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Abstract

Current methodologies for the optimal operation of district heating systems use
model predictive control. Accurate forecasting of the water temperature at critical
points is crucial for meeting constraints related to consumers while minimizing the
production costs for the heat supplier. A new forecasting methodology based on
conditional Finite Impulse Response (cFIR) models is introduced, for which model
coefficients are replaced by coefficient functions of the water flux at the supply point
and of the time of day, allowing for nonlinear variations of the time delays. Appro-
priate estimation methods for both are described. Results are given for the test case
of the Roskilde district heating system over a period of more than 6 years. The
advantages of the proposed forecasting methodology in terms of a higher forecast
accuracy, its use for simulation purposes, or alternatively for better understanding
transfer functions of district heating systems, are clearly shown.
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1 Introduction

District heating systems consist of centralized heat production facilities with associated
distribution networks. They play an important role in Nordic countries, where they are
used to meet the demand for space heating and hot tap water. Owing to this centralized
production combined with complex network architectures, decisions made from the supply
point of view have highly significant economic impacts. In order to operate district heating
systems optimally from an economic point of view, control strategies are implemented with
some restrictions e.g. a minimum guaranteed inlet temperature at the consumers. The
aim of these control strategies is to meet these restrictions while minimizing the supply
temperature, and thus the production costs for the heat supplier. The general problem
of flow and temperature control at the supply point is described in (Madsen et al. 1994).
Alternative methodologies based on predictive control have been introduced by Nielsen
(2002) and Sandou et al. (2004).

If considering a single heat supplier, the decision variables are the magnitude of the water
flux and the supply temperature. The magnitude of the water flux is directly imposed
by the load. Thus, load forecasts serve as a basis for making decisions on the flux. The
accuracy of load forecasts has been discussed by Nielsen and Madsen (2000) or Dotzauer
(2002). Similarly, predictive control methods applied to supply temperature necessitate a
statistical model permitting forecasts of water temperature at critical points of a network.
The relevant forecast horizons may be up to 12 hours ahead. Increasing the accuracy of
these temperature forecasts is expected to significantly lower the production costs for the
heat suppliers, as a consequence of them making more efficient control decisions. The
aim of the present paper is to contribute to reaching a higher forecasting accuracy by
proposing a new forecasting methodology.

The models in the literature either derive from a physical description of the heat and mass
transfers in the network (Sandou et al. 2005), or they are based on a statistical description
of the transfer function from the supply point to the critical point considered (Søgaard
1993). Detailed physical modelling may lead to the assumption that time delay in the
network is fixed, owing to potentially large computational costs of making it time-varying.
The proposed forecast methodology in (Søgaard 1993) is to set an ensemble of ARMAX
(Auto-Regressive Moving Average with Exogenous input) models with different fixed time
delays, and to switch between models depending on some estimated current time delay.
In contrast, the forecasting methodology introduced here makes it possible to account for
a varying time delay within the statistical model itself. This model is a Finite Impulse
Response (FIR) for which the model coefficients are replaced by nonparametric coefficient
functions of influential variables. Owing to this consideration of the nonlinear influence of
external factors on the FIR, the model is described as conditional Finite Impulse Response
(cFIR). The proposed cFIR models are used here to capture the nonlinear influence of
the water flux at the supply point on the transfer function of the district heating system.
Another interesting point about cFIR models is that they can account for the influence of
the social behaviour of the consumers on the temperature at the critical point. This may
be done either by having the time of the day as an influential variable of the cFIR model,
or more classically, by having an offset term in the form of a diurnal harmonic. This way,
the impact of the consumers’ social behaviour on the transfer function of district heating

2



systems will be discussed.

The problem of predicting the water temperature at critical points of a district heating
system is described in section 2, as well as the proposed forecasting methodology. Then,
section 3 introduces the method for model coefficient estimation. Particularly, it allows
for a recursive estimation of the coefficients so that it accommodates long-term variations.
In addition, regularization of the recursive estimation method is proposed to enhance its
generalization ability and to control its multi-step ahead accuracy. The case-study of the
district heating system of Roskilde in Denmark is considered in section 4 in order to il-
lustrate the benefits of this new forecasting methodology. The original dataset includes
temperature and flux measurements at the supply point, as well as temperature mea-
surements at 3 critical points of the distribution network, for a period of more than 6
years. In addition to demonstrating its significantly higher prediction performance, the
possibility offered by this new methodology to better understand time delays in networks
is discussed. Section 5 ends the paper by summarizing the main conclusions and gathering
perspectives regarding future developments.

2 Description of the proposed forecasting methodology

A district heating system often consists of a complex network. It may not be necessary
to model it as a whole, as one is mainly interested in what occurs at some specific points
of this network. These specific points serve as references for designing and optimizing the
control strategies, and are thus referred to as critical points. Focusing on a single critical
point, the overall network is conceptually simplified: it is considered that there is a unique
simple pipe between the supply and critical points. The district heating system operator
injects continuous quantities of warm water (at a controlled temperature), and is interested
in knowing what will be the temperature at this critical point depending on his operation
strategy at the supply point. Denote by xt and ut the value of the flux and of the water
temperature at the supply point at time step t. Let yt be the water temperature at the
critical point considered at that same time. The problem is here discretized. Since district
heating systems are slowly-varying systems, and since a very fine temporal resolution
would not yield substantial benefits (while increasing computational costs), the suitable
time step is typically one hour. The available data consist of the time-series {xt}, {ut} for
the supply point and {yt} for the critical point, all including n observations. The state-
of-the-art statistical approach is introduced in a first part, followed by the description of
our new forecasting methodology based on a cFIR model.

2.1 The state-of-the-art statistical approach

The model traditionally used for predicting the temperature at critical points, initially
proposed by Søgaard (1993), takes the form of a linear transfer function model with a
first-order autoregressive component

yt = a1yt−1 + b0(ht− τ)ut−τ + b1(ht − τ −1)ut−τ−1 + b2(ht − τ −2)ut−τ−2 + εt, ∀t (1)
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where ht is the hour of the day corresponding to the time step t, {εt} is the noise sequence,
such that E[ε] = 0 and σ2

ε < ∞. While a1 is not conditional on any variable, the coefficients
bj , j = 0, 1, 2, of the transfer function are made a function of the time of the day and of
the time delay τ in the system, by using a Fourier harmonics with a period of 24 hours

bj(ht−τ−j) = b0
j+b1

j sin

(

π(ht − τ − j)

12

)

+b2
j cos

(

π(ht − τ − j)

12

)

, ∀t, j = 0, 1, 2 (2)

i.e. they account for the diurnal variations in the system behaviour, owing to the social
behaviour of the consumers. This model structure requires that τ is fixed. When using
this model for predictive control, Nielsen (2002) proposed choosing τ as the time delay
that maximizes the correlation between the time series {yt} and {ut−τ}. It can be allowed
to change over time by using a sliding window, thus yielding different time delays in the
system depending on the time of the year.

