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Chapter 1

Introduction

1.1 Background

Approximately one third of the primary energy production in Denmark is used for heating
the air in buildings and therefore efforts to improve energy performance of the building
mass will have large impact on the total energy consumption. A model of the heat dynamics
of a building can be used to obtain knowledge of the energy performance of the building.
This can especially be used in the effort to decrease the energy consumption by increasing
the awareness of the energy performance to the residents of the building.

In the present study models are developed of the heat dynamics in FlexHouse which is
an experimental building located at Risø DTU. The aim of the study is to develop models
of different complexity, which can estimate the physical quantities that influence the heat
dynamics of the building, such as UA-values and time constants. The models use climate
observations measured at the location and air temperature measurements from sensors
inside the building. Furthermore the aim is to gain knowledge of which features of the
models that can be used to inform about the effect of energy saving initiatives for the
building.

Numerous approaches for modelling the heat dynamics of a building are found in the
litterature. They can be divided into deterministic methods and stochastic methods. [4]
gives an overview of computer-aided building simulation tools presenting the approaches
and applications. The present study uses methods developed by [7] and [1] where stochastic
differential equations are applied.

1.1.1 FlexHouse

FlexHouse is an office building located at Risø DTU, the National Laboratory for Sustain-
able Energy. The energy supply to FlexHouse is purely electrical. The size of FlexHouse
is approximately 125 m2 divided between eight rooms and a toilet. The rooms have been
numbered 0 to 7 to distinguish between them. A layout of FlexHouse can be seen in Figure
1.1 where also the room numbers are shown. Room 1–7 are arranged as small offices, each
with a desk, office chair and a computer. The main room, room 0, has been furnished with
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Figure 1.1: FlexHouse layout

tables and chairs to accommodate meetings. Moreover room 0 contains a small kitchen
with a refrigerator and a coffee machine. The southern wall in the main room is dominated
by a large window facade. From the main room access to a toilet is possible, where the
water heater is placed. Electrical space heaters are mounted in room 1–6, whereas room 0
and 7 each has two heaters mounted. FlexHouse are build from light building materials.
The building envelope consist of an outer layer of wood and an inner layer of plaster, with
insolation material in the middle. The house is build upon poles and has an open space of
air beneath. For more details of Flexhouse see [11].

1.2 Outline

The pre-processing of the data is described in Chapter 2. The physical heat transfer
theory and modelling approach used in the study are outlined in Chapter 3, followed by
a presentation of the statistical techniques used for parameter estimation in Chapter 4.
The applied heat dynamics models and model selection are described in Chapter 5, and
the results are presented and discussed in Chapter 7. Finally the conclusions are drawn in
Chapter 9.
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Chapter 2

Data preprocessing

The data used in the present study is described in [11]. This chapter describes an ex-
ploratory analysis and preprocessing of the data before it is applied to build the heat
dynamics models. Plots of the entire dataset can be found in [11]. The data from exper-
iment number three to six, that is the four successful experiments, are investigated. The
preprocessed data used as input to the models is plotted in Appendix A.

The chapter starts by a visual inspection of the data to find outliers and unwanted
effects. This lead to removal and correction of some parts of the data. Finally a single
signal to represent the indoor temperature are found using principal component analysis.

2.1 Visual inspection

Visual inspection of the data reveal several unwanted effects in the dataset. The temper-
atures in each experiment are showed in Figure 2.1. It is seen that Experiment 5 differs
from the other three experiments. This is because only two heaters were used in the ex-
periment, and since only one indoor temperature signal will be used, the assumption of
equal temperature in all areas of the house is not reasonable. Therefore Experiment 5 is
removed from the dataset.

The plot also reveals that there seems to be a constant temperature difference among the
rooms. Generally there is a difference around 5◦C from the lowest to highest temperature.
Furthermore it seems that the temperature in the same room tend to be either in lower
part or in the higher part, e.g. the temperatures in room 1, 5, 6, and 7 are mostly in the
lower part, whereas the temperatures in the main room and room 2, 3, and 4 are mostly in
the higher part. Either the real temperatures are different or each temperature sensor has
a considerable bias. It is not found possible to conclude on this, but future experiments
should cross validate the temperature sensors to check for bias.

The upper plot in Figure 2.2 is a plot of the temperatures in Experiment 6, and it can
be seen that the signal from the temperature sensor in room 5 is abnormal in the morning
hours the 27’th and 28’th of May, but normal in the morning of the 29’th. Considering
the lower plot in Figure 2.2 of the global irradiance and the fact that room 5 is on the east
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Figure 2.2: Upper plot is the temperature signal from each room in experiment 6. Lower
plot is the corresponding global irradiance.

side of the building, it is clear that direct solar radiation strikes the sensor in mornings
with a non-overcast sky. Parts of the signal is thus filled with outliers, and therefore the
temperature signal from room 5 is removed from the dataset.

A plot of the global irradiance and the sine of the solar elevation in Figure 2.3 reveal
that the time stamps of Experiment 3 are one hour ahead. This is simply corrected by
adding one hour. This will not have a high effect in the present modelling, but generally
synchronization of data should be checked. By comparing observed global irradiance with
the sine of the solar elevation it is possible to reveal synchronization errors in weather data.

The experiments were designed to have a constant samplerate, but as seen in Figure 2.4
where the time between the sample points is plotted the random jitter is considerably high.
This should be taken into consideration when parameters of the models are estimated.

2.1.1 Interpolation of temperatures

The temperature sensors installed in FlexHouse only send a value when the temperature
has changed ±0.5◦C. This induce a constant value for most of the observed 5 minute
temperature values, as seen by values from the main room plotted in Figure 2.5. Each
temperature signal is smoothed by linear interpolation between points where the value has
changed, as showed in the plot. An improvement of the interpolation could be accieved
by applying higher order smoothing methods, and this should be considered in future
applications.

8



0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

si
n

Experiment 3

15 Feb 16 Feb 17 Feb 18 Feb

sine of the solar elevation
observed global irradiance

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

si
n

Experiment 4

28 Feb 29 Feb 1 Mar 2 Mar 3 Mar 4 Mar 5 Mar

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

si
n

Experiment 6

27 Mar 28 Mar 29 Mar

Figure 2.3: The global irradiance and sine of the solar elevation for experiment 3,4, and 6.

2
4

6
8

∆∆t
im

e 
[m

in
ut

es
]

Experiment 3

14 Feb 15 Feb 16 Feb 17 Feb 18 Feb 19 Feb 20 Feb

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●●
●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

Figure 2.4: The times between each sample point in Experiment 3.
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Figure 2.5: Interpolation of the temperature signals. The points are temperature observa-
tions from the main room in Experiment 6.

2.1.2 Heater values

The heat signal is the energy input to the house from the electrical heaters. At timepoints
where the state, ie. either on or off, is shifted, the heat signal recorded during the exper-
iments can be improved. The heat signal is modified as illustrated in Figure 2.6 where
the real underlying heat input signal is showed together with the recorded and corrected
values. During the experiments the state shifts at timepoints ti, which is the timepoint
where values of all signals are recorded. The recorded value at ti represent the signal in
the time interval [

ti − ti − ti−1

2
ti +

ti+1 − ti
2

]
. (2.1)

The intervals from shifts in states are marked with grey in the plot. During an interval
the real heat input is in each state approximately half of the time, and the recorded values
of the the intervals are seen not to be correct. They are corrected to the integrated signal
during the period, which is approximately 0.5. Finally the heat signal from all the heaters
are summed to form Φh.

2.2 Principal component analysis

The applied heat dynamics models all use the approximation that the interior of the build-
ing is one room. The reason is that due to limitations in the control system of the electrical
heaters in FlexHouse the PRBS signal was forced to be the same in all rooms. Therefore
it is needed to transform the temperature signals from each room into one single represen-
tative signal. Principal component analysis (PCA) is used as suggested in [9].

Principal component analysis is a linear transformation of data. The data is trans-
formed to an orthogonal coordinate system, such that the first axis is parallel to the
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Figure 2.6: Correction of heater signal.

highest variance of the data and the second is parallel to the second highest variation etc.
The axes in the new coordinate system are called the principal axes and are determined
by the eigenvectors of the covariance matrix.

