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Shell model for time-correlated random advection of passive scalars
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We study a minimal shell model for the advection of a passive scalar by a Gaussian time-correlated velocity
field. The anomalous scaling properties of the white noise limit are studied analytically. The effect of the time
correlations are investigated using perturbation theory around the white noise limit and nonperturbatively by
numerical integration. The time correlation of the velocity field is seen to enhance the intermittency of the
passive scalar.@S1063-651X~99!07711-9#

PACS number~s!: 47.27.Gs, 47.27.Jv

I. INTRODUCTION

The advection of a scalar observableu(x,t) by a velocity
field v is described in classical hydrodynamics by the linear
partial differential equation~PDE!

] tu1v•“u5k“2u1f. ~1.1!

If v is assumed to be the solution of the Navier-Stokes equa-
tions in a turbulent regime and the Pe´clet number Pe, which
measures the ratio between the strength of the advective ef-
fects and the molecular diffusionk in ~1.1!, is large,

Pe[
Lv
k

@1

(L andv are the characteristic length and advection velocity
in the problem!, and if a steady state is reached, an inertial
range sets in where both the effects of the forcingf limited to
the large scales and those of the molecular diffusion acting
mainly on the small scales can be neglected. In the inertial
range no typical scale is supposed to characterize the flow.
As a consequence, the structure functions of the scalar field

Sp~r !5^@u~x1r !2u~x!#p& ~1.2!

display a power law behavior in the inertial range with
anomalous scaling exponentsH(p) @1#. The word anomalous
means that the exponentsH(p) deviate from the linear be-
havior predicted by a direct scaling analysis of Eq.~1.1!.

It was first realized by Kraichnan@2# that anomalous scal-
ing can be observed in the mathematically more tractable
case of the advection by a random homogeneous and isotro-
pic Gaussian velocity field, which is delta correlated~white
noise! in time and has zero average and covariance ind
dimensions given by

^vi~x,t !vj~y,s!&

5d~ t2s!FDi , j~0!2D0ux2yujwn~d211jwn!d i , j

1jwn

~x2y! i~x2y! j

ux2yu2
G .

The power law behavior of the covariance mimics an infinite
inertial range for the velocity field. The scaling exponentjwn
is a free parameter characterizing the degree of turbulence of
the advecting field. The physically meaningful values range
from 0 to 2. In the first limit the effect of the random advec-
tion is just to define an effective diffusion constant@3#. In the
latter case the velocity increments are smooth, as expected
for a laminar flow. The choicejwn equal to4

3 represents the
scaling of the velocity field conjectured by Kolmogorov for
the solution of the Navier-Stokes equation in the turbulent
regime.

The hypothesis of delta correlation in time is of great
mathematical advantage, for it allows one to write the equa-
tions of motion of the scalar correlations in a linear closed
form. The evolution of each correlation in the inertial range
is specified by a linear differential operator, the inertial op-
erator, plus matching conditions at the boundary of the iner-
tial range. The occurrence of anomalous scaling has been
related to the existence of zero modes of the inertial opera-
tors dominating the scaling properties of higher order corre-
lations ~@3–6# and, for a recent review and more complete
bibliography, @7#!. The behavior of the anomaly has also
been numerically measured for the fourth order structure
function versus the turbulence parameterjwn @8#. However,
implementing accurate numerical experiments still remains a
difficult task. Therefore, it turns out to be useful to use the
shell model as a laboratory in which to test ideas and results
related to the full PDE model~see@9# for a general introduc-
tion to the shell model concept!. In @10,11# two different
shell models advected by a delta-correlated velocity field
mimicking the Kraichnan model were constructed. Anoma-
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lous scaling was observed numerically and in the simpler
case@11# it was proven analytically that the anomaly of the
fourth order structure function is related to the anomalous
scaling of the dominant zero mode of the inertial operator.

The passive scalar advection by a white noise velocity
field is a useful mathematical model, but is still very far from
being a physical realistic velocity field possessing both time
correlations and deviations from Gausianity. A first small
step in this direction is made by investigating how the intro-
duction of a time correlation in a Gaussian velocity field
affects the statistical properties of the scalar field.

In the present paper we introduce a time-correlated veloc-
ity field in a shell model. This is done by replacing the white
noise with the Ornstein-Uhlenbeck process, which provides
exponentially decaying time correlations~Sec. II!. We inves-
tigate the model both analytically and numerically. By means
of stochastic variational calculus, which we review in Ap-
pendixes A and B, we show how to rewrite the equations of
motion for the scalar correlations in integral nonclosed form.
Such an operation allows evaluation of the correction to the
white noise inertial operator stemming from the time-
correlated velocity field. This procedure has the further ad-
vantage that it creates a nonambiguous relationship between
the coupling terms for the scaling exponentjwn of white
noise advection to the scaling exponentj of the time-
correlated velocity field~Sec. III!.

The inertial operators can be expanded around the white
noise limit in powers of an adimensional parameter which is
interpreted as proportional to the ratioe between the time
correlation and the turnover time of the advecting field. We
focus on the features of the steady state. There we assume
that the averages over the Ornstein-Uhlenbeck process of all
the observables are time-translational invariant. As a conse-
quence, the inertial operators become linear up to any finite
order ine.

In the white noise case, whene is equal to zero, we gen-
eralize the procedure first introduced in@11# and we show
that the scaling of the zero modes of the inertial operator of
any order is captured by focusing on nearest-shell interac-
tions. The equations are closed with a scaling Ansatz~Sec.
IV ! by postulating that the scalar field is ‘‘close’’ to a mul-
tiplicative process. Furthermore, we perturb the closure
scheme in order to extract the first order corrections ine to
the anomalous exponents for different values ofj ranging
from zero to two. The prediction of perturbation theory is an
e dependence~nonuniversality! of the exponents except for
the second orderH(2) ~Sec. V!. The overall result is analo-
gous to the one obtained in@12#, where a Gaussian time-
correlated velocity field is considered for the advection of the
scalar field in Eq.~1.1!: the introduction of time correlation
is seen to enhance intermittency. The anomalies vanish
smoothly in the laminar limitj52.

To examine the validity of the results from the analytical
calculations and explore the regime with long time correla-
tions (e@0), we turned to numerical experiments. The oc-
currence of corrections to the anomalies predicted by the
perturbation theory for small values ofe is confirmed. How-
ever, strong nonperturbative effects set in and dominate
when the expansion parameter becomes of the order of unity.

II. MODEL

The model is defined by the equations (m51,2, . . . ,N)

F d

dt
1kkm

2 Gum~ t !2d1mf ~ t !5 i @km11um11* ~ t !um* ~ t !

2kmum21* ~ t !um21* ~ t !#,

~2.1!

um~ t !5
vm

eAtm
E

0

t

ds e2(t2s)/(etm)hm~s!, ~2.2!

f ~ t !5
f̃

eAt
E

0

t

ds e2(t2s)/(et)h~s!, ~2.3!

where the asterisk denotes complex conjugation and the
hm(t)’s and h(t) are independent white noises with zero
mean value and correlation:

^hm~ t !hn* ~s!&52dmnd~ t2s! and

^h~ t !h* ~s!&52d~ t2s!. ~2.4!

The boundary conditions areu05uN1150. The model can
be regarded as a severe truncation of the equation of the
passive scalar~1.1! in Fourier space. The field componentum
is the representative of all the Fourier modes in the shell with
a wave number ranging betweenkm5k0lm and km11
5k0lm11. The parameterl is the ratio between two adja-
cent scales and it is usually taken equal to two in order to
identify each shell with an octave of wave numbers. The
energy transfer in a turbulent flow is conjectured to occur
mainly through the interactions of eddies of the same size.
As a consequence the interactions in Fourier space are as-
sumed to be local. The ‘‘localness’’ conjecture@1# is the
motivation for the restriction to nearest neighbors of the cou-
plings among the shells.

In the absence of external forcing and dissipation, the
total ‘‘energy’’ of the passive field is conserved:

d

dt
E5

d

dt (
m51

N

uumu250 for f ~ t !5k50. ~2.5!

Far from the infrared and the ultraviolet boundaries~i.e., for
1!m!N) the conservation of energy is expected to hold
approximately, giving rise to an inertial range. Equations
~2.2! and ~2.3! describe the random evolution according to
Ornstein-Uhlenbeck~OU! processes of, respectively, the ad-
vecting and external force fields. The OU process has differ-
entiable realizations, thus resulting in the random differential
equations with multiplicative noise that specify the dynamics
of the scalaru independent of the discretization prescription.

The velocity correlations are fort>s

^um~ t !um* ~s!&5
uvmu2

e
~e2(t2s)/(etm)2e2(t1s)/(etm)!.

~2.6!

In the limit of larget only the stationary part survives. The
adimensional parametere appearing in the definition of the
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OU processes~2.2! and~2.3! defines the strength of the time
correlation in units of the typical timestm . In the white
noise limit one has

lim
e↓0

^um~ t !um* ~s!&52uvmu2dS t2s

tm
D . ~2.7!

