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Fluxon dynamics in a system of three coupled driven damped sine-Gordon equations is investigated. Bunch-
ing of fluxons is observed. It is shown that fluxon-fluxon-fluxon bound states exist in a certain interval of the
fluxon velocity. Attraction between fluxons occurs as a result of indirect fluxon-fluxon interaction mediated by
Swihart waves. To tackle the problem analytically a piece-wise linear approach is developed. The analytical
approximations show good agreement with the results obtained by direct numerical simulations.
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I. INTRODUCTION

The fluxon dynamics in stacked long Josephson junctions
have been investigated in detail during the last decade.1–8

The possibility of comparing theoretical predictions with ex-
perimental measurements increases the interest of these sys-
tems. The potential applications of the vertical stacked Jo-
sephson junctions cover several interesting fields such as the
design of devices for storage and transmission of electronic
signals and high-frequency radiation emission and detection
devices.

When two layers of superconducting material are sepa-
rated by an insulating layer and overlap between Cooper
pairs wave functions occurs, then Cooper pairs~as well as
electrons! can cross the insulating barrier due to the tunnel-
ing effect. The dynamics of the phase differencew between
the wave functions in the two superconducting layers is gov-
erned by the perturbed sine-Gordon equation.

The sine-Gordon equation emerges from many different
physical fields in the study of nonlinear wave phenomena.9

Special care has to be taken in the study of stacked junctions
as compared to a single junction due to the interaction effect
between the stacked junctions. This interaction was first
studied in the case of two junctions by Mineevet al.10 and
later it was widely investigated.11–26The symmetry between
the two equations in the case of two junctions may hide some
important aspects of the fluxon motion. In order to investi-
gate the general properties of a system of an arbitrary num-
ber of junctions we study the case of three junctions. It is
important to note the difference in the motion of fluxons in
interior junctions, as 2 in Fig. 1, which receive interaction
from their two neighboring junctions, 1 and 3, while the two
exterior junctions only receive interaction from one neigh-
boring junction. By simple arguments the topological dis-
similarity between junctions is most important forn53. In
the limit n5` all junctions are again similar topologically.

Our starting point is the model described by Sakai, Bodin,
and Pedersen2 where a theory describing the interaction be-
tween a general system ofN junctions is deduced from the
Maxwell, London, and Josephson equations. The equations
for the particular case of three junctions are

J15
1

122S2
@w1,xx2Sw2,xx1S2~w3,xx2w1,xx!#,

J25
1

122S2
@w2,xx2S~w1,xx1w3,xx!#, ~1!

J35
1

122S2
@w3,xx2Sw2,xx1S2~w1,xx2w3,xx!#,

where Ji5w i ,tt1aw i ,t1sinwi1gi , i51,2,3. The electro-
magnetic interaction between adjacent junctions is expressed
by a coupling constantS, and its physical value2 belongs to
the interval 20.5,S<0. The constanta i represents the
damping andg i represents the driving force in thei th junc-
tion. Realistically due to physical requirements, the driving
forces introduced into each junction must be the same, i.e.,
g i5g, i 51,2,3, as shown in Fig. 1.

The Lagrangian of Eq.~1! for the undamped system,a
50, is

FIG. 1. Structure of the stack of four superconductors and three
intermediate junctions~1,2,3!. Unidirectional external bias is ap-
plied along the system.
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L5(
i 51

3 E F1

2
w i ,t

2 2
1

2~122S2!
w1,x

2 211cosw i Gdx

1E S

~122S2!
w2,x~w1,x1w3,x!dx2(

i 51

3 E gxw i ,xdx.

~2!

The uncoupled and unperturbed system,S5a5g50 in
Eq. ~1!, reduces to three identical equations which allow a
simple single soliton solution given by the expression

w~x,t !54 arctanFexpsS x2vt2x0

A12v2 D G , ~3!

where v is the velocity of the wave. It is called a fluxon
(s51) or an antifluxon (s521), depending on the polar-
ity. The maximum speed for one single equation (n51) is
the velocity of light in the junction, the so-called Swihart
velocity,27 c, which is used for normalization in the follow-
ing. Several perturbation methods have been developed to
study this model in detail.28,29

The aim of this paper is to investigate the trajectories and
stability in (x,t) space and time of the single fluxons or
antifluxons in each junction to determine stable modes. The
stability analysis of the system of two junctions was studied
by means of perturbation analysis of the antiphase linear
mode by Gro”nbech-Jensenet al.14,15 Assuming fluxon-type
solutions in each junction, the coupling effect leads to repul-
sion between the center portion of the fluxons of identical
polarity and attraction between the fluxons of opposite polar-
ity. This conclusion is obtained investigating the minimum of
the potential energy of the system. The basic ideas for this
case were first established by Mineevet al.10 and later sev-
eral investigations, making use of the symmetry of this case,
were performed.11,13,17,19,21,30On the other hand, a unidirec-
tional g force drives the fluxon and antifluxon in opposite
directions.28

