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Loss of lag synchronization in coupled chaotic systems

0. V. SosnovtsevaA. G. Balanov! T. E. Vadivasova,V. V. Astakhov! and E. Mosekilde
!Physics Department, Saratov State University, Astrakhanskaya Street 83, Saratov 410026, Russia
2Department of Physics, The Technical University of Denmark, 2800 Lyngby, Denmark
(Received 21 October 1998

Lag synchronization denotes a particular form of synchronization in which the amplitudes of two interacting,
nonidentical chaotic oscillators are correlated but there is a characteristic time delay between them. We study
transitions to and between different forms of synchronization for the attractors defined as “in-phase” and
“out-of-phase” and investigate the processes by which lag synchronization is lost in two coupgsteiRo
systems. With a small frequency mismatch between the two systems, these processes are related to the
occurrence of a peculiar form of basin structure as more and more periodic orbits embedded into the synchro-
nized chaotic state become unstable in a transverse diref82063-651X99)03711-3

PACS numbd(s): 05.45-a

I. INTRODUCTION repeller pitchfork bifurcatiof10], a period-doubling bifur-
cation [14], or a Hopf bifurcation[18]. These bifurcations

Synchronization of chaotic systems has become a signifinay lead to attractor bubbling as described by Ashetial.
cant field of research in recent years. Coupled nonlinear 0419]. Trajectories repelled from the synchronized chaotic
cillators in chemistry[1], biology, and economic§2] are State may then make an excursion out in ph';lse space. Sooner
important examples. One of the exciting scientific quarries irP" later, however, almost all trajectories will return to the
this relation is to understand the coherent dynamical behawiCinity of the symmetric subspace. When riddling occurs, a
ior of the coupled systems. In the technical realm, spread®nse set of initial conditions which belong to the basin of
spectrum communications and systems monitoring and ideriNother attractor appears within the basin of the symmetric
tification have been proposed as potential applications ofhaotic attractof18,19. A number of issues related to the
chaotic synchronization, motivating further studj&s influence of asymmetry and noise were discusseid &

Several types of synchronization representing different Investigations of these synchronization phenomena have
degrees of correlation between the interacting systems haw{ten considered coupled fully identical maps as mathemati-
been identified and are referred to as completefull) syn- ca_ll m_odels. Results obtained in the frameyvork of such_ ide-
chronization[4], generalized synchronizatids], and phase alizations have then been gpplled to explain thg behavior pf
synchronization[6,7], respectively. Complete synchroniza- €@l systems. When detuning between the basic frequencies
tion implies that time series of corresponding dynamicaIOf the mteractmg os.C|IIato'rs is introduced, regions of chaot!c
variables of the subsystems coincide completedyt) ph{;\se synchromzaﬂon, similar to Arnol'd tongues for peri-
=x,(t) (i.e., the systems oscillate in phas&eneralized QdIC oscillations, appear on the parameter plane. The transi-
synchronization, as introduced for drive-response systems, BN phenomena that take place at the boundary of chaotic

defined as the presence of some functional relationship b&Ynchronization are associated with the bifurcations of
tween the states of the response and the drive, %gt) saddle periodic orbits as well. Anishchen&bal.[12] have

= F[x,(t)]. For phase synchronization, suitably defineg@scribed this boundary to an accumulation of curves of tan-

phases of two chaotic oscillators lock to each other, whiled€nt bifurcations of saddle cycles, and a more recent study

their amplitudes remain uncorrelated and sustain an irreguldy Pikovskyet al.[13] suggests that attractor-repeller colli-
motion of their own. Rosenbluret al. [8] have shown that SIONS take place at the transition to chaotic synchronization,

for stronger coupling a new regime which is called lag Syn_t.hus drawing on the analogy with the tangent bifurcation of a

chronization may be observed. Lag synchronization appeatinit cycle. Most recenty{15], the transition to phase syn-
as a coincidence of the states of two systexgét+7) chronization was described as a boundary crisis mediated by

