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The plasma resonance is described theoretically by the inductive coupling model for a large stacked
Josephson-junction system such as the intrinsic Josephson-junction array in anisotropic high-Tc superconduct-
ors. Eigenmodes of the plasma oscillation are analytically described and a numerical example for the large
stack caseN550 is given. The scaling length characteristic of each mode is discussed. Numerical results for
the plasma resonance forN550 in the presence of an external rf drive with wave numberk are given. Fork
different from zero possible resonance modes among the eigen oscillation modes are shown, and it is further
demonstrated that fork50 the resonance takes place as a collection ofN independent resonant Josephson
junctions. Some guidelines for possible experiments are shown. It is also shown that very recent microwave
experiments for the plasma resonance can be explained by this theory based on the inductive coupling, and
collective longitudinal plasma oscillations are discussed.@S0163-1829~99!06637-0#

I. INTRODUCTION

There has recently been considerable interest in stacked
Josephson junctions. For the case of low-Tc superconduct-
ors, the stacks can be formed, for example, by layers of
(Nb/AlOx /)nNb.1 For anisotropic layered high-Tc supercon-
ductors such as Bi2Sr2CaCu2Ox ~BSCCO! and
Tl2Ba2Ca2Cu3Ox ~TBCCO! it has been demonstrated that the
crystal itself shows the features of stacked Josephson junc-
tions, in this case often referred to as intrinsic Josephson-
junction stacks.2

An interesting case occurs when the thicknesst of the
superconducting~S! layer is comparable to or less than the
magnetic penetration depthlL , of theS layer. In such cases
strong inductive coupling3,4 can be expected among the Jo-
sephson junctions making the stack. In the case of a
(Nb/AlOx /)nNb stack,lL is about 90 nm, and thus the con-
dition of t,lL can be realized easily.5 For the case of
BSCCO intrinsic Josephson-junction stacks,lL is of the or-
der of 100 nm whilet is about 0.3 nm, i.e., only a few atomic
layers thick.2 Since t!lL , the inductive coupling is ex-
tremely strong.

Some major important phenomena of this system are the
Josephson plasma resonances,6–8 and the flux flow or fluxon
dynamics5,9 that can be described by the inductive coupling
mechanism. As for the plasma resonance, we have recently
presented the analytical formalism and shown some selected
results, in particular for the case where the stack numberN is
small.10

In this paper, we theoretically describe the plasma reso-
nance for the case of largeN(@1) in order to focus on the
correct understanding of the plasma oscillation in anisotropic
high-Tc superconductors. Since the formalism is general, the
theory can be used also for low-Tc stacked Josephson junc-
tions. In Sec. II, the stacked junction system is described by
the inductive coupling model by introducing a compact

vector-matrix formalism. The description follows the previ-
ously published theory with respect to the inductive coupling
model,3 except that a more general expression for the exter-
nal current bias terms is introduced. Next, the analytic form
for plasma oscillations is presented, also using the compact
vector-matrix notation and the results for some special cases
are discussed. In Sec. III, eigenmodes of the plasma oscilla-
tion are analytically described and a numerical example for
the large stack caseN550 is given. The scaling length char-
acteristic of each mode is discussed. In Sec. IV, numerical
results of the plasma resonance forN550, in the presence of
an external rf drive with wave numberk are given. Fork
different from zero possible resonance modes among the
eigen oscillation modes are shown, and it is further demon-
strated that fork50 the resonance takes place as a collection
of N independent resonant Josephson junctions. In Sec. V we
first show some guidelines for possible experiments, and also
discuss collective longitudinal plasma oscillations. Such os-
cillations have been discussed by several authors in the
framework of the charge coupling mechanism.11–13

II. THEORETICAL MODEL

A. System description

We first review briefly the theory of superconducting mul-
tilayers ~stacked Josephson junctions! by Sakai, Bodin, and
Pedersen,3 based on inductive coupling through the super-
conducting layers. For convenience here the results are given
in a compact vector-matrix form and by using parameters of
the single barrier Josephson junction such as the Josephson
penetration length, the plasma frequency, and the quasiparti-
cle loss parameters. By using these parameters the plasma
resonance phenomena characteristic of stacked Josephson
junctions can be understood more easily. Although the analy-
sis in the later sections is based on the assumption of iden-
tical layers and junctions, the formalism for general cases is
presented here, because it will be valuable not only for a
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system having parameter fluctuations but also for intrinsic
Josephson junctions modulated by advanced atomic-layer
control technology.