In the case of two stacked Josepson junctions, stable co-
herent in-phase zero-field steps in the current-voltage char-
acteristic were observed experimentally in Refs. 17 and 31.
An experimental finding of different cavity resonances
~Fiske modes! in three stacked junctions was presented in
Ref. 32. So far direct observation of coherent in-phase fluxon
motion in three and more Josepson junctions has not been
reported.33

Of physical interest are the modes where the waves ex-
cited in the top and bottom junctions are identical. Stable
bunching of solitons are shown in Secs. II and III. Thus we
will restrict our analysis to the fluxon-antifluxon-fluxon~f-a-
f!, s151, s2521 in Eq. ~3!, and fluxon-fluxon-fluxon~f-f-
f!, s15s251, cases.

In Sec. II we develop piecewise linear approximations
~PWLA’s! of the fully nonlinear equations, substituting the
sinwi term by linear approximations. In the f-a-f case the
threshold between the driving and the coupling parameters
for the bunched state is deduced. Otherwise the locked state
of fluxons in the f-f-f case is possible only for a certain range
of high speeds above the Swihart velocity27 where oscillating

tales are created in the fluxons.11,13,15These oscillations are
successfully represented by the PWLA’s and the threshold
for bunching in the driving-damping parameter space is ob-
tained for each value of the coupling constant with a good
degree of accuracy. In one junction bunching only occurs in
the presence of surface current loss.34–39

In Sec. III the method used for the numerical simulations
is described. The solutions are shown for different param-
eters of the equation and compared to the analytical predic-
tions. In Sec. IV the conclusions about the work are summa-
rized.

In Appendix A, a collective coordinates approach is for-
mulated. This method gives qualitatively good results when
the fluxons are driven with low velocities and successfully
predicts the bunching of different polarity fluxons but fails to
predict the bunching of equal polarity ones. In Appendix B
the particular symmetric configuration of two identical junc-
tions is studied by the PWLA method. It is found that the
fluxon-fluxon mode is stable above Swihart velocity and os-
cillating tales do not appear.

II. PIECEWISE LINEAR APPROXIMATION

The two modes~f-a-f! and~f-f-f ! have physical relevance
because they are the only ones which can be excited in
stacked coupled Josephson junctions by a uniform bias cur-
rent. Bunched states of fluxons may exist in both modes but
the dynamics is completely different.

It is well known that bias current drives the fluxons and
the antifluxon, Eq.~1! with s51 ands521, respectively,
in opposite directions.28 For the case of a~f-a-f! mode it was
shown quite recently26 that in the framework of the collec-
tive coordinates approach the balance between the separation
tendency due to driving force and the fluxon-antifluxon at-
traction may lead to a bunched state. In contrast to this the
bunched state on the~f-f-f ! mode does not exist.

As it has been shown6,11,13,15,17,40bunching of fluxons in
the case of two Josephson junctions may be explained be-
yond the collective coordinates approach. High amplitude
radiation, which is attractive for the fluxons of neighboring
junctions, is created when these fluxons move in the range of
velocity, v, between the Swihart velocities,c2,v,c1 ,
wherec651/(16A2S)1/2 are the asymptotic phase veloci-
ties of the small amplitude linear plasma waves.8,41,42

General solutions for the fully nonlinear coupled system,
Eqs.~1!, are not known. We are interested in traveling-wave-
type solutions,w i(x,t)5w i(z), wherez5x2vt. Taking into
account that in both modes,~f-a-f! and~f-f-f !, fluxons in the
first and the third junctions are identical, the set of Eqs.~1!
can be reduced to the following two equations:23,24

~m22v2!w19~z!1avw18~z!2sinw1~z!22Sm2w29~z!2g50,

~m22v2!w29~z!1avw28~z!2sinw2~z!2Sm2w19~z!2g50,
~4!

wherem251/(122S2)5c2
2
•c1

2 .
We cannot solve Eqs.~4! analytically. Therefore to pro-

vide some insight into the physical mechanism of fluxon
interaction, we use PWLA’s,P(w i), for the nonlinear terms,
sinwi , in order to linearize Eqs.~4! in a piecewise fashion.
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Here we present two choices,Pa andPm, for the operator
P,

Pa~w!5H aw, for 0<w,p,

a~w22p!, for p<w,2p,
~5!

and

Pm~w!5H w, for 0<w,p/2,

p2w, for p/2<w,3p/2,

w22p, for 3p/2<w,2p,

~6!

respectively.
The first one,Pa@w(z)#, is the simpler. As seen in Fig.

