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Chapter 1

Introduction

This report describes a new method for obtaining detailed information about
the heat dynamics of a building using frequent reading of the heat consump-
tion. Such a procedure is considered to be of uttermost importance as a
key procedure for using readings from smart meters, which is expected to be
installed in almost all buildings in the coming years.

1.1 Background

Approximately one third of the primary energy production in Denmark is
used for heating in buildings. Therefore efforts to accurately describe and
improve energy performance of the building mass are very important. In
the present study a procedure for identification of suitable models for the
heat dynamics of a building is suggested. Such models are essential for dif-
ferent purposes, e.g. control of the indoor climate, accurate description of
energy performance of the building, and for forecasting of energy consump-
tion, which will be vital in conditions with increasing fluctuation of the energy
supply or varying energy prices. Grey-box models, which are based on prior
physical knowledge and data-driven modelling, are applied. A hierachy of
models of increasing complexity is formulated, based on the prior physical
knowledge, and a forward selection strategy enables the modeller to itera-
tively select suitable models of increasing complexity. The performance of
the models is measured using likelihood ratio tests, and the models are vali-
dated in both a statistical and physical context. A case study is described in
which a suitable model is identified for a one-floored 120 m2 building. The
result is a set of different models of increasing complexity, with which build-
ing characteristics such as: thermal conductivity, heat capacity of different
parts, and effective window area are estimated.
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Numerous approaches for modelling the heat dynamics of a building are
found in the litterature. They can be divided into deterministic methods
and stochastic methods. [4] gives an overview of computer-aided building
simulation tools presenting the approaches and applications. The present
study uses methods developed by [7] and [1] where stochastic differential
equations are applied.

1.1.1 FlexHouse

FlexHouse is an office building located at Risø DTU, the National Laboratory
for Sustainable Energy. The heat supply to FlexHouse is purely electrical.
The size of FlexHouse is approximately 120 m2 divided between eight rooms
and a toilet. The rooms have been numbered 0 to 7 to distinguish between
them. A layout of FlexHouse can be seen in Figure 1.1 where also the room
numbers are shown. Room 1–7 are arranged as small offices, each with

Figure 1.1: FlexHouse layout

a desk, office chair and a computer. The main room, room 0, has been
furnished with tables and chairs to accommodate meetings. Moreover room
0 contains a small kitchen with a refrigerator and a coffee machine. The
southern wall in the main room is dominated by a large window facade.
From the main room access to a toilet is possible, where the water heater is
placed. Electrical space heaters are mounted in room 1–6, whereas room 0
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and 7 each has two heaters mounted. FlexHouse is build from light building
materials. The building envelope consist of an outer layer of wood and an
inner layer of plaster, with insolation material in the middle. The house is
build upon poles and has an open space of air beneath. For more details of
Flexhouse see [10].

1.2 Outline

The physical heat transfer theory and modelling approach used in the study
are outlined in Chapter 2, followed by a presentation of the statistical tech-
niques used for parameter estimation in Chapter 3. The suggested model
identification procedure is described in Chapter 4 and in Chapter 5 the pro-
cedure is applied to find a suitable model for the heat dynamics of FlexHouse.
Finally the conclusions are drawn in Chapter 6.
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Chapter 2

Models for the heat dynamics
of a building

When modelling the heat dynamics of a building mainly two fundamental
aspects are considered. That is, how the heat transfer between the building
parts occur and by which entities of the building the model should be divided
into. This chapter starts by outlining the theory of heat dynamics and the
approximations made in the present models. In the last part of the chapter
the grey-box modelling approach is described.

2.1 Heat dynamics

Theory of heat dynamics describes the transfer of thermal energy. Thermal
energy is energy accumulated in a medium or object as vibration of molecules,
and heat transfer is the transfer of thermal energy from an object to its
surroundings. According to the second law of thermodynamics the thermal
energy transfer is always towards the area with lower energy, i.e. in the
direction of the negative temperature gradient. In this way the temperature
is always equalized between an object and its surrondings.

2.1.1 Heat Capacity

The capability of a given entity, that is a physical medium or object, e.g.
the air in a room or a wall in a building, to accumulate thermal energy is
described by its heat capacity C. When heat Q, which is the transferred ther-
mal energy is transferred to the object then the temperature T in the object
changes. The heat capacity of the object as a function of the temperature is
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defined as

C(T ) = mc(T ) =
dQ

dT
(2.1)

where m is the mass of the object, c(T ) is the specific heat capacity of the
material in the object. The unit of C is

[
J
◦C

]
. In the present models T varies

at normal room temperature and the dependency of T is therefore marginal,
and the linear approximation

C =
dQ

dT
(2.2)

is used.

2.1.2 Heat Transfer

Heat transfer takes place via one of the following fundamental mechanisms

• conduction

• convection

• radiation

Heat transfer is always from areas of higher temperature toward areas of lower
temperature and is in general a combination of the three stated mechanisms.

The heat transferred to a system per unit time is the heat flow

dQ

dt
= C

dT

dt
. (2.3)

where t is the time. This fundamental relation is utilized in the applied
method as the link between a model of heat flows, which are not directly
measured, and temperatures which are measured. Furthermore this makes
it possible to estimate the heat capacities, since the models are formulated
such that they are included as model parameters.

Conduction

When a homogeneous medium is conducting thermal energy, the heat con-
duction per area is proportional to the negative temperature gradient

1

A

dQ

dt
= −λ∇T = −λ

[
dT

dx
;
dT

dy
;
dT

dz

]
(2.4)
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where A is the surface area through which the heat flows, λ is the thermal
conductivity of the medium. The conductivity is in general dependent on
several physical factors, e.g. temperature and moisture, but is in the present
models assumed to be constant.

The change in temperature in the medium is described by the diffusion
equation. When no heat sinks or sources exist in the conducting medium,
the diffusion equation is given by

dT

dt
=

λ

cρ
∇2T =

λ

cρ

(
d2T

dx2
+
d2T

dy2
+
d2T

dz2

)
(2.5)

where ρ is the density of the medium.
When heat flow through a wall is modelled in the present models, it is

approximated to be in the normal direction of the wall only. This reduces
the heat conduction per area to

1

A

dQ

dt
= −λdT

dx
(2.6)

and the change in temperature to

dT

dt
=

λ

cρ

d2T

dx2
. (2.7)

Assuming a stationary condition of temperatures T1 and T2, which are the
temperatures on each side of the wall, then

dT

dt
= 0 ⇒ d2T

dx2
= 0 ⇒ dT

dx
= a =

T2 − T1

L
(2.8)

where a is some constant and L is the thickness of the wall. This is the heat
conduction used in the present models and is illustrated in Figure 2.1.

