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Theory and Practice of the FFT/Matrix Inversion
Technique for Probe-Corrected Spherical Near-Field

Antenna Measurements With High-Order Probes
Tommi Laitinen, Member, IEEE, Sergey Pivnenko, Member, IEEE, Jeppe Majlund Nielsen, and

Olav Breinbjerg, Member, IEEE

Abstract—A complete antenna pattern characterization proce-
dure for spherical near-field antenna measurements employing a
high-order probe and a full probe correction is described. The pro-
cedure allows an (almost) arbitrary antenna to be used as a probe.
Different measurement steps of the procedure and the associated
data processing are described in detail, and comparison to the ex-
isting procedure employing a first-order probe is made. The pro-
cedure is validated through measurements.

Index Terms—Antenna measurements, high-order probe, near-
field scanning, probe correction, spherical wave expansion.

I. INTRODUCTION

T HE Technical University of Denmark (DTU) and the Eu-
ropean Space Agency (ESA) have a 30-year history of

accurate probe-corrected spherical near-field antenna measure-
ments at the DTU-ESA Spherical Near-Field Antenna Test Fa-
cility [1]. The standard procedure for the antenna pattern char-
acterization applied at the DTU-ESA Facility is based on the
use of so-called first-order probes, since they can ex-
ploit the computationally efficient and stable first-order probe
correction technique [2]. These probes are conical horns fed by
circular waveguides excited with the dominant mode. The con-
ical horn probes are typically operated on a relatively narrow
frequency band, about 10%–15%, thus the collection of probes
at the DTU-ESA Facility consists of 14 dual-polarized probes to
cover the frequency range from 3–18 GHz. This type of a probe
also becomes relatively heavy and large at low frequencies, for
example, below 3 GHz.

The capacity of computers has increased significantly during
the latest 30 years. For this reason, the computational efficiency
of the probe correction has become a less significant factor for
many applications, whereas it has become attractive to con-
sider, also at the expense of reduced computational efficiency,
such probe correction techniques that would be applicable for
high-order probes, or, more generally, for probes that
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are not of the first order. In this paper, we understand high-order
probes generally as those not belonging to the class of first-order
probes. The use of a high-order probe correction technique al-
lows a greater flexibility in choosing a probe that leads to an op-
timal compromise between the desired properties of the probe,
for example, the bandwidth, the weight, the size, and the cost.

In fact, several high-order probe correction techniques have
been introduced recently [3]–[10]. Some of these techniques
are based on the spherical wave expansion of the AUT and
probe fields and involve spherical wave translations in the
transmission formula [3]–[6], [8], [9]. As opposed to these,
the techniques [7], [10] are based on another type of an ex-
pansion involving a plane-wave translation operator in the
transmission formula. Among the techniques referred here, the
techniques [5], [7], [9] and [10] are the only ones applicable
for (almost) arbitrary probes. The work in [5] was carried out
during 2004–2006 within a project supported by the European
Space Agency [5]. The techniques [7] and [10] were published
in 2008 and 2009, respectively.

It has been shown in [7] and [10], that the use of an itera-
tive solver makes it possible to solve the transmission formula
in a computationally efficient manner. For example, compared
to the direct matrix inversion, the use of the iterative solver
has been shown to decrease the computational complexity in
solving the transmission formula from to in [7]
and further to in [10]. Here is proportional to the
electrical radius of AUT (antenna under test) minimum sphere.
For comparison, the computational complexities of the tech-
niques [5] and [9] are both . By noting that the compu-
tational complexity of is low enough for a major part
of spherical near-field antenna measurement applications, the
general high-order probe correction technique presented in [5],
that will be referred to as the FFT/matrix inversion technique in
this paper, is taken into further consideration here. It is further
noted that the technique in [9] is a modification of the FFT/ma-
trix inversion technique applicable in conjunction with another
scanning technique.

Naturally, the computation of the far field from the probe sig-
nals measured in the near field, including the probe correction, is
only one part of a complete antenna pattern characterization pro-
cedure. The high-order probe correction techniques presented in
the literature so far have, however, not touched upon the prac-
tical implementation aspects of the technique for an existing
range at all, or have done that in a limited fashion, and for this
reason this issue deserves further attention.

0018-926X/$26.00 © 2010 IEEE

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on August 16,2010 at 09:33:18 UTC from IEEE Xplore.  Restrictions apply. 