For any finitee ordinary differential calculus holds true: the
consistency conditions yield a Stratonovich discretization
prescription whene is set to zero and the recovery of the
white noise advection model of@11#. Hence the factor 2 in
~2.7! always cancels in computations for thed distribution is
evaluated at one of the boundaries of the domain of integra-
tion.

Information about the scaling of the correlations of the
velocity field at equal times is stored in the constantsvm .
We assume the power law behavior

uvmu}km
2j/2 . ~2.8!

Kolmogorov scaling is specified byj52/3 while j52 cor-
responds to a laminar regime. Thetm’s in Eq. ~2.2! describe
the typical correlation times for the random velocity field. A
simple physical interpretation is to identify them with the
turnover times, i.e., with the typical time rates of variation
through nonlinearity of the advection field on each shell@13#:

tm;
1

kmuvmu
}km

211(j/2) . ~2.9!

The scaling of the correlation times is then fully specified in
terms of the parameterj. It is worth noting that for anyj
less than 2 thetm’s are always decreasing functions of the
wave number.

The evolution of the scalaru is determined in the inertial
range by its complex conjugate. It is useful to introduce a
unified notation for the 2N degrees of freedom. WithQ5u
% u* andU5u% u* one has for theN shells

d

dt
Qa5 (

b51

2N FAa,b1 (
g51

2N

Ba,b
g UgGQb1 f da,11 f * da,N11 ,

~2.10!

with

Am,b52kkm
2 dm,b ,

AN1m,b52kkm
2 dm,n ,

Ba,b
m 52 ikm11@db,m11da,N1m2db,mda,N1m11#,

Ba,b
N1m5 ikm11@db,N1m11da,m2db,N1mda,m#, ~2.11!

where Latin and Greek indices range respectively from 1 to
N and from 1 to 2N. The set of matrices with constant en-
tries Bg do not commute within each other and with theA
matrix. The known sufficient condition~see, for example,
@14#! to have a solution of Eq.~2.10! in an analytic exponen-
tial form is therefore not satisfied. From the geometrical
point of view, noncommutativity means that the dynamics is
confined to a manifold that turns into a hypersphere inC N in
the inertial limit ~2.5!.

The complex equations~2.10! are invariant under phase
transformations. Given two diagonal Hermitian 2N32N ma-
trices with time independent random entries

T[diag~eif1, . . . ,eifN,e2 if1, . . . ,e2 ifN!, ~2.12!

S[diag~e2 i (f11f2), . . . ,e2 i (fN211fN),0,ei (f11f2), . . . ,

ei (fN211fN),0!, ~2.13!

if Q is a realization of the solution of the equations of mo-
tion, then

TQ~U !5Q~SU! ~2.14!

is still a solution. The phase symmetry is the remnant of the
translational invariance of the original hydrodynamical equa-
tions in real space@9#. From the phase symmetry~2.14! it
follows that at stationarity the only analytic nonzero mo-
ments of the correlation are of the form

Cm1 , . . . ,mv

(2v) 5^P i 51
v Qmi

QN1mi
&[^P i 51

v uumi
u2&.

~2.15!

In the inertial range such quantities display a power law be-
havior. The diagonal sector of the moments whose scaling
properties are specified by the exponentsH(2v)

Cm, . . . ,m
(2v) }km

2H(2v) ~2.16!

is in the shell model context, the analog of the structure
functions~1.2! of the original PDE model~1.1!. The expo-
nentsH(2v)’s are said to be normal if they can be derived
from dimensional analysis. Under the assumption that a
steady state is reached, one matches the scaling of the inertial
terms in Eq.~2.1! with a power law decay of the solution

km11km
2(j/2)um112kmkm21

2(j/2)um21;0. ~2.17!

The resulting prediction is a linear behavior of the exponents
versus the orderv of the diagonal correlation:

H~2v!5vS 12
j

2D . ~2.18!

The scaling argument~2.17! neglects completely the random
fluctuations of the passive scalar field. Normal scaling holds
if the statistics of theu field are Gaussian. Deviations from
normal scaling are then correlated with the occurrence of
intermittency corrections to the Gaussian statistics. A sys-
tematic account of the fluctuations is provided by the study
of the equations of motion satisfied by the moments of the
scalar field.

III. EQUATIONS OF MOTION OF THE FIELD MOMENTS

In the white noise limit,e equals zero; the Furutsu-
Donsker-Novikov formula@1# and the delta correlation in
time of the velocity ensure that the momentsC(2v) are speci-
fied by the solutions of closed linear systems@10,11#. In the
presence of finite time correlations, stochastic calculus of
variations@15,16# allows one to write nonclosed integrodif-
ferential equations for the correlations. A typical functional
integration by parts relation is
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^F„Q~ t !…UN1m~ t !&5E
0

t

dŝ UN1m~ t !Um~s!&

3K dF„Q~ t !…

dQa~ t !
Ra,b~ t,s!Bb,g

m Qg~s!L ,

~3.1!

where Einstein convention holds for repeatedGreekindices.
The matrix R is the fundamental solution of the homoge-
neous system associated with Eq.~2.10!. A heuristic proof of
the stochastic integration by parts formula and of Eq.~3.1! is
provided in Appendixes A and B.

Let us start with the second moment of the scalar field,

Cm
(2)~ t !5̇^Qm~ t !QN1m~ t !&[^um~ t !um* ~ t !&. ~3.2!

From the equations of motion~2.10! one has

F d

dt
12kkm

2 GCm
(2)~ t !22 Re$^QN1m~ t ! f ~ t !&%dm,1

52 Re$ ikm11^UN1m~ t !QN1m11~ t !QN1m~ t !&%

22km Re$ i ^UN1m21~ t !QN1m21~ t !QN1m21~ t !&%.

~3.3!

The integration by parts formula~3.1! gives

F d

dt
12kkm

2 GCm
(2)~ t !22dm,1ReE

0

t

dŝ f ~ t ! f ~s!* &

3^RN1m,N11~ t,s!&

52km11
2 tmE

0

t

ds
^Um~ t !UN1m~s!&

tm
ReF m

(2)~ t,s!

22km
2 tm21E

0

t

ds
^Um21~ t !UN1m21~s!&

tm21

3ReFm21
(2) ~ t,s!, ~3.4!

wherem51, . . . ,N, Re is the real part, and

F m
(2)~ t,s!5̇GN1m11,N1m;N1m,m11

(2) ~ t,s!

2GN1m11,N1m11;N1m,m
(2) ~ t,s!

1GN1m,N1m;N1m11,m11
(2) ~ t,s!

2GN1m,N1m11;N1m11,m
(2) ~ t,s!, ~3.5!

GN1m,N1n;N1p,q
(2) ~ t,s!

5̇ (
a51

2N

^QN1p~ t !RN1m11,a~ t,0!Ra,N1n
21 ~s,0!Qq~s!&,

~3.6!

dm5̇uvmu2tm}km
2(11j/2) . ~3.7!

When a steady state is reached, the left-hand side~lhs! of Eq.
~3.4! can be neglected through the whole inertial range. The
rhs specifies the inertial operator of the theory. A further
simplification is attained in the limit of very large shell num-
ber. For anyj less than 2, one has

lim
m↑`

^Um~ t !UN1m~s!&
tm

[ lim
m↑`

^um~ t !um* ~s!&
tm

5uvmu2d~ t2s!

~3.8!

independently ofe. At equal times the resolvent matrixR
reduces to the identity. From Eqs.~2.8! and ~2.9! it follows
that

km11
2 dmtm5l2. ~3.9!

Hence form going to infinity the inertial operator is linear-
ized in the form

I ~Cm
~2!!52

l2

tm
~Cm11

(2) 2Cm
(2)!22

l2

tm21
~Cm

(2)2Cm21
(2) !.

~3.10!

The slowest decay scaling solution compatible with a zero
lhs is

Cm
(2)}tm5km

2H(2) . ~3.11!

In other words, we have proven that the scaling of the second
moment is normal since it coincides with the dimensional
prediction~2.18!. Moreover since the result does not depend
on e, it is universal versus the time correlation. It is worth
stressing that the derivation of Eq.~3.11! requires that each
of the terms appearing in Eq.~3.10! has separately a finite
nonzero limit form going to infinity. The condition turns out
not to be self-consistent when the same reasoning is applied
to moments higher than the second.

An important consequence of normal scaling of theCm
(2)’s

is the Obukhov-Corrsin@17,18# law for the decay of the
power spectrumG(k) of the passive scalar if the Kolmog-
orov scaling is assumed for the advecting field:

G~k!5
d

dk (
kn<k

^~unun* !2&}k2„H(2)11…uj52/35k25/3.

~3.12!

A second interesting limit is whene tends to zero. Ne-
glecting all nonstationary contributions to the velocity corre-
lations the rhs of Eq.~3.4! becomes

I ~Cm
~2!!52km11

2 dm~Cm11
(2) 2Cm

(2)!22km
2 dm21~Cm

(2)2Cm21
(2) !

22km11
2 dmE

0

t

ds e2(t2s)/(etm)
d

ds
ReF m

(2)~ t,s!