Finally the relation between the temperatures on each side of a wall and
the heat flow through the wall can be found from (2.6) and (2.8)

dQ

dt
=
λA

L
(T1 − T2) (2.9)

which is the heat flow from side 1 to side 2. Since the models are formu-
lated such that the heat flows between the entities in model are considered,
disregarding the area and thickness of the wall, the R-values are used

dQ

dt
=

1

R
(T1 − T2) (2.10)

where

R =
L

λA
(2.11)

is the resistance to heat flow between two entities, and has the unit
[ ◦C

W

]
.

Often the UA-values are used and this is simply the inverse of the R-value.
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Figure 2.1: Heat transfer through a medium assuming a constant tempera-
ture gradient.

Convection

Convective heat transfer is a mechanism of heat transfer occurring because
of bulk motion (observable movement) of fluids. As convection is dependent
on the bulk movement of a fluid it can only occur in liquids, gases and
multiphase mixtures. Convective heat transfer is split into two categories:
natural (or free) convection and forced (or advective) convection, also known
as heat advection

Heat transfer by convection is due to a combination of conduction and
mass transfer. When a fluid is adjacent to a solid material, heat is transferred
between them. If the fluid has a lower temperature than the solid, heat is
transferred from the solid to the fluid by conduction. This increases the
temperature of the fluid near the wall, which makes the fluid rise and this
is replaced by new fluid. The opposite can also happen where warm fluid
transfer heat to the solid which sinks down and is replaced by new fluid. The
first example is illustrated in Figure 2.2.

As mentioned convection is divided into two categories

• Forced convection

• Free convection

Forced convection is the result of forced fluid flow, e.g. with fans or pumps.
In free convection the fluid flows naturally due to density differences in the
fluid. For the heat transfer in FlexHouse only free convection will be regarded
as a mechanism for exchanging heat between the indoor air and walls.
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Figure 2.2: Resistance to heat flow by convection

The heat flow by convection is given by Newton’s law of cooling

dQ

dt
= hA(Ts − T∞) (2.12)

where h is the convection heat transfer coefficient, A is the area of the shared
surface, Ts is the temperature of the solid and T∞ is the temperature of the
fluid far from the solid. A typical value of h is 2-to-25 W/(m2 ◦C), for free
convection of gases.

Convection can be modelled similarly to conduction, by setting hA =
1/R, where R is the thermal resistance between the air and walls.

Radiation

Heat exchange by radiation occurs between all objects, having different tem-
perature, that are in optical contact, e.g. radiation is the mode by which heat
is transferred from the sun to the earth. The energy is emitted in the form of
electromagnetic waves and therefore does not need a medium to propagate
in. The energy emitted by a surface is given by

dQ

dt
= εσAsT

4
s (2.13)

where ε is the emissivity of the surface, σ = 5.670 ·10−8 W/(m2K4) is Stefan-
Boltzmann’s constant, As is the area of the surface that radiates the energy
and Ts is the surface temperature. In general heat transfer by radiation is very
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complex to calculate, since it involves integration over visible surfaces. The
heat exchange, however, between a body and a totally surrounding surface
can easily be calculated

dQ

dt
= εσAs

(
T 4

s − T 4
)

(2.14)

The solar radiation has a big impact on the temperature inside buildings
with windows and therefore solar radiation has to be a part of the heat
transfer model. The heat flow through a window due to solar radiation can
be described by

dQ

dt
= AwΦs (2.15)

where Aw is the effective window area and Φs is the outdoor solar radiation
in W/m2. The effective window area is equivalent to the area where the
radiation can pass unimpeded.

Ventilation

Ventilation cause heat transfer due to mass transfer. For most old buildings,
like FlexHouse, the house envelope is by no means airtight and the indoor
temperature is therefore very dependent on the speed and direction of the
wind. The total heat exchange due to ventilation is given by

dQ

dt
= vc (2.16)

where v is the amount of ventilated air and c is the specific heat capacity of
air.
As with convection, ventilation can either be free or forced. For the heat
transfer in FlexHouse only free ventilation is regarded as mode of exchanging
heat between the indoor and outdoor air assuming that the air-conditioners
are turned off. The amount of free ventilated air is very complex to calculate
and depends on many factors, e.g. leakage area, wind speed and direction.
Moreover the amount of ventilated air is by no means linear. In previous
research conducted in FlexHouse [2] the following relation was proposed for
the amount of ventilated air

v =
∑(

Al

√
A∆T +BV 2

)
(2.17)

where the sum is over all sides of the building, Al is the effective leakage area,
A is the stack coefficient, B is the wind coefficient, V is the wind component
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and ∆T is the temperature difference between the indoor and the outdoor
temperature.
Due to the age of FlexHouse, the house envelope cannot be assumed to be
airtight. [2] estimates the heat loss, in FlexHouse, due to ventilation to be
approximately 30% of the total heat loss. This heat loss has to be accounted
for in the model of the heat flow. In [2] Equation 2.17 is approximated to
be proportional to the temperature difference across the wall, i.e. ventilation
loss can be approximated with

dQ

dt
= k (Ti − Ta) =

1

R
(Ti − Ta) (2.18)

where Ti is the indoor air temperature, Ta is the outdoor temperature and R
is the resistance to heat transfer directly to the outside. This approximation
holds for low wind speed, but if the wind speed is high (> 5m/s) the heat
transfer becomes non-linear.

From this section it is seen that conduction, convection and ventilation,
approximately, can be modeled as a resistances against heat transfer. The
energy flow into the building due to direct solar radiation can be directly
calculated using Equation 2.15 if the outdoor solar radiation is known.

2.2 Modelling Approach

When formulating a model for the heat dynamics of a building, three dif-
ferent approaches can used. The most widespead approach is to formulate
a deterministic physical model of the building with which the heat transfer
can be simulated in different atmospheric conditions. This approach is called
white-box or transparent modelling. A white-box model is continuously for-
mulated. An overview of the vast amount of studies and computer software
based on this approach can be found in [4]. Generally the white-box models
require detailed building data, such as a 3D model of the dimensions of and
the materials in the building.