2624 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 58, NO. 8, AUGUST 2010

The purpose of this paper is to present the complete antenna
pattern characterization procedure developed at the DTU-ESA
Facility based on the FFT/matrix inversion technique and em-
ploying high-order probes and to describe all practical steps
of the procedure with the associated data processing. Compar-
ison to the existing procedure employing first-order probes is
made where relevant. The procedure is presented primarily for
dual-port probes, but clarifications are provided for the case of a
single-port probe. In addition to the earlier validation measure-
ments carried out for 2.9 GHz and 3.0 GHz [5] and reported in
[11], another set of validation measurements is carried out here
for 1.4 GHz and 1.5 GHz, and the results are presented.

The developed procedure has been tested and shown to work
earlier in [5] with computer calculations for the frequency range
1–3 GHz for AUTs with the radius of the minimum sphere up to
3 m, which corresponds to approximately 30 wavelengths. The
calculation results have been partly presented in [12], and are
thus left outside of this paper.

The theoretical background is presented in Section II. The an-
tenna pattern characterization procedure for high-order probes
is described in Section III. Test measurements for validation of
the procedure are then presented in Section IV. Conclusions are
given in Section V.

II. BACKGROUND THEORY

The theory of probe-corrected spherical near-field antenna
measurements with a first-order probe is presented in [2]. The
part of this theory relevant to high-order probes is summarized
in this section.

A. Measurement Geometry

The geometry for probe-corrected spherical near-field an-
tenna measurements is presented in Fig. 1 where the AUT and
the probe minimum spheres are illustrated. The and

and the Cartesian coordinates of the AUT and the
probe coordinate systems, respectively. The are the
standard spherical coordinates of the AUT coordinate system
[13]. The measurement distance is the distance between the
origins of the AUT and probe coordinate systems. The angle
is the probe rotation angle; for and , the axis
is parallel to the and unit vectors of the AUT coordinate
system, respectively.

B. Spherical Wave Expansion

According to [2], the radiated fields of the AUT and the probe
are both expressed in terms of the spherical vector wave expan-
sion (SWE). Assuming and suppressing the time convention of

, the practical, truncated form of the SWE of the radiated
electric field of the AUT, , becomes

(1)

where is the wave number, is the intrinsic admittance of
the ambient medium, are the spherical vector wave co-
efficients (Q coefficients) of the AUT field, and
are the power-normalized spherical vector wave functions [2,
Ch. 2]. The triple summation is for , for

, and for and 2, where , and

Fig. 1. The AUT and the probe minimum spheres, and the relation between the
AUT and the probe coordinate systems.

and are the truncation numbers for the and indices,
respectively.

The probe is assumed to be either a dual-port probe having
one fixed orientation or a single-port probe having two ori-
entations separated by 90 . The truncated SWE of the radiated
electric field of one port, , of a reciprocal dual-port probe,

is expressed as

(2)

where , with or 2, are the Q coefficients for the
probe port or alternatively, in the case of a single-port probe,
the probe orientation. The triple summation is for

, for , and for and 2,
where , and and are the truncation
numbers for the and indices, respectively.

The truncation numbers ( , , , ) may be deter-
mined from the following truncation rules [2]:

(3)

(4)

(5)

(6)

where and are the radii of the AUT and probe minimum
spheres, shown in Fig. 1, respectively, and the and are
the radii of the AUT and probe minimum circular cylinders [2],
respectively. The square brackets indicate the largest integer
smaller than or equal to the number inside the brackets. The
values for the integers , , , and are chosen according
to the accuracy requirement, and typically

is sufficient [2].

C. Transmission Formula

According to the transmission formula [2], the signal at the
probe port, , is

(7)
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where , and are the rotation coeffi-
cients [2]. The probe response constants of the port of the
probe are

(8)

where are the translation coefficients of the spher-
ical vector wave functions and are the probe receiving co-
efficients [2].

The relations between , and the probe transmis-
sion coefficients are [2, Eq. (5.68)],

(9)

(10)

Here , with dimension , is the normalized complex am-
plitude of the excitation signal at the probe port.

In the transmission formula (7) and (8), the rotation and trans-
lation coefficients are known functions, the receiving coeffi-
cients are known from a separate probe calibration measure-
ment, and the probe port signal is known from the spherical
scanning of the AUT radiated field. The formula can thus be
solved for the AUT Q coefficients, and the radiated field at any
larger distance, in particular, in the far field can then be obtained
from (1).