1km
2 dm21E

0

t

ds e2(t2s)/(etm21)
d

ds
ReFm21

(2) ~ t,s!.

~3.13!
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If e is set exactly to zero the integral terms disappear and the
white noise equations of@11# are recovered. The information
about the scaling of the velocity field is absorbed in thedm’s.
In a pure white noise theory it is convenient to redefine the
turbulence parameter as

jwn511
j

2
. ~3.14!

A Kolmogorov scaling of the velocity field corresponds to
jwn equal to4

3 , which is also the value giving the Obukhov-
Corrsin scaling in Eq.~3.12!. The two definitions of the de-
gree of turbulence coincide forj equal to two~Batchelor
limit !. It is natural to identifyjwn with the turbulence param-
eter of the Kraichnan model. The correspondence fixes the
physical range ofj between@22,2#.

In the general case of the 2vth even moment of the scalar
C(2v) one has

I S Cm1 , . . . ,mv

~2v! 5 (
q1 , . . . ,qv

I m1 , . . . ,mv ,q1 , . . . ,qv

(2v;0) Cq1 , . . . ,qv

(2v)

2(
i 51

v

2kmi11
2 dmi

E
0

t

e2(t2s)/(etmi
)

d

ds

3ReFm1 , . . . ,mi , . . . ,mv

(2v) ~ t,s!

1(
i 51

v

2kmi

2 dmi21E
0

t

ds e2(t2s)/(etmi21)
d

ds

3ReFm1 , . . . ,mi21, . . . ,mv

(2v) ~ t,s!. ~3.15!

The multidimensional matrixI (2v;0) is the linear inertial op-
erator of the white noise theory. The integrand functions
Fm1 , . . . ,mi21, . . . ,mv

(2v) (t,s) are given by the straightforward

generalization of Eq.~3.5!. The lhs, as above, is set to zero as
far as the steady state features of the inertial range are con-
cerned. Repeated integrations by parts in the larget limit
generate a Laplace asymptotic expansion@19# of integral
terms in the rhs, the coefficients of which are the derivatives
with respect tos of the functionsF (2v) evaluated at equal
times. When the steady state sets in we assume the latter
quantities to be invariant under time translations for larget.
Under such an assumption it will be proven in Sec. V that the
equal time derivatives are specified at equilibrium by linear
combinations of theC(2v)’s. The effect of a small time cor-
relation is therefore to generate new couplings of ordere in
the inertial operators. The observables we focus on are the
scaling exponents. As discussed in the introduction, anoma-
lies occur in the presence of nontrivial scaling zero modes of
the white noise inertial operators. It makes sense to relate the
e dependence of the anomalous exponents to a perturbation
of the scaling zero modes derived fore50. A straightfor-
ward approach to the problem calls for the solution ofNv

linear equations. A further source of difficulty is that exact
determination of the zero eigenvectors of the inertial opera-
tors of any given order requires the matching of infrared and
ultraviolet boundary conditions. In the absence of an exact

diagonalization, any analytical approach must rely on closure
Ansätze first to solve the white noise problem and then to
yield the corrections to the zero modes by linear perturbation
theory.

IV. WHITE NOISE CLOSURE

In this section we present a closure strategy to compute
theH(2v)’s in the case of white noise advection. As shown
in the preceding section, the second diagonal moment is nor-
mal and universal versus the time correlation. The first non-
trivial zero mode problem is provided by the fourth order
inertial operatorI (4;0). In @11# it was shown that the anoma-
lous exponentr4,

H~4!52H~2!2r4 , ~4.1!

can be extracted up to a very good accuracy from the solu-
tion of only two nonlinear algebraic equations. The station-
ary equations forC(4) in the inertial range far from the in-
frared and ultraviolet boundaries are given by

05
I m,n;p,q

(4;0) Cp,q
(4)

2l2

[2S 1

tm
1

1

tm21
1

1

tn
1

1

tn21
DCm,n

(4) 1
1

tm
Cm11,n

(4)

1
1

tn
Cm,n11

(4) 1
1

tm21
Cm21,n

(4) 1
1

tn21
Cm,n21

(4)

12dm,nS Cm,m11
(4)

tm
1

Cm,m21
(4)

tm21
D 22dm11,n

Cm,m11
(4)

tm

22dn,m21

Cm,m21
(4)

tm21
. ~4.2!

One recognizes two kinds of couplings inI m,n;p,q
(4;0) .

~1! ‘‘Global,’’ or ‘‘unconstrained,’’ interactions. The in-
dices p and q range respectively fromm21 to m11 and
from n21 to n11. The couplings are independent of the
relative values ofm andn. In this sense they are referred as
global.

~2! ‘‘Purely local’’ interactions. These occur only forum
2nu<1 and correspond to the terms proportional to the
Kroeneckerd in Eq. ~4.2!.

Anomalous scaling in the inertial range is strictly related
to the presence of such purely local interactions. Were these
latter neglected, the fourth order moment would have a nor-
mal scaling solution

Cm,n
(4) }

tn

tm
tm

2 . ~4.3!

The idea is to capture the anomalous scaling by looking at
the ‘‘renormalization’’ of global couplings by pure short
range ones. Disregarding the boundaries, the system is in-
variant under a simultaneous shift of the indices. Hence, as-
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suming a perfect index-shift invariance there are, for themth
shell, only two independent equations whered-like terms
occur:

05(
p,q

I m,m;p,q
(4;0) Cp,q

(4) ,

05(
p,q

I m,m21;p,q
(4;0) Cp,q

(4) . ~4.4!

The third equation involving a purely local interaction of the
mth shell with its nearest neighbors,

05(
p,q

I m11,m;p,q
(4;0) Cp,q

(4) ,

is generated from the second of Eqs.~4.4! by a simple index
shift. Therefore, it is not regarded as independent. The pair
~4.4! contain all the relevant information needed to extract
the scaling of the fourth moment. It forms a closed system of
equations independently on the shell numberm as one im-
poses scaling relations to hold within the set of ‘‘indepen-
dent’’ moments of fourth order:

Cm1n,m1n
(4) 5z2nCm,m

(4) , ~4.5!

Cm1n,m
(4) 5xkn21

2H(2)Cm,m
(4) , ~4.6!

where the integern is taken larger than zero. As in the analy-
sis of the interactions, the concept of independence stems
from the assumption of index shift invariance: the moments
of the formCm2n,m

(4) are immediately reconstructed once Eqs.
~4.5! and ~4.6! are given:

Cm2n,m
(4) 5xkn21

2H(2)znCm,m
(4) .

Let us analyze the closure Ansatz in more detail. The first
equation~4.5! is a global scaling assumption of the ‘‘diago-
nal’’ sector of the fourth moment. Its justification lies in the
very definition of an inertial range. The second scaling as-
sumption relates the diagonal sector to the nondiagonal one
via a marginal scaling. It is analogous in the present context
of an operator product expansion~OPE! in statistical field
theory @20#. There, renormalization group~RG! techniques
are able to describe the scaling behavior of correlations of
fields sampled at large real space distances one from the
other. If an observable requires the evaluation of a correla-
tion including the products of one field in two points at short
distances, i.e.,̂f(x2dx)f(x1dx)•••&, the RG procedure
cannot be directly applied. The problem is overcome by an

OPE or short distance expansion. The prescription is to re-
write the product via a Taylor expansion in terms of local
composite operators sampled just at one point. Such a point
is now well separated from all the others appearing in the
correlation function. The original correlation is replaced by a
set of correlations such that RG applies provided an extra
renormalization, renormalization of composite operators
~RCO!, is introduced. The latter is understood by observing
that in our example the first term in the Taylor expansion
gives

f~x1dx!f~x2dx!;f~x!2.

The mathematical meaning of a field is one of an operator-
valued distribution. The product of two distributions at equal
points, i.e.,f(x)2, requires a regularization before the cutoff
is removed in order for it to make sense as a distribution.
This is the content of the RCO. Finally, at leading order the
relationship between the renormalized quantities reads, for
the above example,

^@f~x1dx!f~x2dx!#R•••&;c~dx!^@f~x!2#R•••&.
~4.7!

Roughly speaking, the small real space separations are asso-
ciated with the UV behavior of the Fourier conjugated vari-
able. In the shell model context theum are representative of
the scalar field variation over one octave. The moments
Cm,m1n

(4) correspond to the average of the product of squared
increments of the scalar field at different wave numbers

Cm,m1n
~4! ;^f~km1n!2f~kn!2&,

f~km!; K E dDxeik•x@u~x!2u~0!#RL
km!uku<lkm.

