
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Homoclinic Bifurcation as a Mechanism of Chaotic Phase Synchronization

Postnov, D.E.; Balanov, A.G.; Janson, N.B.; Mosekilde, Erik

Published in:
Physical Review Letters

Link to article, DOI:
10.1103/PhysRevLett.83.1942

Publication date:
1999

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Postnov, D. E., Balanov, A. G., Janson, N. B., & Mosekilde, E. (1999). Homoclinic Bifurcation as a Mechanism of
Chaotic Phase Synchronization. Physical Review Letters, 83(10), 1942-1945. DOI:
10.1103/PhysRevLett.83.1942

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13733823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevLett.83.1942
http://orbit.dtu.dk/en/publications/homoclinic-bifurcation-as-a-mechanism-of-chaotic-phase-synchronization(7b23505c-7f86-43d2-9d45-03ae92dd572d).html


VOLUME 83, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 6 SEPTEMBER 1999

Homoclinic Bifurcation as a Mechanism of Chaotic Phase Synchronization
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This paper demonstrates a mechanism of chaotic phase synchronization in which the transition from
asynchronous to synchronous chaos is associated with the collision of the asynchronous chaotic attractor
with an unstable periodic orbit. This gives rise to a hysteretic transition with the two chaotic regimes
coexisting over a certain parameter interval.

PACS numbers: 05.45.Xt

The study of coupled nonlinear oscillators is a fun-
damental problem in theoretical physics with applica-
tions to many areas of science and technology. Forced
Van der Pol type oscillators [1] have traditionally served
as a paradigm for the synchronization process, and they
have provided the typical picture of the involved mecha-
nisms. Recently, the extension of this problem to interact-
ing chaotic oscillators has disclosed a phenomenologically
similar behavior which is referred to as phase synchro-
nization of chaos [2,3].

It has long been known that, besides local bifurcations
on the surface of the resonant torus, nonlocal (or global)
bifurcations also form part of the bifurcation picture in
the vicinity of the synchronization region [4]. Kevrekidis
et al. [5], for instance, have shown that the combina-
tion of local and global bifurcations is typical for chemi-
cal reaction-diffusion systems that are forced across a
Hopf bifurcation. Similar results were obtained by Sturis
et al. [6] in an investigation of insulin secretion. Knudsen
et al. [7] have proved the existence of homoclinic bifurca-
tion curves emanating from the points in which the torus
bifurcation curves attach to the saddle-node curves of the
synchronization tongues (the so-called Takens-Bogdanov
points [8]).

In this Letter we show that there are systems for which
the homoclinic bifurcation curves extend right down to
very small but probably finite modulation amplitudes. For
that kind of system, the above-mentioned mechanism of
synchronization becomes the most typical one over all
reasonable ranges of external forcing strength. Then, we
first show that a similar homoclinic bifurcation underlies
a new mechanism of chaotic phase synchronization.

The phenomena similar to that which we are going
to discuss should be typical for a wide class of systems
which can display homoclinic bifurcation without forcing
(neuron models, reaction-diffusion systems, etc.).

However, we demonstrate that the homoclinic mecha-
nism of synchronization can appear to be the major
one in a model exhibiting homoclinic bifurcation, the
latter being provided by external forcing. The model
we consider naturally derives from a microbiological
predator-prey problem involving interacting populations of

bacteria and viruses in a continuously stirred tank reactor
(chemostat).

The model reads
dB
dt

� nBS
1

S 1 K
2 B�r 2 avP� ,

dI
dt

� avBP 2 rI 2 I�t ,

dP
dt

� 2P�r 1 a�B 1 I�� 1 bI�t ,
(1)

dS
dt

� r�F�t� 2 S� 2 gnBS
1

S 1 K
.

Here, B, I , and P are the concentrations of noninfected
bacteria, infected bacteria, and viruses, respectively. S
represents the current concentration of nutrients inside
the chemostat. Growth of the bacterial concentration B
is determined by the nutrition supplement through the
Monod term nBS��S 1 K�, where n is the bacterial
growth rate with unlimited resources, and K is the nutrient
concentration at which the growth rate is equal to half
of its maximum value. g measures the average resource
consumption per bacterial cell division. Existing viruses
randomly meet bacteria with collision probability a and
infect them with probability v. Infected bacteria burst
after time t releasing b new viruses. The dilution rate r

plays the role of dissipation parameter. For large values
of r the model displays a stable equilibrium point. As the
dilution rate is reduced, self-sustained oscillations arise in
a supercritical Hopf bifurcation.