The simple approach, in terms of physical information needed about the
building, is black-box modelling. Here observed data, e.g. the outdoor tem-
perature etc., is used as input to a statistically derived model of some variable
e.g. the indoor temperature. A black-box model is discrete and thus con-
trary to a continuous white-box model. The advantage that little physical
information about the building is needed, is also the disadvantage since that
less interpretation of the underlying physical parameters can be achieved.
Examples of black-box regression models where UA-values of single family
houses are estimated can be found in [9]. The link between the grey-box
models and the regression models is described in Section 2.4.

12



The approach used in the present models is grey-box modelling, which is
a combination of white-box and black-box modelling. A grey-box model ex-
ploits the advantages of these two approaches by both including a continuous
physical part and a discrete stochastic part.

2.3 Grey-box model

A grey-box model is a model established using a combination of prior phys-
ical knowledge and statistics, i.e. information embedded in data. The prior
physical knowledge is described by a lumped model of the heat dynamics of
the building, which is formulated as a deterministic linear state space model
in continuous time. Since the model is lumped a noise term is added to de-
scribe the effects which is not described by the deterministic model. Thereby
a stochastic linear state space model in continuous time is formed. The in-
formation embedded in the observed data is used for parameter estimation,
by the formulation of a discrete measurement equation. Furthermore this
enables evaluation and tests of the performance of the model. For example
the dynamics that is not reflected by the model should optimally be white
noise, indicating that the lumped model is consistent with the observed heat
dynamics of the building.

2.3.1 Stochastic linear state space model

This section describes how the lumped model of the heat dynamics is formu-
lated as a linear state space model, by the use of the heat dynamics theory
described in Section 2.1. All the applied models approximate the interior of
the building to be one room, and thus that variations of the indoor tempera-
ture within the building are close to zero in all areas. The state space model
consists of: a set of state variables that describe the state of the system,
a set of inputs that affects the system, and a set of continuous differential
equations that describe the dynamics of the system. An RC-diagram of a
linear model is depicted in Figure 2.3. The model has two heat capacities
and two corresponding state variables. The heat flow between building parts
are modelled as a combination of a conductive and a convective heat flow,
which is simply caracterised by a single thermal resistance, i.e. an R-value.
Finally the stochastic linear state space model is formed by adding a noise
term.
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Figure 2.3: An RC-diagram and illustration of a lumped model of the heat
dynamics of a building.
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Figure 2.4: A linear model with three state variables.

State variables

The state variables of the model shown in Figure 2.3 are the indoor temper-
ature Ti and the building envelope temperature Te. Decreasing the number
of state variables in the model makes it more lumped. Thus a less lumped
model would include more state variables, e.g. the temperature in each room.
In the model Ci represent the total heat capacity both of the indoor air and
the interior walls etc. If one more state variable, and corresponding heat ca-
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pacity and thermal resistance, is added to the model, as in the model shown
in Figure 2.4, then the heat capacity that is represented by Ci has changed.
Thus it is seen that the physical interpretation of the parameters is dependend
on how building is divided into entities in the model.

Inputs

Measurements of physical variables are used as input to the state space mod-
els. The relevant inputs are those physical variables which affect the state of
the system. The input variables of the model showed in Figure 2.3 are the
ambient temperature Ta and the heat from the electrical heaters Φh.

Equations describing the heat dynamics

The dynamics of the lumped system is described by first order differential
equations which can either be linear or non-linear. The differential equations
are based on the heat dynamic theory. In the model showed in Figure 2.3,
it is seen that the indoor temperature is dependent on two heat flows. The
heat flow from the building envelope to the indoor air is modelled as a com-
bination of a conductive and a convective heat flow. The heat flow from the
electrical heater to the indoor air is simply given by Φh. This leads to the
stochastic differential equation describing the first-order dynamics of indoor
temperature

Ci
dTi

dt
=

1

Rie

(Te − Ti) + Φh (2.19)

where Rie is the thermal resistance between the building envelope and the
indoor air.

The building envelope temperature also dependent on two heat flows,
which are both modelled as a combination of a conductive and a convective
heat flow. This leads to the first-order dynamics of the building envelope
temperature

Ce
dTe

dt
=

1

Rie

(Ti − Te) +
1

Rea

(Ta − Te). (2.20)

where Rea is the thermal resistance between the building envelope and the
ambient environment.

15



Matrix form

The linear state space model depicted in Figure 2.3 on matrix form is dTi

dt

dTe

dt

 =

 −1
CiRie

1
CiRie

1
CeRie

−1
Ce

( 1
Rie

+ 1
Rea

)

 Ti

Te

+

 0 1
Ci

1
CeRie

−1
Ce

( 1
Rie

+ 1
Rea

)

 Ta

Φh


(2.21)

and is written as

dT = ATdt+ BUdt (2.22)

where T = [Ti, Te]
T is the state vector and U = [Ta, Φh]T is the input

vector. A defines how the current state affects the dynamics and B defines
how input enters the system.

Noise term

To formulate a stochastic state space model, a noise term is added to the
state space model. The state space models describes a deterministic system
where future states can be precisely predicted if the input and the initial
state vector are known. Due to approximations and unknown disturbances
in the system this idealization cannot be assumed to be correct. Thus an
additive noise term, dω(t) is introduced to form the stochastic linear state
space model in continuous time

dT = ATdt+ BUdt+ dω(t) (2.23)

where ω(t) is a Wiener process, which is a stochastic process with indepen-
dent normal distributed increments.

2.3.2 Measurement equation

Unfortunately not all states that can be measured, e.g. the building envelope
temperature. Therefore a vector of measurable states is introduced. This is
defined by the discrete equation

Tr = CT + DU + e(t) (2.24)

where e(t) is the measurement error. It is assumed that e(t) is normal
distributed white noise with zero mean and variance Re. Furthermore it is
assumed that e(t) and ω(t) are mutually uncorrelated. C and D defines
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how the measured states are influenced by the state and input respectively.
Considering the example model showed in Figure 2.3 it is seen that the
input has no direct influence on the measured air temperature, and therefore
D = 0. C is used to select the states which are measured. For all the
models in the present study only the indoor air temperature is measured.
The measurement equation for the example model is thus given by

Tr = [1 0]

[
Ti

Te

]
+ e(t) = Ti + e(t). (2.25)

2.4 Link to regression models

The link between the state space models and the regression models considered
in [9] for estimation of UA-values, is described in the following. Ignoring the
dynamics by setting dTi

dt
to zero, the simple state space model

C
dTi

dt
=

1

R
(Ta − Ti) + Φh (2.26)

can be rewritten as

0 =
1

R
(Ta − Ti) + Φh ⇔

Φh =
1

R
(Ti − Ta). (2.27)

Then since the UA-value

αUA =
1

R
(2.28)

and by adding a noise term, the model is

Φh = αUA(Ti − Ta) + ε. (2.29)

This is the basis for the regression models in [9].
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Chapter 3

Parameter estimation

In Chapter 2 a simple grey-box model of the heat dynamics of FlexHouse
is formulated. Later on more advanced models will be identified using well-
known principles from statistical testing. This chapter describes a method for
estimation of the parameters in grey-box models, i.e. the thermal resistances
and capacities etc. Furthermore it is showed how the time constants are
computed and finally statistical tests applied in the model selection strategy
is described.

