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Multilayer structures of Josephson junctions are discussed both in the continuous and the discrete case. For
the continuous case some recent results are shown. For two-dimensional shorted arrays, which account for the
discrete limit, a model is presented. Analytical and numerical calculations show typical features of coupled
sine-Gordon systems such as the splitting of the limit velocity and modes of different symmetry which
correspond to the different velocities. The discretization, however, adds interesting features, the most promi-
nent of them being a strong interaction between solitons and discreteness-induced plasma waves.
@S0163-1829~97!05009-1#

I. INTRODUCTION

Josephson junctions, involving nonlinear behavior, quan-
tum effects, and high-frequency electromagnetic-wave
propagation, are good candidates for a wide range of appli-
cations. The most important ones are superconducting quan-
tum interference devices, Josephson voltage standards, logic
elements, and oscillators. For the oscillators, typical high-
frequency cutoffs are in the range of hundreds of GHz.

Josephson flux-flow oscillators have rather low power of
the emitted radiation and low output impedance, which are
essential drawbacks for their utilization in practical circuits.
Indeed, the maximum power involved is of the order of mi-
crowatts, and the output impedance is of the order of a few
Ohms.1 Increasing these values by at least an order of mag-
nitude would largely extend the range of application of these
devices.

An obvious way to overcome these problems is to use
systems of coupled junctions. Arrays of series-connected
short junctions have been extensively studied both from the
experimental and theoretical points of view.2 In the last few
years the research focused on one-dimensional~1D! parallel
arrays,3,4 and 2D arrays with both non-negligible and negli-
gible self-field effects~see Refs. 5 and 6 for a list of refer-
ences on this subject!. The so called shorted arrays form a
special class of 2D arrays; their elementary cell has Joseph-
son junctions only in one spatial direction, while in the other
direction it is formed by superconducting wires.7,8

Arrays of long junctions form another class of coupled
systems. Among them, vertically stacked junctions are inter-
esting for many reasons: their coherent operation shows
promising improvements for practical applications.9 Further-
more they may also serve as a model for naturally aniso-
tropic high-Tc crystals.

10,11

In this work we study shorted arrays emphasizing their
analogies and differences from the stacked long Josephson

junctions. We show that their dynamic equations are indeed
closely related to the model by Sakai, Bodin, and Pedersen12

of stacked junctions.
The paper is structured as follows. In Sec. II an introduc-

tion to the topic of stacked junctions is given. We present the
model and a summary of its most important features together
with some recent original results. Links to the experiments
will also be given. In Sec. III the 2D arrays are introduced
and analyzed. In Sec. III A a model for the shorted arrays is
presented. The neutral stability, i.e., the independence of the
phase dynamics in different rows in zero magnetic field,7 can
simply be deduced from this model. In Sec. III B the dynami-
cal behavior of shorted arrays is studied both analytically and
numerically. The splitting of the limit velocities and the dis-
cretization effects are the main features of the dynamics. The
velocity splitting arises in analogy with stacked long junc-
tions. The discreteness forces the travelling kinks to emit
radiation; the nonlinear interaction between kinks and their
radiation has important effects on the dynamics of the kinks.
Current Voltage characteristics are also calculated to allow
direct comparison with experiments.

II. CONTINUOUS CASE: STACKED JUNCTIONS

A Josephson stack consists of a set of superconducting
layers interleaved by insulating layers. The model for a ge-
nericN-layer stack of long junctions was proposed in a com-
plete form by Sakai, Bodin, and Pedersen in Ref. 12, but the
basic ideas can already be found in other precedent works
such as in Ref. 13. In it they suppose the interaction between
junctions acts through the magnetic field penetration in the
superconducting layers.