III. ANTENNA PATTERN CHARACTERIZATION PROCEDURE

USING A HIGH-ORDER PROBE

The AUT pattern characterization procedure with a
high-order probe (HOP) comprises the following three steps:
1) HOP pattern calibration, 2) HOP channel balance calibra-
tion, and 3) AUT pattern measurement. In this section, these
three measurements and the data processing related to each
measurement are described.

A. HOP Pattern Calibration

In this calibration the HOP is treated as an AUT, and a highly
linearly polarized antenna is used as an auxiliary probe. The
auxiliary probe is aligned for orientation such that its
radiated field is -polarized in the -axis direction. Alterna-
tively, an additional three-antenna polarization calibration and
the corresponding correction can be applied for the auxiliary
probe as described in [2, Sec. 5.2.3–5.2.4].

The radiation patterns of both ports of the dual-port HOP are
measured with the auxiliary probe for an appropriate number
of measurement directions for the auxiliary probe orien-
tations and 90 . The auxiliary probe is treated in this
measurement as an electric Hertzian dipole, that is, no pattern
correction is applied. This is a valid approach in the typical case
where the far-field conditions hold for both the HOP and for the
auxiliary probe. Hence, with the help of the well-known orthog-
onality integrals for the spherical vector wave functions [2], the
Q coefficients of the HOP are now found from the transmission
formula (7) by applying the known probe response constants of

Fig. 2. (a) The probe in the AUT coordinate system ��� �� ��. (b) The probe
in the probe coordinate system �� � � � � �.

the electric Hertzian dipole. This can be done, for example, by
applying the first-order probe correction technique.

During the probe pattern calibration the HOP is located in
the AUT coordinate system so that the are related to the
patterns of the two probe ports with the HOP pointing in the

-axis direction as illustrated in Fig. 2(a). However, during the
AUT pattern measurement the HOP is located in the probe co-
ordinate system and pointed to the -axis direction as evident
from Fig. 1. According to the practice adopted at the DTU-ESA
Facility, the 180 rotation of the probe is performed around the

axis as illustrated in Fig. 2. After this rotation, the coordinate
system is changed from the AUT coordinate system
to the probe coordinate system . By the change of
the indices: , and , the two sets of Q co-
efficients, and , for the probe pointing into

-axis direction in the probe coordinate system, as illustrated
in Fig. 2(b), are then obtained from [2, Eq. (5.67)],

(11)

The are determined using the relations (9) and (10)
by assuming (without loss of generality), for example,

, and by replacing in (10). The
have been determined now and, thus, the probe pattern calibra-
tion has been accomplished.

It is noted that probe receiving coefficients include
complete information of the pattern of each port of the HOP.
Thus, no separate polarization calibration, that is a part of the
conventional probe calibration procedure described in [2, Sec.
5.2.3–5.2.4], is performed.

It is noted, that during the HOP pattern calibration the HOP
is mounted on the flange of the AUT tower of the measure-
ment range whereas during the AUT pattern measurement it is
mounted on the flange of the probe tower. The HOP receiving
coefficients must, however, remain unchanged (except for the
180 rotation of the coordinate system) in the translation of
the probe. This can be ensured by suppressing the influence of
mounting structure on the probe pattern by a proper application
of absorbers. If, in the case of a dual-port probe, the reflection
coefficient of the HOP load (once placed in the AUT tower and
then in the probe tower) is different, then the HOP receiving co-
efficients can be ensured to remain unchanged by having a high
(for example 40 dB) port-to-port isolation of the probe. In the
case of poor isolation, different reflection coefficient may result
in a change in the HOP pattern and thus in different probe re-
ceiving coefficients.
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Fig. 3. Polarization scan measurement set up for determination of channel
balance.

B. HOP Channel Balance Calibration

The signals measured at the receiver are influenced by not
only the probe pattern but also by the two channels from the
probe to the receiver; the characteristics of these two channels
are generally different both in magnitude and phase. This
difference must be compensated, and it is performed with the
so-called the channel balance calibration measurement.

Assuming (without loss of generality) , the transmis-
sion formula (7) for a signal at the receiver from port can be
written as

(12)
where is the channel coefficient that is independent of any
spherical mode of the probe. The and contain the infor-
mation of any mismatch, attenuation, and phase propagation of
the signal from the two probe ports to the receiver. The channel
balance, , is defined as the ratio between the channel coef-
ficients of the two channels,

(13)

and the purpose of the channel balance calibration is to deter-
mine this ratio. Once this ratio is known, the known received
signal (12) for and the known received signal (12) for

multiplied by constitute the correct relative received
signals.