The system ofN-stacked Josephson junction~schemati-
cally shown in Fig. 1! can be expressed as3

LJ
2 ]2fY

]x2 5D~QY 2J21IYB!, ~1!

wherefY , QY , and IYB are the column vectors whosei th com-
ponents are the phase differencef i i 21 , dimensionless junc-
tion currentQii 21 , and the bias currentI B,i i 21 , of the i th
Josephson junction, respectively:Qii 21 is the sum of the
supercurrent, displacement current, and quasiparticle tunnel
current.

Qii 215
1

v i i 21
2

]2f i i 21

]t2 1
a i i 21

v i i 21

]f i i 21

]t
1sinf i i 21 . ~2!

v i i 215(2eJii 21 /\Cii 21)1/2 is the i th junction maximum
plasma frequency, the meaning of which will be discussed
later, and a i i 215(\/2eJii 21Cii 21)1/2Gii 21 is the well-
known dimensionless loss parameter, whereCii 21 , Gii 21 ,
and Jii 21 are the capacitance, quasiparticle tunnel conduc-
tance, and the maximum supercurrent of thei th junction,
respectively.

The bias currentI B,i i 21 can be a function ofx and t. The
simplest case ofI B,105I B,215¯5I B,NN21(5I B) corre-
sponds to the bias currentI B entering from the top (Nth)
superconducting layer and leaving through the bottom~0th!
layer. In this paper we will hereafter assume this simplest
case.

D is a tridiagonal matrix including the inductive coupling
mechanism. The nonzero elements are the unity diagonal el-
ements (Dii 51) and the nearest-neighbor elements
(Dii 61[)Sii 61 that express the coupling strength:

Sii 215
si 21

dii 218
•

Ji 21i 22

Jii 21

Sii 115
si

dii 218
•

Ji 11i

Jii 21

, ~3!

where

dii 218 5dii 211l i 21 cothS t i 21

l i 21
D1l i cothS t i

l i
D , ~4a!

si52
l i

sinhS t i

l i
D . ~4b!

As shown in Fig. 1~b!, dii 21 is the insulating layer thickness
of the i th junction, andt i andl i are the thickness and mag-
netic penetration length of thei th superconducting layer.LJ
and J are the diagonal matrices whosei th element are the
so-called Josephson penetration length,l i i 21

5(\/2em0dii 218 Jii 21)1/2, and the maximum supercurrent
Jii 21 of the i th junction, respectively. Note the difference
betweenl i i 21 andl i . The former is the Josephson penetra-
tion length of thei th junction, and the latter is the London
penetration depth of thei th superconducting layer. Using this
vector-matrix notation the boundary conditions at both edges
(x50,L) in a uniform magnetic fieldHa along they direc-
tion are

F ]fY

]x
G

x50,L

52LJ
22DJ21IYHa , ~5!

where IY is the column vector, all elements of which are
unity.

Two special cases of the system described by Eq.~1! are:
~i! The case where the inductive coupling is zero, i.e.,si

50 in Eq. ~4b!. Then the coupling matrixD becomes the
diagonal unit matrix. The whole matrix in Eq.~1! becomes
diagonal, and the system is simply the collection of
N-independent Josephson junctions,

l i i 21
2 ]2f i i 21

]x2 5
1

v i i 21
2

]2f i i 21

]t2 1
a i i 21

v i i 21

]f i i 21

]t

1sinf i i 212
I B

Jii 21
, ~6!

for i 51,2, . . . ,N. Thus in this casev i i 21 is, in an exact
sense, the plasma frequency of thei th junction, and the Jo-
sephson penetration lengthl i i 21 defines the length scale of
the i th junction.

