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Chapter 1

Introduction

This report is a further elaboration on the results developeMaller et. al.
(2008). The focus is to give some additional examples ilatistg the estimation
and filtering procedure developed.in Maller et. al. (2008) e reader is referred
to this paper for details of the derivation. The model undersideration consists
of the system equation

X =EAX 1 +BU;_q, (1.1)

where X; € R” is the unobserved true state of the system. The input orrdrive
of the systemlU,; € R™+, can be stochastic or deterministic, but it is assumed
to be independent of other variables in the systemUJfis stochastic, theil/,
should be given by its megn and variances?. The system is observed under
multiplicative and additive noise

Y= ACi Xy + €, (1.2)

whereY; € R™ is the observation of the system. [0{1.1) andl(1.2) it is el
that the coefficient matriced; €¢ R**", B; € R"*"™ andC; € R™*" contain
known parametric relationships between states, inputsofsédrvations. =; €
R™™™andA; € R™*™ are multiplicative noise terms, which are diagonal magrice
with diagonal elements given as random vecigrse R” and A\, € R™, with
El¢) = 1, E[\] = 1, V[¢,] = =% andV[\] = =). The additive noise is a
random vectorg; € R™, characterized by[e;] = uf andVe;] = Xf.
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1.1 The Filter Equations

The Kalman filtering procedure for the state space mdd)ILA) (Mgller et. al.
(2008)) has the reconstruction

Xyo=Xyo1 + Ke(Yi = Yy q) (1.3)
=% - Kt(Efﬁ’fl)T. (1.4)
with
K,=33 (= ) =Zcf s ) (1.5)
and the predictions
X1t =A1 X g + B pd (1.6)
P = A B A + 3f O (A P AT )+
Bt+12t Bt+1 (1.7)
Y1 =Ce1 X1 + pf (1.8)
2t+1\t Ct+12t+1\tct+1 +30, @ (Ct+1Pt+1|tCt+1)+
i1 (1.9)
Eﬁl\t t+1\tCt+17 (1.10)
with
5 T
P = S0 + Xkt Xy wpes (1.11)

and given initial conditions

Xj0 = po (1.12)

2 TT

2i0="Vo. (1.13)

Positive systems with additive noise is an important subsisbie family [T3)LR),
in this casel(I]3) is replaced by

(Xt\t) = max{0, Xt|t 1 +Et‘t 1(2% 1)7 (Yt—Yt\tfl))i}' (1.14)

The role of this modification is important in the estimatiaesented in the next
section.



1.2 Likelihood Estimation

In the estimation procedure we distinguish between twaerbfit cases. 1) situa-
tions where the sample space for the states and the obses/&R and 2) situa-
tions where the sample space for the states and the obses/&R only. In both
situation we will denote the information up to timéy );. In case 1) we assume
that the process is local Gaussian, i¥,.1|); follows a Gaussian distribution,
and thelog-likelihood function becomes

N

1 ~ T 1

log La(0; Yn) = — 5 > (log(detzf"g_l) + Y5135 ) 1Yi|i—1> +
i=1

constant (1.15)

wheref/i‘i,l =Y, — YZ-|Z-,1 and the ML estimate of the unknown parameirs
becomes

A~

0c = arg {méixlog L¢(6; yN)} . (1.16)

In case 2) the assumption is that the process is locally vgtaximated by a

log-normal distribution, i.eY 1|} follows alog-normal distribution. The filter

equation given in Sectidn1.1 provides the variance matdgch by construction

are positive definite. This is however not a sufficient caodiffor to ensure that
the variance matrices are admissible (i.e. it is possibfmtbalog-normal random

variable with this variance) for dbg-normal random variable, s¢e Kotz et. Aal.
(2000). The one step prediction variances are therefonsfsemed in accordance
with Maller et. al! (2008), i.e.