From the experimental point of view stacked structures of
long Josephson junctions have been extensively studied.9

The observation of the limit velocity splitting9 stimulated
more detailed theoretical investigations14 and also led to a
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very detailed comparison of theory with experiments.15

The normalized form of the dynamical equations, assum-
ing identical junctions and overlap geometry, are

]xxw5M̂ J̄ ~1!

where]xx is the second order space derivative,w is the vec-
tor of the gauge invariant superconducting phase differences
across each layer,J̄ is the vector of the total current densities
flowing through the junctions, andM̂ is the interaction ma-
trix; it has a tridiagonal form with ones on the main diagonal
and2D in the upper and lower diagonal. The parameterD is
a measure of the interaction between junctions, and depends
on the geometric and physical parameters of the system.12 It
is always non-negative.

Equation ~1! has been extensively studied in literature
from both analytical and numerical points of view;10,14–18the
main results obtained are~i! For anN-layer system there are
N different limiting velocities of the waves. The explicit for-
mulas for the velocities are10,15

cn5
1

A122D cos
np

N11

, n51,2, . . . ,N, ~2!

where the characteristic velocityc̄ of an isolated single junc-
tion has been taken equal to the unity.~ii ! Some of the ve-
locities of the waves are larger than the single-junction char-
acteristic velocity.~iii ! Different modes along the vertical
axes correspond to each velocity. In particular, the number of
antisymmetric modes is equal (N even! to or exceeded by
one (N odd! the number of symmetric modes.

The latter result can be obtained in a simple and elegant
way. The only property used is the invariance of the stack
with respect to a symmetry transformation. Let us consider
the 1D problem. Figure 1 shows the schematic drawing of
the system: the points represent the junctions; the dashed line
is the main axis of symmetry. The two cases of even and odd
N are shown separately: in the former case~a! the mirror axis
lies between the two inner junctions, in the latter~b! it
crosses the middle junction.

The symmetry group of the system isCi :
19 It has only the

identity elementE and the inversion elementi .

Let us consider the two cases~i! N even, the reducible
representation character table of the base shown in Fig. 1~a!
is

E i

G~n! N 0

remember that the irreducible representations character table
of the inversion groupCi is ~see, e.g, Ref. 19!

Ci E i

Ag 1 1 symmetric

Au 1 21 antisymmetric.

Using standard techniques, we can decompose the reducible
representationG (N) in terms of an equal number of symmet-
ric (Ag) and antisymmetric (Au) irreducible representations
of Ci

G~N!5
N

2
Ag1

N

2
Au ~3!

meaning that we have an equal number (N/2) of symmetric
and antisymmetric modes.~ii ! N odd; the reducible represen-
tation of the base in Fig. 1~b! is

E i

G~N! N 21

andG (N) decomposes in

G~N!5
N21

2
Ag1

N11

2
Au , ~4!

i.e., we have (N21)/2 symmetric and (N11)/2 antisym-
metric modes.

The above information can be fruitfully used for possible
states of the junctions. Let us considerN52. According to
Eq. ~3!, there is one antisymmetric mode~in-phase! and one
symmetric mode~out-of-phase!. Thus, for the first case we
can take the ansatz~note that we explicitly assume the
perturbation-free casea,g50, see discussion below!

w1~x,t ![w2~x,t !. ~5!

Thus, Eq.~1! becomes

w j ,xx5~12D!~w j ,tt1sinw j !, j51,2 ~6!

Equation~6! is a set of two uncoupled equations having the
same form. Each term of the set is a sine-Gordon equation,
which can be written in the canonical form normalizingx by
A12D. Consequently the limit velocity of waves is

c15
1

A12D
. ~7!

This is a well-known result which can be extended to the
in-phase mode ofN-layers systems and moreover, is in
agreement with numerical simulations cited above. It is more
general than Eq.~2!. For while Eq.~2! regards only small
plasma waves, Eq.~7! is related to any kind of solutions
which obey Eq.~5!.

For the out-of-phase case we can assume

FIG. 1. Symmetry-representation of stacked system. Directions
for the positive displacement of the phases for the classification of
the modes are indicated by arrows. The points represent the junc-
tions, the dashed line is the main axis of symmetry.~a! N even;~b!
N odd (N is the number of junctions!.
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w1~x,t !52w2~x,t !. ~8!

