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We present a simple theory for Josephson flux-flow oscillators in the presence of nonuniform microwave
fields. In particular we derive an analytical expression for theI -V characteristic of the oscillator from which we
show that satellite steps are spaced around the main flux-flow resonance by only even harmonics of the rf
frequency. This result is found to be in good agreement with our numerical results and with experiments.

In the past years a great deal of interest has been devoted
to the study of Josephson flux-flow oscillators, i.e., long Jo-
sephson junctions operating in the flux-flow regime.1–10 This
is mainly due to their high output power, wide bandwidth,
and easy tunability, these being attractive features for appli-
cations in superconducting millimeter-wave electronics.11,12

The dynamical states characterizing the flux-flow regime
produce in the current-voltage (I -V) characteristic a high-
voltage step~flux-flow step! split into equally spaced Fiske
substeps. The application of an external rf field to the junc-
tion gives rise to interesting phenomena such as the appear-
ance of satellite steps around the main flux-flow resonance. It
was recently shown10 that rf fields applied uniformly along
the junction give rise in theI -V characteristic to both even
and odd satellite steps. On the other hand it is known, both
from numerical and experimental studies,7,8 that for rf fields
applied at the edges of the junction, only even satellite steps
are present. This raises the question: why for nonuniform
microwave fields are the odd satellite steps missing?

The aim of the present paper is to answer this question by
providing a theory for the satellite steps of a Josephson flux-
flow oscillator in the presence of a nonuniform rf field ap-
plied through boundary conditions. To this end we use a
perturbative expansion around the uniform rotating solution
to derive an analytical expression for theI -V curve. As a
result we show that satellite steps appear at positions shifted
from the main resonance only by even multiples of the ap-
plied rf frequency. The heights of these resonances are
modulated by the rf field and can be changed by increasing
the amplitude of the microwave field. To check these results
we have compared our analytical expression for theI -V
characteristic with the results of numerical integrations, ob-
taining an excellent agreement between theory and numerical
experiment.

The paper is organized as follows. In Sec. I we introduce
the model for the flux-flow oscillator in the presence of non-
uniform microwave fields, and use a perturbative expansion
around the uniform rotating background solution to derive an
analytical expression for theI -V curve. In Sec. II we com-
pare analytical results with direct numerical simulations of
the perturbed sine-Gordon system and summarize the main
results of the paper.

I. FLUX-FLOW OSCILLATORS IN NONUNIFORM
MICROWAVE FIELDS

The electrodynamics of a Josephson flux-flow oscillator
in the presence of both microwaves and external magnetic
fields at the edges of the junction is described by the per-
turbed sine-Gordon equation,11,12

Fxx2F tt5sin~F!1aF t2h, ~1!

with the boundary conditions

Fx~0,t !5G1G1 sin~Vt !,

Fx~L,t !5G1G2 sin~Vt !. ~2!

In Eq. ~1! space and time have been normalized to the Jo-
sephson penetration lengthlJ and to the inverse plasma fre-
quencyv0

21, respectively.a denotes the loss parameter as-
sociated to the quasiparticle tunneling,h represents the dc
bias current, andG is the normalized external magnetic field.
G1 ,G2 are the normalized rf magnetic field at the two ends of
the junction andV its normalized frequency. To describe the
dynamics of the junction in the flux-flow regime we assume
a solution for the field equation~1! of the form

F5vt1Gx1 f ~x!sin~Vt !1g~x!cos~Vt !1C~x,t !1u1 ,
~3!

whereC is a small field (C!1), u1 is an arbitrary phase,
and f (x), g(x) are unknown functions that satisfy the
boundary conditions

g8~0!5g8~L !50, f 8~0!5G1 , f 8~L !5G2 ~4!

~here a prime denotesx derivative!. Note that these condi-
tions are consistent with the ones in Eq.~2! if

Cx~0,t !5Cx~L,t !50. ~5!

