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Fluxons and their interactions in a system of three stacked Josephson junctions

C. Gorrial? P. L. Christiansen,Yu. B. Gaidideil V. Muto,? N. F. Pedersefand M. P. Soerensén
Section of Mathematical Physics, IMM, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
2Department of Applied Mathematics and Statistics, University of the Basque GaEnt#8080 Bilbao, Spain
3Bogolyubov Institute for Theoretical Physics, 252143 Kiev, Ukraine
“Department of Electric Power Engineering, Technical University of Denmark, DK-2800, Kongens Lynghy, Denmark
(Received 21 November 2002; revised manuscript received 6 February 2003; published 17 July 2003

Fluxon dynamics in a system of three coupled driven damped sine-Gordon equations is investigated. Bunch-
ing of fluxons is observed. It is shown that fluxon-fluxon-fluxon bound states exist in a certain interval of the
fluxon velocity. Attraction between fluxons occurs as a result of indirect fluxon-fluxon interaction mediated by
Swihart waves. To tackle the problem analytically a piece-wise linear approach is developed. The analytical
approximations show good agreement with the results obtained by direct numerical simulations.
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I. INTRODUCTION
31:—2[@1)«_ S(pZ,XX+ 82( P3xx— ‘Pl,xx)]v

The fluxon dynamics in stacked long Josephson junctions 1-2S
have been investigated in detail during the last decafle.
The possibility of comparing theoretical predictions with ex-
perimental measurements increases the interest of these sys- 1
tems. The potential applications of the vertical stacked Jo- ‘J2:m[@2,xx_s(¢l,xx+ P3x0 1, (1)
sephson junctions cover several interesting fields such as the
design of devices for storage and transmission of electronic
signals and high-frequency radiation emission and detection
devices. 5

When two layers of superconducting material are sepa- Jszm[%xx_ Se2xx T S P1xx— 3],

rated by an insulating layer and overlap between Cooper

pairs wave functions occurs, then Cooper paas well as

electrong can cross the insulating barrier due to the tunnelyhere Ji=g¢; «+ag; +sing+y,i=12,3. The electro-
ing effect. The dynamics of the phase differencdetween ’ ’

emed by the perturbed sine-Gordon equation. Ehe interval —0.5<S<0. The constanty; represents the

The sine-Gordon equation emerges from many differendarn ing andy; represents the driving force in tih junc-
physical fields in the study of nonlinear wave phenomena. . ping andy; rep . g X junc-.
tion. Realistically due to physical requirements, the driving

Special care has to be taken in the study of stacked junctior}%rces introduced into each junction must be the same, i.e
as compared to a single junction due to the interaction effect . 1jun T
=v,1=1,2,3, as shown in Fig. 1.

between the stacked junctions. This interaction was first' .

studied in the case of two junctions by Mineetal® and Th_e Lagrangian of Eq(1) for the undamped syster;

later it was widely investigatett 26 The symmetry between =0.1s

the two equations in the case of two junctions may hide some

important aspects of the fluxon motion. In order to investi- z

gate the general properties of a system of an arbitrary num- y

ber of junctions we study the case of three junctions. It is X

important to note the difference in the motion of fluxons in

interior junctions, as 2 in Fig. 1, which receive interaction

from their two neighboring junctions, 1 and 3, while the two

exterior junctions only receive interaction from one neigh-

boring junction. By simple arguments the topological dis-

similarity between junctions is most important fo=3. In

the limit n=00 all junctions are again similar topologically.
Our starting point is the model described by Sakai, Bodin, /25

and Pedersénwhere a theory describing the interaction be-

tween a general system ®f junctions is deduced from the FIG. 1. Structure of the stack of four superconductors and three

Maxwell, London, and Josephson equations. The equatioratermediate junction€1,2,3. Unidirectional external bias is ap-

for the particular case of three junctions are plied along the system.
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tales are created in the fluxohs:>*®These oscillations are
dx successfully represented by the PWLAs and the threshold
for bunching in the driving-damping parameter space is ob-
S 3 tained for each value of the coupling constant with a good
B degree of accuracy. In one junction bunching only occurs in

+j (1-252) P2x(@1x P3x)AX ,21 j PX@ixdX e presence of surface current 1358

In Sec. Il the method used for the numerical simulations
(2)  is described. The solutions are shown for different param-
The uncoupled and unperturbed syster, o= y=0 in eters of the equation and compared to the analytical predic-
Eqg. (1), reduces to three identical equations which allow at'.ggcsj' In Sec. IV the conclusions about the work are summa-

simple single soliton solution given by the expression . . . .
P g 9 y P In Appendix A, a collective coordinates approach is for-

