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Abstrakt (in Danish)
Analyse af revner i store diesel motorer

Denne afhandling omhandler numerisk modellering af revnevækst udført påforskellige til-
fælde af revner. Der er foretaget analyse af et virkeligt tilfælde af udmattelsesrevnevækst
i en stempelkrone, som er påvirket af både højre temperaturer og tryk. Analysen er fore-
taget ved at simplificere geometrien til en 2D boundary element model. Der er gen-
nemført beregninger med flere 2D boundary element modeller for at studere modellering
af revnevækst med lige elementer ud fra en udviklet metode og en reference metode til
at korrigere revneudvidelsesretningen. Til at modellere ikke plan revnevækst i 3D er der
udviklet en metode, der udnytter fordelene i både boundary element metoden og finite
element metoden. Denne metode er evalueret ved at studere revnevækst i et testemne fra
en stor dieselmotor. I studiet sammenlignes beregningerne afslutningsvis med et eksper-
iment. I afhandlingens sidste del benyttes den sidst udviklede metode til at analysere
udmattelsesrevnevækst i en stor og kompleks model af en motorramme.
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Abstract
Analysis of Cracks in Large Diesel Engines

Numerical modelling of crack growth has been used to analyze several cases of growing
cracks. The analysis of a real case of fatigue crack growth in a piston crown exposed to
both high temperatures and stresses has been performed by simplification of the problem
to a 2D boundary element model. Furthermore several 2D boundary element models have
been used to study the general modelling of crack growth by straight elements and by
the use of a proposed and a reference procedure to correct the crack extension direction.
To model non-planar 3D crack growth a new method is proposed which takes advantage
of both the boundary element method and the finite element method. The method is
evaluated by a study of fatigue cracks in a model of an engine test specimen and the
calculations are finally compared to an experiment. Finally the proposed method is used
to analyze fatigue crack growth in a large and complex model of an engine frame.
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Chapter 1
Introduction

In analyses of crack growth several aspects of fracture mechanics are typically involved
depending on the character of the crack. In an advanced engineering system as a large
diesel engine all of the typical characters of cracks are assumed to exist. Two features
of crack growth that include different aspects of fracture mechanics are either growth
due to monotonic loading or growth due to cyclic loading. Crack growth in large diesel
engines occurs due to monotonic loading or low cycle fatigue. In general these engines
are exposed to a constant cyclic loading most of their life time as they produce power for
the propulsion of ships or power for stationary power plants. Due to the loading of these
engines through large numbers of load cycles the primary reason for the crack growth
is small material defects located in critical areas of engine components. Experiments on
fatigue crack growth suggest that the crack growth depends on material, load magnitude,
initial crack tip conditions, ratio of different modes of loads and mean stress (Qian and
Fatemi, 1996). Analysis and numerical modelling of fatigue crack growth is an active area
of research in which several methods and parameters are defined. Qian and Fatemi (1996)
have concluded that there is no single parameter which gives satisfactory correlations
under all loading conditions. Thus numerical evaluation of fatigue crack growth must be
based on extensive comparisons between calculations and experiments.

In numerical modelling of curved crack paths in two and three dimensions one of
the main problems to be solved is that the manual discretization of the domain into el-
ements often needs to be updated automatically after each crack extension so that the
elements describe the shape of the arbitrary growing crack. Among several methods the
dual boundary element method (DBEM) for two dimensional elasticity (Portela et al.,
1992) and two dimensional thermoelasticity (Prasad et al., 1994) solves the problem in an
elegant way as only the boundary is discretized. Thus in two dimensions the crack is ex-
tended by a straight element and for the three dimensional formulation (Mi and Aliabadi,
1994, 1995) the remeshing problem is reduced by an order of magnitude as only the part
of the surface that contains the crack needs to be remeshed.

The limitation of the analyzed crack growth cases to high cycle fatigue enables a pri-
mary focus on the Linear Elastic Fracture Mechanics (LEFM) in which the stress field at
the crack trip is described by the three stress intensity factors each representing a mode
of fracture. The stress intensity factors can be calculated through several numerical meth-
ods by the use of the crack opening displacement in special crack tip elements. Several
of these special crack tip elements are described in Aliabadi (2002). One of the most
recognized methods to predict the stress intensity factors is however based on the path
independent J-integral (Rice, 1968).

In the analysis of fatigue crack growth the relation between the stress intensity factor
and the crack growth rate was first derived by Paris and Erdogan (1963) who’s expression
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2 Chapter 1 Introduction

can be used to describe a region of linear dependence in the logarithmic plot between
the growth rate and the stress intensity factor. Other researchers as for example Erdogan
and Ratwani (1970) have suggested related expressions by which all of the region between
the threshold stress intensity factor and the critical stress intensity factor can be described.
The expression by Erdogan and Ratwani (1970) also takes into account the R ratio which
is expressed by R = Kmin/Kmax. Paris law was derived for cracks only exposed to
mode I loading that is the opening mode. However in case of mixed mode loading several
researchers have suggested an effective stress intensity factor which can replace the mode
I factor. Among these some of the most used are the expressions by Tanaka (1974) and
Gerstle (1985). In Mi and Aliabadi (1995) an expression is used that is similar to that of
Gerstle (1985) with the empirical constant B = 1.

In the analysis of fatigue crack growth it is important to calculate not only the crack
growth rate but also the direction of the propagating crack. For the prediction of the
crack growth direction several expressions exist. The maximum principal stress criterion
(Erdogan and Sih, 1963), is one of the most commonly used among several others which
in case of a general curved crack predicts that the crack growth results inKII = 0. In case
of three dimensional modelling of crack growth the criterion of minimum strain energy
(Sih, 1974), is one of the most commonly used. In the literature several examples of good
correlations with experiments have been reported for these criteria, however cases exist
in which the correlation is less good (Qian and Fatemi, 1996).

The papers [P1] to [P4] have been written during the author’s PhD study and they are
enclosed in the end of this thesis. In the first paper ’DBEM analysis of axisymmetric crack
growth in a piston crown’ a simplified model of a piston crown for a large diesel engine is
analyzed by the thermoelastic formulation of the dual boundary element method (Prasad
et al., 1994). In the evaluation of the crack growth direction the effect of non-proportional
loading is addressed in which different crack growth directions are predicted during the
load cycle by the maximum principal stress criterion (Erdogan and Sih, 1963).

The two dimensional dual boundary formulation (Portela et al., 1992) is used in the
second and third paper ’Correction to the crack extension direction in numerical mod-
elling of mixed mode crack paths’ and ’A new correction procedure to correct the pre-
dicted crack extension direction of a mixed mode crack path’. In these papers the mod-
elling of curved cracks with straight increments are studied by proposing a new correction
procedure of the extension direction and comparing it to a reference procedure by Portela
et al. (1993).

The final paper ’Adaptive FE analysis of non-planar 3D crack growth by the use of
a BE sub model’ proposes a new method to analyze non-planar 3D crack growth. The
evaluation of the stress intensity factors is based on a solution of a sub model by a 3D
boundary element formulation (Mi and Aliabadi, 1994, 1995). The main advantage of the
proposed method is the ability to analyze crack growth by using previously developed FE
models of complex engineering structures such as in a big diesel engine.

In the final part of the thesis analysis of a complex engineering problem is demon-
strated by the proposed method. Several options and choices of configurations are given
and discussed. References are drawn to the papers [P1] to [P4] as the same type of prob-
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lems are handled in these papers by simpler examples. Thus the papers [P1] to [P4] form
a basis for the last advanced example of a crack growth analysis.
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Chapter 2
Thermoelasticity

In components of large diesel engines as in many other engineering structures it is im-
portant to consider the effect of both mechanical and thermal loading. In many of these
engineering structures the material can be assumed to be isotropic and homogeneous and
the material properties can be assumed to be independent of the temperature. If these
assumptions hold the basic equations of thermoelasticity can be applied. This chapter
summarizes the basic equations used in the derivation of the boundary element method
treated in the later chapters.

Hooke’s law can be used to calculate the strains for a given point in a structure in
which the stress state σij and the temperature change θ at the point is known

εij =
1 + ν

E
σij − ν

E
σkkδij + αθδij (2.1)

where E is Young’s modulus, ν is the Poisson’s ratio and α is the coefficient of linear
thermal expansion. From (2.1) it can be seen that the thermal components do not con-
tribute to any shear strains because the free thermal expansion does not produce angular
distortion in an isotropic material.

Hooke’s law can also be expressed in terms of stresses by rewriting (2.1)

σij =
E

1 + ν

[
εij +

ν

1− 2ν
εkkδij

]
− E

1− 2ν
αθδij (2.2)

In the formulation of the boundary element method traction is one of the main variables.
In case the stress tensor is given at a point the tractions at this point are defied by

ti = σijnj (2.3)

where nj are the components of a unit normal.
Navier’s equations express the conditions of equilibrium in terms of displacements.

These equations can be considered as the governing equations of elasticity and they are
central equations in the derivation of the boundary element method. These equations can
be derived from substituting the stress-strain relation (2.2) into the equation of equilibrium
given as

σij,j + bi = 0 (2.4)

using the Cauchy’s strain displacement relation given by

εij =
1

2
(ui,j + uj,i) (2.5)

5



6 Chapter 2 Thermoelasticity

where bi are the components of the body force. The final expression of Navier’s equation
in terms of displacements is

E

2(1 + ν)
ui,kk +

E

2(1 + ν)(1− 2ν)
uk,ik − E

(1− 2ν)
αθ,i + bi = 0 (2.6)

In the derivation of the above equations it is assumed that the temperature is known
in all the points of a given domain. This will not be the case in general and thus the heat
conduction equation has to be used expressed by

λθ,ii = θ̄
E

(1− 2ν)
αδij ε̇ij + cθ̇ (2.7)

as in dell’Erba (1999), where θ̄ denotes the reference absolute temperature for the state
of zero stress and strain, λ is the conductivity and c is the specific heat. In equation (2.7)
the temperature and strain field are coupled and that is because, the cooling and heating
are associated with a change of volume. Equation (2.7) can in general be used in a much
more simple form, steady state heat conduction, as the the loads are applied slowly to a
domain and as all of the resulting diffusive processes are completed, the time dependency
vanishes. Thus the equation is reduced to the Laplace’s equation

θ,ii = 0 (2.8)



Chapter 3
Fracture mechanics

In the present chapter some of the basic definitions of fracture mechanics are summarized
which form the grounding in the presented crack growth analyses of this thesis. The
summary is based on Kanninen and Popelar (1985) and Anderson (1995) together with
the references given in the chapter.

3.1 Origin of Linear Elastic Fracture Mechanics

In the formulation of the fracture mechanical theories some of the first work is done by
Inglis (1913) in a study of stress concentrations at the end of an elliptical hole in tension
loaded plates. For a perfectly circular hole Inglis showed that the relation between the
most highly stressed point on the edge of the hole σ and the stress action at boundary of
the plate σnorm is σ = 3σnorm. When the length of an ellipse is kept constant and the
width is close to zero the ellipse becomes flat and it describes the shape of a sharp crack.
For the crack shaped elliptical hole Inglis showed that infinite stress was predicted at the
tip of the crack.

At the time when Inglis published these results it was quite a paradox since no material
can sustain infinite stress. The paradox motivated Griffith in the development of a fracture
theory based on energy rather than stresses. Thus postulating that a crack can initiate or
grow only if such a process causes the total energy to decrease or remain constant. Griffith
defined the total energy by the sum of, the work required by the crack to create a new
surface and the potential energy available from both internal strain energy and external
forces. For an elastic brittle material like glass, the energy balance can be expressed by

dW

dA
− dU

da
= γ (3.1)

where W is external work done on the domain, U is the internal strain energy, γ is the
surface energy of the material, a is the crack length and A is the crack surface area.
The right hand side of equation (3.1) was later used to define a parameter called the strain
energy release rate, expressing the driving force on the crack. Based on the energy balance
Griffith derived an expression of the remote stress that was required for the crack to grow
in an infinitely wide plate for an ideally brittle solid

σf =
(2Eγs

πa

) 1

2

(3.2)

where E is Young’s modulus, 2a is the length of the crack and γs is the surface energy
of the material which for an ideally brittle solid reflects the total energy of broken bonds.

7



8 Chapter 3 Fracture mechanics

Griffith was able to show good agrement between (3.2) and the experimental fracture
strength of glass. The Griffith equation however underestimates the fracture strength of
metal. When a crack propagates in a metal an additional energy dissipation is obtained
from the dislocation motion which occurs in the vicinity of the crack tip. A modified
expression of the Griffith equation for materials that are capable of plastic flow was sug-
gested independently by Irwin (1948) and Orowan (1948)

σf =
(2E(γs + γp)

πa

) 1

2

(3.3)

In this expression γp is the plastic work per unit area of created surface and it is typically
much larger than γs. The two fracture criteria suggest that as the ductility of a brittle
material is increased one needs to take into account the plastic flow in front of the crack.

The Griffith theory, its extension to metals by Irwin (1948) and Orowan (1948) and
later the connection between Griffith’s global crack parameter and the quantifiable local
crack tip parameters (Irwin, 1957) were such important contributions to Linear Elastic
Fracture Mechanics that the theory is also know as Griffith-Irwin fracture mechanics or
less often Griffith-Irwin-Orowan theory.

Prediction of infinite stress at the crack tip by the linear elastic fracture is in practice
known to create a plastic zone at the crack tip. As long as the size of the plastic zone is
sufficiently small the assumption of LEFM is valid. As it will be shown in the following
section the size of the plastic zone can be estimated. Thus elastic analyses can be shown to
be valid for many engineering problems like fatigue crack growth in large diesel engines.

3.2 Some basic definitions in LEFM

Westergaard was among the first to publish a technique to analyze stresses and displace-
ments ahead of a sharp crack tip (Westergaard, 1939). This approach was adopted by
Irwin (1957) as Irwin showed that the stresses and displacements near the crack tip could
be described by a single constant that was related to the energy release rate. If a polar
coordinate system with origin at the crack tip is defined, the stresses σij at the point P
near the crack tip are given by

σij =
( k√

r

)
fij(θ) +

∞∑
m=0

Amr
m
2 gm

ij (θ) (3.4)

where r and θ are defined in figure 3.1, k is a constant and fij is a function of θ. The
second term of (3.4) is a higher order term that depends on the geometry of the domain.
When the point P is moved closer to the crack tip, r approaches zero and the first term
of (3.4) dominates as the second term gives values that are constant or tend to zero. Thus
in the vicinity of the crack tip the stresses vary with 1/

√
r independently of the geometry

of the cracked body. Furthermore the singular nature of the stresses is demonstrated
from (3.4) as the stresses are asymptotic to r = 0. In addition it can be shown that the
displacements near the crack tip vary with

√
r.
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P

r

θ

x1

x2

Crack tip

Figure 3.1 Local coordinates at the tip of a straight crack

To describe any cracked configuration three basic modes of fracture are considered as
shown on figure 3.2. The first mode of fracture, mode I is the simplest and most studied
mode of fracture. In mode I the load is applied normal to the plane of the crack and the
resulting displacements describe an in-plane opening of the crack, figure 3.2.a. When
a crack is subjected to Mode II the loading is applied in-plane and parallel to the crack
surface and the displacements describe a slide of the two crack surfaces relative to each
other, figure 3.2.b. In the last mode of fracture, Mode III the loading is applied out of
the plane and parallel to the crack surface and the displacements describe a tearing of the
crack surfaces relative to each other, figure 3.2.c.

( a ) ( b ) ( c )

Figure 3.2 Definition of the three basic modes of loading and deformation . (a) Mode I, opening
mode (b) Mode II, sliding mode (c) Mode III, tearing mode

For each of these modes of fracture the stress processes the 1/
√

r singularity. The
stress intensity factor is more convenient to express as K = k

√
2π and the trigonometric

function fij depends on the mode of fracture. Thus three different stress intensity factors
exist that are KI , KII and KIII . In a mixed mode problem the resulting stress state in the
vicinity of the crack is the sum of each of the three modes. Irwin (1957) showed that in
a general plane elastic crack problem the stress state in the vicinity of the crack can be
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described using the local coordinate system illustrated in figure 3.1 as

σ11 =
KI√
2πr

cos
θ

2

[
1− sin

θ

2
sin

3θ

2

]
− KII√

2πr
sin

θ

2

[
2 + cos

θ

2
cos

3θ

2

]

σ22 =
KI√
2πr

cos
θ

2

[
1 + sin

θ

2
sin

3θ

2

]
+

KII√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2
(3.5)

σ12 =
KI√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2
+

KII√
2πr

cos
θ

2

[
1− sin

θ

2
cos

3θ

2

]

and for the displacements

u1 =
1

4μ

√
2r

π

[
KI

(
(2κ− 1) cos

θ

2
− cos

3θ

2

)

+KII

(
(2κ+ 3) sin

θ

2
+ sin

3θ

2

)]

u2 =
1

4μ

√
2r

π

[
KI

(
(2κ+ 1) sin

θ

2
− sin

3θ

2

)
(3.6)

+KII

(
(2κ− 3) cos

θ

2
+ cos

3θ

2

)]

Where KI and KII are the stress intensity factors of the opening and sliding modes.
The constant μ is the shear modulus and κ is given by (3 − 4ν) for plain strain and
(3−4ν)(1+ ν) for plain stress where ν is the Poisson’s ratio. In this general plane elastic
crack problem the stress intensity factor KIII is not present since no out of plane loading
or deformation is allowed.

As the size of the plastic zone is an important parameter to the validity of LEFM,
expressions to estimate the size of the zone are summarized. In the first approximation
it is assumed that the boundary between the elastic and plastic region occurs where the
stress of an elastic analysis exceeds the yield stress. Thus for a mode I problem the radius
of the plastic zone can be estimated as the stresses given by (3.5) satisfy the yield criterion.
Inserting r = ry, σ22 = σys and θ = 0 into (3.5) yields

ry =
1

2π

(KI

σys

)2
(3.7)

The size of plastic zone ry is demonstrated in figure 3.3. A more precise estimate can
be obtained as yielding is allowed and the stresses are allowed to redistribute in order to
satisfy equilibrium. The plastic zone must increase in size in order to obtain the extra
forces in the elastic material, illustrated by the area of the elastic curve σyy above σys

in figure 3.3. Thus a second estimate of the plastic zone is obtained by a simple force
balance as the strain hardening of the material is neglected

σysrp =

∫ ry

0

σyydr =

∫ ry

0

KI√
2πr

dr (3.8)
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by integration and rewriting the expression for rp

rp =
1

π

(KI

σys

)2
(3.9)

From the expression it is seen that the value of rp is twice the value of the first order
estimate ry.

Elastic

Elastic-Plastic

σyy

σys

rp

ry

Crack

a

r

Figure 3.3 Estimate of plastic zone size (Elastic estimate ry and elastic-plastic estimate rp)
calculated for mode I loading and in the plane of the crack θ = 0

3.3 The J-integral

The integral was first derived by Eshelby (1956), and Rice (1968) was the first to recog-
nize its potential use in fracture mechanics where it has been used to analyze crack growth
for LEFM problems as well as for elastic-plastic deformations in non-linear elastics.

n

Ω
Γ

x1

x2

Figure 3.4 Definition of the path independent J-integral

For a general contour around the crack front as illustrated in figure 3.4 the integral is
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expressed by

J =

∫
Γ

(Wn1 − tiui,1)dΓ (3.10)

where Γ is an arbitrary closed contour around the crack front, oriented in an anti clockwise
direction, n1 is the component of the outward normal along the crack axis x1, ti are the
traction components, ui,1 are the derivatives of the displacement components with respect
to x1 and W is the strain energy density given by

W =

∫ ε

0

σijdεij (3.11)

The J-integral can be related to the stress intensity factors and for a linear elastic material
the relations is

J =
1− ν2

E
K2

I +
1− ν2

E
K2

II (3.12)

Other path independent integrals have been proposed in the literature in applications
of other fields like for example thermal effects. The path independent integral Ĵ proposed
by Kishimoto et al. (1980) for thermoelasticity can be written as

Ĵ =

∫
Γ

(Wn1 − tiui,1)dΓ +

∫
Ω

ασkkθ,1dΩ (3.13)

The thermoelastic integral has an additional term when compared to the integral by Rice.
The additional term is defined in the domain enclosed by the contour Γ.

As it can be seen from (3.12) the J-integral is related to a combination ofKI andKII .
It is however possible to decouple the relation by a division of displacements and stresses
into symmetric and anti-symmetric components relative to the crack axis so that KI and
KII can be calculated separately by the J-integral. The decomposition is demonstrated
for a two dimensional dual boundary element formulation by Portela et al. (1992)

3.4 Fatigue crack growth

The growth of a crack during cyclic loading is characterized as fatigue crack growth. Due
to the cyclic nature of the loading the magnitude of the loading required for the crack to
grow is much less as compared to crack growth by monotonic loading. The relative low
magnitude of the fatigue loading enables the use of LEFM in many analyses of fatigue
crack growth.

