
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Generic features of modulational instability in nonlocal Kerr media

Wyller, John; Krolikowski, Wieslaw; Bang, Ole; Rasmussen, Jens Juul

Published in:
Physical Review E. Statistical, Nonlinear, and Soft Matter Physics

Link to article, DOI:
10.1103/PhysRevE.66.066615

Publication date:
2002

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Wyller, J., Krolikowski, W., Bang, O., & Juul Rasmussen, J. (2002). Generic features of modulational instability in
nonlocal Kerr media. Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, 66(6), 066615 (13
pages). DOI: 10.1103/PhysRevE.66.066615

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13733606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevE.66.066615
http://orbit.dtu.dk/en/publications/generic-features-of-modulational-instability-in-nonlocal-kerr-media(940b7a1a-85dd-429b-a0b9-3b22d005cf76).html


Generic features of modulational instability in nonlocal Kerr media

John Wyller
Department of Mathematical Sciences, Agricultural University of Norway, P. O. Box 5065, N-1432Ås, Norway

Wieslaw Krolikowski
Australian Photonics Cooperative Research Centre, Laser Physics Centre, Research School of Physical Sciences and Engineering,

Australian National University, Canberra ACT 0200, Australia

Ole Bang
Department of Informatics and Mathematical Modelling, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

Jens Juul Rasmussen
Riso” National Laboratory, Optics and Fluid Dynamics Department, OFD—128, P. O. Box 49, DK-4000 Roskilde, Denmark

~Received 29 August 2002; published 31 December 2002!

The modulational instability~MI ! of plane waves in nonlocal Kerr media is studied for a general response
function. Several generic properties are proven mathematically, with emphasis on how new gain bands are
formed through a bifurcation process when the degree of nonlocality,s, passes certain bifurcation values and
how the bandwidth and maximum of each individual gain band depends ons. The generic properties of the MI
gain spectrum, including the bifurcation phenomena, are then demonstrated for the exponential and rectangular
response functions. For a focusing nonlinearity the nonlocality tends to suppress MI, but can never remove it
completely, irrespectively of the shape of the response function. For a defocusing nonlinearity the stability
properties depend sensitively on the profile of the response function. For response functions with a positive-
definite spectrum, such as Gaussians and exponentials, plane waves are always stable, whereas response
functions with spectra that are not positive definite~such as the rectangular! will lead to MI if s exceeds a
certain threshold. For the square response function, in both the focusing and defocusing case, we show
analytically and numerically how new gain bands that form at higher wave numbers whens increases will
eventually dominate the existing gain bands at lower wave numbers and abruptly change the length scale of the
periodic pattern that may be observed in experiments.

DOI: 10.1103/PhysRevE.66.066615 PACS number~s!: 42.65.2k

I. INTRODUCTION

The phenomena of modulational instability~MI ! of plane
waves has been identified and studied in various physical
systems, such as fluids@1#, plasma@2#, nonlinear optics@3,4#,
discrete nonlinear systems~such as molecular chains@5#,
Fermi-resonant interfaces, and waveguide arrays@6#!, disper-
sive nonlinear directional couplers with the change of refrac-
tive index following a exponential relaxation law@7#, etc. It
has been shown that MI is strongly affected by various
mechanisms present in nonlinear systems, such as higher-
order dispersive terms in the case of optical pulses@8#, satu-
ration of the nonlinearity@9#, and coherence properties of
optical beams@10#.

In this work we study the MI of plane waves propagating
in a nonlinear Kerr-type medium with a nonlinearityN(ucu2)
~the refractive index change, in nonlinear optics! that is a
nonlocal function of the incident wave fieldc(x,z). We con-
sider a phenomenological model

i ]zc1
1

2
]x

2c1sN~ ucu2!c50, ~1!

where the nonlinear responseN(ucu2)5R* ucu2 has the ge-
neric form of a spatial convolution between the wave inten-
sity ucu2 and a response functionR(x), where R* ucu2

5*2`
` R(x82x)uc(x8,z)u2dx8, Here x is the transverse spatial

coordinate ands51 (s521) corresponds to a focusing~de-
focusing! nonlinearity. The evolution coordinatez can be the
time coordinates, as for Bose-Einstein condensates, or the
propagation coordinate, as for optical beams. We consider
only symmetric spatial response functions that are positive
definite and~without loss of generality! obey the normaliza-
tion condition

E
2`

`

R~x!dx51. ~2!

Thus we exclude asymmetric effects, such as those generated
by asymmetric temporal response functions~with x being
time!, as in the case of the Raman effect on optical pulses
@11#.