1

2
—¢7,— 1+ cosg;
2(1-282) '

1
290"

Xx—pt—X mulated. This method gives qualitatively good results when
o(x,t)=4 arcta{expg( —20> , (3)  the fluxons are driven with low velocities and successfully
1-v predicts the bunching of different polarity fluxons but fails to

n predict the bunching of equal polarity ones. In Appendix B
the particular symmetric configuration of two identical junc-
tions is studied by the PWLA method. It is found that the
fluxon-fluxon mode is stable above Swihart velocity and os-
cillating tales do not appear.

wherev is the velocity of the wave. It is called a fluxo
(0=1) or an antifluxon §=—1), depending on the polar-
ity. The maximum speed for one single equatior=Q1) is
the velocity of light in the junction, the so-called Swihart
velocity?” ¢, which is used for normalization in the follow-
ing. Several perturbation methods have been developed to Il. PIECEWISE LINEAR APPROXIMATION

study this model in detaf° '

The aim of this paper is to investigate the trajectories and The two modesf-a-f) and(f-f-f) have physical relevance
stability in (x,t) space and time of the single fluxons or because they are the only ones which can be excited in
antifluxons in each junction to determine stable modes. Thetacked coupled Josephson junctions by a uniform bias cur-
stability analysis of the system of two junctions was studiedrent. Bunched states of fluxons may exist in both modes but
by means of perturbation analysis of the antiphase lineathe dynamics is completely different.
mode by Grabech-Jenseet all**® Assuming fluxon-type It is well known that bias current drives the fluxons and
solutions in each junction, the coupling effect leads to repulthe antifluxon, Eq(1) with c=1 ando= —1, respectively,
sion between the center portion of the fluxons of identicaiin opposite direction&® For the case of &-a-f) mode it was
polarity and attraction between the fluxons of opposite polarshown quite recentfy that in the framework of the collec-
ity. This conclusion is obtained investigating the minimum oftive coordinates approach the balance between the separation
the potential energy of the system. The basic ideas for thitendency due to driving force and the fluxon-antifluxon at-
case were first established by Mineevall® and later sev- traction may lead to a bunched state. In contrast to this the
eral investigations, making use of the symmetry of this casehunched state on th@f-f) mode does not exist.
were performed! 1317192130 the other hand, a unidirec-  As it has been shovirtt*3151744qynching of fluxons in
tional y force drives the fluxon and antifluxon in opposite the case of two Josephson junctions may be explained be-
directions?® yond the collective coordinates approach. High amplitude

In the case of two stacked Josepson junctions, stable caadiation, which is attractive for the fluxons of neighboring
herent in-phase zero-field steps in the current-voltage chajunctions, is created when these fluxons move in the range of
acteristic were observed experimentally in Refs. 17 and 31velocity, v, between the Swihart velocities,_<v<c, ,

An experimental finding of different cavity resonanceswherec. =1/(1+2S)¥? are the asymptotic phase veloci-
(Fiske modeksin three stacked junctions was presented inties of the small amplitude linear plasma watés*?

Ref. 32. So far direct observation of coherent in-phase fluxon General solutions for the fully nonlinear coupled system,
motion in three and more Josepson junctions has not be&Rgs.(1), are not known. We are interested in traveling-wave-
reportedt? type solutionsg;(x,t) = ¢;(z), wherez=x—wvt. Taking into

Of physical interest are the modes where the waves exaccount that in both mode§;a-f) and (f-f-f), fluxons in the
cited in the top and bottom junctions are identical. Stablefirst and the third junctions are identical, the set of Ed3.
bunching of solitons are shown in Secs. Il and Ill. Thus wecan be reduced to the following two equatiérig*
will restrict our analysis to the fluxon-antifluxon-fluxdfia- 5 o , ) > »

f), o1=1, 0o,=—1 in Eq.(3), and fluxon-fluxon-fluxor(f-f-  (#"—v)¢1(2)+ avey(2) —sine1(2) —2Su”¢y(z) — y=0,
f), oc;=0,=1, cases. " , . "

