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Loss of lag synchronization in coupled chaotic systems
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Lag synchronization denotes a particular form of synchronization in which the amplitudes of two interacting,
nonidentical chaotic oscillators are correlated but there is a characteristic time delay between them. We study
transitions to and between different forms of synchronization for the attractors defined as ‘‘in-phase’’ and
‘‘out-of-phase’’ and investigate the processes by which lag synchronization is lost in two coupled Ro¨ssler
systems. With a small frequency mismatch between the two systems, these processes are related to the
occurrence of a peculiar form of basin structure as more and more periodic orbits embedded into the synchro-
nized chaotic state become unstable in a transverse direction.@S1063-651X~99!03711-3#

PACS number~s!: 05.45.2a

I. INTRODUCTION

Synchronization of chaotic systems has become a signifi-
cant field of research in recent years. Coupled nonlinear os-
cillators in chemistry@1#, biology, and economics@2# are
important examples. One of the exciting scientific quarries in
this relation is to understand the coherent dynamical behav-
ior of the coupled systems. In the technical realm, spread
spectrum communications and systems monitoring and iden-
tification have been proposed as potential applications of
chaotic synchronization, motivating further studies@3#.

Several types of synchronization representing different
degrees of correlation between the interacting systems have
been identified and are referred to as complete~or full! syn-
chronization@4#, generalized synchronization@5#, and phase
synchronization@6,7#, respectively. Complete synchroniza-
tion implies that time series of corresponding dynamical
variables of the subsystems coincide completelyx1(t)
5x2(t) ~i.e., the systems oscillate in phase!. Generalized
synchronization, as introduced for drive-response systems, is
defined as the presence of some functional relationship be-
tween the states of the response and the drive, i.e.,x2(t)
5F@x1(t)#. For phase synchronization, suitably defined
phases of two chaotic oscillators lock to each other, while
their amplitudes remain uncorrelated and sustain an irregular
motion of their own. Rosenblumet al. @8# have shown that
for stronger coupling a new regime which is called lag syn-
chronization may be observed. Lag synchronization appears
as a coincidence of the states of two systemsx1(t1t)
5x2(t) when shifted in time. With further increase of the
coupling, this regime tends to complete synchronization. Lag
synchronization is similar to generalized synchronization
with the functionF being defined in terms of a temporal
displacement of the dynamics of the interacting subsystems.

The loss of chaotic synchronization is directly related to
bifurcations of saddle periodic orbits embedded into the cha-
otic attractor@9–15#. The transitions to nonsynchronous be-
havior in systems with symmetric invariant manifolds are
associated with a number of new phenomena, including
riddled basins of attraction@16# and on-off intermittency
@17#. The orbits embedded in the fully synchronized chaotic
attractor can lose their transverse stability via a saddle-

repeller pitchfork bifurcation@10#, a period-doubling bifur-
cation @14#, or a Hopf bifurcation@18#. These bifurcations
may lead to attractor bubbling as described by Ashwinet al.
@19#. Trajectories repelled from the synchronized chaotic
state may then make an excursion out in phase space. Sooner
or later, however, almost all trajectories will return to the
vicinity of the symmetric subspace. When riddling occurs, a
dense set of initial conditions which belong to the basin of
another attractor appears within the basin of the symmetric
chaotic attractor@18,19#. A number of issues related to the
influence of asymmetry and noise were discussed in@19#.

Investigations of these synchronization phenomena have
often considered coupled fully identical maps as mathemati-
cal models. Results obtained in the framework of such ide-
alizations have then been applied to explain the behavior of
real systems. When detuning between the basic frequencies
of the interacting oscillators is introduced, regions of chaotic
phase synchronization, similar to Arnol’d tongues for peri-
odic oscillations, appear on the parameter plane. The transi-
tion phenomena that take place at the boundary of chaotic
synchronization are associated with the bifurcations of
saddle periodic orbits as well. Anishchenkoet al. @12# have
ascribed this boundary to an accumulation of curves of tan-
gent bifurcations of saddle cycles, and a more recent study
by Pikovskyet al. @13# suggests that attractor-repeller colli-
sions take place at the transition to chaotic synchronization,
thus drawing on the analogy with the tangent bifurcation of a
limit cycle. Most recently@15#, the transition to phase syn-
chronization was described as a boundary crisis mediated by
unstable-unstable pair bifurcations on a branched manifold.

In this paper, considering the example of two coupled
Rössler systems, we investigate the effect of a frequency
mismatch on the synchronization phenomena. Transitions to
and between complete, lag, and phase synchronization for
different regimes are discussed. The process by which lag
synchronization is lost and phase synchronization takes place
is described in terms of bifurcations of periodic orbits em-
bedded into the chaotic attractor.

