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Abstract

Wind power generation is a nonlinear and bounded variable, partly owing to the power curve that

converts wind to electric power, and partly owing to the very stochastic nature of wind itself. Predic-

tive densities of wind power generation should account for that effect. Such densities are clearly not

expected to be Gaussian, with higher order moments being directly related to their expectation and

potentially to some external signal. It is proposed here to model such predictive densities with discrete-

continuous mixtures of generalized logit-normal distributions and of probability masses at the bounds.

In this framework, a transformation is employed so that transformed data can be modeled with cen-

sored Normal variables. Two types of models are proposed: a simple autoregressive model and a more

advanced conditional parametric autoregressive model, for which wind direction is the variable condi-

tioning the wind power dynamics. In both cases, the model parameters are adaptively and recursively

estimated, time-adaptativity being the result of exponential forgetting of past observations. The prob-

abilistic forecasting methodology is applied at the Horns Rev wind farm in Denmark, for 10-minute

ahead probabilistic forecasting of wind power generation. Probabilistic forecasts generated from the

proposed methodology clearly have higher skill than those obtained from a classical Gaussian assump-

tion about wind power predictive densities. Corresponding point forecasts also exhibit significantly

lower error criteria.

Keywords: bounded time-series, logit transformation, mixture model, probabilistic forecasting, wind

power
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1 Introduction

Over the past few decades, one of the major breakthroughs in forecasting meteorological variables

for applications such as weather derivatives and renewable energy generation, comes from the tran-

sition from point to probabilistic forecasting1. This phenomenon is not only observed in the mete-

orological literature, as probabilistic forecasts are also becoming customary products in economics

and finance 2–4 or more generally in management sciences. For the case of continuous variables

e.g. wind power, they optimally take the form of predictive densities — equivalently referred to as

predictive distributions or density forecasts, giving the full probability density function of the ran-

dom variable of interest for a set of look-ahead times. It has been demonstrated that the optimal

management and trading of wind power calls for probabilistic forecasts5. This actually follows from

a more general result which is that for a large class of decision-making problems, optimal decisions

directly relate to quantiles of conditional predictive distributions, as discussed by Gneiting6 for

instance.

When forecast horizons are further than a few hours ahead, predictive densities of wind power

generation may be issued using either dynamic post-processing of ensemble forecasts of meteoro-

logical variables 7,8, or statistical models generating probabilistic forecasts based on point predic-

tions, and conditional to the predicted weather condition9,10,21. Forecast horizons in the range of

hours to days have until recently been those attracting the most interest, since corresponding to the

decision-making needs when participating in European day-ahead electricity markets 12,13. In par-

allel today, it is recognized that wind power producers and traders need shorter-term forecasts as

the gate closure of electricity markets is shortening or rolling intra-day markets appearing. On the

more technical side, the wind farm controllers themselves can be optimal only if relying on model

predictive control methodologies, with temporal resolution of a few minutes14. And if considering

the Transmission System Operator (TSO), the significant penetration of wind generation in the

electricity mix makes that short-term forecasts (with horizons of up to 15 minutes) are essential for

the optimal operation of reserves employed, in order to achieve an economic and safe operation of

the electricity network15.

For such short look-ahead times, purely statistical models taking advantage of meteorological and

physical expertise on the problem at hand are to be preferred. Examples of recent works taking

that direction, focusing on the wind (speed and potentially direction) variable, include the regime-

switching space-time method introduced by Gneiting et al. 16, or the multivariate wind vector mod-

els of Hering and Genton17. Some other works have been focusing on capturing changes in the wind

field dynamics using e.g. Markov-switching approaches 18. In parallel, Pinson and Madsen19 dis-

cuss the benefits of Markov-switching autoregressive models for point and probabilistic forecasting

of wind power generation at look-ahead times of 10-minutes ahead.

Of the wind power variable characteristics, certainly the most crucial one is that this variable is

nonlinear and bounded. The power curve converting wind to electrical power indeed takes the form

of a sigmoid with minimum production zero, and maximum one the nominal capacity (denoted Pn)

of the wind turbine, wind farm, or wind energy portfolio considered. In the following, wind power

measurements and forecasts are normalized by Pn, and we thus say that wind power generation

takes value in the unit interval [0, 1]. Whatever the temporal resolution of wind power time-series,

or the forecast horizon considered, a consequence of the above is that conditional predictive densi-

ties cannot be Gaussian, and also that their higher-order moments may be directly related to their

mean, and potentially to some external signal. These two points have already been discussed in a
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number of publications20–22. To our knowledge however, there exists no work in the literature where

these aspects have been appropriately taken into consideration. Another important characteristic

of the wind power generation process is that similarly to other meteorology-related processes, its

dynamics are nonstationary in the sense that they smoothly vary over time, at the time scales of

months, seasons and years16,19,23,24, with features that cannot be easily accounted for in the models

themselves in a parametric framework. This can instead be handled in a nonparametric fashion

with e.g. sliding estimation windows or exponential forgetting schemes. For illustrative purposes,

Figure 1 depicts an episode with 2 days of successive 10-minute average power output at the Horns

Rev offshore wind farm which will be the focus of the application and results part of the paper.
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FIGURE 1: Episode of 2 days (288 time-steps, with a temporal resolution of 10 minutes) with wind power

measurements at the Horns Rev wind farm in Denmark.

In order to account for these various characteristics, we propose here a methodology for the prob-

abilistic forecasting of wind power time-series. Predictive densities take the form of discrete-

continuous mixtures consisting of a generalized logit-normal distribution with potential concentra-

tion of probability mass at the bounds of the unit interval [0, 1]. These predictive densities are fully

characterized by a location and a scale parameter only. The generalized logit-normal distribution is

originally introduced in the present paper, as a generalization of the logit-normal distribution ex-

tensively described and discussed by Aitchison and Shen25 for instance. Such distribution directly

relates to a transformation of original wind power data through a generalized logit transform. Both

the transformation and the distribution are introduced in Section 2, while their related proper-

ties are discussed. We claim that such family of transformations and corresponding distributions

should be considered as a generic feature in the modeling and forecasting of wind power genera-

tion, whatever the temporal resolution and look-ahead times considered. In the modeling approach

introduced in Section 3, the transformed variable can be modeled with censored Gaussian distri-

butions. Both model building and estimation aspects are subsequently dealt with, with focus on

simple autoregressive (AR) models or more advanced conditional parametric autoregressive (CP-

AR) models. These models are considered for the sake of example, and could be further improved

in the future, accounting for e.g. regime-switching aspects or additional seasonalities. The method-

ology is then applied in Section 4 for the probabilistic forecasting of wind power generation at the
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Horns Rev wind farm in Denmark, with look-ahead times of 10-minutes ahead. The paper ends

with concluding remarks in Section 5.