In1 Secz. Il we develop piecewise linear approximations (u2—v?) @5(2)+ avey(z) —sing,(z) — Su?e](z) — y=0,
(PWLA's) of the fully nonlinear equations, substituting the (4)
sing; term by linear approximations. In the f-a-f case thewhereu?=1/(1— 28%)=c%.c2.
threshold between the driving and the coupling parameters We cannot solve Eqg4) analytically. Therefore to pro-
for the bunched state is deduced. Otherwise the locked statéde some insight into the physical mechanism of fluxon
of fluxons in the f-f-f case is possible only for a certain rangeinteraction, we use PWLAS?(¢;), for the nonlinear terms,
of high speeds above the Swihart velogftwhere oscillating  sin @i, in order to linearize Eqg4) in a piecewise fashion.
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Here we present two choiceB, andP,,, for the operator one. On the other hand due to coupling between junctions the

P, fluxons and the antifluxon attract each othe®?%??As a
result of the competition between driving and interaction of
_ agp, for Ose<m, junction coupling the fluxons and the antifluxon are sepa-
Pale)= a(e—2m), for w<¢<2m, ®) rated by the distancal. For y>0 the antifluxon is behind
the fluxons and the distance between thdmncreases with
and the driving force. Thus in the framework of the PWLA one
should distinguish the following three intervals as shown in
@, for O<soe<m/2, Fig. 2b):
Pno)={ 7m—¢, for @m2<¢e<3m/2, (6) (1) 2206 27= gy,
o—2m, for 3wl2=¢e<2w,
respectively. () o<zsdep,<w, o<, (7)

The first one,P [ ¢(2)], is the simpler. As seen in Fig.
2(a) it provides a good representation of the fluxon tails as
¢—0 or 27. However, it is discontinuous gt= 7. The free  |nserting solutions of the type;(z) = D;e*?— y/a in the lin-
parametera (0<<a<1) controls the slopes of the approxi- ear system of the ODE, E¢4) with P=P,, the correspond-

mating straight lines and may be used to adapt the approxing fourth-order characteristic equation is obtained to be
mation.

The second oneP,[¢(z)], is more accurate. It was 1 )
used?® to describe fluxon dynamics in a single junction with 1-232 v
a surface loss term. As seen in Figapbelow P,(¢) pro-
vides a good approximation to the fluxon tails @s-0 or  The roots of Eq(8) are
21 and also to the center portion of the fluxonspat 7. In
contrast toP,, P, is continuous. Nio=—pi* ‘/FE +aq;, Ags=—p-=* \/pg +aq_,

The analytical solutions obtained by substituting giny 9)
Pn(¢) are more accurate than usiig but also more cum-
bersome. In the following sections the reasons for choosiny/here the termg.. andq. are
between the two approximations are given.

() d<zom<g,<2.

P29,
-~ ®

N+ avh—a

av

P (10)

A. Fluxon-antifluxon-fluxon 2(c2—v?)’ b (c2-v?)

Here we describe th@-a-f) bunching taking into account The eigenvectorsl¥,,D,) associated to the solution of the
fluxon shape modification. Because we are interested in thinear system will be (1/2)T and (1~ \/2)", corresponding
low velocity case, where is much smaller than the lowest to the in-phase and antiphase modes. For low velocities,
Swihart velocity,c_ , we may use the PWLAR,, given by  |v|<cy, \;3are positive and, 4 are negative. The expres-
Eq. (5). sions for the bounded solutions of the piecewise linearized

The identical bias termy, in all junctions, Eq(1), drives  version of Eq.(4) in each one of the three regions, I, Il and
the fluxons in one direction and the antifluxon in the oppositdll, become

Pr(2)=HieME et
(DA (12)

$2(2) = V2(H,€"7~ H )+ 277~ 1

¢ Y
01(2) =GN+ G,e" 2"+ GeMs?+ G,eM 7~ a’

(113 2
El\’z(z) = \/E(Gle)\lz"' G e 22— Gyers?— G ete?) — g )
\
P1(2)=K,eM22+ K eM2+ 27— g
()3 3

bo(2) = V2K 7~ K ehet) = L.
\
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sin (@) —
(a) e Ba(p) ——— (b) /T

FIG. 2. (a) Piecewise linear approximation
P. ¢(2)] (dashed curveof the sing(z) function
3 z (full curve) with a=0.7. (b) ¢,=¢5 are dis-
placed ahead a distanddrom ¢,, forced by the
bias current,y.