II. CHARACTERIZING THE SYNCHRONIZATION

Synchronization is a universal nonlinear phenomenon,
and many of its key features are typically independent of the
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particular model. As an example, we consider a system of
coupled Ro¨ssler oscillators as described by Rosenblumet al.
@6#:

ẋ152v1y12z11g~x22x1!,

ẏ15v1x11ay1 ,

ż15b1z1~x12m!,

~1!

ẋ252v2y22z21g~x12x2!,

ẏ25v2x21ay2 ,

ż25b1z2~x22m!,

where the parametersa, b, andm govern the dynamics of
the individual subsystem.g is the coupling parameter,v1
5v01D and v25v02D are the natural frequencies, and
2D is the mismatch between these frequencies.

The above equations serve as a good model for real sys-
tems demonstrating a period-doubling route to chaos, e.g.,
for electronic circuits@12,20#, as well as for many chemical
@21# and biological@2# systems.

Since synchronization between two systems involves
phase relations, the notion of the phase for chaotic oscillators
and several methods to characterize the phase dynamics were
intensively discussed@6–8#. For the Ro¨ssler system the in-
stantaneous phase and amplitude can be conveniently intro-
duced as@7,21#

f5arctan
y

x
1pK,K50,6 l ,12, . . . , A5~x21y2!1/2.

~2!

It is easy then to define a phase difference between the in-
teracting oscillatorsdf(t)5f2(t)2f1(t). If the relation
unf12mf2u,const is fulfilled for some period of time, one
can speak of phase locking. In many instances the weaker
condition for frequency lockingdV5^ḟ12ḟ2&50 is used.
Here,^ & denotes time average anddV is the difference be-
tween the mean angular frequencies.m andn are integers.

To describe the lag synchronization, we have to introduce
some relevant measures. An appropriate quantity to charac-
terize the time shift in the lag synchronized regime is the
cross-spectral density@22#:

Guv~v!5uGuv~v!uej Fuv(v)5E
2`

`

Ruv~t!e2 j vtdt, ~3!

where Ruv(t)5Š@u(t)2^u(t)&#@v(t2t)2^v(t)&#‹ is the
cross-correlation function foru(t) andv(t). If u(t) andv(t)
satisfy the conditionv(t)5u(t2t), then

Fuv~v!5arg„Guv~v!…5vt. ~4!

This implies that time lagt5Fuv(v)/v.
The phenomenon of lag synchronization is clearly dem-

onstrated in Fig. 1. Here, we have plottedx2(t) versusx1(t)
~a! andFx1x2

versusv ~b!. We observe how the monotoni-

cally growing functionFx1x2
remains a straight line within

FIG. 1. Example of lag synchronization for two coupled Ro¨ssler
systems (a50.165, b50.2, v050.97, m510.0, g50.2, D
50.005). Projections on the plane@x1(t)x2(t)# ~a! and function

Fx1x2
vs v ~b! with similar delayed-coordinate plotsx̃2 andFx1x̃2

~c! and ~d!, respectively.x̃25x2(t1t) andFx1x̃2
5Fx1(t)x2(t1t) .

FIG. 2. Simplified bifurcation diagram for two coupled noniden-
tical Rössler systems (a50.165, b50.2, v050.97, m510.0).
Gray-colored regions indicate transitions from periodic solutions to
chaotic regimes for the out-of-phase family. Dotted curve corre-
sponds to a period-doubling bifurcation for the saddle cycleC0;
dashed curves denote tangent bifurcations of saddle cycles; dotted-
dashed curve is torus birth bifurcation.
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the accuracy of the calculation. This allows us to determine
the slope and, hence, the time shiftt. Figure 1 also shows the

reconstructed attractor, i.e.,x̃25x2(t1t) versusx1(t) in the

new symmetric subspacex15 x̃2 ~c! as well as the corre-
sponding delayed-coordinate functionFx1x̃2

5Fx1(t)x2(t1t)

~d!. Outside the region of lag synchronization, while still
increasing on the average withv, the functionFx1x2

will

oscillate with some amplitude. Hence, a unique slope cannot
be defined, and the fully symmetric synchronized attractor
cannot be constructed. Numerically obtained time shifts
prove the states of the subsystems to be identical but shifted
in time with respect to each other. These results are in agree-
ment with results reported by Rosenblumet al. @8#.

