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Ensemble-based probabilistic forecasting
at Horns Rev

Pierre Pinson∗ and Henrik Madsen

DTU Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark

Abstract

For management and trading purposes, information on short-term wind generation (from few hours to
few days ahead) is crucial at large offshore wind farms, since they concentrate a large capacity at a
single location. The most complete information that can be provided today consists of probabilistic fore-
casts, the resolution of which may be maximized by using meteorological ensemble predictions as input.
The paper concentrates on the test case of the Horns Rev wind farm over a period of approximately
one year, in order to describe, apply and discuss a complete ensemble-based probabilistic forecasting
methodology. In a first stage, ensemble forecasts of meteorological variables are converted to power
through a suitable power curve model. This model employs local polynomial regression, and is adap-
tively estimated with an orthogonal fitting method. The obtained ensemble forecasts of wind power
are then converted into predictive distributions with an original adaptive kernel dressing method. The
shape of the kernels is driven by a mean-variance model, the parameters of which are recursively esti-
mated in order to maximize the overall skill of obtained predictive distributions. Such a methodology
has the benefit of yielding predictive distributions that are of increased reliability (in a probabilistic
sense) in comparison with the raw ensemble forecasts, while taking advantage of their high resolution.
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Introduction

Future developments of wind power installations are more likely to take place offshore, due to space

availability, less problems with local population acceptance, and more steady winds. This is espe-

cially the case for countries that already experience a high wind power penetration onshore, like

Germany and Denmark. This latter country hosts the two largest offshore wind farms worldwide:

Nysted and Horns Rev, whose nominal capacities are of 165.5 and 160 MW, respectively. Today, each

of these wind farms can supply alone 2% of the whole electricity consumption of Denmark [1]. Such

large offshore wind farms concentrate a high wind power capacity at a single location. Onshore,

the same level of installed capacity is usually spread over an area of significant size. As a conse-

quence, forecast accuracy is even more paramount for such offshore location, since a phase error1

for instance may easily translate to an energy imbalance of very significant magnitude. Such an im-

balance would then call for regulation either at the local or at the grid level, resulting in additional

costs for the wind power producer, the Transmission System Operator (TSO) and consequently for

the electricity consumers. In the present paper, focus is given to look-ahead times in the range 1-48

hour ahead. For literature on shorter horizons (i.e. for the few-minutes to few-hours ahead range),

we refer to e.g. [2, 3, 4, 5].

The potential accuracy of wind power prediction systems in offshore conditions, more specifically

for the North Sea, is discussed in [6], based on the accuracy of wind forecasts and the ability to

model wind profiles. In parallel, the forecast accuracy to be expected if having a pool of wind farms

deployed offshore, following the German plans for 25GW offshore capacities, is studied in [7]. Very

few literature exists however about actual performance of wind power forecasting systems at large

offshore wind farms. The example of a forecasting method application and performance assessment

results for an offshore wind farm of limited size in Denmark may be found in [8]. Conclusions in [6]

indicate that significant developments will be necessary prior to appropriately understand, model

and forecast offshore meteorological phenomena. In addition to that, it is recognized today that the

question of wake effects inside and behind large wind farms comprises a real challenge, both for

the resource assessment and the forecasting applications [9]. Therefore, since related wind power

forecast accuracy may not be dramatically increased in the short term, and since it is known that

forecast accuracy is highly situation-dependent, emphasis has to be put on providing forecast users

with information on forecast uncertainty. It appears today that for a large range of decision-making

problems, the most appropriate way of estimating and communicating forecast uncertainty is with

probabilistic forecasts, i.e. forecasts of the probability distribution (or some of its quantiles) of wind

generation for each look-ahead time. Relevant literature on this topic includes e.g. [10, 11, 12, 13].

It is foreseen that probabilistic forecasts obtained from ensemble predictions of meteorological vari-

ables would have a higher resolution, i.e. a higher ability to resolve among situations with various

uncertainty levels, than those derived from purely statistical methods [14]. The ability of ensemble

forecasts of wind power (obtained from different types of meteorological ensembles) to inform on the

expected level of forecast uncertainty is discussed in [15]. Even though this comprises a promis-

ing approach, it is known there are two remaining issues related to ensemble-based probabilistic

forecasting. They are namely the power curve model used for conversion of meteorological vari-

ables to power generation, as well as the recalibration of wind power ensembles in order to obtain

reliable predictive densities [16]. These two points are the focus of the present paper, with appli-

cation to the Horns Rev wind farm in Denmark. The meteorological ensemble predictions used

as input originate from a Multi-Scheme Ensemble Prediction System (MSEPS) described in e.g.

[17]. The nonparametric method employed for modeling the conversion function from meteorolog-

ical variables to wind power production is based on local polynomial regression. Local coefficients

are adaptively estimated with orthogonal fitting [18]. This conversion yields ensemble forecasts

of wind generation. Ensemble forecast members are subsequently dressed with Gaussian kernels,

1A phase error consists of a timing error in ramps up (or down) in wind power production
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which are parameterized with a mean-variance model. The relevant parameters are tracked with

a recursive Maximum Likelihood (ML) estimation method. The overall ensemble-based forecast-

ing methodology permits to derive predictive distributions of wind power with a maximized overall

skill, being a trade-off between reliability and resolution. The only requirements for its real-world

application are the availability of ensemble forecasts of meteorological variables for the wind farm,

as well as the availability of online measurements of wind power generation.

The paper is structured as following. In a first part, the methodology for the conversion of ensemble

forecasts of meteorological variables to power is developed. Focus is subsequently given to the

kernel dressing of wind power ensemble forecasts, in order to obtain predictive distributions of

wind power. The parameterization of the Gaussian kernels, as well as the method for adaptive

estimation of its parameters are detailed. Application results for the Horns Rev test case permit to

illustrate the outputs of the proposed forecasting methodology, in addition to evaluate the resulting

probabilistic forecasts of wind power. Results on the case-study show a significant reliability of

obtained probabilistic forecasts, with a very high resolution. Conclusions end the paper, along

with perspectives related to future developments. Note that through the whole paper all variables

considered are normalized by their maximum value over the dataset, and thus comprised between

0 and 1.

Generation of ensemble forecasts of wind power

The first step for obtaining ensemble-based probabilistic forecasts of wind generation relates to

the conversion of ensemble forecasts of meteorological variables to wind power. Let yt+k be the

measured power value at time t + k, while ŷt+k|t denotes a power forecast issued at time t for that

same lead time. In parallel, x̂t+k|t is the corresponding vector of predicted meteorological variables.

