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Josephson flux-flow oscillators in nonuniform microwave fields
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(Received 2 April 1999; revised manuscript received 21 September 1999

We present a simple theory for Josephson flux-flow oscillators in the presence of nonuniform microwave
fields. In particular we derive an analytical expression forlthvecharacteristic of the oscillator from which we
show that satellite steps are spaced around the main flux-flow resonance by only even harmonics of the rf
frequency. This result is found to be in good agreement with our numerical results and with experiments.

In the past years a great deal of interest has been devoted |. FLUX-FLOW OSCILLATORS IN NONUNIFORM
to the study of Josephson flux-flow oscillators, i.e., long Jo- MICROWAVE FIELDS

sephson junctions operating in the flux-flow regin&’ This The electrodynamics of a Josephson flux-flow oscillator

is mainly due to their high output power, wide bandwidth, , yhe hresence of both microwaves and external magnetic
and easy tunability, these being attractive features for applige|ds at the edges of the junction is described by the per-
cations in superconducting millimeter-wave electroriic’ turbed sine-Gordon equatidh’2

The dynamical states characterizing the flux-flow regime

produce in the current-voltagd-{/) characteristic a high- D — Dy=sin®)+ ad,— 7, 1)
voltage stepflux-flow step split into equally spaced Fiske N

substeps. The application of an external rf field to the juncWith the boundary conditions

tion gives rise to interesting phenomena such as the appear- B .

ance of satellite steps around the main flux-flow resonance. It (01 =T+ sin(Q1),

was recently showf that rf fields applied uniformly along _ .

the junction give rise in thé-V characteristic to both even Py(L ) =T"+T2sin(Q). @

and odd satellite Steps. On the other hand it is knOWn, bothh Eq (1) space and time have been normalized to the Jo-
from numerical and experimental stud?e‘%that for rf fields sephson penetration |engm’j and to the inverse p|asma fre-
applled at the edges of the junction, onIy even satellite Stepéuencywal' respective]yla denotes the loss parameter as-
are present. This raises the question: why for nonuniforngociated to the quasiparticle tunneling,represents the dc
microwave fields are the odd satellite steps missing? bias current, and' is the normalized external magnetic field.
The aim of the present paper is to answer this question by, T, are the normalized rf magnetic field at the two ends of
providing a theory for the satellite steps of a Josephson fluxthe junction and its normalized frequency. To describe the
flow oscillator in the presence of a nonuniform rf field ap- dynamics of the junction in the flux-flow regime we assume
plied through boundary conditions. To this end we use a solution for the field equatiofl) of the form
perturbative expansion around the uniform rotating solution
to derive an analytical expression for the/ curve. As a P =wt+I'x+f(x)sin(Qt)+g(x)cog Qt) + ¥ (x,t)+ 6,
result we show that satellite steps appear at positions shifted 3

from the main resonance only by even multiples of the aPyhere W is a small field @<1), 6, is an arbitrary phase,

plied rf frequency. The heights of these resonances argng f K functi that sati th
modulated by the rf field and can be changed by increasinggund(;(r)y c%(nxd)itigges unknown functions  that satisfy the

the amplitude of the microwave field. To check these results
we have compared our analytical expression for thé 9'(0)=g’(L)=0, f'(0)=T,, f'(L)=T, (4)
characteristic with the results of numerical integrations, ob-

taining an excellent agreement between theory and numericghere a prime denotes derivative. Note that these condi-

experiment. tions are consistent with the ones in Ef) if
The paper is organized as follows. In Sec. | we introduce
the model for the flux-flow oscillator in the presence of non- P, (0t)=T,(L,t)=0. 5)

uniform microwave fields, and use a perturbative expansion ) ] . )

around the uniform rotating background solution to derive arin the following we look for fields¥, which satisfy Eq(5)
analytical expression for theV curve. In Sec. Il we com- and have both zero space and time averdges=¥ =0 (we
pare analytical results with direct numerical simulations ofdenote with() and with the overbar, respectively, time and
the perturbed sine-Gordon system and summarize the maspace averaggsinserting Eq.(3) into Eq. (1) and using the
results of the paper. smallness of¥ we get the linearized equation

0163-1829/2000/61)/99(4)/$15.00 PRB 61 929 ©2000 The American Physical Society



100

Vo~ Vi—aV=aw—n—[f"(x)+f(x)Q2?
+ ag(x)Q]sinQt—[g"(x) + g(x)Q?
—af(x)Q]cosQt+siNT'x+ wt
+f(x)sinQt+g(x)cosQt+ 6]
+cog I'x+ wt+ f(x)sin(2t
+g(x)cosQt+ 64|V, (6)

It is convenient to eliminate the explidit dependence from
this equation by takindg(x) andg(x) to be solutions of the
system

£7(x) + Q2 (x) + aQg(x) =0,

9" (x)+Q2g(x) — aQf(x)=0, 7

satisfying the boundary conditions in Eg). One can check
that this boundary value problem can be solved as

