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On the deconvolution of the temporal width of laser pulses
from pump–probe signals

Niels E. Henriksen and Volker Engela)

Department of Chemistry, Technical University of Denmark, DTU 207, DK-2800 Lyngby, Denmark

~Received 9 August 1999; accepted 21 September 1999!

We consider pump–probe frequency integrated fluorescence signals. These transients, in general,
arise from wave packets where the intrinsic dynamics and the response to the pump pulse is
entangled in a complicated way. The signal from an infinitely shortd-pump pulse is the only
exception. However, if the pump–probe signal is integrated over the frequencies of the pump laser,
the signal can be expressed as a convolution of the pulse envelope with the signal obtained from a
d-pulse excitation. We consider the deconvolution of the pulse envelope and demonstrate that the
signal corresponding to ad-pump pulse can be recovered exactly from signals using pump pulses
of finite temporal width. Numerical examples are presented for asymptotic fragment detection in the
reaction, ICN→I1CN. © 1999 American Institute of Physics.@S0021-9606~99!00747-3#

I. INTRODUCTION

The dynamics of elementary physical and chemical pro-
cesses can be followed in real time by femtosecond pump–
probe spectroscopy.1–5 From these measurements one can
extract various characteristic times, e.g., the time required to
break a chemical bond. In an ideal measurement, one should
be able to launch a wave packet on a repulsive potential at a
well-defined time and, subsequently, record the time it takes
for the center of this wave packet to move to a position
corresponding to a certain internuclear distance. The disso-
ciation time will, obviously, depend on the chosen repulsive
potential as well as on the distance chosen as the one defin-
ing bond-breaking. The signal obtained for an instantaneous
excitation in time, that is, ad-pump pulse, is required in
order to establish the rigorous definition of the zero of time
in pump–probe spectroscopy. Ad-pump pulse creates a
Franck–Condon wave packet, that is a replica of the initial
state times the transition dipole moment to an electronically
excited state, where this wave packet subsequently evolves
in time.

The ideald-pulse is not available in practice, therefore it
is important to understand how, for example, a pump pulse
with a finite temporal width affects the pump–probe signal.
It has already been demonstrated that the pump–probe signal
can depend quite strongly on the parameters of the pump
laser.6

It is often assumed that the combined effect of two con-
tributions to an experimental signal can be expressed as a
convolution of the individual contributions.7 Specifically, in
the field of pump–probe spectroscopy, it has been suggested8

that for a pump pulse with finite width, the pump–probe
signal can be analyzed in the following way: The signal has
a certain time-dependenceSFC(t) for an infinitely narrow
d-pump pulse. When the pump pulse has a finite width, its
intensity has a time-dependence given byI (t), and now each

molecule is transferred to the excited state at a slightly dif-
ferent time,t8. The resulting signal at timet is a sum of
terms of the formI (t8)SFC(t2t8). This sum~integral! takes
the form of a convolution of the intensityI (t) with the
d-pulse signalSFC(t). The main purpose of the present ar-
ticle, is to consider the validity of such an approach within
the framework of quantum mechanics. In order to enhance
insight in the limit of an ultrashort pump pulse, we derive an
analytical expression for the pump–probe frequency inte-
grated fluorescence signal for asymptotic fragment detection.
This expression illustrates that for a fixed carrier frequency
of the pump pulse, the signals arise from wave packets which
are based on a complicated interplay between the intrinsic
dynamics and the response to the pump pulse. The signal
SFC(t) for a d-pump pulse is the only exception.

This article is organized in the following way: Sec. II
contains, for an ultrashort pump pulse, the derivation of an
analytical expression for the pump–probe signal for
asymptotic fragment detection. In Sec. III, we leave the ana-
lytical model and demonstrate that the pump–probe signal
can be expressed as a convolution of the pulse envelope with
the signal corresponding to ad-pump pulse, if the signal for
finite pump pulses is integrated over all pump frequencies.
Section IV presents numerical examples illustrating that an
exact deconvolution of the pump pulse is possible. Finally,
Sec. V contains a summary and a conclusion.