Equation~4.6! states then that scaling is restored for large
shell separations~n going to infinity, i.e., spatial scales much
smaller thankm

21) independently on the smaller wave num-
ber km. The analogy with the OPE is then summarized by

lim
n↑`

E dDy eikn•yc~y!;xkn21
2H(2) , ~4.88!

wherex is a renormalized constant. The insertion of the scal-
ing Ansatz in Eq.~4.4! leaves a nonlinear system in the un-
known variablesz andx. By applying the definitionkn5ln

one gets

212l2H(2)12x~11zl2H(2)!50,

~11z!l2H(2)1xz~2123l2H(2)l22H(2)1zl23H(2)!50,
~4.9!

which, after straightforward manipulation, providesz as the
physical root of a second order polynomial

z5
112l2H(2)12l22H(2)1l23H(2)1A114l2H(2)18l22H(2)26l23H(2)24l25H(2)1l26H(2)

2~2l22H(2)1l23H(2)1l24H(2)!
. ~4.10!

6668 PRE 60K. H. ANDERSEN AND P. MURATORE-GINANNESCHI



In terms ofz, the anomaly is

r452H~2!2
ln z

ln l
~4.11!

and it proves to be in fair agreement with the values obtained
from the numerical solution of the exact equations~4.2! @11#
and from the numerical integration of Eq.~2.1! for all the
values of the turbulent exponentj in the physical range~see
also Figs. 1 and 2!. The sign ofr4 is always positive: the
effect of the anomaly is to decrease the diagonal scaling
exponent.

The procedure presented in detail for the computation of
the fourth order exponent is straightforwardly extended to
any higher order moment when one recognizes that, in gen-
eral, two crucial observations hold.

~1! In the absence of pure short range couplings, the nor-
mal scaling prediction holds true far from the boundaries for
the zero modes of the inertial operators of any order 2v.

~2! For any fixed shellm, there is a one-to-one correspon-
dence between the number of independent equations and mo-
ments of order 2v.

In the case ofC(2v) there are 2v21 equations: for any
fixed reference shellm1, the interaction with the second in-
dexm2 is affected by a pure short range coupling if the latter
is equal to or one unit different fromm1, i.e., there are only
two possible choices, and so on until thevth index is
reached. On the other hand, 2v21 is the number of exponents
that characterize the scaling of the 2vth moment. The An-
satz is that the marginal scaling of the nondiagonal sector is
fully specified in terms of the diagonal scaling exponents of
order less than 2v. By means of the OPE’s, one is able to
close the zero mode equations in terms of 2v21 unknown
renormalization constants andH(2v). Analogy with a field
theoretical OPE shows that the need for an infinite set of

constants does not necessarily imply the nonrenormalizabil-
ity of the real space theory mimicked by the shell model
@21#.

More concretely, the diagonal scaling exponent of the
sixth moment (v53) of the scalar field

Cm,n,p
(6) 5^QN1mQmQN1nQnQN1pQp&[^uumu2uunu2uupu2&

~4.12!

according to the above criterion requires four independent
equations~see Appendix D!

(
p,q,r

I m,m,m;p,q,r
(6;0) Cp,q,r

(6) 50,

(
p,q,r

I m,m,m21;p,q,r
(6;0) Cp,q,r

(6) 50,

~4.13!

(
p,q,r

I m,m21,m21;p,q,r
(6;0) Cp,q,r

(6) 50,

(
p,q,r

I m,m11,m21;p,q,r
(6;0) Cp,q,r

(6) 50.

The OPE-inspired closure yields

Cm1n,m1n,m1n
(6) 5z2 lCm,m,m

(6) ,

Cm1n,m1n,m
(6) 5x1kn21

2H(4)Cm,m,m
(6) ,

~4.14!
Cm1n1p,m1n,m

(6) 5x2kp21
2H(2)kn21

2H(4)Cm,m,m
(6) ,

Cm1n,m,m
(6) 5x3kn21

2H(2)Cm,m,m
(6) .

Inserting the OPE in Eq.~4.13!, one gets into the algebraic
system for the unknown renormalization constants
(x1 ,x2 ,x3) and the diagonal scaling factorz.

211la~2113zx1!13x350,

2l2azx11l4a1r4z2x122z~x122x2!

1la@11z~27x114x3!#50,
~4.15!

la~114x126x3!1l2a~4zx222x3!2x350,

l3a1r4zx11laz~x123x2!2zx21l5a1r4z2x2

2l3az~x22x3!1l2a~24zx21x3!50.

After some algebra, Eq.~4.15! reduces to a single third order
polynomial specifying the physical root ofz. It is worth re-
marking that from the functional dependence of the coeffi-
cient of Eq. ~4.15! the exponentH(6) depends upon the
anomaly ofH(4). Once again, the anomaly evaluated from

r653H~2!2
ln z

ln l
~4.16!

is in fair agreement with numerics~see Figs. 1 and 2! for
different values ofj.

In Appendix E, the same steps are performed in the case
of the eighth momentCm,n,p,q

(8) . The analytical predictions for

FIG. 1. Analytical prediction for the anomalous part of the scal-
ing exponent compared with the results of the numerical experi-
ments for different values of the turbulence degree parameterj.
Kolmogorov scaling of the advection field corresponds toj52/3.
The dash-dotted line represents the~dimensional! normal scaling
prediction. The continuous line interpolates the exponents as ob-
tained from numerical experiment~squares!. The circles are the
analytical prediction from the closure Ansatz.
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the anomalous exponents are summarized in Fig. 2. In all
cases the anomalies are decreasing functions of the turbu-
lence parameterj vanishing smoothly when the laminar limit
(j equal two! is approached. The anomaly of the fourth order
moment can be compared with the results of numerical ex-
periments for the fourth order structure function of the Kra-
ichnan model@8#. There, the adopted turbulence parameter is
jwn . For values ofjwn of order one, i.e., from the Kolmog-
orov scaling up to the Batchelor limit, one indeed observes
the same monotonically decreasing behavior with values of
the anomaly of the same order as those found in the shell
model. For lower values ofjwn the anomaly in the Kraichnan
model displays a maximum before decreasing to zero forjwn

equal to zero, i.e., whenj tends to22. No sign of such
behavior is observed in the shell model. The discrepancy
might be an artifact of the shell model, which was originally
designed to mimic the supposed local-in-scale character of
the nonlinear interactions in a turbulent flow@9# and fails to
describe a regime where strong nonlocal effects become im-
portant.

On a phenomenological level, the energy transfer in the
inertial range of the turbulent field is related to the occur-
rence of a cascade mechanism, as conjectured by Richardson
@22#. The conservation of energy in the inertial range im-
poses that the force occurring on large real space scales is
transferred to small scales~i.e., large wave numbers! before
dissipating. A mathematical description of the cascade is
provided by multiplicative stochastic processes@23#. Multi-
plicative modeling has been shown to account for most of
the features observed in real and synthetic turbulence@24,9#.
In the present case, the idea of a multiplicative structure is
incorporated into the hypothesis that the scaling of the non-
diagonal sector of a given moment of order 2v is recon-
structed once the scaling of the lower moments is known.
Such an assumption, together with the analysis of the cou-
plings in the inertial operator of order 2v, yields with fair
accuracy the scaling exponents of the model without having
to resort to an exact diagonalization of the inertial operator.

V. PERTURBATIVE ANALYSIS

Let us now turn to the time-correlated case. The idea is to
evaluate the scaling behavior of the dominant zero modes of
the inertial operators~3.15! linearized up to first order ine
by perturbing the white noise closure Ansatz.

The first order corrections ine to the inertial operators are
obtained by truncating the integration in parts to the terms
linear in e:

2kmi11
2 dmi

E
0

t

e2(t2s)/(etmi
)

d

ds
ReFm1 , . . . ,mi , . . . ,mv

(2v) ~ t,s!

52el2
d

ds
ReFm1 , . . . ,mi , . . . ,mv

(2v) ~ t,s!us5t

1O~e2,ee2t/(etmi
)!. ~5.1!

The use of Eq.~3.9! in the rhs stresses that the effective
adimensional expansion parameter isel2: the range of reli-
ability of first order perturbation theory is compressed toe
<l22/10. As mentioned in Sec. III, in the limitt going to
infinity, one expects the time quantities to be stationary. In
such a case, the derivative with respect to the variables can
be interchanged with the derivative with respect tot and one
can use the equations of motion to evaluate Eq.~5.1!. A
direct differentiation with respect tos is consistently taken
with respect to the system of stochastic differential equations
conjugated by time reversal of equations~2.1!–~2.3!. The
latter operation in general requires knowledge of the prob-
ability density of the forward in time problem. In the station-
ary limit, the time reversal operation for the OU process
reduces to the inversion of the sign of the drift term as in the
deterministic case. After slightly more lengthy algebra, the
result is equal to the differentiation with respect tot with
opposite sign.

The computations in the general case are very cumber-
some~see Appendixes C, D, and E!. It is convenient to ex-
emplify the procedure in the simpler case of the second order
correlation. There are four contributions to ReF m

(2) :

d

dt
GN1m11,N1m;N1m,m11

(2) ~ t,s!u t5s50,

d

dt
GN1m11,N1m11;N1m,m

(2) ~ t,s!u t5s

52kkm11
2 Cm

(2)~ t !1^Q̇N1m~ t !Qm~ t !&,
~5.2!

d

dt
GN1m,N1m11;N1m,m11

(2) ~ t,s!u t5s50,

d

dt
GN1m,N1m;N1m11,m11

(2) ~ t,s!u t5s

52kkm
2 Cm

(2)~ t !1^Q̇N1m11~ t !Qm11~ t !&.

