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Chapter 1

Introduction

This report is a further elaboration on the results developed in Møller et. al.
(2008). The focus is to give some additional examples illustrating the estimation
and filtering procedure developed in Møller et. al. (2008) and the reader is referred
to this paper for details of the derivation. The model under consideration consists
of the system equation

Xt = ΞtAtXt−1 +BtU t−1, (1.1)

whereXt ∈ R
n is the unobserved true state of the system. The input or driver

of the system,U t ∈ R
nu , can be stochastic or deterministic, but it is assumed

to be independent of other variables in the system. IfU t is stochastic, thenU t

should be given by its meanµU
t and varianceΣU

t . The system is observed under
multiplicative and additive noise

Y t = ΛtCtXt + ǫt, (1.2)

whereY t ∈ R
m is the observation of the system. In (1.1) and (1.2) it is assumed

that the coefficient matricesAt ∈ R
n×n, Bt ∈ R

n×nu andCt ∈ R
m×n contain

known parametric relationships between states, inputs andobservations.Ξt ∈
R

n×n andΛt ∈ R
m×m are multiplicative noise terms, which are diagonal matrices

with diagonal elements given as random vectorsξt ∈ R
n andλt ∈ R

m, with
E[ξt] = 1, E[λt] = 1, V [ξt] = Σ

ξ
t andV [λt] = Σ

λ
t . The additive noise is a

random vector,ǫt ∈ R
m, characterized byE[ǫt] = µǫ

t andV [ǫt] = Σ
ǫ
t .
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1.1 The Filter Equations

The Kalman filtering procedure for the state space model (1.1)-(1.2) (Møller et. al.
(2008)) has the reconstruction

X̂t|t = X̂t|t−1 +Kt(Y t − Ŷ t|t−1) (1.3)

Σ
xx
t|t = Σ

xx
t|t−1 −Kt(Σ

xy
t|t−1)

T . (1.4)

with

Kt = Σ
xy
t|t−1(Σ

yy
t|t−1)

−1 = Σ
xx
t|t−1C

T
t (Σyy

t|t−1)
−1 (1.5)

and the predictions

X̂ t+1|t =At+1X̂ t|t +Bt+1µ
u
t (1.6)

Σ
xx
t+1|t =At+1Σ

xx
t|tA

T
t+1 + Σ

ξ
t+1 ⊙ (At+1P

xx
t|tA

T
t+1)+

Bt+1Σ
u
t B

T
t+1 (1.7)

Ŷ t+1|t =Ct+1X̂t+1|t + µǫ
t (1.8)

Σ
yy
t+1|t =Ct+1Σ

xx
t+1|tC

T
t+1 + Σ

λ
t+1 ⊙ (Ct+1P

xx
t+1|tC

T
t+1)+

Σ
ǫ
t+1 (1.9)

Σ
xy
t+1|t =Σ

xx
t+1|tC

T
t+1, (1.10)

with

P xx
t+k|t = Σ

xx
t+k|t + X̂t+k|tX̂

T
t+k|t, (1.11)

and given initial conditions

X̂1|0 = µ0 (1.12)

Σ̂
xx
1|0 = V 0. (1.13)

Positive systems with additive noise is an important subsetof the family (1.1)-(1.2),
in this case (1.3) is replaced by

(X̂ t|t)i = max{0, (X̂ t|t−1 + Σ
xy
t|t−1(Σ

yy
t|t−1)

−1(Y t − Ŷ t|t−1))i}. (1.14)

The role of this modification is important in the estimation presented in the next
section.
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1.2 Likelihood Estimation

In the estimation procedure we distinguish between two different cases. 1) situa-
tions where the sample space for the states and the observations isR and 2) situa-
tions where the sample space for the states and the observations isR0 only. In both
situation we will denote the information up to timet by Yt. In case 1) we assume
that the process is local Gaussian, i.e.Y t+1|Yt follows a Gaussian distribution,
and thelog-likelihood function becomes

logLG(θ;YN ) = −
1

2

N
∑

i=1

(

log(detΣyy
i|i−1) + Ỹ

T
i|i−1(Σ

yy
i|i−1)