This gives also a set of two uncoupled similar equations.
They have the form

w j ,xx5~11D!~w j ,tt1sinw j !, i51,2 ~9!

and are characterized by the limit velocity

c25
1

A11D
. ~10!

Note that while a biasg does not change the results for
the in-phase mode, it changes the equations for the out-of-
phase mode. However, the matching of the equations can be
restored by choosing a proper bias configuration~i.e., bias in
one layer should be opposite to the bias in the other layer.20!

Finally, we recall some works18,21 about the stability of
the solutions in Eq.~5! and Eq.~8!. The main result is that
the stability drastically depends on the parameter region. The
most important parameter is the velocity of the waves, but
also the damping terms play an important roˆle.

III. DISCRETE CASE: SHORTED 2D ARRAYS

Shorted arrays are square-cell 2D Josephson-junction ar-
rays having horizontal branches shorted by superconductors.
A possible way to make them is using long superconducting
wires connected by rows of junctions in parallel. Figure 2
shows a schematic drawing, where we assume all the circuit
parameters to be equal. Each horizontal branch consists of an
inductanceLh while the vertical branches are formed by the
inductanceLv in series with a Josephson junction. We con-
sider a homogeneous biasing of the whole array at which the
bias is modeled by a dc current source~with current I B) in
parallel with each junction; in Fig. 2 it is included in the
junction symbol. The horizontal branch current flowing from
the nodei , j is I i , j

h , while the vertical branch current flowing

from the same node isI i , j
v . We will assume the array to have

Nr rows andNc columns.

A. Model

In the following, we write the equations of the circuit.
Here we will use the approach suggested by Lucheroni.22 It
differs from classical approaches by accounting for the Biot-
Savart law in the fluxoid quantization formula. Conse-
quently, the procedure we will follow here is different from
that we used earlier.8

Neglecting the mutual inductance, the flux quantization in
the loopi , j is

w i , j2w i11,j5
2p

F0
~LvI i , j

v 1LhI i , j11
h 2LvI i11,j

v 2LhI i , j
h !1h;

~11!

wherew i , j is the gauge invariant phase across the junction
( i , j ). The phasew i , j is a function of the normalized timet.
The termh accounts for the external magnetic field, in the
following we will consider the caseh50; moreover, to keep
things simple we will restrict ourselves to the geometry with
periodic boundary conditions in the horizontal direction~we
suppose that the pointsi5Nc11 and i51 coincide with
each other!. Subtracting from Eq.~11! the same equation
written for the pointi21,j and using the Kirchhoffs laws for
the nodesi , j and i , j11,

I i , j11
h 2I i21,j11

h 5I i , j
v 2I i , j11

v ;

I i21,j
h 2I i , j

h 5I i , j
v 2I i , j21

v , ~12!

we obtain

D i
2w i , j5

2p

F0
@2~Lv1Lh!I i , j

v 2Lh~ I i , j11
v 2I i , j21

v !

2Lv~ I i11,j
v 1I i21,j

v !#;

i51, . . . ,Nc , j51, . . . ,Nr , ~13!

whereD i
2w i , j[w i11,j22w i , j1w i21,j . The currentI i , j

h,v is the
sum of the resistively shunted junction term and the bias
currentI B . We choose the upper and lower boundary condi-
tions to beI i ,Nr11

v 5I i ,0
v 50. Equation~13! can be written in

normalized form. For this purpose we define

D r[
Lh

2~Lv1Lh!
, ~14!

Dc[
Lv

2~Lv1Lh!
, ~15!

bL[
2p~2Lv12Lh!I c

F0
. ~16!

The quantitiesD r and Dc measure the coupling between
rows and columns, respectively. The quantitybL is a mea-
sure of the discreteness of the array~for a discussion see Ref.