2~a! it provides a good representation of the fluxon tails as
w→0 or 2p. However, it is discontinuous atw5p. The free
parametera (0,a<1) controls the slopes of the approxi-
mating straight lines and may be used to adapt the approxi-
mation.

The second one,Pm@w(z)#, is more accurate. It was
used43 to describe fluxon dynamics in a single junction with
a surface loss term. As seen in Fig. 5~a! below Pm(w) pro-
vides a good approximation to the fluxon tails asw→0 or
2p and also to the center portion of the fluxons atw'p. In
contrast toPa , Pm is continuous.

The analytical solutions obtained by substituting sinw by
Pm(w) are more accurate than usingPa but also more cum-
bersome. In the following sections the reasons for choosing
between the two approximations are given.

A. Fluxon-antifluxon-fluxon

Here we describe the~f-a-f! bunching taking into account
fluxon shape modification. Because we are interested in the
low velocity case, wherev is much smaller than the lowest
Swihart velocity,c2 , we may use the PWLA,Pa , given by
Eq. ~5!.

The identical bias term,g, in all junctions, Eq.~1!, drives
the fluxons in one direction and the antifluxon in the opposite

one. On the other hand due to coupling between junctions the
fluxons and the antifluxon attract each other.11,13,21,22As a
result of the competition between driving and interaction of
junction coupling the fluxons and the antifluxon are sepa-
rated by the distance,d. For g.0 the antifluxon is behind
the fluxons and the distance between them,d, increases with
the driving force. Thus in the framework of the PWLA one
should distinguish the following three intervals as shown in
Fig. 2~b!:

~ I! z<0⇔2p>w2.p,

~ II ! 0,z<d⇔w2<p, w1,p, ~7!

~ III ! d,z⇔p<w1<2p.

Inserting solutions of the typew i(z)5Die
lz2g/a in the lin-

ear system of the ODE, Eq.~4! with P5Pa , the correspond-
ing fourth-order characteristic equation is obtained to be

F S 1

122S2
2v2D l21avl2aG 2

5
2S2

~122S2!2
l4. ~8!

The roots of Eq.~8! are

l1,252p16Ap1
2 1aq1, l3,452p26Ap2

2 1aq2,
~9!

where the termsp6 andq6 are

p65
av

2~c6
2 2v2!

, q65
1

~c6
2 2v2!

. ~10!

The eigenvectors (D1 ,D2) associated to the solution of the
linear system will be (1,A2)T and (1,2A2)T, corresponding
to the in-phase and antiphase modes. For low velocities,
uvu,c1 , l1,3 are positive andl2,4 are negative. The expres-
sions for the bounded solutions of the piecewise linearized
version of Eq.~4! in each one of the three regions, I, II and
III, become

~ I!H ŵ1~z!5H1el1z1H2el3z2
g

a
,

ŵ2~z!5A2~H1el1z2H2el3z!12p2
g

a
,

~11!

~ II !H ŵ1~z!5G1el1z1G2el2z1G3el3z1G4el4z2
g

a
,

ŵ2~z!5A2~G1el1z1G2el2z2G3el3z2G4el4z!2
g

a
,

~12!

~ III !H ŵ1~z!5K1el2z1K2el4z12p2
g

a
,

ŵ2~z!5A2~K1el2z2K2el4z!2
g

a
.

~13!
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The eight constants (H1 ,H2 ,G1 ,G2 ,G3 ,G4 ,K1 ,K2) are de-
termined by the ten matching conditions at the pointsz50
andz5d,

ŵ2
I ~0!5ŵ2

II ~0!5ŵ1
II ~d!5ŵ1

III ~d!5p,

ŵ1
I ~0!5ŵ1

II ~0!, ŵ2
II ~d!5ŵ2

III ~d!, ~14!

dŵ i
I~0!

dz
5

dŵ i
I I ~0!

dz
,

dŵ i
I I ~d!

dz
5

dŵ i
I II ~d!

dz
, i 51,2,

where the superscripts (•••) I , (•••) II , and (•••) III indicate
the regions I, II, or III, respectively, in which the function is
evaluated and the apostrophe indicates differentiation with
respect toz.