Consider n seperate signals as a stochastic vector

Xt =
[
X1
t X2

t . . . Xn
t

]T
. (2.2)

The ordered eigenvalues
λ1 ≤ λ2 ≤ . . . ≤ λn (2.3)

of the covariance matrix Σ for Xt can be calculated using observations of the signals. The
corresponding eigenvectors

φ1, φ2, . . . , φn (2.4)

can now be used to find the i’th principal component

Yi,t = φTi Xt. (2.5)

The proportion of variance explained by the i’th principal component is

pi =
λi∑n
i=1 λi

(2.6)

where λi is the eigenvalue corresponding to the i’th eigenvector.

The first principal component of the room temperatures is used as the indoor tempera-
ture Ti. The principal component analysis is carried out on all three experiments merged
together. The eigenvector of the first principal component is found to

φ1 = [ 0.368 0.406 0.374 0.371 0.378 0.392 0.354 ]T . (2.7)
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Figure 2.7: The temperatures in each room and the first principal component.

Since the range of the coefficients in φ1 is relatively small, then the first principal compo-
nent is very close to the average of the room temperatures. This indicates that variation
of the room temperature signals are in equivalent. The three first proportions of variance
are found to

λ1 = 0.868 (2.8)

λ2 = 0.088 (2.9)

λ3 = 0.023. (2.10)

Hence 86.8% of the variance is described by φ1, which closely resembles the mean. The high
value of λ1 indicate that the room temperatures that none of them are varying differently
than the rest. The plot in Figure 2.7 show the temperatures in each room and first principal
component.
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Chapter 3

Models for the heat dynamics of a
building

When modelling the heat dynamics of a building mainly two fundamental aspects are
considered. That is, how the heat transfer between the building parts occur and by which
entities of the building the model should be divided into. This chapter starts by outlining
the theory of heat dynamics and the approximations made in the present models. In the
last part of the chapter the grey-box modelling approach is described.

3.1 Heat dynamics

Theory of heat dynamics describes the transfer of thermal energy. Thermal energy is
energy accumulated in a medium or object as movement of particles, and heat transfer
is the transfer of thermal energy from an object to its surroundings. According to the
second law of thermodynamics the thermal energy transfer is always towards the area with
lower energy, i.e. in the direction of the negative temperature gradient. In this way the
temperature is always equalized between an object and its surrondings.

3.1.1 Heat Capacity

The capability of a given entity, that is a physical medium or object, e.g. the air in a room
or a wall in a building, to accumulate thermal energy is described by its heat capacity C.
When heat Q, which is the transferred thermal energy is transferred to the object then the
temperature T in the object changes. The heat capacity of the object as a function of the
temperature is defined as

C(T ) = mc(T ) =
dQ

dT
(3.1)

where m is the mass of the object, c(T ) is the specific heat capacity of the material in the
object. The unit of C is

[
J
◦C

]
. In the present models T varies at normal room temperature
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and the dependency of T is therefore marginal, and the linear approximation

C =
dQ

dT
(3.2)

is used.

3.1.2 Heat Transfer

Heat transfer takes place via one of the following fundamental mechanisms

• conduction

• convection

• radiation

Heat transfer is always from areas of higher temperature toward areas of lower temperature
and is in general a combination of the three stated mechanisms.

The heat transferred to a system per unit time is the heat flow

dQ

dt
= C

dT

dt
. (3.3)

where t is the time. This fundamental relation is utilized in the applied method as the link
between a model of heat flows, which are not directly measured, and temperatures which
are measured. Furthermore this makes it possible to estimate the heat capacities, since
the models are formulated such that they are included as model parameters.

Conduction

When a homogeneous medium is conducting thermal energy, the heat conduction per area
is proportional to the negative temperature gradient

1

A

dQ

dt
= −λ∇T = −λ

[
dT

dx
;
dT

dy
;
dT

dz

]
(3.4)

where A is the surface area through which the heat flows, λ is the thermal conductivity
of the medium. The conductivity is in general dependent on several physical factors, e.g.
temperature and moisture, but is in the present models assumed to be constant.

The change in temperature in the medium is described by the diffusion equation. When
no heat sinks or sources exist in the conducting medium, the diffusion equation is given by

dT

dt
=

λ

cρ
∇2T =

λ

cρ

(
d2T

dx2
+
d2T

dy2
+
d2T

dz2

)
(3.5)

where ρ is the density of the medium.
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Figure 3.1: Heat transfer through a medium assuming a constant temperature gradient.

When heat flow through a wall is modelled in the present models, it is approximated
to be in the normal direction of the wall only. This reduces the heat conduction per area
to

1

A

dQ

dt
= −λdT

dx
(3.6)

and the change in temperature to

dT

dt
=

λ

cρ

d2T

dx2
. (3.7)

Assuming a stationary condition of temperatures T1 and T2, which are the temperatures
on each side of the wall, then

dT

dt
= 0 ⇒ d2T

dx2
= 0 ⇒ dT

dx
= a =

T2 − T1

L
(3.8)

where a is some constant and L is the thickness of the wall. This is the heat conduction
used in the present models and is illustrated in Figure 3.1.

Finally the relation between the temperatures on each side of a wall and the heat flow
through the wall can be found from (3.6) and (3.8)

dQ

dt
=
λA

L
(T1 − T2) (3.9)

which is the heat flow from side 1 to side 2. Since the models are formulated such that the
heat flows between the entities in model are considered, disregarding the area and thickness
of the wall, the R-values are used

dQ

dt
=

1

R
(T1 − T2) (3.10)
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Figure 3.2: Resistance to heat flow by convection

where

R =
L

λA
(3.11)

is the resistance to heat flow between two entities, and has the unit
[ ◦C

W

]
. Often the

UA-values are used and this is simply the inverse of the R-value.

Convection

Convective heat transfer is a mechanism of heat transfer occurring because of bulk motion
(observable movement) of fluids. As convection is dependent on the bulk movement of a
fluid it can only occur in liquids, gases and multiphase mixtures. Convective heat transfer is
split into two categories: natural (or free) convection and forced (or advective) convection,
also known as heat advection

Heat transfer by convection is due to a combination of conduction and mass transfer.
When a fluid is adjacent to a solid material, heat is transferred between them. If the fluid
has a lower temperature than the solid, heat is transferred from the solid to the fluid by
conduction. This increases the temperature of the fluid near the wall, which makes the
fluid rise and this is replaced by new fluid. The opposite can also happen where warm
fluid transfer heat to the solid which sinks down and is replaced by new fluid. The first
example is illustrated in Figure 3.2.

As mentioned convection is divided into two categories

• Forced convection

• Free convection

Forced convection is the result of forced fluid flow, e.g. with fans or pumps. In free
convection the fluid flows naturally due to density differences in the fluid. For the heat
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transfer in FlexHouse only free convection will be regarded as a mechanism for exchanging
heat between the indoor air and walls.

The heat flow by convection is given by Newton’s law of cooling

dQ

dt
= hA(Ts − T∞) (3.12)

where h is the convection heat transfer coefficient, A is the area of the shared surface, Ts

is the temperature of the solid and T∞ is the temperature of the fluid far from the solid.
A typical value of h is 2-to-25 W/(m2 ◦C), for free convection of gases.

Convection can be modelled similarly to conduction, by setting hA = 1/R, where R is
the resistance against heat transfer between the air and walls.

Radiation

Heat exchange by radiation occurs between all objects, having different temperature, that
are in optical contact, e.g. radiation is the mode by which heat is transferred from the sun
to the earth. The energy is emitted in the form of electromagnetic waves and therefore
does not need a medium to propagate in. The energy emitted by a surface is given by

dQ

dt
= εσAsT

4
s (3.13)

where ε is the emissivity of the surface, σ = 5.670 · 10−8 W/(m2K4) is Stefan-Boltzmann’s
constant, As is the area of the surface that radiates the energy and Ts is the surface
temperature. In general heat transfer by radiation is very complex to calculate, since it
involves integration over visible surfaces. The heat exchange, however, between a body
and a totally surrounding surface can easily be calculated

dQ

dt
= εσAs

(
T 4

s − T 4
)

(3.14)

The solar radiation has a big impact on the temperature inside buildings with windows
and therefore solar radiation has to be a part of the heat transfer model. The heat flow
through a window due to solar radiation can be described by

dQ

dt
= AwΦs (3.15)

where Aw is the effective window area and Φs is the outdoor solar radiation in W/m2. The
effective window area is equivalent to the area where the radiation can pass unimpeded.