Among the first crack growth laws of fatigue was the formulation by Paris et al. (1961)
expressed by

da

dN
= f(ΔK) (3.14)
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where a is the length of the crack, N is the number of cycles and ΔK = Kmax −Kmin.
The crack growth law suggests that the crack growth rate (da/dN) can be calculated by
a function of the change in the stress intensity factor ΔK during one load cycle. By
experiments the general relation between (da/dN) and ΔK can be demonstrated by the
curve illustrated in figure 3.5. The curve can be divided into three regions. In Region
I the relation between the crack growth rate and ΔK is described near the threshold
value where the crack is about to stop propagating. The curve is linear in Region II and
in Region III Kmax is approaching the fracture toughness of the material and the crack
growth rate accelerates.

lo
g

d
a

d
N

I II III

Kth KclogΔK

Figure 3.5 Typical relation between the fatigue load ΔK and the crack growth rate for metals

Several crack growth laws have been suggested in the form of (3.14). The simplest
and most recognized is known as Paris law and it treats fatigue crack growth in Region II.
This crack growth law was proposed by Paris and Erdogan (1963) and can be expressed
by

da

dN
= C(ΔK)m (3.15)

where C and m are material constants. Other crack growth laws tend to describe fatigue
crack growth in the two remaining regions and the effect of the R ratio given by R =
Kmax/Kmin. This ratio has shown to be very important in fatigue crack growth and when
this ratio is increased a tendency to a left shift of the curve has been observed.

3.5 Crack growth direction criteria

Several mixed mode fracture criteria have been proposed to determine the crack growth
direction such as the well knownmaximum principal stress criterion proposed by Erdogan
and Sih (1963) for two dimensional problems. Another well known criterion is the strain
energy density criterion for both two dimensional problems (Sih, 1974) and for three
dimensional problems (Sih and Cha, 1974).
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Maximum stress criterion

This criterion predicts that the crack will grow perpendicular to the maximum principal
stress. Thus transforming the stress near the crack tip (3.5) into the local coordinate
system will result in

σθθ =
1√
2πr

cos
θ

2
[KI cos

2 θ

2
− 3

2
KII sin θ]

σrθ =
1

2
√
2πr

cos
θ

2
[KI sin θ +KII(3 cos θ − 1)]

(3.16)

where σθθ is the stress perpendicular to the direction given by θ and σrθ is the shear stress
in a given direction. The maximum principal direction is defined by zero shear stress and
from (3.16) this condition is written as

σrθ = KIsinθ +KII(3 cos θ − 1) = 0 (3.17)

Thus the crack growth angle θ is defined by

θ = 2 tan−1
(

KI

4KII

± 1

4

√( KI

KII

)2
+ 8

)
(3.18)

Strain energy density criterion

By the use of this criterion the crack extension angle is determined by the direction that
gives the minimum strain energy density factor S(θ). The strain energy density factor can
be calculated for any crack extension by

S(θ) = a11K
2
I + 2a12KIKII + a22K

2
II + a33K

2
III (3.19)

Where

a11 =
1

16πμ
(3− 4ν − cos θ)(1 + cos θ)

a12 =
1

8πμ
sin θ(cos θ − 1 + 2ν)

a22 =
1

16πμ

(
4(1− ν)(1− cos θ) + (3 cos θ − 1)(1 + cos θ)

)
(3.20)

a33 =
1

4πμ

Three assumptions are connected to this criterion for three dimensions

• The direction of crack propagation at any point along the crack front is determined
by the location on a spherical surface of the region with the minimum value of the
strain energy density factor S(θ).
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• Crack extension occurs when the strain energy density factor in the region deter-
mined by the first hypothesis, S = Smin, reaches a critical value Sc.

• The length, r0, of the initial crack extension is assumed to be proportional to Smin

such that Smin/r0 remains constant along the new crack front.
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Chapter 4
Boundary integral equations

The two dimensional thermoelastic formulation of the Dual Boundary Element Method
(DBEM) has been used to develop a program which is used to study several cases of
cracks in thermal and mechanical loaded structures. The general boundary element for-
mulation produces a singular system matrix when both coplanar surfaces of a crack are
modelled, a problem DBEM solves by applying a different set of equations on each crack
surface. Displacements and tractions are related by the displacement equations on one
crack surface and the traction equations on the other crack surface. A detailed derivation
of these equations are given in this chapter. In case of thermal exposure a body force term
is present in these equations. The body force term can be calculated when the values of
temperature change and flux are known. When the temperature equations are applied on
one crack surface and flux equations are applied on the other crack surface it is possible
to determine the values of temperature change and flux.

The boundary element method is all about solution of integral equations and in par-
ticular solution of singular boundary integral equations. The method consists of three
main steps which will be described in the following two chapters. The first step is the
formulation of integral equations based on the partial differential equations describing the
behavior of the variables inside and on the boundary of the domain. The second step is
the transformation of the integral equations to describe values on only the boundary of the
domain. The third step is the numerical solutions of these equations.

4.1 Steady state heat conduction

This section treats the temperature and flux integral equations and the main focus will be
on the transformation of the domain integrals to integrals relating only boundary values.
The main references are Aliabadi (2002), Wrobel (2002), Becker (1992) and dell’Erba
(1999)

The notation of points belonging to the domain Ω is X and the points denoted by x
are the points on the boundary Γ of the domain. Furthermore the source points in Ω and
Γ are denoted X ′ and x′ respectively while the notation of the field points are X and x
respectively.

The distance between the source point and field point is a central variable in the inte-
gral equation and this is the reason for the singular nature of the integral equations. The
distance r can be expressed by

r =
√

riri where ri = Xi −X ′

i (4.1)

and the field points, source points and the distance r are illustrated in figure 4.1.

17
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4.1.1 Temperature equation for an internal point

The temperature integral equation can be derived from the Laplace equation for steady
state heat conduction (2.8) by use of Green’s second identity as in Wrobel (2002) or by
using a weighted residual statement as in Brebbia and Dominguez (1977) to give

θ(X ′)−
∫
Γ

q∗(X ′, x)θ(x)dΓ(x) = −
∫
Γ

θ∗(X ′, x)q(x)dΓ(x) (4.2)

in which θ represents the temperature change and q represents the flux. The unknown
function θ satisfies the equation governing steady state thermoelasticity (2.8) and θ∗ is
known as the fundamental solution of the Laplace equation. The fundamental solution
θ∗ of the differential equation is the solution defined in an unbounded region for a point
source of unit strength. The fundamental fields θ∗ and q∗ can be expressed by (Prasad et
al., 1994)

θ∗(X ′, x) = − 1

2πλ
ln r (4.3)

and
q∗(X ′, x) =

r,knk

2πr
(4.4)

Where λ is the thermal conductivity. By the temperature equation (4.2) the temperature
of an internal point X ′ can be calculated by the temperature and flux on the boundary of
the domain.

4.1.2 Temperature equation for a boundary point

To derive the temperature equation for boundary points only the internal point X ′ is
moved to the boundary. As a result the source point and field point can coincide, x = x′,
resulting in singular terms in the integrals including the fundamental functions θ∗ and q∗

because of r = 0. To determine the values of the integrals they are each examined in a
limiting process x′ → X ′ where a small part of the surface (Γε) which contains the singu-
lar point is replaced by the semi circular surface (Γ∗ε ) with radius ε shown in figure 4.1.b.

From the polar coordinate system in figure 4.1.b it is possible to derive the following
relations for the semi circular boundary

r1 = ε cosφ r,1 = n1 = cosφ
r2 = ε sinφ r,2 = n2 = sinφ
r,ini = 1 dΓ(Γ∗ε) = εdφ

(4.5)

The definition of the new boundary Γ = limε→0(Γ− Γε + Γ∗ε ) can be included in the
integral equation to give

θ(x′)− lim
ε→0

∫
Γ−Γε+Γ∗

ε

q∗(x′, x)θ(x)dΓ(x) = − lim
ε→0

∫
Γ−Γε+Γ∗

ε

θ∗(x′, x)q(x)dΓ(x) (4.6)

Since the integration of these integrals are not straight forward they are investigated
separately in the remaining subsection. Both integrals can be regularized by the use of the
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x′

X ′

Ω Ω
r

x

x
ε

φ

Γ∗ε

Γ Γ
Γε

x1

x2

(a) (b)

Figure 4.1 Two-dimensional domain (a) Internal source point X
′ (b) Boundary source point x

′

surrounded by a semi circular surface to determine values of singular integrals

first order Taylor expansion for which it is assumed that the temperature θ and flux q are
Hölder continuous on Ω+ Γ. The requirement can be expressed for the temperature field
as

θ ∈ Cn=0,α if C > 0 and 0 < α ≤ 1 exist such that |θ(x′)− θ(x)| ≤ C|r|α (4.7)

which applies to the derivatives of the fields up to the order of n. The integral on the
right hand side of equation (4.6) can be rewritten by the use of the first term of a Taylor
expansion of the integrand q about the singular point x′

lim
ε→0

∫
Γ−Γε+Γ∗

ε

θ∗(x′, x)q(x)dΓ(x) = lim
ε→0

∫
Γ∗

ε

θ∗(x′, x)[q(x)− q(x′)]dΓ(x)

+ q(x′) lim
ε→0

∫
Γ∗

ε

θ∗(x′, x)dΓ(x) (4.8)

+ lim
ε→0

∫
Γ−Γε

θ∗(x′, x)q(x)dΓ(x)

= I1 + I2 + I3

From which it can be seen that I1→0 as ε→0 due to the continuity of the flux function q
as x goes to x′. Further since Γε→0 for ε→0 and since the integration over Γ − Γε does
not lead to any singular integrands, I3 can be rewritten to give

I3 = lim
ε→0

∫
Γ−Γε

θ∗(x′, x)q(x)dΓ(x) =

∫
Γ

θ∗(x′, x)q(x)dΓ(x) (4.9)

The integral I2 can be solved using the polar coordinates

I2 = q(x′) lim
ε→0

∫
Γ∗

ε

θ∗(x′, x)dΓ(x) = q(x′) lim
ε→0

∫ φ2

φ1

− 1

2πλ
ε ln(ε)dφ = 0 (4.10)
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Thus the right hand side integral of equation (4.6) can be written as

lim
ε→0

∫
Γ−Γε+Γ∗

ε

θ∗(x′, x)q(x)dΓ(x) =

∫
Γ

θ∗(x′, x)q(x)dΓ(x) (4.11)

The left hand side of equation (4.6) is now investigated as the integrand is rewritten by
the use of the first term of a Taylor expansion of the integrand θ about x′

lim
ε→0

∫
Γ−Γε+Γ∗

ε

q∗(x′, x)θ(x)dΓ(x) = lim
ε→0

∫
Γ∗

ε

q∗(x′, x)[θ(x)− θ(x′)]dΓ(x)

+ θ(x′) lim
ε→0

∫
Γ∗

ε

q∗(x′, x)dΓ(x) (4.12)

+ lim
ε→0

∫
Γ−Γε

q∗(x′, x)θ(x)dΓ(x)

= I
′

1 + I
′

2 + I
′

3

For which it can be seen that I ′1→0 as ε→0 due to the continuity of the temperature
function θ as x goes to x′. Since Γε→0 for ε→0 and since the integration over Γ − Γε

does not lead to any singular integrands, I ′3 can be rewritten to give

I
′

3 = lim
ε→0

∫
Γ−Γε

q∗(x′, x)θ(x)dΓ(x) =

∫
Γ

q∗(x′, x)θ(x)dΓ(x) (4.13)

Then I ′2 can be calculated using the definitions for the semi circular boundary in (4.5) to
give

I
′

2 = θ(x′) lim
ε→0

∫
Γ∗

ε

q∗(x′, x)dΓ(x) = θ(x′) lim
ε→0

∫ φ2

φ1

(
1

2πε

)
εdφ = βθ(x′) (4.14)

If the surface is smooth then φ2 − φ1 = π and then β = 1
2
. The integral on the left hand

side can now be written as

lim
ε→0

∫
Γ−Γε+Γ∗

ε

q∗(x′, x)θ(x)dΓ(x) =

∫
Γ

q∗(x′, x)θ(x)dΓ(x) + βθ(x′) (4.15)

By inserting (4.11) and (4.15) into (4.6) the temperature equation for a boundary point x’
can now be written as

C(x′)θ(x′)−
∫
Γ

q∗(x′, x)θ(x)dΓ(x) = −
∫
Γ

θ∗(x′, x)q(x)dΓ(x) (4.16)

Where C(x′) = 1
2
for a smooth surface. However as it will be discussed in the next

chapter the constant C does not need to be calculated explicitly for each boundary point.
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4.1.3 Flux equation for a boundary point

The flux boundary integral equation is derived from the temperature equation for an in-
ternal point X ′ (4.2) together with the definition of the flux, that is

q = −λ
∂θ

∂Xi

ni = −λθ,ini (4.17)

The temperature integral equation is differentiated to give

∂θ(X ′)

∂X ′

i

−
∫
Γ

∂q∗(X ′, x)

∂X ′

i

θ(x)dΓ(x) = −
∫
Γ

∂θ∗(X ′, x)

∂X ′

i

q(x)dΓ(x) (4.18)

where
∂θ∗(X ′, x)

∂X ′

i

= − r,i

2πλr

and
∂q∗(X ′, x)

∂X ′

i

=
1

2πr2
[2r,ir,jnj − ni]

The integrands ∂θ∗(X ′, x)/∂X ′

i and ∂q∗(X ′, x)/∂X ′

i are weakly singular 0(1/r) and
strongly singular 0(1/r2) respectively. A discussion on the continuity requirements for
these integrals can be found in Krishnasmy et al. (1992). It is assumed in the following
regulation of the integrals that x′ is on a smooth boundary and both q and θ are C0,α

and C1,α continuous respectively. The semi circular boundary formulation (4.5) of the
integrals is now introduced

∂θ(x′)

∂x′i
− lim

ε→0

∫
Γ−Γε+Γ∗

ε

∂q∗(x′, x)

∂x′i
θ(x)dΓ(x) = − lim

ε→0

∫
Γ−Γε+Γ∗

ε

∂θ∗(x′, x)

∂x′i
q(x)dΓ(x)

(4.19)
The integral on the right hand side can now be rewritten using the definition of flux and
the first term of the Taylor expansion of the integrand q about x′, that is

lim
ε→0

∫
Γ−Γε+Γ∗

ε

∂θ∗(x′, x)

∂x′i
q(x)dΓ(x)

= lim
ε→0

∫
Γ−Γε

∂θ∗(x′, x)

∂x′i
q(x)dΓ(x) + lim

ε→0

∫
Γ∗

ε

∂θ∗(x′, x)

∂x′i
[−λθ,k(x)nk(x)]dΓ(x)

= lim
ε→0

∫
Γ−Γε

∂θ∗(x′, x)

∂x′i
q(x)dΓ(x)− λ lim

ε→0

∫
Γ∗

ε

θ∗(x′, x)

∂x′i
nk(x)[θ,k(x)− θ,k(x

′)]dΓ(x)

−λθ,k(x
′) lim

ε→0

∫
Γ∗

ε

∂θ∗(x′, x)

∂x′i
nk(x)dΓ(x)

=I1 + I2 + I3 (4.20)

for which I2 → 0 as ε → 0. The improper integral I1 of (4.20) can be written in the
Cauchy principal value sense

I1 = lim
ε→0

∫
Γ−Γε

∂θ∗(x′, x)

∂x′i
q(x)dΓ(x) = −

∫
Γ

∂θ∗(x′, x)

∂x′i
q(x)dΓ(x) (4.21)
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where −
∫
is the Cauchy principal value integral. The last integral I3 can be calculated by

introducing polar coordinates, (4.5), to give

I3 =− λθ,k(x
′) lim

ε→0

∫
Γ∗

ε

∂θ∗(x′, x)

∂x′i
nk(x)dΓ(x)

=− λθ,k(x
′) lim

ε→0

∫ π

0

− r,ink

2πλε
εdφ

=
θ,i(x

′)

4
(4.22)

The right side of (4.19) can be rewritten by the use of equation (4.21) and (4.22) to give

lim
ε→0

∫
Γ−Γε+Γ∗

ε

∂θ∗(x′, x)

∂x′i
q(x)dΓ(x) = −

∫
Γ

∂θ∗(x′, x)

∂x′i
q(x)dΓ(x) +

θ,i(x
′)

4
(4.23)

The left hand side of (4.19) is now rewritten with the use of two terms of the Taylor
expansion of the integrand θ about x′

lim
ε→0

∫
Γ−Γε+Γ∗

ε

∂q∗(x′, x)

∂x′i
θ(x)dΓ(x)

= lim
ε→0

∫
Γ−Γε

∂q∗(x′, x)

∂x′i
θ(x)dΓ(x)

+ lim
ε→0

∫
Γ∗

ε

∂q∗(x′, x)

∂x′i
[θ(x)− θ(x′)− θ,k(x

′)(xk − x′k)]dΓ(x)

+ θ(x′) lim
ε→0

∫
Γ∗

ε

∂q∗(x′, x)

∂x′i
dΓ(x)

+ θ,k(x
′) lim

ε→0

∫
Γ∗

ε

∂q∗(x′, x)

∂x′i
(xk − x′k)dΓ(x)

=I ′1 + I ′2 + I ′3 + I ′4 (4.24)

Two integrals of (4.24) form a Hadamard principal value integral as stated below

I ′1 + I ′3 = lim
ε→0

∫
Γ−Γε

∂q∗(x′, x)

∂x′i
θ(x)dΓ(x) + θ(x′) lim

ε→0

∫
Γ∗

ε

∂q∗(x′, x)

∂x′i
dΓ(x)

==

∫
Γ

∂q∗(x′, x)

∂x′i
θ(x)dΓ(x) (4.25)

where the symbol =
∫
refers to the evaluation of the improper integral in the Hadamard

principal value sense. The integral I ′2 → 0 as ε → 0. The last integral I ′4 of (4.24) can be
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calculated using the polar coordinates, (4.6), to give

I ′4 =θ,k(x
′) lim

ε→0

∫
Γ∗

ε

∂q∗(x′, x)

∂x′i
(xk − x′k)dΓ(x)

=θ,k(x
′) lim

ε→0

∫
Γ∗

ε

1

2πr2
[2r,ir,jnj − ni] (xk − x′k)dΓ(x)

=
θ,k(x

′)

2π
lim
ε→0

∫ π

0

2r,i − ni

ε2
εnk(x)εdφ

=
θ,i(x

′)

4
(4.26)

The left hand side of (4.19) can thus be written as

lim
ε→0

∫
Γ−Γε+Γ∗

ε

∂q∗(x′, x)

∂x′i
θ(x)dΓ(x) =

θ,i(x
′)

4
+ =

∫
Γ

∂q∗(x′, x)

∂x′i
θ(x)dΓ(x) (4.27)

From equation (4.23) and (4.27) the derived temperature equation (4.18) can be rewritten
to give

1

2

∂θ(x′)

∂x′i
−=

∫
∂q(x′)

∂x′i
θ(x)dΓ(x) = −−

∫
Γ

∂θ(x′)

∂x′i
(x′, x)q(x)dΓ (4.28)

The above equation is rewritten by the use of the flux definition (4.17) to give the flux
integral equation for a boundary point x’, that is

1

2
q(x′)− ni(x

′)−
∫
Γ

θ∗∗(x′, x)q(x)dΓ = −ni(x
′)=

∫
q∗∗i (x

′, x)θ(x)dΓ(x) (4.29)

where −
∫
stands for a Cauchy value integral, =

∫
stands for a Hadamard principal value

integral and

θ∗∗i =
ri

2πr

q∗∗i = − λ

2πr2
[2r,ir,jnj − ni] (4.30)

4.2 The thermoelastic problem

The derivation of the boundary integral equations based on the governing thermoelastic
equations described in chapter 2 are presented in this section. In order to limit the extend
of the summary less attention will be paid on the transformation of the integral equations
to describe only boundary values as demonstrated in the previous section.

The derivation of the boundary integral equations is the results of the efforts of sev-
eral researchers. One of the first central works that contributed to the formulation of the
boundary integral equations was by Betti in 1872. Betti (1872) formulated the reciprocal
work theorem, which postulated an equilibrium between two sets of solutions by the two
expressions of work that can be obtained from work done by the stresses of one set on the
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strains at the opposite set. Based on the reciprocal theorem, Somigliana (1885) was the
first to derive a representation of the integral equations in a form which today is known as
Somigliana’s identities. Since an analytical solution of these equations is only possible for
simple problems the use of the integral equations to solve problems is very dependent on
the discretization procedure. Thus the final formulations used in this thesis were first de-
rived much later. The derivation of the integral equations can be done in several ways and
examples of these derivations were obtained by Cruse and Rizzo (1968) who used Betti’s
reciprocal theorem, Jeng and Wexler (1977) employed a variational formulation similar
to that used in the finite element method and Brebbia and Dominguez (1977) introduced
the weighted residual concept.

Two basic approaches can be used in the formulation of boundary integral equations.
In the indirect formulation, the unknowns are represented by fictitious density functions,
which in most cases have no physical significance, but the physical unknowns can be
derived from the density functions. Opposite is the direct formulation in which the un-
knowns are represented by the actual physical variables such as temperature, flux, dis-
placements in the thermoelastic theory.

In this section the direct formulation of boundary integral equations for two dimen-
sional thermoelasticity is summarized. The work of Prasad et al. (1994), Aliabadi (2002),
Becker (1992) and dell’Erba (1999) represent the main references.