—%,(t) when shifted in time. With further increase of the unstable-unstable pair bifurcations on a branched manifold.

coupling, this regime tends to complete synchronization. Lagh..mlth's paper, cons!derlng the (;xamfrzle offtwof coupled
synchronization is similar to generalized synchronization ossler systems, we investigate the effect of a frequency

with the function F being defined in terms of a temporal mismatch on the synchronization phenomena. Transitions to

displacement of the dynamics of the interacting subsystem?.nd betwee’.‘ complete,. lag, and phase synchromza’glon for
The loss of chaotic synchronization is directly related todlfferent regimes are discussed. The process by which lag
bifurcations of saddle periodic orbits embedded into the Chag,ynchromzau_on is lost and_phase_ synchrom;atl_on tak_es place
otic attractor[9—15|. The transitions to nonsynchronous be- is descrllbed in terms _of bifurcations of periodic orbits em-
havior in systems with symmetric invariant manifolds arebedded into the chaotic attractor.
associated with a number of new phenomena, including
riddled basins of attractiofil6] and on-off intermittency
[17]. The orbits embedded in the fully synchronized chaotic Synchronization is a universal nonlinear phenomenon,
attractor can lose their transverse stability via a saddleand many of its key features are typically independent of the

Il. CHARACTERIZING THE SYNCHRONIZATION
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) FIG. 2. Simplified bifurcation diagram for two coupled noniden-
FIG. 1. Example of lag synchronization for two coupledsBler  tical Rassler systems ¢=0.165, 8=0.2, wy=0.97, ©=10.0).
systems &=0.165, 8=0.2, wy=0.97, ©=10.0, y=0.2, A Gray-colored regions indicate transitions from periodic solutions to
=0.005). Projections on the plade;(t)x,(t)] (8 and function  chaotic regimes for the out-of-phase family. Dotted curve corre-
q)xlx2 vs » (b) with similar delayed-coordinate plots andq>xl;2 sponds to a period-doubling bifL_Jrcatio_n for the saddle cyele
(c) and (d), respectivelyX,=x,(t+ ) and D5, =P iyt - dashed curves denote tgngent blfu_rcatlons of saddle cycles; dotted-
dashed curve is torus birth bifurcation.

particular model. As an example, we consider a system of

coupled Rasler oscillators as described by Rosenbkiral. ¢=arctar¥+ TK K=0 +| +2 A= (x2+y?)L2
[6]: X b y— L LA | .
. @
X1= = 01Y1 = 2 T Y%= Xy), It is easy then to define a phase difference between the in-
: teracting oscillatorsé¢(t) = ¢,(t) — d4(t). If the relation
Yi= 01Xt ays, In$,—me,|<const is fulfilled for some period of time, one
_ can speak of phase locking. In many instances the weaker
2;=B+23(X;— p), condition for frequency lockingQ = (¢, — ¢,)=0 is used.

(1)  Here,() denotes time average a@d) is the difference be-
tween the mean angular frequencigsandn are integers.
5<2= —woYo—Zo+ Y(X1—X5), To describe the lag synchronization, we have to introduce
some relevant measures. An appropriate quantity to charac-
terize the time shift in the lag synchronized regime is the

Vo= woXo+ Y, :
Y2= wXe T aYa cross-spectral densif22]:

©

Guv(w):|Guv(w)|ejq’uv(w):f Ruv(T)eiijdTa (3

2= B+25(Xo— 1),

where the parameters, 8, and u govern the dynamics of
the individual subsystemy is the coupling parametery, where Ry, (7)={[u(t)—(u(t))][v(t—7)—(v(t))]) is the
=wotA and w,=wo—A are the natural frequencies, and cross-correlation function fax(t) andv(t). If u(t) andv(t)
2A is the mismatch between these frequencies. satisfy the conditiorv(t)=u(t—7), then

The above equations serve as a good model for real sys-
tems demonstrating a period-doubling route to chaos, e.g.,
for electronic circuit§ 12,20, as well as for many chemical b, (w)=arg G, (w))=wT. (4)
[21] and biological 2] systems.