In the channel balance calibration the HOP is located in the
probe coordinate system with the fixed orientation angle

, and the auxiliary antenna is located in the AUT tower as
illustrated in Fig. 3. The axis is pointed to the origin of the
probe coordinate system, thus, . A good choice for the
auxiliary antenna is an antenna with a linear polarization and the
maximum radiation in the -axis direction.

With these conditions , the signal at the
receiver from the probe port , expressed through (12), becomes

(14)

where are the Q coefficients of the auxiliary antenna. The
are obtained from (8) using known from the

probe pattern calibration. The relation
[2, Eq. A2.15], where is the Kronecker’s delta, is exploited
here.

The channel balance is now determined by means of the
so-called polarization scan measurement where the auxiliary
antenna is rotated around the axis, and the signals from the
two probe ports at the receiver are recorded in intervals of
from to . The maximum is related to
the cross-section dimensions of the probe and the auxiliary
antenna in wavelengths. However, it is useful to apply a smaller

than the maximum in this measurement for decreasing the
uncertainty, because the increase in the measurement time due
to this is negligible. By writing the received signal in (14) as a
Fourier expansion

(15)

with the Fourier coefficients

(16)

it becomes obvious that the Fourier coefficients are
found by the inverse discrete Fourier transformation (IDFT) of
the measured signals in . The number of coefficients
is the same as the number of samples. However, the coefficients
for are practically the only important coefficients here
for the following reasons. First, with increasing measurement
distance the coupling of the signal to the probe ports occurs
increasingly dominantly via the modes with , which
is due to the asymptotic behavior of the translation coefficient
[2, Eq. A3.22-A3.24]. Second, most (if not all) practical aux-
iliary antennas aligned on the axis with the maximum radi-
ation in the -axis direction possess a significant degree of
power in modes with , and this further enhances the
coupling of the signal through these modes in the channel bal-
ance measurement.

Restricting the discussion now for the coefficients
only, it is noted that depending on the polarization of the probe
port, the amplitude of the coefficient for may
differ significantly from that for . This is the case for
highly non-linearly polarized probe port (with a linearly polar-
ized auxiliary antenna). Due to noise and other uncertainties,
the coefficient with the lower amplitude is also more sensitive to
having a greater relative error than the one having the higher am-
plitude. For this reason, it is now suggested that for each port
the is calculated for such index or for which
the amplitude of the coefficient is higher. Hence, con-
sidering now the coefficients for either or only,
(13) and (16) provide

(17)
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Here or and or depending on the am-
plitudes of the coefficients and according
to above discussion.

Equation (17) allows that the probe ports are different,
which is a generalization compared to the traditional first-order
channel balance calibration procedure. Equation (17) requires,
in general, that the auxiliary antenna Q coefficients, , are
known at least for the index for which the is determined.
If a highly linearly polarized auxiliary antenna is used, then the
electric Hertzian dipole assumption of the auxiliary antenna can
typically be made. The Q coefficients of the electric Hertzian
dipole are well known [2, Sec. 2.3.3].

It is furthermore noted that, in theory, such impractical probes
may exist that do not possess radiated power in modes with

, and hence have a zero on-axis field. Thus, if, for some
reason, such an impractical HOP were used, the channel coeffi-
cients should not be calculated from (17) for or ,
but for some other value of .

C. AUT Pattern Measurement

1) Scanning: The general high-order probe correction tech-
nique does not impose any strict requirements for the angles in

, where the samples must be available. However, a good choice
is to take the samples equidistantly in from 0 to 180 in steps
of in order to ensure that the systems of linear equations, that
are solved at a later stage of the probe correction calculations,
have sufficient number of sufficiently linearly independent rows.
It is assumed in this paper that the condition holds,
where is the total number of sampling directions in from
0 to 180 . This condition follows from that for the traditional
first-order probe correction technique, and although this may
not be necessarily strictly required in the case the FFT/matrix
inversion technique applied here, it is assumed in this paper.

For each fixed angle, it is required that the samples in
are available from 0 to with constant increments
of . It is further required that the condition
holds, where is the number of sampling directions in from
0 to .