FIG. 1. ~a! Schematic picture of a verticallyN-stacked Joseph-
son junction.~b! Enlarged diagram showing the parameter notation
for convenience.~c! A stacked junction system with a bias current
set.
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~ii ! The case wherefY is uniform in thex direction. Since
the left-hand side of Eq.~1! is zero, it is evident that the
system equations are decomposed toN independent
Josephson-junction equations, in spite of the presence of the
nonzerosi terms,

1

v i i 21
2

]2f i i 21

]t2 1
a i ,i 21

v i i 21

]f

]t
1sinf i i 212

I B

Jii 21
50, ~7!

for i 51,2, . . . ,N. This means that the inductive coupling
takes place through the term]2f/]x2 as was also discussed
in Ref. 10.

B. Analytic form for plasma oscillations

The plasma oscillation analysis follows the small signal
expansion,10,14 and the bias currentI B5I dc1I rf cos(kx2vt)
is assumed withuI rfu!Jii 21 for any i. I dc is set to be smaller
than the smallestJii 21 in N junctions. Correspondingly,fY

has two terms fY 5fY (0)1fY (1) with f i i 21
(0)

5arcsin(Idc/Jii 21). For mathematical convenience,
I rf cos(kx2vt) is replaced with (I rf/2)exp@ j(kx2vt)#, where
j 2521. The real physical quantity can then be obtained as a
sum of the solutions for this case and its complex-conjugate
case. Then the solution of the time-dependent small-signal
termf (1) has the formfY (1)5AY exp@ j(kx2vt)#, andAY can be
obtained by solving

$k2LJ
22DP~v!%AY 5DJ21IY

I rf

2
. ~8!

HereP(v) is a diagonal matrix, where thei th diagonal ele-
mentPii 21 is expressed as

Pii 215S v

v i i 21
D 2

2cosf i i 21
~0! 1 j a i i 21S v

v i i 21
D . ~9!

Let us here confirm that Eq.~8! also has the same properties
as those discussed in Sec. II A.

~i! In the case that the inductive coupling is zero,D be-
comes diagonal. All matrices are diagonal and thus we ob-
tain the uncoupled solutions,Aii 215I rf /$2(k2l i i 21

2

2Pii 21)Jii 21%, for i 51,2, . . . ,N. This means that the
plasma resonance for thei th junction takes place ifk andv
of the external rf bias term exist on the plasma dispersion
curve, (kl i i 21)25(v/v i i 21)22cosf(0).

~ii ! In the case that the rf bias term is uniform alongx, i.e.,
k50, the coupling matrixD can be eliminated from both the
left- and right-hand side of Eq.~8!, and we obtainN un-
coupled solutions,Aii 2152I rf /(2Pii 21Jii 21). This means
that if the rf frequencyv coincides with thei th junction
plasma frequencyv i i 21•(cosfii21

(0) )1/2, the resonance ap-
pears by the inductive coupling mechanism even in the case
when excited uniformly alongx.

Furthermore, it should be remarked that if there is no
external rf bias,I rf50, Eq. ~8! defines the eigen oscillation
modes of the system by solving

det$k2LJ
22DP~v!%50. ~10!

In the final part of this section we give an explicit form in
the case where all junctions and layers are identical. Then

unnecessary subscripts can be dropped, e.g.,S[Sii 61
5s/d8, J[Jii 21 , andP[Pii 21 , and new notations are de-
fined aslJ[l i i 21 . In that case Eq.~8! becomes

S k2lJ
22P 2SP 0 ¯

2SP k2lJ
22P � �

0 � �

] �

D S A10

A21

]

]

D
5

I rf

2J S 11S
112S

]

]

D . ~11!

III. ANALYSIS OF EIGEN OSCILLATION MODES

In this and the next section, the case where the stack has
all identical layers and junctions will be treated. The eigen-
modes of the system is obtained by solving Eq.~11! with the
right-hand side equal to zero, and neglecting the loss terms.

The results show that anN junction stack hasN eigen-
modes. For themth mode, thek-v plasma dispersion rela-
tion becomes

S v

vp
D 2

511@klm
~N!#2, ~12!

wherevp5vpoAcosf(0) with vpo5(2eJ/\C)1/2, and

lm
~N!5

lJ

Acosf~0!
•F122ScosS mp

N11D G21/2

. ~13!