By using any eight from the ten matching conditions, Eqs.
~14!, the eight constants (H1 ,H2 ,G1 ,G2 ,G3 ,G4 ,K1 ,K2)
may be expressed as functions of the parametersS, g, a, and
v. The remaining two conditions give the dependence of the
distance between solitons,d, and the relation between the
velocity, v, and the driving force,g. After some algebraic
calculations we get simple expressions for these two remain-
ing conditions as a function of the coefficientsG1 and G3
given by Eqs.~14! to be

S l1

l2
21Del1dG152p, S l3

l4
21Del3dG352p.

~15!

When the coupling parameter,S, is large enough to counter-
act breakup induced by the driving force,g, Eqs.~15! have
finite solutions for the velocity,v, and distance,d. This
means that the bunched state of the~f-a-f! mode exists. The
corresponding phase diagram in the (S,g) space is presented
in Fig. 3.

The PWLA, Eq. ~11!, reproduces quite accurately the
shape of the fluxons for the weak bias current,g, where the
bunching of the~f-a-f! occurs, as is shown in Fig. 4. On the
other hand at high bias current,g, when the fluxons move
with velocity close to the lowest Swihart velocity,c2 , the
shape of the fluxons are more sensitive to variations44 and
this simple discontinuous PWLA, Eq.~5!, is not sufficiently
accurate. It reproduces accurately the behavior of fluxons in
the tails but is not correct at the center portion of the fluxons
which significantly contribute to the fluxon interaction. In
this case we need the more accurate approximation given by
Eq. ~5! to obtain the bunched~f-f-f ! state in the following
section.

B. Fluxon-fluxon-fluxon

In the framework of the collective coordinates approach
the bunched state of three fluxons is unstable~see Appendix
A!. Fluxons repel each other and the potential energy of
interaction,Uint , decreases when the distance between flux-
ons increases. However, as it follows from the results of
numerical simulations11,13,15,23,24,45 ~see also below! the
bunched state does exist when the driving force exceeds
some critical value. It is also quite remarkable that an ap-
pearance of bunched states isalwaysaccompanied by cre-

FIG. 2. ~a! Piecewise linear approximation
Pa@w(z)# ~dashed curve! of the sinw(z) function
~full curve! with a50.7. ~b! w15w3 are dis-
placed ahead a distanced from w2, forced by the
bias current,g.

FIG. 3. The gray shaded area indicates the region in the
(S,g)-parameter space in which bunching of the~f-a-f! occurs in
the numerical simulations. The dashed curve draws the contour of
the region in which the PWLA of the~f-a-f! leads to bunching for
the free parametera50.5.

FIG. 4. Bunched fluxons and antifluxon from the numerical
simulation ~full curve! and PWLA ~dashed curve!. S520.49, a
50.1, g50.2, anda50.5 have been used.
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ation of oscillatory tails of fluxons. The bunched state of
equal polarity fluxons in coupled Josephson junctions is al-
ways related to these oscillatory tales unless there are only
two junctions with the same physical properties. The sym-
metry of this configuration, which may be considered as de-
generate, provides a fluxon-fluxon solution without oscilla-
tions as is deduced in Appendix B. Therefore to describe
fluxon bunching one should use an approach which takes
into account the change of shape of fluxons and appearance
of oscillating tails. This can be done in the framework of the
PWLA. The approximationPa given by Eq.~5! is too crude
in the central portion of the fluxon to provide the bunched
state. Instead the more accuratePm , given by Eq.~6! and
shown in Fig. 5~a!, is used. We assume that the fluxon in the
interior junction,w2, travels slightly ahead by a distanced
with respect to the fluxons of junctions 1 and 3,w15w3, as
shown in Fig. 5~b!.

As in the previous section we distinguish three intervals
for the PWLA,

~ I! z<0⇔0,w1<
p

2
,

~ II ! 0,z<d⇔w1.
p

2
, w2<

3p

2
, ~16!

~ III ! d,z⇔ 3p

2
,w2<2p.

Inserting solutions of the typew i(z)5Die
lz6g (2 in

regions I and III and1 in region II! into the linear system of
the ODE obtained from Eq.~4! substituting sinwi→Pm(wi)
we get the characteristic equations

F S 1

122S2
2v2D l21avl71G 2

5
2S2

~122S2!2
l4. ~17!