Ventilation

Ventilation cause heat transfer due to mass transfer. For most old buildings, like Flex-
House, the house envelope is by no means airtight and the indoor temperature is therefore
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very dependent on the speed and direction of the wind. The total heat exchange due to
ventilation is given by

dQ

dt
= vc (3.16)

where v is the amount of ventilated air and c is the specific heat capacity of air.
As with convection, ventilation can either be free or forced. For the heat transfer in
FlexHouse only free ventilation is regarded as mode of exchanging heat between the indoor
and outdoor air assuming that the air-conditioners are turned off. The amount of free
ventilated air is very complex to calculate and depends on many factors, e.g. leakage area,
wind speed and direction. Moreover the amount of ventilated air is by no means linear. In
previous research conducted in FlexHouse [2] the following relation was proposed for the
amount of ventilated air

v =
∑(

Al

√
A∆T +BV 2

)
(3.17)

where the sum is over all sides of the building, Al is the effective leakage area, A is the stack
coefficient, B is the wind coefficient, V is the wind component and ∆T is the temperature
difference between the indoor and the outdoor temperature.
Due to the age of FlexHouse, the house envelope cannot be assumed to be airtight. [2]
estimates the heat loss, in FlexHouse, due to ventilation to be approximately 30% of the
total heat loss. This heat loss has to be accounted for in the model of the heat flow. In
[2] Equation 3.17 is approximated to be proportional to the temperature difference across
the wall, i.e. ventilation loss can be approximated with

dQ

dt
= k (Ti − Ta) =

1

R
(Ti − Ta) (3.18)

where Ti is the indoor air temperature, Ta is the outdoor temperature andR is the resistance
to heat transfer directly to the outside. This approximation holds for low wind speed, but
if the wind speed is high (> 5m/s) the heat transfer becomes non-linear.

From this section it is seen that conduction, convection and ventilation, approximately,
can be modeled as a resistances against heat transfer. The energy flow into the building
due to direct solar radiation can be directly calculated using Equation 3.15 if the outdoor
solar radiation is known.

3.2 Modelling Approach

When formulating a model for the heat dynamics of a building, three different approaches
can used. The most widespead approach is to formulate a deterministic physical model
of the building with which the heat transfer can be simulated in different atmospheric
conditions. This approach is called white-box or transparent modelling. A white-box
model is continuously formulated. An overview of the vast amount of studies and computer
software based on this approach can be found in [4]. Generally the white-box models require
detailed building data, such as a 3D model of the dimensions of and the materials in the
building.
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The simple approach, in terms of physical information needed about the building, is
black-box modelling. Here observed data, e.g. the outdoor temperature etc., is used as
input to a statistically derived model of some variable e.g. the indoor temperature. A black-
box model is discrete and thus contrary to a continuous white-box model. The advantage
that little physical information about the building is needed, is also the disadvantage since
that less interpretation of the underlying physical parameters can be achieved. Examples of
black-box regression models where UA-values of single family houses are estimated can be
found in [10]. The link between the grey-box models and the regression models is described
in Section 3.4.

The approach used in the present models is grey-box modelling, which is a combination
of white-box and black-box modelling. A grey-box model exploits the advantages of these
two approaches by both including a continuous physical part and a discrete stochastic part.

3.3 Grey-box model

A grey-box model is a model established using a combination of prior physical knowledge
and statistics, i.e. information embedded in data. The prior physical knowledge is de-
scribed by a lumped model of the heat dynamics of the building, which is formulated as
a deterministic linear state space model in continuous time. Since the model is lumped
a noise term is added to describe the effects which is not described by the deterministic
model. Thereby a stochastic linear state space model in continuous time is formed. The
information embedded in the observed data is used for parameter estimation, by the for-
mulation of a discrete measurement equation. Furthermore this enables evaluation and
tests of the performance of the model. For example the dynamics that is not reflected by
the model should optimally be white noise, indicating that the lumped model is consistent
with the observed heat dynamics of the building.

3.3.1 Stochastic linear state space model

This section describes how the lumped model of the heat dynamics is formulated as a
linear state space model, by the use of the heat dynamics theory described in Section 3.1.
All the applied models approximate the interior of the building to be one room, and thus
that variations of the indoor temperature within the building are close to zero in all areas.
The state space model consists of: a set of state variables that describe the state of the
system, a set of inputs that affects the system, and a set of continuous differential equations
that describe the dynamics of the system. An RC-diagram of a linear model is depicted
in Figure 3.3. The model has two heat capacities and two corresponding state variables.
The heat flow between building parts are modelled as a combination of a conductive and
a convective heat flow, which is simply caracterised by a single thermal resistance, i.e. an
R-value. Finally the stochastic linear state space model is formed by adding a noise term.
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Figure 3.3: An RC-diagram and illustration of a lumped model of the heat dynamics of a
building.
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Ta
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Figure 3.4: A linear model with three state variables.

State variables

The state variables of the model shown in Figure 3.3 are the indoor temperature Ti and the
building envelope temperature Te. Decreasing the number of state variables in the model
makes it more lumped. Thus a less lumped model would include more state variables, e.g.
the temperature in each room. In the model Ci represent the total heat capacity both of
the indoor air and the interior walls etc. If one more state variable, and corresponding
heat capacity and heat resistance, is added to the model, as in the model shown in Figure
3.4, then the heat capacity that is represented by Ci has changed. Thus it is seen that
the physical interpretation of the parameters is dependend on how building is divided into

20



entities in the model.

Inputs

Measurements of physical variables are used as input to the state space models. The
relevant inputs are those physical variables which affect the state of the system. The input
variables of the model showed in Figure 3.3 are the ambient temperature Ta and the heat
from the electrical heaters Φh.

Equations describing the heat dynamics

The dynamics of the lumped system is described by first order differential equations which
can either be linear or non-linear. The differential equations are based on the heat dynamic
theory. In the model showed in Figure 3.3, it is seen that the indoor temperature is
dependent on two heat flows. The heat flow from the building envelope to the indoor air is
modelled as a combination of a conductive and a convective heat flow. The heat flow from
the electrical heater to the indoor air is simply given by Φh. This leads to the differential
equation describing the first-order dynamics of indoor temperature

Ci
dTi

dt
=

1

Rie

(Te − Ti) + Φh (3.19)

where Rie is the thermal resistance between the building envelope and the indoor air.
The building envelope temperature also dependent on two heat flows, which are both

modelled as a combination of a conductive and a convective heat flow. This leads to the
first-order dynamics of the building envelope temperature

Ce
dTe

dt
=

1

Rie

(Ti − Te) +
1

Rea

(Ta − Te). (3.20)

where Rea is the thermal resistance between the building envelope and the ambient envi-
ronment.

Matrix form

The linear state space model depicted in Figure 3.3 on matrix form is dTi

dt

dTe

dt

 =

 −1
CiRie

1
CiRie

1
CeRie

−1
Ce

( 1
Rie

+ 1
Rea

)

 Ti

Te

 +

 0 1
Ci

1
CeRie

−1
Ce

( 1
Rie

+ 1
Rea

)

 Ta

Φh

 (3.21)

and is written as
dT = ATdt+ BUdt (3.22)

where T = [Ti, Te]
T is the state vector and U = [Ta, Φh]T is the input vector. A defines

how the current state affects the dynamics and B defines how input enters the system.
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Noise term

To formulate a stochastic state space model, a noise term is added to the state space model.
The state space models describes a deterministic system where future states can be precisely
predicted if the input and the initial state vector are known. Due to approximations and
unknown disturbances in the system this idealization cannot be assumed to be correct.
Thus an additive noise term, dω(t) is introduced to form the stochastic linear state space
model in continuous time

dT = ATdt+ BUdt+ dω(t) (3.23)

where ω(t) is a Wiener process, which is a stochastic process with independent normal
distributed increments.