The asymptotic velocitycm
(N) when v@vp ~and alsoklm

(N)

@1) is cm
(N)5vplm

(N) . The corresponding eigen vector of the
mth mode is given by

Aii 21
m 5A 1

N11
sinF i ~N112m!p

N11 G , for i 51,2, . . . ,N.

~14!

Equation~12! means that ifv andk in the mth mode are
normalized tovp and (lm

(N))21, all plasma dispersion curves
for m51,2, . . . ,N are identical. It also means that a good
scaling factor ofk in the mth mode islm

(N) , in other words,
the spatial scaling factor alongx depends on the mode ex-
cited.

By recalling the definition ofS (S,0), we find, from Eq.
~13!, lm

(N)>lJ /Acosf(0) for m>(N11)/2, and lm
(N)

,lJ /Acosf(0) for m,(N11)/2. In particular, in the limit
of N@1

lN
~N!

l1
~N!J 5

lJ

Acosf~0!
•

1

A162S
. ~15!

Furthermore, if we consider the limit oft/lL!1 wherelL
5l i for i 51,2, . . . ,N, then we get

lN
~N!5S \

2em0~d1t !J cosf~0!D 1/2

~16a!
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and

l1
~N!5S \

2em0J cosf~0!~2lL! D
1/2S t

2lL
D 1/2

~16b!

with cN
(N)5@m0C(d1t)#21/2. Note thatd1t in Eq. ~16! is

the interlayer spacing, and in this limitlN
(N)[lc wherelc is

the characteristic distance often used in the literature.11,12

The plasma dispersion relation@Eq. ~12!# is expressed, using
this scaling lengthlc , as

S v

vP
D 2

511S lm
~N!

lN
~N!D 2

~klc!
2. ~17!

Note that theNth mode in anN stack is always an all in-
phase mode and theN51 mode is always an antiphase
mode, i.e., a mode where the ac phase polarity is always
opposite between any neighboring two junctions. This is evi-
dent by insertingm5N and m51 into Eq. ~14!. Thus the
relevant scaling length of all in-phase modes islN

(N)(5lc)
and that of the antiphase mode isl1

(N) .
Using typical parameters for Bi2Sr2CaCu2Ox intrinsic Jo-

sephson junctions,d51.2 nm, t50.3 nm, lL5200 nm, we
have 112S54.531026 and the plasma dispersion curves
for the caseN550 are shown in Fig. 2~a!, where the scaling
length for the all in-phase modelc is used@see Eq.~17!#. At
a givenk, Fig. 2~a! predicts the possibility of not only the
plasma resonance at the in-phase mode (m550) but also
may other resonance fromm51 – 49. Most of the curves in
Fig. 2~a!, typically from m51 – 40, are condensed into one
zone wherev is rather independent ofklc . In other words,
under the scaling lengthlc , the plasma frequency of these
curves are very insensitive to the variation ofk.

It should be pointed out that the curves not belonging to
the above-mentioned zone~typically from m545– 49) are
independent ofN in the limit of N@1 and in the very strong
coupling limit, meaning thatuSu is less than but very close to
0.5. In such case, and whenm5N, or m is very close toN
but less thanN,

lm
~N!

lN
~N! 5

cm
~N!

cN
~N! 5

1

N112m
. ~18!

In this limit, lN
(N) andcN

(N) themselves, as shown in Eq.~16!,
are independent ofN, and the ratio in Eq.~18! does not
depend onN. That islm

(N)/lN
(N)5cm

(N)/cN
(N)5 1

2 , 1
3 , 1

4 , . . . for
m5N21,N22,N23, . . . , respectively.

IV. PLASMA RESONANCE ANALYSIS

The plasma resonance for largeN cases is discussed by
solving Eq. ~11!. Figure 2~b! shows the frequency depen-
dence of the resonance intensity forN550 and k5

0.2•Acosf(0)/lJ . We assume the loss parameter
a/Acosf(0)50.01. The voltage appearing per junction in the
plasma analysis is smaller than the voltage jump~20–30
mV! per junction, and thus the chosen value of the loss pa-
rameter is not unrealistic from the estimation of conduc-
tances in such cases for BSCCO intrinsic Josephson
junction.15 The resonance intensity is evaluated by
( i uAii 21u/N.