2 The Generalized Logit transformation and the General-

ized Logit-Normal distribution

Probably the most employed general class of transformations is that introduced by Box and Cox26,

commonly known as Box-Cox or power transformations. For an original time-series {xt}, its trans-

form is given by applying

yt =

{

(xν
t − 1)/ν, ν 6= 0

log(xt), ν = 0
(1)

to each element xt of the original time-series. ν is commonly taken equal to 0, corresponding to a

logarithmic transformation, or estimated from the data in a maximum-likelihood framework. The

aim of employing such transformation is to have {yt} Gaussian, or at least “more Gaussian” than

the original time-series {xt}. It is indeed the case that one then works in a Gaussian framework

for the modeling and forecasting of the transformed time-series {yt}, even though this assumption

may still not be completely correct27. It is certainly more correct though than employing a Gaussian

framework directly on the original time-series {xt}. In the following, we write {Xt} and {Yt} the

stochastic processes whose realizations define the time-series {xt} and {yt}.

The logistic (also called logit) transformation has originally been suggested by Johnson28, and con-

sequently used e.g. for bounded economic variables29. Such transformation relates to the idea of

employing logit-normal distributions for modeling the original effect. Indeed if the transformed

variable is Gaussian, the original variable is then distributed logit-normal. Logit-normal distribu-

tions have been introduced and thoroughly examined by Aitchison and Shen25. Wallis29 actually

goes further, and argues that logistic transformations should be used as a general transformation

even if the original time-series considered are not bounded. Both power and logistic transforma-

tions are part of the more general family of transformations described and discussed by Aranda-

Ordaz30. Similarly, Aitchison and Shen25 raises the question of the necessity of widening the class

of logit-normal distributions. It will be explained below how the wind power modeling and forecast-

ing applications actually call for a generalization of the logit-normal distribution, and thus also a

generalization of the logit transform.

Considering the fact that wind power is nonlinear and bounded, the logistic transformation is obvi-

ously appealing. It is known however that the sigmoid corresponding to the power curve commonly

has a different shape of its inflection for low and high power values. In such a case it appears

more appropriate to employ a generalized version of the logistic function allowing for asymmetry,

inspired by Richards31. We propose the name of generalized logit (GL) transformation, and denote

that transformation by γ. Similarly to the above, write {xt} the original time-series, and {yt} its

transform. The GL transformation γ is defined by

yt = γ(xt; ν) = ln

(

xν
t

1 − xν
t

)

, xt ∈ (0, 1) (2)
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while its inverse transformation, referred to as inverse generalized logit (IGL), is defined as

xt = γ−1(yt; ν) = {1 + exp(yt)}−1/ν , yt ∈ R (3)

The GL transformation generalizes the logistic one by just adding one shape parameter ν, the

interest of which will be detailed below when discussing general properties of the GL tranform.

Roughly speaking, it permits to account for the fact that the nonlinearities and bound effects may

not be symmetric. For ν = 1, one retrieves the more classical logit transformation. Note that the

GL transformation can be employed whatever the bounds of the closed intervals, as the original

time-series could initially be rescaled in order to take values in [0, 1] instead. Equivalently, one

could also use the most general form of the Richard’s function31, which allows for any bound for the

closed interval.

Our motivation for introducing the GL transformation for nonlinear and bounded variables such

as wind power generation comes from the results reported in various analyses of statistical dis-

tributions of wind power forecast errors. Under the rationale of minimization of a quadratic loss

function, a point forecast for Xt+k issued at time t is defined as the conditional expectation µX,t+k

of the random variable Xt+k given the information set at time t. Several authors, e.g. 20 and21,

have observed that the standard deviation σX,t+k of the distributions of forecast errors was directly

linked to its conditional expectation µX,t+k, and this whatever the time t, the forecast horizon k

or the forecast model employed. This hence indicates that in a general manner, appropriate pre-

dictive densities of wind power generation should account for and reproduce this observed feature.

Recently, some models for this relationship have been proposed8,22,32. It is actually that the general

form of the model linking µX,t+k and σX,t+k may be written as

σX,t+k = αµν
X,t+k(1 − µν

X,t+k) (4)

One observes from (4) that we employ a scale and shape parameter denoted by α and ν, respectively,

where ν already appears in the definition of the GL transformation (2). The reason why we do so

will be detailed below. First, let us illustrate in Figure 2 how this model linking µX,t+k and σX,t+k

evolves as one varies the shape and scale parameters ν and α. In Figure 2(a), the shape parameter

is set to ν = 2, and the scale parameter α takes values in {1, 1.5, 4}. The model has the same shape

and is simply linearly scaled. In contrast in Figure 2(b), it is then the scale parameter that is fixed

to α = 1, and the shape parameter taken in {0.4, 1, 2}. This parameter controls the asymmetry of

the model instead, being positively skewed for ν < 1 and negatively skewed for ν > 1.

Given the variance σ2
X,t+k of the random variable Xt+k of interest, that of its transform Yt+k =

γ̃(Xt+k), denoted by σ2
Y,t+k, can be approximated by

σ2
Y,t+k ≃ dγ̃

dx
(µX,t+k)σ2

X,t+k =
(

µν
X,t+k(1 − µν

X,t+k)
)−2

σ2
X,t+k (5)

as long as σ2
X,t+k is small, which is the case for predictive densities of wind power generation at

horizons of few minutes to few-hours ahead.

