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Comparative dynamics of two-dimensional shorted arrays
and continuous stacked Josephson junctions
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Department of Physics, The Technical University of Denmark, DK-2800 Lyngby, Denmark
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Institute of Mathematical Modelling, The Technical University of Denmark, DK-2800 Lyngby, Denmark

A. V. Ustinov
Institute for Thin Film and lon Technology, Research Center (KFA), D-52488h)uGermany
(Received 4 April 1996; revised manuscript received 17 October)1996

Multilayer structures of Josephson junctions are discussed both in the continuous and the discrete case. For
the continuous case some recent results are shown. For two-dimensional shorted arrays, which account for the
discrete limit, a model is presented. Analytical and numerical calculations show typical features of coupled
sine-Gordon systems such as the splitting of the limit velocity and modes of different symmetry which
correspond to the different velocities. The discretization, however, adds interesting features, the most promi-
nent of them being a strong interaction between solitons and discreteness-induced plasma waves.
[S0163-18207)05009-1

[. INTRODUCTION junctions. We show that their dynamic equations are indeed
closely related to the model by Sakai, Bodin, and Pedéfsen
Josephson junctions, involving nonlinear behavior, quaneof stacked junctions.
tum effects, and high-frequency electromagnetic-wave The paper is structured as follows. In Sec. Il an introduc-
propagation, are good candidates for a wide range of appliion to the topic of stacked junctions is given. We present the
cations. The most important ones are superconducting quamodel and a summary of its most important features together
tum interference devices, Josephson voltage standards, logiéth some recent original results. Links to the experiments
elements, and oscillators. For the oscillators, typical highwill also be given. In Sec. Il the 2D arrays are introduced
frequency cutoffs are in the range of hundreds of GHz. and analyzed. In Sec. lll A a model for the shorted arrays is
Josephson flux-flow oscillators have rather low power ofpresented. The neutral stability, i.e., the independence of the
the emitted radiation and low output impedance, which ar@ohase dynamics in different rows in zero magnetic fletdn
essential drawbacks for their utilization in practical circuits.simply be deduced from this model. In Sec. Il B the dynami-
Indeed, the maximum power involved is of the order of mi-cal behavior of shorted arrays is studied both analytically and
crowatts, and the output impedance is of the order of a fewumerically. The splitting of the limit velocities and the dis-
Ohms? Increasing these values by at least an order of mageretization effects are the main features of the dynamics. The
nitude would largely extend the range of application of thesevelocity splitting arises in analogy with stacked long junc-
devices. tions. The discreteness forces the travelling kinks to emit
An obvious way to overcome these problems is to usegadiation; the nonlinear interaction between kinks and their
systems of coupled junctions. Arrays of series-connectedadiation has important effects on the dynamics of the kinks.
short junctions have been extensively studied both from th€urrent Voltage characteristics are also calculated to allow
experimental and theoretical points of viéun the last few  direct comparison with experiments.
years the research focused on one-dimensitiial parallel
arrays>* and 2D arrays with both non-negligible and negli-
gible self-field effectdsee Refs. 5 and 6 for a list of refer-
ences on this subjectThe so called shorted arrays form a A Josephson stack consists of a set of superconducting
special class of 2D arrays; their elementary cell has Joseplayers interleaved by insulating layers. The model for a ge-
son junctions only in one spatial direction, while in the othernericN-layer stack of long junctions was proposed in a com-
direction it is formed by superconducting wiré$. plete form by Sakai, Bodin, and Pedersen in Ref. 12, but the
Arrays of long junctions form another class of coupledbasic ideas can already be found in other precedent works
systems. Among them, vertically stacked junctions are intersuch as in Ref. 13. In it they suppose the interaction between
esting for many reasons: their coherent operation showginctions acts through the magnetic field penetration in the
promising improvements for practical applicatiohBurther-  superconducting layers.
more they may also serve as a model for naturally aniso- From the experimental point of view stacked structures of
tropic highT, crystalst®!! long Josephson junctions have been extensively stddied.
In this work we study shorted arrays emphasizing theifThe observation of the limit velocity splittiigstimulated
analogies and differences from the stacked long Josephsanore detailed theoretical investigatidhsind also led to a