4.2.1 The boundary integral equation

The reciprocal work theorem can be used to consider a domain under equilibrium with
two different sets of stress and strain. One set of stresses σa

ij gives rise to a set of strains
εa
ij and a second set b of stresses σb

ij gives rise to another set of strains εb
ij . Thus it follows

from the reciprocal work theorem that the work done by the stresses of system a on the
displacements of the system b is equal to the work done by the stresses of system b on the
displacements of system a. The work equilibrium can be written as

∫
Ω

σa
ijε

b
ijdΩ =

∫
Ω

σb
ijε

a
ijdΩ (4.31)

which can be rewritten using the expression of strains in terms of the displacements (2.5),
Einstein’s summation convention and the equilibrium equations (2.4) to give

∫
Ω

(σa
iju

b
i),jdΩ+

∫
Ω

ba
i u

b
idΩ =

∫
Ω

(σb
iju

a
i ),jdΩ +

∫
Ω

bb
iu

a
i dΩ (4.32)

The divergence theorem allows the transformation of an area integral to a boundary
integral. If fi is a vector field defined with continuous first derivatives on a neighborhood
of the closed volume Ω, it can be stated that

∫
Ω

∂fi

∂xi

dΩ =

∫
Γ

finidΓ (4.33)
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where Γ is the boundary of Ω with the outward pointing normals ni. The divergence
theorem can now be applied to (4.32) since the linear elastic stress and displacement
fields have continuous first derivatives, thus∫

Γ

tai u
b
idΓ +

∫
Ω

ba
i u

b
idΩ =

∫
Γ

tbiu
a
i dΓ +

∫
Ω

bb
iu

a
i dΩ (4.34)

where the traction is expressed as ti = σijnj . The expression of (4.34) is known as Betti’s
reciprocal work theorem.

To be able to get to a system of linear independent algebraic equations with a unique
solution, the definition of set a and b have to specified. If set a is considered as a set
of unknown displacements, tractions and body force vectors then set b must represent
a known set of displacements, tractions and body force vectors which are valid for any
geometry in equilibrium.

For a known set b, the body force bb
i is defined as a point force in an infinite domain

represented by the Dirac delta functionΔ(X −X ′) as

bb
i = Δ(X −X ′)ei (4.35)

where the unit vector ei corresponds to a unit positive force per unit thickness in the
i direction applied at X ′. The two points X and X ′ belongs to the domain Ω. The
expression of the body force bb

i is inserted into the last integral of (4.34) and by the special
integration property of the Dirac delta function the integral becomes

∫
Ω

bb
iu

a
i dΩ = ua

i (X
′)ei (4.36)

The point force solution in an infinite medium was originally derived by Lord Kelvin
and it is also know as Kelvin’s fundamental solution. As already demonstrated the point
force solution is very important in the derivation of the boundary element method and in
the next sub section the point force solution is used to define a known traction field Tij

and a known displacement field Uij . The displacement and traction fields corresponding
to the point force solution can be written as

ub
i =Uij(X

′, x)ej (4.37)

tbi =Tij(X
′, x)ej

From (4.36) and (4.37) it can be seen that the reciprocal work theorem (4.34) can be
rewritten as

ui(X
′) =

∫
Γ

Uij(X
′, x)tj(x)dΓ−

∫
Γ

Tij(X
′, x)uj(x)dΓ+

∫
Ω

Uij(X
′, x)bj(x)dΩ (4.38)

where x ∈ Γ. The above equation is known as Somigliana’s identity for displacements. It
is used to relate displacements at an internal point X’ to boundary values of the displace-
ments and tractions and to body forces.
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4.2.2 The fundamental solutions

This section summarizes the derivation of the fundamental solutions of the temperature
and displacement fields due to a point force. The fundamental solutions must satisfy the
governing differential equations which in case of displacements are Navier’s equations.
Navier’s equations in terms of displacements were presented in chapter 2. As the tem-
perature change can be considered as a body force term, Navier’s equation can now be
written for a unit point force applied to the body at a point X ′ as

μui,jj +

(
μ

1− 2ν

)
uj,ji +Δ(X −X ′)ei = 0 (4.39)

where μ is the shear modulus andΔ(X−X ′)ei is the body force corresponding to a point
force in an infinite sheet represented by the Dirac delta function . The above equation is
difficult to solve analytically but there is however several methods by which a solution can
be obtained. In this thesis the method based on the Galerkin vector is used. The Galerkin
method which is an approximated method incorporates the governing differential equation
in its weak form and functions in principle, by restricting the possible solutions as well as
the test functions to a smaller space than the original one. Thus the governing equation
is not required to hold absolutely but only with respect to a certain test function. The
displacements can be expressed in terms of a Galerkin vector as

ui = Gi,jj − 1

2(1− ν)
Gi,ij (4.40)

By substituting this equation into (4.39) we end up with a biharmonic equation which in
vector form is expressed as

∇4Gi = ∇2(∇2Gi) =
−1
μ
Δ(X −X ′)ei (4.41)

where ∇2 is the laplacian operator. The problem of a single concentrated force applied
in the interior of an infinite domain is known as the Kelvin problem. Assume that a unit
force is applied on an interior point X ′ and we seek the effect of this force on another
point X anywhere in the domain. Two conditions can then be defined, firstly all stresses
must vanish as the distance between X ′ and X tends to infinity and secondly the stresses
must be singular at X ′ itself (i.e. the stresses tend to infinity as the distance tend to zero).
It can be verified that the following Galerkin vector is a solution of (4.40) and satisfies
both the above mentioned physical conditions

Gi =
1

8πμ
r2ln

(
1

r

)
ei (4.42)

where the function r is the physical distance between the two points X ′ and X . The
displacement vector can thus be obtained by substituting (4.42) into (4.40) to give

ui =
1

8πμ(1− ν)

[
(3− 4ν)ln

(
1

r

)
δij + r,ir,j

]
(4.43)
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and by (4.37) the displacement field can be written as

Uij(X
′, x) =

1

8πμ(1− ν)

[
(3− 4ν)ln

(
1

r

)
δij + r,ir,j

]
(4.44)

In the above equationUij(X
′, x) represents the displacement in the j direction at boundary

point x due to a unit force acting in the i direction at the interior point X ′. The traction
field arising from the point force can be derived by differentiating the displacement vector,
substituting it into the Hooke’s law and rewriting the expression by the traction definition
(2.3) to give

Tij(X
′, x) =

−1
4π(1− ν)r

[
∂r

∂n
[(1− 2ν)δij + 2r,irj ] + (1− 2ν)[r,jni − r,inj ]

]
(4.45)

In the above equation Tij(X
′, x) represents the traction in the j direction at boundary

point x due to a unit force acting in the i direction at the interior point X ′.

4.2.3 Displacement equation for a boundary point

In order to obtain the advantage of the BEM all integrals need to be expressed in terms
of the boundary of the domain. Somigliana’s identity for displacements already derived
from the reciprocal theorem states

ui(X
′)+

∫
Γ

Tij(X
′, x)uj(x)dΓ =

∫
Γ

Uij(X
′, x)tj(x)dΓ+

∫
Ω

Uij(X
′, X)bj(X)dΩ (4.46)

where the fundamental solutions are given by (4.44) and (4.45). The second integral on
the right hand side of (4.46) express the volume forces and it is still defined as an integral
of the domain Ω.

In case the body forces acting in the domain are only due to the temperature change
the domain integral can now be rewritten into only a boundary integral . The total ther-
moelastic stresses (t) are first divided into an elastic contribution (e) and a contribution
from the temperature change, that is

σt
ij = σe

ij +
Eα

1− 2ν
θδij (4.47)

By including the above expression in the derivation of the boundary integral equation
from the reciprocal work theorem it can be shown as in Aliabadi (2002) that the domain
integral can be written as

Bi =

∫
Ω

Uij(X
′, X)bj(X)dΩ(x) =

Eα

1− 2ν

∫
Ω

Uij,j(X
′, X)θdΩ (4.48)

The displacement fundamental solution given by (4.44) can now be inserted into the do-
main integral and the expression is rewritten by introducing the differential operator ∇2

to give

Bi =
α(1 + ν)

8π(1− ν)

∫
Ω

∇2{ ∂

∂xi

[r2ln(r)]}θdΩ (4.49)
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The expression of (4.49) is given in a form which can be transformed into a boundary
integral by the use of Green’s second identity. The identity can be used to transform the
domain integral of two harmonic functions ψ and θ in the finite domain Ω to a boundary
integral, expressed as

∫
Ω

[θ∇2ψ2 − ψ∇2θ]dΩ =

∫
Γ

[θ
∂ψ

∂n
− ψ

∂θ

∂n
]θdΓ (4.50)

where Γ is the boundary of the domain and n is the outward pointing normal of the
boundary. By using the substitution

ψ =
∂

∂xi

[r2ln(r)] (4.51)

along with the Laplace equation for steady state thermoelasticity∇2θ = 0 the body force
integral can be expressed as

Bi =

∫
Γ

P i(X
′, x)θ(x)dΓ−

∫
Γ

Qi(X
′, x)q(x)dΓ (4.52)

where the fundamental fields for two dimensional problems are given as

P i(X
′, x) =

(1 + ν)α

4π(1− ν)

{[
ln

(
1

r

)
− 1

2

]
ni − r,ir,knk

}
(4.53)

Qi(X
′, x) = − (1 + ν)

4πλ(1− ν)
αrir

[
ln

(
1

r

)
− 1

2

]
(4.54)

The thermoelastic displacement of an internal point can now be derived by substituting
(4.52) into Somigliana’s identity (4.46) to give

ui(X
′) +

∫
Γ

Tij(X
′, x)uj(x)dΓ(x)

=

∫
Γ

Uij(X
′, x)tj(x)dΓ(x) +

∫
Γ

P i(X
′, x)θ(x)dΓ−

∫
Γ

Qi(X
′, x)q(x)dΓ (4.55)

The displacement boundary integral equation for a boundary point is now obtained by
taking the internal point X ′ to the boundary. This however leads to a singularity in the
integrals containing the fundamental solution. By the use of the semi circular boundary
in the limiting process, described in the previous section, it can be shown that

Cij(x
′)ui(x

′) +

∫
Γ

Tij(x
′, x)uj(x)dΓ(x)−

∫
Γ

P i(x
′, x)θ(x)dΓ

=

∫
Γ

Uij(x
′, x)tj(x)dΓ(x)−

∫
Γ

Qi(x
′, x)q(x)dΓ (4.56)

where Cij(x
′) = δij/2 for a smooth boundary.
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4.2.4 Traction equation for a boundary point

The traction integral equation of a boundary point x′ can be calculated from the stress
equation for a boundary point x′ by the use of the definition of tractions (2.3). The stress
equation of the internal point X ′ is firstly derived by differentiation of the displacement
integral equations and by the thermoelastic definitions described in chapter 2. By differ-
entiation of the displacement equation the following can be obtained

∂ui(X
′)

∂X ′

j

+

∫
Γ

∂Tik(X
′, x)

∂X ′

j

uk(x)dΓ−
∫
Γ

∂P i(X
′, x)

∂X ′

j

θ(x)dΓ

=

∫
Γ

∂Uik(X
′, x)

∂X ′

j

tk(x)dΓ−
∫
Γ

∂Qi(X
′, x)

∂X ′

j

q(x)dΓ (4.57)

the above expression can be rewritten to the stress integral equation by the use of Hooke’s
law for thermoelasticity (2.2) and the strain displacement relationship (2.5). Thus for an
internal point the stress integral equation for an internal point X ′ is given by

σij(X
′) +

∫
Γ

Tkij(X
′, x)uk(x)dΓ−

∫
Γ

P ij(X
′, x)θ(x)dΓ +

E

1− 2ν
αθ(X ′)δij

=

∫
Γ

Ukij(X
′, x)tk(x)dΓ−

∫
Γ

Qij(X
′, x)q(x)dΓ (4.58)

Where the fundamental fields Tkij, Ukij , P ij and Qij are obtained by insertion of the
derivatives of the fundamental fields of the displacement integral equation into (4.57) to
give

Ukij(X
′, x) =

1

4π(1− ν)r
[(1− 2ν)(r,jδki + r,iδjk − r,kδij) + 2rirjrk]

Tkij(X
′, x) =

μ

2π(1− ν)

1

r2

{
2
∂r

∂n
[(1− 2ν)δijr,k + ν(r,jδik + r,iδjk)− 4r,ir,jr,k]

+ 2ν(nir,jr,k + njr,ir,k) + (1− 2ν)(2nkr,ir,j + njδik + niδjk)

− (1− 4ν)nkδij

}

P ij(X
′, x) =

αμ(1 + ν)

2π(1− ν)r

{
nkr,k

[
δij

(1− 2ν)
− 2r,ir,j

]
+ nir,j + njr,i

}

Qij(X
′, x) =− αμ(1 + ν)

2πλ(1− ν)

{
r,ir,j +

δij

1− 2ν

[
(1− 2ν)

2
− ln

(
1

r

)]}
(4.59)

Once more the limiting process of semi circular boundary, (4.5), can be used to eval-
uate the integral equation as the internal point X ′ is moved to the boundary. If nj(x

′) are
the components of the outward pointing normal on the boundary Γ the traction integral
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equation can be written as.

1

2
ti(x

′) + nj(x
′)=

∫
Γ

Tkij(x
′, x)uk(x)dΓ(x)

− nj(x
′)−
∫
Γ

P ij(x
′, x)θ(x)dΓ +

E

2(1− 2ν)
αθ(x′)ni(x

′) (4.60)

= nj(x
′)−
∫
Γ

Ukij(x
′, x)tk(x)dΓ(x)− nj(x

′)

∫
Γ

Qij(x
′, x)q(x)dΓ

the fundamental fields Tkij, Ukij, P ij and Qij are given by (4.59), −
∫
stands for a Cauchy

value integral and =
∫
stands for a Hadamard principal value integral.



Chapter 5
Dual boundary element method

Shortly after the first numerical solutions of the boundary integral equations were pre-
sented, a numerical formulation for potential problems was developed by Symm (1963)
and for time independent elastic problems by Rizzo (1967). However the use of these first
formulations of the boundary integral equations could not be applied directly to solve frac-
ture mechanical problems in which both surfaces of the crack are discretized. Since the
two surfaces of a crack will be coincided when no load is applied to the cracked domain a
mathematical degeneration in the numerical formulation of the boundary element method
is obtained (singular matrix) as showed by Cruse (1972) because the same equations are
obtained for the two coincided surfaces

Several formulations of the integral equations have been used in order to overcome
the problem of coincided crack surfaces. Among the most important formulations are the
Green’s function method presented by Snyder and Cruse (1975), the displacement discon-
tinuity method by Crouch (1976), the multidomain or subregion modelling by Blandford
et al. (1981) and finally the dual boundary element method (Portela et al., 1992).

The Green’s function method incorporates an exact representation of the crack sur-
face boundary conditions by the use of the Green’s functions. The method is in general
considered to be limited to two dimensional problems for which it can be used to obtain
accurate results. The method is applied by mounting additional terms to the Kelvin fun-
damental solutions of the boundary integral equations and these additional terms result in
zero stresses on the crack due to the point load.

In the displacement discontinuity method each pair of coincided source points on the
crack surfaces is replaced by a single source point, and for each of these single points the
unknowns are the displacement differences between the crack faces. Mukhopadhyay et al.
(2000) refers to, that the approach does not work well in case of significant bending and in
addition, problems with unknown tractions and displacements on the crack faces cannot
be solved with this method. The method has however been used by several researchers.

The multi domain approach was first reported by Lachat and Watson (1976), but the
first true multidomain fracture mechanical analysis for non-symmetric bodies was how-
ever presented by Raveendra and Banerjee (1992). The method overcomes the problem
of the same integral equation on both crack surfaces as each crack surface belongs to dif-
ferent sub domains. Thus when this method is applied the crack surfaces are extended
through the domain creating an artificial boundary. The part of the artificial boundary
representing the crack is allowed to open while the remaining part of the boundary is kept
closed. This method was the first widespread method to model coincided crack surfaces.
Its main drawback is the creation of the extra boundaries ahead of the crack tip.

Finally the dual boundary element method can be used to model crack problems in
case of coincided source points on the crack faces by introducing additional independent

31
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boundary integral equations i.e. the flux and traction equations. The integral equations
obtained for source points on both crack surfaces are thus able to be integrated in the
whole boundary and thus the degeneration in the numerical formulation is avoided. The
dual boundary element method was applied to two dimensional thermoelastic problems
by Prasad et al. (1994) and to three dimensional thermoelastic problems by dell’Erba and
Aliabadi (2000)

In this chapter the implementation of the thermoelastic dual boundary element formu-
lation is described. To give an understanding of the method, the chapter focuses primarily
on the modelling and discretization strategy rather than it gives another description of
the full implementation of the boundary element method which is already covered in the
literature by e.g. Prasad et al. (1994), dell’Erba and Aliabadi (2000) and Aliabadi (2002)

5.1 The integral equations

The temperature, flux, displacement and traction integral equations described in the pre-
vious chapter are now used to formulate the dual boundary element method.

A general cracked body is illustrated in figure 5.1 with open crack surfaces. The
boundary of the cracked body Γ has been devided into three different parts that is the
non-crack boundary Γn, the upper crack surface Γ+ and the lower crack surface Γ−. The
choice of integral equations used to describe the field variables at a source point will
depend on the location of the point on one of the three sub boundaries.

Ω

Γn

Γ+Γ+

Γ−Γ−

x+

x−

Figure 5.1 The boundary is divided into three sub boundaries in the formulation of the dual
boundary element method. To illustrate the two crack surfaces the closed crack is sketched as
opened

When the field variables of a point on the non-cracked boundary Γn are to be found
the temperature equation (4.16) and displacement equation (4.56) are used. To summarize
the temperature integral equation it can be expressed by

C(x′)θ(x′)−
∫
Γ

q∗(x′, x)θ(x)dΓ(x) = −
∫
Γ

θ∗(x′, x)q(x)dΓ(x) (5.1)
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and the displacement integral equation

Cij(x
′)ui(X

′) +

∫
Γ

Tij(x
′, x)uj(x)dΓ(x)−

∫
Γ

P i(x
′, x)θ(x)dΓ

=

∫
Γ

Uij(x
′, x)tj(x)dΓ(x)−

∫
Γ

Qi(x
′, x)q(x)dΓ (5.2)

These integral equations are also used on one of the crack surfaces. When the integral
equations are used to find the field variables of a point x+ on the upper crack surface Γ+,
the temperature equation is written as

1

2
θ(x+) +

1

2
θ(x−)−

∫
Γ

q∗(x+, x)θ(x)dΓ(x) = −
∫
Γ

θ∗(x+, x)q(x)dΓ(x) (5.3)

and the displacement equation as

1

2
ui(x

+) +
1

2
ui(x

−) +

∫
Γ

Tij(x
+, x)uj(x)dΓ(x)−

∫
Γ

P i(x
+, x)θ(x)dΓ (5.4)

=

∫
Γ

Uij(x
+, x)tj(x)dΓ(x)−

∫
Γ

Qi(x
+, x)q(x)dΓ

From (5.3) and (5.4) it is seen that an extra term 1
2
θ(x−) and 1

2
ui(x

−) is added to each of
the two equations because the source points x− and x+ are coinciding.

When the source point is on the lower crack surface Γ− instead of Γ+ an equivalent
set of equations are obtained. Thus if the displacement equations are used on source
points on both crack surfaces it leads to fewer independent equations than the number of
unknowns. To be able to solve the total system of equations a different set of equations
is needed on the opposite crack surface. The flux boundary equation (4.29) and traction
boundary equation (4.60) are used for a source point on x−. The flux boundary equation
can be written as

1

2
q(x−)− 1

2
q(x+)− ni(x

−)−
∫
Γ

θ∗∗(x−, x)q(x)dΓ = −ni(x
−)=

∫
q∗∗i (x

−, x)θ(x)dΓ(x)

(5.5)
and the traction equation as

1

2
ti(x

−)− 1

2
ti(x

+) + nj(x
−)=

∫
Γ

Tkij(x
−, x)uk(x)dΓ(x)

− nj(x
−)−
∫
Γ

P ij(x
−, x)θ(x)dΓ +

E

2(1− 2ν)
αθ(x−)ni(x

−) (5.6)

=nj(x
−)−
∫
Γ

Ukij(x
−, x)tk(x)dΓ(x)− nj(x

−)

∫
Γ

Qij(x
−, x)q(x)dΓ

where the relation ni(x
−) = −ni(x

+) has been used.
The use of equations (4.16) and (4.56) for source points on Γn, equations (5.3) and

(5.4) for source points on Γ+ and equations (5.5) and (5.6) for source points on Γ− con-
stitutes the dual boundary element method for thermoelastic crack problems.
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5.2 Numerical formulation

By solution of the boundary integral equations the thermoelastic fields θ, q, ui and ti can
be determined for a given problem. Since an analytical solution of the integral equations
is generally very difficult if not impossible, methods of weighted residuals can be used
to obtain an approximative solution to the differential equations. Among these methods
are the Galerkin Method and the Point Collocation Method. Several formulations of the
Galerkin method have been applied to the boundary element method as for example by
Polizzotto (1988), however the most straight forward and often used method is point
collocation e.g. treated by Brebbia and Dominguez (1977) and because of that it is used
in the present chapter.