FIG. 2. Equivalent circuit of the shorted array,
i51, . . . ,Nc ; j51, . . . ,Nr . The array is supposed to be periodic
in the horizontal direction and open in the vertical direction.
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5!; the limit bL→0 corresponds to the continuous case. The
constantI c in Eq. ~16! is the critical current of the junctions.
Equation~13!, thus, becomes

1

bL
D i
2w i , j5g i , j2D r~g i , j112g i , j21!2Dc~g i11,j1g i21,j !,

~17!

Here,g i , j is the normalized current flowing through the junc-
tion at (i , j ), it is related with the phasew i , j through the
formula

g i , j5ẅ i , j1aẇ i , j1sinw i , j1I B /I c . ~18!

Equation ~17! relates the second order phase difference
along the rows with the normalized currentsg i , j in the other
rows and columns. In the following we consider the case in
which the fluxons propagate only in the horizontal rows, in
analogy with the continuous case; this corresponds the ver-
tical inductanceLv being negligible, and consequently
Dc50, D r51/2. The most general case, in whichLvÞ0,
presents many features in common with regular 2D systems
~see discussion by Wiesenfeldet al. in Ref. 7!. Moreover,
considering mutual inductances in the model above we can
haveD r,1/2 whenLv50; these values can give a better
agreement with experiments. We leave the analysis of these
models for the future work. Equation~17! can be written as

1

bL
D i
2w j5M̂g j , j51, . . . ,Nr ~19!

where we used the matrix form. The vectorsw j , g j and the
matrix M̂ are defined as

w j[S w1 j

A

w i j

A

wNcj

D ; ~20!

g j[S g1 j

A

g i j

A

gNcj

D ; ~21!

M̂[S 1 2D r 0 ••• 0

2D r 1 2D r A

0 � � � 0

A 2D r 1 2D r

0 ••• 0 2D r 1

D . ~22!

The matrixM̂ is a squareNr3Nr matrix. Note that it takes
the same form as the one for the continuous case substituting
D by D r .

Under some special conditions Eq.~19! gives the neutral
stability, i.e., the independence of the dynamics of the phases

in individual junctions.7 Indeed, if there is noj -dependent
excitations~vortices!, we have the left hand side of Eq.~19!
equal to zero. SinceM̂ is nonsingular, this meansg j50 or,
in other words, every junction moves independently from
others. Note thatD i

2w j50 is no longer valid if the symmetry
of the phases is broken~e.g., by applying an external field,
having vortices propagating in the array, having different
parameters for different junctions, or using an external load!.

B. Dynamics of the shorted arrays

Equation~19! has many features in common with Eq.~1!.
Their main difference is the presence of the second order
phase difference in the former case, and the second order
derivative of the phase variable in the latter case. This anal-
ogy allows us to extend the ideas and many of the results
already known for stacked junctions to the discrete shorted
arrays.

Recent experiments by Duwelet al.23 have shown the
splitting of the limit velocity for a two row array. The obser-
vation of the flux-flow step accounts for a train of fluxons
injected in the array by an external magnetic field and bias
current. The limiting voltage position of the step is known to
be proportional to the velocity of fluxons. Thus, the splitting
of the step is the evidence for the splitting of the limit ve-
locity in the arrays. In our model, this can be shown using
linear analysis.

For the linear analysis we assume small amplitude oscil-
lations with sinw.w anda50 in the formula forg i . Thus,
Eq. ~19! becomes

1

bL
D i
2w j5M̂ ~f j

¨
1w j !, j51, . . . ,Nr . ~23!