In the first section it is described how the stochastic linear state space
model in continuous time is transformed into discrete time. Then the max-
imum likelihood estimator used to estimate parameters is outlined, followed
by a short description of CTSM, which is the software tool used for the
calculations. Finally procedures for calculations of time constants and the
statistical tests used for the model selection strategy are described.

3.1 Stochastic linear state space model in dis-

crete time

The stochastic linear state space model, described in Section 2.3.1, is formu-
lated in continuous time, but the parameter estimation is carried out with
statistical techniques applied to data, which is naturally measured in discrete
time. The solution to the continuous stochastic differential equation (2.23)
is found, such that the state of the system can be calculated for discrete time
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steps. The solution to (2.23) can analytically be found to

T(t) = exp(A(t− t0))T(t0) +

∫ t

t0

exp(A(t− s))BU(s)ds

+

∫ t

t0

exp(A(t− s))dω(s) (3.1)

where

exp(A) =
∞∑

k=0

1

k!
Ak = I + A +

1

2
A2 + · · · (3.2)

See [5] for more details. Given the state vector at time t, T(t), the new state
vector at time t+ τ is given by

T(t+ τ) = exp(A(t+ τ − t))T(t) +

∫ t+τ

t

exp(A(t+ τ − s))BU(s)ds

+

∫ t+τ

t

exp(A(t+ τ − s))dω(s) (3.3)

Assuming that the input, U(t), is constant in the sample interval [t; t + τ [,
(3.3) can be reformulated to

T(t+ τ) = exp(Aτ)T(t)−
∫ 0

τ

exp(Ar)BdrU(t)

+

∫ t+τ

t

exp(A(t+ τ − t))dω(s)

= exp(Aτ)T(t) +

∫ τ

0

exp(Ar)BdrU(t)

+

∫ t+τ

t

exp(A(t+ τ − s))dω(s) (3.4)

where the substitution r = t+ τ − s has been used. Defining

Φ(τ) = exp(Aτ)

Γ(τ) =

∫ τ

0

exp(Ar)Bdr (3.5)

v(t; τ) =

∫ t+τ

t

exp(A(t+ τ − s))dω(s)

Then (3.4) can be written as

T(t+ τ) = Φ(τ)T(t) + Γ(τ)U(t) + v(t, τ) (3.6)
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Assuming that ω(t) is a Wiener process, v(t; τ) becomes normally distributed
white noise with zero mean and covariance

R1(τ) = E[v(t; τ)v(t; τ)T ] =

∫ τ

0

Φ(s)R1Φ(s)Tds

=

 R11 0 0
0 R22 0
0 0 R33

 (3.7)

If the sampling time is constant, the time scale in (3.6) can be transformed
such that the sampling time is equal to one time unit, i.e.

T(t+ 1) = ΦT(t) + ΓU(t) + v(t) (3.8)

This formulation can be used for estimation of the unknown parameters in
(2.23) without loosing the physical interpretation of the parameters.

3.2 Maximum Likelihood Estimator

In Section 3.1, it was found that the stochastic linear state space model in
continuous time could be formulated as a difference equation in discrete time

T(t+ 1) = ΦT(t) + ΓU(t) + v(t) t ∈ 0, 1, 2, . . . N (3.9)

when the sampling time is constant, that is, equally spaced observations.
In (3.9) t corresponds to the measurement at time index t, i.e. the t’th
measurement. The likelihood function can be used to estimate the unknown
parameters in Φ and Γ, where the most likely estimator is given by

θ̂ = arg max
θ
{L(θ; Tr(N))} (3.10)

where L, the likelihood function, is the joint probability distribution function
of all the observations.

Let Tr(t) = [Tr(t), Tr(t − 1), . . . , Tr(0)] be a vector containing all obser-
vations up to and including t and θ be a vector containing all the unknown
parameters in Φ and Γ, including R11, R22, R33 from (3.7) and the measure-
ment error, Re. Then the likelihood function can be formulated as the joint
probability distribution when =θ is given

L(θ; Tr(N)) = p(Tr(N)|θ) (3.11)

= p(Tr(N)|Tr(N − 1),θ)p(Tr(N− 1)|θ)

=

(
N∏
t=1

p(Tr(t)|Tr(t− 1),θ)

)
p(Tr(0)|θ)
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where the rule P (A ∩ B) = P (A|B)P (B) has been used N -times to form
the likelihood function as a product of conditional densities. Since both
v(t) and e(t), in (3.8) and (2.24), are assumed to be normally distributed,
the conditional density function is also normally distributed, and is thus fully
characterized by its mean and variance. The multivariate normal distribution
is given by

f(x) =
1

(2π)n/2
√

detΣ
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(3.12)

where Σ > 0 is the covariance and µ is the mean. Introducing the conditional
mean

T̂(t|t− 1) = E[Tr(t)|Tr(t− 1),θ] (3.13)

the conditional variance

R(t|t− 1) = V [Tr(t)|Tr(t− 1),θ] (3.14)

and the one step prediction error

ε(t) = T(t)− T̂(t|t− 1) (3.15)

Then (3.11) can be reformulated to

L(θ; Tr(N)) =
N∏
t=1

(
1

(2π)n/2
√

detR(t|t− 1)
exp

(
−1

2
ε(t)TR(t|t− 1)−1ε(t)

))
where n is the dimension of Tr. To simplify the maximization the logarithm
to the likelihood function is maximized instead

l(θ; Tr(N)) = log

(
N∏
t=1

(
1

(2π)n/2
√

detR(t|t− 1)
exp

(
−1

2
ε(t)TR(t|t− 1)−1ε(t)

)))
(3.16)