5 8 . T N T
X1 = log <Ei/—iy-1\t + Yt+1|th+1\t) — log (Yt+1\th+1|t)) (1.17)

al " 1 . ladyy A
Ziq) = log <Yt+1|t> - §d|ag2t+1|t, (1.18)
with
vy o +v?2
Y > 5 o i 21t
(Et+1|t>A =YY e | €XP ﬁ log <27Z|> X
" 05 0jj Y
o¥ +y?2
]Og <”A27]’t+1|t —-1], (119)
G+t



vy _ vy
whereo; = <Et‘t+1

Eij unchanged. Under the assumption of lokg-normal distributions Z, |,
will be normal distributed and thieg-likelihood function is

) . This transformation will leave the diagonal elements of
ij

N
1 = =T < 15
log Lin(0;YN) = — 3 E (log(detEfﬁ,l) + Zi\ifl(zz"z;fl) 1Zi|i71> +
i=1

constant (1.20)

the ML estimate of the unknown parametérs

0.y = arg {m@ax log L(6; yN)} . (1.21)

The following sections will present some examples on the afsthe filter
equations and the maximum likelihood estimation preseatexve. The example
should be seen as an extension of the example presented lier Mizlal. (2008).
In the examples where theg-normal likelihood estimation is possible, the perfor-
mance of théog-normal likelihood and the Gaussian likelihood are comgare

1.3 Missing Data

In practical applications missing observations often o@nd these have to be
taken into account. Missing observations correspond tanfaration in which
case the Kalman gain is zero. |.e. the reconstruction ifigis missing becomes

Xy =Xy (1.22)
D Vi (1.23)

This applies if observatioly’; is completely missing, if a data point is only partly
missing, then these formulas does not apply. In this caseimwegl\s set the in-
formation on the missing observation equal to zero, whiagisivalent to infinite
variance on the observation. The variance of the observaigiven by (equation

C.9)

2 =Cen S, Choy + 34 0 (Conn P, Ch) + 26, (1.24)

vy
t+1|t

Jr
variance of the additive and the multiplicative noises.Ha model under consid-

eration the multiplicative variance is not suited for thegmse of controlling the

with Py, given by [II1). The variance given iy (11.24) can be cordolly the
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variance, since an observation prediction equal to zelgvatuce variance corre-
sponding toX¢, ;. The information should therefore be controlled by the tkeli
variance, i.e. if the observatignat timet, Y; 4, is missing then we séf|e; ;] = oc.
l.e.

(Xf41);,; =00, if Yj, missing (1.25)

if an observation is completely missing then the diagonaneints omfi{_l will

be equal toxo and K; becomes the zero matrix and the reconstructiof1s11.22)-
@Z3). If an observation is only partly missing thén (1.25l set the effect of

the missing observation equal to zero. With this the filtaragigpns can follow the
updating algorithms given in Sectibn1l.1.

The Likelihood Function

The approach above is useful for the filtering problem. Ferrfaximum likeli-
hood estimation problem we need to remove the missing patieobbservation
from the estimation procedure.

If an observation is completely missing then it is simplyaged in the likeli-
hood estimation. If an observation is partly missing thenZedenote the index
non-missing part of the observation at timeE.g. if a full observation at time
consists ofY’; = (Y14, Yas, Y3), andYs is missing, then7; = {1, 3}. Now set

C,=1,., (1.26)

wherel refer to the identity matrix of dimension equal to the oba&on variance
(R™*™) and I y, refer to the7; rows and all columns. Define a new observation

by
Y, =C\Y, (1.27)
with the variance

T
2= OBl O (1.28)

Now Y}, and E’tyillt is simply used in the likelihood estimation as described in

Section[LP, with the remark that observations, that arepbetely missing, are
simply ignored, i.e. left out in the summations{1.15) dn@q).






Chapter 2

Examples

This chapter will present some examples of applicationdeffilter and the like-
lihood presented in Sectign1.1 dndl1.2 to illustrate thectff missing observa-
tions.

2.1 Example 1

The first example we consider is the following state spaceanod

[XM | _[&s 0 } [ 0.3 0.6 } [ X141 } N [ (1) } U, 2.1)

Xog | | 0 &u 0.2 0.7 Xoto1
Yig | [ A 0][1 O:||:X1t:| |:€1t:|
) — ’ ’ + ’ 5 2.2
|:Y2,t 1L 0 Aoy 01 Xo €2, (2:2)
with &, and\; log-normal distributed random variables with covariances
¢ 105 0 A_ |07 0
i = [ 0 0.2 } M= [ 0 07|’ (2:3)

and expectation equal to the identity matrix.; andey, are independent iid se-
guences of exponentially distributed random variables wiean0.01. The initial
values are set at

Xloz[”, ﬂfﬂg:[é H (2.4)

The largest eigenvalue A is 0.9, which imply that the memory of the system
is longer than in the example presentec_in Maller et. lal. _&200Figure[Z1
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give a clear idea of how the system noise is scale dependentphg memory
in comparison with the example in_Magller et. all (2008) isoaéwvident. The
dynamics when the state is close to zero is however not ctear & plot like
FigurelZ. Figur&2]2 gives insight of the dynamics whersthee is close to zero.
The scale dependency of the noise is clear from Figuie 2.8renthe width of the
confidence band is almost constant over the scales lnghgdomain, implying that
it scales with the state in the original domain. It is howewgportant to emphasize
that the state estimation and the simulation have been dahe ioriginal domain.