Inserting the linear waves solution

FIG. 3. Current-voltage characteristics for a fluxon-fluxon state
in an 2320 shorted array~points! and an equivalent twofold stack
of continuous junctions~continuous curve!. Parameters for the dis-
crete case area50.1, bL51. For the continuous case
L520, a50.1, D50.5. The voltages are equal in both rows~and
junctions!.
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w5Ā expA21~kiAbL2vt !; i51, . . . ,Nc , ~24!

with the vector of the amplitudesĀ, the wave numberk, and
the frequencyv, we obtain

F2
4

bL
sin2S kAbL

2 D G Ā5~12v2!M̂ Ā. ~25!

This homogeneous linear equation admits solutions when the
eigenvalues of the matrix

S D S 0 ••• 0

S D S A

0 � � � 0

A S D S

0 ••• 0 S D

D ~26!

are zero. HereD52(4)/(bL)sin
2@(kAbL)/2#2(12v2),

andS5D r(12v2). The eigenvalues of the matrix~26! are24

D12ScosS np

Nr11D , n51, . . . ,Nr ;

Consequently, we obtain the dispersion relations

vn
2511

4

bL
sin2S kAbL

2 D
122D rcosS np

Nr11D
, n51, . . . ,Nr . ~27!

The corresponding phase velocities are

vn5
vn

k
5
1

kA11

4

bL
sin2S kAbL

2 D
122D rcosS np

Nr11D
,

n51, . . . ,Nr . ~28!

Equation ~28! determinesNr different velocities of the
plasma waves. In the continuous limit (bL→0) it is analo-
gous to Eq.~2!. For zero coupling (D r50) it corresponds to
the velocity calculated for the single row case in Ref. 3.

The amplitudes of the waves are given by the eigen vec-
tors corresponding to the eigenvalues of Eq.~27!

An
j 5A 2

Nr11
sinS jnp

Nr11D , n, j51,2, . . . ,Nr ; ~29!

FIG. 4. Snapshots of] tw j (t) in the two rows of the shorted arrays for the bias points marked in Fig. 3. Fluxons are the large peaks.~a!
Point A, the higher velocity mode. The fluxons are in-phase.~b! Point B, the lower velocity mode. Fluxons are shifted.

8494 55PETRAGLIA, PEDERSEN, CHRISTIANSEN, AND USTINOV



where, the indexn relates to the velocity, and the indexj to
the rows. This is exactly the same as the stacked one,14

meaning that the relationship between the symmetry of the
modes and the different velocities applies also to the discrete
system as well. Below, we will show some numerical simu-
lations which agree with the results given above; however, a
complete stability analysis for these modes should still be
done.

For arrays, the given linear analysis cannot directly be
extended to the nonlinear~fluxon! modes. Indeed, Ustinov,
Malomed, and Cirillo3 carried out a complete analysis of the
single row case in which they showed that the effect of the
discreteness becomes very important through the interaction
of fluxon modes with the background plasma waves. Such
analysis can be extended to the multirow case considering
independently every mode of the fluxon waves@i.e., each
value of n in Eq. ~28!#. When the nonlinear kink interacts
with the cavity modes with wave numberkm52pm/L, for a
system of a finite lengthL, the resonance between the kink
frequency and the linear wave frequency may take place at
velocities

vn,m5
L

2pmA11

4

bL
sin2S pmAbL

L D
122D rcosS np

Nr11D
,

n51, . . . ,Nr , m51, . . . ,
L

AbL

. ~30!

Here we assumed that there is a single kink trapped in one
row. The kink revolves in the system due to the periodic
boundary conditions and the kink frequency isf f l5v/L,

wherev is its velocity. Assuming that the kink velocity can
not exceed the limit velocity, we get the following implicit
constraint on them values

m.
L

2p
A11

4

bL
sin2S pmAbL

L D 22D rcosS np

Nr11D .
~31!

Equation~30! together with Eq.~31! accounts for possible
resonant velocities of a fluxon moving in a shorted 2D array.
Thus, a comparison with experiments and numerical calcu-
lations can be made here.