II. PUMP–PROBE SIGNALS

A. General expressions

We consider, as illustrated in Fig. 1, the interaction be-
tween a molecule and two time-delayed pulses—a pump and
a probe pulse. Within the electric dipole approximation, the
field-molecule coupling terms take the form~for absorption!

Cpump~ t !52~1/2!m10a~ t !e2 iv1t,
~1!

Cprobe~ t !52~1/2!m21a~ t2T!e2 iv2(t2T),
a!Permanent address: Institut fu¨r Physikalische Chemie, Universita¨t
Würzburg, Am Hubland, D-97074 Wu¨rzburg, Germany.
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wherev1 andv2 are the carrier frequencies,T is the delay
time between the pulses,m10 andm21 are the projections of
the transition dipole moments on the polarization of the elec-
tric field vector, anda(t) is the pulse envelope.

The pump pulse creates a wave packet which, according
to first-order perturbation theory, can be written in the form

uc1~ t !&5
i

2\ E
0

t

dt8e2 i (\v11e0)t8/\a~ t8!

3exp~2 iĤ 1~ t2t8!/\!uf0~0!&, ~2!

where

uf0~0!&5m10uc0~0!&. ~3!

uc0(0)& is the initial stationary vibrational/rotational eigen-
state of the molecule,e0 is the energy of this state, andĤ1 is
the Hamiltonian for nuclear motion in electronic state~1!.
Equation ~2! shows that the wave packet created by the
pump pulse can be viewed as a superposition of Franck–
Condon wave packets created over a period of time defined
by the pulse envelope. It is a coherent superposition, how-
ever, which means that interference terms between Franck–
Condon wave packets created at different times show up in
the probability amplitude.

The probe pulse creates a new nonstationary state
uc2(t)&. In the limit of nonoverlapping pump and probe
pulses which we will consider in the present article, this state
can be calculated according to first-order perturbation theory,
now with uc1(t)& as initial state. The total pump–probe fluo-
rescence signalP(T) is assumed to be proportional to the
norm of uc2(t)& after the probe pulse has decayed to zero,

P~T!5 lim
t→`

E druc2~r ,t !u2. ~4!

If one neglects commutators between the kinetic energy op-
erators and ther-dependent terms in the perturbation integral
~pump–probe signal in the limit of short probe pulse!, the
signal can be written as9–13

P~T!5E druF~D~r !2v2!u2uf1~r ,T!u2, ~5!

whereuf1(T)&5m21uc1(T)&,

and

F~D~r !2v2!5E
2`

1`

dt a~ t !ei (D(r )2\v2)t/\. ~6!

HereD(r )5V2(r )2V1(r ) is the difference between the po-
tential energy curves in the electronic states~2! and ~1!.
Thus, the signal measures the norm of the wave packetf1 at
time T within the window F(D(r )2v2) ~Franck–Condon
window!. In the case of fragment detection for a dissociation
process, the carrier frequency of the probe laser matches the
asymptotic value of the difference potential.

B. An ultrashort pump pulse

In this section, we will show that in the limit of an ul-
trashort pump pulse the general form of the pump–probe
signal can be obtained analytically.

We write Eq.~2! in the form

uc1~ t !&5
i

2\
exp~2 iĤ 1t/\!E

0

t

dt8e2 i (\v11e0)t8/\

3a~ t8!exp~ iĤ 1t8/\!uf0~0!&. ~7!