L L
f(x)=f, z+§ —fs Z+§ ,
L L
g(X):ga Z+§ —0s Z+§ ) €S))

where

f(2)= —)\s‘r(%) M~ t.a(z),

gs(z)=As" (9)

Ly .
§)~|~M La(2),

with z=x—L/2 ands(z), a(z), denoting, respectively, sym-
metric and asymmetri@in the coordinatez) vector solutions
of the fourth-order differential equation(d2+Q?)?
+ a?Q?]F(x)=0:

s'(z)=

0112 . ) a'lZ
cos(),z coshT ,sin),z sth ,

a”(z)=(cosﬂlzsinh%lz,sinﬂlzcosh%lz) (10)
(heretr means transpogeln Eq. (9) Asis given by
_To

L L\~

#(3)43

i is the 2<2 asymmetric unit matrixM ! is the inverse of
the matrix M with elementsm;;=my,= @1/2, My;=—my,
=04, andaq, Q, are

a,=[2(JO*+ a?02- 0?12,
VO 2?02+ 02
le 2 .

(11)

12
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The expressions fdr,(z),94(2) in Eg. (8) follow from those
of f4(2),95(z) by simply interchanging with s in Egs.(9)
and(11).

Knowing f(x) and g(x), and using the Bessel identity

ghsn@M=3x=__ J.(BE™", we can rewrite Eq(6) in the
form

V= Vy—aV = aw—n+ 2, In(h){sifTx+mep(x)]
X cog ot + 0;) +cog I'x+me(x)]
X sin(@mt+ 0;)}+ >, Im(h){cog'x

+me(x)]cog wpt+ 6;) — i 'x

+me(x)]sin(wpt+ 6;)} P, (13
wherew,,= w+mQ, andh, ¢(x) are given by
B . 5 9
h=Vf(x)c+g(x)?, tang(x)=——. (19

f(x)

At a given frequencyw # —m(}, the third term on the right-
hand sidegrhs) of Eq. (13) will excite the frequencieg)m in
V. This will generate, via the last term on the rhs of Ec}),
second-order terms at frequencies, + wp,, i.e., at 2
+MQ andM(, which in the following will be neglected. A
special situation occurs whem,,=0. Then all frequencies
will be multiples of Q and phase locking will apped?.To
solve Eq.(13) we assumev and() to be incommensurable
(i.e., no phase lockingand expand the functioW as

W= [CprCOL @t + 1)+ Dy Sin( @t + 6;)]cOSk,X,
n,m

with k,=(w@/L)n [note that with this choice the boundary
conditions in Eq.5) are automatically satisfi¢dBy substi-
tuting the above expansion into EG.3) and projecting along

thek,, w,, modes we get

c _(;ﬁ]_kﬁ)énm+ az’manm 15
nm— [(;2 —k2)2+a22)2 ’ (19
m n m.

_ (Z’rzn_ kﬁ)anm_ az’ménm

" (@3- KD+ awd] (10
where
~ 1L
Cnm=Ej0 cogkx)Im(h)cog I'x+mep(x)]dx, (17)
~ 1t
S””‘ZEJ’O cogk,X)I(h)siMI'x+me(x)]dx. (18

The |-V characteristic then follows from the dc part of Eq.
(13) (where now the last term of the rhs contribytas
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1 - ~
77:&(1)"' E ;n (Cnmcnm_DnmSnm) (19)

=aw+ % > [Cht Sam(n,m)?]

awp

X—= =
(0K + oo,

[note that in deriving E(19) we usedw,# 0]. This expres-

sion, although exact, is quite complicated to analyze without
resorting to numerical tools. One can simplify it by making 7=aw+ E

the assumptionr/L<Q < w,I", so that the integral€,,,, and
Shm in EQ. (19) can be approximated as

EnmzC(n,F)B(m,C)—S(n,F)B(m,S), (20
S,y=S(n,I")B(m,C)+C(n,I)B(m,S), (21)
with
1 (L
B(m,C)zEJ'0 Jm(h)cog me(x)]dx, (22
1L
B(m,S)= EJo Jm(h)sinme(x)]dx, (23
and
1L
C(n,l“)ztfo cogk,x)cogI'x)dx (29
_ cogk,L)I'L sin(I'L)
C(TL)2= (kaL)? 29
1L
S(n,I')= EJo cogk,x)sin(I'x)dx (26)
I'L[1-cogk,L)cogTL)]
= . 2
(FL)®= (kgL )? 20
Equation(19) is then rewritten as
n=ao+ % > [C(n,T)%+S(n,T)2][B(m,C)?
+B(M, )]s 28)

[(0%—K2)?+a?wl]
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From the explicit solutions fof (x) and g(x) we see that
these functions are almost harmonic and, lfolarge, they
oscillate many times in the interv@0,L ]. This implies that
the integral8(m,C), B(m,S), for odd values ofm are very
small[the spatial variations df(x),g(x) average them ol
i.e.,, B(2m+1,C)=0, B(2m+1,S)=0. Using these rela-
tions and the symmetry propertiesB(—2m,C)
=B(2m,C),B(-2m,S)=-B(2m,S),B(0,5)=0, we can
finally approximate the-V curve as

2

©

i

1
2 XM TR 2

2

n,m=—o

I'L—kiL

« 2 a(w+2mo))

(FL— knL)2 [(+2mQ)2— K22+ a®(w+2mQ)2’
2

sir?