In each measurement direction received signals are
measured from the two ports of the HOP, and the probe orien-
tation angle is set to so that (12) becomes applicable. In
the case of a single-port probe, the signals are measured for two
probe orientation angles, typically for and 90 , in each
measurement direction.

These requirements for the measurement data are conve-
niently fulfilled by the -scanning scheme, where stepping is
made in and scanning in . The -scanning scheme, where
stepping is made in and scanning in , is not applicable. A
double -step -scanning scheme, and the associated high-order
probe correction technique has been presented in [9].

2) Formation of the Signals at the Probe Ports: The probe
correction calculations require that the correct relative received
signals are known at the probe ports. Hence, the relative received
signals at the two probe ports, and , are
formed as follows:

(18)

(19)

where and are the measured received
signals (12) at the receiver from the two probe ports, and is
known from the channel balance calibration.

3) Probe Correction Calculations: The probe correction cal-
culations include two steps. The first step consists of the IDFT
of the signals at the probe ports. The second step consists of ma-
trix inversions. These two steps are now explained.

In the first step, the relative received signal at the probe ports,
(18) and (19) with (12), are first written as a Fourier expansion

(20)

where

(21)

where . The Fourier coefficients
for are now found for each discrete value of

for and 2 by the IDFT of the measured
signals in , and for the case with this operation
can be written as

(22)
In the second step, for each fixed an over-

determined system of linear equations is set up from (21) for the
unknowns with indices and 2, and .
For each , this system of linear equations is written as

(23)

Here, the matrix is

...
... (24)

where the 2 2 block matrices are

(25)

with

(26)

The relation between indices and is , and
for the . The is the angle

.
The vectors and are

(27)

(28)

respectively, where denotes transpose.
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The least-square solution to the matrix (23) is

(29)

where the is

(30)

where denotes Hermitian transpose. The in (30) can
be found from using, for example, the PINV-function in
MatLAB.

Computer calculations indicate that the computational com-
plexity of the matrix inversions is of the order of , and
it is not higher for filling in the matrices. The overall compu-
tation time is dominantly determined by the time required for
filling and inverting the matrices for . For
example, for and 160, with , , and

, the overall computation time is approximately 6
and 30 minutes, respectively, with the current implementation
of the probe correction algorithms at the DTU-ESA Facility on
a normal PC of today. In these cases, the time required for the
matrix fillings was approximately 2 to 3 times the time required
for the matrix inversions. It is possible to apply parallel pro-
cessing for reducing the computation time.

The condition numbers of the matrices are typically the
highest for . A quantitative investigation carried out
in [5] with several different high-order probes shows that the
condition numbers are steadily increasing with increasing but
remain below 40 with for all examined probes.

The memory requirements of the technique are dominated by
the size of the matrix. At a given time it is necessary to
have only one matrix in memory. The matrix is the
largest for the indices , and then its dimension is of the
order of . For example, for , that
corresponds to the AUT with the radius of the minimum sphere
of more then , the required memory for one matrix for
any of the indices in the double-precision system is of
the order of 64 MB. For comparison, the maximum dimension
of a single array accepted by MatLAB™ in a 32-bit Windows
system is more than 600 MB.

IV. MEASUREMENTS AND DATA PROCESSING

This section describes the measurements carried out to vali-
date the new antenna pattern characterization procedure based
on the FFT/matrix inversion technique and to illustrate its im-
portance for a high-order probe.

The probe in the earlier measurements, reported in [11], was
a wideband dual-polarized probe SP800 from Satimo [14] cov-
ering the frequency range 0.8–3.2 GHz. Although, this SP800
probe must be, as noted in [5] and [11], considered a high-order
probe, and hence cannot be treated as a first-order probe in ac-
curate spherical near-field antenna measurements, the radiated
power in the azimuthal spherical modes with relative to
the power in the modes with for this probe was, how-
ever, modest. For this reason it was decided that another test
measurement is carried out with a more challenging probe pos-
sessing substantial relative power in the modes with .
Therefore the probe for the second test measurement reported in
this paper is chosen to be an offset single-port square waveguide

Fig. 4. Photograph of the AUT and its coordinate system.

probe. The offset, in particular, increases the radiated power in
the modes with . Since the channel balance calibration
for a dual-port HOP was verified by the earlier measurements
[5], [11], it is found sufficient to perform the measurements now
with a single-port probe.