It follows from (5) that if (4) is the true model that links the standard deviation σX,t+k and the condi-

tional expectation µX,t+k, then employing the GL transform with the values of α and ν in (4) makes

that the corresponding predictive distribution for Yt+k, issued at time t and for lead time t+k, has a

variance that can be approximated by α2, thus explaining the appellation of scale parameter. This
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FIGURE 2: The influence of the scale (α) and shape (ν) parameters on the relationship between mean and

standard deviation of predictive densities.

result is independent of t, k, or of any covariate. This scale parameter α may, however, be a function

of t, k and of some covariate, since it is expected that the characteristics of predictive distributions

will change with the look-ahead time and the prevailing weather conditions. It may also be that ν is

a function of t if it is thought that the transformation will be nonstationary. This would complicate

the problem in a somehow unnecessary manner, and is hence not done here. Consequently if not

considering the higher moments of Yt+k, one may propose a second order representation of Yt+k

as Yt+k ∼ N (µY,t+k, σ2
Y,t+k), hence being a function of a location parameter µY,t+k and of a scale

parameter σY,t+k. Similarly to employing a Box-Cox transformation, it may be that a Gaussian as-

sumption for predictive densities for Yt+k is a not a perfect assumption when applied to real-world

data, though it may have less consequences than making an inappropriate Gaussian assumption

for predictive densities of the original Xt+k. This will be illustrated and discussed when presenting

application results in Section 4.

In a general manner, even if (4) is not the true model linking mean and standard deviation of

wind power predictive densities, if there is additional conditional heteoroskedasticity, or an effect

of some covariate, the GL transformation introduced here will permit to treat the transformed

time-series {yt} in a simpler framework than if directly working on modeling and forecasting the

original {xt}. We introduce the generalized logit-normal distribution, denoted by Lν(µ, σ2) and

referred to as GL-Normal distribution, where µ and σ are the location and scale parameter of the

corresponding Normal variable after transformation through the GL-transformation with shape

parameter ν. In the present case, considering that predictive densities for the original effect Xt+k

can be modeled with GL-Normal distributions then translates to having predictive densities for

Yt+k modeled with Gaussian distributions. Generalizing the expression of the probability density

function of a univariate logit-normal variable as expressed in by Aitchison and Shen25 or Frederic

et al. 33, that for the GL-Normal variable writes

f(x) =
1

σ
√

2πxν(1 − xν)
exp

{

−1

2

[

γ(x; ν) − µ

σ

]2
}

, x ∈ (0, 1) (6)

We do not discuss here the moments of a variable that would be distributed GL-Normal. One could
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carry out theoretical developments in the spirit of Aitchison and Shen25 to derive some properties

and perform comparisons with the class of logit-normal and Dirichlet distributions. It could also be

envisaged to perform similar numerical developments as in Frederic et al. 33 in order to visualize

the moments of GL-Normal distributions as a function of their location and scale parameters. Note

finally that the question of the bounds has been left aside here, but will be dealt with below instead

when introducing the modeling and estimation approaches.

3 Modeling and estimation approaches

Our main objective is to show the advantages of modeling and forecasting wind power time-series

with GL-Normal variables, since permitting to model complex bounded distributions while allow-

ing to project ourselves in a Gaussian modeling framework. As a consequence, the developments

gathered below concentrate on fairly simple dynamic models only. They could however be extended

to account for additional effects e.g. conditional heteroskesdaticity or regime-switching dynamics,

though it would clearly call for modification of the estimation methods described. GL-Normal vari-

ables can also be employed for modeling predictive densities for further look-ahead times (i.e. from

few hours to few days ahead), for which appropriate statistical approaches will account for nonlin-

ear transformation of the dynamic information provided by meteorological predictions.

To give a brief sketch of our approach, we propose to model predictive densities of wind power

generation as discrete-continuous mixtures of GL-Normal variables and of probability masses at

the bounds of the unit interval. Autoregressive (AR) and conditional parametric autoregressive

(CP-AR) models are proposed for the location parameter of the GL-Normal variables. Their scale

parameter is seen as unconditional in the former case, or as a nonlinear function of the covariate

conditioning the AR dynamics in the latter one. Only AR types of dynamics are considered, as

earlier results on similar offshore data suggest that such dynamics for the mean are appropriate19.

Since we have insisted on the fact dynamic models for wind power generation should be seen as

slowly varying, it is proposed here to adaptively and recursively track model coefficients, where

adaptivity is based on exponential forgetting of past observations.

3.1 The general form of predictive densities

For the sake of simplicity, some might argue that the assumption such that wind power generation

never takes the value of 0 or 1 is appropriate, so that this variable may be directly seen as being

GL-Normal distributed. In practice however, already owing to the finite precision and rounding

of measurement devices it is clear that 0 and 1 values will be present in collected data. In addi-

tion, since wind power generation is null for wind speed values lower than 3-4 m.s-1 (the cut-in

wind speed) and equal to nominal capacity for wind speed values above 14-18 m.s-1 (the rated wind

speed), it is expected that a fair share of genuine 0 and 1 values will be observed. Note that the

values mentioned for cut-in and rated wind speeds are not general values and may vary depending

on the turbines and wind power portfolio considered. The phenomenon such that wind power gener-

ation has significant observed frequencies of zero and maximum production is general though. This

also implies that the ν-parameter of the GL transformation will be dependent on the case-study

considered, and should hence be selected based on available data.

Based on the point made above, it is fair to write the predictive density for the wind power genera-
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tion Xt+k at time t + k as

Xt+k ∼ ω0
t+kδ0 + (1 − ω0

t+k − ω1
t+k)Lν(µt+k, σ2

t+k) + ω1
t+kδ1 (7)

with δ0 and δ1 dirac functions at 0 and 1, respectively, representing the potential concentration of

probability mass at the bounds of the unit interval. To be consistent, one has

ω0
t+k, ω1

t+k ∈ [0, 1], ω0
t+k + ω0

t+k ∈ [0, 1]

Equivalently if considering Yt+k the GL-transform of Xt+k, the form of its predictive density is given

by

Yt+k ∼ ω0
t+kδ−∞ + (1 − ω0

t+k − ω1
t+k)N (µt+k, σ2

t+k) + ω1
t+kδ+∞ (8)

Again owing to the finite precision of measurements and to rounding, it is not expected that the

time-series {yt} actually takes all possible values in R. It is more the case that one can consider

real bounds on the range of potential values for yt, i.e. yt ∈ Dy = [γ(ǫ; ν), γ(1 − ǫ; ν)], where ǫ is in

the order of measurements precision, say ǫ ≤ 10−2. One can consequently rewrite (8) as

Yt+k ∼ ω0
t+kδγ(ǫ;ν) + N (µt+k, σ2

t+k)1D̄y
+ ω1

t+kδγ(1−ǫ;ν) (9)

where D̄y is the open of Dy and 1D̄y
the indicator function for this open interval, i.e.