The confidence bands in Figurel2.1 2.2 are calculatec amttonditional
(on the other state) confidence region under the assumiddithe states aieg-
normal distributed. The confidence regions for the two-disi@nal process cannot
be shown in figures like Figurés®.1 dndl2.2. These has hovoeesr calculated,
and for the shown simulation 95.4% of the states are insidéidence region for
the reconstruction and 96.9% of the observations are irtkigleonfidence region
for the one step prediction. The comparison was done in thaltonain as the
parametric form of the confidence regions fog-normal variables is quite com-
plicated, as can be seen in Appendix A.

The multiplicative standard deviation (see Limpert et] ¢2001), and Mgller
et. al. [2008) for the filter version) in FiguteR.3 give a gqudture of when
the uncertainty in théog-domain is large. The multiplicative standard deviation is
relatively constant over the simulation, some larger \&lisehowever seen when
the states of the system are small. This is also the sitisatidrere the influence of
the additive noise will take over in the simulations.

For the estimation part we assume tidatis known and that the correlation
structure of the noise is known. We also assume that the iipand B is known.
With this the vector of unknown parameters becomes

2 2 2 2
0= [a/l,lv a12,021, 022, 0_51 ) 0_527 OX1> 0Ny ey s /’LEQ]' (25)

since all parameters have to be greater than zero and theweéoset

i = log(6), (2.6)

and optimize the likelihood with respect 16, in this way we can estimate from
the real line and avoid boundary problems in the optimizapoocedure. We use
the standard optimizeropt i ni in “R” (see www. r - pr oj ect . or g) with the
method ‘Nel der - Mead”. The parameters are estimated with the local Gaussian
and the localog-normal assumption. Figufe 2.4 shows that the ldcginormal
assumption perform better than the local Gaussian assommiptiall the parameter
with the possible exception @f., and e, .

10
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Figure 2.1: The true statX; = (X, X2) of the system (black), the state re-
constructionX ¢+ of the system (red), with 95% confidence intervals (grey)area
forced by the stochastic inpGt (black), with meanu! (red) and 95% confidence
interval for input (grey area). The first 10 data-points aresidered as transients
and are therefore not shown.
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Figure 2.2: The logarithm of the true state(X,) = (log X1 ,log X2 ) of the
system (black), the logarithm of the state reconstrucligyi X ¢|¢) of the system
(red), with 95% confidence intervals (grey area), the ldbariof the stochastic
inputlog(U;) (black),log 1 (red) and the 95% confidence interval for input (grey
area). The first 10 data-points are considered as transaedtsre therefore not
shown.
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Figure 2.4: Box plots of estimated parametéts () based on 100 simulated pro-
cesses of(211)=(2.3). The boxes show the IQR (Inter QedRinge), the median
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extreme values in the interval [1st quartile5-1QR, 3rd quartile+.5-1QR], while
more deviating parameter estimates are marked as outhidrplatted with black
circles. Left panel shows the actual parameter estimatbge whe right panel
shows the deviation from the true parameter values. A ané&Based on the local
log-normal estimation procedure whereas C and D are based toctidgsaussian
estimation procedure.

14



The two estimation procedures are tested against eachwitiiea F-test. In
order to do so define the loss-function

M

S(.5; M) = (i — log(6;)), 2.7)

=1

Wherezﬂzd refer to a vector of estimates of parametdrased independent realiza-
tions of the process anﬂivj refer to thei'th estimate of parametei. S(&J; M)

is 2 distributed under the assumption thiat; is Gaussian distributed and we can
compare the ratio between the loss-functions for the twimesibn procedure with
an F-distribution. TabléZ]1 shows that thez-normal procedure performs better
than the Gaussian procedure on a 0.001 level for all the peieamin the model in
the considered example.

As was shown in_Maller et. all (2008) the conclusion will deghen the skew-
ness of the multiplicative noise and in the example consitléere the variance of
the multiplicative noise is large and therefore the skewregigh.