−1Ỹ i|i−1

)

+

constant, (1.15)

whereỸ i|i−1 = Y i − Ŷ i|i−1 and the ML estimate of the unknown parametersθ

becomes

θ̂G = arg

{

max
θ

logLG(θ;YN )

}

. (1.16)

In case 2) the assumption is that the process is locally well approximated by a
log-normal distribution, i.e.Y t+1|Yt follows a log-normal distribution. The filter
equation given in Section 1.1 provides the variance matrices which by construction
are positive definite. This is however not a sufficient condition for to ensure that
the variance matrices are admissible (i.e. it is possible tofind alog-normal random
variable with this variance) for alog-normal random variable, see Kotz et. al.
(2000). The one step prediction variances are therefore transformed in accordance
with Møller et. al. (2008), i.e.

Σ̃
zz
t+1|t = log

(

Σ̃
yy
t+1|t + Ŷ t+1|tŶ

T
t+1|t

)

− log
(

Ŷ t+1|tŶ
T
t+1|t)

)

(1.17)

Ẑt+1|t = log
(

Ŷ t+1|t
)

−
1

2
diagΣ̃

zz
t+1|t, (1.18)

with

(

Σ̃
yy
t+1|t

)

i,j
=Ŷi,t+1|tŶj,t+1|t



exp





σ
yy
ij

√

σ
yy
ii σ

yy
jj

√

√

√

√log

(

σ
yy
ii + Ŷ 2

i,t+1|t

Ŷ 2
i,t+1|t

)

×

√

√

√

√log

(

σ
yy
jj + Ŷ 2

j,t+1|t

Ŷ 2
j,t+1|t

)



− 1



 , (1.19)
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whereσyy
ij =

(

Σ
yy
t|t+1

)

ij
. This transformation will leave the diagonal elements of

Σ
yy
ij unchanged. Under the assumption of locallog-normal distributions,Zt+1|t

will be normal distributed and thelog-likelihood function is

logLLN (θ;YN ) = −
1

2

N
∑

i=1

(

log(detΣ̃
zz
i|i−1) + Z̃

T
i|i−1(Σ̃

zz
i|i−1)

−1Z̃i|i−1

)

+

constant, (1.20)

the ML estimate of the unknown parametersθ is

θ̂LN = arg

{

max
θ

logL(θ;YN )

}

. (1.21)

The following sections will present some examples on the useof the filter
equations and the maximum likelihood estimation presentedabove. The example
should be seen as an extension of the example presented in Møller et. al. (2008).
In the examples where thelog-normal likelihood estimation is possible, the perfor-
mance of thelog-normal likelihood and the Gaussian likelihood are compared.

1.3 Missing Data

In practical applications missing observations often occur and these have to be
taken into account. Missing observations correspond to no information in which
case the Kalman gain is zero. I.e. the reconstruction whenY t is missing becomes

X̂t|t = X̂t|t−1 (1.22)

Σ
xx
t|t = Σ

xx
t|t−1. (1.23)

This applies if observationY t is completely missing, if a data point is only partly
missing, then these formulas does not apply. In this case we simply set the in-
formation on the missing observation equal to zero, which isequivalent to infinite
variance on the observation. The variance of the observation is given by (equation
(1.9))

Σ
yy
t+1|t =Ct+1Σ

xx
t+1|tC

T
t+1 + Σ

λ
t+1 ⊙ (Ct+1P

xx
t+1|tC

T
t+1) + Σ

ǫ
t+1, (1.24)

with P xx
t+1|t given by (1.11). The variance given by (1.24) can be controlled by the

variance of the additive and the multiplicative noises. In the model under consid-
eration the multiplicative variance is not suited for the purpose of controlling the
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variance, since an observation prediction equal to zero will produce variance corre-
sponding toΣǫ

t+1. The information should therefore be controlled by the additive
variance, i.e. if the observationj at timet, Yj,t, is missing then we setV [ǫj,t] = ∞.
I.e.