0
ot I & III

The eight constantsH; ,H,,G;,G,,G3,G,4,K{,K,) are de-  When the coupling parametes, is large enough to counter-
termined by the ten matching conditions at the pom#s0  act breakup induced by the driving force, Egs.(15) have
andz=d, finite solutions for the velocityp, and distanced. This
means that the bunched state of tha-f) mode exists. The
<AP|2(O): c}'z'(O)z ?p'l'(d) _ gouln (d)=, porlzrgsp;nding phase diagram in ti& %) space is presented
in Fig. 3.
~ .- .- ~ The PWLA, Eq.(11), reproduces quite accurately the
?1(0)=¢1(0), @z (d)=¢; (d), (14 shape of the fluxons for the weak bias currentwhere the
bunching of thef-a-f) occurs, as is shown in Fig. 4. On the
do!(0) d¢!'(0) de!'(d) de!"(d) other hand at high bias current, when the fluxons move
dl = ('j , ('j = Id , 1=1.2, with velocity close to the lowest Swihart velocity, , the
z z z z shape of the fluxons are more sensitive to variafibasd
where the superscripts (-)', (---)", and ( )" indicate this simple discontinuous PWLA, E@), is not sufficiently

the regions |, Il, or lll, respectively, in which the function is accurate. It reproduces accurately the behavior of fluxons in
evaluated and the apostrophe indicates differentiation Witﬁhe. talls.buF IS not correct at the center portion of the_ fluxons
respect ta which significantly contribute to the fluxon interaction. In

- : ; o this case we need the more accurate approximation given by
0 4I)3,ytl:1$e:ngieglﬂ¥ i'g: ;tfa:gglf?flge;gl ég?tggglcgj(’j'gfisz’)Eqs'Eq. (5) to obtain the bunche¢f-f-f) state in the following
may be expressed as functions of the param&eys «, and section.
v. The remaining two conditions give the dependence of the
distance between solitons, and the relation between the B. Fluxon-fluxon-fluxon

velocity, v, and the driving forcey. After some algebraic In the framework of the collective coordinates approach

calculations we get simple expressions for these two remainte punched state of three fluxons is unstabke Appendix

ing conditions as a function of the coefficier®s andG;  A). Fluxons repel each other and the potential energy of

given by Egs(14) to be interaction,U;,;, decreases when the distance between flux-
ons increases. However, as it follows from the results of
numerical simulationd*315232445 (see also beloy the
bunched state does exist when the driving force exceeds

(15) some critical value. It is also quite remarkable that an ap-
pearance of bunched statesaisvaysaccompanied by cre-

A A
(_l_l>e)\ld61:_77, <_3_1)e)\3dG3:_7T.
)\2 )\4

0.3 — Q1,92 \
- Q1497
N7
0.1 S
=0, 5 =0 .25 0
coupling S 0
FIG. 3. The gray shaded area indicates the region in the -20 20

Z
(S, y)-parameter space in which bunching of ttiea-f) occurs in

the numerical simulations. The dashed curve draws the contour of FIG. 4. Bunched fluxons and antifluxon from the numerical
the region in which the PWLA of thé-a-f) leads to bunching for  simulation (full curve) and PWLA (dashed curye S=—0.49, «
the free parametea=0.5. =0.1, y=0.2, anda=0.5 have been used.

035415-4
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in (@) —
(a) e Spitnn(w) S (b) /A 1
FIG. 5. (a) Piecewise linear approximation
—/ P.l ¢(z)] (dashed curyeof the sing(z) function
@ 0 3 z (full curve). (b) Fluxon, ¢,, forwarded a distance
e d from the fluxon,¢,, due to the interaction from
its two neighbors.
I j III
ation of oscillatory tails of fluxons. The bunched state of 1 2 2
equal polarity fluxons in coupled Josephson junctions is al- 5 —v2 N+ avrF1 =—22>\4. a7
ways related to these oscillatory tales unless there are only 1-2S (1-259

two junctions with the same physical properties. The sym-

metry of this configuration, which may be considered as detpq upper sign () corresponds to regions | and Il and the

generate, provides a fluxon-fluxon solution without oscilla-|\yer sign @) to region II. The roots of Eq(17) in regions
tions as is deduced in Appendix B. Therefore to describg 5nq 111 are

fluxon bunching one should use an approach which takes

into account the change of shape of fluxons and appearance

of oscillating tails. This can be done in the framework ofthe 7 _ . 4+ 2.5 Y. _ _n +./n2+a