In Fig. 2~b!, we find a lot of resonance peaks as predicted
in the previous section. The peak with the largest frequency
corresponds to the all in-phase mode (m550). The second
and third largest resonance frequencies are almost1

3 and 1
5

times as large as the largest one, respectively. As is evident
from Eq. ~18!, the resonance at these frequencies corre-
sponds to the modes atm548 and 46.

We find that every second mode obtained by countingm
downwards from the all in-phase mode (m5N) gives a reso-
nance. This confirms the discussion in Ref. 10. The reason
for this rule may be understood from the relationship be-
tween the form of the solution and the bias configuration. Let
us, for example, see the solutions of the top and bottom
junctions for them mode. From Eq.~14! we haveANN21

m

56A10
m where ‘‘1’’ and ‘‘ 2’’ should be chosen when (N

2m) is the even or odd, respectively.ANN21
m 5A10

m is a reso-
nance case because it fits to the configuration of the external
rf bias.

Figure 2~c! shows the result fork50. The same param-

FIG. 2. ~a! Plasma dispersion relation curves forN550. Used
parameters ared51.2 nm, t50.3 nm, andlL5200 nm. lc is the
scaling length of the all in-phase modem5N. ~b! and ~c! Fre-
quency dependence of the resonance intensities at~b! k5

0.2•Acosf(0)/lJ and ~c! k50. a/Acosf(0)50.01 is assumed. The
resonance intensity was evaluated by( i uAii 21u/N.
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eters as in the case of Fig. 2~b!, except fork50, were used.
We find only one peak atv5vp which may be understood
from the plasma dispersion curve of Fig. 2~a!. k50 means
that the oscillation is uniform along thex direction. Accord-
ing to the inductive coupling model, the coupling takes place
through the term]2f/]x2; in this case, withk50, the sec-
ond derivative vanishes and the plasma oscillation takes
place independently in each junction. Note, however, that
Fig. 2~c! is the result of summing the same plasma oscilla-
tion of all junctions. This is not any evidence of phase co-
herent motion but is a simple mathematical trick, since the
parameters of all the junctions are identical. If the parameters
deviate from each other, the resonance frequency and the
phase motion of the individual junctions are shifted from
each other, and thus oscillation phases between neighboring

junctions are independent. This is also clear in connection
with the discussion in a paragraph between Eqs.~9! and~10!.

V. DISCUSSIONS

A. Guideline to possible experiments

It is not always easy to sweep the frequency widely in
experiments using waveguides. Instead, sincevp in Eq. ~12!
is a function of cosf(0), I dc can be conveniently used to
change the ratio (v/vp).

By using I dc instead of cosf(0) in Eq. ~12!, the plasma
dispersion curve of them th mode is explicitly expressed by
I dc:

I dc

I
5H 12F S v

vp
D 2

2S cm
~N!

c0
D 2

~klJ!
2G2J 1/2

~19!

with c05(m0d8C)21/2. Thus by fixingv andk and varying
I dc, the plasma resonance peaks can be traced. Figure 3
shows a numerical result.v/vpo50.85, klJ50.02, a
50.01, and 112S54.531026 were assumed. Figures 3~a!,
~b!, and ~c! are the result forN575, N550, andN525,
respectively. Again, every second mode can resonate. An
experimentally good evidence may be that the peak position
at them5N mode strongly depends on the stacked junction
numberN. On the other hand, the lower number mode peaks
are merged together, and its position is very insensitive toN,
in general agreement with the previous discussion.