The above model may provide an acceptable description of {yt}. Even though the autore-
gressive term in (1) may be justified from physical consideration of the heat capacity and
resultant inertia of the system, such term has the effect of dramatically lowering forecast
accuracy as the lead time progresses. Indeed, when issuing at time t a k-step ahead fore-
cast ŷt+k|t, the model is fed with the (k−1)-step ahead forecast ŷt+k−1|t. A consequence is
that forecasting errors directly sum up as k increases. This will be illustrated in section 4,
where model (1) will be used as a benchmark. Another drawback of the model, which
significantly affects its performance when used for forecasting purposes, is the fixed time
delay τ , which is not realistic. In practice, τ not only varies depending on the season: it
is also a function of the flow in the network (Arvatson 2001).

2.2 The proposed forecasting methodology

2.2.1 Modeling the transfer function of the network

Owing to the drawbacks of model (1), it is proposed to introduce a new model with a
varying time delay, and without any autoregressive component. For modelling the transfer
function of the network, the conditional Finite Impulse Response (cFIR) model initially
described by Nielsen (2000) is used as a basis, i.e.

yt =
∑

j∈Sj

βj(xt−1)ut−j + εt, ∀t (3)

where yt is the temperature at the considered critical point at time t, xt−1 is the value of
the flux at the supply point at time t−1 and ut−j are the lagged values of the temperature
at the supply point. Sj corresponds to the finite set of indexes related to the lagged values
for the cFIR model. {εt} is a white noise sequence, for which E[εt] = 0 and σ2

εt
< ∞.

The advantage of model (3) is that the cFIR is conditional on the flux at the supply point,
since the coefficients βj are coefficient functions of xt−1. This way, the time delay in the
system is also made a (nonlinear) function of the flux. However, since the model does not
integrate any component describing the autocorrelation of the {yt} time-series, it may
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require the cardinal of Sj to be large. In addition, even though potential heat losses may
be accounted for in the stationary gain of the cFIR model, it is prefered here to include
such effects in an offset term (also function of the flux), so that model (3) becomes

yt = β0(xt−1) +
∑

j∈Sj

βj(xt−1)ut−j + εt, ∀t (4)

2.2.2 Integrating the social behaviour of consumers

Model (4) is expected to provide an adequate description of the flux-dependent transfer
function of the distribution network. However, it does not account for the potential influ-
ence of the social behaviour of consumers, i.e. for their consumption pattern (as a function
of the hour of the day) that necessarily depends on the type of consumers connected to
the critical point considered. Intuitively the consumption pattern will differ if the critical
point corresponds to a residential area, to an industrial area, or to a hospital.

There may be two alternative views on how to integrate the social behaviour of consumers
within model (4). On the one hand, one may consider that it does not impact the transfer
function of the network. In this case, it is only necessary to modify the offset term of
the model, in order for it to exhibit diurnal variations. It is proposed here to use Fourier
harmonics of period 24 hours, so that the offset term β0 in (4) is replaced by

β†
0(xt−1, ht) = β†

0,0(xt−1) + β†
0,1(xt−1) sin

(

πht

12

)

+ β†
0,2(xt−1) cos

(

πht

12

)

, ∀t (5)

with ht the hour of the day at time step t, while the other β†
j coefficient functions remain

unchanged

β†
j (xt−1) = βj(xt−1), ∀j, j > 0 (6)

This model will be referred to as a rigid cFIR in the following.

The β†
j coefficient functions can be gathered in a vector denoted by β†(xt−1, ht). Let u

†
t be

the corresponding vector of ones, harmonics values, as well as lagged values of ut. Then,
the rigid cFIR model can simplify to

yt = β†⊤(xt−1, ht)u
†
t + ε†t , ∀t (7)

On the other hand, one may consider that the social behaviour of the consumer also
influences the transfer function of the network. Then, this translates to having the βj

coefficients’ functions in (4) as a function of the time of the day, in addition to being a
function of the flux at the supply point. This yields the alternative model

yt = β∗
0(xt−1, ht) +

∑

j∈Sj

β∗
j (xt−1, ht)ut−j + ε∗t , ∀t (8)

that is, with the β∗
j coefficient functions being a function of both the flux xt−1 at the

supply point and the time of the day ht. Owing to its more supple structure, the model
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will be referred to as a supple cFIR in the following. In the same manner as for the rigid
cFIR, denote by β∗(xt−1, ht) the vector of coefficient functions for this model and by u∗

t

the corresponding vector of ones and lagged values of ut. In such case, model (8) becomes

yt = β∗⊤(xt−1, ht)u
∗
t + ε∗t , ∀t (9)

To sum up, the difference between the supple and rigid cFIR models is that the former
has coefficient functions conditional on both the flux at the supply point and the time of
the day, while for the latter they are only conditional on flux values.

2.2.3 Forecasting with the cFIR models

Models (7) and (9) describe the temporal evolution of {yt} from past information at the
supply point, i.e. measurements of flux and supply temperature. From these models, the
one-step ahead prediction at time t of the temperature at the critical point can be defined
as the conditional expectation of the process at time t+1 given the information set Ωt up
to time t, and the chosen cFIR model. If denoting by ŷ†

t+1|t and ŷ∗
t+1|t the one-step ahead

predictions with the rigid and supple cFIR models, this gives

ŷ†
t+1|t = E

[

yt+1|β
†, Ωt

]

, ŷ∗
t+1|t = E [yt+1|β

∗, Ωt] , ∀t (10)

In practice, since E

[

ε†
]

= 0 and E [ε∗] = 0, the one-step ahead predictions are obtained

with

ŷ†
t+1|t = β†(xt, ht+1)

⊤u
†
t+1, ŷ∗

t+1|t = β∗(xt, ht+1)
⊤u∗

t+1, ∀t (11)

for the rigid and supple cFIR models, respectively.