For the wind power application, relevant meteorological variables commonly include wind speed

and direction, plus possibly e.g. air density, temperature, pressure or humidity. Note that more

physical expertise on the local wind profiles, as well as on the wind-to-power conversion process,

may motivate the consideration of other relevant physical variables.

In a general manner, a model of the power curve for the conversion of meteorological forecasts to

power at the level of a wind farm, for a given forecast horizon k, writes

yt+k = gt,k(x̂t+k|t) + εt+k, ∀t, k (1)

where {εt+k}t is a sequence of independent and identically distributed (i.i.d.) random variables,

such that E[εt+k] = 0 and σ2(εt+k) < ∞. In parallel, gt,k is a nonlinear function to be estimated

from data. A t-index is used in order to express the fact that g may be non-stationary, and hence

that the power curve model may be allowed to have slow variations over time. Smooth changes in

the power curve model may result from e.g. ageing of the turbines or maintenance-related issues.

The k-index indicates that a separate power curve model is defined for each prediction horizon,

since the characteristics of the g-function may also depend on k. For instance, it may intuitively

be expected that the level of noise in meteorological forecasts — in other words of forecast error —

would increase as the lead time gets further.

Ensemble forecasts of meteorological variables consist of a set of m alternative predictions for each

look-ahead time. They may be generated by perturbing initial conditions of Numerical Weather Pre-

diction (NWP) models, by employing a stochastic parameterization of such models, or alternatively

by using different physical parameterizations of the models involved. An accessible and complete

introduction to ensemble forecasting in meteorology is given in [19]. Denote by x̂
(j)
t+k|t the forecasts

of meteorological variables (at time t for lead time t + k) given by the jth member (j = 1, . . . , m) of
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the ensemble set. If no ensemble member is found (or expected to be) systematically better than

the others, one may consider the mean of all ensemble members,

x̄t+k|t =
1

m

m
∑

j=1

x̂
(j)
t+k|t, ∀t, k (2)

as the best forecast that can be extracted from these sets of alternative predictions, see discussion

in [20] for instance. As a consequence the power curve model (1) can be rewritten as

yt+k = gt,k(x̄t+k|t) + εt+k, ∀t, k (3)

with the noise sequence {εt+k}t having properties similar to those of the noise sequence in (1),

i.e. centered and with finite variance. The above equation permits to model the function for the

conversion of the best available forecast of meteorological variables to measured wind generation,

and hopefully comprises the most relevant power curve model for ensemble conversion.

An appealing approach to the modeling of the power curve defined above consists of local polynomial

regression, for which the gt,k function is locally approximated with polynomials at a certain number

of fitting points, defined to span the range of potential values of x̄t+k|t [21]. Indeed, an advantage

of local polynomial regression is its nonparametric nature, i.e. no assumption is made on the shape

of the power curve. Such power curve model may then be fitted with the aim of minimizing either

a classical Least Squares (LS, see [22]) or a Total Least Squares (TLS, see [18]) criterion. The

latter method is more generally referred to as orthogonal fitting. The difference in concept between

these two alternative fitting approaches is illustrated in Figure 1. In the LS case, the distance to

be minimized between observations and the model is defined along the power axis, while for the

orthogonal fitting case, this distance is defined as that between observations and their orthogonal

projections on the power curve model. It is shown in [18] that the choice of the best fitting method

actually depends on the intended application. If one aims at minimizing a Root Mean Square Error

(RMSE) criterion for the case of point prediction, then one should prefer LS-fitting of the power

curve model. However, if one instead wants to obtain the most faithful description of the true power

curve (as it is the case here), one should rather apply an orthogonal fitting method. Conversion

of meteorological ensembles to power via a LS-fitted power curve would dampen the uncertainty

present in meteorological forecasts and would result in severe underestimation of uncertainties in

wind power forecasts.

This estimated power curve is used as a model of the true power curve for the wind farm, and is then

employed for the conversion of each meteorological ensemble member to wind power production,

every time a new set of meteorological forecasts are provided. If denoting by ĝt,k the power curve

model estimated according to equation (3), at time t for k-hour ahead forecasting, the jth ensemble

member of wind power production ŷ
(j)
t+k|t for lead time t + k is given by

ŷ
(j)
t+k|t = ĝt,k(x̂

(j)
t+k|t) (4)

while the single point forecast that is extracted from the set of ensemble members is chosen to be

its mean, i.e.

ŷt+k|t =
1

m

m
∑

j=1

ŷ
(j)
t+k|t (5)

One could argue that a different power curve model should be estimated for each ensemble mem-

ber. Indeed, in the case of multi-model meteorological forecasts, for instance for which each model

has a different physical parameterization, each ensemble member has its own characteristics. This

would not be the case for meteorological ensemble forecasts obtained with initial value perturba-
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FIGURE 1: Fitting of the power curve model with classical least-squares and with orthogonal fitting methods. The power
curve model is nonparametric and uses local polynomial regression.

tions e.g. with singular vectors or bred modes, since in contrast ensemble members would not be

distinguishable [23]. The approach proposed here can be used as a generic approach whatever the

type of meteorological ensemble forecasts considered as input, and it has the advantage of lowering

computational costs, since only one power curve model for each forecast horizon has to be estimated.

Adaptive kernel dressing of wind power ensemble forecasts

The methodology described above permits to obtain ensemble forecasts of wind power. It is gen-

erally accepted that ensemble forecasts of wind power are not reliable from a probabilistic point

of view, i.e. that the observed probabilities significantly deviate from the nominal ones [16]. In

practice, if probabilistic information is derived from such ensembles, one then witnesses an under-

estimation of potential extreme events, both in terms of range and probabilities. Regarding the

shape of predictive distributions, too much probability is concentrated in their central part, while

the tails are not thick (and long) enough. This will be illustrated further in the paper. In order to

correct for this, it is necessary to recalibrate ensemble forecasts. This is what is performed here, by

adaptive kernel dressing of the ensemble predictions of wind power obtained above.

Remember that at a given time t and for each look-ahead time k, ensemble forecasts consist of a

number m of alternative predictions ŷ
(j)
t+k|t (j = 1, . . . , m). The methodology introduced in the follow-

ing is described for a specific horizon k. It can then be independently applied for every look-ahead
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times up to the forecast length of the ensemble predictions considered. The basis of the method

is to define a predictive density of wind generation as the weighted sum of kernels associated to

each ensemble member. Such proposal is extensively described in e.g. [23, 24]. However, since it

is known that the characteristics of wind power forecasting uncertainty are strongly dependent on

the level of predicted power [15], it is proposed here to parameterize kernels with a mean-variance

model. This hence permits to control the shape of kernels depending on the level of predicted power

for each of the ensemble members. And, because it is known that the uncertainty of wind power

forecast may be nonstationary, it is also proposed to recursively estimate the parameters of the

kernel mean-variance model. Long-term variations in forecast uncertainty characteristics can then

be accommodated.