In the following we look for fieldsC, which satisfy Eq.~5!

and have both zero space and time averages^C&5C̄50 ~we
denote with^& and with the overbar, respectively, time and
space averages!. Inserting Eq.~3! into Eq. ~1! and using the
smallness ofC we get the linearized equation
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Cxx2C tt2aC t5av2h2@ f 9~x!1 f ~x!V2

1ag~x!V#sinVt2@g9~x!1g~x!V2

2a f ~x!V#cosVt1sin@Gx1vt

1 f ~x!sinVt1g~x!cosVt1u1#

1cos@Gx1vt1 f ~x!sinVt

1g~x!cosVt1u1#C. ~6!

It is convenient to eliminate the explicitV dependence from
this equation by takingf (x) andg(x) to be solutions of the
system

f 9~x!1V2f ~x!1aVg~x!50,

g9~x!1V2g~x!2aV f ~x!50, ~7!

satisfying the boundary conditions in Eq.~4!. One can check
that this boundary value problem can be solved as

f ~x!5 f aS z1
L

2D2 f sS z1
L

2D ,

g~x!5gaS z1
L

2D2gsS z1
L

2D , ~8!

where

f s~z!52lstr S L

2D •M21
•a~z!,

gs~z!5lstr S L

2D • i•M21
•a~z!, ~9!

with z5x2L/2 ands„z), a(z), denoting, respectively, sym-
metric and asymmetric~in the coordinatez) vector solutions
of the fourth-order differential equation@(]x

21V2)2

1a2V2#F(x)50:

str~z!5S cosV1z cosh
a1z

2
,sinV1z sinh

a1z

2 D ,

atr~z!5S cosV1z sinh
a1z

2
,sinV1z cosh

a1z

2 D ~10!

~heretr means transpose!. In Eq. ~9! ls is given by

l52
G0

str S L

2D •sS L

2D . ~11!

i is the 232 asymmetric unit matrix,M 21 is the inverse of
the matrix M with elementsm115m225a1/2, m2152m12
5V1, anda1 , V1 are

a15@2~AV41a2V22V2!#1/2,

V15AAV41a2V21V2

2
. ~12!

The expressions forf a(z),ga(z) in Eq. ~8! follow from those
of f s(z),gs(z) by simply interchanginga with s in Eqs. ~9!
and ~11!.

Knowing f (x) and g(x), and using the Bessel identity
eib sin(Vt)5(m52`

` Jm(b)eimVt, we can rewrite Eq.~6! in the
form

Cxx2C tt2aC t5av2h1(
m

Jm~h!$sin@Gx1mf~x!#

3cos~ṽmt1u1!1cos@Gx1mf~x!#

3sin~ṽmt1u1!%1(
m

Jm~h!$cos@Gx

1mf~x!#cos~ṽmt1u1!2sin@Gx

1mf~x!#sin~ṽmt1u1!%C, ~13!

whereṽm5v1mV, andh, f(x) are given by

h5Af ~x!21g~x!2, tanf~x!5
g~x!

f ~x!
. ~14!

At a given frequencyvÞ2mV, the third term on the right-
hand side~rhs! of Eq. ~13! will excite the frequenciesṽm in
C. This will generate, via the last term on the rhs of Eq.~13!,
second-order terms at frequenciesṽm1

6ṽm2
, i.e., at 2v

1MV andMV, which in the following will be neglected. A
special situation occurs whenṽm50. Then all frequencies
will be multiples of V and phase locking will appear.13 To
solve Eq.~13! we assumev andV to be incommensurable
~i.e., no phase locking! and expand the functionC as

C5(
n,m

@Cnmcos~ṽmt1u1!1Dnm sin~ṽmt1u1!#cosknx,

with kn5(p/L)n @note that with this choice the boundary
conditions in Eq.~5! are automatically satisfied#. By substi-
tuting the above expansion into Eq.~13! and projecting along
the kn , ṽm , modes we get

Cnm5
~ṽm

2 2kn
2!S̃nm1aṽmC̃nm

@~ṽm
2 2kn

2!21a2ṽm
2 #

, ~15!