Note that for computing one-step ahead predictions with cFIR models, the current filtered
flux value xt and the lagged supply temperature values ut−j+1, j ∈ Sj, are available
measurements. For multi-step ahead prediction, say k-step ahead, the above equations
become

ŷ†
t+k|t = β†(x̂t+k−1|t, ht+k)

⊤u
†
t+k, ŷ∗

t+k|t = β∗(x̂t+k−1|t, ht+k)
⊤u∗

t+k, ∀t (12)

Since u is the control variable, future values of u can be assumed to be known. In contrast,
future flux values at the supply point cannot be exactly known, though they could be
deduced from load predictions, since the load qt at time t is related to xt with

qt = cpxt(ut − vt), ∀t (13)

where vt is the return temperature at that same time and cp is the heat capacity of the
water in the pipe. It is known that the variations of vt are very smooth, so that future
values can be assumed to be known or could be accurately predicted. Predictions of future
flux at the supply point could then be straightforwardly obtained and used to feed the
model. Note that the weather directly impacts the load in district heating systems, and
consequently the flux at the supply point. Since the flux is a variable of the cFIR coefficient
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functions, the impact of the weather on the temperature at critical points of the network
is implicitly considered.

Actually, both flux and temperature at the supply point are control variables in practice.
Since the flux variable is closely related to the load as explained above, it can be assumed
that the supply temperature is controlled separately, using flux forecasts or scenarios
as input. Restrictions on the range of potential values and variations of both flux and
temperature variables may also appear as constraints in this complex decision-making
problem. In all cases, the cFIR models can be used for simulation purposes in order to
evaluate the impact of decisions on the flux and temperature variables in the subsequent
hours. A forecasting exercise will be considered in section 4 in order to illustrate the
sensitivity of the prediction performance of the cFIR models to the choice of future flux
values. In this exercise, the supply temperature is the unique control variable and a simple
Auto-Regressive (AR) model of order p is used to describe {xt}, and consequently for
multi-step ahead prediction. This model is

xt = a0 +
p
∑

i=1

aixt−i + ξt, ∀t (14)

where {ξt} is a white noise sequence, i.e. such that E[ξ] = 0 and σ2
ξ < ∞. Such a modelling

approach may be less appropriate than that mentioned above, so that the results given in
section 4 can be considered as a lower bound on the potential performance of the proposed
forecasting methodology in comparison to the case where more advanced flux predictions
are available. This will allow us to perform a sensitivity analysis on the prediction per-
formance of the cFIR models even if the information on future flux at the supply point is
not perfectly accurate. After inspection of the correlogram of the model residuals, it has
been decided to enhance this AR(p) model with a Fourier harmonics of period 24 hours.
This makes it possible to account for periodic diurnal variations in the {xt} time series
that cannot be captured by the autoregressive component only. Model (14) then becomes

xt = a0
0 + a1

0 sin

(

πht

12

)

+ a2
0 cos

(

πht

12

)

+
p
∑

i=1

aixt−i + ξt, ∀t (15)

where ht is the hour of the day corresponding to time step t. Multi-step ahead flux forecasts
obtained from model (15) are then used to feed the cFIR model as expressed in (12).

3 Estimation of the model parameters

For a model such as (15), the model parameters can easily be estimated with a Least
Squares (LS) or Recursive Least Squares (RLS) method, as described in e.g. (Ljung and Söderström
1983). In contrast, for the case of cFIR models, the chosen method for nonparametric pa-
rameter estimation is described in the following, both for offline and online applications.
It combines local polynomial regression, weighted LS for the offline case – and respec-
tively weighted RLS with exponential forgetting for the online case, as well as Tikhonov
regularization (Tikhonov and Arsenin 1977). For simplicity, the method is described for
a generic cFIR model whose transfer function is described by β(r), with r = [r1 r2 . . . rl]
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the vector of variables that condition the cFIR model. l should be kept to a low value,
say below 3, owing to the curse of dimensionality (Hastie and Tibshirani 1990, pp. 83-
84). When necessary, specific points related to the estimation of the two cFIR models
introduced above will be discussed. Note that periods with non-optimal operation of the
district heating system may affect estimation of model coefficients. In general when fitting
statistical models, it is assumed that the data characteristics are similar over both the
training and evaluation periods, thus translating to a continuous optimal operation of
the district heating system. In addition, a benefit of online adaptive estimation combined
with regularization proposed here is to diminish and even accommodate potential effects
of periods with non-optimal operation.

3.1 Local polynomial estimates

The coefficient functions βj(r) are estimated in a nonparametric framework, i.e. without
assuming a shape for these functions. This is done by using local polynomial regression
(Cleveland and Devlin 1988), for which the only assumption regarding the βj coefficient
functions is that they are sufficiently smooth to be locally approximated with polynomials.
The estimation problem is reduced to locally fitting linear models at a number m of fitting
points r(i). A fitting point is defined by a pair of flux and time values (i.e. in our case
l = 2)

r(i) =
[

r(i),1 r(i),2 . . . r(i),l

]⊤
, i = 1, . . . , m (16)

so that these m fitting points span the range of potential values on the various dimensions
of r. Defining these fitting points is best done by using information on the distribution of
r. For the case of the cFIR models introduced above, this mainly concerns the distribution
of flux values, as hour values will be uniformly distributed.

Let us focus on the fitting point r(i) only. The local polynomial approximation zt of the
vector of explanatory variables ut at rt = [rt,1 rt,2 . . . rt,l]

⊤ is given by

zt =
[

ut,1p
⊤
d (rt) . . . ut,kp

⊤
d (rt) . . . ut,lp

⊤
d (rt)

]⊤
(17)

where pd(rt) corresponds to the d-order polynomial evaluated at rt. For instance if d = 2,
p2(rt) can be obtained as

p2(rt) =
[

1 rt,1 rt,2 r2
t,1 rt,1rt,2 r2

t,2

]⊤
(18)

In parallel, write

φ(i) = φ(r(i)) =
[

φ⊤
(i),1 . . .φ⊤

(i),k . . .φ⊤
(i),l

]⊤
(19)

the vector of local coefficients at r(i), where the element vector φ(i),k is the vector of
local coefficients related to the local polynomial approximation of the k-th explanatory
variable, that is, ut,kpd(r(i)).
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The nonlinear cFIR is thus locally approximated at r(i) by the linear model

yt = z⊤t φ(i), ∀t (20)

so that the problem of fitting the nonlinear cFIR model is converted in a number m of
local linear models to be fitted, that is, one for each fitting point r(i).

3.2 Offline estimation of the local coefficients

In an offline setting, a set of n observations for each of the time series is available and one
then wants to estimate the local coefficients for this set of data. In this type of setting, with
the one-step ahead prediction defined as the conditional expectation (cf. section 2.2.3),
the nonlinear cFIR model can be fitted by minimizing the sum of squared residuals over
the set of observations, that is,

S(β) =
n
∑

t=1

ρ(yt − β⊤(rt)ut) (21)

where ρ is a quadratic criterion, i.e. such that ρ(ǫ) = ǫ2/2.