The pulse envelope centered at the timet5tp , is represented
by a Gaussian form,

a~ t !5E0A~g/p!exp@2g~ t2tp!2#, ~8!

where g is large, corresponding to an ultrashort pulse. A
one-dimensional model is considered and for a molecule in
the vibrational ground state,f0(r ,0) is approximately a
Gaussian, that is

f0~r ,0!5exp$~ i /\!@A0~r 2r 0!21s0#%, ~9!

whereA05 i Im(A0)5imv/2, v is the vibrational frequency,
m is the mass, and normalization implies thats0

5( i\/4)ln@p \/(2 Im(A0))#.
We assume now that the dynamics can be described

within a ~time-dependent! local harmonic approximation to
the potential. Thus,̂ r uexp(iĤ1t8/\)uf0(0)&, which corre-
sponds to propagation backwards in time, can be represented
by the complex conjugate of a Gaussian wave packet of the
form ^r uG(t8)&* 5^r uG(2t8)&, where14,15

^r uG~2t8!&5exp$~2 i /\!@At8
* ~r 2r t8!

2

1pt8~r 2r t8!1st8
* #%. ~10!

The time-evolution of the parameters is given by simple
equations of motion. For example, the center of the wave
packet (r t ,pt) evolves in time according to Hamilton’s equa-
tions. The change in a short time stept, starting att50 is

FIG. 1. Pump–probe scheme for direct dissociation: the pump pulse (v1)
prepares a wave packet in an excited electronic state with potential curve
V1. The probe pulse (v2) induces a transition to another electronic state
(V2) and the total fluorescence from this state is measured. The probe-laser
frequency is here chosen such that the wave packet is probed when it enters
the asymptotic region where the distancer exceeds a critical pointa. This
spatial window is denoted asQ(r 2a). The potentials represent a simple
model for ICN dissociation wherer is the I–C distance relative to the
equilibrium position in the electronic ground state.
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obtained by settingt50 in the right-hand side of these equa-
tions of motion. We get~neglecting the spreading of the
wave packet!16

r t5r 0 ,

pt52bt,
~11!

At5A0 ,

st5s02~V1~r 0!1\v/2!t,

whereb5]V1(r )/]r ur 5r 0
is the derivative of the potential

V1(r ) at r 5r 0 . For t8 close to zero, the Gaussian wave
packet takes the form

^r uG~2t8!&5exp$~2 i /\!@A0* ~r 2r 0!2

2bt8~r 2r 0!1s0* 2V18~r 0!t8#%, ~12!

whereV18(r 0)5V1(r 0)1\v/2. The pulse is assumed to be
so short that we can use this approximation in the evaluation
of the integral in Eq.~7!. In practice, the short-time approxi-
mation above often suffices for the description of the total
width of an absorption spectrum, that is the initial decay of
the autocorrelation function.17 Thus, ‘‘an ultrashort pulse’’ in
the present context means a pulse so short that the pulse
envelope has raised and decayed to zero before the initial
decay of the autocorrelation function. This is fulfilled in the
limit g large andtp→0.

After evaluation of the integral in Eq.~7!, the result can
be written in the form,

uc1~ t !&5
iE0

2\
exp~2 iĤ 1t/\!uF0~0!&, ~13!

where

^r uF0~0!&5exp$2mv~r 2r 0!2/~2\!1 is0 /\%

3exp$2b2~r 2r 02r e!
2/~4\2g!

1 i t pb~r 2r 02r e!/\%, ~14!

and r e5@\v12V1(r 0)#/b. Thus, the obtained wave func-
tion is a product of two Gaussians, the initial Gaussian, i.e.,
the Gaussian generated by ad-pump pulse times a displaced
Gaussian where the displacement is proportional to the de-
tuning @\v12V1(r 0)#.

For \v15V1(r 0), that is ‘‘on-resonant’’ pumping at the
center of the absorption band,^r uF0(0)& is again a single
Gaussian with the same expectation value of the position as
in the initial state in Eq.~9!, that is,r 0. The expectation value
of the momentum has, however, changed from 0 totpb. The
width of the wave packet has also changed from
\/@4 Im(A0)# to (Dr )0

25\/@4 Im(A0)1b2/(\g)#, that is the
width is reduced compared to the Franck–Condon wave
packet. Since the Gaussian is still a minimum uncertainty
packet, the reduced width implies that an ultrashort pulse as
defined above, produces a squeezed state. Similar squeezing
phenomena have been discussed previously based on analyti-
cal models18 and numerical simulations.19 Note that in the
limit where g→` and tp→0, corresponding to ad-pump
pulse, Eq.~14! reduces, as expected, to the Franck–Condon
wave packet.