II. CONTINUOUS CASE: STACKED JUNCTIONS

0163-1829/97/58.3)/84907)/$10.00 55 8490 © 1997 The American Physical Society
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(@) b) . Let us consider the two cas€g N even, the reducible
representation character table of the base shown in K. 1
is

E i
r'miN o

remember that the irreducible representations character table
of the inversion grouit; is (see, e.g, Ref. 19

Ci|E i

FIG. 1. Symmetry-representation of stacked system. Directions Ag|1 1 symmetric

for the positive displacement of the phases for the classification of A,

the modes are indicated by arrows. The points represent the junc- . .
tions, the dashed line is the main axis of symmetayN even:(b) Using standard techniques, we can decompose the reducible

1 -1 antisymmetric.

N odd (N is the number of junctions r_epresentationf@ in terms of an equal_ number of symmet-
ric (Ag) and antisymmetric4,) irreducible representations
very detailed comparison of theory with experimefits. of C;
The normalized form of the dynamical equations, assum- N N
ing identical junctions and overlap geometry, are F<N):—Ag+ —A, (3)
2 2
T =MNJI (1)  meaning that we have an equal numbiifZ) of symmetric

_ and antisymmetric mode§i) N odd; the reducible represen-
wheredy, is the second order space derivatiyeis the vec-  tation of the base in Fig. lb) is

tor of the gauge invariant superconducting phase differences _
across each layed, is the vector of the total current densities E i

flowing through the junctions, anll is the interaction ma- r N -1
trix; it has a tridiagonal form with ones on the main diagonal
and— A in the upper and lower diagonal. The parameéidas
a measure of the interaction between junctions, and depends N—1 N+1
on the geometric and physical parameters of the systém. F(N):TAQ+ —Au (4)
is always non-negative.

Equation (1) has been extensively studied in literaturei.e., we have Kl—1)/2 symmetric and N+ 1)/2 antisym-
from both analytical and numerical points of viék**~'%the  metric modes.
main results obtained af@ For anN-layer system there are The above information can be fruitfully used for possible
N different limiting velocities of the waves. The explicit for- states of the junctions. Let us considér=2. According to

andTI'™ decomposes in

mulas for the velocities at&!® Eqg. (3), there is one antisymmetric modi@-phasé¢ and one
symmetric modgout-of-phasg Thus, for the first case we
1 can take the ansatmote that we explicitly assume the

Ch= — n=12,...,N, (2)  perturbation-free case,y=0, see discussion below
a
Vi-2acogry P D= ga(x,1). (5)

Thus, Eq.(1) becomes
tion has been taken equal to the unifly) Some of the ve- _ . .

. . . ) o= (1=A)(@; t+sSing;), j=1,2 6
locities of the waves are larger than the single-junction char- @i )(@ju i) ©
acteristic velocity.(iii) Different modes along the vertical Equation(6) is a set of two uncoupled equations having the
axes correspond to each velocity. In particular, the number cfame form. Each term of the set is a sine-Gordon equation,
antisymmetric modes is equalN(even to or exceeded by which can be written in the canonical form normalizixdy

where the characteristic velocityof an isolated single junc-

one (N odd) the number of symmetric modes. v1—A. Consequently the limit velocity of waves is
The latter result can be obtained in a simple and elegant

way. The only property used is the invariance of the stack . 1

with respect to a symmetry transformation. Let us consider ¢ = 1-A @)

the 1D problem. Figure 1 shows the schematic drawing of
the system: the points represent the junctions; the dashed lifighis is a well-known result which can be extended to the
is the main axis of symmetry. The two cases of even and odith-phase mode ofN-layers systems and moreover, is in
N are shown separately: in the former cé@ethe mirror axis  agreement with numerical simulations cited above. It is more
lies between the two inner junctions, in the latidy it general than Eq(2). For while Eq.(2) regards only small
crosses the middle junction. plasma waves, Eq.7) is related to any kind of solutions
The symmetry group of the system@s:*° It has only the ~ which obey Eq.(5).
identity elementE and the inversion elemeit For the out-of-phase case we can assume
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vou Y vou vou from the same node is ;. We will assume the array to have
L’ N, rows andN. columns.
L A. Model
[~ 00— 00— 00— 00—

