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Abstract 
In this paper a neural network model of Visual Short-Term 
Memory (VSTM) is presented. The model links closely with 
Bundesen’s (1990) well-established mathematical theory of 
visual attention. We evaluate the model’s ability to fit 
experimental data from a classical whole and partial report 
study. Previous statistic models have successfully assessed 
the spatial distribution of visual attention; our neural network 
meets this standard and offers a neural interpretation of how 
objects are consolidated in VSTM at the same time. We hope 
that in the future, the model will be able to fit temporally 
dependent phenomena like the attentional blink effect, lag-1 
sparing, and attentional dwell-time. 
 

Keywords: Visual Short-Term Memory, the Magical Number 
4, Winner-Take-All Network  

Introduction 
For everyday life, it is important for us to be able to 
perceive, comprehend, and react to events in our 
environment. Often, our rate of success is heavily dependent 
upon how efficient and how fast we can process, interpret 
and react to sensory stimuli, e.g. like when we are driving a 
car. 

In the following we shall refer to visual attention as the 
process that enables us to focus our processing resources to 
certain important objects in the visual scene. Following the 
Theory of Visual Attention (Bundesen, 1990) we assume 
that features have already been extracted and objects 
successfully segregated on the basis of their individual 
feature spaces. Our model deals with the important question 
of how only a limited sub span of all objects are actually 
selected and further encoded into VSTM. 

Cartell already in the late 19th century demonstrated a 
surprising limit in how many objects that can be perceived 
at the same time – a limit only about 4 objects which may 
be held in the VSTM at the same time (Cattell, 1886; 
Cowan, 2000). This finding is independent of the number of 
objects visually presented at the same time (Sperling, 1960). 
Evidence further exist that the “magical number” of 3-to-4 
objects is largely independent of how many features are 

encoded for each object, i.e. the complexity of the visual 
object, does not hold an influence on the memorial capacity 
of the VSTM; see (Luck & Vogel, 1997), but see also 
(Alvarez & Cavanagh, 2004). 
Modelling the function of the VSTM, it is essential that the 
inherent capacity limitation is properly mimicked, since it 
seems a fundamental limit of the system. Most likely the 
VSTM would be heavily overloaded, should the system lack 
the ability to represent only the most salient of the visually 
appearing objects 

The Model 
The model that we are presenting in this paper can actually 
be understood as three important consecutive processes. 

The first process is simply extraction of visual features, 
we speak of this process as ‘object matching’, since we find 
it relevant to think that objects in the visual field are to some 
extent ‘matched’ against objects representations in Visual 
Long-Term Memory (VLTM). In this paper we do not 
consider the problem of which feature extraction techniques 
are biologically most plausible or perhaps technically most 
appropriate to use. 

The second process that we shall consider in more detail 
is ‘the attentional race’. According to Shibuya & Bundesen 
(1988), all objects in the visual scene take a place in what 
one could think of as a race to become encoded. In Shibuya 
& Bundesen’s race model, the ‘odds’ that a given object is 
selected as a winner in the race is directly related to the rate 
value with which the object participates. It is worth noting 
that the race is a stochastic, rather than a deterministic 
process, meaning that no one can beforehand predict readily 
which objects will win the race. 

The third and last process that we shall consider is that of 
‘storage’ of object representation in VSTM. Inspired by 
Usher & Cohen (1999) we propose a competitive neural 
network model of VSTM, directly linking with several 
important assumptions expressed in Bundesen’s Theory of 
Visual Attention (Bundesen, 1990). 

 



 
 

Figure 1: The Model Scheme – an example 

The Neural Theory of Visual Attention 
The theory of visual attention (TVA) proposed by Bundesen 
(1990) is a unified theory of visual recognition and 
attentional selection. TVA provides a mathematical 
framework describing how the visual system is able to select 
individual objects in the visual field, based on the visual 
evidence and the setting of two different types of visual 
preference parameters (pertinence and bias), representing 
the influence from higher cortical areas, including VLTM. 