= −m
2

N∑
t=1

(2π)− 1

2

N∑
t=1

log(detR(t|t− 1)) +
1

2
ε(t)TR(t|t− 1)−1ε(t)

=
1

2

N∑
t=1

[
ε(t)TR(t|t− 1)−1ε(t)− log(detR(t|t− 1))

]
+ C

(3.17)

where C is a constant. A Kalman filter can be applied to recursively calculate
the conditional mean and variance.
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The Kalman filter is a recursive filter, which can be used to estimate the
states of a linear stochastic state space model, given observations of U and
T. The reconstructed states and the corresponding covariance are

T̂(t|t) = T̂(t|t− 1) + Kt

(
Tr(t)−CT̂(t|t− 1)

)
P(t|t) = P(t|t− 1)−KtR(t|t− 1)KT

t

where Kt is the Kalman gain given by

Kt = P(t|t− 1)CTR(t|t− 1)−1 (3.18)

The predicted states are given by

T̂(t+ 1|t) = ΦT̂(t|t) + ΓU(t)

T̂r(t+ 1|t) = CT̂(t+ 1|t)
P(t+ 1|t) = ΦP(t|t)φT + R1

R(t+ 1|t) = CP(t+ 1|t)CT + R2

where following initial conditions are used

T̂(1|0) = E[T(1)] = µ0

P(1|0) = V [T(1)] = V0

Asymptotically it holds for the maximum likelihood estimator that the
variance of the estimate is given by

V [θ̂] = I−1(θ̂) (3.19)

where

I (θ) = −E
[
∂2 logL

∂θ2

]
(3.20)

In practice

I (θ) = −
[
∂2 logL

∂θ2

]
θ=θ̂

(3.21)

is used. From this the variance and p-value for the parameters are found.
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3.3 CTSM - Continuous Time Stochastic Mod-

eling

A routine for maximizing the conditional likelihood function has been im-
plemented in CTSM, which is a continuous time stochastic modelling tool.
CTSM can be used to estimate parameters in both linear time invariant-,
linear time varying- and nonlinear models. The estimated parameters can
either be found using the maximum likelihood (ML) method or the maxi-
mum a posteriori (MAP) method. The maximum a posteriori estimator is
not used in this project, but [5] contains more information. When the max-
imum likelihood estimator has been found for L(Tr(N);θ) CTSM returns
the estimate of θ.

CTSM also estimates the standard deviation of the estimated parame-
ters. This is given by the estimated variance, which is found by setting the
expected value in (3.20) equal to the observed value, i.e.

ilk = −
(
∂2 logL(θ; Tr(N); )

∂θl∂θk

)
(3.22)

CTSM has been developed at Department of Informatics and Mathemat-
ical Modeling (IMM) at the Technical University of Denmark, (DTU), and
can be downloaded from IMM’s homepage 1, where a user’s guide [6] is also
available.

3.3.1 Modelling in CTSM

Due to the ease of use, CTSM has been chosen for estimation of the parame-
ters in (2.23). When a model, of the same form as (3.8), has been formulated
it can easily be entered using the graphical user interface of CTSM. When
the number of states, input and output have been defined, CTSM sets up the
matrices, A, B, C and D, defined in (2.23) and (2.24). When the matrices
have been filled out it can be selected how to estimate each parameter, i.e.
ML, MAP or if it is fixed. Boundaries are defined for each parameter that
is to be estimated. It should be noted, that ±∞ and 0 should be avoided as
boundary and initial values for the parameter estimation. Finally a source
of data, which contain time, input and measured output, is specified and the
parameters are estimated.

1http://www2.imm.dtu.dk/∼ctsm/
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3.4 Time constants

Time constants characterizes the frequency response of a system. Physically,
a single time constant represents the time it takes the system’s step response
to reach approximately 63% of its final (asymptotic) value. The i’th time
constant of a linear state space model is

τi = − 1

λi
(3.23)

where λi is the i’th largest eigenvalue of A defined in (2.22).

3.5 Tests for model selection

Statistical tests that can be utilized in the search for the most appropriate
model are useful. If a model is a submodel of larger model then a likelihood
ratio test can determine if the larger model performs significantly better than
the submodel. Using such tests a strategy for selection of the best model can
be evolved.

3.5.1 Likelihood ratio tests

Let a model have parameters θ ∈ Ω0 where Ω0 ∈ Rr is the parameter space
and r = dim(Ω0) is the number of parameters in the model. Let a larger
model have parameters θ ∈ Ω where Ω ∈ Rm and dim(Ω) = m, and

Ω0 ⊂ Ω, (3.24)

i.e. the first model is a submodel of the second model and r < m.
The likelihood ratio test

λ(y) =
supθ∈Ω0

L(θ; y)

supθ∈ΩL(θ; y)
(3.25)

where y is the observed values, can then be used to test the hypothesis

H0 : θ ∈ Ω0 vs. Ha : θ ∈ Ω \ Ω0, (3.26)

since under H0 the test statistic −2log(λ(y)) converges to a χ2 distributed
random variable with (m−r) degrees of freedom as the number of samples in
y goes to infinity. If H0 is rejected then the likelihood of the larger model is
significant compared to the likelihood of the submodel, and it is found that y
is more likely to be observed with the larger model. Hence the larger model is
needed over the sub-model to describe information in data. For more details
see (??HMs nye bog).
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3.5.2 Forward selection

In a forward model selection procedure the modeller starts with the smallest
feasible model and then in each step extends the model with the part that
gives the lowest p-value. The possible parts that are selected among in each
iteration are the smallest possible extensions to the current selected model.
The procedure stops, when no extensions to the model, yields a p-value below
a pre-specified limit, usually the limit is set to 5%.
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Chapter 4

Model identification procedure

Different strategies for identifying a sufficient model is proposed in the litter-
ature and finding a suitable strategy depends on the specific modelling setup
in which it shall be applied. An purely algorithmic and exhaustive selection
procedure is seldomly feasible, hence iterative methods in which the mod-
eller is partly involved in the selection is commonly applied. Here, a forward
selection procedure is suggested for identification of a sufficient model for
the heat dynamics. It is based on likelihood ratio tests described in Section
3.5.1.