(

Σ
ǫ
t+1

)

j,j
= ∞, if Yj,t missing, (1.25)

if an observation is completely missing then the diagonal elements ofΣyy
t|t−1 will

be equal to∞ andKt becomes the zero matrix and the reconstruction is (1.22)-
(1.23). If an observation is only partly missing then (1.25)will set the effect of
the missing observation equal to zero. With this the filter equations can follow the
updating algorithms given in Section 1.1.

The Likelihood Function

The approach above is useful for the filtering problem. For the maximum likeli-
hood estimation problem we need to remove the missing part ofthe observation
from the estimation procedure.

If an observation is completely missing then it is simply ignored in the likeli-
hood estimation. If an observation is partly missing then let Jt denote the index
non-missing part of the observation at timet. E.g. if a full observation at timet
consists ofY t = (Y1,t, Y2,t, Y3,t), andY2,t is missing, thenJt = {1, 3}. Now set

C ′
t = IJt,:, (1.26)

whereI refer to the identity matrix of dimension equal to the observation variance
(Rm×m) andIJt refer to theJt rows and all columns. Define a new observation
by

Y ′
t = C ′

tY t, (1.27)

with the variance

Σ
′yy
t+1|t = C ′

tΣ
yy
t+1|tC

′
t
T
. (1.28)

Now Y ′
t andΣ

′yy
t+1|t is simply used in the likelihood estimation as described in

Section 1.2, with the remark that observations, that are completely missing, are
simply ignored, i.e. left out in the summations (1.15) and (1.20).
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Chapter 2

Examples

This chapter will present some examples of applications of the filter and the like-
lihood presented in Section 1.1 and 1.2 to illustrate the effect of missing observa-
tions.

2.1 Example 1

The first example we consider is the following state space model
[

X1,t

X2,t

]

=

[

ξ1,t 0
0 ξ2,t

] [

0.3 0.6
0.2 0.7

] [

X1,t−1

X2,t−1

]

+

[

1
0

]

Ut (2.1)

[

Y1,t

Y2,t

]

=

[

λ1,t 0
0 λ2,t

] [

1 0
0 1

] [

X1,t

X2,t

]

+

[

ǫ1,t

ǫ2,t

]

, (2.2)

with ξt andλt log-normal distributed random variables with covariances

Σ
ξ
t =

[

0.5 0
0 0.2

]

, Σ
λ
t =

[

0.7 0
0 0.7

]

, (2.3)

and expectation equal to the identity matrix.ǫ1,t andǫ2,t are independent iid se-
quences of exponentially distributed random variables with mean0.01. The initial
values are set at

X̂1|0 =

[

1
1

]

, Σ
xx
1|0 =

[

1 0
0 1

]

. (2.4)

The largest eigenvalue ofA is 0.9, which imply that the memory of the system
is longer than in the example presented in Møller et. al. (2008). Figure 2.1
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give a clear idea of how the system noise is scale dependent, the long memory
in comparison with the example in Møller et. al. (2008) is also evident. The
dynamics when the state is close to zero is however not clear from a plot like
Figure 2.1. Figure 2.2 gives insight of the dynamics when thestate is close to zero.
The scale dependency of the noise is clear from Figure 2.2, where the width of the
confidence band is almost constant over the scales in thelog-domain, implying that
it scales with the state in the original domain. It is howeverimportant to emphasize
that the state estimation and the simulation have been done in the original domain.