In nonlinear optics, Eq.~1! represents a general phenom-
enological model for media in which the nonlinear refractive
index change~or polarization! induced by an optical beam is
determined by some kind of a transport process. It may in-
clude, e.g., heat conduction in materials with a thermal non-
linearity @12–15# or diffusion of molecules or atoms accom-
panying nonlinear light propagation in atomic vapors@16#.
Nonlocality also accompanies the propagation of waves in
plasma@15,17–21#, and a nonlocal response in form~1! ap-
pears naturally as a result of many-body interaction pro-
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cesses in the description of Bose-Einstein condensates@22#.
The orientational nonlinearity of liquid crystals is also non-
local and may be described by Eq.~1! @23,24#. It is worth to
mention that an important aspect of the nonlocality in all
these systems is that it completely prevents collapse of finite-
size beams@25#.

The width of the response functionR(x) relative to the
width of the intensity profileuc(x,z)u2 determines the degree
of nonlocality. In the limit of a singular response we get the
well-known nonlinear Schro¨dinger ~NLS! equation that ap-
pears in all areas of physics. Here the focusing case (s51)
produces MI of the finite bandwidth type, while the defocus-
ing case (s521) predicts modulational stability@3#. When
the width of the response function is finite but small com-
pared to that of the intensity distribution, model~1! is ap-
proximated by the weakly nonlocal NLS equation@26–30#

i ]zc1
1

2
]x

2c1s@ ucu21g]x
2ucu2#c50. ~3!

Hereg!1 is defined as the second virial ofR(x),

g[
1

2E2`

`

x2R~x!dx, ~4!

In contrast to the local NLS limit (g50), the MI now de-
pends not only on the sign ofs but also on the intensity of
the plane waves@18#. Finally, in the case of strong nonlocal-
ity it has been shown that Eq.~1! simplifies to a linear
model, and hence there is no MI in this limit@31#.

MI has thus been studied in different limits. The general
case~1! has recently been investigated with respect to MI
and compared with the weakly nonlocal limit@26#. Here we
present an analytical study of the full nonlocal case with
arbitrary profileR(x) whose spectrum obeys a sufficient de-
gree of smoothness, with particular emphasis on generic fea-
tures of the MI. The present paper complements and extends
the results obtained in Ref.@26#.

II. MI IN THE NONLOCAL NLS EQUATION

Model ~1! has plane wave solutions of the form

c~x,z!5Ar0exp~ ik0x2 iv0z!, r0.0, ~5!

wherer0 , k0, andv0 are linked through the nonlinear dis-
persion relation

v05
1

2
k0

22sr0 , ~6!

Following Ref.@26#, we perturb the plane wave solutions as
follows:

c~x,z!5@Ar01u~j,t!1 iv~j,t!#exp~ iu0!,

j5x2k0z, t5z, u05k0x2v0z, ~7!

whereu and v are real functions. Inserting this expression
into the nonlocal NLS equation~1! and linearizing around
the solution~5!-~6! gives the equations

]tu1
1

2
]j

2v50, ~8!

]tv2
1

2
]j

2u22sr0~R* u!50, ~9!

where R* u5*2`
` R(j82j)u(j8,t)dj8 is again the spatial

convolution integral. Introducing the spatial Fourier trans-
form of a function as f̂ (k)5*2`

` f (j)exp(ikj)dj, and ex-
ploiting the convolution theorem for Fourier transforms, the
linearized system is converted to a set of ordinary differential
equations ink space,

]tX5AX, ~10!

where the vectorX and matrixA are defined as

X5F û

v̂
G , A5F 0

1

2
k2

2sr0 R̂ ~k!2
1

2
k2 0

G . ~11!

The eigenvaluesl of the matrixA are given by

l25k2r0Fs R̂ ~k!2
1

4r0
k2G . ~12!

The general expression~12! was also derived in Ref.@26#.
Here we have briefly reviewed the derivation for the sake of
completenes and because it constitutes the basis of our study
of MI. From Eq. ~12! one can deduct the general existence
properties of MI in nonlocal media listed in Table I@26#.

III. GENERIC PROPERTIES OF THE MI GAIN
SPECTRUM

The local case withs50 ~the NLS equation! is well
known. There is always MI in focusing media (s51) and
always stability in defocusing media (s521). Here we
therefore focus on the interesting case with a finite degree of
nonlocality (sÞ0). The spectrumR̂(k) has the following
generic properties:

~1! SinceR(x) is real valued and symmetric, then so is
R̂(k), i.e., R̂(k)5R̂(2k)5R̂* (k).

~2! Normalization~2! implies thatR̂(0)51, which means
that R(x) tacitly is assumed to be absolutely integrable, and

TABLE I. Existence criteria for MI in nonlocal media.

s511 s521

R̂(k).0 MI Stability

R̂(k) not sign definite MI depends onR̂(k)
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henceR̂(k) is continuous@32#.
~3! Symmetry condition 1. imposesR̂8(0)50, i.e., the

spectrumR̂(k) has a critical point atk50, providedR̂(k) is
a differentiable function ofk. Here and in the following,
prime denotes differentiation with respect to the argument.

~4! Normalization~2! for R(x) means thatR(x) is abso-
lute integrable, and hence by Riemann-Lebesque lemma we
have limuku→`

R̂(k)50 @32#.