3.3.2 Measurement equation

Unfortunately not all states that can be measured, e.g. the building envelope temperature.
Therefore a vector of measurable states is introduced. This is defined by the discrete
equation

Tr = CT + DU + e(t) (3.24)

where e(t) is the measurement error. It is assumed that e(t) is normal distributed white
noise with zero mean and variance Re. Furthermore it is assumed that e(t) and ω(t) are
mutually uncorrelated. C and D defines how the measured states are influenced by the
state and input respectively. Considering the example model showed in Figure 3.3 it is
seen that the input has no direct influence on the measured air temperature, and therefore
D = 0. C is used to select the states which are measured. For all the models in the
present study only the indoor air temperature is measured. The measurement equation for
the example model is thus given by

Tr = [1 0]

[
Ti

Te

]
+ e(t) = Ti + e(t). (3.25)

3.4 Link to regression models

The link between the state space models and the regression models considered in [10] for
estimation of UA-values, is described in the following. Ignoring the dynamics by setting
dTi

dt
to zero, the simple state space model

C
dTi

dt
=

1

R
(Ta − Ti) + Φh (3.26)

can be rewritten as

0 =
1

R
(Ta − Ti) + Φh ⇔

Φh =
1

R
(Ti − Ta). (3.27)
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Then since the UA-value

αUA =
1

R
(3.28)

and by adding a noise term, the model is

Φh = αUA(Ti − Ta) + ε. (3.29)

This is the basis for the regression models in [10].
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Chapter 4

Parameter estimation

In Chapter 3 a grey-box model of the heat dynamics of FlexHouse is formulated. This
chapter describes a method for estimation of the parameters in the model, i.e. the ther-
mal resistances and capacities etc. Furthermore it is showed how the time constants are
computed and finally statistical tests applied in the model selection strategy is described.

In the first section it is described how the stochastic linear state space model in conti-
nous time is transformed into discrete time. Then the maximum likelihood estimator used
to estimate parameters is outlined, followed by a short describtion of CTSM, which is the
software tool used for the calculations. Finally the computation of the time constants and
the statistical tests used for the model selection strategy are described.

4.1 Stochastic linear state space model in discrete

time

The stochastic linear state space model, described in Section 3.3.1, is formulated in conti-
nous time, but the parameter estimation is carried out with statistical techniques applied
to data, which is naturally measured in discrete time. The solution to the continuous
stochastic differential equation (3.23) is found, such that the state of the system can be
calculated for discrete time steps. The solution to (3.23) can analytically be found to

T(t) = exp(A(t− t0))T(t0) +

∫ t

t0

exp(A(t− s))BU(s)ds

+

∫ t

t0

exp(A(t− s))dω(s) (4.1)

where

exp(A) =
∞∑

k=0

1

k!
Ak = I + A +

1

2
A2 + · · · (4.2)
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See [5] for more details. Given the state vector at time t, T(t), the new state vector at
time t+ τ is given by

T(t+ τ) = exp(A(t+ τ − t))T(t) +

∫ t+τ

t

exp(A(t+ τ − s))BU(s)ds

+

∫ t+τ

t

exp(A(t+ τ − s))dω(s) (4.3)

Assuming that the input, U(t), is constant in the sample interval [t; t + τ [, (4.3) can be
reformulated to

T(t+ τ) = exp(Aτ)T(t)−
∫ 0

τ

exp(Ar)BdrU(t)

+

∫ t+τ

t

exp(A(t+ τ − t))dω(s)

= exp(Aτ)T(t) +

∫ τ

0

exp(Ar)BdrU(t)

+

∫ t+τ

t

exp(A(t+ τ − s))dω(s) (4.4)

where the substitution r = t+ τ − s has been used. Defining

Φ(τ) = exp(Aτ)

Γ(τ) =

∫ τ

0

exp(Ar)Bdr (4.5)

v(t; τ) =

∫ t+τ

t

exp(A(t+ τ − s))dω(s)

Then (4.4) can be written as

T(t+ τ) = Φ(τ)T(t) + Γ(τ)U(t) + v(t, τ) (4.6)

Assuming that ω(t) is a Wiener process, v(t; τ) becomes normally distributed white noise
with zero mean and covariance

R1(τ) = E[v(t; τ)v(t; τ)T ] =

∫ τ

0

Φ(s)R1Φ(s)Tds

=

 R11 0 0
0 R22 0
0 0 R33

 (4.7)

If the sampling time is constant, the time scale in (4.6) can be transformed such that the
sampling time is equal to one time unit, i.e.

T(t+ 1) = ΦT(t) + ΓU(t) + v(t) (4.8)

This formulation can be used for estimation of the unknown parameters in (3.23) without
loosing the physical interpretation of the parameters.
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4.2 Maximum Likelihood Estimator

In Section 4.1, it was found that the stochastic linear state space model in continuous time
could be formulated as a difference equation in discrete time

T(t+ 1) = ΦT(t) + ΓU(t) + v(t) t ∈ 0, 1, 2, . . . N (4.9)

when the sampling time is constant, that is, equally spaced observations. In (4.9) t cor-
responds to the measurement at time index t, i.e. the t’th measurement. The likelihood
function can be used to estimate the unknown parameters in Φ and Γ, where the most
likely estimator is given by

θ̂ = arg max
θ
{L(θ; Tr(N))} (4.10)

where L, the likelihood function, is the joint probability distribution function of all the
observations.

Let Tr(t) = [Tr(t), Tr(t − 1), . . . , Tr(0)] be a vector containing all observations up to
and including t and θ be a vector containing all the unknown parameters in Φ and Γ,
including R11, R22, R33 from (4.7) and the measurement error, Re. Then the likelihood
function can be formulated as the joint probability distribution when =θ is given

L(θ; Tr(N)) = p(Tr(N)|θ) (4.11)

= p(Tr(N)|Tr(N − 1),θ)p(Tr(N− 1)|θ)

=

(
N∏
t=1

p(Tr(t)|Tr(t− 1),θ)

)
p(Tr(0)|θ)

where the rule P (A ∩ B) = P (A|B)P (B) has been used N -times to form the likelihood
function as a product of conditional densities. Since both v(t) and e(t), in (4.8) and (3.24),
are assumed to be normally distributed, the conditional density function is also normally
distributed, and is thus fully characterized by its mean and variance. The multivariate
normal distribution is given by

f(x) =
1

(2π)n/2
√

detΣ
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(4.12)

where Σ > 0 is the covariance and µ is the mean. Introducing the conditional mean

T̂(t|t− 1) = E[Tr(t)|Tr(t− 1),θ] (4.13)

the conditional variance

R(t|t− 1) = V [Tr(t)|Tr(t− 1),θ] (4.14)

and the one step prediction error

ε(t) = T(t)− T̂(t|t− 1) (4.15)
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Then (4.11) can be reformulated to

L(θ; Tr(N)) =
N∏
t=1

(
1

(2π)n/2
√

detR(t|t− 1)
exp

(
−1

2
ε(t)TR(t|t− 1)−1ε(t)

))

where n is the dimension of Tr. To simplify the maximization the logarithm to the likeli-
hood function is maximized instead

l(θ; Tr(N)) = log

(
N∏
t=1

(
1

(2π)n/2
√

detR(t|t− 1)
exp

(
−1

2
ε(t)TR(t|t− 1)−1ε(t)

)))
(4.16)

= −m
2

N∑
t=1

(2π)− 1

2

N∑
t=1

log(detR(t|t− 1)) +
1

2
ε(t)TR(t|t− 1)−1ε(t)

=
1

2

N∑
t=1

[
ε(t)TR(t|t− 1)−1ε(t)− log(detR(t|t− 1))

]
+ C

(4.17)

where C is a constant. A Kalman filter can be applied to recursively calculate the condi-
tional mean and variance.