The upper sign (2) corresponds to regions I and III and the
lower sign (1) to region II. The roots of Eq.~17! in regions
I and III are

l̄1,252p16Ap1
2 1q1, l̄3,452p26Ap2

2 1q2,
~18!

wherep6 andq6 are given by Eq.~10!. For speeds higher
than the Swihart velocity,v.c2 , the roots l̄3,4 become
complex and they are responsible for the emergence of os-
cillatory tails of the fluxons. For convenience we denote
l̄3,45l̄ r6 i l̄ l , wherel̄ r52p2 and l̄ l5A2(p2

2 1q2) are
real. In region II the roots are

l̄5,652p16Ap1
2 2q1, l̄7,852p26Ap2

2 2q2.
~19!

The rootsl̄7,8 are real whilel̄5,6 are complex; for conve-
nience we denotel̄5,65l̄m6 i l̄h , wherel̄m52p1 and l̄h

5A2(p1
2 2q1) are real. In the three regions the eigenval-

ues corresponding to the solution of the characteristic equa-
tions are (D1 ,D2)5(1,A2) and (D1 ,D2)5(1,2A2) for the
in-phase and the antiphase modes, respectively. The bounded
solutions of the linearized version of Eq.~4! in regions I, II,
and III become

~ I!H ŵ1~z!5H̄1el̄1z1el̄rz~H̄2cosl̄ lz1H̄3sinl̄ lz!2g,

ŵ2~z!5A2@H̄1el̄1z2el̄rz~H̄2cosl̄ lz2H̄3sinl̄ lz!#2g,
~20!

~ II !H ŵ1~z!5el̄mz~Ḡ1cosl̄hz1Ḡ2sinl̄hz!1Ḡ3el̄7z1Ḡ4el̄8z1p1g,

ŵ2~z!5A2@el̄mz~Ḡ1cosl̄hz1Ḡ2sinl̄hz!2Ḡ3el̄7z2Ḡ4el̄8z#1p1g,
~21!

~ III !H ŵ1~z!5K̄1el̄2z12p2g,

ŵ2~z!5A2~K̄1el̄2z!12p2g.
~22!

FIG. 5. ~a! Piecewise linear approximation
Pm@w(z)# ~dashed curve! of the sinw(z) function
~full curve!. ~b! Fluxon,w2, forwarded a distance
d from the fluxon,w1, due to the interaction from
its two neighbors.
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The eight constants (H̄1 ,H̄2 ,H̄3 ,Ḡ1 ,Ḡ2 ,Ḡ3 ,Ḡ4 ,K̄1) are de-
termined by the ten matching conditions at the pointsz50
andz5d, and the corresponding equations are

ŵ1
I ~0!5ŵ1

II ~0!5
p

2
, ŵ2

II ~d!5ŵ2
III ~d!5

3p

2
,

ŵ2
I ~0!5ŵ2

II ~0!, ŵ1
II ~d!5ŵ1

III ~d!, ~23!

dŵ i
I~0!

dz
5

dŵ i
I I ~0!

dz
,

dŵ i
I I ~d!

dz
5

dŵ i
I II ~d!

dz
, i 51,2.

The remaining two conditions can be written in the following
way as functions ofḠ1 andḠ4 obtained previously by Eqs.
~23!:

S el̄md

cosl̄hd
D Ḡ15S l̄m1

l̄2

A2

l̄h

2tanl̄hdD S g2
p

2 D ,

S l̄8

l̄7

21D el̄8dḠ45S 12
1

A2
D S g2

p

2 D . ~24!

From Eqs.~24! the values of the distance between fluxons,d,
and the velocity,v, are fixed as function of the parametersS,
a, andg. Solving Eqs.~24! for each coupling constant,S,
we obtain the region in the (a,g)-parameter space where
bunching in the~f-f-f ! mode exists. Figure 6 shows this re-
gion calculated numerically between the Swihart velocities,
c2,v,c1 , where bunching exists. The bottom contour of
this region may be approximated by the PWLA, while the
top contour of the region cannot be approximated by the
PWLA, due to creation of new pairs of fluxon-antifluxons
above this contour. The PWLA, Eqs.~20!–~22!, reproduces
quite accurately the shape of the fluxons for low values of
the driving force,g, where the bunching of the~f-a-f! takes
place, as shown in Fig. 7.

III. NUMERICAL SIMULATIONS

A symmetric central finite difference method of second
order for both space and time has been implemented for the
numerical simulations. The total length of the junctions is
L540 and the spatial mesh size isDx50.05. We have cho-
sen periodic boundary conditions,w i(L/2)5w i(2L/2)12p
and w i ,x(L/2)5w i ,x(2L/2), i 51,2,3, corresponding to an
annular geometry to avoid ambiguities due to reflection from
edges.