We consider now fragment detection for a dissociation
process, where the carrier frequency of the probe laser
matches the asymptotic value of the difference potential. To
a good approximation, the detection window can be replaced
by a theta-function. Thus,F(D(r )2v2)5u(r 2a), so that
the pump–probe signal becomes

P~T!5E
a

`

druc1~r ,T!u2, ~15!

where the transition dipole moment is set to unity. We con-
sider on-resonant pumping wherer e50 in Eq. ~14!, and as-
sume again that the dynamics can be described within a
~time-dependent! local harmonic approximation to the poten-
tial. Then ^r uc1(t)& can at all times be represented by the
Gaussian form, Eq.~10!. The integral in Eq.~15! then takes
the form16

P~T!5
E0

2

4\2~2p~Dr !T
2!1/2Ea

`

dr expF2
~r 2r T!2

2~Dr !T
2 G , ~16!

which can be expressed as

P~T!5
E0

2

8\2 S 11erfS r T2a

A2~Dr !T
D D , ~17!

where the error function is defined by

erf~x!5
2

Ap
E

0

x

e2u2
du. ~18!

We observe that, at the time when the center of the wave
packet has reached the detection window, that isr T5a,
P(T) is at half of its asymptotic value. It should also be
noted that the time-derivative of the signal at this point is
given by the ratio between the mean speed and the uncer-
tainty (Dr )T .16 This ratio gives the intrinsic time-resolution
according to quantum mechanics.

This analytical model shows that the initial values of the
Gaussian wave packet parameters depend on the form of the
pump laser. The expression illustrates, accordingly, that the
response to the pump pulse and the intrinsic dynamics is
entangled in a complicated way, with thed-pump pulse as
the only exception. Thus, at a given pump frequency, there
seems to be no way to ‘‘eliminate’’ the dependence on the
pulse width.

III. PUMP–PROBE SIGNALS INTEGRATED OVER
PUMP FREQUENCIES

A. The convoluted signal

We will now show that it is possible to extract the signal
for a Franck–Condon wave packet from measurements using
pump pulses of finite temporal width. We write Eq.~5! in the
form,

P~v1 ,T!5^c1~T!uA~r !uc1~T!&, ~19!

where

A~r !5uF~D~r !2v2!u2@m21~r !#2. ~20!
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Now using the first-order expression in Eq.~2! for the wave
packet,

P~v1 ,T!5
1

4\2E0

T

dt9E
0

T

dt8eiv1(t92t8)a~ t8!a~ t9!

3^M ~T2t9!uA~r !uM ~T2t8!&, ~21!

where

uM ~T2t !&5exp~2 iĤ 1~T2t !/\!uf0~0!&, ~22!

is the Franck–Condon wave packet associated with a
d-pump pulse excitation. This expression shows that, at a
given pump frequency, quantum mechanical interference
terms show up between Franck–Condon wave packets cre-
ated at different times. Furthermore, these ‘‘off-diagonal’’
terms are frequency dependent.

We integrate now over the frequencies of the pump la-
ser. The signalS(T) can then be written as

S~T!5E
2`

`

P~v1 ,T!dv1

5
p

2\2E0

T

dt9E
0

T

dt8d~ t92t8!a~ t8!a~ t9!

3^M ~T2t9!uA~r !uM ~T2t8!&

5
p

2\2E0

T

dt8@a~ t8!#2^M ~T2t8!uA~r !uM ~T2t8!&.

~23!

This is an integral of signals for Franck–Condon wave pack-
ets created at different times with amplitudes given by the
square of the pulse envelope. Note thatP(v1 ,T) is only
nonzero within the absorption band of electronic state~1!,
therefore the integration over frequency can be extended to
infinity.