The output of the TVA-model is a set of rate parameters v 
that are directly related to the probability that a given 
characterization, object x belongs to category i, is encoded 
into the VSTM. The rate parameters are given by: 

 
 

 (1) 

 
Where 
 
  (2) 

 
Here η(x,i) is defined as the strength of the sensory evidence 
that object x belongs to the visual category i. The pertinence 
of the visual category j is denoted by πj and setting of these 
values effectively implements the so-called filtering 
mechanism. The perceptual decision bias of a visual 
category i is denoted by βi and setting of these values 
conversely implements a complementary mechanism called 
pigeonholing.  

The filtering mechanism increases the likelihood that 
elements belonging to a target category are perceived, 
without biasing perception in favor of perceiving the 
elements as belonging to any particular category.  

Pigeonholing, conversely changes the probability that a 
particular category i is selected without affecting the 
conditional probability that element x is selected given that 
category i is selected. 

A neural interpretation of TVA is given in (Bundesen, 
Habekost, & Kyllingsbæk, 2005). Basically here 
pigeonholing (selection of features) is considered an 
increase in the rate of firing of neurons while filtering 
(selection of objects is considered an increased mobilization 
of neurons. 

Corresponding to the interpretation in NTVA the fraction 
wx/∑wz in equation (1), which is the relative attentional 
weight of object x compared to the weight of all objects z in 
the visual field S, can be directly interpreted as the relative 
fraction of neurons allocated to process a given object x, 
compared to the total number of neurons processing just any   
object z belonging to the visual field S. 

Each and every characterization generally takes the form 
object x belongs to category i.  

Denoting the set of all features as R the total processing 
capacity, can be considered a constant C, which equals the 
sum of all encoding rates v; see (Bundesen, 1990). 

 
  (3) 

 
Shibuya and Bundesen (1988) assume that rates of 

encoding for targets, vT and for distractors, vD can be 
calculated according to the formulas: 

 
 

 (4) 

 
Here α characterizes the ratio of discrimination between 

distractors and targets. 
The effective exposure duration τ is smaller than the 

actual exposure duration t by an amount t0 corresponding to 
the temporal threshold before conscious processing begins. 
However the effective exposure duration can not be 
negative so computationally it is set to: 

 
  (5) 
 
In our model we adopt the parameters C, α and t0 and 

further, following Bundesen, we make use of equations (4)-
(6). 

 



The Neural Network model of VSTM 

 
 

Figure 2: The Neural Network model of VSTM. The total 
number of neuron assemblies is N and each assembly is 

represented by a level of activation A 
 

An object can enter VSTM once it receives external 
excitation, G taking the shape of Poisson distributed spike 
trains, arriving with the rate parameter v. (See Figure 2). 

A neural assembly that has obtained a positive level of 
activation will automatically seek to re-excite itself, so that 
it can stay in VSTM, at the same time trying to inhibit 
activation in other neuron assemblies representing other 
objects, i.e. working to suppress other object from co-
temporally being stored in VSTM. 

The initial condition for the simulations is that all neuron 
assemblies start with an activation of zero, i.e. no objects are 
initially stored in VSTM. As a consequence neither re-
excitation nor lateral inhibition exists, before the assemblies 
are externally activated. 

Implementation 
The activation Ax of neuron assembly x (representing object 
x) is given by the first order differential equation: 
 

 

 (6) 

 
The above equation characterizes a leaky accumulator 

model. There is passive decay of the activation towards the 
rest level, with a time constant chosen as 1, reflecting the 
time scale that physiologically is observed with synaptic 
currents (Usher & Cohen, 1998). 

F is a squashing function that keeps the activation within 
bounds:  

 

 (7) 

 
As a consequence of the squashing function F, the 

parameter α* is the limiting value of maximal self-excitation 
that assemblies can up-hold and the parameter β* is the 
limiting maximal value of inhibition that can be sent from 
one assembly to another. 

Also the model assume we can not have negative self-
excitation, i.e. self-inhibition and further the model does not 
implement any terms that could account for excitation 
laterally between the assemblies. The latter effect could for 
instance be included if one wanted to account for 
semantically related objects and their effect on the number 
of reported objects. 