As shown in previous sections, in the antiphase mode
~f-a-f! the fluxons and the antifluxons are attracted by the
coupling between junctions while a bias current of the same
sign in all fluxons,g, drives them in opposite directions.
When the coupling is strong enough to overcome the fluxon-
antifluxon separation caused by the bias term the two fluxons
and the antifluxon will travel bunched, as is shown in Fig.
8~a!, while a higher driving force will lead to a split in the
fluxons, as is shown in Fig. 8~b!. The bunching in the~f-a-f!
mode takes place foruvu,c2 .

The numerical simulations have been made under fixed
values of the coupling constant,S, and the dissipation,a,
and varying the driving,g. A numerically found dependence
of the bias current vs fluxon velocities is plotted in Fig. 6.

The ~f-f-f ! mode presents a more complex scenario than
the ~f-a-f!. Here the bunching is possible for speeds between
the lowest and the highest Swihart velocities,c2,v,c1 .
Thus the simulations have been made for a high driving
force, g. Three types of fluxon motion have been detected.
When g is lower than a threshold value the bunched state
does not exist. Fluxons in external junctions split from the
fluxon in the internal junction@see Fig. 9~a!# and they propa-
gate with different velocities.

Increasing the bias parameter,g, we find the range of
values where bunched states exists. This bunching interval
depends on the couplingS and the dissipationa. When
bunching takes place the fluxons move their centers with the
same velocity,v, belonging to the interval (c2 ,c1), and
their centers are separated by a small distance, as is shown in
Fig. 9~b!. The emergence of oscillating tails in the numerical
solution of Eq.~1! for this high velocity,v, induces the three

FIG. 6. The gray shaded area indicates the region in the param-
eter space (a,g) for S520.2, where bunching of the~f-f-f ! occurs
in the numerical simulations. The bottom contour of this region is
approximated by the PWLA~dashed line! but the top contour can-
not be found by this approach.

FIG. 7. Bunched fluxons from the numerical simulation~full
curve! and as result of the PWLA~dashed curve!. The parameters
are S520.2, a50.2, andg50.6. The velocity isv51.1.c2 .
One can see good agreement between both results.
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fluxons to bunch. For a too high bias@g50.69 in Fig. 9~c!#
the equilibrium of bunching is broken by the creation of a
new pair of fluxon-antifluxon.46

It is worth mentioning that fluxon splitting is an irrevers-
ible process. For example, having initially a bunched state,
one can destroy it by decreasing the bias term,g, and cross-
ing the bottom contour in Fig. 5. As a result exterior fluxons
and the interior one split off and start to move with different
velocities. It is impossible to rebunch these fluxons by in-
creasing the driving force,g.

The bias current versus the numerically found fluxon ve-
locities~i.e., theI -V curve with voltage replaced by velocity!
are plotted in Fig. 10. When the fluxons move more slowly
than c2 , they split and travel with different velocities,w1
5w3 with v1 andw2 with v2, wherev1,v2. Bunching state
branches are observed in narrow ranges of velocities between
c2 andc1 .

As was mentioned above we used a uniform driving force,
g. Therefore during the simulations we did not observe a
mode corresponding to a fluxon in the first junction, nothing
in the second, and an antifluxon in the third, which was
proved to be stable in the no-bias, no-damping case.

IV. CONCLUSIONS

We have investigated a theoretical model of three coupled
Josephson junctions taking into account identical fluxons,
w15w3, in exterior junctions and a fluxon or antifluxon in
the interior one,w2. In the case of~f-a-f! the interaction
between the fluxons leads to repulsion between the center
portion of the fluxons and antifluxon while the bias term,g,
drives them in opposite directions. The combination of these
two factors gives rise to bunching or unbunching depending
on the balance betweenS and g. The simple analytical

PWLA used, sinw→Pa(w), gave successful results in the ap-
proximation of the shapes of the solutions as well as in the
determination of the region in (S,g) phase space where
bunching occurs. This method gives better results than the
collective coordinates approach because it works well even
when the range of velocities is not restricted to slow ones,
uvu@0.

The behavior of the waves in the~f-f-f ! mode is notori-

FIG. 9. Behavior of fluxonsw1 ~full curve! and w2 ~dashed
curve! for coupling S520.2, dampinga50.1, and bias current.
~a! g50.43 fluxons split with velocitiesv150.868 forw1 and v2

50.88 for w2; ~b! g50.44 bunched fluxons with velocityv15v2

51.118;~c! g50.69 creation of a new fluxon-antifluxon pair due to
excess energy.

FIG. 10. Bias current,g, versus fluxon velocity,v, for coupling
for S520.2. Full~dashed! curves represent velocity versus bias for
a50.1 (a50.3). Belowc2 , fluxons split and two different veloc-
ity branches are observed forw1 andw2. Fluxon bunching occurs in
a velocity interval betweenc2 andc1 .