We further assume the following properties:

~5! The functionsxR(x) and x2R(x) are also absolutely
integrable, which means thatR̂8(k) and R̂9(k) are continu-
ous for allk @32#.

~6! The response function is characterized by a typical
width or scaling lengths ~the degree of nonlocality! and
assume the generic formR(x)5s21F(x/s), where the
scaling functionF is nondimensional, i.e., independent ofs.

The spectrumR̂(k) can be expressed in terms of the Fou-
rier transformF̂ of the scaling functionF as

R̂~k!5F̂~sk!. ~13!

The properties~1!–~6! of the spectrumR̂ carry over toF̂.
Note that due to the normalization@property~2!# and the

Riemann-Lebesque lemma@property ~4!#, the scaling func-
tion has the property that

lim
s→`

F̂~sk!5H 1, k50

0, kÞ0.

Thus eigenvalue equation~12! approaches uniformly the
form l252k4/4 for s→`, which is recognized as the ei-
genvalue equation for MI in the linear potential free Schro¨-
dinger equation

i ]zc1
1

2
]x

2c50.

Hence the well-known result of modulational stability is re-
produced in the limit of strong nonlocality.

For 0,s,` we proceed as follows: Using the nondi-
mensional scaling functionF̂, the degree of nonlocality can
be explicitly put into eigenvalue equation~12!, even though
the specific response function is not known. We thus rewrite
Eq. ~12! in the form

S l

2r0
D 2

5 k̄2f~ k̄,s̄!, ~14!

where the scaled wave numberk̄ and the scaled nonlinearity
s̄ are defined as

k̄5sk, s̄54r0s2s. ~15!

The MI gain band structure is then determined by thestruc-

tural functionf( k̄,s̄), given by

f~ k̄,s̄![
s̄F̂~ k̄!2 k̄2

s̄2
. ~16!

This is the most convenient form for the mathematical treat-
ment. Due to the symmetry property~1!, we consider only
positive wave numbers in the following, i.e.,k̄>0.

The parameters̄ contains both the nonlinearity and the
degree of nonlocality, and plays the role of acontrol param-
eter. The crucial point in the MI analysis is the properties of
the functionf in the (k̄-s̄) space. Using properties~1!–~6!

we can characterize the setV of ~unstable wave numbers! k̄

fulfilling the inequalityf( k̄,s̄)>0 for a given value ofs̄ as
follows:

~I! Modulational stability.If f( k̄,s̄)<0 for all k̄ thenV is
empty. In this case there can be no MI.

~II ! Finite bandwidth MI.

~a! If f( k̄,s̄)>0 for any k̄ then MI occurs. For suchk̄
values we define the normalized MI growth rateg,

g5U l

2r0
U5uk̄uAf~ k̄,s̄!. ~17!

~b! Any MI gain spectrum will be offinite bandwidth

becauseF̂ is localized@property ~4!# and thusf→2 k̄2/ s̄2

for uk̄u→`.
~c! The number of MI gain bands is generically finite.

This follows if one can show that the transversality condition
] k̄fÞ0 is satisfied at all the zeros off for a givens̄. This
result is proved in the Appendix~Theorem I!.

~d! The breakdown of the transversality condition for
certain values of the control parameters̄, i.e., ] k̄f5f50,
describes bifurcation phenomena likeexcitation, vanishing,
coalescence, and separationof MI bands.

This list represents the overall picture of the MI for the non-
local NLS equation~1!. In the following we detail different
aspects of this picture. We first formulate the theory of exci-
tation, vanishing, coalescence, and separation of MI bands as
bifurcation phenomena. Then we study the general properties
of the focusing case (s̄.0) and the defocusing case (s̄
,0), separately. Finally, the discussion is illuminated with
examples.

IV. BIFURCATION ANALYSIS: EXCITATION, VANISHING,
MERGING, AND SEPARATION OF MI GAIN BANDS

Let (k̄b ,s̄b)Þ(0,0) denote points where the transversality
condition breaks down, i.e., where the structural functionf
and its derivative] k̄f both are zero,

f~ k̄b ,s̄b!5] k̄f~ k̄b ,s̄b!50. ~18!

The number of zeros off, and thus the number of gain
bands, will change ass̄ passes the bifurcation values̄b . The
second derivative of the structural function evaluated at the
bifurcation point determines what type of phenomenon takes

GENERIC FEATURES OF MODULATIONAL . . . PHYSICAL REVIEW E 66, 066615 ~2002!

066615-3



place. If the second derivative is positive, then two MI gain
bands merge, or one band separates into two,

] k̄
2
f~ k̄b ,s̄b!.0⇒merging or separation, ~19!

while a negative second derivative represents excitation or
vanishing of an MI gain band,

] k̄
2
f~ k̄b ,s̄b!,0⇒excitation or vanishing. ~20!