Nonparametric predictive densities from kernel dressing

Let us denote by f̂t+k|t(y) the predictive distribution of wind power issued at time t for lead time t+k.

The idea of kernel dressing of ensemble members consists in saying that f̂t+k|t(y) can be written as

a weighted combination of kernels associated to each of the ensemble members. If writing f̂
(j)
t+k|t(y)

the kernel associated to the jth ensemble member ŷ
(j)
t+k|t, j = 1, . . . , m, this yields

f̂t+k|t(y) =

m
∑

j=1

wj f̂
(j)
t+k|t(y) (6)

where the sum of the weights wj is required to sum to 1,

m
∑

j=1

wj = 1 (7)

From a conceptual point of view, such weights represent the contribution of each ensemble member

and its associated kernel to the final predictive distribution. It may be envisaged that some of them

have a higher ability to explain uncertainty in wind power forecasts, while some other may have

a more limited one. However, in order to simplify the estimation problem that will be formulated

in the following (since it would be necessary to recursively estimate m weights for each forecast

horizon), the weights are here set to wj = 1/m, ∀j. This hence translates to giving the same

importance to the information provided by each of the ensemble members. Such simplification

actually makes perfect sense when considering the pure ensemble predictions discussed by [23],

since it would not be possible to distinguish any ensemble member from the others. This would be

the case for ensemble forecasts of wind power produced from those of meteorological variables from

the European Center for Medium-Range Weather Forecasts (ECMWF) for instance. This equal

weighting also appears relevant for the case of meteorological ensemble forecasts from a multi-

model or multi-parameterization approach, if one assumes it is not possible to deem such or such

prediction as more relevant in terms of information about forecast uncertainty.

In a second stage, it is necessary to propose a shape for the kernel functions in equation (6). The

most straightforward choice is to employ Gaussian kernels. This choice is motivated by the fact

that in theory, any probabilistic density may be approximated by a sum of Gaussian kernels [25],

while Gaussian kernels have nice properties that will ease the derivation of recursive formulas for

the adaptive estimation of its parameters. A Gaussian kernel for the jth ensemble member ŷ
(j)
t+k|t
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has the following form

f̂
(j)
t+k|t(y) =

1

σ
(j)
t,k

2√
2π

exp






−1

2





y − ŷ
(j)
t+k|t

σ
(j)
t,k





2





(8)

where σ
(j)
t,k corresponds to its standard deviation. Employing such a formulation for Gaussian ker-

nels translates to making the assumption that the various ensemble members are unbiased, since

each of them is centered on its corresponding ensemble member. A k-index is used for the kernel

parameters in order to reflect the fact that they will be different for each forecast horizon. In par-

allel, the t-index reflects the fact that the kernel parameters may evolve with time. By definition,

a Gaussian kernel is symmetric and centered on the forecast itself. However, a predictive distri-

bution formulated as a weighted sum of kernels will certainly take the form of a non-symmetric

distribution (and possibly multimodal), thus being consistent with the know characteristics of wind

power forecast uncertainty [15, 26].

Actually, a crucial issue related to wind power forecast uncertainty is that the standard deviation

of prediction errors is directly related to the level of predicted power. Such standard deviation is

of lower magnitude for predicted power values in the low and high ranges, while it reaches much

higher magnitude in the middle range of the power curve [26]. This would hence imply that the

standard deviation of a Gaussian kernel has to be related to its mean, i.e. to the forecast given

by the related ensemble member. In practice here, this is performed by defining a mean-variance

model that expresses σ
(j)
t,k as a function of ŷ

(j)
t+k|t. From the characteristics of forecast uncertainty

observed and discussed in [15], it appears appropriate to define this mean-variance model as a

logistic function, i.e.

σ
(j)
t,k = τ0

t,k + τ1
t,k

(

1 − ŷ
(j)
t+k|t

)

ŷ
(j)
t+k|t (9)

where τ1
t,k controls the shape of the logistic function, while τ0

t,k is a level term, since Gaussian

kernels would have a minimum width for wind power forecasts at the 0 or nominal power levels.

Note that both parameters of the mean-variance model are not specific to any particular member.

Indeed, being consistent with the equal weighting of ensemble members in equation (6) and with

the core idea of them not being distinguishable, it is assumed that the same mean-variance model

would be valid for all ensemble members. As a consequence, whatever the number of ensemble

members, there will always be only two parameters to estimate for each forecast horizon, which are

namely τ0
t,k and τ1

t,k.

Some restrictions have to be set on the range of potential values for the mean-variance model

parameters. Since the standard deviation of the kernels must always be positive, this implies that

τ0
t,k > 0. In parallel, for the mean-variance model to have a logistic function shape, one must also

have τ1
t,k > 0. Finally, it may be envisaged to define a maximum value for each of these parameters,

that we will denote by τ0
s and τ1

s . Instead of defining strict constraints on the range of τ0
t,k and τ1

t,k,

it appears preferable to employ a suitable transformation, i.e.

νi
t,k = ln

(

τ i
t,k

τ i
s − τ i

t,k

)

, i = 0, 1 (10)

with the corresponding inverse transform as

τ i
t,k =

exp(νi
t,k)

1 + exp(νi
t,k)

, i = 0, 1 (11)
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Such transformation makes that τ i
t,k (i = 0, 1) is restricted to the range (0, τ i

s), while the transformed

variable νi
t,k is free to take any value in R. In the following, τ t,k and νt,k will be used as vector

notations for the mean-variance model parameters and their transformed counterparts

τ t,k
⊤ = [τ0

t,k τ1
t,k], νt,k

⊤ = [ν0
t,k ν1

t,k] (12)