This expression can be rewritten as a convolution,

S~T!5
p

2\2E2`

T

dt8@a~ t8!#2^M ~T2t8!uA~r !uM ~T2t8!&

5
p

2\2E0

`

dy@a~T2y!#2^M ~y!uA~r !uM ~y!&

5
p

2\2E2`

`

dy@a~T2y!#2Q~y!^M ~y!uA~r !uM ~y!&,

~24!

where we used thata(t)50 for t,0, changed variable to
y5T2t8 in the second line, and introduced a theta-function
in the last line, since the dynamics induced by the pump
pulse is absent fory,0. Thus, the frequency integrated sig-
nal is expressed as a convolution between the square of the
pulse envelope and the signal for a Franck–Condon wave
packet,

SFC~ t !5Q~ t !^M ~ t !uA~r !uM ~ t !&. ~25!

In order to obtain the frequency integrated signal experimen-
tally, it is necessary to make a series of measurements cov-
ering the entire absorption band.

B. Deconvolution

The deconvolution of the pump pulse is, in principle,
straightforward using some basic rules of the Fourier
transformation.7 Thus, the Fourier transform of a convolution
is equal to the product of the Fourier transforms of each
function. This product can then simply be divided by the
Fourier transform of the squared pulse envelope, in order to
isolate the desired signal for the Franck–Condon wave
packet.

For asymptotic fragment detection, the signalS(T) will
approach a constant value forT→`. In this case, it is more
convenient to consider the time-derivative of the original sig-
nal,

dS~T!

dT
5

d

dTE2`

`

P~v1 ,T!dv1 . ~26!

This function decays to zero when the entire wave packet has
entered the detection window. Thus, it is straightforward to
evaluate its Fourier transformf (v),

f ~v!5E
2`

`

@dS~T!/dT#e2 ivTdT

5 ivS̃~v!1S~Tf !e
2 ivTf , ~27!

Tf is the final time considered, whereS(T) has reached its
constant value, and ‘‘tilde’’ denotes the Fourier transform.
Using Eq.~24!, we get

S̃~v!5ã~v!S̃FC~v!5 f ~v!/~ iv!2S~Tf !e
2 ivTf /~ iv!,

~28!

whereã(v) andS̃FC(v) are the Fourier transforms ofa(t)2

andSFC(t), respectively. If we, at this stage, apply an inverse
Fourier transform to each term in order to get back toS(T),
we notice that the Fourier transform of the last term can be
evaluated analytically using the integral:*0

`dx sin@ax#/x
52p/2, for a,0. Thus, the last term corresponds merely to
the addition of the constantS(Tf)/2 in the time domain. This
term can, consequently, be omitted in the following.

If the square of the pulse envelope is a Gaussian cen-
tered at the timet5tp ,

a~ t !25E0
2A~a/p!exp@2a~ t2tp!2#, ~29!

the Fourier transform of this function becomes

ã~v!5E
2`

`

a~ t !2e2 ivtdt5E0
2exp@2v2/~4a!#e2 ivtp,

~30!

and one can now divide both sides in Eq.~28! by ã(v) and,
finally, make an inverse Fourier transform ofS̃FC(v) in or-
der to getSFC(T).

We consider the numerical implementation in the next
section. It should be noted that experimental data can be
contaminated with various forms of noise. Thus, the decon-
volution of experimental data will, in general, be more cum-
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bersome numerically, than illustrated in the next section
where theoretical data, free from noise, is used as input for
the deconvolution.

