6.77 0.6 0.64 3.24 3.03 1.17 1.06
15 2.65 2.82 5.36 5.42 0.62 0.65 2.45 2.44 1.24 1.21
30 4.28 4.69 2.59 2.61 0.65 0.72 1.14 1.11 1.32 1.29
60 6.53 6.77 0.46 0.41 0.72 0.75 0.37 0.35 1.19 1.12
90 7.87 7.93 0.26 0.45 0.68 0.7 0.33 0.53 1.17 1.11
120 7.98 8.58 0 0.02 0.45 0.46 0.19 0.15 1.16 1.06
180 8.32 8.8 0.46 0.55 0.47 0.51 -0.13 -0.14 0.84 0.8
259 7.42 7.67 -0.08 0.1 0.17 0.2 -0.24 -0.19 0.75 0.66
300 6.78 7.53 -0.14 -0.16 0.11 0.12 -0.26 -0.29 0.52 0.58
360 6.6 7.05 -0.28 -0.21 0.08 0.09 -0.15 -0.27 0.48 0.53

Table B.56: Experiment 24A, 11.5 mM ATP, reactor I
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Time DHAP GL+G6P G6P ATP LAC
0 0.4 0.45 9.2 9.7 0.62 0.63 6.23 6.36 1.48 1.39
5 1.01 1.08 7.6 8.22 0.68 0.72 4.31 4.5 1.26 1.21
10 1.72 1.81 6.13 6.32 0.53 0.56 2.86 2.98 1.37 1.35
15 2.46 2.7 5.16 5.24 0.58 0.6 2.36 2.33 1.68 1.03
30 4.46 4.71 2.77 2.85 0.76 0.77 0.97 0.91 2.5 1.44
60 6.29 6.57 0.7 0.63 0.87 0.91 0.47 0.27 3.22 1.78
90 7.39 7.37 0.78 0.76 0.66 0.7 0.49 0.19 2.83 1.75
120 7.77 8.1 -0.08 -0.01 0.47 0.52 0.45 0.05 1.8 1.22
180 7.6 8.6 0.09 0.04 0.3 0.31 -0.15 -0.22 0.88 0.86
259 7.45 8.04 0.51 0.55 0.24 0.26 -0.13 -0.14 0.88 0.96
300 7.12 9.63 0.04 -0.23 0.11 0.12 -0.24 -0.27 0.66 0.78
360 6.64 7.11 -0.33 -0.29 0.08 0.08 -0.06 -0.12 0.73 0.75

Table B.57: Experiment 24A, 11.5 mM ATP, reactor II

Time DHAP GL+G6P G6P ATP LAC
0 0.51 0.53 7.02 6.77 0.13 0.11 1.19 1.52 3.5 5.77
5 0.74 0.85 6.31 6.99 0.35 0.26 -0.44 0.05 3.21 3.17
10 1.13 1.16 5.71 5.97 0.53 0.47 -0.6 -0.96 2.42 2.6
15 1.24 1.5 4.94 5.31 0.58 0.6 -0.75 -0.68 2.05 2.12
30 2.03 2.27 4.43 6.72 0.81 0.83 -0.94 -0.83 1.43 1.38
60 2.89 3.26 3.51 3.45 0.83 0.89 -0.98 -1.02 1.16 1.06
90 3.98 4.25 2.66 2.6 0.71 0.76 -0.91 -0.97 1.06 0.88
120 4.42 4.75 1.44 1.58 0.58 0.61 -1.05 -0.9 1.12 1.09
180 4.99 5.02 1.08 0.94 0.58 0.7 -0.35 -0.13 1.03 1.15
259 5.8 6.27 -0.08 -0.37 0.29 0.34 -0.05 -0.09 1.02 1.08
300 6.18 6.77 -0.35 -0.6 0.13 0.13 -0.22 -0.32 1.19 1.24
360 6.64 7.26 -0.79 -0.63 0.09 0.07 -0.22 -0.19 1.14 1.2