Adaptive estimation with recursive Maximum Likelihood estimation

Bayesian Model Averaging has been proposed in [24] for recalibration of meteorological ensemble

forecasts (of sea-level pressure and surface temperature). The core idea of the method proposed

here is similar, except that the weights are chosen to be fixed, the estimation focuses on the mean-

variance model for the kernel parameters (instead of the weight to be assigned to each ensemble

member), and it has an adaptive nature. This then translates to a Maximum Likelihood (ML)

estimation method, where it is aimed at adaptively maximizing the likelihood of the wind power

measurements, given the predictive densities resulting from the model. In mathematical terms, the

objective function to be minimized at time t can be written as

St,k(ν) = − 1

nλ

t−k
∑

i=1

λt−k−i ln (ui(ν)) (13)

where λ, λ ∈ (0, 1), is the forgetting factor allowing for adaptivity in time (by giving less weight to

old observations), and nλ is the effective number of observations,

nλ =
1

1 − λ
(14)

used for normalizing the objective function. We restrict ourselves to the case for which λ < 1 in

order for nλ to be finite. In parallel, the term ui(ν) denotes the likelihood of the observation yi from

the predictive density issued at time i − k for lead time i, and given the model parameters ν,

ui(ν) = P [yi|ν] = f̂i|i−k(yi) (15)

The estimated parameters for the mean-variance model related to the Gaussian kernels, at time t

and for horizon k, are then given as those which minimize the objective function of equation (13),

that is,

ν̂t,k = argmin
ν

St,k(ν) (16)

The interest of this ML estimation method is that minimizing the objective function of (13) is equiv-

alent to minimizing the logarithmic scoring rule known as ignorance, introduced and discussed

by [27]. Ignorance considers a trade-off between reliability and resolution, which are the two prop-

erties wanted for probabilistic forecasts. Reliability corresponds to the probabilistic correctness of

predictive distributions, while resolution stands for the ability of predictive distributions to resolve

among situations with different levels of forecast uncertainty. Such a trade-off between reliability

and resolution is commonly referred to as overall skill of probabilistic forecasts. For a thorough

discussion on these aspects, and more specifically for the case of probabilistic forecasting of wind

generation, see [13, 28]. Ignorance is a proper scoring rule which insures that a lower value of the

score indeed corresponds to a higher skill of the probabilistic forecasts [29]. As a consequence, recur-

sively minimizing the objective function in (13) will permit to obtain predictive distributions with

maximized skill, given the ensemble forecasts used as input and the chosen model for conversion of

ensemble forecasts into predictive densities.
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From the formulation of the ML estimation problem given above, a corresponding recursive es-

timation procedure can be derived by applying the method described in [30]. Indeed, the basis

for derivation of such recursive procedure is to employ a Newton-Raphson step for expressing the

estimate ν̂t,k as a function of the previous estimate ν̂t−1,k,

ν̂t,k = ν̂t−1,k − ∇νSt,k(ν̂t−1,k)

∇2
ν
St,k(ν̂t−1,k)

(17)

From equation (13), one can deduce that

St,k(νt−1,k) = λSt,k(νt−1,k) − 1

nλ

ln (ut(νt−1,k)) (18)

which then can be used for deriving recursive formulas for the calculation of ∇νSt,k and ∇2
ν
St,k.

Indeed, that for ∇νSt,k writes

∇νSt,k(νt−1,k) = − 1

nλ

∇νut(νt−1,k)

ut(νt−1,k)
(19)

since νt−1,k is assumed to be the optimal estimate at time t − 1, thus minimizing the objective

function St−1,k, and yielding ∇νSt−1,k(νt−1,k) = 0. In a similar manner, by assuming that ut is

almost linear around the optimal estimate, a recursive formula for the Hessian of the objective

function can be written as

∇2
ν
St,k(νt−1,k) = λ∇2

ν
St−1,k(νt−1,k) +

1

nλ

∇νut(νt−1,k) (∇νut(νt−1,k))
⊤

u2
t (νt−1,k)

(20)

Then, by defining the information vector

ht,k =
∇νut(ν̂t−1,k)

ut(ν̂t−1,k)
(21)

and the estimate of its inverse covariance matrix

Rt,k = ∇2
ν
St,k(ν̂t−1,k) (22)

one deduces from equations (17)- (20) the two-step scheme for the updating of the ν-estimate at

time t, i.e.

ν̂t,k = ν̂t−1,k +
1

nλ

Rt,k
−1

ht,k (23)

Rt,k = λRt−1,k +
1

nλ

ht,kht,k
⊤ (24)

Note that for the application of this updating scheme, it is also assumed that the objective function

can be seen as locally quadratic around the estimate ν̂t,k, and thus that

∇2
ν
St,k(ν̂t,k) ≃ ∇2

ν
St,k(ν̂t−1,k) = Rt,k (25)

In practice, for determining the information vector ht,k when the new wind power observation yt is
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made available, few quantities need to be calculated. Since we have

∇νut(ν̂t−1,k) =

[

∂ut

∂ν0
(ν̂t−1,k)

∂ut

∂ν1
(ν̂t−1,k)

]⊤

(26)

it is necessary to compute two derivatives at each time step. From the definitions given in equa-

tions (6), (10) and (15), remembering that the weights are set to 1/m, and after few mathematical

developments, one obtains

∂ut

∂ν0
(ν̂t−1,k) =

ν̂0
t−1,k(1 − ν̂0

t−1,k)

m

m
∑

j=1

∂f̂
(j)
t|t−k

∂σ(j)
(yt) (27)

and

∂ut

∂ν1
(ν̂t−1,k) =

ν̂1
t−1,k(1 − ν̂1

t−1,k)

m

m
∑

j=1

ŷ
(j)
t|t−k

(1 − ŷ
(j)
t|t−k

)
∂f̂

(j)
t|t−k

∂σ(j)
(yt) (28)

with

∂f̂
(j)
t|t−k

∂σ(j)
(yt) =





(yt − ŷ
(j)
t|t−k

)2

σ̂
(j)
t−1,k

2
− 1





f̂
(j)
t|t−k

σ̂
(j)
t−1,k

(yt) (29)

and finally where the standard deviation value σ̂
(j)
t−1,k is directly given by inverse transformation of

ν̂t−1,k through (11), then plugged into equation (9).

From the various formulae derived above, one clearly sees the interest of the recursive estimation

scheme, which is at time t to use the last wind power measurement only for updating the model

parameters. In order to initialize this recursive estimation scheme, one has to define some initial

value for τ 0,k (thus allowing to set ν0,k), ideally from an expert guess on the shape of the function

used for modeling the mean-variance relationship. In parallel, the initial inverse covariance matrix

R0,k can be filled in with zero values. Obviously, such a matrix cannot be inverted as would be

necessary for updating model parameters with (23). The approach to be taken then consists in

using (24) for updating Rt,k only as long as Rt,k is non-invertible, and start using (23) when this

stage is reached eventually.