IV. NUMERICAL EXAMPLES

The dissociation of ICN into I1CN is chosen as a nu-
merical example. In the first gas phase femtosecond time-
resolved experiments, Zewail and co-workers investigated
this system.20,21 Quantum calculations were performed
within a one-dimensional model by Williams and Imre22 and
a good overall agreement was found with the data. Later it
was shown by Heather and Metiu23 that the rotational de-
grees of freedom have to be considered to explain finer de-
tails of the experiment. Here we use the simple one-
dimensional model, and the employed potential curves are
displayed in Fig. 1, as a function of the I–C separation using
the equilibrium distance in the electronic ground state as the
origin of the axis. The origin of the energy scale corresponds
to the energy of the initial wave functionc0 in the electronic
ground state. The initial state was taken to be a Gaussian
centered atr 50 with a width ~full width at half maximum!
of 0.15 a.u. We solve the time-dependent Schro¨dinger equa-
tion with the split-operator method24 and the time-integrals
which appear in perturbation theory are calculated as de-
scribed in Ref. 25. The transition dipole moments were set to
unity in all calculations and a Gaussian envelope function for
the pump pulse was employed throughout. The detection
window starts ata53 a.u.

Figure 2~a! shows the almost exact agreement between
the pump–probe signal for ad-pump pulse~solid line! ob-
tained by numerical solution of the Schro¨dinger equation,
and the result obtained from the analytical expression in Eq.
~17!. As pointed out above, the slope of the signal depends
on the width of the wave packet and, consequently, the
spreading of the wave packet as it travels from the initial
position into the detection window. The excellent agreement
shows that the time-dependent local harmonic approximation
to the exponential potential is well fulfilled in the present
case.

Figure 2~b! shows the pump–probe signal for ad-pump
pulse ~solid line! and the result obtained by deconvolution
from a frequency integrated signal@Eq. ~23!# calculated with
a 30 fs~full width at half maximum! Gaussian pump pulse
centered attp560 fs. The agreement is perfect and within
the numerical resolution of the calculation. The small oscil-
lations in the deconvoluted signal are due to numerical er-
rors. The absolute value of the Fourier transform in Eq.~27!
decays to zero for large frequencies. In order to deconvolute,
these small values which can be beyond the numerical accu-
racy of the Fourier transform, must be divided by the Fourier
transform of the pulse given by Eq.~30!. A simple way to
circumvent this problem is to set the values of the Fourier
transform to zero, when the absolute value is small and be-
yond the numerical accuracy. The oscillations could have
been removed or reduced by the use of an appropriate win-
dow function. It should be noted that, essentially, the same
good agreement is obtained from a deconvolution, not from
the frequency integrated signal but from a signal correspond-
ing to a pump frequency at the maximum of the absorption

spectrum. The absorption band for ICN is fairly narrow and
symmetric and, in fact, a deconvolution at any pump fre-
quency within this band will give a result which is fairly
close to the signal given in Fig. 2.

Figure 3 illustrates, however, that the pump–probe sig-
nal can depend quite strongly on the frequency of the pump
laser. In this calculation the width of the vibrational ground
state has been set to 0.5 a.u. Pump–probe signals are shown
for a Gaussian pump pulse centered attp560 fs with a du-
ration of 30 fs ~full width at half maximum!. The center
frequencies of the pump laser are specified in the figure. In
the insert in the upper left corner is shown the pump–probe
signals obtained from a deconvolution of the convoluted sig-
nals at the three pump frequencies. The pump frequencies are
at the maximum~4.4 eV! and the wings of the absorption
band~4.0 and 5.1 eV!. The dissociation time inferred from
the three deconvoluted signals vary by about 30%. It should
be noted that the deconvoluted signal obtained from the
pump frequency at the maximum of the absorption band is
quite close to the signal for ad-pump pulse. This is again
due to the symmetric shape of the absorption band. However,
in general, one will only get the desired signal for ad-pump
pulse by deconvolution from the frequency integrated signal.