FIG. 2. Prediction of the closure Ansatz for the anomalies in the
scaling exponents of the fourth,r4, the sixth,r6, and the eighth,
r8, moments of the scalar field versus the turbulence parameterj.
In all cases, the anomalies are a decreasing function ofj going
smoothly to zero as the Batchelor limitj equal to 2 is approached.
The anomaly of the eighth moment is obtained as the numerical
solution of a sixth order polynomial.
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By definition

^Q̇N1m~ t !Qm~ t !&5
1

2

d

dt
^uum~ t !u2&,

^Q̇N1m11~ t !Qm11~ t !&5
1

2

d

dt
^uum11~ t !u2&.

The time derivative of ReFm21
(2) is derived by a simple index

shift. Since the terms nondiagonal in the resolventR indices
are zero, the second moment inertial operator is not affected
by first order perturbation theory. The result is not surprising.
The second moment has only one free index. Hence at any
order of perturbation theory only global coupling can be gen-
erated, which is forced by the symmetries of the model to be
consistent with a normal scaling of the zero mode. Moreover,
the Qm components of the scalar evolve only through the
coupling with their complex conjugatedQN1m’s: their varia-
tion is a second order effect ine. The only possible nonzero
corrections are viscous and can be consistently neglected.

Let us now draw the general picture whenv is larger than
one. Once again, the phase symmetries~2.14!, and the fact
that when ReFm1 , . . . ,mi , . . . ,mv

(2v) is known all other terms are

yielded by index shift or exchange operations, prevent the
corrections to the global couplings from affecting the scaling
properties: the resulting global sectors of inertial operators
have a normal scaling zero mode. This is in agreement with
the observation made in@12#, where the dependence of the
scaling exponents on the time correlation for generalized
models of passive scalar advection is predicted to appear
only through anomalies. The corrections to the purely short
range couplings are therefore the relevant ones. They occur
in two ways. On one hand, new terms of ordere show up in
the purely self- and nearest-neighbor interactions. On the
other hand, terms proportional todmi ,mj 62 appear. The latter
are the most dangerous, for they in principle perturb the logic
of the white noise closure by introducing new independent
equations, hence the need for more renormalization constants
in the nondiagonal sector of the moments. Nevertheless, one
can arguea priori in the spirit of the renormalization group
@25#, only the nearest neighbors interactions are relevant for
scaling. Hence first order corrections can be obtained allow-
ing an e dependence in the renormalization constant of the
white noise closure and determining the first order coeffi-
cient of their Taylor expansion. Moreover, forv larger than

2, such a strategy is already able to take into account the
corrections due to the purely second neighbor interactions.

Let us analyze in more detail the case ofCm,n
(4) . The white

noise closure is perturbed by introducing ane dependence
into the renormalization constants

Cm1n,m1n
(4) 5z~e!2nCm,m

(4) , ~5.3!

Cm1n,m
(4) 5x~e!ln21

2H(2)Cm,m
(4) . ~5.4!

The marginal scaling in the nondiagonal sector in Eq.~5.4! is
assumed to stay universal as it is forC(2) while thee depen-
dence is stored in the prefactor. The diagonal exponent is
then determined up to first order as

H~4,e!5
ln~z!

ln~l!
1el2

z8

l2z ln~l!
, ~5.5!

wherez8 is the derivative ofz at e50 yielded by the pertur-
bative solution of the system

(
p,q

@ I m,m;p,q
(4;0) 1eI m,m;p,q

(4;1) #Cp,q
(4)~e!50,

~5.6!

(
p,q

@ I m,m21;p,q
(4;0) 1eI m,m21;p,q

(4;1) Cp,q
(4)~e!50.

The correction tor4 due to time correlation increases the
anomaly leading to a slower decay of the diagonal moment.
For negativez8 ~see Fig. 3! the overall anomaly is

r4~e!5~22j!2
ln~z!

ln~l!
1Uel2

z8

l2z ln~l!
U . ~5.7!

In the range of reliability of first order perturbation theory
the effect is very small: forel2'O(1021) the prediction is
a correction amounting to the 3% of the white noise expo-
nentH(4). Theperturbative scheme just proposed does not
take into account the emergence of pure second neighbor
interactions. In order to weight their relevance for the diag-
onal scaling and simultaneously to check the hypothesis of
normal scaling for the marginal scaling in Eq.~5.4!, one can
relax the closure in order to encompass the equation

FIG. 3. First order corrections toH(4) with
~dashed line! and without inclusion of second
neighbor interactions are plotted versus the turbu-
lence exponent. The inclusion of second neighbor
couplings increases the intensity of the anomaly.
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(
p,q

@ I m,m22;p,q
(4;0) 1eI m,m22;p,q

(4;1) #Cp,q
(4)~e!50, ~5.8!

which describes the independent~in the sense stated above!
second neighbor interaction. Consistency with the white
noise theory compels the latter equation to decouple whene
is set to zero. The requirement is satisfied if the closure is
chosen in the form

Cm1n,m
(4) 5x~e!q~e! [(n21)(n22)]/2k(n21)2H~2!Cm,m

(4) .
~5.9!

The prefactorq(e) [(n21)(n22)]/2 forcesq(0) to be a function
of the white noise renormalization constants. Were the white
noise closure exact, it would fix the value ofq(0) to one.

In Fig. 4 q(0) is plotted versusj: through the entire
physical range it stays close to one with a maximal deviation
on the order of 4% forj equal to22. Moreover, as shown
in Fig. 3, the time-correlation-induced correction toH(4,e)
when Eq.~5.8! is included has the same qualitative behavior
and is quantitatively very close to the nearest neighbor pre-
diction. The result is ana posterioricheck of the robustness
of the closure approach. It confirms that first order correc-
tions can be extracted within the logical scheme of the zero
order one. It follows that the equations specifying the zero
modes of the inertial operator acting on the sixth moment
~see Appendix D! can be closed by assuming

Cm1n,m1n,m1n
(6) 5z~e!2 lCm,m,m

(6) ,

Cm1n,m1n,m
(6) 5x1~e!kn21

2H(4,e)Cm,m,m,m
(6) ,

~5.10!
Cm1n1p,m1n,m

(6) 5x3~e!kp21
2H(2)kn21

2H(4,e)Cm,m,m,m
(6) ,

Cm1n,m,m,m
(6) 5x2~e!kn21

2H(2)Cm,m,m,m
(6) .

The exponentH(4,e) is known perturbatively from Eq.~5.5!,
while H(2) is universal. With the same rationale~Appendix
D! one can evaluateH(8,e).

In Fig. 5 the analytic predictions for the corrections to the
scaling exponents are summarized. In all cases the correc-
tions are negative, i.e., they carry a positive contribution to

r2v . The corrections increase withv, the rate of growth
being slightly slower than theD(2v)}v(v21)D(4)/2 pre-
dicted in @12# for time-correlation-generalized PDE Kraich-
nan models.

Within the range of first order perturbation theory, the
overall effect of time correlation is seen to enhance intermit-
tency. An intuitive understanding of the phenomenon might
be obtained by interpreting the time correlation as a mecha-
nism by which to increase the probability of coherent fluc-
tuations of the scalar field. The latter are rare events felt in
the tail of the probability density of the scalar field as ex-
treme deviations from the Gaussian behavior of the typical
events.

VI. NUMERICAL EXPERIMENTS

Resorting to numerical experiments has a double motiva-
tion. On one hand, they can be used to test the predictions
from the first order perturbation theory. On the other hand,
they provide a broader scenario of the features of the model
beyond the grasp of perturbative approaches. The first task is
far from being easy because a quantitative check of pertur-
bation theory requires measurements of the scaling expo-
nents within an accuracy smaller than 2%.

The main feature of the inertial range is the conservation
of the scalar energy. From the analytical point of view, this is
seen in the noncommutativity of the terms associated with
the multiplicative noise,Bg in Eq. ~2.10!. This property rules
out the use of a simple Euler scheme, which can be applied
in the case of delta-correlated noise. In the case of white
noise advection the multiplicative structure of the noise Eq.
~2.10!, which is interpreted in the Stratonovich sense, can be
mapped into the corresponding Itoˆ equations. The advantage
is that the diagonal nonzero average part of the noise is ex-
plicitly turned into an effective drift term@26#. The nondi-
agonal terms in the Taylor expansion of the scalar fieldQ are
of the order three halves indt, which are neglected in the

FIG. 4. Renormalization constantq(0) is plotted versusj. It
remains close to one through the entire physical range, proving
self-consistent the conjecture of normal scaling for the nondiagonal
sector of the fourth moment. The result stresses that the renormal-
ization of nearest neighbor interactions provides an accurate frame-
work in which to extract the scaling exponent.