PWLA. The approximatiorP, given by Eq.(5) is too crude MZm TP VPTG Aagm TP TP H G- (18)

in the central portion of the fluxon to provide the bunched

state. Instead the more accurddg,, given by Eq.(6) and ) )

shown in Fig. %a), is used. We assume that the fluxon in thewherep.. andq.. are given by Eq(10). For speeds higher
interior junction, ¢,, travels slightly ahead by a distande than the Swihart velocityp>c_, the roots\;, become
with respect to the fluxons of junctions 1 and@d,= ¢35, as  complex and they are responsible for the emergence of os-

shown in Fig. Bb). cillatory tails of the fluxons. For convenience we denote
As in the previous section we distinguish three intervalsy , ;=\, xi\,, wherex,=—p_ and\;=+/—(p? +q_) are
for the PWLA, real. In region Il the roots are

o
() z=0=0<¢;<, B B
i )\5’6:_p+im' 7\7,8:_p—im.

T 3
(”) 0<Z$d<:>g01>5, (OPES 7, (16)

(19

The rootsh; g are real whilexsg are complex; for conve-
37 nience we denot&sg=An*ik,, whereh,=—p, and\y
() d<ze 7< Pp=27. = \/—(p2+—q+) are real. In the three regions the eigenval-
ues corresponding to the solution of the characteristic equa-
Inserting solutions of the type;(z)=D;e*+y (- in  tions are D;,D,)=(1,y/2) and O;,D,)=(1,—2) for the
regions | and Ill and+ in region ll) into the linear system of in-phase and the antiphase modes, respectively. The bounded
the ODE obtained from Eq4) substituting sinp—P(¢;)  solutions of the linearized version of E@) in regions |, Il
we get the characteristic equations and Il become

®1(2)=H,€M7+ eM?(H ,cosh, 2+ Hasink 2) — 7, 20
¢2(2)= \2[H,e"17— eM*(Hpcosh z— Hasin\2)] - v,
0 ?1(2) = m2(G1C0SNpZ+ GoSiNNy2) + G 72+ G, 2+ 7+ , o1
©2(2) = \2[ € (G,cosNpz+ G,Sinkpz) — GaeM 72— G, eMe?]+ 7+ y,
p(2) =K o +2m—y,
i - . 22)
02(2)=2(K1e'2%) + 27— y.
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LK — 01,92 (
-——- @1, QP2
b
B} A
- —~
0 N
3 —
S
Co.
0
0 0.5 1
damping «
-20 20
FIG. 6. The gray shaded area indicates the region in the param Z

eter spaced,y) for S=—0.2, where bunching of thg-f-f) occurs

in the numerical simulations. The bottom contour of this region is
approximated by the PWLAdashed ling but the top contour can-
not be found by this approach.

FIG. 7. Bunched fluxons from the numerical simulatigall
curve and as result of the PWLAdashed curve The parameters
are S=—-0.2, «=0.2, andy=0.6. The velocity isv=1.1>c_.
One can see good agreement between both results.

The eight constantd{; ,H,,H3,G,,G,,G3,G,4,K;) are de- I1l. NUMERICAL SIMULATIONS
termined by the ten matching conditions at the pomts0

B . . A symmetric central finite difference method of second
andz=d, and the corresponding equations are

order for both space and time has been implemented for the
- 3 numerical simulations. The total length of the junctions is
;DI1(0)= (;,'1'(0): -, qulzl(d)= QADI2” (d)=—, L =40 and the spatial mesh sizeAx=0.05. We have cho-

2 2 sen periodic boundary conditiong;(L/2)= ¢;(—L/2)+ 2

and ¢; «(L/2)=¢; «(—L/2),1=1,2,3, corresponding to an

e5(0)=h(0), &l (d)=0o!"(d), (23 Zggglsar geometry to avoid ambiguities due to reflection from

~ - ~ ~ As shown in previous sections, in the antiphase mode
dei(0) :dﬁ"i (0)  dei(d) _ dei” (d) i—12 (f-a-f) the fluxons and the antifluxons are attracted by the
dz dz ’ dz dz ’ " coupling between junctions while a bias current of the same