Table 2.1: Loss-functions for parameter estimates baseth@mwo estimation

procedureslfg-normal and Gausian), with/ = 100 independent realizations
of the process described in Example 1 the ratio between Hseflmction and an

F-test of the hypothesis that the estimations are equallg.goo

S@Win: M) Sy M) F=gg0ems Plo<F)
a1 1.73e-01 1.84e+00 10.59 1.000
ai,2 8.51e-02 3.43e-01 4.04 1.000
as,1 3.71e-02 1.97e-01 5.30 1.000
a2,2 1.15e-02 1.61e-01 13.98 1.000
021 6.19e-01 4.00e+00 6.46 1.000
022 2.70e-01 8.37e-01 3.09 1.000
oy, 5.11e-02 3.99e-01 7.81 1.000
0/2\2 5.06e-02 3.25e+00 64.24 1.000
e, 2.78e+00 2.70e+01 9.74 1.000
Heo 2.91e+00 1.26e+01 4.34 1.000
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2.2 Example 2

As a second example we consider the following state spacelmod

Xt ] [&e O 0.3 0.6 ][ X141 1

[ Xoy | T 0 & } [ 0.2 0.7 ] [ Xos 1 ] + [ 0 ] G 28
YVig | ] A 0}[1 0}[)(11‘,} |:€1t:|
; — ’ ’ + ’ s 2.9
[ Voo ] =L 0 doa) Lo 1] X ] T | e (@9)
with &, and\; log-normal distributed random variables with covariances
e [ 05 028 A_ 07 0

i = [ 028 02 |° | 0 o7 (2.10)

respectively, and expectation equal to the identity mathi® covariance between
& and ¢, correspond to a correlation equal to 04.; ande;; are independent
i.i.d. sequences of exponentially distributed randomaldeis with mear0.01.
The initial values are set at

Xloz[”, fﬂg:[é ?] (2.11)

This system is identical to the system presented in Examplexdept that the
correlation between the multiplicative system noise isedént from zero. The
impact from introducing this correlation is clear from FiglZ®$, where it is seen
that the correlation between the reconstruction of theestaecomes very large
compared to Example 1. In addition some abrupt changes totielation appears
when the loading increases dramatically (in tbg-domain), these are due to the
dominance of the input variance around these changes inphé iThe confidence
regions are also calculated in this example and the numb&uefstates in the
confidence region for the reconstruction of states is 94.898dk@e number is 96.2%
for the one step prediction of the observations.

In this example we will also compare the estimation procesluand as in
Example 1 the parameters are transformed before the aqttiadization takes
place. The large correlation between the multiplicativesederms may course
numerical problems for the estimation procedure. Thesbl@nts stem from the
estimation procedure setting some parameters equal to Zém transformation
from Example 1 is therefore changed to

Y; = log(0; +107%), (2.12)

16



this transformation is carried out for all the parameteregtdor the correlation.
The correlation is bounded by the inten@l,in, pmaz], Which can be found by
insertingp = +1 in equation[{A.B). By using a logit transformation the ctatien
is bounded within this interval. The interval depends onwhgances, and the
transformation will therefore change as the optimizatiomcpdure progresses.

Figure[Z6 show that the estimatidog-normal estimation procedure does a
better job on the estimation than the Gaussian estimatiocegure. It is also seen
that the quality of the estimation seems to be good withageldias problems.
Table[Z2 confirms the conclusions from Figlird 2.6 and yietshwincing statistics
on the problem.

Table 2.2: Loss-functions for parameter estimates baseth@nwo estimation

procedureslfg-normal and Gausian), witl/ = 100 independent realizations
of the process described in Example 2 the ratio between Hseflmction and an

F-test of the hypothesis that the estimations are equallg.goo

Sy, M); S(¥e,M); F= SoMa); P{z < F}

S(¥ N, M),

ai 1.57e-01 8.04e-01 5.11 1.000
a2 9.22e-02 6.45e-01 6.99 1.000
as,1 4.12e-02 1.22e-01 2.96 1.000
az2 1.66e-02 8.37e-02 5.04 1.000
o—gl 2.25e-01 9.47e-01 4.21 1.000
Pe1 1.44e+01 6.72e+01 4.68 1.000
022 2.67e-01 6.40e-01 2.40 1.000
o—él 6.09e-02 4.70e-01 7.72 1.000
o—§2 1.26e-01 1.21e+00 9.66 1.000
Ley 1.33e+00 2.47e+01 18.57 1.000
Les 1.45e+00 1.56e+01 10.79 1.000
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2.3 Example 3