In fact, in a similar way as in the proof of Theorem I, it can
be shown that the bifurcation points (k̄b ,s̄b) are distinct and
isolated if the condition

] k̄
2
f~ k̄b ,s̄b!Þ0 ~21!

is satisfied. This is a key result in our theory. The nongeneric
case] k̄

2
f( k̄b ,s̄b)50 will not be considered here. Finally, an

overall requirement for a bifurcation to actually take place is
that the velocity condition

] s̄f~ k̄b ,s̄b!Þ0 ~22!

is satisfied at the bifurcation point. This assures thatf( k̄b ,s̄)
does not remain on the zero axis, but crosses it when the
control parameters̄ passes through the bifurcation values̄b .
Conditions~18!, ~21!, and~22! are referred to as thegeneric
conditions for bifurcations.

Using the definition~16! of the structural functionf, we
can find more specific results. Thus Eq.~18! becomes

k̄bF̂8~ k̄b!52F̂~ k̄b!, k̄b.0, ~23!

s̄b5 k̄b
2/F̂~ k̄b!. ~24!

By assumptions̄bÞ0, and thus Eq.~24! implies k̄bÞ0. To
determine the bifurcation valuesk̄b ands̄b of the scaled wave
number and the control parameter, one first solves Eq.~23!

for k̄b under the conditionsF̂( k̄b).0. Thens̄b is given by
Eq. ~24!. The second derivative is given by

] k̄
2
f~ k̄b ,s̄b!5

s̄bF̂9~ k̄b!22

s̄b
2

, ~25!

and thus the generic condition~21! may be written as

s̄bF̂9~ k̄b!5 k̄b
2 F̂9~ k̄b!

F̂~ k̄b!
Þ2. ~26!

Importantly, we find that at the bifurcation point,

] s̄f~ k̄b ,s̄b!5 k̄b
2/ s̄b

3Þ0.

The velocity condition~22! is therefore always satisfied in
our general nonlocal system~1!. In Table II we have sum-
marized the features of the bifurcation process.

V. MI GAIN SPECTRUM IN FOCUSING MEDIA

To obtain specific results~bandwidth, maximum, etc.!
about the individual gain bands constituting the normalized
MI gain spectrum~17!, we now consider the focusing case
s̄.0. We apply symmetry property~1! @F̂( k̄)5F̂(2 k̄)#

and consider only positive wave numbersk̄>0. In this case
the following features are apparent:

~i! Existence of a fundamental gain band.There exists a
closed bounded interval@0,k̄1# in which f( k̄,s̄).0 for 0
< k̄, k̄1 and f( k̄1 ,s̄)50. This follows from the properties
~2!–~4! and the intermediate value theorem for continuous
functions. Hence there will always be MI, independent of the
shape of the spectrumF̂. The band@0,k̄1# originates from
the underlying local NLS equation, and is thus denoted as the
fundamental gain band.

~ii ! Possible existence of higher-order gain bands.MI
gain bands may also exist for wave numbersk̄. k̄1. This
property depends sensitively on the shape of the spectrum
and on the control parameters̄.

~iii ! Number of gain bands.If the transversality condition
] k̄fÞ0 is satisfied at all theN zeros off for a given s̄
.0, then the number of gain bands,m, is given byN52m
21 (m51,2, . . . ).This follows from Theorem I in the Ap-
pendix, and the fact thatf(0,s̄)51/s̄.0 andf→2 k̄2/ s̄2 for
k̄→`.

A. The fundamental gain band

The fundamental gain band exists for all values of the
degree of nonlocality,s ~i.e., of the control parameters̄),
also in the local limit described by the focusing NLS equa-
tion. This gain band has the following features:

~f1! Gain profile. If the transversality condition
] k̄f( k̄1 ,s̄),0 @i.e., F̂8( k̄1),2k̄1 / s̄] is satisfied, then there
is at least one critical pointk̄cP@0,k̄1# at which ] k̄g( k̄c ,s̄)

50. This follows from the fact that] k̄g(0,s̄)51/As̄,
] k̄g( k̄,s̄)→2` as k̄→ k̄1

2 and the intermediate value theo-
rem for continuous functions.@It is possible to extend this
argument to cases where the spectrumF̂ does not possess a
well-defined tangent at k̄50. If we require that
lim k̄→01F̂8( k̄) exists ~but is different from zero!, then we
also have existence of at least one critical pointk̄cP@0,k̄1#.
This occurs, for example, for the spectrum of the Lorentzian

TABLE II. Generic conditions for excitation, vanishing, merg-
ing, and separation of MI gain bands in the nonlocal NLS equation
~1!.
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response function.# At least one of these critical pointsk̄c

gives a maximum growth rategmax(s̄). The curvature of the
gain spectrum is given by

] k̄
2
g~ k̄c ,s̄!5

F~ k̄c ,s̄!