The Kalman filter is a recursive filter, which can be used to estimate the states of a
linear stochastic state space model, given observations of U and T. The reconstructed
states and the corresponding covariance are

T̂(t|t) = T̂(t|t− 1) + Kt

(
Tr(t)−CT̂(t|t− 1)

)
P(t|t) = P(t|t− 1)−KtR(t|t− 1)KT

t

where Kt is the Kalman gain given by

Kt = P(t|t− 1)CTR(t|t− 1)−1 (4.18)

The predicted states are given by

T̂(t+ 1|t) = ΦT̂(t|t) + ΓU(t)

T̂r(t+ 1|t) = CT̂(t+ 1|t)
P(t+ 1|t) = ΦP(t|t)φT + R1

R(t+ 1|t) = CP(t+ 1|t)CT + R2

where following initial conditions are used

T̂(1|0) = E[T(1)] = µ0

P(1|0) = V [T(1)] = V0
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Asymptotically it holds for the maximum likelihood estimator that the variance of the
estimate is given by

V [θ̂] = I−1(θ̂) (4.19)

where

I (θ) = −E
[
∂2 logL

∂θ2

]
(4.20)

In practice

I (θ) = −
[
∂2 logL

∂θ2

]
θ=θ̂

(4.21)

is used. From this the variance and p-value for the parameters are found.

4.3 CTSM - Continuous Time Stochastic Modeling

A routine for maximizing the conditional likelihood function has been implemented in
CTSM, which is a continuous time stochastic modelling tool. CTSM can be used to esti-
mate parameters in both linear time invariant-, linear time varying- and nonlinear models.
The estimated parameters can either be found using the maximum likelihood (ML) method
or the maximum a posteriori (MAP) method. The maximum a posteriori estimator is not
used in this project, but [5] contains more information. When the maximum likelihood
estimator has been found for L(Tr(N);θ) CTSM returns the estimate of θ.

CTSM also estimates the standard deviation of the estimated parameters. This is given
by the estimated variance, which is found by setting the expected value in (4.20) equal to
the observed value, i.e.

ilk = −
(
∂2 logL(θ; Tr(N); )

∂θl∂θk

)
(4.22)

CTSM has been developed at Department of Informatics and Mathematical Modeling
(IMM) at the Technical University of Denmark, (DTU), and can be downloaded from
IMM’s homepage 1, where a user’s guide [6] is also available.

4.3.1 Modelling in CTSM

Due to the ease of use, CTSM has been chosen for estimation of the parameters in (3.23).
When a model, of the same form as (4.8), has been formulated it can easily be entered
using the graphical user interface of CTSM. When the number of states, input and output
have been defined, CTSM sets up the matrices, A, B, C and D, defined in (3.23) and
(3.24). When the matrices have been filled out it can be selected how to estimate each
parameter, i.e. ML, MAP or if it is fixed. Boundaries are defined for each parameter that

1http://www2.imm.dtu.dk/∼ctsm/

28



is to be estimated. It should be noted, that ±∞ and 0 should be avoided as boundary and
initial values for the parameter estimation. Finally a source of data, which contain time,
input and measured output, is specified and the parameters are estimated.

4.4 Time constants

Time constants characterizes the frequency response of a system. Physically, a single time
constant represents the time it takes the system’s step response to reach approximately
63% of its final (asymptotic) value. The i’th time constant of a linear state space model is

τi = − 1

λi
(4.23)

where λi is the i’th largest eigenvalue of A defined in (3.22).

4.5 Tests for model expansion

Statistical tests that can be utilized in the search for the most appropriate model are useful.
If a model is a submodel of larger model then a likelihood ratio test can determine if the
larger model performs significantly better than the submodel. Using such tests a strategy
for selection of the best model can be evolved.

4.5.1 Likelihood ratio tests

Let a model have parameters θ ∈ Ω1 where Ω1 ∈ Rr is the parameter space and r = dim(Ω1)
is the number of parameters in the model. Let a larger model have parameters θ ∈ Ω0

where Ω0 ∈ Rm and dim(Ω0) = m, and

Ω1 ⊂ Ω0, (4.24)

i.e. the first model is a submodel of the second model and r < m.
The likelihood ratio test

λ(y) =
supθ∈Ω1

L(θ; y)

supθ∈Ω0
L(θ; y)

(4.25)

where y is the observed values, can then be used to test the hypothesis

H0 : θ ∈ Ω1 vs. H1 : θ /∈ Ω1, (4.26)

since under H0 the test statistic −2log(λ(y)) converges to a χ2 distributed random variable
with (m − r) degrees of freedom as the number of samples in y goes to infinity. If H0 is
rejected then the likelihood of the larger model is significant compared to the likelihood of
the submodel, and it is found that y is more likely to be observed with the larger model.
In words the H0 hypothesis can be formulated as: can the optimal model have θ ∈ Ω1?
This can be rejected if a better model which have θ ∈ Ω0 is found. For more details see
[12].
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4.5.2 Hypothesis chains

Having multiple models with parameters θ ∈ Ωi where

R = Ωm ⊂ · · · ⊂ Ω1 ⊂ Ω0 ⊂ Rk (4.27)

and corresponding hypothesis

H0
i : θ ∈ Ωi vs. H1

i : θ /∈ Ωi, (4.28)

then
Hm ⊂ · · · ⊂ H1 ⊂ H0 ⊂ Hk (4.29)

and
¬H0

i ⇒¬ H0
i+1 ⇒ · · · ⇒¬ H0

m. (4.30)

This means that if H0
i is rejected when testing a model against a submodel where pa-

rameters are removed, or set to zero, then it can be concluded that no submodel of this
submodel is the optimal model. This can be used to test whether any submodel of a given
model is significantly better than the model. It is simply needed to test each submodel
where only a single parameter has been removed from the model.
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Chapter 5

Linear models

Grey-box models applied to model the heat dynamics of FlexHouse are described in this
chapter. The modelling procedure is first to apply a small model with only one state
variable, and thus only one time constant, and then stepwise expand the model in a forward
selection procedure. This is done until no further significant parameters and state variables
can be added to the model. The likelihood ratio test is used to find a significant expansion
of the model in each step.

The outline of the chapter is such that first the models which are selected in each
step are described and finally the forward selection with the likelihood ratio test results is
described.

5.1 Selected models

This section describes the selected linear models. The linear models can all be written

dT = ATdt+ BUdt+ dω(t) (5.1)

where T is the state vector and U is the input vector, and none of the state variables or
input variables are in A or B which only consist of parameters. All the considered linear
models have an input vector with three inputs

U = [Ta,Φs,Φh]T . (5.2)

where

• Ta is the temperature of the ambient environment, i.e. the outdoor air temperature,

• Φs is the solar irradiance on the building,

• Φh is the heat from the electrical heaters inside the building.

A description of the models are given from a theoretical point of view, but since the models
are lumped these descriptions does not hold exactly when the models are applied. This is
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elaborated further in Chapter 7 where the results of applying the models are presented.
Furthermore it should be kept in mind these models are linear approximations to the real
system.

5.1.1 Linear A

RiaTi

TaΦh CiAwΦs

Figure 5.1: The Linear A model

The smallest applied model is denoted Linear A. The RC-network of Linear A is shown
in Figure 5.1. The model has one state variable Ti which is the measured indoor tempera-
ture, and the following physical parameters

• Ci is the heat capacity of the house. This includes the indoor air, the interior objects,
and the building envelope.

• Ria is the thermal resistance from the indoor to the ambient environment.

• Aw is the effective window area of the house (see Section 3.1.2).