In the point collocation method the boundary integral equations are derived for a num-
ber of locations of the source points on the boundary of the domain. The solution of
thermoelastic fields satisfies the integral equations in each of these locations called the
collocation points.

The first step in the use of the method is to discretize the boundary into a number
of elements each described by the number and placements of nodes. In each of these
elements the approximated thermoelastic fields can be described by the element shape
functions and field values at the nodes. In the second step the boundary integrals related
to each collocation point are evaluated by inserting the approximated thermoelastic fields
and performing numerical integration element by element. As the procedure is repeated
for all nodes a system of linear independent equations is obtained. Values of prescribed
boundary conditions are inserted in the system of equations and by rearranging the system
by knowns and unknowns it is finally possible to solve the system of equations obtaining
all thermoelastic fields along the boundary.

In contrast to the point collocation method, the analytical solution satisfies the differ-
ential equations in all points. Thus intuitively the more discrete points are used the closer
the approximated solution will be to the analytical solution.

The discretization of the integral equations are performed by dividing the domain into
Ne elements. For each of these elements the thermoelastic fields can be described by the
expressions

θj =
m∑

α=1

Nα(η)θ
α
j qj =

m∑
α=1

Nα(η)q
α
j (5.7)

uj =

m∑
α=1

Nα(η)u
α
j tj =

m∑
α=1

Nα(η)t
α
j

where Nα are the element shape functions, m is number of nodes in the element and α
refers to the current node on the element. In the general modelling of the dual boundary
element method several types of quadratic elements can be used in the discretization of
the domain as illustrated in figure 5.2

The crack surfaces are modelled with discontinuous quadratic elements as shown in
figure 5.2. The discontinuous quadratic element has the special feature that the colloca-
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Crack tip
d.q.p.e.

d.e.

s.d.e.

s.d.e.

q.e.

q.e.

Γ

Geometrical node
Collocation node
Element end

Ω

Figure 5.2 Typical element used for modelling of crack problems by the dual boundary ele-
ment method: Quadratic element (q.e.), semi discontinuous element (s.d.e.), discontinuous ele-
ment (d.e.) and discontinuous quarter point element (d.q.p.e.)

tion nodes are located in a different position on the element than the geometrical nodes.
The location of the collocation nodes within the element ensures the smoothness of the
boundary at the source point. Therefore the requirements of continuity assumed in the
derivation of the flux and the traction integral equations are satisfied for the boundary
variables. Continuous quadratic elements as shown in figure 5.2 can be used along the re-
maining boundaries except at the intersection of the non-cracked boundary with the crack
surfaces. At these corners semi discontinuous elements can be used to couple continuous
and discontinuous elements.

The variation of the boundary variables within the elements are given by (5.7) ex-
pressed in terms of the values of the variables at the collocation nodes and the shape
functions. For the continuous quadratic elements the shape functions can be expressed by

N1 =
1

2
η(η − 1)

N2 = 1− η2

N3 =
1

2
η(1 + η) (5.8)

and for the discontinuous elements

N1 = η(− 1

2λ
+ η

1

2λ2
)

N2 = 1 + η2
1

λ2

N3 = η(
1

2λ
+ η

1

λ2
) (5.9)

where η is the local element coordinate and λ = 2
3
for the present discontinuous elements.
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As the discretization procedure is carried out Ne elements and Nt nodes are placed
along the boundary of the domain. Performing the numerical integration of the tempera-
ture and flux equations for each collocation node leads to a system of algebraic equations
which can be expressed in matrix form as

[Hθ,q
θθ ][θ] = [Gθ,q

θθ ][q] (5.10)

and for the displacement and traction equation

[
Hu,t
11 Hu,t

12 Hu,t
1θ

Hu,t
21 Hu,t

22 Hu,t
2θ

]⎡
⎣ u1

u2
θ

⎤
⎦ =

[
Gu,t
11 Gu,t

12 Gu,t
1θ

Gu,t
21 Gu,t

22 Gu,t
2θ

]⎡
⎣ t1

t2
q

⎤
⎦ (5.11)

These two matrix equations can be solved separately by inserting the temperature and
flux results of (5.10) into (5.11) when the displacements and tractions are calculated.
Alternatively the equations can be coupled as suggested in Prasad et al. (1994).

When applying boundary conditions it is possible to rearrange the equations to the
well known configuration such that the unknowns are on left hand side and the knows are
on the right hand side, that is

Ax = b (5.12)

5.3 Numerical integration

A general integration scheme can be applied to most of the integrals as the singular terms
of the integral only occur when the collocation point is coinciding with the element in
which the integration is performed. The Gauss quadrature formula can be applied to the
non-singular cases in which the integration of the function f in the one dimension element
can be expressed by ∫ 1

−1

f(η)dη =

S∑
Asf(ηs) (5.13)

where As are the weighting factors and η the local element coordinate.
The main difficulty in the implementation of the dual boundary integral equation is

related to the numerical integration of the singular integrals. In this sections the three
types of singular integrals and the solution of these are only briefly discussed as a detailed
derivation does not contribute to the understanding of the dual boundary element method.

Hyper singular integrals

The singularity of the order O(1/r2) is present for the flux and traction boundary equa-
tions used on the crack surface. These integrals give rise to the main difficulty in the
numerical integration of the dual boundary element method. The hyper singular integra-
tion has been treated in several papers on the boundary element method e.g. Portela et
al. (1992). These papers deals with the general approach that allows the integration to be
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carried out by transformation of the hyper singular integrals into regular integrals. These
integrals are evaluated by the standard quadratures and simple singular integrals which
are integrated analytically. Saez and Gallego R. (1995) followed the same basic idea and
derived the actual expressions for the hyper singular and strong singular integrals of the
displacement and traction boundary integral equations. The expressions of Saez and Gal-
lego R. (1995) are used in this thesis and the approach have been extended to the flux
boundary element equation.

Strongly singular integrals

The 0(1/r) singularity characterizes these integrals and the singularity occurs in the tem-
perature and displacement integral equations for the coefficients of ui and θi. The eval-
uation of these integrals are however easily performed using rigid body approach for the
non-cracked boundary.

Consider a body for zero temperature, zero flux and in the absence of body forces.
Then a unity rigid body displacement in the direction of one of the cartesian coordinates
the traction and body force vector must be zero and thus in according to (5.11)

H
u,t

I = 0 (5.14)

where I represents the unitary displacement. Since equation (5.14) has to be satisfied for
any rigid body displacement the following expression can be written

H
u,t
ii = −

2NT∑
j=1

H
u,t
ij for j �= i (5.15)

the above expressions avoid the calculations of the strongly singular integrals and the Cij

term. Analog to the rigid body consideration for the elastic problem, equivalent consid-
erations can be made for potential problems. If the temperature is constant in the domain
this condition will lead to zero temperature gradients and as a consequence zero flux, and
thus

H
θ,q
ii = −

NT∑
j=1

H
θ,q
ij for j �= i (5.16)

For the strongly singular integrals collocated at the crack surfaces, the rigid body
considerations can not be applied because of the dual nodes at the crack faces. For these
cases the integrals are evaluated directly by the same method used for the hyper singular
integrals as already described.

Weakly singular integrals

These integrals are characterized by a singularity of O(ln r). The weakly singular inte-
grals that appears for the coefficients of ui(x

′) and θi(x
′) in the displacement equation

and the coefficients of qi(x
′) in the temperature equation are calculated using a Gaussian

formula with singular weight functions as described e.g. in Becker (1992).
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5.4 Evaluation of stress intensity factors

The stress intensity factors can be calculated from the boundary element solution by a
number of different methods like for example by the use of special crack tip elements
or the path independent integrals. A review of these methods applied to the boundary
element method can be found by authors like Mukhopadhyay et al. (2000) and Aliabadi
(2002). In general the J-integral is one of the most accurate methods to calculate the
stress intensity factors for crack problems. However accurate results are also obtained
with special crack tip elements like the discontinuous quarter point elements.

The discontinuous quarter point element has been used to calculate crack problems
of both elastic and thermoelastic formulation of the boundary element method, and the
derivation is summarized in this section.

A
B

C

D

E

F

G

r = l/4

r = 25l/36

r = l/36

η = 2
3

η = 0 η = −2
3

Figure 5.3 Discontinuous quarter point elements

By moving the mid-point node to a quarter point position, the displacement field de-
scribed by the elements obtain a desired

√
r dependency on the distance to the crack

tip. These quarter point elements were firstly demonstrated in the finite element method
by Barsoum (1976) and Henshell (1975) and for discontinuous elements, Fedelinski et
al. (1995) were the first to use the quarter point configuration in the boundary element
method.

Consider a crack located in the plane with y = 0 and with the crack tip at x = 0. The
distance along the x-axis can be described by the crack tip element as it was the case for
the thermoelastic fields (5.7), thus x is given by

x =
3∑

α=1

Nα(η)x
α = N1

l

36
+N2

9l

36
+N3

25l

36
(5.17)

When the shape functions (5.7) are inserted into (5.17) it can be shown that

η = −1 + 2

√
x

l
= −1 + 2

√
r

l
(5.18)

Substituting the above expression (5.18) into the displacement field approximation (5.7)
it can be shown that

ui = a1 + a2

√
r

l
+ a3

r

l
(5.19)
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where a1,a2 and a3 are coefficients of the approximated displacements calculated from
the displacements at the element nodes. From the solution of the displacement fields in
the vicinity of the crack tip (3.6) the displacements at the crack surfaces can be written as

u2(θ = π)− u2(θ = −π) =
κ+ 1

μ
KI

√
r

2π

u1(θ = π)− u1(θ = −π) =
κ+ 1

μ
KII

√
r

2π
(5.20)

When the expression of displacement at the crack tip element (5.19) is inserted into
(5.20) it is seen that the

√
r singularity cancels out and an expression independently of r

can be obtained when r → 0. The stress intensity factor can be derived directly from the
above expressions. Fedelinski et al. (1995) however used the method of minimization of
the squared differences between the analytical and boundary element values of the crack
opening and crack sliding displacements to give

KI =
6μ

5(κ+ 1)

√
π

2l
(ΔuBC

2 + 3ΔuDE
2 )

KII =
6μ

5(κ+ 1)

√
π

2l
(ΔuBC

1 + 3ΔuDE
1 ) (5.21)
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Chapter 6
Summary of results in enclosed papers

The chapter presents main results from the papers [P1]-[P4]. The papers [P1]-[P3] are
based on a 2 dimensional dual boundary element formulation presented in section 5.
While the last paper [P4] presents a new method to perform numerical simulation of
non-planar 3D crack growth by the combination of FEM and BEM.

6.1 Crack growth in a piston crown [P1]

The 2D dual boundary element formulation presented in section 5 is used in [P1] to per-
form numerical simulation of crack growth in a simplified engine part of a large diesel
engine. The analyzed engine part is the piston crown shown in figure 6.1.a which due
to its placement in the combustion chamber is exposed to both high temperatures and
pressures. Reasonable results are expected when analyzing crack growth in a nearly ax-
isymmetric structure with a simplified plain strain model 6.1.b especially in the area of
the crack as described in [P1].

The crankshaft rotation of 360◦ defines one pressure cycle of compression and expan-
sion of gas above the piston crown. When one pressure cycle is modelled it is discretized
into ten steady state load steps that are chosen so that load step number six represents the
angular position of the crankshaft that gives exactly the maximum combustion pressure.
The crack initiation is modelled by inserting a crack at the lower part of the weld shown
in figure 6.1.b.

TheKI andKII factors are calculated for the initial crack configuration and it is found
that the thermal loading of the piston crown ensures a dominant mode I loading in all
load steps. The lowest value of KI is obtained for the highest combustion pressure as the
combustion pressure tends to close the crack. The crack growth analysis is complicated by
the fact that the piston crown is subjected to non-proportional loading as demonstrated in
figure 6.2 by the ratio ofKI andKII . In the figure load steps zero and eleven are included
in the figure to demonstrate the beginning and end of the load cycle. The variation of the
ratio during the load cycle will cause that a different crack extension angle is predicted
for each load step.

A simple criterion is chosen to propagate the crack as the extension angle of only
one load step is used. It is assumed that the crack grows due to the size of the loading
and due to the part of the load cycle at which a given load is present. Thus to propagate
the crack load step two is therefore the primary choice. This load step represents the
highest mode I loading of all increments. The KI and KII factors are shown in figure 6.3
for crack increment 0, 3, 6. From the figure it is seen that the variations of the stress
intensity factors are unchanged for the different increments of the crack. The KI values

41
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Figure 6.1 Model of the piston crown loaded with the maximum combustion pressure and steady
state temperature field
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Figure 6.2 The ratio of KI and KII is calculated for a load cycle that represents a 360◦ rotation
of the crankshaft

are generally observed to decrease and this is explained by the fact that the crack growth
reduces the stiffness of the structure. Furthermore the reduced stiffness results in an
increased variation of theKI for each crack increment and thus the crack growth rate will
increase. When the crack is propagated perpendicular to the maximum principal stress
direction the mode I loading will be dominant and small values ofKII are expected. This
tendency is seen to be in accordance with the results in figure 6.3.

To demonstrate the importance of choosing the correct pair of stress intensity factors
to propagate the crack it is in addition chosen to perform calculations where the crack is
propagated by the load step which gives the biggest deviation in the crack extension angle
from the angle of load step 2. Therefore load step 6 is chosen to propagate the crack in the
additional analysis. Load step 2 and 6 represents two extremes and any other prediction
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Figure 6.3 The stress intensity factors are calculated for load cycles that represent a 360◦ rotation
of the crankshaft when the crack is propagated due to load step 2

of the crack extension angle will have values between these. The crack path predictions
obtained by the two extremes are shown in figure 6.4. Comparing the crack propagated
by the use of load step 2 with the crack in the micro sample it can be seen that they are in
accordance with each other.

The crack propagated by load step 6 is as expected found to give the biggest deviation
from the crack in the micro-sample. Thus no better choice of stress intensity factors to
propagate the crack is obtained than in load step 2. The difference between the crack in the
micro-sample and the crack propagated by load step 2 can be caused by the simplifications
introduced in order to model the problem by a plane strain boundary element model.
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Figure 6.4 Micro-sample of piston crown with crack and calculations of cracks propagated by
load step 2 and load step 6
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6.2 Correction of the crack extension direction [P2]-[P3]

In order to avoid introduction of an error when a local crack growth criterion is used in
an incremental crack growth formulation, each straight crack extension would have to be
infinitesimal or have its direction corrected. The description of both a reference and a
proposed procedure to correct the crack extension direction of a mixed mode crack path
is summarized in this section together with the results of a test example. The study been
performed is based on a formulation of the dual boundary element method (Portela et
al., 1993). The crack extension direction is calculated by the maximum principal stress
criterion (Erdogan and Sih, 1963).

The reference correction procedure presented by Portela et al. (1993) is firstly de-
scribed and the expected performance is shortly discussed. In order to correct the local
crack growth direction θt(n) so that it can be used to predict the crack growth direction
of the n’th crack-extension increment a correction angle β is introduced. This correction
angle is given by β = θt(n+1)/2 where θt(n+1) is the direction of the next crack-extension
increment, also computed by the maximum principal stress criterion. For the current n’th
crack-extension increment the i’th iteration can be summarized as follows

• For the first iteration only, evaluate the crack path tangent direction θt(n) using the
maximum principal stress criterion

• Along the direction computed in the previous step, extend the crack one increment
Δa to P i and evaluate the new stress intensity factors

• With the new stress intensity factors and the maximum principal stress criterion
evaluate the next crack-path direction θi

t(n+1)

• Define the correction angle βi = θi
t(n+1)/2 measured from the increment defined in

the second step

• Correct the crack extension increment, defined in the second step, to its new direc-
tion given by θi+1

t(n) = θi
t(n) + βi

• Starting from the second step, repeat the above steps sequentially while |βi+1| <
|βi|

This method for correcting the crack extension direction is demonstrated in figure 6.5.
For each iteration the direction of the crack increment n is moved towards the direction
of the crack increment n + 1. Thus the correction angle βi is expected to decrease for
each iteration until it changes sign at some point. Imagine that the procedure is repeated
a specific number of iterations, i = b, until the crack tip P b is placed on the actual
crack trajectory. At this point the correction angle βb is different from zero as shown on
figure 6.5. If the correction procedure continues to run for i > b, the cracktip P i moves
away from the actual crack trajectory until the point P c is reached. By this point the
correction angle passes zero and the correction procedure will stop as |βc+1| < |βc|. This
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Figure 6.5 Reference procedure for correction of the crack extension direction

postulate indicates the need for a different stop criterion for the iterative procedure. Two
possibilities are either to limit the number of correction iterations that are performed or
to stop the correction when the correction angle is below a certain value. However the
utilization of these two stop criteria to calibrate the correction will depend on the problem
that has to be solved.

In the proposed method the crack extension direction θn of an increment n is found
from the local crack growth direction at the previous crack tip Pn and at the new crack tip
Pn+1 combined with the assumption that the actual crack increment can be described as a
second order polynomial.To illustrate the proposed crack correction procedure the actual
crack path in figure 6.6 is considered. In the derivation of the expression for the corrected
crack extension direction it is assumed that part of crack path u(x) describes the shape
of a second order polynomial. For the iteration i an approximated value of the corrected
crack extension angle θi+1

n is obtained from

tan(θi+1
n ) =

1

2
(tan(θn) + tan(θi

n + θi
n+1)) (6.1)

where θn is the local crack growth direction at the previous crack tip and θi
n is the corrected

crack extension angle at the previous increment. Thus for the current n’th crack extension
increment the i’th iteration can be summarized as follows

• For the first iteration only, evaluate the local crack growth direction θn by the max-
imum principal stress criterion and extend the crack one incrementΔa to P i

n+1

• Calculate the stress intensity factors at P i
n+1 and then calculate the next local crack

growth direction θi
n+1 using the maximum principal stress criterion
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• Calculate the corrected crack-extension direction by using (6.1) and correct the
crack extension increment.

• Starting from the second step repeat the above steps sequentially while
|Δθi

n| > β. The calibration constant is in this paper chosen as β = 0.1◦.
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Figure 6.6 Proposed procedure for correction of the crack extension direction

The two methods to correct the crack extension direction have been studied in three
examples described in the papers [P2]-[P3]. The results of the first and most pronounced
example are summarized in this section. The results of this example are in accordance
with the results of the other two examples. In the first example the regular cruciform plate
(Portela et al., 1993) shown in figure 6.7.a is studied. To be able to evaluate the precision
of the two correction methods it is chosen to find the actual crack path. The actual crack
path can be found by the use of very small crack extensions for each increment. To assure
that the size of the crack extensions are sufficiently small, several crack path analyses are
performed in order to show that the crack path for each analysis converges towards the
actual crack path. The crack paths are calculated with different number of increments and
as shown in figure 6.7.b the difference between the crack paths increases as the cracks
grow.

To illustrate the differences between the crack paths, distances are calculated between
the reference crack path and a crack path calculated using another number of increments.
A good representation of the actual crack path is found for this test example when 64
increments are used as discussed in [P2]. This is shown on figure 6.8.a as the actual crack
path is chosen as a reference crack path.

The computations of the crack paths are performed with the use of the two crack cor-
rection methods. The computations are carried out with the two longest crack increments
which give the biggest deviations from the actual crack path. The distances between the
actual crack path and the crack path calculated with the crack correction methods are
shown in figure 6.8.b. From the figure it appears that the crack path calculated with the
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Figure 6.7 Test example one (a) Cruciform plate with initial crack of length a = 0.2L (b) Crack
paths calculated without correction and with different number of increments
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Figure 6.8 Distance between crack paths with different number of increments (n) (a) without
correction (b) with correction

reference correction method has moved to the other side of the actual crack path. This
demonstrates an effect of overcorrection that was discussed in the summary of the refer-
ence correction method. The use of the reference correction method moves both crack
paths closer to the actual crack path, but the crack paths are seen to deviate just as much
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from each other as if no correction has been applied. Both results calculated with the
proposed correction method appear to describe almost the same crack path much closer
to the actual crack path. This indicates that the proposed crack correction method is less
sensitive to the increment size and that it gives a much better approximation of the actual
crack path.

To illustrate the two iterative crack correction methods the relation between the crack
extension angles and the number of iterations is plotted in figure 6.9 for a crack path
with 4 increments. The crack path with 4 increments is chosen because it deviates the
most from the actual crack path when no correction method is applied. From the figure
it appears that the reference correction method converges much more slowly towards the
corrected crack extension angle than the proposed crack correction method. As expected,
the proposed crack correction method results in angles very close to the corrected crack
extension angle already after the first iteration. Thus fewer iterations are necessary for the
proposed crack correction method.