2Af~ k̄c ; s̄!
, ~27!

where we have defined the functions

F~ k̄,s̄!5 s̄D~ k̄!28k̄, ~28!

D~ k̄!53F̂8~ k̄!1 k̄F̂9~ k̄!. ~29!

Thus the gain curve has a local minimum atk̄c if F( k̄c ,s̄)
.0 and a local maximum ifF( k̄c ,s̄),0. A special case
occurs if the curvature is negative for allk̄c , i.e., if
F( k̄c ,s̄),0 is always satisfied. Then the maximum is
unique, i.e., only one critical wave numberk̄c exists. Restor-
ing to original variables, the normalized gain is given by

g5
k

4r0

A4r0F̂~ k̄!2k2. ~30!

For fixed amplituder0 the velocity therefore becomes

]g

]s
5S k3

8r0gD F̂8~ k̄!, ~31!

and thus the variation of the gain with the degree of nonlo-
cality s depends on the sign of the functionF̂8( k̄1), i.e.,
sgn$]g/]s%5sgn$F̂8( k̄1)%.

~f2! Bandwidth.The conditionf@ k̄1( s̄),s̄#50 defines the
bandwidthk̄1( s̄) as a function of the control parameter, from
which we find the velocity

] k̄1

] s̄
52

k̄1
2

s̄@ s̄F̂8~ k̄1!22k̄1#
. ~32!

Since the transversality conditionF̂8( k̄1),2k̄1 / s̄ is satis-
fied, there is no problem with division by zero, and this
velocity is always positive. For fixed amplitudero , this ex-
pression becomes

]k1

]s
52

2r0k1F̂8~ k̄1!

2r0sF̂8~ k̄1!2k1

~33!

in real variables. The transversality condition implies that
2r0sF̂8( k̄1),k1, and thus the variation of the bandwidth
with the degree of nonlocality (s) depends on the sign of
F̂8( k̄1), i.e., sgn$dk1 /ds%5sgn$F̂8( k̄1)%. For a fixed de-
gree of nonlocality (s), we obtain

]k1

]r0
52

k1
2/~2r0!

2rosF̂8~ k̄1!2k1

.0. ~34!

Thus the bandwidthk1 always increases with increasing am-
plitude of the plane wave,r0 ~i.e., the more nonlinear the
system is!, no matter what the degree of nonlocality is.

~f3! Local minima and maxima.The criticality condition
] k̄g( k̄c ,s̄)50 is equivalent to the equation

H@ k̄c ,s̄#50, ~35!

which determines the critical wave numberk̄c( s̄) as a func-
tion of the control parameters̄. The function

H~ k̄,s̄![ s̄@2F̂~ k̄!1 k̄F̂8~ k̄!#24k̄2 ~36!

satisfies the relationdH/ds̄5F dk̄/ds̄. Thus, for F( k̄c ,s̄)
Þ0 ~nonzero gain curvature!, we obtain the velocity

dk̄c

ds̄
52

4k̄c
2

s̄F~ k̄c ,s̄!
. ~37!

For fixed amplituder0, this expression becomes

]kc

]s
52

kcr0D~ k̄c!

sr0D~ k̄c!22kc

. ~38!

From Eq. ~38!, we see that if the degree of nonlocalitys

increases, then a local minimum@sr0D( k̄c).2kc# will al-
ways decrease, whereas the properties of a local maximum

@sr0D( k̄c),2kc# will depend on the sign of the function
D( k̄c). If 0,D( k̄c),8k̄c / s̄ then kc will increase, and if
D( k̄c),0 thenkc will decrease.

At inflection points,F( k̄c ,s̄)50 @sr0D( k̄c)52kc#, and
thus Eq. ~38! does not apply. An inflection point actually
corresponds to a bifurcation, at which two critical points~ex-
trema of the gain curve!, i.e., one local minimum and one
local maximum, will be formed or vanish. The bifurcation
points (k̄c ,s̄)5( k̄e ,s̄e) are solutions of the system of equa-
tions F( k̄e ,s̄e)5H( k̄e ,s̄e)50, which gives

G~ k̄e!5 k̄e
2F̂9~ k̄e!1 k̄eF̂8~ k̄e!24F̂~ k̄e!50, ~39!

and s̄e58k̄e /D( k̄e). The bifurcation points are isolated and
distinct if the transversality conditiondG/dk̄eÞ0 is satisfied.

For typical response functions with a positive, monotoni-
cally decaying spectrum~such as the Lorentzian spectrum
commonly appearing in physical problems!, i.e., with
F̂8( k̄),0 for all k̄, both the gaing(k) and the bandwidthk1
will always be a decreasing function of the degree of nonlo-
cality. If each gain band further has a unique maximum, then
bifurcations will not be an issue. Table III summarizes the
generic features of the fundamental gain band in nonlocal
focusing media (s̄.0). Note that the fundamental gain band
always has the classical Lighthill shape of the MI gain spec-
trum in the local focusing NLS equation.
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B. Higher-order gain bands

Here we detail the properties of the higher-order gain
bands that do not exist in the local limits50, but may be
formed through a bifurcation process when the system be-

comes sufficiently nonlocal. Lets̄b denote the bifurcational

value of the control parameter and assume that fors̄. s̄b

there are wave numbersk̄0 and k̄1 ( k̄0, k̄1) satisfying the
following properties (i 50,1):

~a! f( k̄i ,s̄)50⇔F̂( k̄i)5 k̄i
2/ s̄.