FIG. 5. First order correction toH(4) ~continuous line!, H(6)
andH(8) versus the turbulence parameterj. In the last two cases
the corresponding linear systems are solved numerically. In all
cases the corrections are derived by perturbing the white noise clo-
sure renormalization constants. The effect of time correlation is
seen to add a negative correction to the scaling exponents, high-
lighting an increase of intermittency.
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Euler scheme. This procedure becomes meaningless for a
time-correlated noise. There, ordinary calculus holds and in
the Taylor expansion ofQ both diagonal and nondiagonal
products of the noise are of the same order indt. Moreover,
the algorithm to be used must tend smoothly to a white noise
limit, so that the same relative error is preserved indepen-
dently of the value ofe.

Following Burrage and Burrage@27#, a reliable way out of
the stated difficulties is to adopt the Trotter-Lie-Magnus for-
mula to integrate the equations of motion to first order. For
each time incrementdt, Eq. ~2.10! is solved in exponential
form. Fast matrix exponentiation algorithms are provided by
the packageEXPOKIT @28#.

To generate the correlated noise, the exact method de-
scribed by Miguel and Toral@29# is used. This method en-
sures that the noise is accurate down to the limite→0.

The time scale relevant to measuring the convergence of
the solution is the slowest time scale in the system, namely,
the eddy-turnover time of the first shell estimated as the
maximum betweenet1 and t1. As shown in Fig. 6, more
thanNt510 000 eddy-turnover times are needed to achieve a
converged solution for the sixth order structure function. The
time step is set by the fastest time scale in the system, which
is the one with the largest shelletM . The number of itera-
tions (N) needed to achieve convergence is then fore less
than one:

N~ iterations!5
NttM

et1
5

Nt

e
l (M21)(12j/2), ~6.1!

which shows that the number of iterations needed grows like
1/e, making it difficult to get close to the white noise limit
using the same algorithm.

The scaling of the diagonal moments of higher order has
been extracted by means of extended self-similarity@30#,
where thepth order structure function is plotted versus the
second order one, which is assumed to be normal. The scal-
ing is found as the average slope of the logarithmic deriva-
tives in the inertial range.

We considered a system with 25 shells with wave num-
bers increasing as powers ofl52, with viscosity k55

31029. This choice ensures that there are several shells in
the dissipative range. We focused on the results forj equal2

3

~Kolmogorov scaling!.
In Fig. 7, the normalized structure functions^uum

p u&km
H(p)

are shown. The quality of the scaling is demonstrated by the
fact that the moments show scaling over a wide range of
scales.

A summary of the numerical experiments is given in Fig.
8, where the scaling exponents are plotted versus the order of
the moments of the scalar field for different values ofe. It is
evident that the anomaly grows as the time correlation in-
creases.

When turning to the interpretation of the results in more
detail, the uncertainty in the extraction of the scaling has to
be kept in mind. For the sixth moment this uncertainty turned
out to be on the order of 4%. The changes in the scaling
between different values ofe is also on the order of a few
percent. This seems to exclude a proper resolution in the
numerics to compare the results with the analytical predic-
tions from the perturbation analysis. However, the results for
different values ofe can still be compared with some confi-
dence, since the relative uncertainty between the different

FIG. 6. The convergence of the sixth order structure function for
e51. Shown iŝ uum

6 u&(t) for m58. The fast upward changes and
slow downward relaxations reveal the intermittent nature of the
signalum58

6 (t).

FIG. 7. An example of the scaling of the structure functions for
e52.0. The plot shows the structure functions normalized by the
fitted scalingkm

H(p) to make the scaling regime appear as horizontal
lines. The lower line is forp51, and the upper line isp58. Each
line is offset to make it possible to distinguish the lines from each
other.

FIG. 8. Anomalous part of the structure functionsH(p)2p/3 as
a function ofp for e50.01 toe52. The lines correspond to~from
the top!: e50.01, 0.02, 0.10, 0.25, 1.0, and 2.0. The dashed line
corresponds to normal scaling.
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runs is much smaller than the absolute uncertainty. This
means that the slope of, e.g., the sixth order structure func-
tions versuse will be well resolved, while the absolute val-
ues can be shifted up and down a few percent.

In Fig. 9 the analytical prediction of the exponents is
compared with the result of the numerics. The theoretical
prediction for smalle ~see inset of Fig. 9! is below the nu-
merical points, which is due to the absolute uncertainty as
explained above. The slope is the same for the analytical
calculation and the numerics, giving credibility to the results
of the perturbation analysis. It should be noted that the effect
of time correlation on the anomaly is quantitatively quite
small even in the nonperturbative range whene is equal to
one (el254).

The global picture provided by the numerical experiments
is thatH(2v) is seen to be a nonlinear function ofe which,
after rapid initial decrease in the perturbative range, displays
a much slower rate of variation. An interesting question is
whether or not there is a limiting value of the scaling of the
structure function ase@1. However, the quality of the nu-
merics does not allow us to answer this question.

VII. CONCLUSION

We have presented a shell model for the advection of a
passive scalar by a velocity field which is exponentially cor-
related in time. We developed a systematic procedure to cal-
culate the exponents of the correlation of the diagonal mo-
ments ~the structure functions!. For the delta-correlated
velocity we find good agreement between analytical and nu-
merical calculations up to the eighth order. We presented an
analytical perturbative theory to compute the correction to
the scaling exponents due to the exponentially correlated ve-
locity field.

The occurrence of anomalies in the exponents of the di-
agonal moments of the scalar and their nonuniversality ver-
sus the intensityel2 of the time correlation is related to the
presence of pure short range couplings in the corresponding
inertial operator, which provide for nontrivial scaling of the
zero modes. In the absence of such short range couplings, as

is the case for the second moment, normal scaling would
take place independently of the value ofel2.

The behavior of the anomalous exponents in the nonper-
turbative regime was studied numerically. This was found to
be a nonlinear monotonic function ofel2, decreasing at a
rate much slower than in the perturbative regime. It is thus
clear that the addition of the time correlation to the advecting
velocity field enhances the anomalous scaling. The anomaly
found in the present study is still much smaller than that
found when the passive scalar is driven by a turbulent veloc-
ity field driven by Navier-Stokes turbulence or by a shell
model for the velocity field@13#. This indicates that the non-
Gaussian nature of the real turbulent velocity field plays a
significant role in the strong anomalous scaling observed for
real passive scalars.
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APPENDIX A: STOCHASTIC INTEGRATION
BY PARTS FORMULA

A heuristic proof of the stochastic integration by parts
formula is provided. For a rigorous treatment, see@15,16#.
Let z t be a stochastic process whose realizations are defined
as the solution of the Itoˆ stochastic differential equation
~SDE!:

ẋt5b~xt ,t !1s~xt ,t !h t , xtu t505x0 , ~A1!

where h t is white noise. Letz t
e be the stochastic process

specified by

ẋt5b~xt ,t !1eh~xt ,t !s~xt ,t !1s~xt ,t !h t xtu t505x0 .
~A2!

For equale the two SDE’s coalesce: Eq.~A2! can be derived
from Eq. ~A1! under the variation of the white noiseh t
→h t1h(xt ,t). The integration by parts formula states that
for any smooth functionalf the following identity holds:

K d

de
f ~z t

e!L
z

t
eU

e50

5K f ~z t!E
0

t

ds h~zs ,s!L
z t

, ~A3!

where^ &z t
denotes the expectation values with respect to the

measure induced byz t . In order to prove it, let us observe
that the transition probability density for Eq.~A2! can be
written formally as a path integral~Itô discretization!:

FIG. 9. Scaling of the sixth order structure function versusel2.
The inset shows an enlargement of the perturbative rangeel2!1
where the analytical prediction from first order perturbation theory
can be compared with the numerical experiments.

6674 PRE 60K. H. ANDERSEN AND P. MURATORE-GINANNESCHI



phe~x,tux0,0!5E
x0

xt5x

Dx e2Sz(x,tux0,0)1 E0
t dt8$[ ẋt82b(xt8)/s(xt8 ,t8)] eh(xt8 ,t8)2(e2/2)h2(xt8 ,t8)%,

~A4!

Sz~x,tux0,0!5E
0

tdt8

2 F ẋt82b~xt8!

s~xt8 ,t8!
G 2

.

If one introduces the functional

M ~z t
e!5e2*0

t dt8$[ ẋt82b(xt8 ,t8)/s(xt8 ,t8)] eh(xt8 ,t8)2(e2/2)h2(xt8 ,t8)%,
~A5!

one has by construction

d

de
^M ~z t

e! f ~z t
e!&z

t
e50. ~A6!

To each realization of the solutions of Eq.~A2! there is a
corresponding mappingh t→xt5x(t,h t ,e). Hence the last
equality can be rewritten as the white noise average:

d

de
^M „x~ t,h t ,e!…f „x~ t,h t ,e!…&h t

50, ~A7!

which implies Eq.~A3! whene is set to zero. The derivative

d

de
f ~z t

e!ue505Dz t]z t
f ~z t! ~A8!

is a Fréchet derivative. The dynamics of the stochastic pro-
cessDz t is linear once the realizationsxt of z t are known:

yt[Dxt

~A9!

ẏt5yt]xt
@b~xt ,t !1s~xt ,t !h t#1h~xt ,t !s~xt ,t !.