Since synchronization between two systems involves )
phase relations, the notion of the phase for chaotic oscillatorhis implies that time lag=® (w)/w.
and several methods to characterize the phase dynamics were The phenomenon of lag synchronization is clearly dem-
intensively discussef6—8]. For the Rasler system the in- ©onstrated in Fig. 1. Here, we have plottedt) versusx,(t)
stantaneous phase and amplitude can be conveniently intr6® and®, , versusw (b). We observe how the monotoni-
duced ag7,21] cally growing function@xlx2 remains a straight line within
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FIG. 3. (a) The saddle cycl€,(+), and the saddle@,(x) embedded into the chaotic 88, (y=0.25);(b) the saddle £5 (O) that
appears fronC, via a period-doubling transitionmy=0.3); (c) the saddles 23(0O), 2C] (V), and stable cycle@, (A) after a saddle-
node bifurcation §=0.16); and(d) the riddledlike structure¢=0.1437). Black dots belong to the basin of the stable quasiperiodic regime
2T, (@=0.165,3=0.2, wy=0.97, ©=10.0, A=0.005).

the accuracy of the calculation. This allows us to determine [ll. DYNAMICS INSIDE THE REGION
the slope and, hence, the time shiftrigure 1 also shows the OF SYNCHRONIZATION
reconstructed attractor, i.6;=X,(t+ 7) versusx,(t) in the A. The set of attractors

new s_ymmetnc subspao_el:xz © as well as the corre- Many processes in nature are characterized by the coex-
sponding delayed-coordinate functiohyx,=®x, mx,t+n  istence of a large number of attractors for a fixed set of
(d). Outside the region of lag synchronization, while still parameters but attainable from different initial conditions. In
increasing on the average with, the function®, ., will  the presence of weak interaction, the phenomenon of multi-
oscillate with some amplitude. Hence, a unique slope cannattability can be observed in coupled systems which individu-
be defined, and the fully symmetric synchronized attractorlly possess only one attractor at fixed parameter vdR@s
cannot be constructed. Numerically obtained time shift25]. For two synchronized oscillators whose spectrum
prove the states of the subsystems to be identical but shiftecbntains subharmonice,/2¢ (k=1,2,3...) of the basic

in time with respect to each other. These results are in agreéequency, the phase difference between interacting units can
ment with results reported by Rosenbl@nal. [8]. attain Z different values, i.e.d¢=2xl, 1=0,1,2...,%
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014 ———— : — ] can be viewed as a particular case of lag synchronization
(a) corresponding to a time shift of half a period between the
0.12 |- A=0.02 ] above states. A sequence of bifurcations of this attractor
I leads to the appearance of high-periodic solutions and cha-
B a ] otic attractors ZCA; which are phase locked but situated
0.08 | 1 outside the symmetric subspace.
P i For the nonidentical casé\ 0), Anishchenkeet al.[26]
0.06 | ] have shown that regions of chaotic synchronization such as
[ Arnol'd tongues exist. Inside these regions a gradual transi-
0.04 | ] tion from complete to lag synchronization for “in-phase”
; ] attractors takes place. “Out-of-phase” solutions demonstrate
0.02 | 1 phase coherence properties, but for these solutions full co-
herence cannot be achieved. Moreover, “out-of-phase” at-
00_‘85 0.9 0.95 1 tractors seem to remain structurally stable over a longer in-
Sd terval of frequency mismatch. Hence, the transition to
nonsynchronous behavior is determined by the loss of stabil-
o ity for the “out-of-phase” synchronized mode.
[ (b) B. Transition from lag to phase synchronization
D8 Iy P The case of a small mismatch
3=0.14 1 Let us consider how the set of attractors reconstructs itself
0.06 ) in the process of loss of lag synchronization when the cou-
p pling is changed. Figure 2 shows the bifurcation diagram for
0.04 | ] the synchronous solution on the\ (y) parameter plane.
I 1 Throughout this section the symmetric subspace is consid-
ered in lag coordinates, that is;(t) =Xx,(t+ 7).
0.02 |- ] With a small mismatch, the boundary of chaotic phase
v=0.04 synchronization is located in the region of accumulation of
curves of tangent bifurcations of saddle cycléamily of