The differential equation describing the heat flow in the model is given by the heat flow to
the indoor

Ci
dTi

dt
=

1

Ria

(Ta − Ti) + AwΦs + Φh. (5.3)

5.1.2 Linear B

The RC-network of Linear B is shown in Figure 5.2. The expansion from Linear A is
obtained by adding a part that enhance the model of the heat input from the electrical
heaters. This part describes the finding that there is a delay from turning on the heaters
until this heat affects Ti. A state variable Th representing the temperature in electrical
heaters is added together with the following parameters

• Ch is the heat capacity of the electrical heaters,

• Rih is the thermal resistance from the heaters to the indoor.
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Φh

Ci

Ch

AwΦs

Figure 5.2: The Linear B model

It is also noted that expanding from a model with one heat capacity of the house, into a
model with two heat capacities of the house, implies that the interpretation of the heat
capacity parameters change. The model has two state variables T = [Ti, Th]T , and the
differential equations describing the heat flows in the model are:

Ci
dTi

dt
=

1

Ria

(Ta − Ti) +
1

Rih

(Th − Ti) + AwΦs (5.4)

Ch
dTh

dt
=

1

Rih

(Ti − Th) + Φh. (5.5)

5.1.3 Linear C

Ria

RimRih

Ti

Ta
TmTh

Φh

Ci

CmCh

AwΦs

Figure 5.3: The Linear C model

The RC-network of Linear C is shown in Figure 5.3. The model is an expansion of
Linear B, where a part that allows the indoor of the building to have one more seperate
medium. The state variable added is Tm and the extra parameters are

• Cm a second indoor heat capacity,

• Rim which is thermal resistance between the indoor and the second indoor medium.
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The model has three state variables T = [Ti, Tm, Th]T . The differential equations describing
the heat flows in the model are

Ci
dTi

dt
=

1

Ria

(Ta − Ti) +
1

Rim

(Tm − Ti) +
1

Rih

(Th − Ti) + AwΦs (5.6)

Cm
dTm

dt
=

1

Rim

(Ti − Tm) (5.7)

Ch
dTh

dt
=

1

Rih

(Ti − Th) + Φh (5.8)

5.1.4 Linear D

Rie Rea

RimRih

Ti

Ta

Te

TmTh

Φh

Ci

Cm

Ce

Ch

AwΦs

Figure 5.4: The Linear D model

The RC-network of Linear D is shown in Figure 5.4. This is an expansion of Linear
C, where the description of the building envelope is enhanced. This is done by adding the
state variable Te which is the temperature in the building envelope. Correspondingly the
following is added

• Ce is the heat capacity of the building envelope

• Rie is the thermal resistance from the indoor to the building envelope

• Rea is the thermal resistance from the building envelope to the ambient environment.

It is seen that Ria is the part of Linear B which is replaced with an enhanced part. The
model has four state variables T = [Ti, Tm, Te, Th]T . The differential equations describing
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the heat flows in the model are

Ci
dTi

dt
=

1

Rie

(Te − Ti) +
1

Rim

(Tm − Ti) +
1

Rih

(Th − Ti) + AwΦs (5.9)

Cm
dTm

dt
=

1

Rim

(Ti − Tm) (5.10)

Ce
dTe

dt
=

1

Rie

(Ti − Te) +
1

Rea

(Ta − Te) (5.11)

Ch
dTh

dt
=

1

Rih

(Ti − Th) + Φh (5.12)

5.1.5 Linear E

Rie Rea

RimRih

Ti

Ta

Te

TmTh

Φh

Ci

Cm

Ce

Ch

AwΦs AeΦs

Figure 5.5: The Linear E model

The RC-network of Linear E is shown in Figure 5.5. This is the largest model applied
and no significant further expansion was found possible. The expansion from Linear D
is accomplished by allowing the solar energy to enter the building envelope. Hence one
parameter is added

• Ae is the effective area in which the solar radiation enters.

The model has four state variables T = [Ti, Tm, Te, Th]T . The differential equations are

Ci
dTi

dt
=

1

Rie

(Te − Ti) +
1

Rim

(Tm − Ti) +
1

Rih

(Th − Ti) + AwΦs (5.13)

Cm
dTm

dt
=

1

Rim

(Ti − Tm) (5.14)

Ce
dTe

dt
=

1

Rie

(Ti − Te) +
1

Rea

(Ta − Te) + AeΦs (5.15)

Ch
dTh

dt
=

1

Rih

(Ti − Th) + Φh (5.16)
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5.2 Model selection

This section describes the selection of models using the likelihood ratio tests described in
Section 4.5.1. First a small and simple model is chosen as a starting point for the selection
and it is then expanded stepwise. The expansion in each step is either done by adding
a new physical parameter or by adding a new state variable with corresponding physical
parameters. In each step several expansions are tested and the most significant expansion
is selected, which is accomplished by taking the expansion with the highest loglikelihood.

5.2.1 From Linear A to Linear B

Ria

Rim

Ti

Ta
TmΦh

Ci

Cm

AwΦs

Figure 5.6: The Linear A model expanded with Tm

Rie ReaTi

Ta

Te

Φh Ci CeAwΦs

Figure 5.7: The Linear A model expanded with Te

In this section is described how it is concluded that Linear B is the best one-step
improvement compared to Linear A. Linear A (see p. 33, is the smallest reasonable model
with the three inputs and one state variable and is therefore the smallest considered model.
Three possible expansions into a model which has two state variables are evaluated and
the most significant expansion is selected. An expansion with Tm as shown in Figure 5.6
gives

l(θ; y) = 6627.8. (5.17)
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An expansion with Te as shown in Figure 5.7 gives

l(θ; y) = 6656.8. (5.18)

It is seen that these two expansions gives almost the same value of the loglikelihood func-
tion. The third evaluated expansion is with Th and is selected as Linear B (see p. 33),
since this gives a loglikelihood of

l(θ; y) = 6960.6. (5.19)

Since all three expansions has expands with 4 parameters the most significant expansion
is with Th.

The test for significant difference between Linear A and Linear B is carried out by
calculation of the likelihood ratio test statistic

λ = −2log(el(θA)−l(θB)) = −2log(e(5542.6−6960.6)) = 4091.4 (5.20)

which under H0 follows a χ2(10− 6) distribution. The p-value is very close to zero and H0

is rejected. It is thus found that Linear B is a significantly better model than Linear A.

5.2.2 From Linear B to Linear C

Rie Rea

Rih

Ti

Ta

Te

Th

Φh

Ci Ce

Ch

AwΦs

Figure 5.8: The Linear B model expanded with Te

The expansion from Linear B to a larger model is done by testing two expansions. With
Te, as depicted in Figure 5.8, the loglikelihood function is

l(θ; y) = 7245.6 (5.21)

and with Tm

l(θ; y) = 7254.0. (5.22)

The expansion with Tm is selected as Linear C. The test for significant difference perfor-
mance between Linear B and Linear C, is done by calculating

λ = −2log(e(6960.6−7254.0)) = 846.8 (5.23)

which under H0 follows a χ2(14−10) distribution. The p-value of the test is approximately
zero and thus H0 is rejected. Hence it is concluded that the expansion is significant.
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5.2.3 From Linear C to Linear D

The expansion from Linear C to Linear D is tested by calculating

λ = −2log(el(θC)−l(θD)) = −2log(e(7254.0−7551.1)) = 857.4 (5.24)

which under H0 follows a χ2(18− 14) distribution. The p-value is approximately zero and
H0 is rejected. It is thus concluded that Linear D is significantly better than Linear C.

5.2.4 From Linear D to Linear E

The expansion from Linear D to Linear E is tested by calculating

λ = −2log(el(θD)−l(θE)) = −2log(e(7551.1−7610.7)) = 171.7 (5.25)

which under H0 follows a χ2(19 − 18) distribution. The p-value is close to 0 and H0 is
rejected. It is thus concluded that the expansion from Linear D to Linear E should be
made.

5.3 Tests of expansions and submodels of Linear E

In this section it is described how to conclude that Linear E is the best model, currently
found. First tests for further expansion of Linear E are carried out. An expansion of Linear
E, where the solar radiation energy is splitted with a p-part flowing into the Tm entity and
(1− p) into the Ti entity, is tested. The statistic is

λ = −2log(e(7610.7−7611.2)) = 1.62 (5.26)

which under H0 follows a χ2(20− 19) distribution. The p-value is 0.20 and H0 cannot be
rejected and it is concluded that this expansion should not be made.

An expansion with Ria is tested by

λ = −2log(e(7610.7−7612.0)) = 3.94 (5.27)

which under H0 follows a χ2(20 − 19) distribution. The p-value is 0.047, which is in a
strict sense significant, but it is found that the improvement is too small and thus that the
expansion should not made. From this it is seen that no significant expansion currently
has been found.