The confidence bands in Figure 2.1 and 2.2 are calculated as the unconditional
(on the other state) confidence region under the assumption that the states arelog-
normal distributed. The confidence regions for the two-dimensional process cannot
be shown in figures like Figures 2.1 and 2.2. These has howeverbeen calculated,
and for the shown simulation 95.4% of the states are inside confidence region for
the reconstruction and 96.9% of the observations are insidethe confidence region
for the one step prediction. The comparison was done in the log domain as the
parametric form of the confidence regions forlog-normal variables is quite com-
plicated, as can be seen in Appendix A.

The multiplicative standard deviation (see Limpert et. al.(2001), and Møller
et. al. (2008) for the filter version) in Figure 2.3 give a goodpicture of when
the uncertainty in thelog-domain is large. The multiplicative standard deviation is
relatively constant over the simulation, some larger values is however seen when
the states of the system are small. This is also the situations where the influence of
the additive noise will take over in the simulations.

For the estimation part we assume thatC is known and that the correlation
structure of the noise is known. We also assume that the inputUt andB is known.
With this the vector of unknown parameters becomes

θ = [a1,1, a1,2, a2,1, a2,2, σ
2
ξ1 , σ

2
ξ2 , σ

2
λ1
, σ2

λ2
, µǫ1, µǫ2 ]. (2.5)

since all parameters have to be greater than zero and therefore we set

ψ = log(θ), (2.6)

and optimize the likelihood with respect toψ, in this way we can estimate from
the real line and avoid boundary problems in the optimization procedure. We use
the standard optimizer “optim” in “R” (see www.r-project.org) with the
method “Nelder-Mead”. The parameters are estimated with the local Gaussian
and the locallog-normal assumption. Figure 2.4 shows that the locallog-normal
assumption perform better than the local Gaussian assumption in all the parameter
with the possible exception ofµǫ1 andµǫ2.
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The two estimation procedures are tested against each otherwith aF -test. In
order to do so define the loss-function

S(ψ̂:,j ;M) =

M
∑

i=1

(ψ̂i,j − log(θj)), (2.7)

whereψ̂:,j refer to a vector of estimates of parameterj based independent realiza-
tions of the process and̂ψi,j refer to thei’th estimate of parameterj. S(ψ̂:,j ;M)

is χ2 distributed under the assumption thatψ̂i,j is Gaussian distributed and we can
compare the ratio between the loss-functions for the two estimation procedure with
anF -distribution. Table 2.1 shows that thelog-normal procedure performs better
than the Gaussian procedure on a 0.001 level for all the parameters in the model in
the considered example.

As was shown in Møller et. al. (2008) the conclusion will depend on the skew-
ness of the multiplicative noise and in the example considered here the variance of
the multiplicative noise is large and therefore the skewness is high.

Table 2.1: Loss-functions for parameter estimates based onthe two estimation
procedures (log-normal and Gausian), withM = 100 independent realizations
of the process described in Example 1 the ratio between the loss-function and an
F -test of the hypothesis that the estimations are equally good.

S(ψ̂LN ;:,j,M) S(ψ̂G;:,j,M) F =
S(Ψ̂G;:,j ,M)

S(Ψ̂LN;:,j ,M)
P{x < F}

a1,1 1.73e−01 1.84e+00 10.59 1.000
a1,2 8.51e−02 3.43e−01 4.04 1.000
a2,1 3.71e−02 1.97e−01 5.30 1.000
a2,2 1.15e−02 1.61e−01 13.98 1.000
σ2

ξ1
6.19e−01 4.00e+00 6.46 1.000

σ2
ξ2

2.70e−01 8.37e−01 3.09 1.000
σ2

λ1
5.11e−02 3.99e−01 7.81 1.000

σ2
λ2

5.06e−02 3.25e+00 64.24 1.000
µǫ1 2.78e+00 2.70e+01 9.74 1.000
µǫ2 2.91e+00 1.26e+01 4.34 1.000
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2.2 Example 2

As a second example we consider the following state space model

[

X1,t

X2,t

]