First, the reference measurement performed for the chosen
AUT is described. Next, the HOP, its characterization, and its
properties in terms of the spherical wave coefficients are pre-
sented. Then, the test measurement performed for the same AUT
with the HOP are described. Finally, the comparison between
the reference and test AUT patterns is made, and the signifi-
cance of the high-order probe correction documented.

A. Reference Measurement of the AUT

A reference full-sphere measurement is performed at the
DTU-ESA Facility for the AUT illustrated in Fig. 4. The AUT
is a log-periodic 1–18 GHz antenna in an offset configuration
attached to a metallic support arm. The offset of the log-pe-
riodic antenna is 1.6 m from the axis along the axis,
i.e., the coordinates of the log-periodic antenna in the AUT
measurement coordinate system are ( , 0 m, 0 m).

The choice of this AUT configuration is driven by the in-
tention to have a demanding measurement case for which the
influence of the high-order modes of the probe is expected to
be large. Due to the offset, the phase of the received near-field
signal varies strongly with the AUT positioning angle, and this
results in a wide spectrum of spherical wave modes in the expan-
sion of the AUT field. In addition, the non-symmetric location of
the radiating element tests the sensitivity of the processing algo-
rithm to small mechanical imperfections of the setup. Obtaining
a good agreement for the chosen AUT configuration is thus ex-
pected to guarantee similar or better agreement for any other
AUTs, including also large and symmetrically located AUTs,
with the equal or smaller radius of the AUT minimum sphere.

The reference measurement of the AUT is carried out for the
-polarized port of the AUT at 1.4 GHz and 1.5 GHz. The scan-

ning scheme is chosen to be scanning in within
and stepping in within with sampling intervals

. This reference measurement is performed
with a high-quality dual-polarized open-ended choked circular
waveguide probe, that is a first-order probe.

In the data processing, the traditional first-order probe correc-
tion is applied to the received probe signals and the far field is
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Fig. 5. Reference AUT pattern: co-polar directivity for � � � (solid) and
� � �� (dashed) planes and cross-polar directivity for � � � (dash-doted)
and � � �� (dotted) planes.

calculated. This far field is considered as a reference in the com-
parisons below. The 1- uncertainty of the reference pattern is
estimated to be lower than 0.05 dB around the pattern peak.

The co-polar and cross-polar directivities of the AUT refer-
ence pattern at 1.5 GHz, calculated according to the Ludwig’s
third definition [15], are shown for the and
planes in Fig. 5. The small ripples at low levels of the co-polar
pattern in the plane are due to the interference of the
direct field from the radiating log-periodic element of the AUT
and the diffracted field from the opposite end of the metallic
support arm of the AUT.

B. HOP Pattern Calibration

As stated earlier the HOP is an open-ended square waveguide
with the center of the aperture offset from the center of the probe
coordinate system. This offset is 30.5 mm along the axis.
This corresponds to about 0.15 wavelengths at 1.5 GHz.

The HOP pattern calibration is performed using a calibrated
first-order probe as the auxiliary probe. The auxiliary probe is
the same probe that was used for the reference AUT measure-
ment. Since the chosen HOP is a single-port antenna, only one
pattern measurement is required. During the HOP pattern cali-
bration the HOP is placed in the AUT coordinate system so that
its radiation is -polarized in the -axis direction. The pattern of
the HOP oriented for the polarization is found by applying a
90 rotation of the obtained HOP pattern around the axis. The
probe receiving coefficients for the two polarizations, and

, are finally determined according to Section III-A.
The co-polar amplitude and phase patterns of the HOP at 1.5

GHz are shown in Fig. 6. It is seen that the amplitude pattern is
almost symmetric with a small asymmetry in the plane.
On the other hand, the phase pattern is clearly asymmetric in the

plane due to the offset of the probe.
The normalized spherical -mode power spectrum of the

HOP is then calculated from the determined probe receiving
coefficients. This spectrum, that describes the relative power of
the field radiated by the probe as a function of the azimuthal
mode index , is shown in Fig. 7. For complete-
ness, the normalized spherical -mode power spectrum of the

Fig. 6. Measured pattern of the offset square waveguide probe (HOP): co-polar
directivity for the � � � (solid) and � � �� (dashed) planes and co-polar
phase for the � � � (dash-doted) and � � �� (dotted) planes.

Fig. 7. The normalized spherical �-mode and �-mode power spectra of the
offset square waveguide probe, and the normalized spherical �-mode power
spectrum of the first-order probe used in the reference AUT measurement.