By testing all submodels where only one parameter, or for the present models the small-
est possible part, has been removed, it can be tested if any submodel is significantly better
than Linear E. See the details in Section 4.5.2. Therefore a test of removing Tm, Cm, Rim

from Linear E is carried out and then a test of removing Th, Ch, Rih is carried out. This,
together with the test of expansion from Linear D to Linear E, where Ae was added, is
found sufficient to cover all submodels.
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The test for removing Tm, Cm, Rim is carried out by calculating

λ = −2log(e(6466.4−7612.0)) = 3301.7 (5.28)

which under H0 follows a χ2(19 − 15) distribution. The p-value is close to zero, and it
concluded that the submodel is less significant.

The for removing Th, Ch, Rih is carried out by calculating

λ = −2log(e(7279.5−7612.0)) = 955.5 (5.29)

which under H0 follows a χ2(19 − 15) distribution. The p-value is close to zero, and it
concluded that the submodel is less significant.

From these tests it is found that no submodel or expansion of Linear E is significantly
better than Linear E, and thereby that Linear E is the best model to describe the present
data.
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Chapter 6

Analysis of the one-step prediction
error

For each selected model an analysis of the one-step prediction error

εt = T i
t − T̂ i

t|t−1 (6.1)

where T i
t is the observed indoor temperature at time t, is carried out. The one-step

prediction error is in the following just referred to as the error. The aim of this analysis is
to find how close the applied model is to the real model of the system. First the moments
of the distribution of the error are used as performance measures for the models. Then the
time series {εt} of observed errors is plotted together with the input signals {T i

t}, {Φs
t}, {Φh

t }
and investigated to find which effects influence the performance of the models. Finally two
statistics are calaculated: the ACF and the cumulated periodogram, see [8]. These are
plotted with a 95% confidence band, which is used to test if ε is white noise. This is of
interest since if the applied model is the real model then the error will be white noise.
Furthermore especially the ACF can give information of the shortcommings of the model.
For all the calculated statistics a burn-in period of one hour for each experiment is used,
i.e. they are calculated without the values of the first hour of each experiment.

6.1 Mean and variance of the one-step prediction er-

ror distribution

Name Linear A Linear B Linear C Linear D Linear E
µε -0.000381 0.000358 0.000606 0.000594 8.28e-05
σ2
ε 0.00274 0.000865 0.000724 0.000719 0.000691

Table 6.1: Moments of the distribution of the errors

40



The first two moments, the mean and the variance, of the distribution of ε are good
performance measures of the models. The estimated values for each model are listed in
Table 6.1. The mean is an estimate of the bias, and are in the same range from Linear A
to Linear D, but is considerable smaller for Linear E. The variance is similarly decreasing,
and it is seen that the performance is increasing in each step from Linear A to Linear E.
The results are thus in agreement with the model selection carried out.

6.2 Linear A

Plot of the error for Linear A is found in Figure 6.1(a). Clearly the error has non-
stationarities indicating that the optimal model is more flexible than Linear A, and thus
should have more than one state variable and correspondingly more than one time con-
stant. The variance of the error is expected be higher in a period after the state of heaters
is shifted. This is due the higher differential of the indoor temperature after such a shift
and thus a higher variance of the one-step prediction. It is seen that the error have a
higher variance when the state of the heaters have shifted, but non-stationarities are also
higher. The ACF of the error is plotted in Figure 6.1(b) together with the periodogram.
High correlations of the lags are found and a high deviation from the 95% confidence band
of white noise.

6.3 Linear B

Examining the plot of the error for Linear B in Figure 6.2(a) less non-stationarity is found
comparing with Linear A. Especially around the state shifts of the heaters, for example
this is clearly seen after the shift around 1036 hours. The variance of the error is higher
after a shift, but as explained above this is expected. The plot of the ACF in Figure
6.2(b), shows a considerable decrease compared with ACF from Linear A. Similarly the
periodogram is closer to the confidence band of white noise, and it is seen that the model
clearly has improved the description of the high frequencies.

6.4 Linear C

Plot of the error for Linear C is found in Figure 6.3(a). Comparison with the error from
Linear B, reveal that effect of high variance after state shifts of the heaters are still in
the error and are similar, but non-stationarities have decreased. This is confirmed by
the ACF and the periodogram in Figure 6.3(b). Both statistical functions show that the
characteristics of the error are close to the characteristics of white noise.
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6.5 Linear D

Plot of the error for Linear D is found in Figure 6.4(a). It is hard to visually find the
difference in the error for Linear D compared to Linear C, but the ACF for Linear D in
Figure 6.4(b) does reveal a correlation of lag 1 in the error, which is higher than for Linear
C.

6.6 Linear E

Plot of the error for Linear E is found in Figure 6.5(a). As for Linear D it is difficult for
find a visual difference from the error of Linear C. The ACF and the periodogram are very
similar to those for Linear D.
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(a) Plot of the observed indoor temperature Ti, global irradiance Φs, heater signal Φh and one-step
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0 5 10 15 20 25 30 35

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

lag

A
C

F

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

frequency

(b) Left plot is the ACF and right plot is the periodogram of the one-step prediction error ε.

Figure 6.1: Plots for Linear A.
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(b) Left plot is the ACF and right plot is the periodogram of the one-step prediction error ε.

Figure 6.2: Plots for Linear B.
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(b) Left plot is the ACF and right plot is the periodogram of the one-step prediction error ε.

Figure 6.3: Plots for Linear C.
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(b) Left plot is the ACF and right plot is the periodogram of the one-step prediction error ε.

Figure 6.4: Plots for Linear D.
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(a) Plot of the observed indoor temperature Ti, global irradiance Φs, heater signal Φh and one-step
prediction error ε

0 5 10 15 20 25 30 35

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

lag

A
C

F

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

frequency

(b) Left plot is the ACF and right plot is the periodogram of the one-step prediction error ε.

Figure 6.5: Plots for Linear E.

47



Chapter 7

Results

This chapter presents the results from estimation of the selected models. First rough
physical values of the physical parameters are calculated, and then the estimated values
are evaluated.

7.1 Rough physical values

In order to evaluate the results of the estimated physical parameters in the models, knowl-
edge of the real underlying values is needed. In this section physical considerations are
used to calculate “rough” estimates of the values. Very little information of the building
materials are at hand, and the calculated values here are therefore only used to give an
idea of the magnitude of the values.

7.1.1 Heat capacities

The dimensions of the building used in the calculations are

L = 16.25m (7.1)

W = 7.5m (7.2)

H = 2.75m. (7.3)

The specific heat capacities and densities of the building materials are from [3]. The heat
capacity of the indoor air is calculated to be approximately

Cair = ρair · cair · L ·W ·H · 1

3600
= 0.11

kWh
◦C

(7.4)

where

cair = 1.012
J

g◦C
and ρair = 1.2041

kg

m3
. (7.5)

The heat capacity of the plaster in the interior walls is calculated. Examining the FlexHouse
layout (see Figure 1.1 at page 6) it is found that approximately 4 sides of interior wall is
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along the long side of the building and 8 along the short side. Assuming a thickness of the
plaster sheets of 10 mm gives

Cpl = (4L+ 8W ) ·H · cpl · ρpl · 0.01 · 1

3600
= 1.16

kWh
◦C

. (7.6)

where

cpl = 0.84
J

g◦C
and ρpl = 1440

kg

m3
. (7.7)

The heat capacity of the insulation material. It is assumed that rockwool sheets of 5 cm
is inside the entire building envelope.

Crw = 2(LW + LH +WH) · crw · ρrw · 0.05 · 1

3600
= 0.31

kWh
◦C

(7.8)

where

crw = 0.84
J

g◦C
and ρrw = 70

kg

m3
. (7.9)

Summing this gives a heat capacity of the building around

Cair + Cpl + Crw = 1.57
kWh
◦C

(7.10)

This only covers a part of the building materials excluding wood, metal, and concrete etc.
used in the walls and building envelope. Also the furnitures and computer hardware etc.
will contribute to the heat capacity. Considering the heat capacity of the building estimated
by Linear A to 3.42 kWh/◦C, this leaves an unexplained heat capacity of approximately
2 kWh/◦C. This is equivalent to a the heat capacity of concrete with a volume of

Vconc =
2

cconc · ρconc · 3600
= 3.4m3 (7.11)

where

cconc = 0.88
J

g◦C
and ρconc = 2400

kg

m3
. (7.12)

Which is equivalent to a layer of 2.8 cm thick concrete evenly distributed over the base
area of the building.