Prososed crack correction methodReference crack correction method
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Figure 6.9 Relation between crack extension angle and the iteration number for each correction
method
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6.3 Analysis of non-planar 3D crack growth [P4]

A new method to analyze 3D non-planar crack growth is presented in [P4]. The proposed
method takes advantage of both the boundary element method (BEM) and the finite ele-
ment method (FEM). The BEM and FEM methods are linked by a submodelling strategy,
figure 6.10, in which the solution of a global FE model containing an approximation of
the crack is interpolated to a much smaller BE model containing a fine discretization of
the real crack. In the development of the method it is found very important that the pro-
posed method is compatible with existing FE models that have previously been developed
for the complex engineering structures in terms of the commercial softwares ABAQUS.

( a ) ( b )

AA

BB

xy

z
xy

z

Crack surface

Element group above crack surface

Element group below crack surface

Boundary edge of sub model

Figure 6.10 Submodelling strategy in which part of the global model between cut AA and BB is
reanalyzed by the use of a sub model (a) Global model with rough model of crack (b) Sub model
with exact crack geometry

The use of the proposed method to analyze non-planar 3D crack growth is expected to
be influenced by several factors such as the mesh size of the global model, the sub model
size and the approximation of the crack geometry in the global model. Thus these factors
have been investigated in [P4] by several analyses on a model of a test specimen for a large
diesel engine. The model of the test specimen is shown in figure 6.11 and the material
parameters used in this model are E = 200GPa and ν = 0.3. The results obtained with
the proposed submodelling strategy are evaluated by comparing to corresponding results
obtained with a global cracked BE model. To ease the comparison the elements used to
mesh the global BE model have the same small size as those in the BE sub model both in
the vicinity of the crack and in the remaining domain. Due to the small element size and
the excellent precision of the boundary element method very precise results are obtained
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with the global BE model.

crack initiation 
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Figure 6.11 Model of the test specimen with pre-crack shown

The approximation of the crack in the global model is investigated together with the
influence of the element size in the global model. Figure 6.12 displays six different ap-
proximations of the crack element faces in the global model. The crack surfaces (s1-s4)
are obtained by two different schemes of the proposed method and different sizes of the
elements in the global FE model. The crack surfaces (s5-s6) are obtained by manually
meshing with two different sizes of the elements in the FE global model. By the first
scheme (s1-s2) a smoothed selection of element faces as they are placed in the FE mesh
represents the crack surface. In the second scheme (s3-s4) the chosen element faces are
morphed to fit the real crack surface and thus a much better representation of the crack
surface is obtained.
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Figure 6.12 Crack element faces shown in perspective with average element size of 2.5 mm and
5.0 mm (s1-s2) Smoothed surfaces (s3-s4) Morphed surfaces (s5-s6) Manually meshed surfaces
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The displacement field of each of the six different global models is interpolated to
the boundary of the six equivalent sub models. Since the problems studied are primarily
in-plane problems, figure 6.13 only display the KI and KII factors calculated by the use
of the sub models. Comparing the values of theKI factor along the crack front it becomes
obvious that the results obtained with the smoothed crack surfaces differ in the way that
they have the largest deviation of approximately 4 % below the results of the global BE
solution. While the results obtained with both the morphed surfaces and the manually
meshed surfaces undershoot with approximately 2 %. By halving the number of elements
in the vicinity of the crack in the global model the deviation is increased by approximately
1 % for the morphed and the manual meshed crack surface in the global model. The
figure displaying theKII values shows more even results with less deviations. The results
obtained with the smoothed surfaces overshoot the global solution by approximately 1.5
%while results obtained with the morphed and manually meshed surfaces are closer to the
global solution with a deviation of 0 to 1 %. Almost no effect is obtained from doubling
the number of elements close to the crack. From the presented results it is found that the
results obtained with the morphed surfaces have such small deviations from the results
obtained with the manually meshed surfaces that it can be concluded that the automatic
mesh modification procedure gives just as good results as manual remeshing.
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Figure 6.13 Values of KI and KII along the crack front for the maximum loading

The study of the KI and KII along the front of the initial crack showed that very
accurate results are obtained with the proposed method as compared to the global BE
analysis. Calculations on fatigue crack growth in the test specimen have also been carried
out to compare with experiments. Material data for the fatigue crack growth analysis is
obtained by fitting of Paris law to measurements of crack growth in SENB test specimens.
The crack growth has been analyzed by extending the crack in six increments and incre-
ment number six is shown figure 6.14 for both the global and the sub model. From the
figure it is seen that the best representation of the crack in the sub model is clearly ob-
tained by the morphing scheme. However as the crack grows the size of the FE elements
has decreased relative to the the total crack length and since small elements yield good
results the smoothing scheme is also expected to give good results.
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Figure 6.14 Increment six of crack growth analysis (a) Crack in sub model seen along z-axis (b)
Perspective view of smoothed crack element surface in global FE model (c) Perspective view of
morphed crack element faces in global FE model

The stress intensity factors have been calculated at the center of the crack for the
global BE model and for different configurations of the proposed method as shown in
figure 6.15. The values shown in the figure are not directly comparable after the first crack
extension since deviations of the values of the stress intensity factors result in different
crack paths. The differences in crack path are however expected to be small as there
is a reasonable correlation between the stress intensity factors and as the average crack
extension of 2 mm is kept constant for all calculations. Comparisons of the KI values
show a general increase when the crack grows as would be expected because the stiffness
of the structure is reduced while the loading is held constant. The largest deviation of 6
% from the global BE solution is as expected obtained for the smoothed crack surface
with an element size of 5.0 mm in the global model. From this solution it is further seen
that the deviation from the global BE solution both increases and decreases, which can be
explained by the dependence on the element locations in front of the crack. The solutions
obtained for the proposed method using smoothing with small elements and morphing
with large elements are almost the same with a maximum deviation of approximately
3%. The solution obtained with morphing and small elements has a maximum deviation
of approximately 2%. Values of KII tend toward zero after the first crack increment as
can be expected from the use of the strain energy density criterion. Small variations in
the crack shape for each calculation will result in noticeable variations in the KII value
and thus when the values are close to zero large percentage deviations are found. The
existence of small deviations of the crack shape for the different analyses are indicated by
the increased deviations in the KII values when the crack grows.

The results of the crack growth analysis are compared to the results of experiments.
The predicted crack path, figure 6.14.a can be compared to the primary crack path ob-
served in the experiment, figure 6.16.a from which it is seen that a nearly perfect match
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Figure 6.15 Values ofKI andKII at the center point of the crack front for each crack increment

is obtained. Comparison on the crack growth rate is also performed as the experimental
crack has been equipped with a crack gauge on each side of the structure. The results of
the crack gauges, figure 6.16.b show as expected that the crack propagates equally fast on
both sides of the structure. The average crack growth rate measured by the two gauges
can be calculated by the results shown in figure 6.15 to be 4.6 ·10−9 m/cycle and 6.3 ·10−9
m/cycle. When these crack growth rates are compared with the results of the material test-
ing [P4] it can be seen thatΔKeff at the crack front can be expected to be in the range of
12−15.5MPa

√
m. The calculatedΔKeff for the pre-crack and the first increment are 12

MPa
√

m and 11.5MPa
√

m respectively. Thus good agreements between the calculated
and measured crack growth rates are obtained.
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Chapter 7
Analysis of fatigue crack growth in large diesel engines

The proposed method to analyze 3D non-planar crack growth is finally demonstrated on a
case of fatigue crack growth in a large diesel engine. The demonstration aims to show the
capability of the proposed method on these advanced engineering structures and it further
enables a discussion on additional developments that can improve the analysis of crack
growth in large diesel engines. Thus the configuration used to analyze crack growth in
the present section serves a demonstration purpose.
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Guide planes

Stay bolt tubes

Connecting rod

Piston rod

Connection surface:
 Frame - Cylinder 

Main bearing

Guide planes

Connection surface:
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Section 

Figure 7.1 Large diesel engine (a) Cross section of engine (b) Model of engine frame with
approximately 106 degrees of freedom

The analysis of fatigue crack growth in a large diesel engine is very different from the
analysis of fatigue crack growth in a test specimen such as the one studied in [P4] because
the loading of the crack in an advanced engineering structure is often very complex. An
example of the complexity is non-proportional loading. Thus in the present section sev-
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eral different criteria to perform fatigue crack growth in complex loaded structures are
considered.

The engine to be analyzed is a 12 cylinders two stroke engine with a cylinder bore of
90 cm for which the cross section can be seen in figure 7.1.a. The crack has been observed
to grow in a small part of the engine frame and a model of part of the frame is needed in
order to predict crack growth. A previously developed model of the engine frame exists
and thus it is possible to take advantage of one of the main ideas of the proposed method,
the ability to analyze crack growth in a previously developed computational model. The
frame model used is only briefly explained in the following as it could be any other ad-
vanced engineering structure that could be studied for crack growth.

The model of the frame consists of several models of sub parts which are aligned in
the global FE coordinate system to form a section of the frame between the halves of two
cylinders placed next to each other. This section of the frame can then be duplicated to
cover the desired number of cylinders. The frame model is shown in figure 7.1.b and it
appears that it contains two duplicates one on each side of the section of interest. The con-
nection of the parts are in general done by either prescribing continuity of displacements
or by the use of a contact formulation. For the present frame model it is chosen to model
the assembly of the main bearings by the use of a contact formulation while continuity of
displacements are prescribed on the remaining surfaces. The stationary loading is at first
applied to the frame model by pretension of the stay bolts that hold the frame together,
figure 7.1.a and the studs that hold the main bearing assemblies together, figure 7.2.a.
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z x
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( a ) ( b )

Studs

Visible boundary of sub model 

Figure 7.2 Models of frame (a) Part of FE model that contains the crack (b) BE sub model that
contains the hole area of interest for analysis of crack growth

The dynamic loads of the moving parts on the frame are obtained by a dynamic anal-
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ysis of the moving parts that convert the translation of the piston crown to the rotation
of the crank shaft. These loads are applied to the guide planes and the main bearings of
the frame, figure 7.1.a, by either hydro dynamic or elasto hydro dynamic analyses. In
addition the dynamic load of the pressure in the combustion chamber is applied to the
common surface of the frame and the cylinder pointed out in figure 7.1.a. The dynamic
load operating on the frame during one 360◦ cycle of the crank shaft defines one load cy-
cle. This load cycle is analyzed by discretization into 36 load steps that represent evenly
distributed angular positions of a full rotation of the crank shaft.

The area of interest for the present crack growth calculation is the stay bolt tube in the
engine section in the middle of the model. If a sufficiently large material defect formed
as a crack is located on the inside of the tube it is expected to be capable of growing.
Figure 7.2.a illustrates the area of interest in a part of the global FE model and figure 7.2.b
displays the sub model used by the proposed method to propagate the crack.

( a ) ( b )

1 0 2 0 3 0 4 05

Δ K  (MPa √m)

da
 / 

dN
 (m

)

ParisR =0.1

1 0 2 0 3 0 4 05

Δ K  (MPa √m)

Erdogan Ratwani R =0.1

Erdogan Ratwani R =0.3

Erdogan Ratwani R =0.5

R =0.1

R =0.3

R =0.5

1.0

1.0

1.0

1.0

1.0

1.0

-6

-7

-8

-9

-10

-11

da
 / 

dN
 (m

)

1.0

1.0

1.0

1.0

1.0

1.0

-6

-7

-8

-9

-10

-11

Figure 7.3 Fitting of crack growth laws to measurements of fatigue crack growth (a) Paris law
fitted to experimental results for R=0.1 (b) Erdogan and Ratwani (1970) for R equal to 0.1, 0.3
and 0.5

To analyze fatigue crack growth of the structure several material tests have been car-
ried out for load ratios R = Kmin/Kmax of 0.1, 0.3, 0.5 of the material of the stay bolt
tube. Based on this test data crack growth laws can be fitted to describe the material.
Paris law of fatigue crack growth (Paris and Erdogan, 1963) and an extension of this law
proposed by Erdogan and Ratwani (1970) are considered in the present example

da

dN
= C(ΔK)n (7.1)

da

dN
=

C0(ΔK −ΔKth)
m

(1−R)Kc −ΔK
(7.2)

The fitting of the two crack growth laws to the available material data is shown in fig-
ure 7.3. As illustrated in the figure the load ratio influence the measured relation of ΔK
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and da
dN
. Paris law does not include the effect of changed load ratio and it is only intended

for the part of the curve which is straight. On the opposite the growth law by Erdogan
and Ratwani (1970) can be fitted to all regions of the curve if sufficient material data exist
and the crack growth law does take the effect of R into account. In the present version of
the boundary element software (BEASY, 2007) the crack growth module fails to predict
a new crack front if part of the crack front is growing much slower than the rest. By the
use of the crack growth law by Erdogan and Ratwani (1970) the crack growth rate drops
drastically at the values of ΔK close to Kth. Thus to stabilize the prediction of the crack
extension and to keep the demonstration example simple it is chosen to use Paris law to
propagate the crack fitted for R = 0.1. As an extension of the use of Paris law one could
use Walkers law (Walker, 1970) which include the effect of changed load ratio without
the effect of fast changing grow rates close to the threshold values.

A penny shaped crack is chosen as the initial crack with a length six times as long as it
is deep. The initiation point and direction are chosen by the best judgement of the pictures
available of the real crack. The size of the initial crack is chosen as relatively small
compared to the final crack length and reasonable according to the size of the elements in
the global model as discussed in [P4]. The KI , KII and KIII factors are calculated along
the crack front during one load cycle and to illustrate the results the factors calculated at
the center of the crack are shown in figure 7.4 for each load step. From the figure it is
seen that the inserted crack is loaded in mixed-mode since it is exposed to high values of
all modes of fracture during the load cycle.
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Figure 7.4 Stress intensity factors calculated at the center of the initial crack

Analyses of mixed-mode fatigue crack growth based on Paris law are possible by the
definition of an effective stress intensity factor which takes all three modes of fracture
into account. In the literature two different ways of defining this effective stress intensity
factor are found

ΔKeff = f(ΔKI ,ΔKII ,ΔKIII) (7.3)

ΔKeff = Kmax
eff −Kmin

eff (7.4)
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The expression (7.3) does not take into account the relative variation ofKI ,KII andKIII

during one load cycle. A typical example of relative variation is demonstrated for the
present example in figure 7.4. Since the relative variation of the stress intensity factors is
considered to be very important it is chosen to use the expression (7.4). Several expres-
sions for the effective stress intensity factor can be found in the literature as discussed in
[P4], examples of these are

Keff = KI (7.5)

Keff =
√

K2
I +K2

II +K2
III (7.6)

Keff =
4

√
K4

I + 8K4
II +

8

1− ν
K4

III (7.7)

Keff =
√
(KI +B|KIII|)2 + 2K2

II (7.8)

While the first expression can be considered to be a good approximation for mixed-mode
problems dominated by mode I, the remaining expressions tend to describe Keff as the
dominance of mode I is decreased. The sum of squares (7.6) weighs the different modes
of fracture equally. (7.7) is an extension of the widely used expression by Tanaka (1974)
for the two plane modes of fracture in which all three modes of fracture are included.
The expression of Keff (7.8) is used by Gerstle (1985) and it is in accordance with the
expression of Mi and Aliabadi (1995) where the empirical constant is chosen as B = 1.
The expression of (7.8) is used in the present example as it has been used in [P4] to
perform an accurate estimate of the crack growth rate. However since the properties of
these expressions vary with the ratio of KI , KII and KIII one expression can not be
considered to be generally applicable without the necessity to perform several tests. The
more dominant the mode I loading is the more reliable the expression for Keff becomes
as the results of the expressions come closer to each other and as Paris law is derived for
mode I loading.

From the calculated values of KI and KII , figure 7.4, it is seen that the ratio of KI to
KII varies during the load cycle. Thus the initial crack is subjected to non-proportional
loading which could be expected for such a complex example of both geometry and load-
ing. Crack growth in a piston crown exposed to non-proportional loading is covered in
[P1] in which good results were obtained with a simple criterion to calculate the crack
growth angle θ, that is

θ = θ(Kmax
eff ) (7.9)

The load cycle for the present example is however more complex and thus additional
criteria is considered to propagate the crack at each point along the crack front. Examples
of these are

θ =
θ(Kmin

eff )K
min
eff + θ(Kmax

eff )K
max
eff

Kmin
eff +Kmax

eff

(7.10)

θ =

∑
θ(Ki

eff)K
i
eff∑

Ki
eff

for Keff > Ki−1
eff (7.11)
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In the expression (7.11) the extension angle is calculated for each load step that has higher
value of Keff than the previous load step. The final crack extension angle is calculated
by factoring the calculated extension angles by the size ofKeff . An expression according
to this can be found in Spievak et al. (2001). A simplification of this expression can
be considered (7.10), for which it is much easier to estimate the crack extension angle
by looking at the KI and KII factors and thus this criterion is used in the present test
example. Good results are expected for both (7.10) and (7.11) if used in the example
described in [P1] as high values of Keff are obtained for the load step which gives the
best results.
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Figure 7.5 Growth of a crack in the frame

Based on the above choice of criteria the crack can be propagated in several increments
each of these increments is shown in figure 7.5. In figure 7.6.a the calculated values of
ΔKeff have been shown along the crack front for the first three increments. The values
of ΔKeff are very close to the values Kth observed for the material tests. As Paris law is
used and the Kth is set equal to 0 it is possible to continue the crack growth analysis. As
the crack grows the valuesΔKeff increase except at the center of the crack.

In figure 7.6.b the values of stress intensity factors for the center point of crack incre-
ment 3 are shown. From this figure it is seen that low and almost negative values of the
KI factor close to the outer surface of the stay bolt tube are obtained. Negative values of
KI indicate that the crack surfaces are overlapping, which is not possible in reality. As the
present version of BEASY is not capable of considering contact in connection with the
dual boundary element formulation additional criteria are considered in order to continue
the crack growth prediction in the best possible way. Assuming no friction between the
surfaces of the crack the KI is kept equal to zero while KII and KIII vary as calculated.
Alternatively, we could assume full friction between the surfaces of the crack so that KI

is kept equal to zero while KII and KIII are kept equal to the values of the last load
step with positive KI . In the present example it has only been possible to carry out the
calculation with the assumption of no friction. The no friction assumption can further be
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Figure 7.6 Stress intensity factor calculated of the growing crack (a) ΔKeff of increment 1-3
(b) Stress intensity factors at the center point of the crack for increment 3

considered to be the most conservative assumption as the assumption gives higher values
of KII and kIII and thus higher values of ΔKeff and the crack grow rate.

When the crack penetrates the outer surface of the stay bolt tube then especially one
end of the crack has higher values of ΔKeff , which causes the crack to propagate faster
down along the stay bolt tube. The crack has now changed character as it is a two bay
crack. The values of ΔKeff for the two crack fronts and the first two increments of the
two bay crack are shown in figure 7.7. From the figure it is seen that the values ofΔKeff

now are above the threshold values. The lower crack front has generally higher values of
ΔKeff and it will thus grow faster.
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Figure 7.7 Values of ΔKeff for the two fronts of the growing crack

To illustrate the variation of the stress intensity factors over one load cycle at each
crack front the calculated values are shown in figure 7.8 at the center point of each crack
front. By comparing figure 7.8.a with figure 7.8.b it is seen that the variation of the stress
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intensity factors follows much the same pattern with the highest values of Keff around
load step 30 and the lowest values around load step 12. For high values ofKeff the mode I
loading is dominant for crack front 1 and the largest for crack front 2 and thus the validity
of Keff is considered reasonable as discussed above.
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Figure 7.8 Stress intensity factors calculated at the center of the crack for both crack fronts of
increment 5

A crack with a length of 12 cm and a depth of 2 cm was inserted in a model of an
engine frame. The position and orientation of the inserted crack was based on an estimate
of the initiation site and angle of a real crack. By several increments the crack grew from
the inner surface of the stay bolt tube to the outer surface, a distance of approximately
3.2 cm. When the crack reached the outer surface it changed character to a two bay crack
which continued to propagate along the stay bolt tube. Thus in the final increment of the
calculation the crack had grown 5.3 cm upwards and 13 cm downwards. When comparing
the predicted crack with a part of the real crack path as in figure 7.9 it is seen that they are
in accordance with each other.



63

( b )( a )

x

y

Crack

Figure 7.9 Crack growth in the frame of a large diesel engine (a) Sketch of real crack drawn on
site (b) Model of crack growth
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Chapter 8
Conclusion

The boundary element method has been used in this thesis to predict crack growth in
several test structures and structures of large diesel engines. In the first part of the project
a two dimensional boundary element programwas developed by the formulation of Prasad
et al. (1994). In the final part of the project three dimensional non-planar crack growth was
analyzed by the development of a solution based on software from different commercial
providers. Good agreements on crack paths and growth rates were found in all predictions,
which motivated to an increased complexity of the analyses to be performed in the thesis.
Four papers [P1] to [P4] have been included in the thesis. These papers form a base of
knowledge used in the final complex fatigue growth calculation applied on a complex
model of an engine frame.