~b! f( k̄,s̄).0 for k̄0, k̄, k̄1⇔F̂( k̄). k̄2/ s̄ for k̄0,

k̄, k̄1.
~c! ] k̄f( k̄0 ,s̄).0⇔F̂8( k̄0).2k̄0 / s̄.
~d! ] k̄f( k̄1 ,s̄),0⇔F̂8( k̄1),2k̄1 / s̄.

Note that assumptions~c! and ~d! imply that we have im-
posed transversality conditions atk̄0 and k̄1. The following
results are apparent:

~hf1! Gain profile.The gaing is positive and continuous
differentiable for k̄0, k̄, k̄1. At the boundaries,g( k̄0 ,s̄)

5g( k̄1 ,s̄)50, ] k̄g( k̄0 ,s̄)→` for k̄→ k̄0
1 , and ] k̄g( k̄1 ,s̄)

→2` for k̄→ k̄1
2 . Hence, by the intermediate value theo-

rem, there is at least one critical wave numberk̄c P@ k̄0 ,k̄1#

at which the gain has a local extremum,] k̄g( k̄c ,s̄)50.
Equations~27!–~31! and the properties~f1! derived there-
from all apply to the higher-order gain bands also, e.g., local
minima, maxima, and inflection points are distinguished by
the sign of the functionF( k̄c).

~hf2! Bandwidth.The bandwidth of the higher order gain
bands is defined asB[k12k0. The transversality conditions
~c! and~d! mean that Eqs.~32!–~34! for the velocities apply
to both the boundariesk0 and k1, i.e., to ]ki /]s and
]ki /]r0. Thus the left boundaryk0 will always decrease
with the degree of nonlocality (s), since F̂8( k̄0)
.k0 /(2r0s). The variation of the right boundaryk1 with s

will depend on the sign of the functionF̂8( k̄1), as for the
fundamental gain band. However, even ifF̂8( k̄1),0 andk1
therefore decreases withs, the bandwidthB may still in-
crease withs if k0 decreases faster thank1, i.e., if ]k0 /]s
,]k1 /]s.

In terms of the plane-wave amplituder0, the right bound-
ary k1 will always increase withr0 as for the fundamental
gain band (]k1 /]r0.0), whereas the left boundaryk0 will
always decrease withr0 (]k0 /]r0.0) due to the conditions
~c! and ~d!. Thus the bandwidthB will increase rapidly the
stronger the focusing nonlocal nonlinearity.

~hf3! Local minima and maxima.Equations~35!–~38! and
the properties~f3! of local minima and maxima in the fun-
damental gain band also apply to the higher-order gain
bands.

VI. MI GAIN SPECTRUM IN DEFOCUSING MEDIA

We now consider the defocusing case withs̄,0 and ap-
ply again the symmetry property~1! @F̂( k̄)5f̂(2 k̄)# to
consider only positive wave numbersk̄>0. The following
main features are apparent:

~i! Nonexistence of the fundamental gain band.No closed
bounded interval@0,k1# exists, for whichf( k̄,s̄).0 when
0< k̄, k̄1 and f( k̄1 ,s̄)50. This follows from the fact
f(0,s̄),0 and continuity of the structural function.

~ii ! Modulational stability for positive definite spectra.If
F̂( k̄).0 for all k̄, then f( k̄,s̄),0, and hence we always
have modulational stability in this case.

~iii ! Possible existence of MI.MI may occur for nonzero
wave numbers in higher-order gain bands. This property de-
pends sensitively on the shape of the spectrum and the con-
trol parameters̄.

~iv! Number of gain bands.If the transversality condition
] k̄fÞ0 is satisfied at all theN zeros off for a given s̄
.0, then the number of gain bands~m! is given by N
52m (m50,1, . . . ). This follows from Theorem I in the
Appendix and the fact thatf(0,s̄)51/s̄,0 and f→
2 k̄2/ s̄2 for k̄→`. Note that the stable case with no zeros,
and hence no gain bands, is included (m50).

TABLE III. Generic features of the fundamental gain band of

the MI gain spectrumg in nonlocal focusing media (k̄5sk>0, s̄
54r0s2.0) with the degree of nonlocality (s).
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A. Higher-order gain bands

Here we detail the properties of the higher-order MI gain
bands that do not exist in the local limits50, but may be
formed through a bifurcation process when the system be-
comes sufficiently nonlocal. Lets̄b,0 denote the bifurca-
tional value of the control parameter and assume that fors̄

, s̄b , there are wave numbersk̄0 and k̄1 ( k̄0, k̄1) satisfying
the following properties (i 50,1).