=

[

ξ1,t 0
0 ξ2,t

] [

0.3 0.6
0.2 0.7

] [

X1,t−1

X2,t−1

]

+

[

1
0

]

Ut (2.8)

[

Y1,t

Y2,t

]

=

[

λ1,t 0
0 λ2,t

] [

1 0
0 1

] [

X1,t

X2,t

]

+

[

ǫ1,t

ǫ2,t

]

, (2.9)

with ξt andλt log-normal distributed random variables with covariances

Σ
ξ
t =

[

0.5 0.28
0.28 0.2

]

, Σ
λ
t =

[

0.7 0
0 0.7

]

, (2.10)

respectively, and expectation equal to the identity matrix, the covariance between
ξ1 and ξ2 correspond to a correlation equal to 0.9.ǫ1,t and ǫ2,t are independent
i.i.d. sequences of exponentially distributed random variables with mean0.01.
The initial values are set at

X̂1|0 =

[

1
1

]

, Σ
xx
1|0 =

[

1 0
0 1

]

. (2.11)

This system is identical to the system presented in Example 1, except that the
correlation between the multiplicative system noise is different from zero. The
impact from introducing this correlation is clear from Figure 2.5, where it is seen
that the correlation between the reconstruction of the states becomes very large
compared to Example 1. In addition some abrupt changes in thecorrelation appears
when the loading increases dramatically (in thelog-domain), these are due to the
dominance of the input variance around these changes in the input. The confidence
regions are also calculated in this example and the number oftrue states in the
confidence region for the reconstruction of states is 94.9% and the number is 96.2%
for the one step prediction of the observations.

In this example we will also compare the estimation procedures, and as in
Example 1 the parameters are transformed before the actual optimization takes
place. The large correlation between the multiplicative noise terms may course
numerical problems for the estimation procedure. These problems stem from the
estimation procedure setting some parameters equal to zero. The transformation
from Example 1 is therefore changed to

ψj = log(θj + 10−4), (2.12)
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this transformation is carried out for all the parameter except for the correlation.
The correlation is bounded by the interval[ρmin, ρmax], which can be found by
insertingρ = ±1 in equation (A.3). By using a logit transformation the correlation
is bounded within this interval. The interval depends on thevariances, and the
transformation will therefore change as the optimization procedure progresses.

Figure 2.6 show that the estimationlog-normal estimation procedure does a
better job on the estimation than the Gaussian estimation procedure. It is also seen
that the quality of the estimation seems to be good without large bias problems.
Table 2.2 confirms the conclusions from Figure 2.6 and yieldsconvincing statistics
on the problem.

Table 2.2: Loss-functions for parameter estimates based onthe two estimation
procedures (log-normal and Gausian), withM = 100 independent realizations
of the process described in Example 2 the ratio between the loss-function and an
F -test of the hypothesis that the estimations are equally good.

S(Ψ̂LN ,M1)j S(Ψ̂G,M2)j F =
S(Ψ̂G,M2)j

S(Ψ̂LN ,M1)j
P{x < F}

a1,1 1.57e−01 8.04e−01 5.11 1.000
a1,2 9.22e−02 6.45e−01 6.99 1.000
a2,1 4.12e−02 1.22e−01 2.96 1.000
a2,2 1.66e−02 8.37e−02 5.04 1.000
σ2