4.1 Model selection

The procedure starts by a formulation of the simplest feasible model having
a parameter space ΩM and the full model with the parameter space Ωfull,
such that

ΩM ⊂ Ωfull. (4.1)

Within this range, a set of models can be formed in which a sufficient model
is to be identified. The model selection is initiated with the simplest model.
Then a loop is carried out, in which extensions of the model are iteratively
added. The model extension stops when any of the extensions to the selected
model, will give a likelihood-ratio test p-value above the pre-specified limit.
Hence procedure will stop with a model from which no larger model can be
found, with which it is more likely to observe the given data. As mentioned
above a purely algorithmic procedure is not possible, hence the modeller must
be involved to evaluate the models found in each iteration. The properties
of residuals and parameter estimates must be evaluated and if some of the
properties are not in line with assumptions and physical reality the modeller

26



Model fitting

Begin with the simplest
model

Likelihood-ratio tests of
extended models

End selection

Evaluate the selected
model

OK

Not OK

Figure 4.1: Illustration of the model identification procedure

have to influence the choice of model. The procedure is illustrated in Figure
4.1 and here the steps are described

Model fitting The models which are extended from the currently selected
model are fitted to the data by maximum likelihood estimation of the
parameters.

Liklihood-ratio tests Calculate the the likelihood-ratio test statistic for
the current model versus each of the extended models. Select the ex-
tended model which have the lowest p-value of the test below 5%. Stop
if none of the tests have a p-value below 5%.

Evaluate The modeller evaluates the selected extended model. If the result
is satisfactory the model is kept and next iteration can started, if not
another model should be selected in the previous step.

If two extensions show an almost identical improvement, i.e. the p-values of
the tests are nearly equal, the selection can be branched and extensions with
different parts are examined seperately. The procedure will then end with
several models, which cannot be tested directly agaist each other, and it is
then up to the modeller to decide which should be preperred. This should be
done by comparing the likelihoods, where if two models have almost equal
likelihoods the smaller model should be preferred, and by an evaluation of
the residuals and parameter estimates. It can also be the case that more than
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one model has only marginal different performance and that they describe
the data equally well.

4.1.1 Model evaluation

In each step the selected model should be evaluated. This serves both to
check if the model gives reasonable results according to both assumptions
and estimates of physical values, and to reveal model deficiencies from which
it can be learned which parts of the model should be further elaborated. The
evaluation should consist of the following

• The assumptions of white noise residuals should be inferred upon with
the ACF and the cumulated periodogram, which can also reveal how
well dynamics on different timescales are modelled.

• Plots of the inputs and the residuals. These plots can be used to
understand which effects is not reflected properly by the model.

• Evaluation of the estimated physical parameters. Clearly the results
should be consistent among different models, e.g. estimate of the ther-
mal resistance of the building envelope should not change significantly
among the models. Furthermore the modeller have to judge if the re-
sults are consistent with reality.
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Chapter 5

Identifying a model for
FlexHouse

The proposed procedure is such, that the modeller starts with the simplest
model and iteratively selects more complex models. This implies fitting a
set of models from the simplest model to the most feasible complex model,
here denoted the full model. In this section the set of applied models and
the result of the iterative selection procedure is described. A given model is
named from its state vector, which implicitly define the model. In Appendix
B all applied models are illustrated with RC-diagrams.

5.1 Data

The present study is based on data which was collected during a series of
experiments carried out in February to April 2009 in FlexHouse. The data
is thoroughly described in [3]. The following time series consisting of five
minutely values are used:

Tr (◦C) An single signal representing the indoor temperature is formed as the
first principal component of measurements of the indoor temperature
from Hobo sensors (see [3]), which are hanging freely in the middle go
each room in the building.

Ta (◦C) Observed ambient temperature from a climate station located 2 me-
ters from the building.

Φh (kW) Total heat input to the electrical heaters in the building.

G (kW/m2) The global irradiance measured at the climate station.
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Plots of the time series can be found in Figure 5.1. The controlled heat
input is a Pseudo-random binary sequence (PRBS), which has white noise
properties and no correlation with other inputs. It is applied in order to
optimize the information embedded in data [8].

5.2 Applied models

In this section a description is given of the set of applied models in the
selection, ranging from the simplest to the full model. The models are all
linear and can all be written

dT = ATdt+ BUdt+ dω(t) (5.1)

where T is the state vector and U is the input vector, and none of the state
variables or input variables are in A or B which only consist of parameters.
All the considered linear models have an input vector with three inputs

U = [Ta,Φs,Φh]T . (5.2)

where

• Ta is the temperature of the ambient environment,

• Φs is the solar irradiance on the building,

• Φh is the heat from the electrical heaters inside the building.

The models are all lumped, but whith a different structure which implies that
a given parameter does not necessarily represent the same physical entity in
different models. For example is the parameter Ci representing the heat
capacity of the entire building in the simplest model, whereas this is divided
into five heat capacities in the full model, where the parameter Ci represents
the heat capacity of the indoor air. This is elaborated further in Chapter 5.2,
where the parameter estimates for the models are presented. Furthermore it
should be kept in mind that these models are linear approximations to the real
system. The models are named after their state vector and if needed an extra
abbreviated description. In the following sections the full and the simplest
model are described, since they represent the range of applied models. First
the full model is described to give a complete overview of all the individual
parts, which is included in the models. Then the simplest model is described
since it is the first model applied in the selection procedure and since it
illustrates how the models are lumped. See Appendix B for RC-diagrams of
all selected model.
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Figure 5.1: The data set. From the top, the first plot shows the measured
indoor temperature, the second shows the observed ambient temperature,
followed by a plot of the heat input, and finally a plot shows the global
irradiance.
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Figure 5.2: The full model TiTmTeThTsAeRia with the individual model
parts indicated. This model includes all parts which is included in any of the
applied models.

5.2.1 The full model TiTmTeThTsAeRia

The full model, which is the most complex model applied is illustrated in
Figure 5.2. This model includes all the indiviual parts of the building, which
it is found feasible to include into linear models, with the current available
data. The individual model parts are indicated on the figure and they are

Sensor The temperature sensors are modelled with a heat capacity and a
thermal resistance to the interior.

Interior The interior is the considered to be the indoor air (again depending
on which other parts are included into the model) and it is modelled
as a heat capacity connected to other parts by thermal resistances.

Medium A thermal medium inside the building is the interior walls and
funiture, which are modelled with a heat capacity and a thermal resis-
tance to the interior.

Heaters The heaters are modelled by a heat capacity and a thermal resis-
tance to the interior.

Solar The heat input from solar radiation is modelled by the global irradi-
ance times a coefficient.

32



Envelope The building envelope is modelled with a heat capacity and ther-
mal resistances to both the interior and the ambient environment. A
thermal resistance directly coupled to the ambient is also included.