In the following, we write the equations of the circuit.
Here we will use the approach suggested by Luchefoti.
differs from classical approaches by accounting for the Biot-
Savart law in the fluxoid quantization formula. Conse-
— 000000000 000 quently, the procedure we will follow here is different from
that we used earliét.

Neglecting the mutual inductance, the flux quantization in

J the loopi,j is
— 00— — 00— — 00—
2m viv hyh vyv hyh .
(Pi,j_‘PHl,j:ao(L L e~ Lo g = LT ) +

i (11

oo
oo 000
oo oo
< c:\
000" 700
00 oo

FIG. 2. Equivalent circuit of the shorted array, V‘_’h_ere Pi.j is the gaL_Jge invar?ant phase acros_s the _junction
i=1,...Ng; j=1,...N,. The array is supposed to be periodic (i.])- The phasep; is a function of the normalized time
in the horizontal direction and open in the vertical direction. The term# accounts for the external magnetic field, in the
following we will consider the cas@=0; moreover, to keep
01X, 1) = — o(X,1). ®) thin_gs.simple we will re;t_rict o.urselves t_o the ge.ome.try with
B 2% periodic boundary conditions in the horizontal directiove

This gives also a set of two uncoupled similar equations>-PP€ that the poinis=N,+1 andi=1 coincide with
The hag\]/e the form P q each other Subtracting from Eq(11) the same equation
y written for the point —1,j and using the Kirchhoffs laws for

. . the nodes,j andi,j+1,
o= (1+A) (@) yFsing), 1=1,2 ©) : )

: . . ==

and are characterized by the limit velocity BiFL s R L
|

1 -1

c = (10

JI+A'

Note that while a biagy does not change the results for 2 ':Z_W[Z(Lu_f_Lh)lp‘_Lh('y. 1P
the in-phase mode, it changes the equations for the out-of- gl b, b L+l Tt
phase mode. However, the matching of the equations can be or1 v _
restored by choosing a proper bias configurafian, bias in —L )k
one layer should be opposite to the bias in the other [&yer.
Finally, we recall some worR&2! about the stability of i=1,...Nc, j=1,...N;, (13
the solutions in Eq(5) and Eq.(8). The main result is that . hoo -
the stability drastically depends on the parameter region. Th¥hereAT @i =i 1;—2¢;;+¢i_1;. The current;y" is the

most important parameter is the velocity of the waves, bufum of the resistively shunted junction term and the bias
also the damping terms play an importaniero currentlg. We choose the upper and lower boundary condi-

— 1= =10, (12

we obtain

tions to bel{y ., =17¢=0. Equation(13) can be written in
Ill. DISCRETE CASE: SHORTED 2D ARRAYS normalized form. For this purpose we define
Shorted arrays are square-cell 2D Josephson-junction ar- . L"
rays having horizontal branches shorted by superconductors. Al= 2(Lv+ LMy (14

A possible way to make them is using long superconducting
wires connected by rows of junctions in parallel. Figure 2

) : o LY
shows a schematic drawing, where we assume all the circuit =
parameters to be equal. Each horizontal branch consists of an A 2(L+LY’ 39
inductanceL." while the vertical branches are formed by the
inductancel.’ in series with a Josephson junction. We con- 2m(2LY+2LM1,
sider a homogeneous biasing of the whole array at which the BL= @, (16)

bias is modeled by a dc current sourgégth currently) in
parallel with each junction; in Fig. 2 it is included in the The quantitiesA" and A® measure the coupling between
junction symbol. The horizontal branch current flowing from rows and columns, respectively. The quanjity is a mea-

the nodd,j is Ith- , while the vertical branch current flowing sure of the discreteness of the artéyr a discussion see Ref.
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5); the limit 8, — 0 corresponds to the continuous case. Th
constant . in Eq. (16) is the critical current of the junctions.
Equation(13), thus, becomes