Table B.58: Experiment 24B, 5.75 mM, reactor III

Time DHAP GL+G6P G6P ATP LAC
0 0.32 0.54 9.56 9.76 0.06 0.07 -0.57 -0.33 0.24 1.56
5 0.62 0.72 8.28 8.41 0.21 0.2 -0.76 -0.53 0.86 0.92
10 0.78 0.9 7.76 7.92 0.25 0.27 -1.18 -0.77 0.76 0.77
15 0.91 1.1 7.63 7.73 0.34 0.35 -1.03 -0.7 0.66 0.67
30 1.36 1.58 6.92 7.27 0.36 0.39 -1.08 -0.82 0.58 0.63
60 1.91 1.97 6.35 6.9 0.43 0.48 -1.05 -0.81 0.62 0.72
90 2.35 2.44 6.29 6.75 0.48 0.43 -1.2 -0.72 0.52 0.71
120 2.94 3.22 5.4 6.22 0.36 0.33 -1.03 -0.71 0.65 0.82
180 3.25 3.34 4.74 5.01 0.37 0.38 -0.21 -0.35 0.71 0.74
259 4.33 4.31 3.12 3.18 0.29 0.34 -0.4 -0.38 0.73 0.74
300 5.07 5.55 1.77 1.84 0.27 0.3 -0.35 -0.48 0.71 0.72
360 6.15 5.84 0.61 0.75 0.27 0.29 -0.43 -0.43 0.78 0.81

Table B.59: Experiment 24B, 5.75 mM, reactor IV
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Time DHAP GL+G6P G6P ATP LAC
0 0.51 0.55 8.48 9.24 0.06 0.07 0.26 0.38 1.59 1.69
5 0.62 0.99 7.8 8.06 0.23 0.25 0.29 -0.11 1.11 1.03
10 0.8 0.96 7.87 8.11 0.25 0.28 0.34 0 0.89 0.79
15 1.03 1.02 7.85 8.16 0.32 0.33 0.36 0.08 0.87 0.78
30 1.31 1.43 6.86 7.26 0.32 0.38 0.24 0.1 0.85 0.63
60 1.84 1.97 6.54 6.69 0.43 0.45 0.13 0.01 0.75 0.66
90 2.32 2.42 6.42 6.5 0.42 0.45 0.01 -0.03 0.88 0.75
120 2.95 3.25 5.71 5.75 0.4 0.4 -0.07 -0.05 0.94 0.81
180 3.52 3.52 4.04 3.9 0.28 0.3 0.06 0.3 0.8 0.79
259 4.17 4.64 2.39 2.75 0.25 0.29 0.08 -0.42 0.71 0.76
300 5.39 5.41 1.69 1.84 0.3 0.34 0.07 0.08 0.82 0.79
360 5.99 0.13 0.54 0.95 0.3 0.32 0.05 0.05 0.86 0.88

Table B.60: Experiment 24C, 1.15 mM, reactor V
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B.18 Experiment 26