In the plasma resonance analysis we assumed that the rf
bias current has a traveling wave formI rf cos(kx2vt). Let us
discuss how spatially dependentI rf bias can be attained. In
general—at least if a ground plane is not used—there will be
a nonhomogeneous current distribution with spikes at the
edges of the electrodes.16 This will give rise to current and
voltages in the stack, which has a fundamental spatial com-
ponent defined by the length of the junction in thex direc-
tion. Another intentionally designed example is shown in
Fig. 4, where the bias electrode size is much smaller thanx
direction lengthL. The bias in the stack has a maximum at
x50, and decreases withuxu increasing. Thus the bias forms
a standing wave. Its Fourier components have forms of
cos(kx2vt)1cos(kx1vt). Therefore the analysis in the
present paper can be used directly.

B. Collective longitudinal plasma oscillation

The so-called longitudinal plasma excitation has been dis-
cussed by several authors~Refs. 11–13! in the framework of

FIG. 3. Bias current dependence of the resonance intensity. For
calculation, v/vpo50.85, klJ50.02, a50.01, and 112S54.5
31026 were assumed.~a! N575, ~b! N550, and~c! N525. The
peak position at them5N mode strongly depends on the stacked
junction numberN. The lower number mode peaks are merged
together, and its position is insensitive toN.

FIG. 4. Experimental configuration demonstrating that the bias
current forms a standing wave. Since the Fourier components have
forms of cos(kx2vx)1cos(kx1vx), the analysis in the present pa-
per can be used directly.
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the theory based on the charge coupling through the super-
conducting layers. Here it is shown that the inductive cou-
pling theory we are proposing can explain the experimental
observations.

Kadowaki et al. in Ref. 12 and Kakeyaet al. in Ref. 13
have investigated sample size dependence of plasma reso-
nance in single crystalline Bi2Sr2CaCu2Ox and discussed the
observed resonance modes. In order to adjust the plasma
frequency to a fixed frequency in experiments, they applied
and slowly changed a static magnetic fieldBdc parallel to the
c axis of BSCCO instead of changing the bias current.6–8,12,13

In the case that the microwave electric field was applied
in the direction parallel to the BSCCOc axis (Erfic), the
resonance frequency was almost constant for the change of
the sample sizeLx from 0.8–1.8 mm whereLx is the sample
size in theab plane~Refs. 12 and 13!. Their interpretation is
that, probably due to this very weakLx dependence, the reso-
nance mode was the longitudinal plasma mode by the charg-
ing effect model11 in which kz vs v dispersion is very weakly
dependent onkz .12,13

SinceLx!lg/2 wherelg is the fundamental wavelength
in their cavity box size, the excited plasma is mostly uniform
in the samples alongx, i.e.,kx;0. Therefore we can interpret
this as simple gathering ofkx50 plasma excitation byN
independent Josephson junctions as was shown in Fig. 2~c!.
This means that these experimental results can be explained
by the inductive coupling model and do not always necessi-
tate introducing the charging effect model in Ref. 11.

In the case that the microwave magnetic field was applied
in parallel to theab plane of BSCCO (H rfiab), Kadowaki
et al. observed one peak with showing a strongLx depen-
dence of the plasma resonance.12 Kakeyaet al. showed reso-
nance with two peaks.13 The first peak has very weakLx
dependence of the resonance frequency and the second has
large dependence, and in their text they also suggested mul-
tipeak observation more than two peaks in a largeLx case.13

In order to interpret this, the authors in Ref. 13 assume the
continuous medium in thez direction @Eqs. ~6!–~8! in Ref.
13#, and inevitably the excitation electric fieldEz is uniform
alongz. This may correspond to the in-phase motion in the
discrete model in the present paper. As a consequence of
their model, however, they do not consider other excitation
modes besides the uniform excitation alongz. By using the
discrete stacked junction model with the inductive coupling
that results in the presence of multiple plasma resonance
modes, the phenomena underH rfiab could be explained.