sign in all fluxons,y, drives them in opposite directions.
The remaining two E)nditioEs can be written in the following When the coupling is strong enough to overcome the fluxon-
way as functions of5; and G, obtained previously by Egs. antifluxon separation caused by the bias term the two fluxons
(23): and the antifluxon will travel bunched, as is shown in Fig.
8(a), while a higher driving force will lead to a split in the
N fluxons, as is shown in Fig.(B). The bunching in théf-a-f)
~ 2
= Amt+—= mode takes place fdp|<c_. _
em G - tanned ( __) The numerical simulations have been made under fixed
coshpd ! n h YT2) values of the coupling constars, and the dissipationg,
and varying the drivingy. A numerically found dependence
of the bias current vs fluxon velocities is plotted in Fig. 6.
(_8_1) efgdg _ ( 1— i)( _ _) The (f-f-f) mode presents a more complex scenario than
A5 J2 2 the (f-a-f). Here the bunching is possible for speeds between
the lowest and the highest Swihart velocities,<v<c, .
From Egs(24) the values of the distance between fluxahs, Thus the simulations have been made for a high driving
and the velocityp, are fixed as function of the paramet&s force, y. Three types of fluxon motion have been detected.
a, and y. Solving Eqgs.(24) for each coupling constan§  When y is lower than a threshold value the bunched state
we obtain the region in theq{ y)-parameter space where does not exist. Fluxons in external junctions split from the
bunching in the(f-f-f) mode exists. Figure 6 shows this re- fluxon in the internal junctiofisee Fig. )] and they propa-
gion calculated numerically between the Swihart velocitiesgate with different velocities.
c_<wv<c,, where bunching exists. The bottom contour of Increasing the bias parameter, we find the range of
this region may be approximated by the PWLA, while thevalues where bunched states exists. This bunching interval
top contour of the region cannot be approximated by thelepends on the coupling and the dissipationro. When
PWLA, due to creation of new pairs of fluxon-antifluxons bunching takes place the fluxons move their centers with the
above this contour. The PWLA, EqR0)—(22), reproduces same velocityy, belonging to the intervalo_ ,c,), and
quite accurately the shape of the fluxons for low values otheir centers are separated by a small distance, as is shown in
the driving force,y, where the bunching of thg-a-f) takes  Fig. 9b). The emergence of oscillating tails in the numerical
place, as shown in Fig. 7. solution of Eq.(1) for this high velocityy, induces the three

035415-6
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@

FIG. 8. Three-dimensional graphics of the behavior in time of
the (f-a-f) mode. (a) The (f-a-f) mode splits for couplingS=
—0.2 and bias currenty=0.1. (b) The (f-a-f) bunched mode for
couplingS=—0.2 and bias curreny=0.09.

fluxons to bunch. For a too high bigy=0.69 in Fig. 9c)] FIG. 9. Behavior of fluxonse; (full curve) and ¢, (dashed
the equ_|l|br|um of bun_chlng és broken by the creation of acyrvg for coupling S=—0.2, dampinga=0.1, and bias current.
new pair of fluxon-antifluxorf: (@ y=0.43 fluxons split with velocities,=0.868 for ¢, andv,

It is worth mentioning that fluxon splitting is an irrevers- —.88 for @, (b) y=0.44 bunched fluxons with velocity,=v,
ible process. For example, having initially a bunched states=1.118;(c) y=0.69 creation of a new fluxon-antifluxon pair due to
one can destroy it by decreasing the bias tepmand cross- excess energy.

ing the bottom contour in Fig. 5. As a result exterior fluxons
and the interior one split off and start to move with different PWLA used, sinp—P,(¢), gave successful results in the ap-
velocities. It is impossible to rebunch these fluxons by in-proximation of the shapes of the solutions as well as in the
creasing the driving forcey. determination of the region iny) phase space where
The bias current versus the numerically found fluxon ve-bunching occurs. This method gives better results than the
locities (i.e., thel -V curve with voltage replaced by velocjty collective coordinates approach because it works well even
are plotted in Fig. 10. When the fluxons move more slowlywhen the range of velocities is not restricted to slow ones,
thanc_, they split and travel with different velocitiess;  |v|>0.
= @3 With v, and g, with v,, wherev;<v,. Bunching state The behavior of the waves in tHé&f-f) mode is notori-
branches are observed in narrow ranges of velocities between
c_ andc, .
As was mentioned above we used a uniform driving force, 1} unbunched o bunched |
v. Therefore during the simulations we did not observe a B *
mode corresponding to a fluxon in the first junction, nothing s ’
in the second, and an antifluxon in the third, which was ‘, -
proved to be stable in the no-bias, no-damping case. no.6r 17 /
n
Q

IV. CONCLUSIONS P

. . . 0.2}

We have investigated a theoretical model of three couplec -
Josephson junctions taking into account identical fluxons,
©1= g, in exterior junctions and a fluxon or antifluxon in 0.4 08 1.2