Comp Exp. No. Exp 26A
Hexokinase U/ml 0.01
Lactate-DH U/ml 1

Glc mM 11.1/11.1
PO4 mM 11.1
ATP mM 11.5

NAD+ mM 5.75
Prot.tot. mg/ml 10

T 37
Strain LJ110 tpiA-cyaA

Table B.61: Experiment 26 description

Time DHAP GL+G6P G6P ATP PYR
0 0.98 0.9 14.69 13.72 0.74 0.8 9 9.34 1.16 0.98
6 2.13 2.22 10.1 10.35 0.67 0.72 4.6 4.79 1.44 1.35
10 3.08 3.28 8.72 8.72 0.74 0.72 3.52 3.62 1.92 1.96
15 4.06 3.55 7.24 7.23 0.7 0.74 2.46 2.47 2.27 2.42
30 6.55 5.47 4.75 5.05 0.85 0.86 2.21 2.31 2.53 2.77
60 7.27 4.86 2.82 2.85 0.44 0.46 0.63 0.64 2.08 2.11
90 8.3 9.44 2.99 2.99 0.46 0.44 0.61 0.4 1.54 1.81
91 8.97 8.14 15.79 15.63 0.63 0.61 0.66 0.56 1.64 1.77
95 8.06 8.87 11.84 12.7 0.79 0.8 0.63 0.46 1.46 1.63
100 7.6 8.11 11.19 12.22 0.68 0.76 0.64 0.31 1.48 1.14
105 7.66 7.83 11.18 11.66 0.73 0.8 0.65 0.21 1.37 1.3
120 7.38 7.8 10.71 11.14 0.76 0.78 0.15 0.22 0.4 0.44
150 7.6 7.66 11.1 11.93 1.06 1.15 0.4 0.44 0.13 0.17
180 7.57 7.86 10.15 10.95 0.74 0.73 0.15 0.15 0.24 -0.02
242 7.9 8.36 11.21 11.4 0.64 0.65 0.16 0.19 0.57 0.55
300 7.14 6.75 10.08 10.26 0.14 0.36 0.1 0.17 0.34 0.18
360 6.44 7.3 10.01 10.85 0.29 0.3 0.16 -0.04 0.48 0.27
420 7.69 8.03 12.01 13.23 0.43 0.44 0.33 0.19 0.58 0.74

Table B.62: Experiment 26A, 11,5 mM, reactor I
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Time DHAP GL+G6P G6P ATP PYR
0 1.48 0.06 12.68 13.46 1.01 1.03 7.8 7.84 1.08 1.05
6 2.16 1.74 10.03 10.17 0.38 0.41 5.11 5.47 1.45 1.53
10 2.39 2.96 8.31 8.76 0.64 0.61 3.31 3.5 1.84 1.95
15 3.88 3.98 7.18 7.58 0.63 0.63 2.39 2.58 2.25 2.42
30 5.57 5.82 4.28 4.2 0.94 0.96 0.89 0.89 2.44 2.43
60 7.42 7.24 2.98 2.97 0.58 0.64 0.96 0.65 1.68 1.81
90 8.14 8.48 2.98 3 0.49 0.5 0.44 0.36 0.6 0.7
91 8.03 8.29 14.73 15.1 0.49 0.52 0.32 0.3 0.74 0.74
95 8.64 9.1 14.09 14.95 1.14 1.23 0.84 0.94 0.71 0.8
100 7.2 7.36 11.43 11.86 0.79 0.83 0.23 0.28 0.68 0.75
105 7.34 7.87 11.38 12.09 0.77 0.77 0.18 0.16 0.7 0.51
120 6.72 7.84 11.15 12.35 0.88 0.98 0.1 0.17 0.69 0.31
150 7.28 8.15 10.83 11.44 0.75 0.88 0.11 0.1 0.53 0.54
180 7.15 7.32 10.92 10.99 0.74 0.8 0.02 0.08 0.45 0.45
242 7.39 7.43 10.7 11.24 0.6 0.63 0.07 -0.03 0.42 0.53
300 7.01 6.81 10.68 11.16 0.45 0.46 0.08 0.08 0.44 0.5
360 7.06 7.21 10.19 10.73 0.3 0.35 0.07 0.03 0.5 0.55
420 8.06 8.38 13.08 14.61 0.52 0.59 0.13 0.17 0.53 0.77

Table B.63: Experiment 26A, 11,5 mM, reactor II
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B.19 Experiment 27

Comp Exp. No. Exp 27A
Hexokinase U/ml 0.01
Lactate-DH U/ml 1

Glc mM 5/6.1
PO4 mM 11.1
ATP mM 11.5

NAD+ mM 5.75
Prot.tot. mg/ml 10

T 37
Strain LJ110 tpiA-cyaA

Table B.64: Experiment 27 description
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210 Experimental data

B.20 Experiment 28

Comp Exp. No. Exp 28A
Hexokinase U/ml 0.01
Lactate-DH U/ml 1

Glc mM 5/6.1
PO4 mM 11.1
ATP mM 11.5

NAD+ mM 5.75
Prot.tot. mg/ml 10

T 37
Strain LJ110 tpiA-cyaA

Table B.67: Experiment 28 description
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B.21 Experiment 30

Comp Exp. No. Exp 30A Exp 30B
Hexokinase U/ml 0.001 0.001
Lactate-DH U/ml 0.1 0.1