1D̄y
=

{

1, y ∈ D̄y

0, otherwise
(10)

One notices that the (1 − ω0
t+k − ω1

t+k) weight does not appear in (9). This is due to the fact that

the predictive density for Yt+k takes the form of a censored Normal instead. This allows us to

straightforwardly derive the expressions for the weights ω0
t+k and ω1

t+k, which are indeed given by

ω0
t+k = Φ

(

γ(ǫ; ν) − µt+k

σt+k

)

, ω1
t+k = 1 − Φ

(

γ(1 − ǫ; ν) − µt+k

σt+k

)

(11)

with Φ the cumulative distribution function of a standard Normal variable. This formulation of pre-

dictive densities of wind power generation as a discrete-continuous mixture is fully characterized

by the location and scale parameters µt+k and σt+k only. Note that the above proposal is somehow

similar to the coarsening approach proposed by Lesaffre et al. 34 for the modeling of outcome scores

in [0, 1] using classical logit-normal distributions.

3.2 Autoregressive dynamics

In the case of AR dynamics, the model for the location parameter µt+k writes

µt+k = θ
⊤
ỹt (12)

where

θ = [θ0 θ1 . . . θl]
⊤, ỹt = [1 yt . . . yt−l+1]

⊤

8



while the scale parameter is defined as a constant, i.e.

σ2
t+k = β (13)

The maximum lag l can be determined after examining the autocorrelation and partial autocorrela-

tion functions of the {yt} time-series, by minimization of either Akaike Information Criterion (AIC)

or Bayesian Information Criterion (BIC), or finally through a cross-validation exercise.

The {yt} time-series corresponds to realizations of censored Normal variables. It may therefore be

argued that the vector of AR parameters θ may be estimated with either Least-Squares (LS) or

Maximum-Likelihood (ML) estimation techniques. In the case of censored Normal variables, the

LS-estimator for the location parameter is certainly more subject to estimation bias than the ML-

estimator. Experiments on wind power generation data has showed us that the LS-estimator of

the location parameter was acceptable, while having the advantage of simplicity of implementation

if compared with the ML-estimator. This is the reason why we only consider and describe the

LS-estimator below.

We explained that the models employed for characterizing the wind power generation dynamics

should be seen as slowly varying. This argument is supported by a number of publications e.g.
16,17,19,24, and we thus do not develop on that aspect. For the case of AR dynamics for wind power

generation, the parameters θ can be adaptively and recursively estimated with a Recursive Least

Squares (RLS) method35,36. In parallel, the scale parameter σt+k can also be easily tracked within

this RLS framework. Recursive estimation offers the advantage that only the last available mea-

surements are used at each time step for updating the model parameters. This contrasts with the

more computationally intensive idea of employing a sliding window, as done by Gneiting et al. 16 or

Hering and Genton 17, for which a full estimation is performed on a bulk of data at each time step.

Imagine being at time t, and let us introduce the following time-dependent objective function to be

minimized at that time,

St(θ) =
t

∑

i=1

λt−i
(

yi − θ
⊤
ỹi−k

)2

(14)

where λ is the forgetting factor, λ ∈ (0, 1), allowing for exponential forgetting of past observations,

for which the corresponding effective number of observations is defined as nλ = (1 − λ)−1. The

value of the forgetting factor is typically slightly below 1. The LS-estimate θ̂t of the AR-dynamics

parameter at time t is then defined as

θ̂t = argmin
θ

St(θ) (15)

In a recursive framework, the formulae for updating the LS-estimate of θ based on the newly avail-

able information at time t summarizes to

R̂t = λR̂t−1 + ỹt−kỹ
⊤

t−k (16)

θ̂t = θ̂t−1 + R̂−1
t ỹt−kεt (17)

where εt is defined as εt = yt − θ
⊤

t−1ỹt−k. For an extensive description of RLS estimation schemes,

we refer to Ljung and Søderström35 and Madsen36.
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In parallel, the formula for updating the constant estimate β̂t that defines the scale parameter at

time t is naturally given by an exponential smoothing scheme

β̂t = λβ̂t−1 + (1 − λ)
(

yt − θ
⊤

t ỹt−k

)2

(18)

The model (4) linking location and scale parameters of predictive densities may not perfectly be

the true model for this relationship, especially close to the bounds of the unit interval. In view

of (5), one sees that such discrepancy will clearly get more amplified as the location parameter gets

closer to these same bounds — i.e. owing to small denominator values. Therefore in order to have a

robust estimation of the scale parameter, it is proposed here to introduced a weight function in the

exponential smoothing scheme of (18). This weight function is meant to downweight observations

as they get closer to the bounds of the unit interval, while respecting the assumed model linking

location and scale parameters. This is why the weight function has a shape similar to that of

model (4), also illustrated in Figure 2. It however takes a maximum value of 1. The weight wt is

given by

wt = 4θ
⊤

t ỹt−k

(

1 − θ
⊤

t ỹt−k

)

(19)

while the robust version of the exponential smoothing scheme of (18) writes

β̂t = λ∗

t β̂t−1 + (1 − λ∗

t )
(

yt − θ
⊤

t ỹt−k

)2

(20)

with

λ∗

t = 1 − (1 − λ)wt (21)

It appears appropriate to initialize θt so that the AR dynamics for the location parameter corre-

sponds to a random walk model, while βt may be initialized with a small value or alternatively

with an expert guess. In parallel, the inverse covariance matrix R̂t can be initialized as an identity

matrix times a small constant, yielding a small load on its diagonal. Only the updating formula (16)

is used in the recursive estimation procedure as long as R̂t is not invertible. When that point is

reached, both (17) and (20) are also employed at each time step for updating the models for the

location and scale parameters.