In Fig. 3 we show a numerical example of the current-
voltage characteristics of a 2320 array with periodic bound-
ary conditions and the parametersa50.1, bL51, as well as
the current-voltage characteristics of the continuous system
with the same parameters~i.e.,L5Nr3AbL520, see Ref. 5,
andD5D r50.5). The voltage is normalized through the re-
lationV52pv/L, wherev is the fluxon velocity. Practically,
we integrated Eq.~19! with a Bulirsch-Stoer routine.25 For
Eq. ~1! we used the technique described in Ref. 5 with
a5Dx50.1 to transform it from a system of coupled partial
differential equations to a system of coupled ordinary differ-
ential equation, then we applied the Bulirsch Stoer routine.
We choose a kink in each junction as initial conditions; simi-
lar current-voltage curves with different stability ranges were
obtained for a kink just in one junction. After a suitable
transient, of the order of some hundreds normalized time
units, we took the voltage across the layer following the
Josephson normalized equationV5Dw/DT , where we used
DT5400 for shorted andDT5100 for stacked junctions
~this difference because the continuous system present
smoother dynamics and shorter transient than the discrete
one!.

The two singularities of the stacked junction curve corre-
spond to the two velocities of Eq.~2!. The underlying dy-
namical state consists of one fluxon trapped in each layer.
For this dynamics the voltage resulted to be equal in both
junctions. For the higher voltage step two fluxons move in a
bunched mode~one below the other!, for the lower voltage
step the fluxons move independently~there is a spatial shift
between them!. For the discrete array, the singularities cor-
respond to the velocities given by Eq.~30!. The two families
of curves correspond to the two states analogous to those of
the continuous case. The presence of more than one singu-
larity for each state is due to the effect of the discretization
~through the parameterm).

In Figs. 4~a! and 4~b! two snapshots of the instantaneous
phases~in the form of their time derivatives! are shown for
the marked points in Fig. 3. In the higher voltage branches,
marked A in Fig. 3 and shown in Fig. 4~a!, the two fluxons
~large peaks! are exactly in-phase. In the lower voltage
branches, marked B in Fig. 3 and shown in Fig. 4~b!, the two
fluxons are out-of-phase; the irregularity in the dynamics is
due to the interaction of the fluxon frequencyf f l and the
wave frequency@calculated from Eq.~30!#. In both cases
shown as example the fluxons are locked withm57 plasma
waves.

The numerical results are in agreement with the above
carried analysis. This is shown in Fig. 5. The circles corre-
spond to the higher velocity steps, while the squares corre-

FIG. 5. Voltage positions of steps for the shorted array; param-
eters and dynamic state are the same as in Fig. 3. Circles: the higher
velocity mode. Squares: the lower velocity mode. For both cases the
solid markers correspond to Eq.~31! while the hollow markers
correspond to the numerical results.
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spond to the lower velocity modes. In both cases the filled
points show the analytical results@Eq. ~30!#, and the hollow
points show the numerical ones~Fig. 3!. The differences be-
tween the values predicted by Eq.~30! and the numerical
values is due to the fact that the equation is obtained in the
limit of small waves, while in the region of the parameters
chosen the plasma waves are of considerable amplitude~see
Fig. 4!. A complete analysis based on the amplitude-
dependent correction to the plasma wave frequency will ap-
pear in a future work.26

IV. DISCUSSION

Stacked long Josephson junctions have many common
features with a special class of 2D arrays, namely the shorted
arrays. This is the multilayer extension of the analogy be-
tween a single-layer long junction and a single row parallel
array of short junctions. Among the common features, we
find the mode dependent splitting of the wave velocity re-

lated to the symmetry of the oscillations in different layers.
As a new feature of the discrete system we find a subsplitting
of the velocities due to resonances with discreteness-
originated plasma waves. Such structures have been recently
seen experimentally by Duwelet al.23 The lack of reso-
nances in their experiment is probably due to the large damp-
ing at the temperature close toTc .

Further theoretical work still has to be done: the study of
the caseLvÞ0, stability of solutions, effects of nonlinear
plasma waves on the fluxon propagation, simulations of open
boundary systems in magnetic field are the most crucial for
interpreting the experimental data.
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