HOP and the normalized spherical -mode power spectrum of
the first-order probe are also presented in Fig. 7.

It is seen from the -mode spectrum of the HOP that, though
most of its radiated power is contained in the modes with

, a significant part of the power is contained also in the other
modes. In particular, the power in the modes with ,
2, and 3, as compared to the modes, is in the range
from to . Thus, the presented spectrum of the
HOP clearly illustrates that the offset square waveguide probe
is indeed a high-order probe. For comparison, in the case of the
first-order probe, as seen in Fig. 7, practically all the power is
concentrated in the modes with .

C. Test Measurement of the AUT and Data Processing

In line with the requirements to the scanning described in
Section III-C, a full-sphere near-field measurement with the
HOP is performed for the AUT using the -scanning scheme
with two HOP polarizations. The sampling intervals in and
are chosen to be and , respectively, as
in the reference measurement.
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Fig. 8. Comparison between the reference and test AUT patterns in � � �

plane: reference (solid) and test (dashed) co-polar directivity, and reference
(dash-doted) and test (dotted) cross-polar directivity.

Fig. 9. Comparison between the reference and test AUT patterns in � � ��

plane: reference (solid) and test (dashed) co-polar directivity, and reference
(dash-doted) and test (dotted) cross-polar directivity.

For the calculation of the Q coefficients of the AUT field,
and subsequently the far field from (1), the measured probe
signals are processed according to the procedure described in
Section III-C. The and modes of the probe up to
and , respectively, are taken into account. The trunca-
tion numbers for the probe modes are selected on the condition
that only the modes above the noise floor are included in the
calculations. The probe response constants are obtained from
(8) using the probe receiving coefficients known from the probe
pattern calibration. The channel balance is set to 1.

The obtained reference and test directivity patterns of the
AUT for 1.5 GHz are shown for the plane in Fig. 8
and for the plane in Fig. 9. It is seen from Figs. 8 and 9
that there is a good agreement between the co-polar patterns in
both planes though the test pattern shows slightly larger ripples
around in the plane. Agreement between
the cross-polar patterns is also good, though some small differ-
ences can be observed.

The statistics for the difference between the reference and test
co-polar AUT patterns in the dB scale calculated for the region

, i.e., around the pattern peak, are given in Table I.

TABLE I
STATISTICAL DATA FOR THE DIFFERENCE BETWEEN THE REFERENCE AND TEST

CO-POLAR AUT PATTERNS WITHIN ��� � ��

TABLE II
STATISTICAL DATA FOR THE DIFFERENCE BETWEEN THE REFERENCE AND TEST

(� � � AND � � �) CO-POLAR PATTERNS WITHIN ��� � ��

The mean and the standard deviation of the difference between
the test and reference patterns do not exceed 0.05 dB. The ob-
served deviations for the co-polar directivity are within the mea-
surement uncertainty for the standard measurement procedure
at the DTU-ESA Facility employing the first-order probes and
the first-order probe correction technique, and the agreement is
thus considered to be very good. Similar agreement between the
co-polar directivities was observed also in the final measure-
ment in [5]. The deviations for the co-polar phase seen in Table I
are larger than it was observed in [5], but in view of the chal-
lenging AUT and the HOP, these values are found acceptable.

The test data are also processed taking into account only
modes of the HOP to study the influence of the

high-order azimuthal modes on the accuracy of the obtained
far-field data. The statistics for the difference between the
reference co-polar pattern and test co-polar pattern processed
with and calculated for the same region

are given in Table II. The statistics show that in this
case the difference between the test and reference patterns is
several times larger as compared to the results in Table I. This
was expected, and it confirms the fact that the proper high-order
probe correction is clearly necessary for the employed HOP.

V. CONCLUSION

A complete antenna pattern characterization procedure for
probe-corrected spherical near-field antenna measurements
with high-order probes has been developed and described in
this paper. The procedure has been verified by measurements
in the DTU-ESA Spherical Near-Field Antenna Test Facility.
The uncertainty of the antenna pattern determination provided
by the new procedure with a high-order probe is comparable
to that provided by the existing procedure based on the use of
first-order probes.

The results of this paper have shown that accurate antenna
pattern characterization using high-order probes is possible
both in theory and practice using the -scanning scheme. Future
work could include similar thorough theoretical and practical
investigations of the possibilities for accurate antenna pattern
characterization with high-order probes with other scanning
schemes, for example, with the -scanning scheme.
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