Ambient The ambient environment is the observed ambient temperature.

The model includes five state variables, that each represents the temperature
in a part of the building. The representation of the parameters for this model
is the following:

Ts The temperature of the sensor, which for this model is the model output
(i.e. Tr in the measurement equation).

Ti The temperature of the interior, i.e. the indoor air.

Tm The temperature of an interior thermal medium, i.e. interior walls and
funiture.

Th The temperature of the heater.

Te The temperature of the building envelope.

The parameters of the model represent different thermal properties of the
building. This includes thermal resistances

Ris between the indoor air and the sensor,

Ris between the indoor and the interior thermal medium,

Rih between the heaters and the indoor air,

Ria between the indoor air and the ambient environment,

Rie between from the indoor air and the building. envelope.

Rea between the building envelope and the ambient environment.

The heat capacities of different parts of the building is represented by

Cs for the temperature sensor,

Ci for the indoor air,

Cm for the interior walls and funiture,

Ch for the electrical heaters,
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Ce for the building envelope.

Finally two coefficients is included, each representing an estimate of an effec-
tive area, in which the energy from solar radiation enters the the building.
They are

Aw The effective window area of the building (see Section 2.1.2).

Ae The effective area in which the solar radiation enters the building enve-
lope.

The stochastic differential equations describing the heat flows are

Cs
dTs

dt
=

1

Rih

(Ti − Ts) + σs
dW

dt
(5.3)

Ci
dTi

dt
=

1

Ris

(Ts − Ti) +
1

Ris

(Tm − Ti) +
1

Rih

(Th − Ti) (5.4)

1

Rie

(Te − Ti) +
1

Ria

(Ta − Ti) + AwΦs + σi
dW

dt
(5.5)

Cm
dTm

dt
=

1

Ris

(Ti − Tm) + σm
dW

dt
(5.6)

Ch
dTh

dt
=

1

Rih

(Ti − Th) + Φh + σh
dW

dt
(5.7)

Ce
dTe

dt
=

1

Rie

(Ti − Te) +
1

Rea

(Ta − Te) + AeΦs + σe
dW

dt
(5.8)

and the measurement equation is

T r
k = T s

k + ek (5.9)

since the recorded temperatur is approximated by the state variable Ts.

5.2.2 The simplest model Ti

The most simple model considered is illustrated by the RC-network in Figure
5.3. The model has one state variable Ti and the following parameters

• Ria The thermal resistance from the indoor to the ambient environment.

• Ci The heat capacity of the entire building, including the indoor air,
interior walls, funiture etc., and the building envelope.

• Aw is the effective window area of the house (see Section 2.1.2).
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Figure 5.3: RC-network diagram of Ti which is the simplest feasible model.

The stochastic differential equation describing the heat flow is

Ci
dTi

dt
=

1

Ria

(Ta − Ti) + AwΦs + Φh + σi
dW

dt
(5.10)

and the measurement equation is

T r
k = T i

k + ek. (5.11)

Note especially the differences in representation of the building parts between
the simplest and full model, e.g. Ria represent the thermal resistance of the
building envelope in the simplest model, whereas this is represented by a
coupling of Ria, Rie and Rea.

5.3 Model identification

The identification procedure is here applied to find a sufficient model in the
set of model ranging from Ti to TiTmTeThTsAeRia. First the selection of a
sufficient model is outlined, this is followed by an evaluation of the selected
models, and finally the selected model is throughly evaluated.

5.3.1 Model selection

The loglikelihood of each model which is fitted is listed in Table 5.1 ordered
by the iterations of the model selection. The procedure begins with the sim-
plest model and in the first iteration four extended models are fitted and
TiTh is selected since it has the highest loglikelihood and hence the lowest
p-value of the likelihood-ratio tests. The selection procedure is carried out
until no significant extension can be found, which occurs in iteration No. 5.
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Iteration Models

Begin Ti
l(θ; y) 2482.6
p 6
1 TiTe TiTm TiTs TiTh
l(θ; y) 3628.0 3639.4 3884.4 3911.1
p 10 10 10 10
2 TiThTs TiTmTh TiTeTh
l(θ; y) 4017.0 5513.1 5517.1
p 14 14 14
3 TiTeThRia TiTeThAe TiTmTeTh TiTeThTs
l(θ; y) 5517.3 5520.5 5534.5 5612.4
p 15 15 18 18
4 TiTeThTsRia TiTmTeThTs TiTeThTsAe
l(θ; y) 5612.5 5612.9 5614.6
p 19 22 19
5 TiTmTeThTsAe TiTeThTsAeRia
l(θ; y) 5614.6 5614.7
p 23 20

Table 5.1: Loglikelihood for the fitted models ordered by iterations of the
model selection procedure and in each row by loglikelihood. In each itera-
tion the extended model with highest loglikelihood is selected, which is the
rightmost models. p is the number of estimated parameters for each model.

During each iteration the current selected model is evaluated, see Section
5.3.2. It is found that the selected models are all found to satisfy the eval-
uation with respect to improvement of the results etc. in each iteration. In
Table 5.2 the result of likelihood-ratio tests for model expansion in each iter-
ation is listed. Clearly the expansion carried out in the first three iterations
indicate very significant improvement of the model. In iteration No. 4, the
improvement is still below 5%, whereas no improvement is found in iteration
five. The procedure thus ends with TiTeThTsAe as a sufficient model, which
is illustrated by the RC-network diagram in Figure 5.4.

5.3.2 Model evaluation

The selected models are evaluated as outlined in Section 4.1.1.

36



Iteration Submodel Model m− r −2log(λ(y)) p-value
1 Ti TiTh 4 4121 < 10−16

2 TiTh TiTeTh 4 4634 < 10−16

3 TiTeTh TiTeThTs 4 274 < 10−16

4 TiTeThTs TiTeThTsAe 1 6.4 0.011
5 TiTeThTsAe TiTeThTsAeRia 1 0.17 0.68

Table 5.2: Tests carried out in the model selection procedure.
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Figure 5.4: The final selected model TiTeThTsAe with the individual model
parts indicated.