Obtaining predictive densities and some of their quantiles

At each time step t, the forecast information available consists of set of ensemble forecasts ŷ
(j)
t+k|t

(j = 1, . . . , m) of wind power for look-ahead times up to the forecast length. In parallel for each hori-

zon k, the parameters ν̂t,k of the mean-variance model related to the Gaussian kernel parameters

are updated by using the newly available measurements of wind power production yt. From ν̂t,k,

the parameters τ̂ t,k to be used in equation (9) are obtained from inverse transformation through

equation (11).

For a given horizon k the mean-variance model is fully specified by τ̂ t,k. The standard deviation of

each of the m kernels composing the final predictive distributions can then be calculated as a func-

tion of the forecast values of their related ensemble members. Figure 2 provides the example of such

a set of kernels (dotted lines), where the ensemble forecast values are given by the various circles.

The closer the ensemble prediction values are to the nominal power of the wind farm, the sharper

the kernels, thus reflecting lower level of forecast uncertainty. The final predictive distribution is

obtained as an equally weighted combination of the m kernels, and is represented with a bold solid
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line in Figure 2. This predictive distribution reflects the spreading of ensemble prediction values:

there is here a higher density of probability of power production values being in the high power

range. However, the tail expanding towards lower values indicates that there is still some probabil-

ity of observing lower power production. Note that the equally weighted combination of Gaussian

kernels is also consistent with the plain averaging of ensemble members used for deriving point

forecasts as in equation (5), since the expectation of f̂t+k|t(y) indeed corresponds to ŷt+k|t.

0  10 20 30 40 50 60 70 80 90 100
0
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FIGURE 2: Example of a predictive distribution (for a given lead time) obtained as a weighted combination of Gaussian

kernels. Dotted lines correspond to the m individual kernels, while the bold solid line gives the weighted combination.
Circles are for the values of each ensemble member, thus related to the mean of each kernel.

For communication of the probabilistic forecasts, an optimal solution would be the communication

of the mean and standard deviation of each of the m Gaussian kernels composing the predictive

distributions for every look-ahead time. This is because predictive densities are fully defined by

this set of variables. However, as this may not be optimal in terms of data storage and in terms

of ready-to-use information for the forecast users, it may be preferred to communicate a number of

quantiles of predictive distributions, for a set of nominal proportions. It often seems appropriate

in practice to define these nominal proportions as uniformly distributed over the interval [0,1].

Quantiles of a finite mixture of Gaussian kernels as given by equation (6) can be straightforwardly

computed with numerical techniques e.g. those described in [31].

From Figure 2, one may visually notice that the proposed kernel dressing of ensemble members

does not constrain predictive densities in the interval [0,1] (1 corresponding to nominal capacity

ofthe wind farm), even though this is the physical range of potential power production. In order

to respect this physical range, one might envisage to truncate predictive distributions or simply

discard parts of predictive distributions being outside [0,1]. However, it has been noticed that

predicted probabilities of wind power production below 0 or above 1 were seldom, and if the case,

very low. Therefore, no truncation (or discarding) has been performed, even though probabilities of

event outside physical range may be counter-intuitive. It will be seen in the results Section below

that this does not seem to affect the reliability of probabilistic forecasts significantly.
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Application results

Below are presented the results related to the ensemble-based probabilistic forecasts of wind power

at Horns Rev. A brief description of the case-study is first given, along with a description of the

methodology employed for the selection of necessary parameters of the forecasting methodology

described in the paper. Emphasis is then on the evaluation of the resulting probabilistic forecasts,

in terms of reliability and overall skill. Complementary results related to the orthogonal fitting of

the power curve model may be found in [32].

Case-study description

The Horns Rev wind farm is located off the west coast of Jutland in Denmark. It has a nominal

power of 160 MW, and an annual energy yield of around 600 GWh. It represents one of the largest

offshore wind farms worldwide. The original power measurement data consist of one-second mea-

surements for each wind turbine. Focus is given to the total power output. Time series of power

production are normalized by the wind farm rated capacity Pn. Power measurements or values of

the different error criteria are hence all expressed in percentage of Pn. An averaging procedure

has been developed in order to obtain time-series of hourly measured power averages. This hourly

temporal resolution corresponds to the needs of energy actors for management and trading of wind

power in Denmark, when horizons considered range from 6- to 48-hour ahead. Because there may

be some erroneous or suspicious data in the raw measurements, the averaging procedure has a

threshold parameter τ , which corresponds to the minimum percentage of data that need to be con-

sidered as valid in a given time interval, so that the related power average is considered as valid

too. The threshold chosen is τ = 75%. The available raw data are from 16th February 2005 to 25th

January 2006. From this raw data, the dataset of hourly power averages contains 73.4% of values

considered as valid over this period.

The MSEPS ensemble forecasts of meteorological variables used as input have m = 75 members

that all may be considered as relevant forecasts for the coming future. They are obtained from dif-

ferent, and coherent, physical parameterizations of the meteorological model employed [17]. They

cover the period for which wind power production data are available. These meteorological fore-

casts have a forecast resolution of one hour for look-ahead times up to 48-hour ahead. They are

issued every 6 hours starting from midnight. In order to increase the size of the dataset, and also in

order to mimic online applications for which forecasts would be updated every hour, meteorological

forecasts are iteratively slided, as if new forecasts were issued every hour. Consider for instance

a meteorological forecast series issued at midnight for the following 48 hours, and with a tempo-

ral resolution of 1 hour. Then at 1:00 am, there is no new forecast provided by the meteorological

service, but one may still use the previously delivered forecast series for simulating the delivery of

a ‘new’ meteorological forecast series. In practice, it then consists of that issued at midnight, but

for which the first value (i.e. that for 1:00 am) has been removed. This operation is repeated each

hour until the following meteorological forecast series is really issued, that is, 6 hours after. Such

artificial increase of the size of the dataset certainly has an effect on forecast quality, in the form of

a small reduction of average forecast accuracy. However, it does not change the fundamental prop-

erties of the distributions of wind power generation that are aimed to be estimated. A consequence

of such operation is a reduction of the forecast length to 43-hour ahead. The dataset obtained in-

cludes 8200 forecast series. The main meteorological variables that are of interest for modeling

the power curve at Horns Rev are wind speed and direction. As output of the MSEPS ensemble

prediction system, forecasts of these variables are available at several heights. It has been chosen

to concentrate on upper heights — that is, heights closer to hub height, thus preferring to consider

as input meteorological forecasts for 105 meters above sea level.
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Several tries have been performed in order to integrate wind direction in polar coordinates in the

model. However, since no significant difference has been noticed regarding both the shape of ob-

tained power curves and the quality of resulting predictions, the results presented here rely on a

function that model the conversion of wind speed to power only. Such an aspect should be further

investigated in the future, since the wake effects inside the wind farm should certainly influence

the wind farm power curve as a function of the prevailing wind direction.