Then, if focusing on a given fitting r(i), one can estimate the vector of corresponding local

coefficients, that is, φ(i), by using weighted least-squares. The estimate φ̂(i) is then given
by

φ̂(i) = arg min
φ(i)

S(φ(i)) = arg min
φ(i)

n
∑

t=1

wt,(i)ρ(yt − z⊤t φ(i)) (22)

where the weights wt,(j) are assigned by a Kernel function of the following form

wt,(i) = T

(

l
∏

k=1

|rt,k − r(i),k|k
~(i),k(αk)

)

(23)

In the above, |.|k denotes the chosen distance on the kth dimension of r. For the cFIR
models introduced in section 2.2, one would choose an Euclidian distance on the dimension
of the flux values and a polar distance on the dimension of hour values.

In (23), ~(i),k is the bandwidth for that particular fitting point r(i) and for the kth dimension
of r. Whatever the dimension considered, ~(i),k is determined by using a nearest-neighbour
principle (Nielsen et al. 2000). For a chosen proportion αk, the bandwidth ~(i),k(αk) is such
that

αk =
∫

D(i),k

frk
(v)dv (24)

where D(i),k = {v ∈ R | |v − r(i),k|2 < ~(i),k} defines the neighborhood of r(i) on the kth

dimension of r, while frk
denotes the density function of the rk values. In practice, frk

is
replaced by the empirical distribution function of the available data.
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Finally in (23), T is defined as the tricube function, i.e.

T : v ∈ R
+ → T (v) ∈ [0, 1], T (v) =











(1 − v3)
3
, v ∈ [0, 1]

0 , v > 1
(25)

as introduced and discussed by e.g. Cleveland and Devlin (1988).

Denote by A the data matrix such that its tth row is z⊤t , i.e. the transpose of the local
polynomial approximation of ut. Write W the diagonal matrix for which the tth element
on the diagonal corresponds to the weight wt,(i) to assign to the data point rt. The solution
of (22) is then straightforwardly given by

φ̂(i) =
(

A⊤WA
)-1

A⊤Wy (26)

where y is the vector of observations for the time-series {yt}.

The elements of β(i) are finally obtained with

β̂(i) = β̂(r(i)) = p⊤
d (r(i))φ̂(i), i = 1, . . . , m (27)

The vector of coefficient function values β̂(rt) evaluated at a given data point rt is obtained
by linear-type interpolation. For instance, if the number of variables in coefficient functions
is such that l = 2, it is done by using bilinear interpolation of the coefficient function values
at the four fitting points located around rt.

3.3 Online estimation of the local coefficients

For real-world applications, one does not want to consider the whole set of available
observations for estimating the local coefficients every time new observations become
available. Instead, for this online setting, one aims at tracking the local coefficients by using
a recursive formulation of the estimation method. In addition, a recursive formulation can
allow for an exponential forgetting of old observations, which leads to the model being
adaptive with respect to long-term variations in the process characteristics. From here on,
it is considered that at time n a set of n past observations is available for each time-series,
and thus that the dataset grows as time increases.

First, let us introduce the objective function to be minimized at each time n, which
consists of a modified version of that given by (21)

Sn(β) =
n
∑

t=1

λn−tρ(yt − β⊤(rt)ut) (28)

where λ is the forgetting factor that permits an exponential forgetting of past observations.
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For a given λ, λ ∈ [0, 1), the effective number of observations nλ is

nλ = 1 + λ + λ2 + . . . =
1

1 − λ
(29)

Denote by φ̂n,(i) the estimate of the local coefficients for the fitting point r(i) at time n.
Then, the objective function to be minimized for estimating the local coefficients at r(i)

and at time n is

Sn(φn,(i)) =
n
∑

t=1

Λn,(i)(t)wt,(i)ρ(yt − z⊤t φn,(i)) (30)

where φn,(i) is related to βn(r(i)) following a relation equivalent to (27). In parallel, Λn,(i)

is the function that permits exponential forgetting of past observations, i.e.

Λn,(i)(t) =











λeff
n,(i)Λn−1,(i)(t − 1), 1 ≤ t ≤ n − 1

1 , i = n
(31)

In the above definition, λeff
n,(i) is the effective forgetting factor for the fitting point r(i) which

makes it possible to account for the weighting in the formulation of (30). This follows the
definition given by Nielsen et al. (2000), which tells that λeff

n,(i) is a function of wn,(i) such
that

λeff
n,(i) = 1 − (1 − λ)wn,(i) (32)

where λ is the classical user-defined forgetting factor, λ ∈ [0, 1). This effective forgetting
factor ensures that old observations are downweighted only when new information is
available. By using this exponential forgetting scheme, nλ as given by (29) consists of a
lower bound on the effective number of observations (Nielsen et al. 2000).

The local coefficients φ̂n,(i) at time n for model (20) are then given by

φ̂n,(i) = arg min
φ(i)

Sn(φ(i)) = arg min
φ(i)

n
∑

t=1

Λn,(i)(t)wt,(i)ρ(yt − z⊤t φ(i)) (33)

The recursive formulation for an adaptive estimation of the local coefficients φ̂n,(i) (and

therefore of β̂n,(i), by using Equation (27) at each time-step) leads to the following three-
step updating procedure at time n:

ǫn,(i) = yn − u⊤
n β̂n−1,(i) (34)

φ̂n,(i) = φ̂n−1,(i) + ǫn,(i)wn,(i)

(

Rn,(i)

)−1
z⊤n (35)

Rn,(i) =λeff
n,(i)Rn−1,(i) + wn,(i)znz

⊤
n (36)

where λeff
n,(i) is again the effective forgetting factor. One sees that when the weight wn,(i)
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equals 0 (thus meaning that the local estimates should not be affected by the new in-

formation), then one has φ̂n,(i) = φ̂n−1,(i) and Rn,(i) = Rn−1,(i). This confirms the role
of the effective forgetting factor, i.e. downweight old observations, but only when new
information is available.

For initializing the recursive process, the matrices R0,(i), i = 1, . . . , m, can be chosen as

R0,(i) = δI, ∀i (37)

where δ is a small positive number and I is an identity matrix of appropriate size. Note
that this size, which corresponds to the number of coefficients to be estimated, is equal to
the order of the chosen model in Equation (20) times the order of the polynomials used
for local approximation. In parallel, the coefficient functions are initialized with a vector
of zeros, or alternatively from a best guess of the target regression.

3.4 Regularization for a better generalization ability

The cFIR models (7) and (9) were originally designed to perform one-step ahead pre-
diction. However, they are used here for multi-step ahead forecasting purposes with flux
predictions as input. Therefore one should try not to amplify the error in flux forecasts
when passed through the model. This can be done by ensuring that one works with a
‘smooth’ model. In addition, using recent data for fitting the model does not ensure an
optimal performance when subsequently used for predicting on new and independent data.
This ability to perform well with new and independent data is referred to as the general-
ization ability of the model (see e.g. Stone (1974)). For these two reasons, a regularized
version of the estimation method described in section 3.3 is proposed here.