Residuals

Plots of inputs and residuals for each of the selected models is found in
Appendix A. The plot of the inputs and residuals for the simplest model Ti
can be seen in Figure A.1. It is seen directly from the plot of the residuals that
they do not have white noise properties and that they are not independent
of the inputs and output. The ACF of the residuals also clearly show a high
lag dependency. The cumulated periodogram (CP) revial that the model
is too stiff to reflected the dynamics. Plots of the residuals for the model
selected in the first iteration, TiTh, can be seen in Figure A.2, where it
seen that the level of residuals are reduced compared to the residuals for Ti.
The ACF and the CP indicate that the assumption of white noise residuals
are not fulfilled. Plots of the residuals for the model selected in the second
iteration, TiTeTh, can be seen in Figure A.3. It is seen that the level of
the residuals are reduced dramatically, and that some dependency of the
inputs is still seen, mostly from the solar irradiance. The ACF reveals that
the characteristics of the residuals are much closer to white noise, which is
also seen from the CP, indicating that the model now reflect the dynamics
of the system quite well. Plots of the residuals for the model selected in
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the third iteration TiTeThTs can be seen in Figure A.4. Only very slight
improvements are seen compared the previous model. Plots of the residuals
for the final selected model TiTeThTsAe is seen in Figure A.5. Almost no
differences can be observed from the previous model. The highest level of
error can be observed where the solar irradiance is high, hence it is found that
further improvement of the model should be focused on the part in which
the solar radiation enters the building.

Parameter estimates

The parameter estimates of the selected models are evaluated in the following.
The estimates are presented in Table 5.3 together with the time constants
calculated for each of the selected models. The total heat capacity and
thermal resistance of the building envelope found by the selected models are
presented in Table 5.4. As found by evaluating the residuals, see previous
Section, the models Ti and TiTh doesn’t reflect the dynamics of the system
very well, which implies that the estimates of the heat capacities are not
reliable. Estimates of the heat capacities found by the tree larger models are

Name Ti TiTh TiTeTh TiTeThTs TiTeThTsWithAe
Ci 2.07 1.36 1.07 0.143 0.0928
Ce - - 2.92 3.24 3.32
Ch - 0.309 0.00139 0.321 0.889
Cs - - - 0.619 0.0549
Ria 5.29 5.31 - - -
Rie - - 0.863 0.909 0.897
Rea - - 4.54 4.47 4.38
Rih - 0.639 93.4 0.383 0.146
Ris - - - 0.115 1.89
Aw 7.89 6.22 5.64 6.03 5.75
Ae - - - - 3.87
τ1 10.9 0.16 0.129 0.0102 0.0102
τ2 - 8.9 0.668 0.105 0.105
τ3 - - 18.4 0.786 0.788
τ4 - - - 19.6 19.3

Table 5.3: The estimated parameters. The heat capacities, Cx, are in
[kWh/◦C]. The thermal resistances, Rx, are in [◦C/kW]. The areas, Ax,
are in [m2]. The time constants, τx, are in hours. Note that the physical
interpretation most of the parameters is different for each model.
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Model Ti TiTh TiTeTh TiTeThTs TiTeThTsAe
C 2.07 1.67 3.99 4.32 4.36
R 5.29 5.31 5.40 5.38 5.28
αUA 1.55 1.55 1.52 1.53 1.55

Table 5.4: The total heat capacity [kWh/◦C] and thermal resistance [◦C/kW]
of the building envelope found with the selected models. The UA-values αUA

are in [W/(◦Cm2)].

more credible, especially it is seen that the time constants are almost equal,
indicating that the model comprise the same dynamics. The exact physical
interpretation of the smaller heat capacities Ci, Ch, and Cs cannot be given,
since they are lumped parameters, but it is noted that their sum, for each of
the three larger models, is quite close ranging from 1.03 to 1.08 [kWh/◦C].

The total thermal resistance of the building envelope and thereby the
UA-values is quite similarly determined for all models, as seen in Table 5.4.
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Chapter 6

Conclusion

A procedure for identification of models for heat dynamics of a building has
been described and applied on the basis of data from an experiment carried
out in FlexHouse in February 2009. The procedure is based on likelihood-
ratio tests combined with a forward selection strategy. The evaluated models
are grey-box models, where a combination of prior physical knowledge and
data-driven modelling is utilized. The input to the models consist of: climate
data measured at the location, measurements of the indoor temperature, and
a controlled heat input.

The results of the identification procedure are evaluated and discussed,
both in a statistical and physical context. The evaluation revial that the
selected model meet the assumptions of white noise residuals, hence it can be
applied to give reliable estimates consistent with reality. Furthermore model
deficiencies are pointed out, from which further advancement of the model
should be pursued, especially on the model part where the solar radiation
input enters the building.

It has been shown that the procedure is able to provide rather detailed
knowledge of the heat dynamics of the building. This includes for instance the
thermal resistance of the envelope, the UA-value, and parameters describing
the capabilities for storing heat.

40



Appendix A

Inputs and residuals

41



0
20

40
60

80
10

0
12

0
14

0

In
pu

ts
 a

nd
 r

es
id

ua
ls

T
im

e

ε
−0.2500.25

T
i Φ
s

Φ
h

ε

0
10

20
30

40

0.00.20.40.60.81.0

La
g

ACF

A
C

F
 o

f r
es

id
ua

ls

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.00.20.40.60.81.0

fr
eq

ue
nc

y

C
um

ul
at

ed
 p

er
io

do
gr

am

Figure A.1: Inputs and residuals for Ti.
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Figure A.2: Inputs and residuals for TiTh.
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Figure A.3: Inputs and residuals for TiTeTh.
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Figure A.4: Inputs and residuals for TiTeThTs.
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Figure A.5: Inputs and residuals for TiTeThTsAe.
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Appendix B

RC-diagrams of applied models
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Figure B.1: RC-network diagram of TiTe.
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Figure B.2: RC-network diagram of TiTm.
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Figure B.3: RC-network diagram of TiTs.
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Figure B.4: RC-network diagram of TiTh.
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Figure B.5: RC-network diagram of TiThTs.
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Figure B.6: RC-network diagram of TiTmTh.
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Figure B.7: RC-network diagram of TiTeTh.
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Figure B.8: RC-network diagram of TiTeThRia.
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Figure B.9: RC-network diagram of TiTeThAe.
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Figure B.10: RC-network diagram of TiTmTeTh.
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Figure B.11: RC-network diagram of TiTeThTs.
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Figure B.12: RC-network diagram of TiTeThTsRia.
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Figure B.13: RC-network diagram of TiTmTeThTs.
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Figure B.14: RC-network diagram of TiTeThTsAeRia.
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Figure B.15: RC-network diagram of TiTmTeThTsAe.
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