As a third example of the filtering and estimation problem wesider the follow-
ing state space model

Xi;] _[&r 0 7[05 —0.67[ X141 1
[ Xog ] | 0 & ] [ 03 0.8 ] [ Xor s ] + [ 0 ] U, (2.13)
Yig | [ A1 0}[1 0}[}(“} |:€1t:|
P RSN 2.14
[ Yor | L 0 A9y 0 1 Xy €at ( )
with &, and, log-normal distributed random variables with covariances
¢ | 02 025 A_[07 0
= [ 025 04 |° =] 0 o7 (2.15)

respectively and expectation equal to the identity mattig, covariance between
&1 and &, correspond to a correlation equal to 04.; andey; are independent
i.i.d. sequences of exponentially distributed randomaldeis with mearo.01.
The initial values are set at

Xw:“], fﬂg:[é ?] (2.16)

The model considered here can procedure negative valugsisastated in Mgller
et. al. [2008) the filter is capable of handling this. Thg-normal estimation
procedure is however not capable of this and it is therefotgassible to compare
the two estimation procedures. We will however considerréseilt of the local
Gaussian assumption.

The evolution of the states can be seen in Fifurk 2.7, thesstiat take nega-
tive values, but the scale dependency of the noise is stileet from the plot. The
states cannot deg-normal distributed in this case, and the confidence inteva
therefore constructed using a Gaussian assumption ondtesteuction, the inter-
vals are confidence intervals in the unconditional distidvu The number of true
states inside the 95% confidence interval are 95% and 96.8&b€oeconstruction
and the one step prediction of the observations respegtivel

When the process is guaranteed to be positive we can takedghethm to
visualize the dynamics of the process when close to zera. i iot possible when
the process can take negative values. Instead we use thwifal transformation

k- (—log(—x) + log(k) — 1) for < —k
g(z) =< =z for —k<z<k , (217)
k- (log(z) — log(k) + 1) for k<z

20
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forced by the stochastic inpGt (black), with meanu! (red) and 95% confidence
interval for input (grey area). The first 10 data-points aresidered as transients
and are therefore not shown.
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with £ = 1073, This transformation allows us to view the dynamics of thecpss

on different scales on the same plots (Figlird 2.8). Evengimdhe plot gives
some insight on the dynamics over different scales, thedidggiless clear than
thelog plots in the previous two examples. The multiplicative ga deviation

shows some very large values compared to what has been sierpirevious two
example.

Estimation of the parameters cannot be done unddobgiaormal assumption
and we have therefore used the local Gaussian assumptipniatior the previous
examples we have transformed the parameters before tineaéisth was carried
out. The parameters iA are not transformed, since these are now allowed to take
values from the real line. Variance parameters are coresidas positive and are
therefore subject to the transformati@én(2.12). This ticmsation is also applied
to the mean value parameters andy.,. Finally, the correlation coefficient iEf
is transformed with the same logit transformation as in Exan2. From Figure
[Z3 it is clear that the quality of the estimates are not asigmothe results from
thelog-normal procedure in Example 1 and 2. There are biases any oudliers,
especially for the variance (and correlation) parameters.

22



0.015

n
& 1 - 8
.« c =
<>Z o - - hoe
L5
- O©
7 7
S L
¥ 7] 3
! o
7
o
8 - F &
o
n = -
-
Xo o ”
© 3 ]
o _|
n = w
o -

n n
o 7 - o
~ o L o o
— o o —
Q Q
wn n
o - - ©
I ]

o
S 4
N - o~
. m
R 4
— - o
~
=
2.~ 8
. o
o
B o
o - J _(I\l
T T T T T T T T T T
10 100 200 300 400 10 100 200 300 400
Time Time

Figure 2.8: Left panel: the states (State 1, black and Stated}, the standard
deviation of the states, the correlation between the statdsnput on the original
scale. Right panel: the transformed states, the “mulgfilie” standard deviation,
the correlation and the logarithm of the input.
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Figure 2.9: Box plots of estimated paramete#$ fased on 100 simulated pro-
cesses of (ZA3J={Z15). The boxes show the IQR (Inter @aid&ange), the me-
dian is marked with the bold line in the boxes. The whiskeespdaced at the most
extreme values in the interval [1st quartile5-1QR, 3rd quartile+.5-1QR], while
more deviating parameter estimates are marked as outhidrplatted with black
circles. Left panel shows the actual parameter estimatége wthe right panel
shows the deviation from the true parameter values. Theatds are based on the
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2.4 Example 4 (Missing Data)
As a final example we consider the following state space model