It is worth noting that forb50, s5h51, the integration by
parts formula~A3! reduces to

t^]wt
f ~wt!&5^ f ~wt!wt&, ~A10!

which is the Gaussian integration by parts formula~see, e.g.,
@1#! applied to the Wiener processN(0,t).

The generalization to a multidimensional complex case
proceeds straightforwardly by introducing 2N variational pa-
rameters$e i ,e i* % i 51

2N and applying the definitions

^hm~ t !hn* ~s!&52dmnd~ t2s! ~A11!

for the white noise correlations.

APPENDIX B: STOCHASTIC INTEGRATION BY PARTS
FOR THE OU PROCESS

As in the above appendix, we limit ourselves to the real
case, the generalization to the complex case being straight-

forward. Functional differentiation is formally derived from
a Fréchet derivative withh(xt ,t)5d(t2s), wheres is a pa-
rameter specifying the time when the white noise is per-
turbed. The variation is assumed to be nonanticipating
~causal!:

lim
s↑t
E

0

t

ds8d~s2s8!50. ~B1!

Let us consider the system of SDE’s

ẋm5bm~x!1 (
n51

2

sm,n~x!cn~ t !, ~B2!

wherec is the colored noise:

cn~ t !5E
0

t

ds8
e2(t2s8)/(etn)

eAtn

hn~s8!. ~B3!

Functional differentiation gives

d

dt
~Dl

sxm!5 (
k51

N

Dl
sxkF ]kbm~x!

1]k(
n51

N

sm,n~x!E
0

t

ds8
e2(t2s8)/(etn)

eAtn

hn~s8!G
1

e2(t2s)/(et l )

eAt l

sm,l~x!. ~B4!

The functional derivative is fully specified when its form is
known at the times when the variation of the white noise
occurs. The latter is determined by the causality requirement

d

dt
„Dl

scn~ t !…5F ] t

e2(t2s)/(etn)

eAtn

1
1

eAtn

d~ t2s!Gdn,l ,

~B5!

which implies that the variation of the colored noise is non-
zeroonly immediately after the instantaneous kick

Dl
scn~ t !5

e2(t2s)/(etn)

eAtn

dn,l , ;t>s. ~B6!

By differentiating~B4! one finds
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d2

dt2
~Dl

sxm!5
e2(t2s)/(et l )

eAt l

sm,l~x!d~ t2s!1smooth terms.

~B7!

From the last equation it emerges that fort5s

d

dt
~Dl

sxm!u t5s5
1

eAtn

sm,l~x!. ~B8!

Consistency with Eq.~B4! then requires that the variation of
the x’s associated with a nonanticipating variation of the
white noise at times fulfills the initial condition

Dl
sxm~s!u t5s50. ~B9!

The integration by parts formula~A3! for a smooth func-
tional O(x) is

^O~xt!cn~ t !&5E
0

t

ds8
e2(t2s8)/(etn)

eAtn
(
l 51

N

^Ds8xl]xl
O~xt!&.

~B10!

The variation is the solution of the linear problem~B4! of
which we defineR to be the fundamental solution. It follows
that

^O~xt!cn~ t !&5E
0

t

ds
e2(t2s)/(etn)

e E
s

t

ds8
e2(s82s)/(etn)

e

3(
l 51

N

(
m51

N

^@]xl
O~xt!#Rl ,m~ t,s8!sm,n~xs8!&.

~B11!

Finally, inverting the order of integration one obtains

^O~xt!cn~ t !&5E
0

t

ds8
e2(t2s8)/(etn)2e2(t1s8)/(etn)

2e

3(
l 51

N

(
m51

N

^@]xl
O~xt!#Rl ,m~ t,s8!sm,n~xs8!&.

~B12!

This proves the real version of formula~3.1!.

APPENDIX C: THE FOURTH ORDER CORRELATION
TO FIRST ORDER

The inertial operator acting on the fourth momentCm,n
(4) (t)

is in the large time limit

F rhs5I m,n;p,q
(4,0) Cp,q

(4)

22km11
2 dmE

0

t

ds e2(t2s)/(etm)
d

ds
ReFm,n

(4) ~ t,s!

1km
2 dm21E

0

t

ds e2(t2s)/(etm21)
d

ds
ReFm21,n

(4) ~ t,s!

2kn11
2 dnE

0

t

ds e2(t2s)/(etn)
d

ds
ReFn,m

(4) ~ t,s!

1kn
2dn21E

0

t

ds e2(t2s)/(etn21)
d

ds
ReFn21,m

(4) ~ t,s!.

~C1!

The bidimensional matrixI m,n;p,q
(4,0) is the white noise linear

inertial operator. The corrections to the white noise theory
are generated by the time derivative at equal times of the
integrand function ReFn,m

(4) :

Fm,n
(4) ~ t,s!5̇^QN1m~ t !QN1n~ t !Qn~ t !RN1m11,N1m~ t,s!Qm11~s!#&

2^QN1m~ t !QN1n~ t !Qn~ t !RN1m11,N1m11~ t,s!Qm~s!#&

1^QN1m11~ t !QN1n~ t !Qn~ t !RN1m,N1m~ t,s!Qm11~s!#&

2^QN1m11~ t !QN1n~ t !Qn~ t !RN1m,N1m11~ t,s!Qm~s!#&

1^QN1m~ t !QN1m11~ t !QN1n~ t !Rn,N1m~ t,s!Qm11~s!#&

2^QN1m~ t !QN1m11~ t !QN1n~ t !Rn,N1m11~ t,s!Qm~s!#&

1^QN1m~ t !QN1m11~ t !Qn~ t !RN1n,N1m~ t,s!Qm11~s!#&

2^QN1m~ t !QN1m11~ t !Qn~ t !RN1n,N1m11~ t,s!Qm~s!#&. ~C2!

After a double integration by parts neglecting viscous contributions, one gets into
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(
p,q

~ I m,n;p,q
(4;0) 1eI m,n;p,q

(4;1) !

2
Cq,p

(4)

5S 2
l2

t211m
2

l2

tm
2

l2

tn
2

l2

t211n
1

7el4

t211m
1

7el4

tm
1

7el4

t211n
1

7el4

tn
DCm,n

(4)

1S l2

tm
2

el4

t11m
2

2el4

t211n
2

2el4

tn
2

7el4

tm
DCm11,n

(4) 1S l2

tn
2

el4

t11n
2

2el4

t211m
2

2el4

tm
2

7el4

tn
DCm,n11

(4)

1S l2

t211m
2

el4

t221m
2

2el4

t211n
2

2el4

tn
2

7el4

t211m
DCm21,n

(4) 1S l2

t211n
2

el4

t221n
2

2el4

t211m
2

2el4

tm
2

7el4

t211n
DCm,n21

(4)

1S 2el4

tm
1

2el4

tn
DCm11,n11

(4) 1S 2el4

t211m
1

2el4

t211n
DCm21,n21

(4) 1S 2el4

tm
1

2el4

t211n
DCm11,n21

(4)

1S 2el4

t211m
1

2el4

tn
DCm21,n11

(4) 1
el4

t221m
Cm22,n

(4) 1
el4

t11m
Cm12,n

(4) 1
el4

t221n
Cm,n22

(4) 1
el4

t11n
Cm,n12

(4)

1dn,mF S 2l2

tm
2

2el4

t11m
2

4el4

t211m
2

34el4

tm
DCm11,m

(4) 1S 2l2

t211m
2

2el4

t221m
2

4el4

tm
2

34el4

t211m
DCm,m21

(4)

1S 4el4

t211m
1

4el4

tm
DCm,m

(4) 1S 4el4

t211m
1

4el4

tm
DCm11,m21

(4) 1
4el4

tm
Cm11,m11

(4) 1
4el4

t211m
Cm21,m21

(4) 1
2el4

t11m
Cm12,m

(4)

1
2el4

t221m
Cm,m22

(4) G1dn,m11F S 2
2l2

tm
1

3el4

t211m
1

3el4

t11m
1

34el4

tm
DCm11,m

(4) 2
4el4

tm
Cm,m

(4) 1S 3el4

t211m
1

el4

tm
DCm,m21

(4)

2S 3el4

t211m
1

el4

tm
DCm11,m21

(4) 2
4el4

tm
Cm11,m11

(4) 1S el4

tm
1

3el4

t11m
DCm12,m11

(4) 2S el4

tm
1

3el4

t11m
DCm12,m

(4) G
1dn,m21F S 2

2l2

t211m
1

3el4

t221m
1

3el4

tm
1

34el4

t211m
DCm,m21

(4) 2
4el4

t211m
Cm,m

(4) 1S el4

t211m
1

3el4

tm
DCm11,m

(4)

2S el4

t211m
1

3el4

tm
DCm11,m21

(4) 2
4el4

t211m
Cm21,m21

(4) 1S 3el4

t221m
1

el4

t211m
DCm21,m22

(4) 2S 3el4

t221m
1

el4

t211m
DCm,m22

(4) G
1dn,m12F S 2

3el4

tm
2

el4

t11m
DCm11,m

(4) S 2
el4

tm
2

3el4

t11m
DCm12,m11

(4) 1S el4

tm
1

el4

t11m
DCm12,m

(4) G
1dn,m22F S 2

el4

t221m
2

3el4

t211m
DCm,m21

(4) 1S 2
3el4

t221m
2

el4

t211m
DCm21,m22

(4) 1S el4

t221m
1

el4

t211m
DCm,m22

(4) G . ~C3!