Various aspects of the model have previously been
studied by Baier et al. [9]. In the present Letter, we
consider the coupling of bacteria-virus populations via
the flow of nutrients along a chain of chemostats. This
implies that the inlet concentration of nutrients to a given
chemostat will depend on the overflow from the preceding
chemostat. In this way, each pool will be forced with a
signal that depends on the dynamics of the upstream pool.
Throughout the study, we have used the same parameters
as used by Baier et al. [9]. Values of the nutrient inlet
concentrations si will be given in mg�ml, and values of
the bacteria and virus concentrations in 106�ml21.
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Let us first consider the periodically forced model (1),
i.e., the system for which F�t� simulates the activity
of a single oscillating bacteria-virus population upstream
to our chemostat. To do so, we express the incoming
resource flow as a time periodic function:

F�t� � s

∑
1 2

m
2

�1 2 sin�Vt�
∏

, (2)

where V represents the modulation frequency while m is
the modulation depth. In the notation of (2) s denotes
the maximal resource concentration. Figure 1 displays
part of the parameter plane near the main 1:1 resonance.
Here, the curves SN are saddle-node bifurcation curves,
H are curves of homoclinic bifurcations, and T is a torus
bifurcation curve.

In the regions immediately outside the saddle-node bi-
furcation curves, the system displays a single quasiperiodic
attractor. This is illustrated in Fig. 2a. At the saddle-node
bifurcation curves, a pair of periodic orbits, one stable and
the other unstable, are born outside the torus. As shown
in Fig. 2b the unstable manifolds of the saddle cycle con-
nect to the stable cycle on one side and approach the torus
on the other. The stable manifold of the saddle cycle (not
shown) divides the basins of attraction for the two asymp-
totic solutions. Along the homoclinic bifurcation curves,
the torus makes contact with the saddle cycle [10] and dis-
appears in a boundary crisis (Fig. 2c), and between the two
homoclinic bifurcations the system displays a stable and
an unstable periodic orbits in a heteroclinic structure that
is topologically equivalent to a resonant torus.

Thus, there are two different tori involved in the
process, and the transition between them is accomplished
via the homoclinic bifurcation. In previous studies this
type of transition was observed only for a rather limited
region of relatively strong coupling [4–6]. By contrast,
we have found a tangentlike location of the SN and H
curves. We suppose that the reason for this phenomenon
might be the specific features of the autonomous model
(1), namely, the limit cycle trajectory goes very close
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FIG. 1. Part of the bifurcation diagram for the nonautonomous
bacteria-virus population. C indicates a Takens-Bogdanov
point.

to stable and unstable manifolds of the saddle point
at origin. However, precise explanation requires new
serious investigations which we plan for the future.

Returning now to the behavior of an array of coupled
population pools, we first note that the case of two
coupled bacteria-virus populations is equivalent to the
nonautonomous case and displays the same kind of behav-
ior. Next we consider a system of three coupled bacteria-
virus populations. If we define the inlet concentrations
F1,2,3�t� as

F1�t� � s1; F2�t� � S1 1 s2;

F3�t� � S2 1 s3 ,
(3)

where the subscript denotes the pool number, the forcing
parameters for the second and third pools are produced
in accordance with the predator-prey dynamics of the
upstream pool.

With s2 � 0, by the choice of s1 we can vary the
type of forcing signal applied to the third population from
regular to chaotic oscillations, and by using an appropriate
value of s3 we can observe either a synchronous or an
asynchronous response of the third system to the forcing
signal.

The main regimes observed and the corresponding bi-
furcation curves are displayed in Fig. 3. For s1 , 12.48,
the nutrient concentration in the outflow from the sec-
ond chemostat follows a simple limit cycle oscillation,
and variation of s3 towards the left-hand part of the dia-
gram (not shown) realizes the homoclinic synchronization
mechanism as described for the nonautonomous bacteria-
virus population.

The right border (T1 line) is the torus bifurcation line.
However, no stable torus appears at this line, only the loss
of stability for the periodic solution near the saddle cycle.
As it was proved for the two-dimensional system, this
kind of transition is accompanied by a global bifurcation
involving the homoclinic orbit of the saddle [11]. Higher
values of s1 allow us to observe qualitatively the same

FIG. 2. Poincaré sections illustrating the structural changes
that occur along the point sequence a, b, c, and d in Fig. 1.
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FIG. 3. Bifurcation diagram for the system of three bacteria-
virus populations. The inset shows the variation of r23 vs s3.

phenomena for the period-2 and period-4 limit cycles.
Finally, when s1 exceeds 14.07 we observe a hysteresis
behavior and a crisislike transition between two chaotic
attractors.