FIG. 8. Three-dimensional graphics of the behavior in time of
the ~f-a-f! mode. ~a! The ~f-a-f! mode splits for coupling,S5
20.2 and bias current,g50.1. ~b! The ~f-a-f! bunched mode for
couplingS520.2 and bias currentg50.09.
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ously different than the previous one. Here the interaction
coupling induces repulsion between the fluxons for speeds
below the lowest Swihart velocity,v,c2 . In the high ve-
locity regime,c2,v,c2 , the fluxon bunching may exist
only for a certain range of velocities due to the creation of an
oscillating tales mirror symmetric in the fluxons of adjacent
junctions. These oscillations provide the internal energy of a
local minimum when the fluxons are separated by a small
distance,d. Under these conditions the changes of the shapes
of the fluxons are very sensitive to small variations of the
parameters and that is why we have chosen the more sophis-
ticated PWLA, sinw→Pm(w). The analytical solutions ob-
tained by this method approximate accurately the solutions
given by the numerical simulations and also give approxi-
mately the lower velocity threshold for the bunched state.
This result cannot be obtained by the classical method of
collective coordinates~see Appendix A! because the oscillat-
ing tales, which are fundamental for the bunching, are not
taken into account in the classical fluxon type of trial func-
tions. I -V curves have been calculated numerically in order
to clarify the behavior of the fluxons inside the bunching
interval of the parameter space (S,g), as well as outside this
interval.
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APPENDIX A: COLLECTIVE COORDINATES

In this Appendix the attraction between the center por-
tions of the fluxon and the antifluxon in the~f-a-f! mode and
the repulsion between the fluxons in the~f-f-f ! mode is in-
vestigated. The standard procedure is to study the minima of
the potential energy,W, as a function of the distance between
the waves in the different junctions.

In the collective coordinate approach generalized coordi-
nates defined byqW (t)5@q1(t), . . . ,qn(t)# are used. They
determine the position of the particles at timet. The energy
of the system given by Eq.~1! may be written in terms of
these coordinates,q, and their derivatives with respect to
time, q̇. The potential energy,W, will depend only onq,
while the kinetic energy,T, will depend onq and q̇. Using
the standard procedure47,48 we obtain from the Lagrangian
~2! the equations of motion for each of the generalized coor-
dinates,qi(t),

]L

]qj
2

d

dt

]L

]q̇ j

52a(
i 51

3 E w i ,t

]w i

]qj
dx. ~A1!

The natural choice of the generalized coordinates for Eq.
~1! is qW (t)5XW (t)5@X1(t),X2(t),X3(t)#, where Xi is the
center of thei th fluxon,w i , andui[Ẋi is the velocity of the
center. The fluxon solutions of the unperturbed single sine-
Gordon equation are used as trial functions,

w i~x,t !54 arctanH exps iFx2Xi~ t !

l i
G J , ~A2!

wherel 5A12ui
2(t) is the width of the waves, in accordance

with the Lorentz contraction. In order to simplify the equa-
tions of motion, we assume identical widths,l i5 l , as is in-
deed the case for traveling waves with low velocities,uui u
!1.

All the contributions except the terms which involvew j
vanish from the partial derivatives of the Lagrangian with
respect toXj and Ẋj ,

]L

]Xi
2

d

dt

]L

]Ẋi

5E S 2aw i ,t

]w i

]Xi
2gx

]w i ,x

]Xi
Ddx. ~A3!

Substituting the expression of the fluxons, Eq.~A2!, into Eq.
~A1! and solving the integrals involved in Eq.~A3! we ob-
tain the equations of motion forX1 andX2. The repulsion or
the bunching effect will be determined by checking the rela-
tive distance between the center portion of the solitons.11,13,22

This magnitude is defined asY5(X12X2)/ l . Using symme-
try arguments to calculate the involved integrals, the equa-
tion of motion for the distance,Y, is calculated in the same
manner as26

Ÿ12aẎ5
3s1s2S

122S2

d

dY S Y

sinhYD1
p lg

4
~s12s2!.

~A4!

1. Fluxon-antifluxon-fluxon „s1ÄÀs2Ä1…

Choosing the mode~f-a-f! the potential of Eq.~A4! leads
to

V~Y!5
3S

122S2

Y

sinhY
2

p lgY

2
. ~A5!

The zeros of the derivative of the potential,dV(Y)/dY, de-
termine the stationary points of the system, and they are
located at the roots of the nonlinear equation,

3S

122S2 S 1

sinhY
2

Y coshY

sinh2Y
D 2

p lg

2
50. ~A6!