ξ1
2.25e−01 9.47e−01 4.21 1.000

ρξ1,2
1.44e+01 6.72e+01 4.68 1.000

σ2
ξ2

2.67e−01 6.40e−01 2.40 1.000
σ2

λ1
6.09e−02 4.70e−01 7.72 1.000

σ2
λ2

1.26e−01 1.21e+00 9.66 1.000
µǫ1 1.33e+00 2.47e+01 18.57 1.000
µǫ2 1.45e+00 1.56e+01 10.79 1.000
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Figure 2.5: Left panel: the states (State 1, black and State 2, red), the standard
deviation of the states, the correlation between the statesand input on the origi-
nal scale. Right panel: the logarithm of the states, the “multiplicative” standard
deviation, the correlation and the logarithm of the input.
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Figure 2.6: Box plots of estimated parameters (θ̂LN ) based on 100 simulated pro-
cesses of (2.8)-(2.10). The boxes show the IQR (Inter Quartile Range), the median
is marked with the bold line in the boxes. The whiskers are placed at the most
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more deviating parameter estimates are marked as outliers and plotted with black
circles. Left panel shows the actual parameter estimates, while the right panel
shows the deviation from the true parameter values. A and B are based on the local
log-normal estimation procedure whereas C and D are based on thelocal Gaussian
estimation procedure.
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2.3 Example 3

As a third example of the filtering and estimation problem we consider the follow-
ing state space model

[

X1,t

X2,t

]

=

[

ξ1,t 0
0 ξ2,t

] [

0.5 −0.6
0.3 0.8

] [

X1,t−1

X2,t−1

]

+

[

1
0

]

Ut, (2.13)

[

Y1,t

Y2,t

]

=

[

λ1,t 0
0 λ2,t

] [

1 0
0 1

] [

X1,t

X2,t

]

+

[

ǫ1,t

ǫ2,t

]

, (2.14)

with ξt andλt log-normal distributed random variables with covariances

Σ
ξ
t =

[

0.2 0.25
0.25 0.4

]

, Σ
λ
t =

[

0.7 0
0 0.7

]

, (2.15)

respectively and expectation equal to the identity matrix,the covariance between
ξ1 and ξ2 correspond to a correlation equal to 0.9.ǫ1,t and ǫ2,t are independent
i.i.d. sequences of exponentially distributed random variables with mean0.01.
The initial values are set at

X̂1|0 =

[

1
1

]

, Σ
xx
1|0 =

[

1 0
0 1

]

. (2.16)

The model considered here can procedure negative values, and as stated in Møller
et. al. (2008) the filter is capable of handling this. Thelog-normal estimation
procedure is however not capable of this and it is therefore not possible to compare
the two estimation procedures. We will however consider theresult of the local
Gaussian assumption.

The evolution of the states can be seen in Figure 2.7, the states do take nega-
tive values, but the scale dependency of the noise is still evident from the plot. The
states cannot belog-normal distributed in this case, and the confidence intervals are
therefore constructed using a Gaussian assumption on the reconstruction, the inter-
vals are confidence intervals in the unconditional distribution. The number of true
states inside the 95% confidence interval are 95% and 96.3% for the reconstruction
and the one step prediction of the observations respectively.

When the process is guaranteed to be positive we can take the logarithm to
visualize the dynamics of the process when close to zero. This is not possible when
the process can take negative values. Instead we use the following transformation

g(x) =







k · (− log(−x) + log(k) − 1) for x < −k
x for −k ≤ x ≤ k

k · (log(x) − log(k) + 1) for k < x

, (2.17)
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and are therefore not shown.

21



with k = 10−3. This transformation allows us to view the dynamics of the process
on different scales on the same plots (Figure 2.8). Even though the plot gives
some insight on the dynamics over different scales, the figure is less clear than
the log plots in the previous two examples. The multiplicative standard deviation
shows some very large values compared to what has been seen inthe previous two
example.