. . : - velocity v

the interior one,p,. In the case of(f-a-f) the interaction
between the fluxons leads to repulsion between the center i 10. Bias currenty, versus fluxon velocity, for coupling
portion of the fluxons and antifluxon while the bias term,  for = —0.2. Full(dashedlcurves represent velocity versus bias for
drives them in opposite directions. The combination of these,=0.1 («=0.3). Belowc_, fluxons split and two different veloc-
two factors gives rise to bunching or unbunching dependingty branches are observed fg; and¢,. Fluxon bunching occurs in
on the balance betwee8 and y. The simple analytical a velocity interval betweeo_ andc., .
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ously different than the previous one. Here the interaction The natural choice of the generalized coordinates for Eq.
coupling induces repulsion between the fluxons for speedg)) is q(t)=X(t) =[X;(t),Xx(t),Xs(t)], where X; is the
below the lowest Swihart velocity <c.. In the high ve- center of theth fluxon, ¢; , andu;=X; is the velocity of the

locity regime,c_<v<c., the f_Iqxon bunching may eXist canter. The fluxon solutions of the unperturbed single sine-
only for a certain range of velocities due to the creation of a5ordon equation are used as trial functions

oscillating tales mirror symmetric in the fluxons of adjacent
junctions. These oscillations provide the internal energy of a x—X;(t)
local minimum when the fluxons are separated by a small ei(x,t)=4 arctar{ expo; —
distanced. Under these conditions the changes of the shapes :

of the fluxons are very sensitive to small variations of theyherel :‘/1—U2i (t) is the width of the waves, in accordance
parameters and that is why we have chosen the more sophigith the Lorentz contraction. In order to simplify the equa-
ticated PWLA, sinp—P(¢). The analytical solutions ob-  tjons of motion, we assume identical widths=1, as is in-
tained by this method approximate accurately the solutiongeed the case for traveling waves with low velocitigs|
given by the numerical simulations and also give approxi-<1

mately the lower velocity threshold for the bunched state. || the contributions except the terms which involyg

This result cannot be obtained by the classical method ofanish from the partial derivatives of the Lagrangian with
collective coordinatetsee Appendix Abecause the oscillat- {espect toX; and Xj ,

ing tales, which are fundamental for the bunching, are no
taken into account in the classical fluxon type of trial func-

] : (A2)

tions. |-V curves have been calculated numerically in order oL E ﬁzj (2a<Pi t%_ VX IPix dx. (A3)
to clarify the behavior of the fluxons inside the bunching ax; dt px, "X ax;
interval of the parameter spac8, /), as well as outside this

Substituting the expression of the fluxons, E&2), into Eq.
(A1) and solving the integrals involved in EGA3) we ob-
tain the equations of motion fof; andX,. The repulsion or
ACKNOWLEDGMENT the bgnching effect will be determine_d by checking the rela-
tive distance between the center portion of the solitdrig??
C.G. and Yu.B.G. acknowledge the hospitality of the This magnitude is defined &= (X;—X,)/l. Using symme-
Technical University of Denmark, where the investigationstry arguments to calculate the involved integrals, the equa-
were performed and N.F.P. acknowledges support from théon of motion for the distancey, is calculated in the same
ESF (VORTEX program and the Danish STVF program manner a&
(New SuperconductorsFinancial support was provided by
the Marie Curie Fellowship Prograf@Grant No. HPMT-CT- . . 3010,S d Y aly
2001-00402and a project from the University of the Basque Y+2aY= > W( sinhY) t
Country (Grant No. UPV/EHU 100.310-E-13891/2001 1-28

interval.

(01— 03).

(A4)

APPENDIX A: COLLECTIVE COORDINATES 1. Fluxon-antifluxon-fluxon (o;=—0,=1)

In this Appendix the attraction between the center por- Choosing the modé-a-f) the potential of Eq(A4) leads
tions of the fluxon and the antifluxon in tiifa-f) mode and to
the repulsion between the fluxons in tffe-f) mode is in-
vestigated. The standard procedure is to study the minima of V(Y) = 38 Y mlyy
the potential energyV, as a function of the distance between 1-2%? sinhY 2
the waves in the different junctions.