The two dimensional thermoelastic dual boundary element formulation (Prasad et al.,
1994) was used to analyze crack growth in a plane strain model of an axisymmetric crack
in a piston crown. The thermal exposure of the piston crown gave rise to positive mean
stress while the pressure in the combustion chamber resulted in cyclic load on the piston
crown. The combination of these loads resulted in the propagation of the crack. The
non-proportional character of the loading influences the prediction of the crack growth
direction. The importance of choosing the right pair of stress intensity factors to propagate
the crack in case of non-proportional loading was demonstrated. It was found that the
load step with the highest KI of the dominant mode I loading was the obvious choice
to be used to propagate the crack. Despite the simplified model and the challenge of
non-proportional loading it was possible to obtain good correlation between the predicted
crack path and a micro-sample of the cracked piston crown.

The extension of curved cracks by straight elements was studied in [P2] and [P3] by
the use of the two dimensional dual boundary element formulation (Portela et al., 1992).
A new correction procedure to correct the extension direction was proposed and compared
to a reference procedure (Portela et al., 1993). The two procedures were compared in three
examples and it was shown that the proposed method gives a much better approximation
to the actual crack path. Furthermore the proposed crack correction procedure is shown
to depend very little on the increment size as compared to the reference procedure. It
is also demonstrated that the proposed method uses fewer iterations to obtain a better
approximation of the actual crack path. The work carried out with the correction of the
crack extension direction for two dimensional problems is worth keeping in mind when
dealing with three dimensional crack growth predictions for which the computational cost
is much larger.

To be able to analyze complex engineering structures as in large diesel engines a new
method was proposed in [P4] to predict 3D non-planar crack growth. In the development
of the method it was considered to be a very important feature that the method is able
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to perform accurate crack growth analysis in large complex FE models that have previ-
ously been developed. The proposed method takes advantage of a submodelling strategy
in which the crack in the global FE model can be described by two different approxi-
mations of the real crack in the BE sub model. The precision of the proposed method
is shown to increase by adjusting three parameters, i.e. when the best approximation of
the crack in the global FE model is used, when the element size in the global model is
decreased and when the size of the sub model is increased. By comparisons of predic-
tions and experiments for crack path and crack growth rate by the proposed method good
agreement was found. According to all of the results presented it is concluded that the
proposed method can be used to perform accurate numerical evaluations within Linear
Elastic Fracture Mechanics.

The proposed method for the analysis of 3D non-planar crack growth [P4] is finally
applied to a large and complex model of an engine frame. A pre-crack is inserted in the
model of the frame by evaluation of the final crack path observed in a real engine frame.
The complex loading of the three dimensional crack front can be analyzed by the combi-
nation of several criteria as discussed in the chapter 7. Based on a brief discussion and
reference to the results of [P1] and [P4] a combination of the criteria is chosen and the
crack is propagated in several increments. In the present example it was found that a
contact formulation was needed to avoid that the crack surface collapses. As this was not
possible within the scope of this project additional criteria were suggested as an alterna-
tive. By comparison with the crack path of a real frame it is seen that a good correlation
is obtained for the part of the crack path that has been modelled. Since many criteria exist
to analyze this complex example it is emphasized that several more comparisons with real
cracks will increase the knowledge of choosing the optimal criteria. Thus this thesis has
provided tools which will improve analyses of crack growth in complex structures.
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ABSTRACT 

 
A practical engineering problem is considered in which an axisymmetric crack initiates from the inside of a piston crown due to 
both thermal and mechanical load from the combustion.  A thermomechanical dual boundary element program is developed to 
analyze a plane strain model of the engineering problem. The crack growth direction is predicted using linear elastic fracture 
mechanics and the maximum principal stress criterion. It is found that the cyclic pressure in the piston crown results in a non-
proportional load history. The stress intensity factors for a selected load step are used to predict the crack growth direction.  A 
comparison shows that the crack growth prediction is in accordance with a cracked micro-sample of the piston crown.  
 

Introduction 
 
The analyzed piston crown is used in big diesel engines installed in ships or stationary power stations. The axisymmetric 
fatigue crack was reported during inspection of engines with a particular piston crown design. The fatigue crack propagation 
occurs due to a combination of tensile stresses arising from the constant temperature change, and cyclical compressive 
stresses arising due to the cyclic pressure in the piston. No paper has been found which describes the use of computational 
fracture mechanics to predict crack growth directions in piston crowns, most likely because the crack propagation is limited to 
a specific piston crown design.  To study the crack propagation in the piston crown the boundary element method is well suited 
because discretization only occurs at the boundary. The dual boundary element method has been used to analyze 
thermomechanical crack propagation [2,3,4]. 
 
Portela et al. [1] developed an analysis for mixed mode crack growth in two dimensions using a single region boundary 
element method. This method also known as the Dual Boundary Element Method (DBEM) avoids the singularity in the final 
system of equations by using displacement equations on one surface and traction equations on the other. Two dimensional 
problems, which include thermal load besides the mechanical load, have been analyzed by Prasad et al. [2]. The DBEM uses 
displacement and temperature equations on one crack surface and traction and flux equations on the other crack surface. The 
thermal load is treated as a body force term which normally requires domain integrals. By a Galerkin technique the domain 
integrals are transformed to boundary integrals so that all the advantages of the DBEM remain. 
 
The stress intensity factors (SIFs) are computed by the use of a displacement method formulated for discontinuous quarter-
point elements [5].  The crack growth is based on an incremental crack extension technique in which each crack extension is 
assumed to be straight [1]. The direction of the crack growth is predicted using the maximum principal stress criterion [6]. 
Because of the non-proportional load history the maximum principal stress criterion will predict a unique crack extension angle 
for each load step. It is not immediately obvious which load step to use as stated in [4] where three different selection methods 
are proposed. It is shown that the choice of load step is important for determining the crack paths and growth rates. 
  

Implementation of the dual boundary element method 
 

The Boundary Element Method is based on solution of integral equations. In the derivation of the method partial differential 
equations describing the behavior of the unknown variables inside and on the boundary of the domain are transformed into 
integral equations relating only boundary variables. Analytical solution is only possible for very simple problems and for that 
reason the boundary element method uses numerical solution of the boundary integral equations.  The central part of the 
numerical integration is the solution of the integrals for values where the integrated functions are singular.  
 
The dual boundary element method for steady state thermoelastic crack problems is presented by Prasad et al. [2]. The 
formulation given by Prasad et al. is adopted in the present paper with the only change that an expression for heat transfer is 



applied.   In the derivation of the dual boundary element method a linear elastic isotropic and homogeneous body occupying a 
domain V enclosed by the boundary S is considered. The two governing equations for steady state thermoelasticity are the 
heat conduction equation and Navier’s equation for equilibrium expressed in terms of the displacement. The two partial 
differential equations can be expressed as follows  
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Where θ  is the temperature and ui is the displacement component, μ  is the shear modulus, ν is Poisson’s ratio and α is the 

coefficient of linear expansion. The above equations are written in indicial notation where a subscript ‘i’ preceded by a comma 
represents differentiation with respect to the ‘i’th spatial coordinate in the Cartesian system and repeated indices represents 
summation. The differential equations (1) and (2) are solved subjected to temperature boundary conditions on the boundary 

θS  and flux boundary conditions on the boundary Sq , displacement boundary conditions on the boundary Su  and traction 

boundary conditions on the boundary St . The boundary conditions are divided on the boundary so that θS  + Sq = Su + St = S . 

The flux and tractions are written as follows  
 

  nkq ,θ−=  (3) 

and  

 σ=j j ijt n  (4) 

 
Where k is the thermal conductivity, jn is the outward normal vector and σ ij  is the stress tensor. The boundary temperature 

integral equation for a point x’ on the non crack boundary S can be written as [2] 
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Where the value of ( ')c x  depends on the smoothness of the boundary at 'x .  The functions *( ', )q x x  and *( ', )θ x x  are 
fundamental solutions [2]. The functions are singular of the O(1/r) and of O(ln r), respectively, as '= −r x x tends to zero. If the 
point 'cx  is on one of the crack surfaces and ''cx  is the point on the opposite crack surface with the same coordinates as 'cx , 

the temperature equation for 'cx on a crack boundary is 
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The flux equation for a point x’c on a crack surface is [2].  
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Where �  stands for a Cauchy principal value integral, � stands for a Hardamard principal value integral. The functions 
**

( ', )q x x and **
( ', )θ x xi are fundamental solutions [2]. The singularity of the fundamental solution is of O(1/r) and O (1/r2) . In 

the general boundary element formulation described above temperature boundary conditions and flux boundary conditions are 
applied to the boundary of the cracked domain and the remaining values for the temperature and flux are calculated by 
numerical solution of (5), (6) and (7). Newton’s law can be applied to describe conductive heat transfer at the boundary of the 
domain. Newton’s law states that  
 

 ( ), ( ) ( ) ( ) ( )θ θ θ− = − −n fk x h x x x  (8) 



Where  ( )θ f x  and ( )h x  are respectively the temperature of the surroundings and the heat transfer coefficient at the point x on 

the boundary. By the use of (8) in combination with (5), (6) and (7) the temperature and flux at the boundary of the domain are 
calculated when the values of ( )h x , ( )θ f x  and k are known.   

 
The displacement boundary integral equation for the boundary point x’ on the non cracked boundary S can be written as [2] 
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Where the fundamental solutions ijT  and ijU  are singular of O(ln r) and of O(1/r). The functions iP  are singular of O(ln(1/r)) 

and Qi are not singular at x= x’. If the point 'cx  is on one of the crack surfaces and ''cx  is the point on the opposite crack 

surface with the same coordinates as 'cx , then the displacement equation is singular as x passes through both points. The 

boundary integral equation for the point x’ on the cracked boundary S can be written as  
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The traction boundary integral equation for a point x’c on the crack surface is [2] 
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Where the fundamental solutions kijT  and kijU  are singular of O(1/r) and of O(1/r2). The functions Sij and V ij are singular of 

O(1/r) and of O(ln r).  
 
 
The numerical implementation of the dual boundary element method described in [2] uses discontinuous quadratic elements 
on the crack surfaces and continuous quadratic elements along the remaining boundary except at the intersection between a 
crack and edge where another discontinuous element is used on the edge. In order to shorten the implementation time of the 
dual boundary element method for the present paper discontinuous elements are applied to all surfaces. In consequence the 
computation time is increased. 
 
The J-integral is one of the most accurate methods to calculate the stress intensity factors for crack problems. However 
accurate results are also obtained with the simpler two point displacement formulation for discontinuous quarter point  
elements [5].  
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Where 1
BC

uΔ , 1
DE

uΔ  and 2
BC

uΔ , 2
DE

uΔ  are the differences in nodal displacement normal to the crack axis and along the 

crack axis. B, C are the two nodes closest to the crack tip on each crack surface and D, E represent the mid nodes on each 
crack surface.  l is the length of the discontinuous quarter point element. 
 
The crack growth direction in mixed-mode conditions is obtained by using the maximum principal stress criterion of Erdogan 
and Sih [6] 
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The piston crown 

 
The piston crown is situated in a very rough environment as the combustion loads the piston crown with high pressures and 
temperatures.  In order to resist the load from the combustion the piston crown is cooled with oil on all internal surfaces.  It is 
necessary to introduce an extra cooling chamber shown on figure 1 to obtain a sufficient cooling of the geometry.  The cooling 
chamber makes it necessary to manufacture the piston crown as two separate parts which are assembled by welding.  The 
residual stresses introduced by the welding process are removed afterwards by a weld heat treatment. Investigation of a 
cracked piston crown reveals  that the fatigue crack has arised  from an original crack at the root of the weld.  
 
The present paper contains the first set of calculations aimed at describing crack propagation in the piston crown.  In these 
calculations it is decided to model the piston crown as a two dimensional plane strain model. The real geometry of the piston 
crown can however be described as axisymmetric when neglecting the bores which supply the cooling chamber with oil. It is 
expected that the biggest difference between the two dimensional plane strain model and the axisymmetric model is found for 
small values of the radius where the curvature is largest. Because of that  it is expected to obtain reasonable results with the 
plane strain model as the crack is growing in the part of the piston crown where the distance to the axis of symmetry is biggest.  
 
 

 

Figure 1.  Model of the piston crown loaded with the maximum combustion pressure and steady state temperature field 
 
Constrains are applied on three different surfaces as shown on figure 1. Symmetry constrains are applied to the vertical 
surface in the center of the piston crown as only half of the cross section is modeled. The fully constrained surface represents 
the connection between the piston rod and piston crown. The horizontal surface located under the piston ring grooves is 
constrained so that no horizontal displacement is allowed. This constrain is applied in order to obtain the stiffness of an 
axisymmetric geometry attached upon the horizontal surface.     
 
The temperature distribution in the piston crown is described through interaction with the cooling oil and the inlet air which the 
explosion turns into a very hot combustion gas. As the engine runs most of its living time at a constant speed more than 
hundred rounds per minute it is assumed to be a god approximation to model the temperature distribution in the piston crown 
as stationary. In order to calculate the temperature distribution a set consisting of heat transfer coefficients, oil temperatures  
and a constant gas temperature is used. The set is known to make the calculations fit with temperature measurements in the 



piston crown. The material properties are not constant within the piston crown as the temperature varies with a magnitude of 
about 350 oC. However in the derivation of the boundary element method it is assumed that the domain is homogeneous. In 
some cases with simple temperature distribution this problem is solved by dividing one domain into several domains with 
constant material properties. In this case the temperature distribution is too complex for this method to be efficient. The piston 
crown is therefore modeled with the same material properties and that is expected to have minor influence on the results. In 
the two dimensional model the cooling bores are not modeled. This is assumed to have little influences on the results because 
the cooling bores have a small total area compared with the rest of the cooling surfaces and because they are situated in less 
exposed areas. 
  
One pressure cycle of compression and expansion of gas over the piston is described when the crankshaft rotates 360o. In 
order to model one pressure cycle it is discretized into ten steady state load steps that represent ten evenly distributed angular 
positions of a 360o rotation of the crankshaft.  The relation between the angular position of the crankshaft and the load steps 
are chosen so that load step number six represents the angular position of the crankshaft that gives exactly the maximum 
combustion pressure. The pressure is applied on the top of the piston crown and down the sides where it is gradually 
decreased over the four piston rings. The cooling oil pressure and mass inertia of the dynamic system have been neglected 
because these two factors are known to have little influence on the results.  
 
The initiation of the crack is modeled by inserting a small crack element into the geometry of the piston crown at the lower part 
of the weld as shown on figure 1. The angle of the inserted crack is chosen such that it agrees with micro-samples of the 
cracked piston crown.    
  

Results 
 
The SIFs for one load cycle described by the ten load steps is plotted on figure 3. Load steps zero and eleven are included in 
the figure to demonstrate the beginning and end of the cycle. Comparing SIFs for mode I and mode II it is clear that the mode I 
loading is dominant in all load steps.  The highest values of the KI appear at the load steps where the piston crown is loaded 
with the lowest pressure. At these load steps where the thermal load is dominant it opens the crack which results in the highest 
KI. However when the pressure increases the compressive load on top of the piston crown tends to close the crack which 
results in much lower values of KI.  
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Figure 3.  The stress intensity factors are calculated for a load cycle that represents a 360o rotation of the crankshaft 
 
To demonstrate that the piston crown is subjected to non-proportional loading the ratio of KI to KII is shown on figure 4. The 
ratio is seen to change and consequently the maximum principal stress criterion would predict different propagation angles for 
each load increment.  Only one pair of SIFs is wanted for each load cycle.  Load step 5, 6 and 7 have different value of the 
ratio compared with the rest of the load steps.  This limits the choice of SIFs to either those calculated in load step 5, 6 and 7 
or to SÍFs representing the rest of the load steps. To choose an appropriate pair of SIFs it is assumed that the crack would 
grow due to the size of loading and due to the part of the load cycle at which the given load is present.  Since the dominant 
mode one loading is highest and almost constant in most of the load cycles except for load step 5, 6 and 7 it is obvious to 
choose one of the remaining load steps to propagate the crack. Load step 2 is therefore chosen to propagate the crack as this 
load step represents the highest mode I loading.  
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Figure 4.  The ratio of KI to KII is calculated for a load cycle that represents a 360o rotation of the crankshaft 
 

The crack is propagated in six increments using the SIFs from load step 2.  The load steps of the initial crack, increment 3 and 
increment 6 are shown on figure 5. The variation in the SIFs can be seen to be unchanged for the different increments of the 
crack and therefore the reason retains for choosing load step 2 to propagate the crack.  Generally the KI has decreased for all 
load steps with the biggest decrease at load step 6. This can be explained by the fact that the longer the crack becomes the 
easier it is to close. Furthermore the variation of KI increases for each crack increment and because of that the crack grow rate 
will increase as well. When the crack is propagated perpendicular to the maximum principal stress the modes one loading will 
be dominant and small values of KII are expected. This tendency is seen to be in accordance with figure 5. The difference 
between KI and KII is seen to be smallest at load step 6. 
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Figure 5.  The stress intensity factors are calculated for load cycles that represent a 360o rotation of the crankshaft when the 
crack is propagated due to load step 2 

 
To demonstrate the importance of choosing the correct pair of SIFs to propagate the crack  the SIFs from a different load set 
than the most obvious one are now chosen. The load step which gives the biggest SIF-deviation from the SIFs of load step 2 is 
load step 6.  Therefore this load step is chosen to propagate the crack. Figure 6 shows as above that variation in the SIFs is 
unchanged for the different increments of the crack. However figure 6 shows large increases in KIi for all other load step than 
the one which are used to propagate the crack. This clearly indicates that the directions of the maximum principal stress are 
different for these load steps.   
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Figure 6.  The stress intensity factors are calculated for load cycles that represent a 360o rotation of the crankshaft when the 
crack is propagated due to load step 6 

       
The cracks propagated by load step 2 and 6 are both shown on figure 7 where they are compared with the crack in the micro-
sample of the crack piston crown. Comparing the crack propagated by the use of load step 2 with the crack in the micro-
sample it can be seen that they are in accordance with each other.   The crack propagated by load step 6 is as expected found 
to give the biggest deviation from the crack in the micro-sample.  A better crack prediction than the one found with load step 2 
cannot be found even if another selection method is used to choose the SIFs from which the crack growth direction is 
predicted. Load step 2 and 6 represents two extremes and any other prediction will be in between. The difference between the 
crack in the micro-sample and load step 2 is expected to be caused by the simplifications introduced in order to model the 
problem with plane strain boundary element.  

 

 

Figure 7.  Micro-sample of piston crown with crack and calculations of cracks propagated by load step 2 and load step 6 

 



Conclusion 

A dual boundary element method has been implemented to predict the crack growth direction in a plane strain model of an 
axisymmetric crack in a piston crown. The crack is propagated due to both mechanical and thermal load from the combustion.  
The loading of the piston crown is found to be non-proportional which causes the maximum principal stress criterion to predict 
unique angles for each load step. However one group of load steps which represents most of the load cycles was found to 
have nearly all the same ratio of KI to KII and the highest values of the dominant KI. The SIFs from these load steps were  an 
obvious choice to be used  to calculate the crack growth direction. The predicted crack growth was shown to be in accordance 
with a micro-sample of the cracked piston crown despite the simplifications introduced in order to develop the model based on 
the plane strain boundary element method. The importance of choosing the correct pair of SIFs to calculate the crack growth 
direction was also demonstrated and it was found that the prediction of the crack growth direction could not be improved by 
another choice of SIFs.  
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Abstract. In order to avoid introduction of an error when a local crack growth
criterion is used in an incremental crack growth formulation, each straight crack ex-
tension would have to be infinitesimal or have its direction corrected. In this paper a
new procedure to correct the crack extension direction is proposed in connection with
crack growth analyzed by the Dual Boundary Element Method (DBEM). The pro-
posed correction procedure and a reference correction procedure already described
in the literature are evaluated by solving two different computational crack growth
examples. In the two examples it is found that analyses of the crack paths per-
formed with the proposed crack correction procedure using big increments of crack
extension are in excellent agreement with analyses of the crack paths performed
by using very small increments of crack extension. Furthermore, it is shown that
the reference correction procedure has a tendency to overcorrect the crack growth
direction if the stop criterion for the iterative correction procedure is not calibrated
in each new crack growth analysis.

Keywords: Boundary element method, crack extension direction,
crack correction procedure

1 The proposed correction method

The proposed method to correct the crack extension direction is an iterative method,

for which it is important to determine the local crack growth direction. Several mixed

mode fracture criteria have been proposed to determine the local crack growth di-

rection such as the maximal energy release rate, Cotterell (1965), and the maximum

principal stress criterion, Erdogan, et al. (1963). Both these linear elastic fracture

criteria imply that KII = 0 when the crack follows a path with a continuously

turning tangent, Cotterell, et al. (1980) and Rubinstein (1991). Exceptions from

this generally accepted assumption that the crack propagates in mode I are further

discussed in Rubinstein (1991). However using the usual assumption, the choice of

local crack growth criterion will not influence the final crack path. Thus the maxi-

mum principal stress criterion is used as it is easily implemented and found as one

of the most commonly used criteria for 2D crack path calculation. In the proposed

method the crack extension direction θn of an increment n is found from the local

crack growth direction at the previous crack tip Pn and at the new crack tip Pn+1

combined with the assumption that the actual crack increment can be described

as a second order polynomial. A similar approximation of the shape of the crack

increment is used in the predictor-corrector method, Thielig, et al. (2005), which is
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Figure 1: Correction of the crack extension direction

based on an incremental parabolic approximation of the crack path together with

the modified virtual crack closure integral method.