1

2
BLAi @i =Yij— A" (Yij+1~ Vij-1) —AYisryt Vio1j),

(«y)

Here,y; j is the normalized current flowing through the junc-

tion at (i,j), it is related with the phase; ; through the
formula
'yi’j=<',bi,j+a<'pi’j+singoi’j+|B/|C. (18)
Equation(17) relates the second order phase differenc
along the rows with the normalized currents; in the other
rows and columns. In the following we consider the case i

which the fluxons propagate only in the horizontal rows, i

tical inductancel” being negligible, and consequently
A®=0, A"=1/2. The most general case, in whitf+0,

presents many features in common with regular 2D systemg,

(see discussion by Wiesenfettt al. in Ref. 7). Moreover,

considering mutual inductances in the model above we cap
have A'<1/2 whenL"=0; these values can give a better

agreement with experiments. We leave the analysis of the
models for the future work. Equatiqid7) can be written as

1 —
2
B

where we used the matrix form. The vectajs 7, and the
matrix M are defined as

My;, i=1,...N, (19)

Pij
o=l @i |; (20)
PN,
Yij
vi=| vi | (21)
YN
1 —A' 0 0
—A" 1 —A'
Mm=| o : 0 (22)
—A' 1 —A'
0 0 —A' 1

The matrixM is a squareN, X N, matrix. Note that it takes
the same form as the one for the continuous case substituti
A by A"

Under some special conditions Ed.9) gives the neutral
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d@n individual junctions’ Indeed, if there is ng-dependent
excitations(vortices, we have the left hand side of E(.9)

equal to zero. Sinc#l is nonsingular, this meang =0 or,

in other words, every junction moves independently from
others. Note thaAiquj=0 is no longer valid if the symmetry
of the phases is brokefe.g., by applying an external field,
having vortices propagating in the array, having different

parameters for different junctions, or using an external)oad

B. Dynamics of the shorted arrays

Equation(19) has many features in common with Edj).
Their main difference is the presence of the second order
é)hase difference in the former case, and the second order
derivative of the phase variable in the latter case. This anal-
ogy allows us to extend the ideas and many of the results
I”'already known for stacked junctions to the discrete shorted
arrays.
™ Recent experiments by Duwelt al?® have shown the
splitting of the limit velocity for a two row array. The obser-
vation of the flux-flow step accounts for a train of fluxons
jected in the array by an external magnetic field and bias
current. The limiting voltage position of the step is known to
e proportional to the velocity of fluxons. Thus, the splitting
of the step is the evidence for the splitting of the limit ve-
SBcity in the arrays. In our model, this can be shown using
linear analysis.

For the linear analysis we assume small amplitude oscil-
lations with sinp=¢ and «=0 in the formula fory;. Thus,

Eq. (19 becomes

n
analogy with the continuous case; this corresponds the ve

Ao =N(d+e¢), i=1,...

B

Inserting the linear waves solution

N, . (23)

0.9

08|

0.7

061

057

04

03

0.5

\%

FIG. 3. Current-voltage characteristics for a fluxon-fluxon state
in an 2X 20 shorted arraypoint9 and an equivalent twofold stack
' continuous junctiongcontinuous curve Parameters for the dis-
crete case area=0.1, B,=1. For the continuous case
L=20, «=0.1, A=0.5. The voltages are equal in both rog@sd

stability, i.e., the independence of the dynamics of the phasgsnctions.
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5 5
top row top row

4 4
3 3
2 2
1 1
0 0
1 1
2 -2

0 60 120 180 240 300 0 100 200 300 400 500

t t
5 5
bottom row bottom row
4 4
3 3
2 2
S R

1 1
0 0
1 -1
2 -2

0 60 120 180 240 300 0 100 200 300 400 500

(a) t (b) t

FIG. 4. Snapshots af;¢(t) in the two rows of the shorted arrays for the bias points marked in Fig. 3. Fluxons are the large(@eaks.
Point A, the higher velocity mode. The fluxons are in-phabgPoint B, the lower velocity mode. Fluxons are shifted.