III. DYNAMICS INSIDE THE REGION
OF SYNCHRONIZATION

A. The set of attractors

Many processes in nature are characterized by the coex-
istence of a large number of attractors for a fixed set of
parameters but attainable from different initial conditions. In
the presence of weak interaction, the phenomenon of multi-
stability can be observed in coupled systems which individu-
ally possess only one attractor at fixed parameter values@23–
25#. For two synchronized oscillators whose spectrum
contains subharmonicsv0/2k (k51,2,3, . . . ) of the basic
frequency, the phase difference between interacting units can
attain 2k different values, i.e.,df52p l , l 50,1,2, . . . ,2k

FIG. 3. ~a! The saddle cycleC0(1), and the saddle 4C0(3) embedded into the chaotic setCA0 (g50.25);~b! the saddle 2C1
s (s) that

appears fromC0 via a period-doubling transition (g50.3); ~c! the saddles 2C1
s(s), 2C1

n (,), and stable cycle 2C1 (m) after a saddle-
node bifurcation (g50.16); and~d! the riddledlike structure (g50.1437). Black dots belong to the basin of the stable quasiperiodic regime
2T1 (a50.165,b50.2, v050.97, m510.0, D50.005).
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21. Hence, a large number of periodic and chaotic attractors
can coexist within a wide range of parameters. We start our
study from the case of identical systems (D50). Let us con-
sider attractors from only two families: ‘‘in-phase’’ attractors
for which the phase difference ofx1(t) andx2(t) is zero and
‘‘out-of-phase’’ attractors where the phase difference is 2p.
Denote the periodic attractors as 2kC0 and 2kC1 and the
corresponding chaotic attractors as 2iCA0 and 2iCA1, re-
spectively. Here 2k (k51,2,3, . . . ) represents the cycle pe-
riod, normalized in terms of the single period-1 solutionC0
which originally exists in the system; 2i ( i 50,1,2, . . . ) rep-
resents the number of bands for the chaotic attractors.

With D50, asm is increased the system~1! demonstrates
a cascade of period-doubling bifurcations of periodic orbits
2kC0 leading to the formation of a chaotic attractor in the
symmetric subspace. With further increase ofm, band-
merging bifurcations of the chaotic attractors 2iCA0 take
place. All of these attractors are located in the symmetric
subspace of the whole phase space of the system. This cor-
responds to the case of complete synchronization. The mu-
tual entrainment of periodic oscillations 2C1 which is sym-
metric under the coordinate transformation
(x1 ,x2)↔(x2 ,x1); (y1 ,y2)↔(y2 ,y1); (z1 ,z2)↔(z2 ,z1)

can be viewed as a particular case of lag synchronization
corresponding to a time shift of half a period between the
above states. A sequence of bifurcations of this attractor
leads to the appearance of high-periodic solutions and cha-
otic attractors 2iCA1 which are phase locked but situated
outside the symmetric subspace.

For the nonidentical case (DÞ0), Anishchenkoet al. @26#
have shown that regions of chaotic synchronization such as
Arnol’d tongues exist. Inside these regions a gradual transi-
tion from complete to lag synchronization for ‘‘in-phase’’
attractors takes place. ‘‘Out-of-phase’’ solutions demonstrate
phase coherence properties, but for these solutions full co-
herence cannot be achieved. Moreover, ‘‘out-of-phase’’ at-
tractors seem to remain structurally stable over a longer in-
terval of frequency mismatch. Hence, the transition to
nonsynchronous behavior is determined by the loss of stabil-
ity for the ‘‘out-of-phase’’ synchronized mode.

B. Transition from lag to phase synchronization

The case of a small mismatch

Let us consider how the set of attractors reconstructs itself
in the process of loss of lag synchronization when the cou-
pling is changed. Figure 2 shows the bifurcation diagram for
the synchronous solution on the (D,g) parameter plane.
Throughout this section the symmetric subspace is consid-
ered in lag coordinates, that is,x1(t)5x2(t1t).

With a small mismatch, the boundary of chaotic phase
synchronization is located in the region of accumulation of
curves of tangent bifurcations of saddle cycles~family of
dashed curves in the lower left corner of Fig. 2!. At high
values of the coupling strength there exists the regime of lag
synchronization which is stable to perturbations. With de-
creasing of the coupling, this state becomes sensitive to
small intensity noise. Excursions from the ‘‘synchronous’’
attractor is observed. Then bursts of this behavior gradually
become stronger and are observed even without noise. At
this moment lag synchronization is no longer observed.
When coupling is further decreased, the second Lyapunov
exponent becomes positive. Hence, a transition to hyper-
chaos occurs. We are interested in the bifurcations that cause
these transitions.