In the collective coordinate approach generalized coordiThe zeros of the derivative of the potentidl(Y)/dY, de-
nates defined by(t)=[q4(t), . ..,q,(t)] are used. They termine the stationary points Qf the system, and they are
determine the position of the particles at tim@he energy ~0cated at the roots of the nonlinear equation,
of the system given by Eq1) may be written in terms of
these coordinatesy, and their derivatives with respect to 3S

time, g. The potential energyyV, will depend only ong, 1-2%°

while the kinetic energyT, will depend ong andq. Using . . .
the standard procedde®® we obtain from the Lagrangian Ahigh value of the coupling paramet&,compared with the
driving force, v, provide two extremesy;<y,, for the po-

((jzi%;?gseqqzjt?tlons of motion for each of the generalized OOt ential. The first oney,, is a minimum(stable stateand the
y ] 1

second oney,, is a maximum(unstable stade This means
that the collective coordinates approach predicts attraction
L d aL 3 Jo; between the solitons of different polarities. They travel
R _fzzaZ f @i t—ldX- (A1) slightly separated by a distangg, which depends on the
i=1 " dq; coupling parametel§, and the driving forcey.

(A5)

1 Y coshY

mly
sinhY Sinth B

2

0. (AB)
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2. Fluxon-fluxon-fluxon (o;=0,=1) respectively.

In the numerical simulations the stability of the bunched
state of the in-phase mode for a certain range of velocities is
observed in the same manner as in the case of three junc-
3 V% tions, which has been analyzed above. The particularity
(A7) arises from the fact that in the case of two junctions with
identical coupling, oscillating tales no longer appear. We ap-
ply the PWLA to Eq.(B1) in the same manner as in previous

which is a maximum of the potential. There are two Zerossection. The roots of the corresponding characteristic equa-
P : tions for solutions of the type,;(z)=D;e** and velocities

y1,=*%, which are.minima. The consequence is that thehigher thanc_ are

system reaches stationary states only when the fluxons are

infinitely separated. Thus, the collective coordinates ap- ~ ~ =
proach predicts the repulsion between the solitons of the N1o=—P+EVPL A4,
same polarity.

The potential corresponding to the wave configuratien
f-f) can be reduced to

V(= 1—22 sinhY"’

There is only one finite zero oflV(Y)/dY at yy=0,

APPENDIX B: PIECEWISE APPROXIMATION OF THE
(F-F) MODE IN TWO JUNCTIONS ~ ~ 5=

The particular case of two junctions with one fluxon trav-
eling in each of them has been studied in detail in several ~ 2~

publications'!131>2324nhenever the coupling parametsr A7g= ~P-= VP-4, (B2)

is the same in both junctions, the equations of motion for,eare

both junctions are identical,

(1*—v?) @] (2)+ av { (2) —singi(2) — Sp¢{ (2) — y=0, (P a+:;_ (B3)
(B1) Co2(c.-v?)’ T (ca—vd)

wherei=1j=2 ori=2j=1 andpu®*=1/(1-S%). Due to  The eigenvectors,[{;,D,), are (1,1) and (1 1) for the
symmetry of the system, E¢B1), both the in-phase mode in-phase and antiphase modes, respectively.

¢1= ¢, and the antiphase modg = — ¢, are solutions with Three regions, I, Il and IlI, are distinguished inspace
maximum limit velocitiesc_=1/y1-Sandc,=1/J/1+S, and the expressions of the fluxons in each region read

" $1(2)=H,eM7+ eM?(F ,cosh 2+ Hasink,2) — 7, -
@o(2)=F,eM2— eMZ(Fl,cosn z— Flasink 2) — v,
( ?1(2)=E"?(G1COSKZ+ GpSIN 12) + Gg 77+ G, + 7+ 1y, =5
1y . ~ - - - -~ - o~ B5
©o(2) =e"?*(G,cos\pz+ G,SiNkpz) — Get 72— G,eMe?+ 7+ 1,
o1(2) =K+ 27—y,
(1) ~ ~ (B6)
0(2)=K &M%+ 27—y

The matching conditions which provide continuity and that the two fluxons are identicab, = ¢,, and the second is
differentiability to the piecewise solutions are the same 3$hat there are no oscillating taled,=Hy=0.
Egs. (23). Solving eight of this conditions we realize that ¢ js important to note that the cancellation of the four
some coefficients vanish, coefficients, Eq.(B7), arises from the fact that EqB1)
does not change with the choice iohndj subindexes. Oth-
erwise if any one of the physical quantities, coupling, damp-
ing, or dissipation, change in one of the junctions the
solutions given by piecewise approximations produce differ-
ent fluxons, and oscillating tales exist in the case of three
junctions.

035415-9
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Two conclusions are obtained from E@7). The first is
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