o=Aexpy—L(kiVB —wt); i=1,...N., (24 isir?( kﬁ)
with the vector of the amplitudeg,the wave numbeik, and wi=1+ AL 2 . n=1, N,. @27
the frequencyw, we obtain 1-2A"co nm
B N, +1
4 k — . —
- B—sin2< Z'BL) A=(1-w?)MA. (25  The corresponding phase velocities are
L
This homogeneous linear equation admits solutions when the 4 kvBL
eigenvalues of the matrix w, 1 IB—S'”Z 2
TR Tk L+ — nm |’
[N an
b s 0 0 1—2A’cos(N 1
S D S i+
o - =~ =0 (26) n=1,...N,. (28
S D S

Equation (28) determinesN, different velocities of the
6 -~ 0 S D plasma waves. In the continuous limjg(—0) it is analo-

. Oy
are zero. HereD=—(4)/(.)sir{(kyBL)/2]—(1-w?), gous to Eq(2). For zero coupling4"=0) it corresponds to

. the velocity calculated for the single row case in Ref. 3.
— AT _ .2 4
andS=A"(1-w?). The eigenvalues of the matrigé) are The amplitudes of the waves are given by the eigen vec-

tors corresponding to the eigenvalues of EZy)

D+2S s( nm 1,...N
co o N=1,.. 0 N
e r Al=1/ 2 g T i=1,2,....N;; (29
. . . . = sin . nj=12,...,N;;
Consequently, we obtain the dispersion relations n N,+1 ! N, +1 J i (29
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0.5 : : . : : , wherev is its velocity. Assuming that the kink velocity can
not exceed the limit velocity, we get the following implicit
constraint on then values

0.4t o L \/ 4 My B n
- T _ r

m>2—\/1+ BLSInZ( C 2A"co N1

8 (31)

(o] J

> 03+ s ] Equation(30) together with Eq.(31) accounts for possible
. resonant velocities of a fluxon moving in a shorted 2D array.

- Thus, a comparison with experiments and numerical calcu-
lations can be made here.

] In Fig. 3 we show a numerical example of the current-
] voltage characteristics of @20 array with periodic bound-

8 ary conditions and the parameters-0.1, B, =1, as well as
the current-voltage characteristics of the continuous system
, , , ‘ , , with the same parametefise., L =N, X /3, = 20, see Ref. 5,

5 6 7 8 9 10 11 12 andA=A"=0.5). The voltage is normalized through the re-
lationV=2mv/L, wherev is the fluxon velocity. Practically,
we integrated Eq(19) with a Bulirsch-Stoer routin& For

FIG. 5. Voltage positions of steps for the shorted array; param-Eq' (1) we used the te(_:hnlque described in Ref. 5 W_'th
eters and dynamic state are the same as in Fig. 3. Circles: the highdr~ AX=0.1 to transform it from a system of coupled partial
velocity mode. Squares: the lower velocity mode. For both cases thdifferential equations to a system of coupled ordinary differ-
solid markers correspond to E¢B1) while the hollow markers ~€ntial equation, then we applied the Bulirsch Stoer routine.
correspond to the numerical results. We choose a kink in each junction as initial conditions; simi-

lar current-voltage curves with different stability ranges were
where, the index relates to the velocity, and the indgxto ~ Obtained for a kink just in one junction. After a suitable
the rows. This is exactly the same as the stackedlbne,transient, of the order of some hundreds normalized time
meaning that the relationship between the symmetry of th&nits, we took the voltage across the layer following the
modes and the different velocities applies also to the discretéSephson normalized equatidr- A /AT , where we used
system as well. Below, we will show some numerical simu-AT=400 for shorted andAT=100 for stacked junctions
lations which agree with the results given above; however, 4this difference because the continuous system present
complete stability analysis for these modes should still besmé)other dynamics and shorter transient than the discrete
done. one.