Several approaches may be considered for regularization in recursive least squares meth-
ods. They are widely used for ill-conditioned numerical problems, for avoiding overfit-
ting when training neural networks (Leung et al. 1999; Sjöberg and Ljung 1995) or more
generally for estimation in nonlinear systems (Bishop 1995; Johansen 1997). Following
(Tikhonov and Arsenin 1977), it is chosen to apply the so-called Tikhonov regularization,
which consists of adding a penalty term related to the norm of the coefficients (or of their
derivatives) in the loss function to be minimized for model fitting.

For the case of the offline estimation of the model coefficients, it is well known that adding
Tikhonov regularization means that equation (26) becomes

φ̂(i) =
(

A⊤WA + µI
)-1

A⊤Wy (38)

where I is an identity matrix of appropriate size, and where µ is the regularization param-
eter that makes it possible to control the trade-off between the minimization of the fitting
errors and the norm of the model estimates. One thus sees that Tikhonov regularization
consists of penalizing the diagonal elements of the inverse covariance matrix, equivalently
to Ridge regression.

For the case of online estimation of the cFIR model coefficients, the loss function to be
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minimized at each time t can be reformulated as

S̃n(φn,(i)) =
µ

1 − λ
φ⊤

n,(i)φn,(i) +
n
∑

i=1

Λn,(i)(t)wn,(i)ρ(yt − z⊤t φn,(i)) (39)

where φ⊤
n,(i)φn,(i) represents the quadratic norm of the model estimates. The forgetting

factor λ is such that λ < 1. The regularization parameter µ is here multiplied by (1−λ)−1,
which corresponds to the effective number of observations for this loss function formula-
tion. By doing so, µ represents the regularization load to be added to each observation
accounted for in the loss function. Thus, the regularization is independent of the size of
the virtual sliding window considered, which in turn is controlled by λ. If no exponential
forgetting was used, a single parameter µ would multiply the norm of the model esti-
mates. Choosing µ in such a case would be an issue, as the result of the sum in (39)
would increase as n increases, while µ is not a function of n. Note that when regular-
ization in RLS methods is considered in the literature, see e.g. (Hubing and Alexander
1991; Ismail and Principe 1997), it is always for the case λ = 1 and with effect of the
regularization fading as the size of the dataset increases. The aim of such regularization
is mainly to control first adaptation steps after model initialization.

For the adaptive formulation of the loss function in (39), the recursive procedure for up-
dating the cFIR model coefficients at each time step can be rewritten in order to account
for regularization. In fact, the main difference with the classical updating procedure de-
scribed above relates to the updating formula for the inverse covariance matrix Rn,(i).

One then works with a regularized inverse covariance matrix R̃∗
n,(i), which replaces Rn,(i)

in (35), and which is updated with

R̃n,(i) = λeff
n,(i)R̃n−1,(i) + wn,(i)znz

⊤
n +

1 − λeff
n,(i)

1 − λ
µI (40)

where I is an identity matrix of appropriate size. The inverse covariance matrix R̃(i),0 can
be initialized with δ = µ in equation (37). Such a recursive scheme for the updating of
the covariance matrices ensures that its diagonal elements are always penalized with the
same regularization parameter µ(1 − λ)−1 (as is the case in (38)). The model estimates
are still updated by applying (35) at each time step.

4 Case-studies and results

4.1 Description of the case-studies

The models and forecasting methodology are applied to the test case of the Roskilde dis-
trict heating system. Roskilde is a city of around 80,000 inhabitants located 30 kilometres
west of Copenhagen in Denmark. The district heating system investigated has a single
heat production facility, and focus is given to three critical points on the distribution
network. They correspond to a Viking museum, the local hospital (Sankt Hans) and a
retirement home. They are hereafter referred to as critical points 1, 2 and 3, respectively.
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The available data consist of measurements of the water flux and temperature at the
supply point, as well as measurements of the water temperature at the three critical
points. They have a time resolution of 5 minutes. Since the temporal resolution of the
temperature controller installed at Roskilde is one hour, this is also the temporal resolution
chosen for temperature forecasts. Hourly data are obtained by averaging the 5-minute
measurements so that, for instance, the hourly temperature value at 01:00 is the average
of all values between 00:05 and 01:00. If more than two measurements are missing for
a given hour, the corresponding hourly value is considered as erroneous. The period for
which measurements are available goes from August 16th, 2000, to December 12th, 2006.
This translates to 55423 hourly values for each variable. For the specific case of critical
point 2, the last 11000 data points are not considered owing to suspicious behaviour of
the time-series, which is in turn due to the application of local control strategies of the
water temperature at Roskilde hospital since 2005. The overall percentage of valid data
for the three critical points are 88.49%, 86.28% and 94.56%, respectively.

The aim of the present exercise is to demonstrate the significantly higher performance of
the proposed forecasting methodology in comparison with the state-of-the-art approach
described in section 2.1. But also, the structure of the proposed models, and the two rival
approaches with the integration of the social behaviour of the consumers, will allow us to
discuss the time delays in the network and the assumption that social behaviour impacts
(or does not impact) the transfer function of the distribution network.

4.2 Setup and optimal fitting of the cFIR models

The cFIR models (7) and (9) comprise the central part of the forecasting methodology.
For both models the set of indices that defines the past values of the water temperature
at the supply point is such that Sj = {1, 2, . . . , 10}, i.e. the cFIR models rely on the last
10 hourly values of supply temperature.

Local polynomial approximation is restricted to first order polynomials, in order to limit
the number of local coefficients to be estimated, and thus the related computational
costs. Also, because of the yearly cycle in the flux values, one year of flux values is used
for obtaining a representative empirical distribution f̂x. This year serves to set the fitting
points and the proportions that define the nearest-neighbour bandwidths. The fitting
points along the flux dimension x(i), i = 1, . . . , mx, are then defined such that there is the
same proportion of flux values in each of the intervals defined by two successive fitting
points. This writes

∫ x(i)

0
fx̃(v)dv =

i − 1

mx − 1
, i = 1, . . . , mx (41)

The number of fitting points has an impact on the computational costs for model estima-
tion, provided that mx is set to a sufficient value so that local polynomial approximation
is suitable. It has been found that the model fitting was not significantly improved by
having m above 11, and so m is set to this value. The related bandwidth values ~(i),x,
i = 1, . . . , mx are obtained by applying the nearest-neighbour principle introduced in (24),
parameterized by αx. Similarly, it has been witnessed that the improvement in the model
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Table 1
Results from the cross-validation procedure for the choice of the optimal forgetting factor λ and
regularization parameter µ. These results are for the rigid cFIR model (a) and supple cFIR
model (b).