00.65 07 075 08 0.85 09 095 1 dashed curves in the lower left corner of Fig. 2t high
values of the coupling strength there exists the regime of lag
synchronization which is stable to perturbations. With de-
creasing of the coupling, this state becomes sensitive to
0.045; 0.05from the right to the leftand(b) at A=0.02 along the small intgnsity hoise. Excursions from .the “synchronous”
directionB in Fig. 2 for y=0.142; 0.14: 0.139: 0.09; 0.G#om the attractor is observed. Then bursts of this beh_awor gra_dually
right to the lefi («=0.165, 8=0.2, wy=0.97, u=10.0). bgcome stronger and are (_)bsgrve(_j even without noise. At
this moment lag synchronization is no longer observed.
— 1. Hence, a large number of periodic and chaotic attractor¥Vhen coupling is further decreased, the second Lyapunov
can coexist within a wide range of parameters. We start ougxponent becomes positive. Hence, a transition to hyper-
study from the case of identical systenis=£0). Let us con- chaos occurs. We are interested in the bifurcations that cause
sider attractors from only two families: “in-phase” attractors these transitions.
for which the phase difference ®f(t) andx,(t) is zero and Let us consider the mechanism of loss of synchronization
“out-of-phase” attractors where the phase differenceis 2 from the point of view of bifurcations of saddle periodic
Denote the periodic attractors a¥C and ZC, and the orbits embedded into the chaotic attractor. We fix the mis-
corresponding chaotic attractors a<C2, and 2CA,, re- match between the basic frequencieaat0.005 and inves-
spectively. Here ® (k=1,2,3 .. .) represents the cycle pe- tigate the transitions between the various regimes when the
riod, normalized in terms of the single period-1 solutop ~ coupling strength is decreaséthe directionD in Fig. 2).
which originally exists in the system! 2i=0,1,2 ...)rep-  The periodic orbitsC, and ZC, are of saddle type and de-
resents the number of bands for the chaotic attractors.  termine the structure @@ A, [Fig. 3(@)]. At y=0.239(dotted
With A=0, asu is increased the systeth) demonstrates curve in Fig. 2 the saddle cycleC, undergoes a period-
a cascade of period-doubling bifurcations of periodic orbitsdoubling bifurcation. As a resulC, loses its stability in a
2%C, leading to the formation of a chaotic attractor in the direction transverse to the synchronization manifold and a
symmetric subspace. With further increase mf band- saddle period-2 cycle @] softly appears in its vicinity.
merging bifurcations of the chaotic attractorsC2, take = When 'ghe coupling is further decreased, the points in the
place. All of these attractors are located in the symmetrid®oincaresection of this cycle move away from the symmet-
subspace of the whole phase space of the system. This cafe subspac¢Fig. 3b)]. At y=0.1657, a saddle-node bifur-
responds to the case of complete synchronization. The mgation (boundary of the light gray region in Fig.) 2akes
tual entrainment of periodic oscillation<C2 which is sym-  place leading to the formation of a stable asymmetric
metric under the coordinate transformation period-2 cycle. In the neighborhood of the saddle periodic
(X1,X2) = (X2,X1); (Y1.¥Y2) = (Y2,Y1);: (21,25)—(25,27) orbit 2C7 the stable periodic orbit@, and a saddle periodic