Glc mM 4/4 11.5
PO4 mM 11.1 11.1
ATP mM 11.5 1.15

NAD+ mM 5.75 5.75
Prot.tot. mg/ml 1 1

T 37 37
Strain LJ110 tpiA-cyaA LJ110 tpiA-cyaA

Table B.70: Experiment 30 description
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Time DHAP GL+G6P G6P ATP
0 0.5589 0.4872 10.3045 10.1995 0.1805 0.1958 0.4534 0.5823
5 0.7431 0.7963 9.7470 9.8807 0.1396 0.1430 0.2827 0.3462
10 1.0542 1.1668 9.8501 10.0640 0.1005 0.1243 0.2113 0.2867
15 0.9969 1.3306 8.9814 9.6649 0.1056 0.1226 0.3383 0.0982
30 1.5844 1.5783 8.1852 8.8516 0.1107 0.1396 0.2470 0.2232
60 2.0409 1.9017 7.9313 8.0802 0.1107 0.1158 0.3165 0.1875
90 2.0757 2.5834 6.9422 7.9370 0.1073 0.1175 0.1379 0.1597
120 2.9478 3.4371 6.7074 6.8430 0.0971 0.1005 0.1935 0.0863
180 3.4207 3.2508 5.0005 5.3461 0.0885 0.0971 0.1091 0.1488
245 3.6704 3.3060 4.0439 3.9370 0.0988 0.0851 0.1667 0.1607
300 3.5005 3.6049 2.6940 2.7532 0.0698 0.0681 0.1548 0.0476
395 3.5292 3.5865 1.4453 1.6115 0.1192 0.1260 0.2143 0.1706

Table B.73: Experiment 30B, 1.15 mM ATP, reactor I

Time DHAP GL+G6P G6P ATP
0 0.5404 0.5179 10.3618 11.3699 0.0954 0.0971 0.3244 0.3790
5 0.7083 0.6940 10.3064 10.8143 0.1056 0.1141 0.1617 0.1885
10 0.8823 9.7795 9.8024 0.1277 0.1328 0.1359 0.1409
15 1.1750 1.2242 8.8573 9.2850 0.1158 0.1277 0.1181 0.1607
30 1.4473 1.5763 8.6243 9.8043 0.1022 0.1107 0.0982 0.1468
60 2.0655 2.2968 9.8692 9.6172 0.1260 0.1328 0.1597 0.1825
90 2.6080 2.5977 8.0516 8.6644 0.1294 0.1379 0.1260 0.1250
120 2.7062 3.1341 7.9981 8.2310 0.1362 0.1379 0.1379 0.1746
180 3.0542 3.1955 5.0158 5.4874 0.1192 0.1209 0.0813 -0.0119
245 3.5517 3.5967 3.7079 4.0248 0.1141 0.1124 0.0913 0.0734
300 3.5169 3.7216 2.5967 2.9575 0.0885 0.0903 0.0675 -0.0139
395 3.6643 3.7748 0.9871 1.4014 0.0698 0.0766 0.0179 0.0496

Table B.74: Experiment 30B, 1.15 mM ATP, reactor II
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B.22 Data analysis

This section contains some general observations that could be inferred from the
data plots.

B.22.1 Duplicate experiments

Experiments 2B and 3B are in fact duplicates. DHAP maximum concentration
in experiment 2B is about 5 [mM/ml] value fairly similar to the one in exper-
iment 3B. The measurements of the concentration of the sum of Glucose and
G6P reaches zero in both experiments in the interval between 60 and 80 min-
utes, displaying a reproducibility of the experiment. Two other experiments
which are duplicates are 5A and 4B. In this case the maximum concentration
of DHAP is almost the same in the two experiments, the profiles seem similar
as well. For the second measurement the profiles look similar, although there
were some errors in the first measurement point. Exp 5B and 10B are also
duplicates. The DHAP measurements looks in agreements, a sensible maxi-
mum higher values can be noticed for Exp 10B while a smaller one for the
second measurement (G6P+Glucose). It can be concluded that generally the
measurements are reliable.