(a) rigid cFIR model

critical point number λ µ mean RMSE [◦C]

1 0.98 0.00075 0.4851

2 0.98 0.0008 0.4902

3 0.9 0.1 0.8210

(b) supple cFIR model

critical point number λ µ mean RMSE [◦C]

1 0.975 0.001 0.5014

2 0.98 0.0006 0.5304

3 0.9 0.1 0.8108

fitting was negligible when having αx higher than 0.4, and therefore this value is chosen
in the following. For the specific case of the supple cFIR model, four fitting points are
uniformly distributed over the range of daily hours. The local coefficients for the supple
cFIR models will hence be estimated for 00:00, 6:00, 12:00 and 18:00. In order to have
very smooth variations along this dimension of the supple cFIR, the bandwidth is set to
a large value (αh = 0.6).

With regard to the recursive estimation method itself, one has to set the value of the
forgetting factor λ, which defines the rate of forgetting of old observations, and controls
the ability of the method to account for long-term variations in the process characteristics.
However, if a too low value for λ is chosen, the fitting of the model will be very poor.
Finally, a last parameter to consider is the regularization parameter µ, defining the trade-
off between model fitting and the smoothness of the model estimates. Our methodology
for defining optimal values for these two parameters is to use one-fold cross validation. The
first year of the available dataset is used as a training period, while the second year is seen
as the validation set. Since it is considered that cFIR models will be used in practice for
generating temperature predictions up to 12 hours ahead, the criterion to be minimized
on the validation set is the Root Mean Square Error (RMSE), averaged over this range
of forecast horizons. For the purpose of model fitting, only flux measures are used.

The results from the cross-validation procedure are collated in Table 1. For the three
critical points, the optimal parameters λ and µ are very similar for the rigid or supple cFIR
models. For two out of the three critical points, the mean RMSE related to the optimal
parameters is slightly higher for the supple cFIR model than for the rigid one. This is not
the case for the third critical point. However, the value of the optimal forgetting factor
is low (0.9), while the regularization parameter value is very high (0.1) in comparison
with the other critical points. The mean RMSE also reaches a surprisingly high level
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in comparison with the two other critical points. This might indicate some abnormal
behaviour in the data, owing to e.g. the quality of the temperature measurements. One
should note though that this critical point corresponds to Roskilde hospital, for which
local temperature control strategies may sometimes be applied. This may thus affect the
temperature measurements used for modelling the transfer function between the supply
point and Roskilde hospital.

A nice feature of the cFIR models is the low sensitivity to the choice of the two parameters
λ and µ. For instance, Figure 1 shows the variation of the average RMSE on the validation
set for the supple cFIR model applied to critical point 1, as a function of λ (y-axis) and µ
(x-axis). These variations are described by a contour plot, with 30 level lines corresponding
to uniformly distributed mean RMSE values. The minimum average RMSE is obtained for
(λ, µ) = (0.975, 0.001). One sees that the 3-dimensional surface describing the variations
is a smooth and convex surface. The convex nature of this surface means that there is a
unique (λ, µ) combination that minimizes the mean RMSE value on the cross-validation
set. Also, the fact that this surface is smooth demonstrates the low sensitivity of the
performance of the cFIR models to the choice of the parameters λ and µ.
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Figure 1. Mean Root Mean Square Error [◦C] over the validation set as a function of both the
forgetting factor λ (y-axis) and the regularization parameter µ (x-axis). These results are for
the supple cFIR model and for critical point 1.

In a last stage, the estimated cFIR model for the transfer function between the supply
point and critical point 1 is shown in Figure 2. This gives the amplitude of the coefficient
functions in the cFIR model as a function of both the water flux and the lag at the supply
point. For high flux values, the transfer function is highly concentrated: the water temper-
ature at the critical point 1 is almost exclusively determined by that at the supply point
2 hours before. A similar behaviour can be observed for flux values down to 1000m3h−1.
For lower values, the transfer function is less concentrated and more lagged values of the
water temperature at the supply point contribute to determining this at critical point 1.
This may be explained by a different mixing of the water in the pipe owing to this lower
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flux. In addition, it has been noticed (for both cFIR models and for the three critical
points) that the offset term in the cFIR tends to decrease as the flux values become lower,
indicating higher temperature losses.
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Figure 2. Contour plot of the amplitude of the coefficient functions of the rigid cFIR model at
the end of the validation set for critical point 1. The x-axis gives the flux at the supply point
(in m3h−1) while the y-axis gives the lag of the transfer function in hours.

Figure 2 enables better appraisal of the physical behaviour of the district heating system
between the supply point and a given critical point. The influence of the flux on the losses
has already been mentioned above. In addition to this, the figure illuminates the influence
of the flux at the supply point on the time delays in the network. Here, this varies between
2 and 5 hours when going from the highest to lowest flux values. The time delay variations
appear to be nonlinear, though this may come from some numerical artefact. Indeed, the
same regularization parameter µ is used for all fitting points. However, since an optimal
regularization parameter (for a linear model) is related to the variance and the norm of
model estimates, see e.g. (Golub et al. 2000; Wang and Chow 1989), the optimal µ for
the estimation of the coefficient functions in the cFIR should also be a function of the
fitting point considered. This is because both the variance and the norm of the coefficient
functions will vary depending on the fitting point. The optimal and local tuning of the
regularization parameter µ should be further investigated in the future. Note that for the
case of the supple cFIR models, one could also visualize contour plots such as in Figure 2
for different hours of the day. Since variations in the shape of the transfer functions
through the day have not been found to be highly significant, this point is not further
discussed here.
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4.3 Out-of-sample evaluation of the cFIR models

The remainder of the dataset is seen as an out-of-sample evaluation set, for which the
application of the forecasting methodology has to mimic operational conditions, so that
observed performance is representative. The evaluation set consists of 33900 data points
(∼ 4 years) for critical points 1 and 3, and of 22500 data points (slightly less than three
years) for critical point 2. The cFIR models estimated for the three critical points make
it possible to describe the transfer function between the supply point and each of these
critical points. For control purposes in operational conditions, these models can serve to
simulate what would be the temperature at a given critical point for the following hours,
depending on the chosen control strategy (on both flux and water temperature variables)
at the supply point. Therefore, for the out-of-sample evaluation of the cFIR models, the
measurements of both the flux and the water temperature at the supply point are used
as input to the models.