Finally, in order to establish a dissociation time it might
be tempting to use a simpler ‘‘deconvolution’’ of the finite
temporal width of the pump pulse. Figure 4 shows pump–

FIG. 2. Panel~a! shows the result of the analytical model compared to the
numerically calculated pump–probe signal for ad-pump pulse~solid line!.
Panel~b! contains the pump–probe signal deconvoluted from a signal ob-
tained with a 30 fs~full width at half maximum! Gaussian pump pulse
centered attp560 fs. The pump–probe signal for ad-pump pulse is also
shown~solid line!.
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probe signals for ad-pump pulse~solid line! and for 30 and
60 fs Gaussian pump pulses~full width at half maximum!.
The width of the vibrational ground state is again 0.15 a.u. In
the plot, the zero of time is chosen such that it is at the
maximum of the envelope function for the respective pump
pulses. The broadening of the signal due to finite pulse
widths is clearly seen in the figure. In addition, it is observed
that the three curves cross almost at the same point close to a
time of 60 fs, that is, close to the dissociation time which
could be inferred from the exact deconvolution. It should,
however, be noted that a symmetric Gaussian pump pulse
was used and a similar agreement would not have been ob-
tained with a nonsymmetric pump pulse. Furthermore, the
frequency of the 30 and 60 fs pump pulses was chosen to be
at the maximum of the absorption band~4.5 eV!, and one
should keep in mind that, in general, the signals will be
frequency dependent, as illustrated in Fig. 3

V. CONCLUSIONS

The main result of this work is that the total~integrated!
pump–probe fluorescence signal can be expressed as a con-
volution between the square of the pulse envelope and the
signal for a Franck–Condon wave packet. This is an exact
statement when the signal is integrated over the frequency of
the pump laser, that is, over the entire absorption band. This
result was derived in the limit of nonoverlapping pump and
probe pulses, and in the limit of a short probe pulse. When
the signal is expressed as a convolution it is possible to
eliminate the ‘‘blurring’’ due to the finite duration of the
pump pulse. The present work has, accordingly, established
an exact procedure for the extraction of the signal for a
Franck–Condon wave packet from measurements using a
pump pulse of finite temporal width.

A similar deconvolution has been suggested previously8

using a classical picture of the excitation due to the pump
pulse, that is, quantum mechanical interferences were ne-
glected. As illustrated by the numerical examples for
asymptotic fragment detection in ICN→I1CN, this approach
happens to work quite well for this system, especially for
pump frequencies around the maximum of the absorption
band. However, in general, one will only get the desired
signal associated with a Franck–Condon wave packet from a
deconvolution where a signal integrated over the whole ab-
sorption band is used as input.

We considered a one-dimensional model of ICN in the
numerical examples. It is perhaps worthwhile to stress that
the deconvolution approach presented in Sec. III can be ap-
plied to multidimensional systems just as easily as in the
examples presented in this article.

Finally, we derived an analytical expression for the
pump–probe signal in the case of asymptotic fragment de-
tection. An ultrashort pump pulse in a regime close to the
d-pump pulse was considered. The derivation was based on a
time-dependent local harmonic approximation to the poten-
tial. The wave packet created by the ultrashort pump pulse
has the same average position as the initial state but it is
squeezed in position space, except in the extreme limit of a
d-pump pulse. We applied this analytical model to fragment
detection in ICN→I1CN, and found excellent agreement
with the numerically calculated pump–probe signal for a
d-pump pulse.
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FIG. 4. Pump–probe signal for ad-pump pulse~solid line! and for 30 and
60 fs Gaussian pump pulses~full width at half maximum!. All signals were
normalized to the same asymptotic value. The zero of time is chosen such
that it is at the peak of the pump pulse.

FIG. 3. An illustration of the frequency dependence of the pump–probe
signal. In this calculation the width of the vibrational ground state has been
set to 0.5 a.u. Pump–probe signals are shown for a Gaussian pump pulse
centered attp560 fs with a duration of 30 fs~full width at half maximum!.
The center frequencies of the pump laser are specified in the figure. The
insert in the upper left corner shows the normalized pump–probe signals for
d-pulse excitation obtained from a deconvolution of the convoluted signals
at the three pump frequencies.
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