Selection of the parameters of the forecasting approach

For the modeling of the power curve at Horns Rev, the orthogonal fitting approach is employed.

The power variable is locally approximated with local linear regression, i.e. with polynomials of

degree 1. This is owing to inherent restrictions of the method introduced in [18]. A number of 25

fitting points is chosen, spanning the whole range of potential wind speed values, and in regard of

their distributions. In other words, each bin formed by two consecutive fitting points contains 5%

of the wind speed values contained in the available dataset. It is then necessary to decide on the

quantity of data to be used locally for fitting the model. The method employed relies on a nearest-

neighbor bandwidth, for which a percentage αpc of available data around each fitting point should

be used for updating model coefficients, see e.g. [22]. In addition, the orthogonal fitting method is

time-adaptive thanks to the use of exponential forgetting. The level of forgetting is controlled by a

user-defined parameter λpc, λpc ∈ (0, 1]. In order to decide on optimal values of the 2 parameters λpc

and αpc, the available dataset is split into two parts: the first 1000 data series are considered as a

learning part, on which decision is made on the optimal (λpc, αpc) combination, while the remaining

7200 forecast series are used for out-of sample evaluation of forecast accuracy, and for application

of the adaptive kernel dressing method. Over the learning period, the first 400 data points are

disregarded since considered as a batch initialization period, while the following 600 ones are used

for one-fold cross-validation. The (λpc, αpc) combination that permits to minimize a Normalized

Root Mean Square Error (NRMSE) criterion of wind power point forecasts over the cross-validation

period is then employed for the whole dataset. For more information on cross-validation and its

interest in statistical parameter selection, we refer to [33]. The (λpc, αpc) combinations obtained is

(0.995,0.37). The significantly high value of the parameter αpc in comparison with values commonly

found for LS fitting of power curve models is due to inherent differences in the fitting method

themselves, see discussion in [18].

The method for transformation of ensemble forecasts of wind power into predictive distributions

is then applied to the dataset resulting from conversion of meteorological ensembles to ensemble

forecasts of wind power. Out of the 7200 available series of ensemble forecasts of wind power, the

first 1500 are used as a batch learning period and for optimal decision on the forgetting factor λ.

Even though a different mean-variance model is defined for each look-ahead, only one forgetting

factor is considered, with the underlying assumption that the slow variations in the process char-

acteristics are of similar pace for all look-ahead times. The decision on an optimal value for λ is

made in a similar fashion than for the ensemble forecasts dealt with above, that is, by employ-

ing a cross-validation technique. The last 1000 forecast series of the learning period comprise the

cross-validation set, and are thus considered for evaluating which value of λ yields the maximum

overall skill of the predictive distributions. Overall skill is measured with the ignorance score de-

scribed in [27]: the lower the ignorance score value, the higher the skill of probabilistic forecasts.

For a given predictive distribution f̂t+k|t(y) and corresponding wind power measurement yt+k, the

ignorance score value βt,k is given by

βt,k = − ln(f̂t+k|t(yt+k)) (30)

so that ignorance can be averaged over the evaluation set, and calculated separately for each hori-
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zon,

β̄k = − 1

N

N
∑

t=1

ln(f̂t+k|t(yt)) (31)

or additionally averaged over all horizons,

¯̄β = − 1

Nkmax

N
∑

t=1

kmax
∑

k=1

ln(f̂t+k|t(yt)) (32)

where N and kmax stands for the number of forecast series and their number of look-ahead times,

respectively. The optimal value of the forgetting factor is chosen as that which minimizes ¯̄β over the

validation set. It is found as λ = 0.995. This value is then employed for the whole dataset and for

the models defined for all look-ahead times. The probabilistic forecasts obtained over the last 5700

forecast series (the evaluation set), are then evaluated as would be done for genuine operational

predictions. Regarding the mean-variance model parameters, they are initialized to

τ 0,k
⊤ = [0.1 0.7], ∀k

from expert knowledge on the expected level of forecast uncertainty depending on the level of pre-

dicted wind power. In parallel, the upper bounds for the mean-variance model parameters are set

to

τs
0,k = 0.5, τs

1,k = 2, ∀k

thus reflecting the fact that the minimum standard deviation of the kernels may not be superior to

0.5, and that it appears unlikely that their maximum standard deviation (in the steep part of the

power curve) would be above 1.

Results and discussion

As an illustration of the output of the forecasting methodology introduced in the paper, Figure 3

depicts an episode with both the raw ensemble forecasts of wind power (Figure 3(a)), and the corre-

sponding probabilistic forecasts obtained after adaptive kernel dressing of the ensemble members

(Figure 3(b)). The date and time of the day for these forecasts and related measurements are

not indicated, for confidentiality reasons. For this episode, as it is case for the remainder of the

evaluation set, predictive distributions are summarized by 19 quantiles with nominal proportions

ranging from 0.05 to 0.95 with a 0.05 increment. Predictive distributions in Figure 3(b) are rep-

resented as a fan chart, i.e. as a set of prediction intervals with increasing nominal coverage and

fading color. Prediction intervals have their bounds defined by quantiles with nominal proportions

that are symmetric (in probability) with respect to the median. Figure 3 also gives the mean of

ensemble members, which is introduced above as the best point forecast that can be derived from

the set of ensemble members if not having information on potential superiority of certain ensem-

ble members over the others. One may notice from both Figures that predictive distributions for

each look-ahead time are not symmetric, and also not centered on the derived point predictions.

This comprises a simple illustration of the non-Gaussianity of predictive distributions even though

defined as a weighted combination of Gaussian kernels. A result of this non-Gaussianity and skew-

ness of predictive distributions is that the point predictions, corresponding to the mean of predictive

distributions for each look-ahead time, differ from the median of such distributions. Aspects related

to non-Gaussianity of probabilistic forecasts of wind power are extensively discussed in [13].

As explained above, a first objective of the kernel dressing of ensemble predictions is to increase
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(a) Ensemble forecasts of wind power, compared with measurements (diamond markers). The bold line is the mean of

ensemble members, which corresponds to the point forecasts that could be derived from the ensembles.
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(b) Probabilistic forecasts obtained after adaptive kernel dressing of the ensemble members, in the form of a fan

chart. The point forecasts (light-colored bold line) and measurements (diamond markers) for this period are also given
(diamond markers).