3.3 Conditional parametric autoregressive dynamics

If considering CP-AR dynamics instead, the model for the location parameter µt+k is changed to

µt+k = θ(ω)⊤ỹt (22)

where

θ(ω) = [θ0(ω) θ1(ω) . . . θl(ω)]⊤

while ỹt is defined as in (12). This translates to saying that the vector of constant parameters θ

in (12) is replaced by coefficient functions of some covariate, these functions being of unknown form.

10



In parallel the model for the scale parameter then becomes

σ2
t+k = β(ω) (23)

also implying that this parameter is an unknown function of this same covariate. The maximum

lag l in the dynamic model above can be chosen similarly to that for the more simple AR dynamics.

The above model could be extended to the case of several covariates influencing the dynamics of the

location parameter, as well as the scale parameter. Hastie and Tibshirani37 warn us about the fact

that the dimensionality of u should be kept low, say, below 3. Recent developments on conditional

parametric and the more general varying-coefficient models have recently been reported by Fan

and Zhang38.

One may think of a number of meteorological variables that would impact the AR dynamics for the

location parameter, as well as the scale parameter itself. The most obvious variable however is wind

direction, as it directly induces shadowing effects within the wind parks, thus affecting the dynamic

response of a wind park to meteorological conditions. It is also known that for a large number of

interesting environments for installing wind parks (offshore, coastal areas or complex terrain to-

pographies for instance), wind direction directly influences the wind speed dynamics themselves24.

We will denote by ωt the wind direction measurement at time t, ωt ∈ [0, 2π].

It is chosen to estimate the coefficient functions θ(ω) and β(ω) in a nonparametric framework,

i.e. without assuming a shape for these functions. The method for their adaptive and recursive

estimation combines local kernel regression and RLS with exponential forgetting. The estimation

procedure described below is in the spirit of Nielsen et al. 39 and Pinson et al. 40, to which the reader

is referred to for more details. Local kernel regression is the simplest version of local polynomial

regression41. The only assumption on the coefficient functions is that they are sufficiently smooth

to be locally approximated with constants. The estimation problem reduces to locally fitting linear

models at a number m of fitting points ω(j). Defining these fitting points is best done by using

information on the distribution of ω.

Let us focus on a single fitting point ω(j) only. The objective function to be minimized at each

time t consists of a modified version of that used for adaptive estimation of the AR-dynamic model

considered above. The estimate of the set of local coefficients at ω(j) and at time t is defined as

θ̂(j),t = arg min
θ(j)

t
∑

i=1

Λ(j),t(i)c(j),i

(

yi − θ
⊤

(j)ỹi−k

)2

(24)

where the weights c(j),i to be assigned to past observations are given by a Kernel function of the

form

c(j),i = T

( |ωi − ω(j)|
~(j)

)

(25)

In the above, |.| denotes a polar distance, being consistent with ω being a circular variable. ~(j) is

the bandwidth of the kernel assigned to ω(j). T may for instance be chosen as a tricube function as

in Cleveland and Devlin41,

T (v) =

{

(

1 − v3
)3

, v ∈ [0, 1]

0 , v > 1
(26)

11



In parallel in (24), Λ(j),t is the function that permits exponential forgetting of past observations, i.e.

Λ(j),t(i) =

{

λeff
(j),tΛ(j),t−1(i), 1 ≤ i ≤ t − 1

1 , i = t
(27)

λeff
(j),t is the effective forgetting factor for the fitting point ω(j). It follows the definition given by39,

which links λeff
(j),t and c(j),t so that

λeff
(j),t = 1 − (1 − λ)c(j),t (28)

where λ is the classical user-defined forgetting factor, λ ∈ (0, 1). This effective forgetting factor

ensures that old observations are downweighted only when new information is available.

A little algebra, which is skipped here since extensively covered by e.g. Nielsen et al. 39 or Pinson et

al. 40, yields the set of recursive formulae for the adaptive estimation of the local coefficients θ̂(j),t:

ε(j),t = yt − θ̂
⊤

(j),t−1ỹt−k (29)

R(j),t = λeff
(i),tR(j),t−1 + c(j),tỹt−kỹ

⊤

t−k (30)

θ̂(j),t = θ̂(j),t−1 + c(j),tR
−1
(j),tỹt−kε(j),t (31)

One sees that when the weight c(j),t equals 0 (thus meaning that the local estimates should not

be affected by new information), then one has θ̂(j),t = θ̂(j),t−1 and R(j),t = R(j),t−1. This confirms

the role of the effective forgetting factor, i.e. to downweight old observations, but only when new

information is available.

In parallel, one has to estimate β̂(j),t, the local constant that defines the scale parameter at time t

and at ω(j). As an extension to (20), it is given by

β̂(j),t = λ∗

(j),tβ̂(j),t−1 + (1 − λ∗

(j),t)
(

yt − θ
⊤

(j),tỹt−k

)2

(32)

with

λ∗

(j),t = 1 − (1 − λ)wtc(j),t (33)

wt still being defined by (19).

When starting the recursive process, the local inverse covariance matrices R(j),t, as well as the local

parameter estimates θ̂(j),t and β̂(j),t, can be initialized for all fitting points as in Section 3.2 for the

case of AR dynamics. The value of the parameter estimates θ̂t(ω) and β̂t(ω) for any ω can then be

obtained by interpolation through the estimated local parameters at the various fitting points ω(j)

(j = 1, . . . , m).

4 Application and results

Focus is given here to the application of the methodology and models described above to the test

case of an offshore wind farm, for 10-minute ahead forecasting of wind power production. Such

lead time corresponds to one-step ahead forecasts in view of the temporal resolution of the time
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series considered. Note though that the methodology has been introduced for general direct k-step

ahead forecasting. Indeed, one could work along the lines of Gneiting et al. 16 for instance, and build

models for direct 2-step ahead forecasting. It is known that purely statistical models for wind power

forecasting are in order for forecast horizons up to 6-8 hours ahead, while for further look-ahead

time dynamic information from meteorological forecasts should also be considered as input12,13.