FIG. 4. The distributio® of momentary phase differencés at
v=0.205 along the directioi in Fig. 2 for A=0.02; 0.03; 0.04;
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orbit 2C" appear{Fig. 3(c)]. From some initial conditions to A=0.03, 0.04, 0.045, and 0.05. But for any frequency
near the chaotic attracta€A,, the trajectory converges to mismatch there is a coupling interval where lag synchroni-
2C,. However, the length of this transient is very sensitive toZation occurs. This is to be compared with the case where the
the initial conditions. When this happens, a basin of attraclag synchronized regime is immediately destroyeidection

tion of phase trajectories by is formed. The immediate B_|n Fig. 2). Under these condl_t|ons the distribution of phasg
basin has a tonguelike shape and is bounded by the stagiifferences abruptly changes its form when chaos-chaos in-

manifolds of the saddle cyclesC3 and ZC}. termittency appears at=0.139[Fig. 4(b)]. _
At lower values of the coupling, a similar transverse de- Note that, in contrast to the case of a weak mismatch

stabilization takes place for other periodic cycles such a¥/nen frequencyand phaselocking takes place, synchroni-

4C, and 8C, and several of these subsequently undergo &atior! in the case .Of a large mismatch is related to the sup-
saddle-node bifurcation. In this way, a set of tongues appeal ession of oscillations of one of the coupled subsystems by
step by step and the basin of attraction ©A, becomes the signal of the (_)the.r subsygtem. Therefore, the evqlunon of
riddled by initial conditions from which trajectories move to the lag attractor |s_d|ffergnt n the two cases, but this ques-
the stable regime out of the symmetric subspdtg. 3(d)].  UoN needs further investigations.
At y=0.1443, a torus develops fronC2 (dark gray region
in Fig. 2). At this moment, noise of small intensity induces
the escape from attract@A,. When the coupling is further In this paper we have studied the effect of mutual syn-
decreasedCA, appears via bifurcations of resonant cycleschronization of self-sustained oscillations in coupled§ter
(the black region in Fig. Pto subsequently become unstable systems whose natural frequencies are different. Based on
in a boundary crisis. Chaos-chaos intermittency betweethe results of computer simulation, we demonstrated that a
CA, and CA; then is observed, and lag synchronization isregime of complete synchronization for “in-phase” attrac-
lost. The chaotic attracto€A, and the chaotic saddle set tors is transferred into a lag regime when a frequency mis-
merge, and hyperchaos arises. match is introduced while “out-of-phase” attractors remain
A similar sequence of bifurcations is observed in a widephase synchronized. With decreasing coupling, the loss of
range of frequency mismatdhintil A=0.01). At these val- lag synchronization is related to a sequence of bifurcations of
ues ofA, a tangent bifurcation of the higher periodic cyclessaddle cycles embedded into the chaotic attractor and to bi-
(4C, and 8&C,) takes place and chad3A, appears via a furcations of “out-of-phase” attractors. Reconstructing the

IV. CONCLUSIONS

sequence of period doubling bifurcations. lag synchronized attractor, we found an analogy to the loss
of complete synchronization via a riddling transition for the
The case of a large mismatch case of identical oscillators. We believe that different forms

At large values of the frequency mismatch the region ofof synchronization which are related to different attracting

synchronization is bounded downwards by the curve of toruS€tS COexisting in a parameter space of a system can find a
birth bifurcation where two complex-conjugate multipliers "UmPer of practical applications in description, for example,

cross the unit circlédotted-dashed curve in Fig).Follow- of biological systems that contain a large number of complex

ing the lag synchronized attractor, one observes that this i@SCillators.
gradually transformed into the phase-synchronized attractor

CA,. Figure 4a) shows how the distribution of instanta-

neous phase differences changes gradually when the fre- This work was supported in part by RFfGrant No. 98-
quency mismatch is increasédirection A in Fig. 2. The  02-16531 and INTAS (Grant No. 96-030p O.S. and A.B.
rightmost distribution with the highest maxima and theacknowledge support from the Danish Research Academy,
smallest widths corresponds A0=0.02, and the other distri- and T.E. acknowledges support from ISSE?ant No. d99-
butions with lower maxima and broader width corresponds335).
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