To illustrate the proposed crack correction procedure the actual crack path in figure 1

is considered. This actual crack path is assumed to describe the shape of a second

order polynomial u(x). For the n’th crack increment, where the iterative correction

method has been applied for i = c iterations, the crack tip P c
n+1 is on the curved

crack path. In this case the relation between the crack extension angle θc
n, the local

crack growth direction at the previous crack tip θn, and that at the new crack tip

θc
n + θc

n+1, is derived with the angles measured from the previous increment

tan(θc

n) =
1

2
(tan(θn) + tan(θc

n + θc

n+1)) (1)

In general the crack is extended in the direction θi
n for a given iteration i and the

crack tip P i

n+1 is placed outside the actual crack path as shown in figure 1. The

direction of local crack growth at the crack tip is θi
n + θi

n+1 measured from the

previous increment. For the i’th iteration (1) can be used to calculate the angle θc
n

at which the crack tip P c
n+1 is on the actual crack path. However, as θc

n + θc
n+1 is

not know for the i’th iteration, an approximated value for this angle is used, which

is θi
n +θi

n+1. By inserting into equation (1), an approximated value of θc
n is obtained

tan(θi+1
n ) =

1

2
(tan(θn) + tan(θi

n + θi

n+1)) (2)

In the limit, where θi
n +θi

n+1 → θc
n +θc

n+1, it follows from (1) and (2) that θi+1
n → θc

n

and there the crack extension angle has been found, at which the crack tip is on the
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actual crack path. This limiting process can be modelled in an iterative procedure.

Let the first crack extension angle be equal to the local crack growth direction at the

old crack tip, θi
n = θn. If a reasonable size of the straight crack increment is used, it

follows that the local crack growth direction measured from the previous increment,

θi
n + θi

n+1, is closer to θc
n + θc

n+1 than θn and therefore by the use of equation (2) it

follows that |θc
n − θi+1

n | < |θc
n − θi

n|. In this way the crack tip is moved closer to the

actual crack tip and a better approximation of the local crack growth direction at the

new crack tip can afterwards be calculated for i+1’th iteration. So for each iteration

it follows that θi
n → θc

n when i is increased. A general crack is now considered, at

which it is assumed that the crack path can be described by a piece-wise sequence

of second order polynomials. For the current n’th crack extension increment, the

i’th iteration can be summarized as follows

• For the first iteration only, evaluate the local crack growth direction θn by the

maximum principal stress criterion and extend the crack one increment Δa to

P i

n+1

• Calculate the stress intensity factors at P i
n+1 and then calculate the next local

crack growth direction θi
n+1, using the maximum principal stress criterion

• Calculate the corrected crack-extension direction, by using (2) and correct the

crack-extension increment.

• Starting from the second step, repeat the above steps sequentially while

|Δθi
n| > β. The calibration constant is in this paper chosen as β = 0.1◦.

2 Incremental analysis by The Dual Boundary Element Method

In the present paper a formulation of the dual boundary element method, Portela,

et al. (1993), is used to analyse crack growth in different examples. Corrections

are applied and each example is solved both with, the crack correction procedure,

Portela, et al. (1993), and the crack correction procedure proposed in this paper. In

the two following computational crack growth examples both correction methods are

calibrated so that when the correction of the crack extension direction is below 0.1◦

the correction procedure is stopped. This calibration is applied in order to limit the

total number of iterations and because changes of the crack extension angle below

this values are considered to have negligible influence on the final crack path.

To be able to evaluate the precision of the two correction methods it is chosen to

find the actual crack. The actual crack path can be found by the use of very small

crack extensions for each increment. To assure that the size of the crack extensions

are sufficiently small, several crack path analyses are performed in order to show

that the crack path for each analysis converges towards a specific crack path. In

order to reduce the influence of the element size on the accuracy that is related to

the calculation of the stress intensity factors, it is chosen to use the same element
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size in these crack path analyses. In that way the length of the crack increment is

defined by the number of elements, and the total number of elements on each crack

path is kept constant. In the test examples the actual crack path is found when

the crack extension size referred to by number of increments on the crack path has

the following values 4, 8, 16, ..., 256, and when the crack path is modelled with the

fixed number of 256 elements. In the calculations performed with the two correction

methods, larger crack elements are used in order to create a more efficient mesh that

takes advantage of the correction methods. In these calculations a crack element

size equal to the increment size is used.

3 Cruciform plate

In this first example the regular cruciform plate, Portela, et al. (1993), with an

initial corner crack is studied. The dimension of the plate is defined by the length L

and the initial crack has a length of a = 0.2L. The boundary conditions and traction

are as described by figure 2(a) and the material properties used are E = 210000MPa

and v = 0.3.

a

L

L

T

(a) Cruciform plate (b) Crack paths calculated without correction

and with different number of increments

Figure 2: Test example one

The crack paths are calculated with different numbers of increments and as shown

in figure 2(b) the difference between the crack paths increases as the cracks grow. In

order to illustrate the differences between the crack paths, distances are calculated

between the reference crack path and a crack path calculated using another number

of increments. The distance is measured between corresponding points on the two

crack paths. A good representation of the actual crack path is found for this test
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example when 64 increments are used. This is shown on figure 3(a) as the actual

crack path, chosen as a reference crack path. As expected, figure 3(a) shows that

when the increment length is decreased the crack path converges towards a specific

crack path. The actual crack path is expected to be found when the increment

length is infinitesimal. However it appears from figure 3(a) that the crack path with

64 increments has crack paths with more increments on both sides. This is explained

by the fact that the small element size used to model the increments influences the

accuracy of the calculation method. These crack paths are however very close and

as the crack path with 64 increments is in the middle, between two crack paths with

more increments, this crack path is a good approximation of the actual crack path.

Figure 3: Distance between crack paths with different number of increments (n)

Computations of the crack path are now performed with the use of the two crack

correction methods. The computations are carried out with the two longest crack

increments, which give the biggest deviations from the actual crack path. The

distances between the actual crack path and the crack path calculated with the

crack correction methods are shown in figure 3(b). From the figure it appears that

the crack path calculated with the reference correction method has moved to the

other side of the actual crack path. This demonstrates an effect of overcorrection

that can be shown from the formulation of the reference correction method if the

stop criterion is not calibrated for each new crack growth analysis. The use of

the reference correction method moves both crack paths closer to the actual crack

path, but the crack paths are seen to deviate just as much from each other as if no

correction has been applied. Both results calculated with the proposed correction

method appear to describe almost the same crack path, much closer to the actual

crack path. This indicates that the proposed crack correction method is less sensitive
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to the increment size and that it gives a much better approximation of the actual

crack path.

To illustrate the two iterative crack correction methods, the relation between the

crack extension angles and the number of iterations is plotted in figure 4 for a crack

path with 4 increments. The crack path with 4 increments is chosen because it

deviates the most from the actual crack path when no correction method is applied.

From the figure it appears that the reference correction method converges much

more slowly towards the corrected crack extension angle than the proposed crack

correction method. As expected, the proposed crack correction method gives angles

very close to the corrected crack extension angle already after the first iteration.

Thus fewer iterations are necessary for the proposed crack correction method.
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Figure 4: Relation between crack extension angle and the iteration number for each

correction method

4 Bending specimen with hole

In this second example the crack path calculations are performed on a specially

designed specimen with a hole near the crack path, Thielig, et al. (2005), as shown

on figure 5(a). The specimen is loaded under lateral force bending as seen on the

figure. The material used is this paper has E = 200000MPa and v = 0.25.

The crack path calculations are performed as in the previous examples with decreas-

ing size of the crack extension increments in order to observe that the crack path

converges towards the actual crack path. In figure 5(b) seven crack paths with the

same length and a different number increments are shown. The crack path with 64

increments is used as reference crack path and it is found to give a good approxima-

tion of the actual crack path because close to it and on both sides are the crack path

with 128 increments and 256 increments. The differences between the crack paths

are primarily explained by the influence of the small element size on the numerical
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L

15/4 L

1/10 L

1/2 L

(a) Bending specimen with hole (b) Crack paths calculated

without correction and with

different number of increments

Figure 5: Test example two

accuracy. The chosen crack path is furthermore found to be in agreement with the

crack path found by experiments, Thielig, et al. (2005).

The two correction methods are applied to the crack path calculations and the

results are shown in figure 6(b). In the beginning of the two crack paths the reference

correction method is seen to correct the two crack paths so that they both are moved

to the other side of the actual crack path. The crack paths are not quite as far away

from the actual crack path as if no correction method had been used. The error

introduced by overcorrection in the beginning of the crack path is however equalized

by overcorrection introduced in the end of the crack path as the crack changes

direction. Because of that the end of the crack path is close to the end of the actual

crack path. The result of the proposed crack correction method is also displayed in

figure 6(b). It is seen that both crack paths are improved remarkably by the crack

correction method. The two crack paths are quite close and that demonstrates the

independence of the increment size. The crack path with the smallest increment size

is closest to the actual crack path.

For the bending specimen it can also be shown that the proposed crack correction

method gives very precise angles only after few iterations as it was shown for the

cruciform structure.

5 Conclusion

In order to evaluate the reference crack correction method in comparison to the

proposed crack correction method crack path calculations have been performed. In

test examples it has been demonstrated that the reference correction method has a

tendency to overcorrect the crack path. Furthermore, it is shown that crack paths

calculated with the use of the reference correction method are very dependent on

the increment size as it was the case when no correction method had been used. The

proposed crack correction method presented in this paper has been demonstrated

in the different examples. The new method gives a much better approximation to
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Figure 6: Distance between crack paths with different number of increments (n)

the actual crack path, compared to the reference crack correction method. Further-

more, the proposed crack correction method is shown to depend very little on the

increment size which results in good approximation of the actual crack path even

for big increments. The proposed correction method uses fewer iterations to obtain

a better approximation of the actual crack path than the reference method. The

number of iterations for the proposed correction method can be reduced further with

only a small influence on the calculated crack path. Based on the test examples a

maximum of only three iterations is suggested for each increment, as only very small

changes in the crack extension angle are obtained when more iterations are used.
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Abstract. A new automated method to model non-planar 3D crack growth is

proposed which combines the advantages of both the boundary element method

(BEM) and the finite element method (FEM). The proposed method links the two

methods by a submodelling strategy in which the solution of a global FE model

containing an approximation of the crack is interpolated to a much smaller BE

model containing a fine discretization of the real crack. The method is validated

through several numerical comparisons and by comparison to crack growth measured

in a test specimen for an engineering structure.

Keywords: 3D crack growth, FEM, BEM, remesh, sub model

1 Introduction

The increase in computer performance during the last decades has lead to large

interest in optimizing structures and in predicting possible failures that can arise

suddenly and cause serious problems. The developments presented in this paper are

based on advanced engineering structures as in large diesel engines for propulsion of

ships and for stationary power plants. From an analysis point of view these engines

are ideal for fatigue crack growth analysis since they in general run at a constant

cyclic loading most of their life time. Crack paths have previously been predicted

in large diesel engines by a 2D BE analysis [1, 2].

As a consequence of the increased interest for modelling crack growth in advanced

structures several numerical methods have been proposed recently to automated

modelling of non-planar 3D crack growth. One of the main problems to be solved

when simulating non-planar 3D crack growth is that the manual discretization of the

domain into elements needs to be updated automatically after each crack extension

so that the elements describe the shape of the arbitrary growing crack. One of the

first methods presented which was able to solve this problem by reducing it by an

order of magnitude was the boundary element method. In the dual boundary element

method [3, 4] crack growth is analyzed by extending the crack and by performing

automatic remeshing of the crack extension on the non-cracked surface. Despite the

clever reduction of the remeshing problem by the order of magnitude the method

has not become as wide spread as the finite element method. The boundary element

method is most advantageous for linear problems and has a relative slow solution

time because of the full system matrix. Several examples have however been solved
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with the boundary element method during recent years as for example [5, 6, 7], using

a fast BEM formulation that focuses on reducing the solution time by compression

of the system matrix [8].

Also the meshless methods have been applied to model non-planar 3D crack growth

and these methods solve the discretization problem as no remeshing is required. An

example of this method to non-planar 3D crack growth is the Element-Free Galerkin

method which is used in combination with Linear Elastic Fracture Mechanics [9].

The high flexibility of these methods is however reported to require a substantial

computational cost [13]. Other methods use an enrichment of the elements which

come in contact with the crack surface. By the enrichment of the element shape

functions any crack configuration in the affected elements can be described. Exam-

ples of this method to non-planar 3D crack growth is the extended finite element

method [10, 11, 12] and the generalized finite element method [13].

Apart from these methods which solve the remeshing problem in an elegant way

there are methods which use a local remeshing of the finite element mesh. Only few

applications of these methods to automate non-planar 3D crack growth are available,

but some examples exist [14]. In this paper the fitting of the growing crack in terms

of the discretized domain is done by splitting elements and subsequently the stress

intensity factors are evaluated by the use of a submodelling strategy. In the general

use of this submodelling technique the first step is to solve a problem with one mesh

describing the global domain. Then another and generally finer mesh is used to

reanalyze a certain sub part of the global domain which is of particular interest.

Thus either the displacement field or the stress field of a global cracked domain is

interpolated to the cutting boundary of a sub model having a fine mesh along the

crack front.

Combinations of the presented methods also exist in the literature as is the case for

the combination of the BEM-FEM [15, 16]. In these papers the BE discretization is

applied to describe the local cracked domain while the FE discretization is applied

to the global domain. In each method the remeshing of the FE model is avoided by

either superposition of overlapping domains or coupling of FEM-BEM trough inter-

face elements. If the remeshing problem for the FE model is solved these methods

do not contain any significant advantage for crack problems compared to the general

submodelling strategy.

The crack growth procedure proposed in this paper aims to solve problems of growing

cracks in advanced engineering structures, such as large diesel engines [21]. Thus it

is very important that the proposed method is compatible with existing FE models

that have previously been built up for the complex engineering structures, typically

in terms of commercial software like ABAQUS [18]. It is furthermore important

that the choice of method is proven in many examples in the literature and finally

that the implementation time of the method is reasonable. This leads to a combined
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FEM-BEM method by the use of a submodelling strategy as illustrated in figure 1.

A model describing the global domain and an approximation of the crack geometry

is first solved. Then in order to obtain precise fracture mechanical parameters a sub

model with a fine crack mesh is used to reanalyze a part of the global model in the

vicinity of the crack. In the presented method the global model is analyzed with the

finite element method (FEM) and the sub model is analyzed with the dual boundary

element method (DBEM). The combined use of these methods aims to obtain the

advantage of each method. The proposed method however has the disadvantage that

it requires two solutions for each simulation step. Especially for large domains the

submodelling technique can save time since the time spent to solve a coarse global

model and a fine sub model can be less than the time spent to solve a sufficiently fine

discretized model. The short implementation time for this method is obtained by

the use of ABAQUS as the FEM solver, BEASY [17] as the interpolater of boundary

conditions from the global model to the sub model and BEASY as BE solver and

handler of the crack growth analysis. Thus the new development presented in this

paper is the stable and fast updating of the crack geometry in the FE model together

with the environment that combines the global and the sub model to an automated

procedure.

The modelling strategy presented will undoubtedly be influenced by several factors

such as the mesh size of the global model, the sub model size and the approximation

of crack geometry in the global model. These factors are therefore investigated

throughout this paper.

2 3D crack growth simulation by the proposed procedure
The proposed automated procedure to calculate 3D crack growth consists of several

steps as indicated in figure 2. In the first steps data are prepared manually for the

procedure to run automatically. These steps include the creation of a global finite

element model used to analyze the whole domain. Furthermore a boundary element

sub model is created manually based on the sub domain where the crack is supposed

to grow. With the aid of the dual boundary element software BEASY an initial crack

geometry is chosen and meshed into the sub model. Finally the fracture parameters

are defined which are used in the crack growth analysis. These steps conclude the

initial data preparation and the automated procedure is ready to be executed in

batch mode.

The crack growth is modelled as an iterative procedure and for each crack extension

the automated procedure activates a sequence of steps. As the crack is introduced or

extended in the sub model the stiffness of both sub and global domains are changed

according to the change of crack geometry. While the boundary element software

takes care of the crack growth in the sub model a secondary script is needed in order

to correct the stiffness of the global model. Since the sub model loading is based

on the results of the global analysis the first step for each new crack increment is to

update the stiffness of the global model based on the crack extension in the sub model

3



( a ) ( b )

AA

BB

xy

z
xy

z

Crack surface

Element group above crack surface

Element group below crack surface

Boundary edge of sub model

Figure 1: Submodelling strategy in which part of the global model between cut AA

and BB is reanalyzed by the use of a sub model (a) Global model with rough model

of crack (b) Sub model with exact crack geometry

i.e. to include a rough model of the new crack geometry in the global mesh. For

this purpose an automatic modification of the global FEM mesh is carried out by an

executable script to be run in the commercial mesh software named HyperMesh [19].

The advantage of using the commercial mesh software follows from the predefined

routines for dealing with mesh. Furthermore the software is expected to be available

in many engineering departments dealing with numerical modelling of structures. As

the mesh of the global FE model is changed to describe the stiffness of the present

crack configuration the next step is to solve the global FE model. In the present

paper ABAQUS [18] is used as a solver. It allows to be run in batch mode and is a

widely known software.

When the updated global FE model is solved the remaining steps for the current

crack extension are carried out by activating the BEASY software as indicated on

figure 2. The software interpolates the boundary conditions on the sub model from

the solution of the global model. In this paper it is chosen to apply displacement

boundary conditions to the cut faces obtained from cutting the sub model out of

the global domain. Another option is to apply tractions on the cut faces but a

preliminary study has shown that less accurate results were obtained. This result

was explained by the fact that the traction variations were much larger over the cut

faces and thus require more cut face elements to obtain the same accuracy as when
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Modify global FE mesh

Solve FE model 

Apply boundary condition to sub model

Solve sub model

Propagate crack 
in sub model

Automated procedure

BE sub modelFE global model

Insert crack into sub model

BEASY

ABAQUS

Macro  developed
for HyperMesh

Figure 2: Automated procedure

displacement boundary conditions are applied. The sub model has now the actual

load applied to it and can be solved.

Several options can be chosen for the crack growth analysis of the sub model [17] and

this section only includes a brief summary of the chosen configuration used to model

fatigue crack growth in a test specimen. The stress intensity factors are calculated

using the J integral method by BEASY as this method is generally accepted as

more precise than using the crack opening displacement (COD). To calculate the

direction of the crack extension at each point of the crack front it is chosen to use

the minimum strain energy density criterion [20] as this criterion has been widely

used in the literature. This criterion states that the direction of crack growth at

any point along the crack front is towards the minimum value of the strain energy

density factor S. The strain energy density factor can be expressed as

S(θ) = a11(θ)K
2
I + 2a12(θ)KIKII + a22(θ)K

2
II + a33(θ)K

2
III (1)
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where

a11 =
1

16πμ
(3− 4ν − cos θ)(1 + cos θ)

a12 =
1

8πμ
sin θ(cos θ − 1 + 2ν)

a22 =
1

16πμ
[4(1 − ν)(1− cos θ) + (3 cos θ)(1 + cos θ)] (2)

a33 =
1

4πμ

in which μ is the shear modulus of elasticity and ν the Poisson’s ratio. The average

crack extension for each crack increment is chosen and thus in case of fatigue crack

growth several crack growth laws can be used to predict the growth rate and required

number of load cycles. In the present paper Paris law [22] of fatigue crack growth

has been found sufficient to cover crack growth in the test specimen

da

dN
= C(ΔK)

n
(3)

in which ΔK = Kmax −Kmin.This equation is generally intended for mode I load-

ing but in case of mixed-mode crack growth the value of ΔK can be replaced by

ΔKeff the effective stress intensity factor. Several expressions of the effective stress

intensity factor have been proposed in the literature. Expressions of Keff by the

combination of KI and KII were compared with experiments by Tanaka [23] and

the best fitting was obtained by one expression which have been widely used. But

several other expressions exist as for example by the Maximum Tangential Stress

(MTS) criterion [24]. For all three modes of fracture several expressions of Keff

also exist. The expression by Tanaka was extended [23] to cover all three modes and

further Gerstle [25] proposed an expression which if the imperical constant is chosen

as B = 1 will be equal to the expression used in [4] which is

Keff =

√
(KI + B|KIII |)2 + 2K2

II (4)

A more recent comparison of other expressions to predict the crack extension di-

rection and the effective stress intensity factor can be found in [26]. In the present

paper the expression (4) is adopted since it has previously been used in connection

with the strain energy density criterion and good agreements with the experiments

presented in the present paper are found.