FIGURE 3: Episode with ensemble forecasts of wind power and the corresponding probabilistic forecasts obtained after

adaptive kernel dressing of the ensemble members, along with measurements over the period.

the reliability of the probabilistic information that may be extracted from the raw ensembles. For

verifying that this objective is met, the reliability of both raw ensemble forecasts of wind power and

of the predictive distributions obtained after kernel dressing is evaluated with reliability diagrams,

as presented in [13]. Since reliability evaluation results have been found to be qualitatively similar

for all look-ahead times, they are presented and commented on for two look-ahead times only. The

corresponding results are depicted in Figure 4, for the 12- and 24-ahead forecast horizons. In both

cases, reliability is depicted as a deviation from the perfect reliability case, as a function of the
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nominal proportions of quantile forecasts. The deviation from perfect reliability can be straight-

forwardly calculated as the difference between observed and nominal proportions of the quantile

forecasts that define predictive distributions. For the case of raw ensemble forecasts, since it has

been considered that ensemble members cannot be distinguished, predictive distributions are de-

fined by sorting ensemble members in ascending order, and to consider them as quantile forecasts

with increasing nominal proportions j/(m + 1) (j = 1, . . . , m). Note that the perfect reliability case

in Figure 4 can be assimilated to the case of having climatology-based probabilistic forecasts, based

on all available wind power measurements in the dataset. Climatology-based probabilistic forecasts

consist of a single predictive distribution obtained from the density of wind power measurements

at the wind farm, and that would be used whatever the look-ahead time, time of the year or meteo-

rological conditions. Even though this probabilistic forecasting method would not have a significant

operational value, it has the advantage of being perfectly reliable and of having no resolution, thus

offering an ideal benchmark.

For the case of both look-ahead times in Figures 4(a) and 4(b), the reliability of raw ensemble fore-

casts of wind power is far from perfect. Quantiles with low nominal proportions are clearly overesti-

mated, while those with high nominal proportions are in contrast underestimated. Corresponding

deviations from perfect reliability are here up to ±25%. This translates to saying that ensemble

forecasts of wind power are underdispersive, i.e. that their spread does not reflect the whole range

of potential outcomes. And this, even though the orthogonally-fitted power curve model is less

compressed and a better approximation of the power curve of the wind farm.

Underdispersivity of ensemble forecasts of wind power has also been observed by Nielsen et al.

[34] for the case of using meteorological ensembles from ECMWF or NCEP (National Center for

Environmental Prediction, in the United States) as input, with a similar range of deviations from

perfect reliability. MSEPS ensembles and meteorological ensembles from ECMWF and NCEP are

generated from different methods, but it seems that deviations for perfect reliability of resulting

wind power ensemble forecasts are common to these various methods. This then confirms that on a

general basis one should expect a significant lack of reliability of ensemble forecasts of wind power

if no statistical recalibration is used. Reasons for this lack of dispersion may include the fact that

the power curve model may still not be ideal, and more certainly the lack of dispersion of ensemble

forecasts of meteorological variables. Underdispersivity of meteorological ensemble forecasts may

in turn originates from misrepresentation of the uncertainty in the initial state of the atmosphere,

or in the error growth induced by inappropriate representation of the atmosphere dynamics in the

model employed. The contribution of both of these aspects in underdispersivity of meteorological

ensemble forecasts is still subject to discussion, see for instance [35] and references therein.

Adaptive kernel dressing permits here to get closer to perfect reliability. Note that due to sampling

effects, even if ensemble-based probabilistic forecasts were reliable, the curve resulting from their

reliability evaluation would not lie along the line y = 0 [36, 37]. One notices a small (but apparently

systematic) underestimation of the upper quantiles of predictive distributions. This may be due

to the shape chosen for kernels, i.e. Gaussian, which may be not the most appropriate one for

describing uncertainty information given by each ensemble member. Future works should focus

on comparing different types of kernels, in order to see how reliability results may be affected by

such a choice. From a more general perspective on the results obtained, it appears that deviations

from perfect reliability observed here for the Horns Rev test case over a year are comparable to

that observed for ensemble-based probabilistic forecasts discussed in [16] for the case of the Nysted

offshore wind farm in Denmark, which has a nominal capacity slightly larger than that of the Horns

Rev wind farm, and which is located off the south cost of Zealand in the Baltic Sea. Ensemble-

based probabilistic forecasts in [16] are obtained by conversion via a logistic-type power curve, and

subsequent recalibration of the quantiles of predictive distributions with an appropriate conditional

parametric model. An advantage of the method proposed here though is its flexibility and potential

for future developments e.g. by releasing the constraint on equal weighting of ensemble members,
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extension of the mean-variance models to other moments, changes in the shape of the Kernels, etc.
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(b) k = 24

FIGURE 4: Evaluation of the reliability of both raw ensemble forecasts of wind power and obtained predictive densities, for

two look-ahead times. Reliability is assessed in terms of deviation from perfect reliability, which could be for instance met if

producing probabilistic forecasts based on climatology.

Even though the aim of adaptive kernel dressing is to increase the reliability of ensemble forecasts

of wind power when converting them into predictive distributions, one remembers that this is done

by aiming at optimizing the overall skill of predictive distributions. Overall skill consists of a

compromise between reliability and resolution. Therefore, not observing perfect reliability as it is

the case here is actually not a surprise. Over the evaluation set, the skill of predictive distribution is

assessed by calculating ignorance score values. A different value of the ignorance score is calculated

for each forecast horizon (i.e. with β̄k, defined by (31)), as a different model has been set up for each

of them, and because it is expected that overall skill would decrease as the lead time increases.

Results from this overall skill assessment are depicted in Figure 5.

When using the ignorance score, an interesting reference value is 0. This is because if having no

knowledge at all on past and potential future power production at the wind farm, the safest proba-

bilistic forecast would simplify to a uniform distribution, i.e. to assuming that any power production

is equally probable. Whatever the outcome, the ignorance score value of a uniform predictive dis-

tribution is 0. Then, if a predictive distribution is more informative than a uniform distribution,

the ignorance score value is negative, and decreases as the content of information increases. In-

versely, if the ignorance score value is above zero, this means that issued predictive distributions

are actually worse than a simple uniform density guess. The second reference value that is of in-

terest when evaluating predictive distributions is that of climatology-based probabilistic forecasts.

Indeed, as stated above, such probabilistic forecasts are perfectly reliable, but they have no resolu-

tion. As a consequence, a lower ignorance score value for ensemble-based predictive distributions

would demonstrate their superior skill originating from their higher resolution (and hopefully their

acceptable level of reliability).