The attentional significance that object i is present in the 
visual field R is represented by the encoding rate vi. In our 
model we follow the approach from (Bundesen, 1990) and 
interpret this rate as the firing rate of a Poisson spike 
generator G. Hence γ* characterizes the amplitude of the 
Poisson distributed input spikes arriving to the neuron 
assembly x. 

The model was implemented in MATLAB’s Simulink 
toolbox. At least in the operated parameter domain we judge 
the stiffness of the system to be negligible so for simplicity 
we numerically apply Euler integration with integration step 
size dt = 0.01.1 

Model Performance 

The Dataset 
The data covers the performance of a single subject, 
participating in an extensive series of whole and partial 
report experiments. The subject was instructed to report 
targets, i.e. digits while ignoring distractors, i.e. letters 
displayed on an imaginary circle around a small fixation 
cross at the center of the screen. Experimental trials covered 
twelve different combinations of total number of 2 – 6 
targets, T, and 0 – 6 distractors, D. Further, exposure 
durations t were varied systematically at 10, 20, 30, 40, 50, 
70, 100, 150 and 200 ms. Each experimental condition was 
repeated 60 times but trials were mixed so that the subject 
had no a-priori knowledge of the experimental condition. 
Moreover trials were grouped into blocks to minimize the 
element of fatigue. Each presented character was 
immediately followed by a mask lasting for 500 ms. Further 
information can be found in (Shibuya & Bundesen, 1988).  

                                                             
1 We verified that we used an appropriately small step size in 

our update formula in order not to consider the influence from 
having more than one spike per time interval, the probability for 
more than one spike was calculated to 0.37 %. 



Performance of the Neural Network model 
Figure 3 shows accumulated score distributions. The score 
is defined as the number of targets reported correctly. The 

upper most curve represents the accumulated score of j = 1, 
i.e. the probability of reporting 1 or more targets correctly. 
Other curves represent accumulated probabilities for 
reporting at least 2, 3, 4 or even 5 targets.  

 
Figure 3: Accumulated score distribution for subject MP in (Shibuya & Bundesen, 1988). Empirically found values are 

plotted with symbols as markers. The dotted lines represent the fit by Shibuya & Bundesen (1988). Solid lines represent the 
performance of our neural network model. 

 
Shibuya and Bundesen (1988) proposed a mixture model, 

mixing probabilities obtained with using a statistical model 
that assumed memorial capacities of either K = 3 or K = 4 
respectively. 

There is a relatively close fit between the proposed 
mixture model and the empirical data. We see however that 
data points obtained with exposure duration around 50 ms 
are generally under fitted and more noticeably the model 
does not account for cases where more than 4 targets are 
reported, as is actually the case in two out of three of the 
lower most plots. 

What we observe with the previous model can be 
considered a trade-off between two conflicting demands. 
The first demand is to fit the initial part of the curves, i.e. 
the larger the processing capacity C the steeper the curves 
will rise, on the other hand the second demand, which is to 

keep the score distribution reasonably low for long exposure 
durations, require that the processing capacity C is not set 
too high. Hence the setting of C is set subject to a 
compromise. 
Addressing the performance of our neural network model 
we think it clearly meets the standard of Shibuya and 
Bundesen’s model. Moreover, and in contrast to Shibuya 
and Bundesen’s model, our new model readily demonstrates 
its capability of predicting extreme cases, where more than 
4 objects are reported. 

Discussion 
Our new dynamic model of visual attention and VSTM is 
able to account for the complete set of data from whole and 
partial report experiments. Where the previous account by 
Shibuya and Bundesen (1988) treated extreme scores as 



outliers, the new model encompasses these as natural 
consequences of the internal dynamics. Further, the model 
explains VSTM capacity and consolidation as the result of a 
dynamic process rather than as a static store, which capacity 
is independent of processing capacity and the attentional set 
of the subject.  
 In future studies, we wish to explore the model's ability to 
explain the dynamic consolidation in VSTM found in 
temporally extended paradigms such as the attentional blink 
paradigm and studies of attentional dwell time; e.g. (Ward, 
Duncan, & Shapiro, 1996). Here, consolidation in VSTM is 
strongly dependent on competition between items already 
encoded into VSTM and visual items presented at a later 
point in time. This competitive process follows naturally 
from the dynamic architecture of the present model.  
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