Xie |l [&e O 0.3 0.6 |[ X141 1
RS el Ik | Bl R Y O

Xot | | 0 & 0.2 0.7
Yig] [Ae O 10 X1 €1,t
3 — ’ ’ + ’ s 2.19
{ Vou | =10 g ) l0 1] X | T e (2.19)
with &, and\; log-normal distributed random variables with covariances
¢ |05 0 A_ |05 0
¥ = [ 0 0.2 } R [ 0 05|’ (2.20)

respectively and expectation equal to the identity matrix.ande, ; are indepen-
denti.i.d. sequences of exponentially distributed rangariables with meaf.01.
The initial values are set at

Xloz[”, f%:[(l) H (2.21)

The model considered here is similar to the one presentedatic®[Z1, but with
lower observation variance. The model is considered wittadihg drawn from a
log-normal distribution with mean equal to 100 and varianceaétm 1000. The
effect of missing or partly missing observations on the nstiction of the state
is investigated by letting eithér; ;, Y5, or both be missing. From Figuie2]10 it
is seen that the effect of observations from one state beisgimy does not affect
the reconstruction of the other state significantly, anthfurthat the observation
of one state gives some information on the other state. Teetain the variance
(FigurdZ.T1) is more clear when observations are partlgimgsonly. The variance
and the multiplicative standard deviation is seen to bedridgbr both states as is
the correlation between the states.
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Figure 2.10: The true state of the system (black line), thieseconstruction when
all observations are available (red line), and the statenstcuction when the ob-
servations marked by the grey area are missing. Furthenthg for the system
is shown. Left panel is in the original domain while the rigiainel is in thdog-
domain.
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Figure 2.11: Left panel: The standard deviation of the rettoigtion when no data
is missing (red line), when data indicated by the grey areaissing (blue line)

and the cross-correlation of the reconstructions. RighepaThe multiplicative

standard deviation of the reconstruction when no data isingqred line), when
data indicated by the grey area is missing (blue line) andttbss-correlation of
the reconstructions.
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Chapter 3

Conclusion and Acknowledgment

3.1 Conclusion

The filter presented in Chapfdr 1 has been applied for foferdifit examples where
it has proven to work well. The filter has further been applsdhe basis for es-
timation of parameters in processes with multiplicativesapthe estimation based
on log-normal assumption has proven work well and to perform bekien the
traditional assumption of Gaussian one step transitiobatsiities.

The results presented here should be seen as further sonuwatidies in rela-
tion to the results presentedlin Mgller et. lal. _(2008), anduzh the conclusions
given therein are supported in the present work. The apicaf the filter to a
process that takes values on the real line (as oppose to Hivpamxes), is not
presented in_ Maller et. 2l.. (2008). The results for this phthe study is that the
filter seems to give nice results, but that the local Gausssaaumption is not very
satisfactory for the estimation procedure.

The present work further elaborate on how to deal with misdiata.

3.2 Acknowledgment

This study is a contribution to the EU-funded project Thoddh (GOCE-003933).
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Appendix A

Log-normal Confidence Regions

The purpose of this section is to visualize how confidenc®nsgor Gaussian ran-
dom variables translates into confidence regions for theespondingog-normal
random variable.

If X ~ N(u,X) is a multivariate Gaussian random variable, thén= eX
(the exponential is to be taken element-vise) is a mul@atbg-normal random

variable, we denote this by ~ LN (g, X)), with (see_Kotz et. al.|(2000))

fi; = em-ﬁ-%mﬁi’ (A1)
Gij = (% — 1)6Mi+uj+%(0u+0jj)’ (A.2)
NI

(A.3)

T e e -1

How this translate into confidence regions is shown in Fig&® The figure

hopefully give some intuition of how the confidence regionisriiultidimensional

log-normal random variables behave in comparison with theesponding Gaus-
sian random variable.
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Figure A.1: Gaussian and corresponding-normal confidence regions, the shown
confidence regions are 10% to 90% in steps of 10%. Left colwsriiori Gaus-
sian random variables with'[X;] = E[X2] = 0 andV[X;] = V[X,] = 1 and
different correlations. Right column is far; = ¢*¢, i.e. thelog-normal vari-
able corresponding to the normal variable in the left coluthe expectation is
E[Y1] = E[Ys] = €'/? and variancé/[Y;] = V[Y3] = (e — 1)e, the correlations
are given in the plots.
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