The test case and available data are introduced in a first stage, followed by a detailed description

of the model configuration and estimation setup employed. We also discuss the way forecasts are

evaluated, as well as the benchmarks considered. Application results and related comments are

finally gathered.

4.1 Test case and available data

We consider the case of the offshore wind farm located at Horns Rev, off the west coast of Jutland

in Denmark. This wind farm has a nominal capacity Pn of 160 MW. The original wind and power

measurement data includes raw one-second measurements for each wind turbine. Focus is given

to the total power output, normalized by Pn, and to the average wind direction for the wind farm.

A sampling procedure has been developed in order to obtain time-series of 10-minute wind speed,

direction and power averages. This averaging rate makes that the very fast fluctuations related

to the turbulent nature of the wind disappear and reveal slower fluctuations at the minute scale.

Because there may be some erroneous or suspicious data in the raw measurements, the sampling

procedure has a threshold parameter τv, which corresponds to the minimum percentage of data

that need to be considered as valid within a given time interval, so that the related power (or wind

direction) average is considered as valid too. The threshold chosen is τv = 75%. The available raw

data is from 16th February 2005 to 25th January 2006, consisting of 49536 data points. As a result

of the averaging procedure, the wind direction and power generation dataset consists of 41651 valid

data points.

4.2 Model configuration, estimation setup and benchmarking

From the available data, two periods are defined, the first one being used for identification (and

initial training) of the statistical models, and the second one for evaluating what the performance

of these models may be in operational conditions. These two parts of the dataset are referred to as

learning and evaluation sets. The first 15120 data points (with 11968 valid ones) are employed as

the learning set, exactly covering the months from February to May 2005. The remainder of the

dataset, covering a period from June 2005 to January 2006 is used for out-of-sample evaluation of

1-step ahead forecast performance. This evaluation set contains 34536 data points, including 29683

valid ones.

Over the learning period, a part of the data is used for one-fold cross validation (the last 9000

points) in order to select an optimal autoregressive order for the dynamic models, the values for

forgetting factors, the shape parameter of the GL-transformation, as well as the fitting points and

bandwidths for the case of the conditional parametric models. Actually, instead of considering the

forgetting factor itself, it is preferred to use the corresponding effective number of observations nλ.

It allows one to better appraise the size of the equivalent ‘sliding window’ in the adaptive estimation

of the dynamic model parameters. In parallel, the censoring parameter ǫ is arbitrarily set to ǫ =
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0.001, corresponding to the resolution of the power measurements. Selection of optimal values for

the model structure and parameters nλ and ν is done in a trial-and-error manner, by evaluating

the results obtained from a set of different setups. For more information on cross validation, we

refer to Stone42. The criterion to be minimized over the cross-validation set is the Continuous

Rank Probability Score (CRPS) of 1-step ahead density forecasts. The CRPS is a common proper

skill score used for the evaluation of density forecasts43. For the case of the CP-AR dynamics, the

bandwidth values are selected similarly.

Focusing on the order of the various models first, results from Pinson and Madsen19 suggest that a

maximum lag l = 3 is sufficient for capturing the dynamics in offshore wind power fluctuations with

a 10-minute resolution, at the Horns Rev wind farm. We indeed verified here that for all models

considered a significant decrease in 1-step ahead CRPS values can be observed when augmenting

l up to l = 3, and that no further benefit is obtained by further increasing the value of l. Applying

a parsimonious model principle, we then decide to concentrate on models of order l = 3 only. In

all cases, the AR models are initialized as simple random walk models, with very low variance of

predictive densities.

In the case of the GL-Normal densities and AR dynamics, one may consider the selection of nλ and

ν to be performed jointly or independently. It has been observed for the data of the present case-

study that employing both ways yielded similar results. We thus present them below in Figure 3 as

if nλ and ν were optimized one after the other, independently. More precisely, Figure 3(a) depicts

the variations in 1-step-ahead CRPS for ν fixed to its optimal value, and with nλ varying between

100 and 10.000, with steps of 100 observations. Similarly, Figure 3(b) shows the evaluation of

the 1-step-ahead CRPS for nλ fixed to its optimal value, and with ν varying between 0.2 and 5,

with increments of 0.2. The overall minimum 1-step-ahead CRPS value on the cross-validation

set is obtained for nλ = 2500 and ν = 3.2. Figure 3(b) clearly shows the interest of introducing

the generalized form of the logit transformation, since a significant decrease in CRPS is seen when

considering negatively-skewed mean-variance models, i.e. for ν > 1 (see Figure 2(b) and related text

in Section 2). One notices though that our proposal probabilistic forecasting methodology seems to

be fairly robust with respect to the choice of nλ and ν values, as the 1-step-ahead CRPS of predictive

densities does not vary much for nλ ∈ [2000, 4000] and for ν ∈ [2.5, 3.5].

Turning our attention to the GL-Normal predictive densities with CP-AR dynamics, an exercise

similar to that performed above led to the same values for nλ and ν, i.e. nλ = 2500 and ν = 3.2. In

addition here, the location of the fitting points and related bandwidth values for the local fitting

of coefficient functions have to be selected. It has been arbitrarily decided to use 16 fitting points,

since such number allows a fairly good coverage of potential wind directions values, while limit-

ing the computational power needed. The spreading of these fitting points has been performed in

view of the distribution of wind direction values over the learning period, i.e. such that there is the

same frequency of data between any two successive fitting points. Regarding the Kernel bandwidth

in (25), both fixed and nearest-neighbor bandwidths have been envisaged. The latter concept was

preferred, in order to be consistent with the idea introduced above, such that it would be more con-

sistent to respect the distribution of wind direction data when defining the fitting points. Following

Nielsen et al. 39, the nearest-neighbor bandwidth is defined by the share of the (wind direction)

data that should be covered by the Kernel attached to any single fitting point. This share is chosen

here to be 60% in order to obtain sufficiently smooth variations of the coefficient functions in the

CP-AR model. Smaller values have been tested, though not improving the forecast performance

of the model over the cross-validation set. The resulting setup for the fitting points and related
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FIGURE 3: Evolution of the 1-step-ahead CRPS of GL-Normal density forecasts of wind power generation based

on simple AR-dynamics. These results are obtained on the cross-validation set, as a function of the parameters

nλ and ν.

bandwidth values is depicted in Figure 4, along with the corresponding wind rose at Horns Rev. In

the polar representation of Figure 4(b), the polar coordinates give the location of the fitting points,

while the bandwidths values are given by the ordinate of the various points. It is visually straight-

forward to recognize that less fitting points and higher bandwidth values are present in areas with

less data available.
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(b) fitting points and related bandwidth values

FIGURE 4: Wind rose, fitting points and related bandwidths values based on the distribution of wind direction

values over the learning set. All values are in degrees, following the trigonometric convention.