~a! f( k̄i ,s̄)50⇔F̂( k̄i)52 k̄i
2/us̄u.

~b! f( k̄,s̄).0 for k̄0, k̄, k̄1⇔F̂( k̄),2 k̄2/us̄u for k̄0

, k̄, k̄1.
~c! ] k̄f( k̄0 ,s̄).0⇔F̂8( k̄0),22k̄0 /us̄u.
~d! ] k̄f( k̄1 ,s̄),0⇔F̂8( k̄1).22k̄1 /us̄u.

Again ~c! and ~d! are the transversality conditions at the ze-
ros k̄0 and k̄1. All Eqs. ~27!–~39! are formerly the same,
except for sign changes in the equations that are in terms of
real variablesk, s, r0, andg. We have the following results:

~hd1! Gain profile.Equations~27!–~29! and the properties
~f1! derived therefrom hold also for the defocusing case.
However, the normalized gain is now

g5
k

4r0

A24r0F̂~ k̄!2k2, ~40!

and the velocity therefore becomes

]g

]s
52S k3

8r0gD F̂8~ k̄!. ~41!

Thus the variation of the gain with the degree of nonlocality
s still depends on the sign ofF̂8( k̄), but now sgn$dg/ds%
52sgn$F̂8( k̄)%.

~hd2! Bandwidth.The bandwidthB is again defined as
B5k12k0 and Eq.~32! is still valid for bothk0 andk1 due
to the conditions~c! and ~d!. However, in real variables the
velocities now become

]ki

]s
52

2r0kiF̂8~ k̄i !

2r0sF̂8~ k̄i !1ki

, ~42!

]ki

]r0
5

ki
2/~2r0!

2r0sF̂8~ k̄i !1ki

, ~43!

which replaces Eqs.~33! and ~34!. From Eqs.~42! and ~43!
we see that both boundariesk0 andk1 have exactly the same
dependences ons andr0 as in the focusing case, given by
the properties~hf2!.

~hd3! Local minima and maxima.Equations~35!–~37!
still apply, since they are in scaled variables. However, in
real variables the velocity is now given by

]kc

]s
52

kcr0D~ k̄c!

sr0D~ k̄c!12kc

, ~44!

which replaces Eq.~38!. Furthermore, in real variables,kc

now corresponds to a local minimum whensr0D( k̄c),

22kc and a local maximum whensr0D( k̄c).22kc . Nev-
ertheless, a minimum still always decreases withs and the
properties of a maximum still depends on the sign ofD( k̄c).
If 22kc,sr0D( k̄c),0, thenkc will increase withs, and if
sr0D( k̄c).0 thenkc will decrease withs. The properties
of inflection points are the same as listed under~f3!, except
that now the inflection point occurs atsr0D( k̄c)522kc .

VII. EXPONENTIAL RESPONSE FUNCTION

As a generic example of a response function with a
positive-definite spectrum, we consider the typical exponen-
tial response function

R~x!5
1

s
FS x

s D , F~z!5
1

2
exp~2uzu!, ~45!

whose Fourier transform is a Lorentzian,

R̂~k!5F̂~sk!5
1

11s2k2
. ~46!

This response function appears, e.g., in materials with a non-
linear response determined by a transport mechanism~diffu-
sion, heat conduction, etc.! and described by the generic dif-
fusionlike equation@20#

i ]zc1
1

2
]x

21Dnc50,

Dn2s2]x
2Dn5sucu2,

wheres is the diffusion parameter. The Lorentzian spectrum
~46! is a monotonically decreasing positive definite function.
Thus MI is always present if the medium is focusing (s
51), whereas there can be no MI if the medium is defocus-
ing (s521), according to Ref.@26# and Table I. In the
following we therefore consider only the focusing case (s

51, s̄.0):

FIG. 1. Focusing nonlocal medium with 4r051 and exponen-
tial response function. Left: MI gain versus wave numberk for s
50, 1, 4. Right: bandwidthB ~solid!, maximum gainGm ~dashed!,
and wave numberkm at maximum gain~dotted! versus degree of
nonlocality (s).
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Let us summarize the generic properties predicted by our
theory, given spectrum~46!, for which F̂( k̄).0 for all k̄ and
F̂8( k̄),0 for k̄.0, with F̂8(0)50. First, we see that bi-
furcations cannot occur, sinceF̂ andF̂8 have opposite sign,
and thus the bifurcation Eqs.~23! and ~24! do not have a
solution, i.e., for all degrees of nonlocality (s), only the
fundamental~long-wave! gain band exists. Equations~31!

and~33! with F̂8( k̄),0 then predict that the maximum gain
Gm(s) and the gain bandwidthk15B(s) always decrease
with s.