Several criteria are considered for evaluating the prediction performance, namely bias,
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute
Percentage Error (MAPE). All these criteria are calculated on a per-horizon basis, since
it is expected that the prediction performance deteriorates as the lead time progresses.
The RMSE criterion is used as the main criterion since it relates to the quadratic loss
function used for model estimation (and parameter selection through the cross-validation
procedure). The range of temperature variations over the whole dataset are 31.26◦C,
28.58◦C and 30.53◦C for critical points 1, 2 and 3, respectively. The full set of results
from the evaluation are available in (Pinson et al. 2007), while only the main results are
discussed here.

For both types of cFIR models, bias values are at a low level whatever the look-ahead time,
indicating that there is no systematic part in the prediction error. Figure 3 summarizes
the evaluation carried out with the MAE and RMSE criteria, depicted as a function of
the look-ahead time. There is a slight increase in the prediction error as the lead time
progresses for the first 2 critical points, while this increase is more pronounced for the third
point. In addition, the average level of prediction error is significantly higher for this last
critical point, as was also the case when fitting the cFIR models with the cross-validation
procedure. The MAE averaged over the forecast length ranges between 0.291 and 0.597◦C
depending on the cFIR models and the critical point considered. For the first 2 critical
points, there is significant difference in the accuracy of predictions generated with the
supple and rigid cFIR models, with a clear advantage for the latter ones. However for the
third critical point their forecast accuracies are much more similar, with an advantage for
the supple cFIR models for horizons further than 5-6 hours ahead. This may be explained
by the fact that diurnal effects (which have more importance as the look-ahead time
progresses) at Roskilde hospital cannot be properly accounted for with a simple first-
order harmonic function. Hence, the nonparametric approach used in supple cFIR models
becomes a relevant alternative.
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(a) MAE as a function of the look-ahead time.
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Figure 3. Out-of-sample evaluation of the forecast performance of both the rigid and supple cFIR
models for the three critical points. Flux measurements are used as input to the cFIR models.
The forecast performance is evaluated with MAE and RMSE error measures as a function of
the look-ahead time up to 12-hour ahead.
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4.4 Sensitivity to the flux values used as input to the cFIR models

In this section, a sensitivity analysis on the performance of the proposed forecasting
methodology is carried out. Especially, focus is given to the sensitivity of this performance
to the flux values used as input to the cFIR models. It is then imagined that in operational
conditions a simple model is used for predicting the flux at the supply point for the
subsequent hours. The accuracy of forecasts obtained with the autoregressive model (15)
is discussed in (Pinson et al. 2007). Such flux predictions are then used to feed cFIR
models. The impact on the performance of the resulting temperature predictions is then
discussed.

As was the case in section 4.3, predictions are here also unbiased, even though bias values
are slightly larger for supple cFIR models. Figure 4 summarizes the evaluation of their
prediction accuracy with the MAE and RMSE error measures calculated as a function of
the look-ahead time. It can then be directly compared to the results of Figure 3 in order
to quantify the loss in forecast accuracy owing to the use of flux values that are not the
true values for feeding the cFIR models.

The range of variations of both MAE and RMSE criteria appears to be similar to that
observed in Figure 3, i.e. in the case for which flux measurements input cFIR models.
The increase in error measures as the lead time progresses is slightly sharper for the
case of critical points 1 and 2, but not for the third point. The MAE averaged over the
forecast length goes from 0.318 and 0.590◦C depending on the cFIR models and the critical
point considered. Because of the smooth nonlinear variations of the transfer function of
the network (if seen as a function of the flux at the supply point), the errors in flux
predictions are actually dampened when passed through the cFIR models. Obviously,
using more advanced methods for flux prediction (such as that described in section 2.2.3)
should make it possible to have more accurate temperature forecasts, but the impact
on the gain in accuracy would be limited. Finally, note that while the loss in prediction
accuracy is much more significant for the rigid than for the supple cFIR models. The
rigid cFIR models still appear to be globally superior, though the difference in prediction
accuracy between the two types of cFIR model is now very low.

4.5 Comparison with the state-of-the-art statistical approach

In a last part of this study, focus is given to comparing the forecasting methodology
introduced with the state-of-the-art statistical approach. This approach is based on the
lagged transfer function of model (1). The lag τ in this model is chosen as that which
maximizes the correlation between the time series {yt} and {ut−τ}. A single time delay is
considered over the whole dataset. The chosen lag for each of the critical points, as well
as the corresponding correlation values are collated in Table 2. Significant differences in
these correlation values can be noticed. Note that observing a higher correlation does not
mean that one should expect a higher forecast performance of the lagged transfer function
approach.

The model coefficients are adaptively estimated with a RLS method with exponential
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(b) RMSE as a function of the look-ahead time.

Figure 4. Out-of-sample evaluation of the forecast performance of both the rigid and supple
cFIR models for the three critical points. Flux predictions are used as input to the cFIR models.
The forecast performance is evaluated with MAE and RMSE error measures as a function of
the look-ahead time up to 12 hours ahead.
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Table 2
Characteristics of the lagged autoregressive models used for temperature predictions. The lag
of each model is that which maximizes the correlation between the lagged values of the water
temperature at the supply point and the temperature measurement at each critical point. The
forgetting factor is obtained from a one-fold cross-validation procedure.

critical point lag [h] correlation λ

1 2 0.421 0.988

2 1 0.814 0.994

3 2 0.742 0.98

forgetting. The optimal value of the forgetting factor is obtained from a one-fold cross-
validation procedure, similar to that employed for optimal tuning of the cFIR models or
of the autoregressive model used for flux prediction. In order to have a fair comparison
between the cFIR models and the lagged transfer function models, the second year of the
data is also used here as a validation set, and the remainder of the dataset for out-of-sample
evaluation of the forecast performance. The autoregressive and cFIR-based approaches are
evaluated on the same period and same data. The optimal forgetting factors are also given
in Table 2. The level of forgetting is again more pronounced for critical point 3.

The full evaluation of the accuracy of the multi-step ahead predictions for the 3 critical
points is shown and discussed in (Pinson et al. 2007). Here, focus is given to the com-
parison with the prediction performance of cFIR models. For appraising the reduction
in prediction error when going from the state-of-the-art approach to that based on cFIR
models, the improvement with respect to the RMSE criterion is calculated for each crit-
ical point and for each cFIR type. This improvement is given by the decrease in RMSE
divided by the RMSE for the lagged transfer function models. The improvement values
are collated in Table 3 as a function of the look-ahead time.