The reason why the peak number of the resonance in the
experiment ofH rfiab was changed is understood by the re-
lationship between the dispersion curves and the experimen-
tal conditions that is shown in Fig. 5. There are many cases,
depending on experimentalk andv conditions. With increas-
ing static magnetic fieldBdc in the c direction, plasma dis-
persion curves are moved downwards. In the figure the
curves are shown by dashed lines and solid lines, respec-
tively, according to the conditions with and withoutBdc. If a
point in thek-v coordinate decided by the experimental fre-
quency and the sample cavity size is located on the region
~like A in Fig. 5! lower than all dispersion curves when
Bdc50, the first peak appearing with the increase ofBdc may
correspond to the dispersion curves condensed into one zone
that is very insensitive tokx , and the second and higher
peaks are sensitive tokz . If the point is set to be like B in
Fig. 5, the peak corresponding to the condensed zone cannot
be observed and observable peaks are sensitive tokx ~the
sample sizeLx). If the point is located on the right side area
of the asymptotic straight line for the all in-phase mode
whose gradient is the velocitycN

(N) ~like C in Fig. 5!, the
resonance of the all in-phase mode never appears during
theseBdc sweeping experiments.

Finally, we further discuss the scaling and the longitudi-
nal mode. As an extreme case we compare the highest ve-
locity ~all in-phase! mode and the lowest velocity mode~an-
tiphase mode between adjacent junctions!. Since the scaling
length is expressed as Eq.~13!, if the experimental frequency

FIG. 5. Schematic graph showing relationship between the
plasma dispersion curves and thek-v conditions. A set of solid
curves is the dispersion of possible eigenmodes atBdc50, and a set
of dashed curves is the dispersion whenBdc is some nonzero value.
The all in-phase mode dispersion approaches asymptotically to the
dash-dot line in the figure with much increasingv/vpo, regardless
of the Bdc magnitude.

FIG. 6. Schematic snapshot of]fW (1)/]x as a function ofx for
explaining the scaling and the longitudinal mode.~a! all in-phase
mode;~b! antiphase mode. The sample sizeL for the all in-phase
mode should be large because its large scaling lengthlN

(N) is large.
Under the same driving frequency,L for the antiphase mode should
be small because of the smalll1

(N) . From the figures the excitation
patterns are found to vary not only withx but also withz, in other
words, the resonance is longitudinal.
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is fixed, k is small andLx is large for the highest velocity
mode meaning that the sample cavity size should be de-
signed to be large. For the lowest velocity mode the situation
is opposite. A schematic picture is shown in Fig. 6. IfLx is
fixed, the frequency for the fundamental excitation becomes
large and small for the highest and lowest velocity modes,
respectively. As is clear from Fig. 6, the excitation is longi-
tudinal. The excitation wavelength alongz is of the order of
the interlayer spacingd1t in the case of Fig. 6~b!. In the
case of the inductive coupling model, therefore, plasma ex-
citation modes forkÞ0 are inevitably longitudinal. There
has been similar discussion by Kleiner with respect to the
Fiske eigenmode.17

VI. CONCLUSION

Plasma resonance in anisotropic layered high-Tc super-
conductors has been described theoretically by the inductive
coupling mechanism. AnN junction stack hasN plasma
eigenmodes. Each mode has a scaling length alongx, i.e., in
the ab plane. For example, the difference in this length be-
tween the in-phase mode of all the junctions (m5N) and the
antiphase mode of adjacent two junctions (m51) is quite
large. If thek-v dispersion curves of these eigenmodes are

shown using the scaling length of the all in-phase mode,
most of the curves become very insensitive to the change of
k and are condensed into one zone. An actual calculation
with an rf driving term forN550, using BSCCO parameters,
has demonstrated that multiple resonances may appear with
changing the frequency. Every second mode obtained by
countingm downwards from the all in-phase mode (m5N)
gives a resonance, that is explained by the symmetric prop-
erties of the modes and the rf bias configuration. The calcu-
lation has also shown that even for thek50 case the plasma
resonance appears as a simple gathering ofN independent
Josephson junctions. As a guideline for possible experiments
a method of sweeping the dc bias current instead of tuning
the frequency has been discussed; this predicts a strong stack
size ~N! dependence of the resonance of the all in-phase
mode. A comparison of the theory with very recent micro-
wave experiments of the plasma resonance has been made.
The experimental results of the dependence of the resonance
position on the sample dimension in thex direction~for both
Erfic andH rfiab cases! have been well explained within the
theory by the inductive coupling model described in this pa-
per. It has also shown that for thekÞ0 cases, the excitation
waves inevitably have longitudinal wave component alongz
as well as the component alongx.
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