As a basis for the evaluation of the forecast performance of the methodology introduced in the pa-

per, two types of benchmarks are considered. First of all, the persistence forecast method, based

on a simple random walk model, is known to be difficult to outperform for such short look-ahead

times 12,13,19. In parallel, in order to demonstrate the interest of proposing GL-Normal predictive

densities against the more classical Gaussian framework approach, the other benchmark consid-

ered is based on censored Gaussian predictive densities, with AR dynamics for the location pa-

rameter, a constant scale parameter, these parameters also being adaptively and recursively esti-
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mated. For this benchmark, the optimal value found for the effective number of observations nλ is

nλ = 2000.

4.3 Results and comments

A fully probabilistic approach to forecast evaluation is employed. By that is meant that focus is

given to evaluating the quality of predictive densities, including their reliability and overall skill,

as well as to assessing the quality of some point forecasts that can be extracted from such predictive

densities. Following the point of Gneiting et al. 6 among others, one should extract the optimal point

forecasts from predictive densities based on the target evaluation score. Indeed, the median of

predictive densities should be selected if the target evaluation score is of the Mean Average Error

type (abbreviated MAE, or NMAE for its normalized version). Similarly, if the target score is of

quadratic nature like the Root Mean Square Error (RMSE, or NRMSE for its normalized version),

the optimal point forecast to be extracted is the expectation of predictive densities.

In view of these aspects, let us focus first on the quality of point forecasts related to the median

and expectation of predictive densities, since the corresponding NMAE and NRMSE scores appear

to be the most employed ones in the wind power forecasting literature12,13,44. Owing to the length

of our evaluation set (approximately 8 months), it is chosen to study these scores overall and on a

monthly basis. The evaluation results for point forecasts based on Persistence, the Gaussian AR

benchmark, as well as for the proposed GL-Normal AR and CP-AR predictive densities, are collated

in Table 1. Whatever the score considered, the Persistence benchmark indeed seems competitive:

the more advanced approaches only propose overall improvements up to 5%. This is due to the

inertia in local atmospheric processes at such temporal scales. Even though monthly fluctuations

can be observed in the NMAE and NRMSE scores, it appears that the Normal AR benchmark is

almost consistently outperforming Persistence, while being outperformed by the point forecasts

extracted from GL-Normal predictive densities. A slight gain in point forecast accuracy is also seen

if considering that the moments of GL-Normal predictive densities may vary as a function of wind

direction, as is the case with the CP-AR dynamic model.

TABLE 1: Monthly results related to the evaluation of potential point forecasts extracted from density forecasts:

focus on the median and the expectation.

(a) NMAE for the median (in % of the nominal capacity Pn)

Month Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. All

Persistence 2.40 2.43 2.50 2.50 2.40 2.59 2.61 2.47 2.48

Normal AR 2.34 2.42 2.48 2.43 2.33 2.64 2.63 2.45 2.45

GL-Normal AR 2.32 2.35 2.43 2.38 2.28 2.47 2.54 2.40 2.38

GL-Normal CP-AR 2.31 2.34 2.42 2.37 2.26 2.47 2.53 2.36 2.36

(b) NRMSE for the expectation (in % of the nominal capacity Pn)

Month Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. All

Persistence 3.98 4.68 4.47 4.66 4.17 6.23 4.76 4.28 4.70

Normal AR 3.80 4.56 4.36 4.46 3.97 6.00 4.62 4.20 4.54

GL-Normal AR 3.81 4.57 4.32 4.43 3.96 5.87 4.55 4.12 4.50

GL-Normal CP-AR 3.79 4.53 4.30 4.42 3.93 5.87 4.56 4.08 4.47
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In the second stage, we look at the quality of predictive densities, concentrating first on their overall

skill by employing the CRPS criterion, being a proper skill score. Extensive discussion about the

evaluation of probabilistic forecasts through the use of proper scoring rules can be found in Gneiting

et al. 43. For the case of predictive densities, employing Persistence as a benchmark does not make

much sense anymore, since an additional assumption on the variance of the random walk model

should be made. This could be performed either by assuming a second-order stationary process and

therefore estimating the variance based on the learning set, or alternatively by using an exponential

smoothing approach for tracking the variance of the process, as is done here for the various dynam-

ical models. Another benchmark that is often considered for the skill evaluation of probabilistic

forecasts of meteorological or weather-related processes is climatology, which is based on always

issuing the same unconditional predictive density built from all historical observations available.

It is known however that this benchmark is very easy to outperform for short-term horizons, and is

hence also not relevant. In contrast here, it is preferred to consider the Normal predictive densities

with AR dynamics as the benchmark, since necessarily outperforming Persistence in terms of the

CRPS criterion (otherwise, the optimal lag of the model found through the cross-validation exercise

would be 0). These Normal predictive densities also are a natural benchmark in view of our argu-

ment such that GL-Normal predictive densities should be preferred to Normal ones. Similarly to

the above, the CRPS criterion is calculated on a monthly basis as well as globally, and this for the

three competing types of predictive densities considered. The corresponding evaluation results are

gathered in Table 2.

TABLE 2: Monthly results related to the evaluation of density forecasts with a CRPS criterion (in % of the

nominal capacity Pn).