Improvement values increase as the lead time progresses, indicating a sharper increase in
prediction error for the lagged transfer function model. For 1-hour ahead forecasts, some
of the improvement values are negative: for such a short horizon the use of the state-of-
the-art approach may be beneficial owing to the autoregressive component that makes
it possible to better capture the short-term persistent nature of temperature variations.
However, improvement values reach a very high level rapidly, with a reduction in RMSE
up to 53% for 12 hours ahead predictions for critical point 2. The improvement is slightly
less for the two other critical points, but the forecasting method based on cFIR models
clearly outperforms the state-of-the-art approach based on the lagged transfer function
model.

5 Concluding remarks

Models for the prediction of the temperature at critical points of district heating systems
are paramount for heat suppliers to make optimal decisions on the water temperature
at the supply point. This is because the decision-making methodologies are based on
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Table 3
Improvements with respect to the RMSE criterion achieved by the genuine predictions from cFIR
models in comparison with forecasts obtained from the state-of-the-art approach. Improvements
are given for each critical point and both types of cFIR model, and are expressed in %.

(a) rigid cFIR model

horizon [h] critical point 1 critical point 2 critical point 3

1 -5.5146 26.9938 5.0830

2 10.5332 36.7955 14.1353

3 17.9085 39.8307 16.1290

4 21.5780 40.3498 17.1729

5 25.3272 41.0283 18.5601

6 28.8176 42.7063 20.5886

7 31.8774 44.6379 22.9004

8 34.8676 46.5684 25.2898

9 37.7255 48.5652 27.6495

10 40.6136 50.2731 29.7891

11 43.1811 51.7465 31.4742

12 45.5966 53.0583 32.8710

(b) supple cFIR model

horizon [h] critical point 1 critical point 2 critical point 3

1 -12.6672 20.6373 -8.9477

2 3.6866 30.6035 5.2472

3 13.2943 34.7397 11.4181

4 18.3019 35.9590 14.9800

5 23.0563 37.2037 18.1995

6 27.1536 39.3316 21.3865

7 30.5186 41.6330 24.4759

8 33.6480 43.8192 27.3243

9 36.5062 45.8661 29.8913

10 39.2566 47.4513 32.0293

11 41.7219 48.7801 33.5817

12 44.0663 50.1574 34.7064

23



model predictive control. It is thus expected that improvements in the accuracy of tem-
perature forecasts at critical points will significantly improve the control decisions on
supply temperature, and thus lower the operational production costs of heat suppliers.
The forecasting methodology introduced in the present paper contributes to achieving a
higher accuracy for such temperature forecasts. An evaluation of the performance of this
methodology has been carried out by considering the case of the Roskilde district heating
system over a period of several years.

It has been explained that the methodology proposed makes it possible to account for
varying time delays in the distribution network within the statistical model itself. Indeed,
the described cFIR model belongs to the family of FIR models, but the model coefficients
are replaced by smooth coefficient functions. It is obvious to choose the flux at the supply
point as a variable that conditions the transfer function of the network. In contrast, the
way to account for the social behaviour of the consumers is not straightforward. This
is why it has been chosen to evaluate whether this should be accounted for within the
cFIR model, i.e. by considering the time of the day as a second variable conditioning the
cFIR model, or by keeping it outside the cFIR model by just allowing the offset term to
have diurnal variations. The former alternative is computationally less expensive (owing
to the lower number of coefficients to be estimated) and actually leads to higher forecast
accuracy for 2 out of the 3 critical points considered. Whatever the chosen approach, the
prediction accuracy of the proposed methodology is dramatically higher than that of the
state-of-the-art statistical approaches to the present problem.

The proposed class of models may be used for simulation or prediction purposes for other
types of problems that involve nonlinearly varying time delays in a transfer function. This
could be the case in e.g. signal processing or network modelling. In addition, the described
methods for the estimation of the coefficient functions in cFIR models can be improved
in the future, both for offline and online applications. Mainly, the issue of optimally
tuning the regularization parameter at each fitting point should be further investigated.
This may involve the use of numerical methods, but one may also envisage searching for
some analytical solutions similar to that existing for the choice of optimal regularization
parameters for least squares estimators in linear models, see e.g. (Hoerl et al. 1975).

It would be interesting to study the alternative possibility of considering cFIR models
with the load (instead of the flux) variable as that which conditions the transfer function
of the district heating system. The main interest of such an approach would then be that
forecasts of the temperature at critical points could not be affected by the interdependence
of the flux and temperature variables at the supply point. Broader perspectives of this
work include the use of the described forecasting methodology within the model predictive
control-based methods employed today for decision-making in district heating systems.
This will allow us to quantify the operational benefits of a higher accuracy of temperature
forecasts.

24



Acknowledgments

The methods and results in the present report have been generated as part of the Cen-
tre for Model-Based Control (CMBC) project, partly supported by the Danish Agency
for Science Technology and Innovation (under the contract number 07-000795), which is
hereby greatly acknowledged. The authors also gratefully acknowledge Roskilde Forsyn-
ing, a company supplying district heating, electricity and power to the citizens of Roskilde
Municipality, for providing the data used as input. Finally, three anonymous reviewers
are acknowledged for their valuable comments and suggestions.

References

Arvatson L. Stochastic modeling and operational optimization in district heating systems.
Ph.D. dissertation, Lund Institute of Technology, Mathematical Statistics; 2001.

Bishop CM. Training with noise is equivalent to Thikonov regularization. Neural Compu-
tation 1995;7; 108-116.

Cleveland WS, Devlin SJ. Locally weighted regression: an approach to regression analysis
by local fitting. Journal of the American Statistical Association 1988;83; 596-610.

Dotzauer E. Simple model for prediction of loads in district-heating systems. Applied
Energy 2002;73; 277-284.

Golub GH, Hansen PC, O’Leary DP. Tikhonov regularization and total least squares.
SIAM Journal of Matrix Analysis and Applications 2000;21; 185-194.

Hastie T, Tibshirani R. Generalized additive models. London: Chapman & Hall/CRC;
1990.

Hubing NE, Alexander ST. Statistical analysis of initialization methods for RLS adaptive
filters. IEEE Transactions on Signal Processing 1991;39; 1793-1804.

Ismail MY, Principe JC. Equivalence between RLS algorithms and the Ridge regression
technique. in: Proc. 13th Asilomar Conf. Signals, Systems and Computers (IEEE) 1997;
1083-1087.

Johansen TA. On Tikhonov regularization, bias and variance in nonlinear system identi-
fication. Automatica 1997;33; 441-446.

Hoerl AE, Kennard RW, Baldwin KF. Ridge regression : some simulations. Communica-
tions in Statistics 1975;4; 105-123.

Leung CS, Young GH, Sum J, Wing-kay K. On the regularization of forgetting recursive
least squares. IEEE Transactions on Neural Networks 1999;10; 1482-1486.
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