To classify these attractors and the crisis itself, let us
recall some results on phase synchronization of chaos
[2,3]. For periodically forced chaotic systems it has been
found that there are two main types of chaotic attractors.
The first is qualitatively equivalent to the period-doubling
chaos of the autonomous chaotic system with a funda-
mental frequency governed by the frequency of the exter-
nal signal. Following [2] let us term this chaotic regime
as “synchronous chaos.” The second type of chaotic at-
tractors is torus chaos with a power spectrum that ex-
hibits two fundamental frequencies above the continuous
background. By analogy with the quasiperiodic (asyn-
chronous) nonchaotic behavior let us term this regime as
“asynchronous chaos.”

Besides by the specific form of their phase projections,
Poincaré sections, and power spectra, the two types of
behaviors can be easily distinguished by following the
phase of the chaotic attractors [3,12] or by calculating
their mean return time to a Poincaré secant [13].

We have used the mean return time to classify the
different chaotic regimes of our model. We fixed the
resource concentration in the first chemostat at s1 � 14.25
and defined the Poincaré secant for each subsystem as

Bi � Pi�5, i � 1 . . . 3 . (4)

The mean return times were hereafter calculated for the
three subspaces �Bi , Ii , Pi , Si�, i � 1 . . . 3. The ratios
between the mean return times provide the two winding
numbers r12 and r23. The value of r12 was found to be
1.0000 6 0.0001 at any point of the diagram in Fig. 3.
This is consistent with the fact that the choice of s2 � 0
in the second chemostat produces synchronous (chaotic or
regular) regimes only.

The variation of r23 versus s3 is depicted in the inset of
Fig. 3. One can see the two overlapping branches. One
of them falls directly at r23 � 1.000 6 0.001 while the
other shifts slightly with s3, assuming a range of values
between 1.3 and 1.4.

Together with other observations the above result
clearly shows that the considered chaotic attractors rep-
resent synchronous (branch r23 � 1.0) and asynchronous
chaos in the sense of Refs. [2,3,14]. However, the tran-
sition between the two chaotic attractors is of a different
type. In the above-mentioned works the coexistence of
synchronous and asynchronous chaotic regimes was not
found, and the whole picture of transition between these
regimes differed significantly from that observed here. In
our case the transition is consistent with the homoclinic
synchronization mechanism we already illustrated for the
regular oscillations.

To support this conclusion, the Poincaré section was
calculated at the center of the coexistence area and at
the homoclinic bifurcation curve H. The results are
shown in Fig. 4. One clearly sees that the asynchronous
chaos touches the unstable cycle at the point of crisis
s3 � 11.73.

FIG. 4. Poincaré sections of the two coexisting chaotic at-
tractors for s3 � 12.25 (a) and s3 � 11.73 (b). s1 � 14.25,
s2 � 0.
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FIG. 5. Minimal distance between the saddle cycle and
the asynchronous chaotic attractor for s1 � 14.25. The in-
set shows the distance profile along the saddle cycle at
s3 � 11.73.

Of course, for such a high-dimensional system such
as our coupled bacteria-virus model, it is difficult to
make precise statements about the mutual configuration
of attractors basing on Poincaré sections only. However,
useful information can be obtained by calculating the
distance between the specified objects in phase space. In
Fig. 5 the variation of the minimal distance between the
asynchronous chaos and the saddle cycle is plotted as a
function of the parameter s3. In the inset the distance
profile along the saddle cycle at s3 � 11.73 is shown.
5000 points were recorded along the saddle cycle. The
minimal distance is shown for each point. The tangency
of attractors is about to occur at the point number 4367.
As one can see, the chaotic attractor really approaches
the saddle cycle and touches it at the point of bifurcation
s3 � 11.73.

In conclusion, we have demonstrated the example
of dynamical system for which synchronization via the
homoclinic bifurcation appears to be the major synchro-
nization mechanism. It has been shown that the above
mechanism remains valid even in the case of chaotic forc-
ing. The latter result represents a novel mechanism of
phase synchronization of chaos.
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