Let us consider the mechanism of loss of synchronization
from the point of view of bifurcations of saddle periodic
orbits embedded into the chaotic attractor. We fix the mis-
match between the basic frequencies atD50.005 and inves-
tigate the transitions between the various regimes when the
coupling strength is decreased~the directionD in Fig. 2!.
The periodic orbitsC0 and 2kC0 are of saddle type and de-
termine the structure ofCA0 @Fig. 3~a!#. At g50.239~dotted
curve in Fig. 2! the saddle cycleC0 undergoes a period-
doubling bifurcation. As a result,C0 loses its stability in a
direction transverse to the synchronization manifold and a
saddle period-2 cycle 2C1

s softly appears in its vicinity.
When the coupling is further decreased, the points in the
Poincare´ section of this cycle move away from the symmet-
ric subspace@Fig. 3~b!#. At g50.1657, a saddle-node bifur-
cation ~boundary of the light gray region in Fig. 2! takes
place leading to the formation of a stable asymmetric
period-2 cycle. In the neighborhood of the saddle periodic
orbit 2C1

s the stable periodic orbit 2C1 and a saddle periodic

FIG. 4. The distributionP of momentary phase differences~a! at
g50.205 along the directionA in Fig. 2 for D50.02; 0.03; 0.04;
0.045; 0.05~from the right to the left! and~b! at D50.02 along the
directionB in Fig. 2 forg50.142; 0.14; 0.139; 0.09; 0.04~from the
right to the left! (a50.165,b50.2, v050.97, m510.0).
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orbit 2C1
n appear@Fig. 3~c!#. From some initial conditions

near the chaotic attractorCA0, the trajectory converges to
2C1. However, the length of this transient is very sensitive to
the initial conditions. When this happens, a basin of attrac-
tion of phase trajectories by 2C1 is formed. The immediate
basin has a tonguelike shape and is bounded by the stable
manifolds of the saddle cycles 2C1

s and 2C1
n .

At lower values of the coupling, a similar transverse de-
stabilization takes place for other periodic cycles such as
4C0 and 8C0 and several of these subsequently undergo a
saddle-node bifurcation. In this way, a set of tongues appears
step by step and the basin of attraction ofCA0 becomes
riddled by initial conditions from which trajectories move to
the stable regime out of the symmetric subspace@Fig. 3~d!#.
At g50.1443, a torus develops from 2C1 ~dark gray region
in Fig. 2!. At this moment, noise of small intensity induces
the escape from attractorCA0. When the coupling is further
decreased,CA1 appears via bifurcations of resonant cycles
~the black region in Fig. 2! to subsequently become unstable
in a boundary crisis. Chaos-chaos intermittency between
CA0 and CA1 then is observed, and lag synchronization is
lost. The chaotic attractorCA0 and the chaotic saddle set
merge, and hyperchaos arises.

A similar sequence of bifurcations is observed in a wide
range of frequency mismatch~until D50.01). At these val-
ues ofD, a tangent bifurcation of the higher periodic cycles
(4C1 and 8C1) takes place and chaosCA1 appears via a
sequence of period doubling bifurcations.

The case of a large mismatch

At large values of the frequency mismatch the region of
synchronization is bounded downwards by the curve of torus
birth bifurcation where two complex-conjugate multipliers
cross the unit circle~dotted-dashed curve in Fig. 2!. Follow-
ing the lag synchronized attractor, one observes that this is
gradually transformed into the phase-synchronized attractor
CA0. Figure 4~a! shows how the distribution of instanta-
neous phase differences changes gradually when the fre-
quency mismatch is increased~direction A in Fig. 2!. The
rightmost distribution with the highest maxima and the
smallest widths corresponds toD50.02, and the other distri-
butions with lower maxima and broader width corresponds

to D50.03, 0.04, 0.045, and 0.05. But for any frequency
mismatch there is a coupling interval where lag synchroni-
zation occurs. This is to be compared with the case where the
lag synchronized regime is immediately destroyed~direction
B in Fig. 2!. Under these conditions the distribution of phase
differences abruptly changes its form when chaos-chaos in-
termittency appears atg50.139@Fig. 4~b!#.

Note that, in contrast to the case of a weak mismatch
when frequency~and phase! locking takes place, synchroni-
zation in the case of a large mismatch is related to the sup-
pression of oscillations of one of the coupled subsystems by
the signal of the other subsystem. Therefore, the evolution of
the lag attractor is different in the two cases, but this ques-
tion needs further investigations.

IV. CONCLUSIONS

In this paper we have studied the effect of mutual syn-
chronization of self-sustained oscillations in coupled Ro¨ssler
systems whose natural frequencies are different. Based on
the results of computer simulation, we demonstrated that a
regime of complete synchronization for ‘‘in-phase’’ attrac-
tors is transferred into a lag regime when a frequency mis-
match is introduced while ‘‘out-of-phase’’ attractors remain
phase synchronized. With decreasing coupling, the loss of
lag synchronization is related to a sequence of bifurcations of
saddle cycles embedded into the chaotic attractor and to bi-
furcations of ‘‘out-of-phase’’ attractors. Reconstructing the
lag synchronized attractor, we found an analogy to the loss
of complete synchronization via a riddling transition for the
case of identical oscillators. We believe that different forms
of synchronization which are related to different attracting
sets coexisting in a parameter space of a system can find a
number of practical applications in description, for example,
of biological systems that contain a large number of complex
oscillators.
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