(29

where X(2m)=B(2m,C)?+B(2m,S). Note that the sum
onnin this equation gives rise to Fiske resonances spaced by
/L with the Fraunhofer factor enhancing the ones for which
k, is close tol' + MQ, M=0,£2,+4, ... . It isinteresting

that this approximate expression for th& curve is similar

to the exacf{up to first ordey expression derived in Ref. 10
for the case of uniform microwave fields, except for the fact
that the sum om here is only on the even relative integers
M=2m. This implies that in thd-V curve, only satellite
steps at voltagee=1"+ M can appear. We finally remark
that the absence of the odd steps in the case of nonuniform
fields is due to the spatial variation of tH¢x) and g(x)
functions inside the junction.

1. NUMERICAL EXPERIMENT

In order to check the analytical expressions for thé
characteristics derived in E¢19), wehave numerically in-
tegrated Eq(1) with the boundary conditions in EqR). For
fixed values of magnetic field, damping constant, amplitude,
and frequency of the rf field and length of the junction, we
computed the normalized average voltage across the junction
V=(®,)=w as a function of the bias current, taking as ini-
tial condition n=T'L/27 fluxons equally spaced along the
junction. The numerical-V characteristic was obtained by
integrating Eq.(1) long enough to eliminate all transients
and measuring for each value of the bias current the corre-
sponding average voltage. To trace {h¥ curves the bias
current was increased in small steps frgm 0 to =1 and
then back to zero. At each step the final configuration of

A further simplification is achieved by observing that the the field in the junction was used as initial condition for the

integrals in Eq(22) can be put in the forfit

1L
Bm.C)= £ [ S (- 1Mo DI

1 (L
B(m,S)= Efo % (—DMIiom+1(F)Iomca(@)dx.

next n step.

In Fig. 1 we show thé-V characteristic of a long Joseph-
son junction in the presence of a symmetric rf field of am-
plitude I'y=TI',=2.0, and frequency)= 1.8, for parameter
valuese=0.1, L=10, I'=6. The thin line refers to the nu-
merical evaluation of Eq.19) while the thick one represents
the numerical integration of Eq1). In this figure we see a
flux-flow step atw=I and two satellite steps ab=T
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FIG. 1. Thel-V characteristic of a long Josephson junction in FIG. 2. Same as in Fig. 1 but for rf amplitudg =1',=4.0.

the presence of a nonuniform symmetric microwave field at the ) ) . .
boundaries of amplitud€,=T',=2.0, frequency2=1.8. The pa- IStS with the flux flow satellite structures. By increasing the

rameter values of the junction ase=0.1,L=10, T =6. InsetsA,8  amplitude of the rf field, phase lock becomes more and more
show an en|argement of the satellite Stepm)at]"+29 and w dominant with reSpeCt to flux flow. At hlgher fields the mix-
=I'—2Q, respectively. The thin curve refers to the analytical ex-ing of the phase lock with the flux flow will strongly influ-
pression in Eq(19), while the thick one is obtained from numerical ence the shape of satellites steps and the agreement between
integrations of Eq(1). the theory and the numerical experiments usually becomes
less accuratésee inseB of Fig. 2). This is due to the inter-
+2() but no satellite steps ai=1"* (). Moreover, the reso- ference of the two last terms in the rhs of E3), which
nances are split in Fiske substeps spacedrhly in agree- was completely neglected in our analysis.
ment with our analysis. Insets, B show an enlargement of In conclusion, we have presented a theory for long Jo-
the satellite steps ab=1+2Q and w=1—2Q, respec- sephson flux-flow oscillators in the presence of microwave
tively. In Fig. 2 we report thé-V curve for the same param- fields applied at the edges of the junction, which accounts for
eters values as in Fig. 1 but for the amplitude of rf field at thethe appearance of satellite steps around the main flux-flow
boundaried™;=1",=4.0. We see that, with respect to Fig. 1, resonance. We derived an analytical expression for tkle
the size of the satellite steps has increased, while the one characteristics and showed that only satellite steps spaced by
the main resonance has decreased. Similar results are o&wen harmonics are present in th& characteristic. We re-
tained also for the case of asymmetric rf fiellg=—1",  mark that this behavior is different from what we found in
applied at the boundaries. A general feature emerging frorthe case of uniform rf fields, and in turn can be useful to
these calculations is the appearance of vertical phase-locketistinguish the type of microwave coupling realized in a real
steps at voltages =M (and subharmonig¢swhich coex- experiment.
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