3 Modification of finite element mesh

The mesh modification procedure has been developed for tetrahedral elements with

ten nodes. These elements cause a more random placement of the element faces in

the global mesh than the hexagonal elements and they will therefore better describe

the shape of arbitrary cracks.
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Read nodes from crack in sub model

Create separate surface from nodes

Devide the FE elements near the surface into two groups based on: 

Refine devision of FE elements based on:  Aditional criterions

Seperate the two groups of elements 

Morph crack nodes to surface 

Refine devision of elements based on:

Merge nodes at crack front

Centroid placement above or below the surface

Morphing criterions

Reconfigure morphed elements 

/

Figure 3: Automated modification procedure with two different options to modify

the finite element mesh

A flow chart of the script is shown in figure 3 and from this it is seen that the

first step in the script is to import the crack geometry into the global model. In

the BE sub model the crack is discretized by a mesh consisting of 2D discontinuous

second order straight elements as illustrated in figure 4. To import this geometry

crack nodes are placed in the coordinate system of the global model and from these

nodes a standard command in HyperMesh can be used to generate a surface. A

tolerance measure can be set to decide how closely the surface in the global model

should match the nodes from the crack in the sub model. When comparing the crack

surfaces in the global model and the sub model illustrated in figure 4 it is seen that

a good match can be obtained for the rather advanced crack geometry.

With the crack surface imported into the global finite element model the next step

is to modify the finite element mesh so that it also contains the crack. As shown

in figure 3 two schemes are proposed to modify the global FE mesh. The starting

point of both schemes is to divide elements around the imported crack surface into
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Figure 4: Creation of crack surface in global FE domain from the sub model crack

nodes (a) Crack in sub model with only corner nodes shown (b) Created surface

two groups.

• Divide elements in the vicinity of the crack into two groups. The division of

elements into the two groups is done by deciding whether the elements are

located above or below the imported crack surface. Such a check is easily

carried out by locating the centroid of the element and projecting it to the

imported surface along a normal to the surface. When no surface point can be

found with a normal passing trough the centroid then the element is outside

the crack surface and therefore not included in either of the two groups.

In some cases such as a crack growing from a notch, elements which are not directly

above or below the crack surface need to be added to one of the two groups, which

requires an additional criterion.

• Free surface crack nodes must only be connected to elements above and below

the crack surface. Elements connected to the free surface crack nodes are

forced to be part of either of the group above or below the crack surface based

on the placement of the element center relative to the surface.

This criterion disregards the crack front nodes. In the general case of crack growth

modelling it does soon become obvious that a crack surface obtained by separation of

elements due to their centroid placements will only generate a rough approximation

of the crack surface in the sub model as illustrated in figure 5.a. Thus additional

criteria are applied in order to refine the division of elements into the two groups

and thereby create a smoother surface. The first smoothing criterion applied is

• Smooth boundary between element groups above, below and nearby elements. If

8



a nearby element has its four corner nodes attach to elements above or below

the crack it is added to one of these groups

A typical example of this criterion can be illustrated by comparing figure 5.a with

figure 5.b where it appears that an additional element face is present in the middle

of the crack front after that the smoothing criterion has been applied. The next

smoothing criterion applied is used to generate a more planar crack surface. This

criterion considers a group of nodes which lie on the border between the element

groups above and below the crack surface, called the crack nodes.

• Smooth crack surface. A subroutine runs through each crack node to find

the distance from each crack node to the center of crack nodes on connected

element corners. When the distance is found it is checked wether this distance

can be minimized by moving elements connected to the present node to either

the group of elements above or below the surface.

This criterion will remove peaks on the crack surface, e.g. when three faces of a

tetrahedron belongs to the crack surface instead of just one of the four faces. The

effect of this criterion is directly seen when comparing figure 5.a with figure 5.b,

where a much more smooth surface is obtained.

In the general use of the submodelling strategy the global model is analyzed with

a coarse mesh of the whole domain while the sub model is analyzed with a fine

mesh of part of the domain. Based on this strategy one could argue that reasonable

results can be obtained with the smoothed approximation of the crack figure 5.b

in the global model and the original crack in the sub model figure 4.a. Thus when

elements on both sides of the smoothed crack surface are detached the first scheme

for modifying the global FE mesh is concluded.

A second scheme is now proposed as the approximation of the crack in the global

model can be improved remarkably by further modification of the FE mesh. By

the HyperMesh morph ability crack nodes in the FE model are moved to the im-

ported crack surface. However, before morphing of the nodes to the crack surface

an additional refinement of the element division is needed in order to avoid element

collapse. One of two criteria applied ensures that none of the tetrahedral elements

will have three corner nodes moved to the crack front line since this will force the

element to collapse.

• Elements are not allowed to have three corner nodes among the crack front

nodes. If an element has three corner nodes among the crack front nodes this

element and its connected elements will be separated into twice the number of

elements such that the three crack front nodes are divided on to two element

faces as demonstrated in figure 6

9



x y

z

( b  )

x y

z

( c  )( a  )

x y

z

Crack element faces of global FE model
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Figure 5: Crack element faces compared to crack surface in global FE domain (a)

Rough crack (b) Refined crack after smoothing (c) Refined crack after morphing

Furthermore, a criterion is defined to avoid that all four corner nodes of a tetrahedral

element lie on a planar surface, as this would cause the element to collapse.

• Elements are not allowed to have all the four corner nodes among crack nodes

If an element after the smoothing criterion has been applied has four corner

nodes among the crack nodes, this element and connected elements are sep-

arated into twice the number of elements leaving an extra non-crack node in

the center as demonstrated in figure 6.

After these pre-morph criteria have been applied the morphing of crack nodes to the

crack surface and the crack front nodes to the crack front line are carried out. At

the present stage in the development of the morphing procedure in HyperMesh the

mid-nodes of the ten noded tetrahedral elements can be misplaced. These nodes are

replaced by aligning them between the corner nodes of the elements or by using the

HyperMesh remesh command on the element groups above and below. The remesh

command further makes it possible to remove nearly collapsed elements. The effect

of these morphing criterions has not been illustrated graphically but it is shown

in the remaining calculations of this paper that it has been possible to carry out

the calculations purely automatically. The result of the morphed crack surface is

illustrated in figure 5.c.

4 Test specimen from engine part of large two stroke engine

To validate the proposed method to analyze 3D crack growth a structure containing

a crack will be analyzed with the proposed method and important parameters will

be varied.
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Crack surface

( b )( a )

Crack front line

Figure 6: Illustration of the cutting procedure to avoid that an element has four

corner nodes among crack nodes.

The results obtained with the proposed submodelling strategy are evaluated by

comparing to the corresponding results obtained with a global cracked BE model.

Because of the simplicity of the model analyzed in the present paper it is still within

a reasonable time limit to mesh and solve the global BE model than compared to the

global FE model. The elements used to mesh the global BE model have the same

small size as those in the BE sub model both in the vicinity of the crack and in the

remaining domain. Thus due to the small element size and the excellent precision

of the boundary element method very precise results are obtained with the global

BE model.

In connection with the introduction of a new welded design in the large two stroke

diesel engines several experiments and numerical calculations related to fatigue crack

growth were performed on parts of the new welded structure [21]. The test speci-

men which is illustrated in figure 7 is part of the new structure which supports the

crosshead bearing so that it only moves laterally. The crosshead bearing connects

the piston rod with the connecting rod and it is thereby part of the mechanism

which converts the vertical oscillation of the piston to a rotation of the crank shaft.

Test specimens have especially been tested for fatigue crack growth at the welds

marked by B and C in figure 7. To estimate the effect of residual stresses remain-

ing from the welding process half of the test specimens received a post weld heat

treatment. Fatigue crack growth in these specimens can be evaluated using Linear

Elastic Fracture Mechanics in connection with the proposed method.

This paper treats crack growth in area B illustrated in figure 7. To investigate crack

growth in this area a crack notch of 8 mm is introduced by a careful welding process

which leaves part of the contact surface unbound. The crack front is expected to

develop from this notch when the structure has been exposed to several load cycles.

The oscillating load is applied to the glide plane of the structure as demonstrated

in figure 8. When modelling the test specimen it is chosen to use a symmetry

approximation which would actually require that cracks were growing simultaneously
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Figure 7: Test Specimen with thickness of 65 mm

on both sides of the middle plate. This assumption is not practically imaginable but

a preliminary study has shown that the symmetry assumption gives little difference

from separate growth of one of the cracks. The oscillating load applied to the test

crack initiation 

220±220 kN

13
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Figure 8: Loaded model of the test specimen

specimen will result in an in-plane mixed mode loading of the crack front. Due to

this loading a curved crack path is expected to develop. In the following two sections

dealing with the crack in the test specimen the parameters influencing the proposed

method will be studied for the initial crack. Finally, the predicted crack path is

compared with the crack path observed in the experiments.
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5 Influence of the global element size on the analysis of the initial crack

The present section studies the influence of the global element size on the proposed

method for evaluation of stress intensity factors along the crack front of the initial

crack. To perform this study two questions are of primary interest. One is how well

does the submodelling strategy perform in the case of crack growth and the other is

how does the mesh modification procedure perform? To answer these two questions

each of six different global FE models is used to load the corresponding cracked BE

sub model figure 12.a.

The mesh modification procedure is developed for ten noded tetrahedral elements

and thus this type of elements are placed in the area of the global model where the

crack is supposed to grow as shown in figure 9. The connections between tetrahedral

elements and hexagonal elements are made with constrained relations on the nodes of

the common surfaces [18]. Two of the global FE models each with different element

size have a manually created crack represented in the mesh which perfectly matches

the crack in the sub model. The four other global models have a random mesh

in the area around the crack as illustrated in figure 9. For these four models the

crack representation is obtained from the mesh modification procedure. It is chosen

to produce two models with a smoothed surface and two models with a morphed

surface. The random tetrahedral mesh is created with an average element edge size

of 2.5 mm or 5.0 mm, respectively, to ensure that the initial crack of 8.0 mm would

not fit directly into the global mesh.

x

y

z

x

y

z

( b )( a )

Figure 9: Global mesh in the vicinity of the crack (a) Average tetrahedron size 2.5

mm (b) Average tetrahedron size 5.0 mm

The crack surfaces introduced in the six different global models can now be compared

as shown in figure 10 where the element faces between the elements above and below

the crack surface have been plotted. It appears clearly that the crack surfaces created

from the smoothed element faces on figure 10 s1 and s2 deviate the most from the

original crack surface in the sub model. A better approximation of the original crack
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surface is obtained when increasing the number of elements. The two crack surfaces

created by the mesh modification procedure when using morphing on figure 10 s3

and s4 both describe the exact shape of the original crack. For both surfaces it is

seen that while the element edges before morphing were of almost equal length their

lengths differ after morphing. The crack surfaces obtained by manual modifications

of the mesh match the original crack surface perfectly. Furthermore the element

configurations are kept much more constant than is the case of the morphed surfaces.

 s1  s2  s3   s4  s5  s6

x

y

z x

y

z x

y

z x

y

z x

y

z x

y

z

Crack element faces of global FE model

Edge of crack surface 

Front of crack surface were visible above element faces 

Figure 10: Crack element faces shown in perspective with average element size of 2.5

mm or 5.0 mm (s1-s2) Smoothed surfaces (s3-s4) Morphed surfaces (s5-s6) Manually

meshed surfaces

The displacement field of each of the six different global models is used to interpolate

to the boundary conditions on a sub model. For each sub model the same LEFM

parameters have been used to ease the comparison of the results. Since the problems

studied are primarily in-plane problems, figure 11 only shows the KI and KII factor

along the crack front. Comparing the values of the KI factor along the crack front it

becomes obvious that the results obtained with the smoothed crack surfaces differ in

the way that they have the largest deviation of approximately 4 % below the results

of the global BE solution. While the results obtained with both the morphed surfaces

and the manually meshed surfaces undershoot with approximately 2 %. By halving

the number of elements in the vicinity of the crack in the global model the deviation

is increased by approximately 1 % for the morphed and the manual meshed crack
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surface in the global model. For the smoothed surface it is interesting to observe

that while the results calculated with different element sizes deviate noticeable in

one end of the crack front they match in the other end. The matching results can

clearly be explained by the crack front configuration in the global model figure 10

since the crack surface with large elements (s1) has a larger crack length in one end

of the crack front and thus larger values of KI .

The figure displaying the KII values shows more even results with less deviations.

The results obtained with the smoothed surfaces overshoot the global solution by

approximately 1.5 % while results obtained with the morphed and manually meshed

surfaces are closer to the global solution with a deviation of 0 to 1 %. Almost no

effect is obtained from doubling the number of elements close to the crack.
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Figure 11: Values of KI and KII along the crack front for the maximum loading

The larger and more consistent deviations for the KI values compared to the KII

values can be explained by the fact that these two factors express different properties

of the structure. The opening of the crack expressed by the KI factor depends on

the global stiffness of the structure relative to the loading. The sliding of the crack

faces relative to each other expressed by the KII factor depends on the relative

stiffness of the structure. Based on this interpretation of the KI and KII factors

the results suggest that the global stiffness of the FE models are larger than for

the global BE model. The results further suggest that the relative stiffness of the

two global models is much the same which correlates with the equal geometry and

loading.

From the presented results it is found that the results obtained with the morphed

surfaces have such small deviations from the results obtained with the manually

meshed surface that it can be concluded that the automatic mesh modification

procedure gives just as good results as manual remeshing.
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6 Influence of the sub model size on the analysis of the initial crack

When varying the size of the sub model it is expected that this will influence the

evaluation of stress intensity factors along the crack front of the initial crack. One

of the reasons for this influence can be found from the different displacement and

stress fields predicted with an even FE mesh compared to a BE mesh refined in the

area of the crack. A small sub model with boundary conditions interpolated from

the global FE mesh would then have displacement and stress fields corresponding

mostly to the FE model. By contrast a large sub model with boundary conditions

interpolated from the global FE mesh will have displacement and stress fields more

in agreement with the BE mesh. To study the effect of the sub model size the results

from the sub model used in previous calculations are compared with results obtained

with a much smaller sub model as illustrated in figure 12b.

x

y

z

200
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z

46

( a ) ( b )

Figure 12: Boundary element sub models with one side removed (a) Model used for

most analyses (b) Small sub model (s.s.m.)

The results obtained with different size of the sub model and different modifications

of the global mesh are illustrated in figure 13. When comparing the results of KI

along the crack front it is generally seen that the KI calculated with the small sub

model undershoot the values calculated with the larger sub model. For the smoothed

and morphed formed surface the deviation from values obtained with the global BE

model are 8% and 3.7 % which is roughly twice the deviation obtained with the large

sub model. When comparing the values of KII it is much more difficult to express a

general trend. The maximum deviation between results obtained with the two sub

models is approximately 1.5 % and the maximum deviation from results obtained

with the global BE model is approximately 4 %.

The results obtained in this section support the results from the previous section,

i.e. the global FE model is more stiff than the global BE model and the deviations

are doubled as the sub model size is decreased. The deviations also were doubled
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Figure 13: Values of KI and KII along crack front for the maximum loading

with the results obtained for the morphed surface, which was unexpected. Other

effects can also influence the results such as the cut surfaces on which the boundary

conditions are applied are moved much closer to the crack front as the sub model size

is decreased. Any approximation introduced in the interpolation of the boundary

conditions may affect the stress field around the crack.

7 Analysis of crack growth from the initial crack

The comparison of stress intensity factors from the different calculations for the

initial crack configuration demonstrates that accurate results are obtained with the

proposed method. In the present section the study on the initial crack is extended

to demonstrate the capabilities of the proposed method to analyze crack growth.

The calculations have been carried out both by a global boundary element model

and by the proposed method. For the proposed method the large sub model and the

two different sizes of tetrahedral elements in the global model have been applied.

To perform the fatigue growth analysis of the structure several material tests have

been performed for a load ratio of R = Kmin/Kmax = 0.1. Figure 14 illustrates test

results obtained for three different Single Edge Notched Bend specimens (SENB).

Since the crack growth in the welded design remains within the regime of a constant

slope between the crack growth rate and variation of the stress intensity factors,

Paris law [22] has been fitted to the test results. Based on this fitting it is found

that C = 9 ·10−13 and n = 3.25 in Eq. (3) when the unit of ΔK is MPa
√

m and the

crack growth distance is calculated in meters. These values are in agreement with

values of standard construction steel.

The crack growth analysis is performed by extending the crack in six increments and

for each of the crack increments the FE mesh is modified to describe the stiffness

change for the new crack configuration. The two different schemes for modifying

the FE mesh have been applied to the crack growth analysis as illustrated for every

second crack increment in figure 15. The figure illustrates the differences in ap-
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Figure 14: Fitting of Paris law to measurements of crack growth in SENB test

specimens

proximations of the actual crack geometry by the two schemes. For a crack surface

obtained by separation of elements it is seen that the extension of the crack front is

done in jumps dependent on the element location at the actual crack front. For this

surface it is further observed that as the crack grows the size of the FE elements

in the global model decreases compared to the total crack length. For this reason

it could be expected that less deviations are obtained in the results as the crack

grows. A better match of the crack in the sub model is obtained when the FE-mesh

is modified using morphing as illustrated in the figure 15 d, e and f. It is observed

that the crack surface is not completely smooth as the mid-nodes of the elements

are placed directly in between the corner nodes. Morphing of the mid-nodes to the

crack surface is however expected to have no influence on the results.

The evaluation of the proposed method to analyze crack growth is carried out by

comparing results of the KI and KII factors for each crack increment. In previous

sections it was shown that variations of the KI and KII were rather limited along

the crack front and thus to ease the comparison the values are only compared for the

center point on the crack front. The calculated values of KI and KII are shown in

figure 16 for the global BE model and for the proposed method. The values shown in

the figure are not directly comparable after the first crack extension since deviations

of the values of the stress intensity factors result in different crack paths. The

differences in crack path are however expected to be small as there is a reasonable

correlation between the stress intensity factors and as the average crack extension

of 2 mm is kept constant for all calculations. Comparisons of the KI values shows
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a general increase when the crack grows as would be expected because the stiffness

of the structure is reduced while the loading is held constant. The largest deviation

of 6 % from the global BE solution is as expected obtained for the smoothed crack

surface with an element size of 5.0 mm in the global model. From this solution it is

further seen that the deviation from the global BE solution increases and decreases,

which can be explained by the dependence on the element locations in front of the

crack. The solutions obtained for the proposed method using smoothing with small

elements and morphing with large elements are almost the same with a maximum

deviation of approximately 3%. The solution obtained with morphing and small

elements has a maximum deviation of approximately 2%. Values of KII tend toward

zero after the first crack increment as can be expected from the use of the crack
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growth criterion. Small variations in the crack shape for each calculation will result

in noticeable variations in the KII value and thus when the values are close to

zero large percentage deviations are found. The existence of small variations in the

predicted crack shapes are indicated by the increased deviations in the KII values

when the crack grows.
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Figure 16: Values of KI and KII at the center point of the crack front for each crack

increment

8 Comparison with experiments

In the present paper the global BE model has been used as a reference to evaluate

the validity of the proposed method. Since the reference is only a model one could

question the comparison if no relation was drawn to real observations. Therefore,

comparison of crack path and crack growth rates are done for the calculations and

an experiment. Results from the experiments [21] are shown in figure 17. When

comparing the crack path obtained in the experiment with the calculated crack

path represented by the sub model crack in figure 15.c a nearly perfect match is

observed. The test specimen is observed to have a secondary crack which might be

caused by a non linear effect but that would not be discussed further in this paper.

During the fatigue loading of the test specimen crack propagation gauges have been

mounted on each side of the structure perpendicular to the pre-crack just at the

crack front. These gauges are able to detect 20 crack increments of 0.25 mm when

the crack grows perpendicular to the gauge. Thus for the present test specimen

the crack growth has been monitored for the first 5 mm in which the crack roughly

grows with an angle of 30◦ to the initial crack. The results of the crack gauges show

as expected that the crack propagates equally fast on both sides of the structure.

The average crack growth rate measured by the two gauges can be calculated by the

results shown in figure 17 to be 4.6·10−9 m/cycle and 6.3·10−9 m/cycle. When these

crack growth rates are compared with the results of the material testing figure 14

it can be seen that ΔKeff at the crack front can be expected to be in the range of
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12− 15.5MPa
√

m. The calculated ΔKeff for the pre-crack and the first increment

are 12 MPa
√

m and 11.5MPa
√

m respectively. Thus good agreements between the

calculated and measured crack growth rates are obtained.
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Figure 17: Test Results (a) Cracks in test specimen (b) Measured crack increments

of primary crack

9 Conclusion

A new procedure to analyze non-planar 3D crack growth has been proposed. The

proposed method takes advantage of a submodelling strategy in which the crack in

the global model can be described by two different approximations of the real crack

in the sub model. It has been shown by numerical evaluation of the method that

precise results are obtained by either separating the elements in the global model as

they are or by morphing them to fit the geometry of the real crack surface before

they are separated. A much smaller number of elements is needed around the crack

in the global model in cases where the morphing procedure was used. Investigations

of the element size in the global model and the size of the sub model both showed

an influence on the results as expected. By increasing the number of elements in

the global model or by increasing the size of the sub model the precision could

be increased. The proposed method was further used to analyze a case of crack

growth on a test specimen which is part of a large diesel engine. The proposed

method shows a good agreement with the experiments for the predicted crack path

as well as the crack growth rate. According to the results it can be concluded that

21



the proposed method can be used to perform accurate numerical evaluations within

linear elastic fracture mechanics. An important feature of the proposed method is

that an accurate crack analysis can be incorporated in a large FE computation that

has been previously developed for a complex engineering structure such as a big ship

diesel engine.
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