In the case of Figure 5, one observes that the ignorance score values of climatology-based predictive

distributions are just below 0, while those for ensemble-based ones are significantly lower. Even

though climatology based predictive forecasts may be perfectly reliable, they do not contain much

more information than uniform predictive distributions, i.e. than purely random guesses on poten-

tial wind power production. In addition, the overall skill of climatology-based predictive distribu-

tions is constant whatever the look-ahead time, as it is always the same predictive distribution that

is used. In contrast, the overall skill of ensemble-based predictive distributions diminishes as the
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FIGURE 5: Evaluation of the overall skill of predictive densities of wind power, compared to that of predictive densities
obtained from climatology. Even though climatology-based probabilistic forecasts are perfectly reliable, their overall skill is

dramatically lower than that of ensemble-based probabilistic forecasts, since having no resolution.

look-ahead time increases (since ignorance score values gets closer to 0), while staying at a similar

level for look-ahead times between 1- and 10-hour ahead. However over the whole forecast length

considered, the overall skill of ensemble-based predictive distributions is dramatically higher, thus

showing the additional resolution of probabilistic forecasts originating from the methodology pro-

posed in the present paper.

Conclusions

Ensemble and probabilistic forecasting of wind power production, as well as the development of

forecasting methodologies specially dedicated to offshore conditions, are currently two crucial re-

search and development areas. This is due to their potential impacts on easing the integration of

large amount of offshore wind power into the existing electricity grids. Even for the case of the

classical point forecasting of wind power, very few results exist about the actual or expected opera-

tional performance of state-of-the-art forecasting systems if employed for large wind farms, and for

offshore conditions. The main objective of the present paper has been to merge these aspects by de-

scribing and evaluating an ensemble-based forecasting methodology applied to the test case of the

Horns Rev wind farm in Denmark. It is true that the mathematical methods described for the con-

version of meteorological ensemble forecasts to ensemble forecasts of wind power, or for obtaining

predictive distributions with optimized skill, are not specifically dedicated to offshore conditions.

This is owing to the fact that most of the improvements in forecast accuracy (and understanding of

forecast uncertainties) for offshore conditions may expectedly come from improvements in the me-

teorological forecasts themselves, by better accounting for thermal stability of sea-air interaction

for instance. In parallel however, the method for power curve modeling may appropriately cap-

ture and account for the effects of wakes as a function of certain meteorological variables (mainly

wind speed and direction). For the dataset considered, neither significant improvement in terms of

forecast accuracy, nor differences in the shape of modeled power curves, have been observed when
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considering the power curve model as a function of the forecast wind direction. Further application

to a longer dataset may permit to better reveal its potential influence.

Regarding the proposed mathematical methods themselves, it would of particular interest to carry

out further evaluation works by applying it to a variety of wind farms, and for longer time periods.

Emphasis should be given to the choice of alternative kernels e.g. Beta ones, in order to assess the

influence of such a choice on the reliability and resolution of obtained predictive distributions. The

concept of employing a mean-variance model for the Kernel parameters may be generalized so that

this model is made nonparametric for instance. This may also be extended to higher moments (i.e.

skewness and kurtosis) in order to better describe the shape of kernels to be used. In parallel,

since it may be possible to distinguish ensemble members, with some of them having a higher

ability to explain uncertainty of wind power forecasts, it would be of particular interest in extend

and generalize the kernel dressing framework introduced here. Indeed, by relaxing the constraint

of equal weighting of every kernel (see equations 6 and 7), one could give more weight to certain

ensemble members in the definition of predictive distributions. Each ensemble member could have

its own (and specific) mean-variance model, reflecting its peculiar characteristics. Owing to the

large number of ensemble members to be dealt with, this would then lead to an even larger number

of parameters to be tracked adaptively, resulting in complex estimation problem. This may be

performed in a BMA framework or by modeling the superiority of certain ensemble members over

the others with a hidden Markov chain. Note that the proposed method should then be consistent

with a combination scheme for ensemble members permitting to derive an optimal point forecast,

as such an optimal point forecast is to be the expectation of the related predictive distribution. And,

whatever the framework chosen, it will only be possible to apply the resulting approach for multi-

model or multi-parameterization kind of ensembles, like those considered in the present paper.

Ideally, for pure ensembles e.g. those generated by ECMWF, it should not be possible to deem certain

members as superior to the others. Finally, another path towards improvement of the method

proposed here consists of modifying the objective function to be adaptively minimized. Indeed,

minimizing the objective function introduced here translates to aiming at maximizing the overall

skill of predictive distributions, without considering the share of reliability and resolution to that

overall skill. Defining an objective function in the form of a weighted decomposition into reliability

and resolution would then permit to give more or less emphasis to each of these aspects depending

on the intended application.

For the evaluation of ensemble-based predictive distributions of wind generation, another bench-

mark should also be considered in the future, which consists of purely statistical methods for prob-

abilistic forecasting of wind generation. This will permit to discuss and potentially demonstrate

the higher resolution of ensemble-based probabilistic forecasts in comparison with those based on

purely statistical methods. It is actually still an open question if, for the power application, proba-

bilistic forecasts based on meteorological ensemble predictions may be of higher quality (and poten-

tially have a higher value) than those derived from purely statistical methods that clearly capture

today the specificities of wind power forecast uncertainty.
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29. Bröcker J, Smith LA. Scoring probabilistic forecasts: on the importance of being proper. Weather and

Forecasting 2007; 22:382–388.

30. Madsen H. Time Series Analysis, Chapman & Hall/CRC: London, 2007.

31. Rahman M, Rahman R, Pearson LR. Quantiles for finite mixtures of Normal distributions. International

Journal of Mathematical Education in Science and Technology 2006; 37:352–357.

32. Moehrlen C, Jørgensen J, Pinson P, Madsen H, Kristoffersen JR. HRensembleHR - High Resolution En-

semble for Horns Rev. Proceedings of the EOW’07 Conference, ‘European Offshore Wind Conference and

Exhibition’, Berlin, Germany, 2007.

33. Stone M. Cross-validation and assessment of statistical predictions (with discussion). Journal of the Royal

Statistical Society Series B 1974; 36:111–147.

34. Nielsen HAa, Madsen H, Nielsen TS, Badger J, Giebel G, Landberg L, Sattler K, Feddersen H. Wind

power ensemble forecasting using wind speed and direction ensembles from ECMWF or NCEP. Techni-

cal Report, PSO project FU-2101: ‘Ensemble forecasts for wind power’, Informatics and Mathematical

Modeling, Technical University of Denmark, Denmark, 2005.

35. Leutbecher M, Palmer TN. Ensemble forecasting. Journal of Computational Physics 2008; 227:3515–3539.
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