For arrays, the given linear ana|ysis cannot direct|y be The two Singularities of the stacked junCtion curve corre-
extended to the nonlinedfluxon) modes. Indeed, Ustinov, SPond to the two velocities of Eq2). The underlying dy-
Malomed, and Cirilld carried out a complete analysis of the Namical state consists of one fluxon trapped in each layer.
single row case in which they showed that the effect of the~0r this dynamics the voltage resulted to be equal in both
discreteness becomes very important through the interactigdnctions. For the higher voltage step two fluxons move in a
of fluxon modes with the background plasma waves. SucRunched modeone below the other for the lower voltage
analysis can be extended to the multirow case consideringtep the fluxons move independenttiere is a spatial shift
independently every mode of the fluxon wavée., each Dbetween them For thg dlsprete array, the smgularmgg cor-
value ofn in Eq. (28)]. When the nonlinear kink interacts éspond to the velocities given by EO0). The two families
with the cavity modes with wave numbkg,=27m/L, fora  Of curves correspond to the two states analogous to those of
system of a finite length, the resonance between the kink the continuous case. The presence of more than one singu-

frequency and the linear wave frequency may take place 4arity for each state is due to the effect of the discretization
velocities (through the parameten).

In Figs. 4a) and 4b) two snapshots of the instantaneous

2 \/— phasedin the form of their time derivativgesare shown for
L \/ —sir? mm BL) the marked points in Fig. 3. In the higher voltage branches,
BL
1+

om
(m] ]

02t

0.1

L marked A in Fig. 3 and shown in Fig(d, the two fluxons
nw (large peaks are exactly in-phase. In the lower voltage

branches, marked B in Fig. 3 and shown in Figh)4the two
fluxons are out-of-phase; the irregularity in the dynamics is

due to the interaction of the fluxon frequen€y and the

n=1 N, m=1,... L (30 Wwave frequency calculated from Eq(30)]. In both cases

o NN shown as example the fluxons are locked witk 7 plasma

waves.

Here we assumed that there is a single kink trapped in one The numerical results are in agreement with the above
row. The kink revolves in the system due to the periodiccarried analysis. This is shown in Fig. 5. The circles corre-
boundary conditions and the kink frequency fis=v/L, spond to the higher velocity steps, while the squares corre-

Un'm:27Tm

1—2A’cos(

N, +1
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spond to the lower velocity modes. In both cases the filledated to the symmetry of the oscillations in different layers.
points show the analytical resultgq. (30)], and the hollow As a new feature of the discrete system we find a subsplitting
points show the numerical onéBig. 3). The differences be- of the velocities due to resonances with discreteness-
tween the values predicted by E@®0) and the numerical originated plasma waves. Such structures have been recently
values is due to the fact that the equation is obtained in theeen experimentally by Duwesdt al>®> The lack of reso-
limit of small waves, while in the region of the parametersnances in their experiment is probably due to the large damp-
chosen the plasma waves are of considerable amplisete ing at the temperature close Tq.
Fig. 4. A complete analysis based on the amplitude- Further theoretical work still has to be done: the study of
dependent correction to the plasma wave frequency will apthe casel’+#0, stability of solutions, effects of nonlinear
pear in a future work® plasma waves on the fluxon propagation, simulations of open
boundary systems in magnetic field are the most crucial for

IV. DISCUSSION interpreting the experimental data.

Stacked long Josephson junctions have many common
features with a special class of 2D arrays, namely the shorted
arrays. This is the multilayer extension of the analogy be- Useful discussions with P. Caputo, G. Costabile, G. Fila-
tween a single-layer long junction and a single row parallefrella, R. D. Parmentier, and S. Watanabe are gratefully ac-
array of short junctions. Among the common features, weknowledged. A.P. acknowledges financial support from the
find the mode dependent splitting of the wave velocity re-ESPRIT GBJ-7100 project.
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