B.22.2 Hexokinase influence

A part of the experiments investigated the hexokinase influence. Hexokinase
is the enzyme responsible for the reaction converting glucose into glucose-6-
phosphate. Experiments 3B, 4A makes the step change in the hexokinase
concentration for 1 [U/ml] to 0.06 [U/ml]. Comparing the maximum value
of the DHAP concentration in the two experiments a sensible increase could
be noticed in the experiment with less hexokinase. A second series of exper-
iments in which the hexokinase concetration was reduced even further from
0.06 [U/ml] to 0.01 [U/ml] is related to experiments 10A-11A and 10B-11B.
Comparing again the maximum value of the DHAP concentration in the first
two experiments the values are fairly similar considering the variance of the
measurements. The same small difference could be noticed in the second se-
ries, for the second case the concentration is slightly larger. The hexokinase
concentration does not seem to affect too much the DHAP final concentration
(yield).

B.22.3 Temperature influence

Experiments 3A-B-C are investigating the influence of the temperature upon
the system. Analyzing the plots obtained with data from these experiments,
clearly the temperature has a positive influence on the reaction rates and looks
like for 37◦C the best yield is obtained. No experiments above this temperature
were performed. Starting with this experiment the operating temperature was
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chosen to be 37 for the following experiments.

B.22.4 Protein concetration

The influence of the protein concentration can be seen be analyzing series 2 of
experiments (exp2A-2C). Clearly, the more proteins are present in the reactor
the faster the reactions are. The value of 10 [mg/ml] has been chosen and used
further.

B.22.5 ATP influence

ATP cofactor plays an important role in the first reactions producing DHAP,
and is being produced in the reactions after DHAP. The series of experiments
4A-4C investigated the yield for various level of ATP. A similar series Exp
11A-Exp 11B, Exp 10A-Exp 10B, and finally the series Exp 17A-Exp 17C. All
these experiments revealed that the reactions are highly influenced by the fresh
ATP added to the reactor and that there is an unexpected sink of ATP. Exp 13
investigates the ATP behavior in buffer only. Clearly there is no influence. Exp
14 shows the ATP degradation in a solution of buffer and crude extract and
crude extract but washed. AtpD was suspected to be responsible for ATP fast
consumption. In experiment 15 a comparison using extract from two different
mutants, first using LJ110-tpi and second using W3110-atpD. In experiment
16, ATP, ADP and AMP were measured separately. By studying the evolution
of the sum of the three adenosine compounds it can be observed a decreasing
curve (not shown). The conclusion was that there is a reaction degrading ATP.
They have identified the adenylate cyclase to be the responsible reaction and
the regeneration cycle could not overcome it. In experiment 17 the reaction re-
sponsible for ATP consumption was inhibited with PPi and cAMP. The DHAP
yield was almost maximum for the experiment with 11.1 [mM/ml] ATP initial
concentration, while for the experiments with less initial ATP the yield was
much higher compared with their counterparts experiments.

B.22.6 NAD+ influence

Series Exp 5A-5C presents the results obtained after varying the NAD+ con-
centration. NAD+ is involved in the reaction occurring after DHAP production
and plays an important role in the ATP regenerating system. Analyzing the
plots corresponding to these experiments it can be concluded that the system is
able to regenerate NAD+ quite well, and in the following experiments a reduced
amount of this cofactor was used.

B.22.7 DHAP-aldolase reaction

In some experiments, Ex6A for example it can be noticed that there is some
sort of saturation of the reaction producing DHAP. Two extra experiments have
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been performed, with a double mutant in order to investigate the influence
of an extra reactant which reacts with DHAP and in this way the DHAP
concentration will be reduced. In experiment 9A butanal was added in large
execess. It can noticed that the DHAP is indeed consumed, while no significant
response can be seen in the Glucose+G6P measurement. IN exp 9B after
adding extra amounts of aldolase the reaction consuming DHAP is much faster
as can be seen in plots from Exp 9B. Once the concentration of free DHAP
was reduced (consumed in the reaction), the reactions consuming Glucose and
G6P have been reactivated as can be seen from the plot showing the evolution
of Glucose and G6P. It can be concluded that the reaction producing DHAP
is inhibited by DHAP.