A high value of the coupling parameter,S, compared with the
driving force,g, provide two extremes,y1,y2, for the po-
tential. The first one,y1, is a minimum~stable state! and the
second one,y2, is a maximum~unstable state!. This means
that the collective coordinates approach predicts attraction
between the solitons of different polarities. They travel
slightly separated by a distancey1, which depends on the
coupling parameter,S, and the driving force,g.
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2. Fluxon-fluxon-fluxon „s1Äs2Ä1…

The potential corresponding to the wave configuration~f-
f-f ! can be reduced to

V~Y!5
3S

122S2

Y

sinhY
. ~A7!

There is only one finite zero ofdV(Y)/dY at y050,
which is a maximum of the potential. There are two zeros,
y1,256`, which are minima. The consequence is that the
system reaches stationary states only when the fluxons are
infinitely separated. Thus, the collective coordinates ap-
proach predicts the repulsion between the solitons of the
same polarity.

APPENDIX B: PIECEWISE APPROXIMATION OF THE
„F-F… MODE IN TWO JUNCTIONS

The particular case of two junctions with one fluxon trav-
eling in each of them has been studied in detail in several
publications.11,13,15,23,24Whenever the coupling parameterS
is the same in both junctions, the equations of motion for
both junctions are identical,

~m̃22v2!w i9~z!1avw i8~z!2sinw i~z!2Sm̃2w j9~z!2g50,
~B1!

where i 51,j 52 or i 52,j 51 and m̃251/(12S2). Due to
symmetry of the system, Eq.~B1!, both the in-phase mode
w15w2 and the antiphase modew152w2 are solutions with
maximum limit velocitiesc̃251/A12S and c̃151/A11S,

respectively.
In the numerical simulations the stability of the bunched

state of the in-phase mode for a certain range of velocities is
observed in the same manner as in the case of three junc-
tions, which has been analyzed above. The particularity
arises from the fact that in the case of two junctions with
identical coupling, oscillating tales no longer appear. We ap-
ply the PWLA to Eq.~B1! in the same manner as in previous
section. The roots of the corresponding characteristic equa-
tions for solutions of the typew i(z)5Die

lz and velocities
higher thanc2 are

l̃1,252 p̃16Ap̃1
2 1q̃1,

l̃3,452 p̃26Ap̃2
2 1q̃25l̃ r6 i l̃ l ,

l̃5,652 p̃16Ap̃1
2 2q̃15l̃m6 i l̃h ,

l̃7,852 p̃26Ap̃2
2 2q̃2, ~B2!

where

p̃65
av

2~ c̃62v2!
, q̃65

1

~ c̃62v2!
. ~B3!

The eigenvectors, (D1 ,D2), are (1,1) and (1,21) for the
in-phase and antiphase modes, respectively.

Three regions, I, II and III, are distinguished inz space
and the expressions of the fluxons in each region read

~ I!H ŵ1~z!5H̃1el̄1z1el̃rz~H̃2cosl̃ lz1H̃3sinl̃ lz!2g,

ŵ2~z!5H̃1el̃1z2el̃rz~H̃2cosl̃ lz2H̃3sinl̃ lz!2g,
~B4!

~ II !H ŵ1~z!5el̃mz~G̃1cosl̃hz1G̃2sinl̃hz!1G̃3el̃7z1G̃4el̃8z1p1g,

ŵ2~z!5el̃mz~G̃1cosl̃hz1G̃2sinl̃hz!2G̃3el̃7z2G̃4el̃8z1p1g,
~B5!

~ III !H ŵ1~z!5K̃1el̃2z12p2g,

ŵ2~z!5K̃1el̃2z12p2g.
~B6!

The matching conditions which provide continuity and
differentiability to the piecewise solutions are the same as
Eqs. ~23!. Solving eight of this conditions we realize that
some coefficients vanish,

H̃25H̃35G̃35G̃450. ~B7!

Two conclusions are obtained from Eq.~B7!. The first is

that the two fluxons are identical,ŵ15ŵ2, and the second is
that there are no oscillating tales,Ḣ25Ḣ350.

It is important to note that the cancellation of the four
coefficients, Eq.~B7!, arises from the fact that Eq.~B1!
does not change with the choice ofi and j subindexes. Oth-
erwise if any one of the physical quantities, coupling, damp-
ing, or dissipation, change in one of the junctions the
solutions given by piecewise approximations produce differ-
ent fluxons, and oscillating tales exist in the case of three
junctions.
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