Dnm5
~ṽm

2 2kn
2!C̃nm2aṽmS̃nm

@~ṽm
2 2kn

2!21a2ṽm
2 #

, ~16!

where

C̃nm5
1

LE0

L

cos~knx!Jm~h!cos@Gx1mf~x!#dx, ~17!

S̃nm5
1

LE0

L

cos~knx!Jm~h!sin@Gx1mf~x!#dx. ~18!

The I -V characteristic then follows from the dc part of Eq.
~13! ~where now the last term of the rhs contributes! as
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h5av1
1

2 (
n,m

~CnmC̃nm2DnmS̃nm! ~19!

5av1
1

2 (
n,m

@C̃nm
2 1S̃nm~n,m!2#

3
aṽm

~ṽm
2 2kn

2!21a2ṽm
2

@note that in deriving Eq.~19! we usedṽmÞ0#. This expres-
sion, although exact, is quite complicated to analyze without
resorting to numerical tools. One can simplify it by making

the assumptionp/L!V!v,G, so that the integralsC̃nm and

S̃nm in Eq. ~19! can be approximated as

C̃nm.C~n,G!B~m,C!2S~n,G!B~m,S!, ~20!

S̃nm.S~n,G!B~m,C!1C~n,G!B~m,S!, ~21!

with

B~m,C!5
1

LE0

L

Jm~h!cos@mf~x!#dx, ~22!

B~m,S!5
1

LE0

L

Jm~h!sin@mf~x!#dx, ~23!

and

C~n,G!5
1

LE0

L

cos~knx!cos~Gx!dx ~24!

5
cos~knL !GL sin~GL !

~GL !22~knL !2
, ~25!

S~n,G!5
1

LE0

L

cos~knx!sin~Gx!dx ~26!

5
GL@12cos~knL !cos~GL !#

~GL !22~knL !2
. ~27!

Equation~19! is then rewritten as

h5av1
1

2 (
n,m

@C~n,G!21S~n,G!2#@B~m,C!2

1B~m,S!2#
aṽm

@~ṽm
2 2kn

2!21a2ṽm
2 #

. ~28!

A further simplification is achieved by observing that the
integrals in Eq.~22! can be put in the form14

B~m,C!5
1

LE0

L

(
M

~21!MJm12M~ f !J2M~g!dx,

B~m,S!5
1

LE0

L

(
M

~21!MJm12M11~ f !J2M11~g!dx.

From the explicit solutions forf (x) and g(x) we see that
these functions are almost harmonic and, forL large, they
oscillate many times in the interval@0,L#. This implies that
the integralsB(m,C), B(m,S), for odd values ofm are very
small @the spatial variations off (x),g(x) average them out#,
i.e., B(2m11,C).0, B(2m11,S).0. Using these rela-
tions and the symmetry propertiesB(22m,C)
5B(2m,C),B(22m,S)52B(2m,S),B(0,S)50, we can
finally approximate theI -V curve as

h.av1 (
n,m52`

`
1

2
X~2m!

S GL

2 D 2

S GL1knL

2 D 2

3

sin2
GL2knL

2

S GL2knL

2 D 2

a~v12mV!

@~v12mV!22kn
2#21a2~v12mV!2

,

~29!

where X(2m)5B(2m,C)21B(2m,S)2. Note that the sum
on n in this equation gives rise to Fiske resonances spaced by
p/L with the Fraunhofer factor enhancing the ones for which
kn is close toG1MV, M50,62,64, . . . . It is interesting
that this approximate expression for theI -V curve is similar
to the exact~up to first order! expression derived in Ref. 10
for the case of uniform microwave fields, except for the fact
that the sum onm here is only on the even relative integers
M52m. This implies that in theI -V curve, only satellite
steps at voltagesv5G1MV can appear. We finally remark
that the absence of the odd steps in the case of nonuniform
fields is due to the spatial variation of thef (x) and g(x)
functions inside the junction.