B.22.8 Glucose influence

Glucose is the main reactant in DHAP production and partial investigation
was performed about the influence that glucose has on the reaction network.
By increasing the amount of Glucose relative to the cofactors a slightly higher
DHAP yield was obtained but the marginal yield was insignificant. The con-
clusion is drawn based on data from Experiments 6A and 12A-B. It seems that
the ATP regenerating system is not able to produce enough ATP to keep up
with the consumption in the first reactions. The effect is not yet clarified, the
saturation on DHAP or possibly on Glucose could also have an influence.



Nomenclature

Symbols

F̂ rm matrix containing the reaction rates , see equation (3.1), page 54

CR real values crossover factor, tunning parameter , see equation (5.4),
page 100

ek white noise process , see equation (2.2), page 22

F likelihood function , page 108

F constant tunning parameter , see equation (5.4), page 100

f RHS unaffected by inputs , see equation (3.3), page 55

G gradient of the likelihood function , page 108

g RHS affected by inputs , see equation (3.3), page 55

h measurement equations vector , see equation (3.3), page 55

I identity matrix , see equation (3.2), page 55

i index of state , see equation (3.3), page 55

j index of inputs , see equation (3.3), page 55

k arbitrary sampling time

L Lie derivative

lo maximum Lie derivation order , page 59

m number of inputs , see equation (3.3), page 55

M(θ) input output map if the model , see equation (3.3), page 55

mlo maximum Lie derivation order , page 59

N stoichiometric matrix , page 54

N number of samples , see equation (5.10), page 102

Nm stoichiometric matrix of the measured species , page 54

N+
m the Moore-Penrose inverse of Nm , see equation (3.1), page 54

NP population size , page 99
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nR number of reactions , page 54

nS number of species , page 54

NSu number of unmeasured species , page 54

nSm number of measured species , page 54

Nu stoichiometric matrix of the unmeasured species , page 54

Nϕ number of optimization variables , page 99

PG population matrix containing NP vectors , see equation (5.1), page 99

R matrix containing the reaction rates , see equation (3.1), page 54

ri random indexes used to select the proper value , see equation (5.4),
page 100

rj reaction rate j , page 55

Rikk−1 covariance matrix of the measurements , see equation (2.13), page 24

s vector containing the generating series coefficients , see equation (3.5),
page 56

t [min] time

u process inputs vector

ϕ
′

i,G population matrix of trial candidates , see equation (5.3), page 99

ϕ
′

j,i,G+1 elements of the trials vectors , see equation (5.4), page 100

V parameters neighborhood space , page 55

V posterior covariance of the parameters , see equation (5.7), page 102

Vi,G+1 mutated vectors , see equation (5.4), page 100

vj,i,G+1 elements of the mutated vectors , see equation (5.4), page 100

V o matrix containing the volume measurements , see equation (3.1), page 54

x process state vector

y process outputs vector

Greek letters

θ̂ process parameters vector , see equation (3.3), page 55

∆r identifiability criterion matrix , see equation (3.2), page 55
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∆tspmaxl maximum allowed difference between two successive sampling points
, page 98

∆tswmaxl maximum allowed difference between two successive switching points
, page 98

∆tspminl minimum allowed difference between two successive sampling points
, page 98

∆tswminl minimum allowed difference between two successive switching points
, page 98

ωt standard Wiener process , see equation (2.2), page 22

Φ experimental design variables vector space , see equation (5.7), page 102

Σpre prior covariance matrix , see equation (5.8), page 102

ϕ experimental design variables vector , see equation (5.7), page 102

ϕED expected value design criterion , see equation (5.7), page 102

ϕWC worst case design criterion , see equation (5.11), page 102

Σ matrix containing the diffusion terms , see equation (2.2), page 22

σ state independent diffusion term , see equation (2.2), page 22

Σθ̂ covariance matrix of the measurements , see equation (2.13), page 24

Θ model parameter vector space , page 102

θ model parameters vector , see equation (3.3), page 55

θ∗ plant parameters vector , see equation (3.3), page 55
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