7.1.2 Window area

In an internal Risø report the window area of the south side of FlexHouse is measured to
10m2. The same report measures that around 50% of the radiation energy passes through
the windows. Since most of the solar irradiance will strike the southern side, a value of the
effective window in the range of 5m2 is reasonable.
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7.2 Estimated physical parameters and time constants

The estimates of the physical parameters and the time constants of the selected models
are found in Table 7.1. Note that the physical interpretation of each parameter is different
for each model. Generally it can be said that the exact physical interpretation of the
parameters and their values is difficult to give, and that the results should rather be
interpreted relative to the models.

7.2.1 Heat capacities

The in Linear A estimated heat capacity of the building Ci is 3.42kWh/◦C. This is found
to be a reasonable value. For Linear B the added heat capacity Ch represent the heat
capacity of the electrical heaters. The estimated value is close to the physically calculated
value in (7.4). Since Linear B has just two time constants it is reasonable to believe that
the large heat capacity to some extent represent the heat capacity of the building and the
small the heat capacity of the indoor air.

Linear C has three heat capacities and it seems as if another part of the building is
included in the model compared to Linear A and B. An exact physical interpretation of
the heat capacities is difficult to give, and likewise for Linear D.

Name Linear A Linear B Linear C Linear D Linear E
Ci 3.42 3.03 2.66 2.26 2.13
Cm - - 3.08 3.8 0.00102
Ce - - - 0.018 4.82
Ch - 0.0187 0.00384 0.00323 0.00361
Ria 4.87 5.04 4.82 - -
Rie - - - 4.9 0.963
Rea - - - 0.302 3.16
Rih - 10.2 33.3 63 62
Rim - - 3.45 1.68 4.76
Aw 10.7 8.05 5.53 4.54 3.77
Ae - - - - 21.8
τ1 16.7 0.19 0.128 0.00513 0.00485
τ2 - 15.3 3.97 0.203 0.224
τ3 - - 34.3 2.1 1.38
τ4 - - - 35.8 22.7

Table 7.1: The estimated parameters. The heat capacities, Cx, are in [kWh/◦C]. The heat
flow resistances, Rx, are in [◦C/kW]. The areas, Ax, are in [m2]. The time constants, τx,
are in hours. Note that the physical interpretation of the parameters is different for each
model.
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The estimates for Linear E of two small and two large heat capacities, could be inter-
preted such that the two large represent the heat capacities of the solid materials in the
building and the two small the heat capacity of the indoor air. This is not in compliance
with the interpretation of the model formulation, so again it is found difficult to give an
exact physical interpretation.

7.2.2 R-values and UA-values

The estimated value of Ria for Linear A, B, and C, and for Linear D and E Rie + Rea, is
used to find an estimate of the UA-value of the building by

αUA =
1000

Ria

1

L ·W (7.13)

or

αUA =
1000

Rie +Rea

1

L ·W . (7.14)

This gives a UA-value in W/(◦C m2). The estimated UA-values for the five considered
models are found in Table 7.2 In [10] UA-values for single-family houses are estimated
using regression models. The UA-values are U-values normalized with the ground area of
the house. The results are UA-values in the range of 0.5 to 1 W/(◦C m2) for single-family
houses. The estimated values for FlexHouse, is according to this, quite high, indicating that
the isolation of the building is poor. It is noted that a comparison of UA-values estimated
by different modelling techniques and data basis, should not be carried out directly. The
estimated values of parameters Rih and Rim are not as important for the description of the
insulation of the building.

7.2.3 Window area

The estimated effective window area Aw is found to be above the expected value around
5m2 for Linear A, but for Linear C, D, and E, the value seems quite reasonable. The
inclusion of an area Ae in Linear E, which represent how much solar energy is absorbed by
the building envelope, seems to have only a small effect on Aw. The estimated value of Ae

for Linear E is found reasonable.

7.2.4 Time constants

The single time constant for Linear A describes the slow dynamics. Linear B have two
time constants, where the large time constant, which have approximately the same value

Name Linear A Linear B Linear C Linear D Linear E
αUA 3.63 3.50 3.66 3.39 4.28

Table 7.2: The UA-values of the building in w/(◦C m2).
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as for Linear A, describes the slow dynamics. The small time constant describes the fast
dynamics, which is most likely related to the indoor air. A physical interpretation of the
time constants for Linear C, D, and E are more complicated, and it is just concluded that
the estimated values are found within a reasonable range.
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Chapter 8

Further work

The following points should be taken into consideration and emphasized during further
work.

8.1 Modelling with the present data

For further modelling with the present data the following should be considered

• Certainly the other models that can be combined from Linear E are interesting to
evaluate.

• Including the wind speed and direction as inputs. This should be carried out by
estimation of the impulse response function to find an appropriate way of entering
them into the model. The state space model then becomes non-linear, and thus
the maximum likelihood optimization will require considerably more computational
power than for the linear models.

• A more in-depth analysis of the one-step prediction error, especially around the shifts
in state of the electrical heaters. This is where the highest errors are observed. Plots
of the error vs. the inputs should also be analysed.

8.2 Carrying out further experiments

When carrying further experiments the following should be considered

• A very informative step would be to conduct equivalent experiments in different
buildings, and then compare the results of identical models.

• The sparse information of building materials has resulted in a poor comparison be-
tween the real underlying physical parameter values and the estimated values. There-
fore it should be considered how such information about the building can be acquired.
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• The temperature sensors must be cross validated to checked for bias before the ex-
periments are carried out. The constant temperature difference between the rooms
in the current data, see the discussion in Section 2.1, suggest that the sensors could
be bias.

• Applying a different sampling strategy in the experiments can increase the embedded
information in the signals. The implemented computer program in the building is
currently logging all data at a constant samplerate, or at least trying to do so. The
temperature sensors only send a value when the temperature has changed ±0.5◦C.
Therefore the sampling strategy should be changed such that all the sent values are
recorded with a time stamp. The data from the weather station should be recorded
at a higher constant samplingrate. In the data pre-processing the signals can then
be processed with higher order interpolation techniques, and then resampled with a
constant samplerate. This should be carried out if possible.
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Chapter 9

Conclusion

The aim of the study is to formulate and evaluate models of the heat dynamics of a
building. This has been done on the basis of data from three experiments carried out in
FlexHouse in February and March 2008. The evaluated models are grey-box models where
a combination of prior physical knowledge and statistics is utilized. The input to the
models consist of climate data measured at the location and measurements of the indoor
temperature. It is found possible to estimate reasonable physical parameters for the heat
dynamics of the building, including the time constants. Only linear models have been
taken into consideration.

The estimates are maximum likelihood estimates and based on likelihood ratio tests a
forward selection strategy has been used to find an optimal model. During the selection,
five models of different complexity have been considered. The results from each of these
models have been evaluated seperately. The simplest model have one time constant and
the model selected as the optimal model has four time constants.

The results show that the absolute physical interpretation of the parameters in the
models are difficult to give and that the interpretation is different for each model. The
results for each model should thus be interpreted relative to the model, and the models
can therefore be used to give information of changes in the isolation properties of a single
building. Furthermore applying the same model on different buildings will make it possible
compare characterization of heat dynamics for each building.

55



Appendix A

Input data to CTSM

Plots of the data used as input to CTSM. Each plot show the three input signals

• Φh the energy from the electrical heaters,

• Ta the ambient temperature,

• Φs the global irradiance,

and the observed indoor temperature Ti. Data from Experiment 3 is in Figure A.1, from
Experiment 4 in Figure A.2, and from Experiment 6 in Figure A.3.
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Figure A.1: The input to CTSM for Experiment 3.
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Figure A.2: The input to CTSM for Experiment 4.
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Figure A.3: The input to Ctsm for Experiment 6.
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