II. NUMERICAL EXPERIMENT

In order to check the analytical expressions for theI -V
characteristics derived in Eq.(19), wehave numerically in-
tegrated Eq.~1! with the boundary conditions in Eq.~2!. For
fixed values of magnetic field, damping constant, amplitude,
and frequency of the rf field and length of the junction, we
computed the normalized average voltage across the junction
V5^F t&[v as a function of the bias current, taking as ini-
tial condition n5GL/2p fluxons equally spaced along the
junction. The numericalI -V characteristic was obtained by
integrating Eq.~1! long enough to eliminate all transients
and measuring for each value of the bias current the corre-
sponding average voltage. To trace theI -V curves the bias
current was increased in small steps fromh50 to h51 and
then back to zero. At eachh step the final configuration of
the field in the junction was used as initial condition for the
next h step.

In Fig. 1 we show theI -V characteristic of a long Joseph-
son junction in the presence of a symmetric rf field of am-
plitude G15G252.0, and frequencyV51.8, for parameter
valuesa50.1, L510, G56. The thin line refers to the nu-
merical evaluation of Eq.~19! while the thick one represents
the numerical integration of Eq.~1!. In this figure we see a
flux-flow step at v5G and two satellite steps atv5G
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62V but no satellite steps atv5G6V. Moreover, the reso-
nances are split in Fiske substeps spaced byp/L in agree-
ment with our analysis. InsetsA,B show an enlargement of
the satellite steps atv5G12V and v5G22V, respec-
tively. In Fig. 2 we report theI -V curve for the same param-
eters values as in Fig. 1 but for the amplitude of rf field at the
boundariesG15G254.0. We see that, with respect to Fig. 1,
the size of the satellite steps has increased, while the one of
the main resonance has decreased. Similar results are ob-
tained also for the case of asymmetric rf fieldsG152G2
applied at the boundaries. A general feature emerging from
these calculations is the appearance of vertical phase-locked
steps at voltagesv5MV ~and subharmonics!, which coex-

ists with the flux flow satellite structures. By increasing the
amplitude of the rf field, phase lock becomes more and more
dominant with respect to flux flow. At higher fields the mix-
ing of the phase lock with the flux flow will strongly influ-
ence the shape of satellites steps and the agreement between
the theory and the numerical experiments usually becomes
less accurate~see insetB of Fig. 2!. This is due to the inter-
ference of the two last terms in the rhs of Eq.~13!, which
was completely neglected in our analysis.

In conclusion, we have presented a theory for long Jo-
sephson flux-flow oscillators in the presence of microwave
fields applied at the edges of the junction, which accounts for
the appearance of satellite steps around the main flux-flow
resonance. We derived an analytical expression for theI -V
characteristics and showed that only satellite steps spaced by
even harmonics are present in theI -V characteristic. We re-
mark that this behavior is different from what we found in
the case of uniform rf fields, and in turn can be useful to
distinguish the type of microwave coupling realized in a real
experiment.

*Also at Istituto Nazionale di Fisica della Materia~INFM! Unità di
Salerno.
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FIG. 1. TheI -V characteristic of a long Josephson junction in
the presence of a nonuniform symmetric microwave field at the
boundaries of amplitudeG15G252.0, frequencyV51.8. The pa-
rameter values of the junction area50.1, L510, G56. InsetsA,B
show an enlargement of the satellite steps atv5G12V and v
5G22V, respectively. The thin curve refers to the analytical ex-
pression in Eq.~19!, while the thick one is obtained from numerical
integrations of Eq.~1!.

FIG. 2. Same as in Fig. 1 but for rf amplitudeG15G254.0.
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