The diagonal scaling exponent is derived up to first order ine resorting to linear perturbation theory. If pure second neighbor
interactions are taken into account, the constantq(0) is specified by

q~0!5
12~11l22H(2)1l2H(2)!z~0!

z~0!1z~0!2l23H(2)
. ~C4!

The result is approximately equal to one for allj ranging between@0,2#. The first order correctionz8(0) is extracted from the
solution of the linear system:

„4l21H(2)14l2z~0!…x8~0!14l2x~0!z8~0!

524l412H(2)x~0!14l42H(2)x~0!z~0!14l212[12H(2)]x~0!z~0!2

12l4
„924x~0! 1@4222x~0!#z~0!…12l41H(2)

„41@9224x~0!#24x~0!z~0!…,
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@l2~232l2H(2)2lH(2)!z~0!1l222H(2)z~0!2#x8~0!1@l21~232l2H(2)2lH(2)!x~0!l212l222H(2)x~0!z~0!#z8~0!

5213l423l41H(2)13l41H(2)~21l2H(2)!x~0!213l4z~0!23l42H(2)z~0!

1l4
„4222l22H(2)17l2H(2)19lH(2)1q~0!…x~0!z~0!

1l4x~0!z~0!2@1210l22H(2)1„2112q~0!…l23H(2)1„312q~0!…l2H(2)#

1l424H(2)q~0!x~0!z~0!3,

l22H(2)x~0!@122z~0!„12q~0!13l22H(2)q~0!z~0!1l22H(2)1l2H(2)
…#z8~0!

1l22H(2)z~0!@12z~0!„11l22H(2)1l2H(2)2q~0!

1l22H(2)q~0!z~0!…#x8~0!1l22H(2)z~0!2@x~0!1l22H(2)x~0!z~0!#q8~0!

52l41H(2)~211l23H(2)24l22H(2)22l2H(2)!x~0!z~0!1l42H(2)z~0!216l212(12H(2))x~0!z~0!2

22l424H(2)q~0!x~0!z~0!22l4
„11q~0!…x~0!z~0!22l423H(2)

„2712q~0!…x~0!z~0!2

1l42H(2)
„227q~0!1q~0!3

…x~0!z~0!212l42H(2)~11l22H(2)!x~0!z~0!3

2l42H(2)
„21l24H(2)17l3H(2)1l412l4~11l2H(2)!z~0!12lH(2)

…q~0!x~0!z~0!3

12l422H(2)~11l23H(2)!q~0!3x~0!z~0!31l426H(2)q~0!3x~0!z~0!4. ~C5!

APPENDIX D: THE INERTIAL OPERATOR FOR THE SIXTH MOMENT OF THE CORRELATION
UP TO FIRST ORDER

Under the hypothesis that pure second neighbor interactions do not require new equations to specify the diagonal scaling for
small values ofe, there are only four equations describing how global coupling is renormalized by relevant pure short range
interactions. Given themth shell, one has
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(6)

1
el4

t11m
C211m,211m,21m

(6) 1S 8el4

t221m
1

8el4

tm
DC221m,211m,11m

(6) 1
8el4

t221m
C221m,221m,m

(6) 1
4el4

t231m
C231m,211m,m

(6) ,

(
p.q,r

@ I m,m11,m21;p,q,r
(6;0) 1eI m,m11,m21;p,q,r

(6;1) #Cp,q,r
(6)

5S 2el4

t211m
1

2el4

tm
DCm,m,m

(6) 1S l2

t211m
2

2el4

t11m
2

12el4

tm
2

22el4

t211m
DCm,m,11m

(6)

1S l2

tm
2

2el4

t221m
2

12el4

t211m
2

22el4

tm
DCm,m,211m

(6) 1S 3el4

t211m
1

6el4

tm
DC11m,11m,m

(6)

1S 3el4

tm
1

6el4

t211m
DC211m,211m,m

(6) 2S l2

t221m
1

l2

t11m
1

4l2

t211m
1

4l2

tm
2

18el4

t221m
2

18el4

t11m
2

84el4

t211m
2

84el4

tm
DC211m,m,11m

(6)

1S l2

tm
2

2el4

t221m
2

3el4

t211m
2

3el4

t11m
2

20el4

tm
DC11m,11m,211m

(6)

1S l2

t211m
2

2el4

t11m
2

3el4

t221m
2

3el4

tm
2

20el4

t211m
DC211m,211m,11m

(6)

1S 3el4

tm
1

6el4

t11m
DC211m,11m,21m

(6) 1S 3el4

t211m
1

6el4

t221m
DC221m,211m,11m

(6)

1S 2el4

t211m
1

2el4

t11m
DC211m,211m,21m

(6) 1S 2el4

t211m
1

2el4

t11m
DCm,m,21m

(6) 1S 2el4

t221m
1

2el4

tm
DCm,m,221m

(6)

1S 2el4

t221m
1

2el4

tm
DC11m,11m,221m

(6) 1S l2

t221m
2

el4

t231m
2

2el4

t11m
2

3el4

t211m
2

8el4

tm
2

18el4

t221m
DC221m,m,11m

(6)

1S l2

t11m
2

el4

t21m
2

2el4

t221m
2

3el4

tm
2

8el4

t211m
2

18el4

t11m
DC211m,m,21m

(6) 1S 2el4

t221m
1

2el4

t11m
DC221m,m,21m

(6)

1
el4

t21m
C211m,m,31m

(6) 1
el4

t231m
C231m,m,11m

(6) . ~D1!
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APPENDIX E: THE INERTIAL OPERATOR FOR THE EIGHTH MOMENT OF THE CORRELATION
UP TO FIRST ORDER

The set of independent equations is finally given as

(
p,q,r ,s

@ I m,m,m,m;p,q,r ,s
(8;0) 1eI m,m,m,m;p,q,r ,s

(8;1) #Cp,q,r ,s
(8) 50,

(
p,q,r ,s

@ I m,m,m,m21;p,q,r ,s
(8,0) 1eI m,m,m,m21;p,q,r ,s

(8;1) #Cp,q,r ,s
(8) 50,

(
p,q,r ,s

@ I m,m,m21,m21;p,q,r ,s
(8,0) 1eI m,m,m21,m21;p,q,r ,s

(8;1) #Cp,q,r ,s
(8) 50,

(
p,q,r ,s

@ I m,m,m11,m21;p,q,r ,s
(8,0) 1eI m,m,m11,m21;p,q,r ,s

(8;1) #Cp,q,r ,s
(8) 50,

~E1!

(
p,q,r ,s

@ I m,m21,m21,m21;p,q,r ,s
(8,0) 1eI m,m21,m21,m21;p,q,r ,s

(8;1) #Cp,q,r ,s
(8) 50,

(
p,q,r ,s

@ I m,m11,m21,m21;p,q,r ,s
(8,0) 1eI m,m11,m21,m21;p,q,r ,s

(8;1) #Cp,q,r ,s
(8) 50,

(
p,q,r ,s

@ I m,m11,m11,m21;p,q,r ,s
(8,0) 1eI m,m11,m11,m21;p,q,r ,s

(8;1) #Cp,q,r ,s
(8) 50,

(
p,q,r ,s

@ I m,m11,m21,m22;p,q,r ,s
(8,0) 1eI m,m11,m21,m22;p,q,r ,s

(8;1) #Cp,q,r ,s
(8) 50.

The closure is provided again assuming scaling for all the possible conditioned expectation values with respect to a given shell.
It follows that

Cm1n,m1n,m1n,m1n
(8) 5z~e!2 lCm,m,m,m

(8) ,

Cm1n,m1n,m1n,m
(8) 5y1~e!kn21

2H(6,e)Cm,m,m,m
(8) ,

Cm1n,m1n,m,m
(8) 5y2~e!kn21

2H(4,e)Cm,m,m,m
(8) ,

Cm1n,m,m,m
(8) 5y3~e!kn21

2H(2)Cm,m,m,m
(8) ,

Cm1n1p,m1n,m,m
(8) 5y4~e!kp21

2H(2)kn21
2H(4,e)Cm,m,m,m

(8) ,
~E2!

Cm1n1p,m1n,m1n,m
(8) 5y5~e!kp21

2H(2)kn21
2H(6,e)Cm,m,m,m

(8) ,

Cm1n1p,m1n1p,m1n,m
(8) 5y6~e!kp21

2H(4,e)kn21
2H(6,e)Cm,m,m,m

(8) ,

Cm1n1p1q,m1n1p,m1n,m
(8) 5y7~e!kq21

2H(2)kp21
2H(4,e)kn21

2H(6,e)Cm,m,m,m
(8) .
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