Month Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. All

Normal AR 1.85 2.01 1.99 1.98 1.87 2.31 2.23 1.97 2.01

GL-Normal AR 1.76 1.80 1.86 1.86 1.81 1.93 1.92 2.03 1.86

GL-Normal CP-AR 1.73 1.78 1.82 1.81 1.71 1.94 1.88 1.79 1.80

The improvements in terms of the CRPS criterion are significant when going from the Normal

predictive densities to GL-Normal predictive densities, in the order of 7.5%, and consistent over

the evaluation period. Like for the case of point forecasts in the above, an additional improvement

is observed if considering that the parameters of GL-Normal densities should be made a function

of wind direction. The overall decrease in the CRPS criterion when going from Normal predictive

densities with AR dynamics to GL-Normal predictive densities with CP-AR dynamics is of 10.5%.

We somehow expect that such improvement comes from the fact that GL-Normal predictive densi-

ties are more probabilistically reliable (or in other words, calibrated) than the Normal ones. Calibra-

tion of predictive densities can be assessed through the use of e.g. Probability Integral Transform

(PIT) histograms, as carried out by Gneitin et al. 16, or with reliability diagrams in the form of

quantile-quantile plots, as in Figure 5. Such reliability diagrams depict the observed proportions

of a set of quantile composing predictive densities of wind power generation against the nominal

ones. Here the set of quantiles is defined with a step of 5% in their nominal proportions. This

assessment of the reliability of calibration of the quantiles composing predictive densities directly

builds on their very definition: a quantile forecast with nominal proportion α should cover the

actual observation α% of the time.

One easily observes from Figure 5 that the benchmark Gaussian predictive densities introduce a

systematic and significant probabilistic bias in the probabilistic forecasts they provide. Predictive
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FIGURE 5: Evaluation of the reliability of predictive densities with reliability diagrams in the form of quantile-

quantile plots.
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FIGURE 6: Episode of 375 time-steps (with a time resolution of 10 minutes), with quantile forecasts of nominal

proportions 0.05 and 0.95, along with related normalized wind power measurements. These quantile forecasts

are extracted from the predictive densities with CP-AR dynamics.

densities seem to be too wide on average, since observed proportions are larger than the nominal

ones for nominal proportions above 0.5, and inversely for nominal proportions below 0.5. A simple

explanation for that is that the variance of predictive densities is not conditional to the level of wind

generation. Since wind generation is quite often at a medium level, the exponentially smoothed er-

ror variance used for the variance of predictive densities is fairly high. The variance is consequently

overpredicted when wind generation is at a low and high level. In contrast when employing GL-

Normal distributions for probabilistic forecasting, their natural mean-variance model make that
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predictive densities do not tend to be systematically over- or under-dispersed. This appears to be

valid for both types of dynamics considered for the mean of predictive densities.

For illustrative purposes, Figure 6 depicts an episode with 375 successive time-steps of quantile

forecasts (with nominal proportions 0.05 and 0.95) extracted from GL-Normal predictive densities

with CP-AR dynamics, along with the corresponding measurements. One can easily observe that

the predictive densities are naturally bounded between 0 and 1, and that the variance of GL-Normal

densities is larger when the conditional expectation of the process is at a medium level. It is harder

though to see that both dynamics and variance of the predictive densities are a function of the

wind direction onsite. In that objective, let us also have a look at the parameters of the CP-AR dy-

namic model, as well as at the variance of the predictive densities, at the end of the evaluation set.

These various quantities are represented in polar coordinates in Figure 7. For all parameters, some

significant variations as a function of the wind direction can be observed. Most interestingly, the

variance of predictive densities significantly vary as a function of ω, being higher for Westerly and

North-Westerly winds, and lower for the other sectors. This goes in line with the extensive wind

data analysis performed by Vincent et al. 24 and Vincent et al. 45 based on meteorological measure-

ments obtained at Horns Rev. It was indeed observed that wind fluctuations (and by extension wind

power fluctuations) tend to have a higher variance for winds coming from the North Sea, thus from

Westerly and North-Westerly directions, than if winds come from land.

5 Concluding remarks

A general approach suitable for probabilistic forecasting of wind power time-series has been pre-

sented. Predictive distributions take the form of discrete-continuous mixtures consisting of a newly

introduced GL-Normal distribution, with potential concentration of probability mass at the bounds

of the unit interval [0, 1]. It has been argued that GL-Normal distributions permit to account for the

nonlinear and bounded characteristics of wind power generation, and that they should be seen as a

basic feature of probabilistic forecasting methodologies whatever the forecast horizons considered,

from a few minutes to few days ahead. Being fully characterized by a location and a scale parameter

only (assuming that the shape parameter is a meta-parameter estimated once and for all from the

available data), these predictive densities allow for the proposal of fairly simple dynamic models.

These models can for instance, as is done here, account for the own autoregressive dynamics of the

wind power generation process, or the nonlinear effect of some covariate e.g. wind direction on these

dynamics.

These models could be extended in the future to account for additional effects or for additional co-

variates e.g. meteorological measurements or predictions, depending upon the temporal resolution

and look-ahead times of interest. The proposal of new dynamical models for probabilistic time-

series forecasting of wind power generation should be supported by some of the recent extensive

data analysis studies performed based on wind, wind power and other meteorological data. For

the case of this offshore site, the results from Pinson and Madsen19 indeed suggest that regime-

switching may be present in the time-series of wind power generation, while the results presented

in Vincent et al. 45 appear to confirm such a statement, with potential explanations being related to

local thermal effects and/or to the passage of rain fronts in the vicinity or over the site of interest.

Note that such regime-switching may affect the dynamics of both the mean and variance of predic-

tive densities. This regime-switching idea may also be relevant for onshore sites, going along the
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FIGURE 7: CP-AR model parameters as a function of the wind direction ω at the end of the evaluation set.

lines of the models proposed by 16 , in order to account for channeling and thermal effects.

From a more methodological point of view, the use of the proposed GL-Normal distributions may be

envisaged for the modeling of other nonlinear and bounded processes where it is expected or known

that the effects of the bounds is not symmetrical. If focusing on the wind power application, the
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shape parameter ν of GL-Normal distributions will surely be depending upon the site of interest.

In the general manner, this parameter will certainly depend on the process considered and should

be estimated from data. The cross-validation approach employed here appeared to yield acceptable

results. It may however be envisaged to develop a more rigorous framework based on e.g. maximum

likelihood estimation for selecting ν.
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