Estimation of the parameters cannot be done under thelog-normal assumption
and we have therefore used the local Gaussian assumption only. As for the previous
examples we have transformed the parameters before the estimation was carried
out. The parameters inA are not transformed, since these are now allowed to take
values from the real line. Variance parameters are considered as positive and are
therefore subject to the transformation (2.12). This transformation is also applied
to the mean value parametersµǫ1 andµǫ2. Finally, the correlation coefficient inΣξ

t

is transformed with the same logit transformation as in Example 2. From Figure
2.9 it is clear that the quality of the estimates are not as good as the results from
the log-normal procedure in Example 1 and 2. There are biases and many outliers,
especially for the variance (and correlation) parameters.
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2.4 Example 4 (Missing Data)

As a final example we consider the following state space model

[

X1,t

X2,t

]

=

[

ξ1,t 0
0 ξ2,t

] [

0.3 0.6
0.2 0.7

] [

X1,t−1

X2,t−1

]

+

[

1
0

]

Ut (2.18)

[

Y1,t

Y2,t

]

=

[

λ1,t 0
0 λ2,t

] [

1 0
0 1

] [

X1,t

X2,t

]

+

[

ǫ1,t

ǫ2,t

]

, (2.19)

with ξt andλt log-normal distributed random variables with covariances

Σ
ξ
t =

[

0.5 0
0 0.2

]

, Σ
λ
t =

[

0.5 0
0 0.5

]

, (2.20)

respectively and expectation equal to the identity matrix.ǫ1,t andǫ2,t are indepen-
dent i.i.d. sequences of exponentially distributed randomvariables with mean0.01.
The initial values are set at

X̂1|0 =

[

1
1

]

, Σ
xx
1|0 =

[

1 0
0 1

]

. (2.21)

The model considered here is similar to the one presented in Section 2.1, but with
lower observation variance. The model is considered with a loading drawn from a
log-normal distribution with mean equal to 100 and variance equal to 1000. The
effect of missing or partly missing observations on the reconstruction of the state
is investigated by letting eitherY1,t, Y2,t or both be missing. From Figure 2.10 it
is seen that the effect of observations from one state being missing does not affect
the reconstruction of the other state significantly, and further that the observation
of one state gives some information on the other state. The effect on the variance
(Figure 2.11) is more clear when observations are partly missing only. The variance
and the multiplicative standard deviation is seen to be higher for both states as is
the correlation between the states.
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Chapter 3

Conclusion and Acknowledgment

3.1 Conclusion

The filter presented in Chapter 1 has been applied for four different examples where
it has proven to work well. The filter has further been appliedas the basis for es-
timation of parameters in processes with multiplicative noise, the estimation based
on log-normal assumption has proven work well and to perform better than the
traditional assumption of Gaussian one step transition probabilities.

The results presented here should be seen as further simulation studies in rela-
tion to the results presented in Møller et. al. (2008), and assuch the conclusions
given therein are supported in the present work. The application of the filter to a
process that takes values on the real line (as oppose to the positive axes), is not
presented in Møller et. al. (2008). The results for this partof the study is that the
filter seems to give nice results, but that the local Gaussianassumption is not very
satisfactory for the estimation procedure.

The present work further elaborate on how to deal with missing data.

3.2 Acknowledgment

This study is a contribution to the EU-funded project Thresholds (GOCE-003933).

29



30



Appendix A

Log-normal Confidence Regions

The purpose of this section is to visualize how confidence regions for Gaussian ran-
dom variables translates into confidence regions for the correspondinglog-normal
random variable.

If X ∼ N(µ,Σ) is a multivariate Gaussian random variable, thenY = eX

(the exponential is to be taken element-vise) is a multivariate log-normal random
variable, we denote this byY ∼ LN(µ̃, Σ̃), with (see Kotz et. al. (2000))

µ̃i = eµi+
1
2
σii , (A.1)

σ̃ij = (eσij − 1)eµi+µj+
1
2
(σii+σjj), (A.2)

ρ̃ij =
eρ

√
σiiσjj − 1

√

(eσii − 1)eσjj − 1)
. (A.3)

How this translate into confidence regions is shown in FigureA.1. The figure
hopefully give some intuition of how the confidence regions for multidimensional
log-normal random variables behave in comparison with the corresponding Gaus-
sian random variable.
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Figure A.1: Gaussian and correspondinglog-normal confidence regions, the shown
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are given in the plots.
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