For more information on the gain profile, we must calcu-
late the functionsD andF, i.e., we must calculate the specific
curvatureF̂9( k̄) from Eq. ~46!. Inserting the curvature into
Eqs.~28! and~29! gives thatD( k̄),0 andF( k̄),0 for all k̄,
and thus the maximumGm of the fundamental gain band is
always unique and occurs at the wave numberkc5km ,
which always decreases withs according to Eq.~38!. From

the eigenvalue equation~12!, we find the specific expressions
for the bandwidthB(s) and maximum gainGm(s):

B25
A1116r0s221

2s2
, Gm

2 5
r0km

2

11s2km
2

2
km

4

4
,

where km is the positive real solution of the equation
2s2km

3 12km5A8r0.
We have numerically investigated the eigenvalue equation

~12! and depicted the results in Fig. 1. The numerical results
and the expressions forB(s), Gm(s), and km(s) confirm
the generic properties listed in Tables III and I, i.e., only one
fundamental MI gain band exists with a bandwidth, unique
maximum, and wave number at maximum gain that all de-
crease with the degree of nonlocality. Thus the nonlocality
tends to suppress MI, but can never remove it entirely. Using
the qualitatively similar Gaussian response function, these
results were confirmed by direct numerical simulation in Ref.
@26#. There the exponential response was also considered,
but without finding the analytical expressions for the maxi-
mum gain and bandwidth, and without any theory for the
generic properties of the gain spectrum.

VIII. RECTANGULAR RESPONSE FUNCTION

Now, let us consider the situation where the spectrum is
not sign definite and not strictly decreasing for allk. Then it
is possible to have additional gain bands in both the focusing
and defocusing cases. As an example, we consider the rect-
angular response function

R~x!5
1

s
FS x

s D , F~z!5H 1

2
, uzu<1

0, uzu.1,

~47!

whose Fourier transform is given by

R̂~k!5F̂~sk!5
sin~ks!

ks
. ~48!

The bifurcation equation~23! then reads

3 tan~ k̄b!5 k̄b , k̄b.0, s sin~ k̄b!.0, ~49!

from which one finds the bifurcation valuessb andkb of the
degree of nonlocality and the wave number,

sb
25

k̄b
3

4sr0sin~ k̄b!
, kb5

k̄b

sb
. ~50!

The bifurcation relation~49! gives the approximate value
k̄b

(n) for the nth bifurcation,

k̄b
(n).S 2n1

s

2Dp, n51,2,3, . . . , ~51!

corresponding to the degree of nonlocality and the transverse
wave number

FIG. 2. Focusing nonlocal medium with 4sr051 and rectangu-
lar response function. Bifurcation values of the nonlocality param-
etersb

(n) ~dots! versus bifurcation numbern. The dashed line shows
approximation~52!.

FIG. 3. Focusing nonlocal medium with 4sr051 and rectangu-
lar response function. The first four (n50, 1, 2, 3! MI gain bands
~shaded areas! versus wave numberk and degree of nonlocality
(s). Bifurcation points are indicated.
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sb
(n).AS 2n1

s

2D 3

p3

4r0
, kb

(n).A 4r0

S 2n1
s

2Dp

.

~52!

Strictly speaking, Eq~49! has also the zero solutionk̄b50,
corresponding tosb50, but we do not count this as a bifur-
cation. Moreover, one finds that the curvature of the struc-
tural functionf is always negative at the bifurcation points,

f9~ k̄b!52S 61 k̄b
2

s̄b
2 D ,0. ~53!

Thus new MI bands are always excited at the bifurcation,
both when the nonlinearity is focusing and defocusing.

In a gain band,f.0; and thuss̄ sin(k̄).0. From the defi-
nition ] k̄g( k̄c ,s̄)50 of the critical wave numberk̄c , we fur-
ther have thats̄@sin(k̄c)1k̄ccos(k̄c)#54k̄c

2.0. Using these re-
lations in the definition~29! of the functionD, we find that
s̄D( k̄c),0. ThusF is always negative on the critical points
~or extrema of the gain profile! and all gain bands therefore
have a unique maximum. From Eqs.~38! and ~44! we then
have that the wave numberkc5km

(n) at maximum gain of the
nth gain band will always decrease with the degree of non-
locality (s), both in focusing and defocusing media. Let us
look at these cases separately in more detail.

A. Focusing case„sÄ¿1…

In the focusing case the fundamental gain band (n50) is
always present, and thus MI is always present as well, in
accordance with Table I. For the response function~48!, the

bandwidth k̄ of the fundamental gain band is always less
than p, and thus bothF̂8, D, andF are negative for all 0
, k̄, k̄1. The fundamental gain band therefore has a unique
maximum gain; and according to Eqs.~31!, ~33!, and~38! its
maximum gain, its bandwidth, and its wave number at maxi-
mum gain all decrease with the degree of nonlocality (s).
For the higher-order gain bands the generic properties of the
bandwidthB(n) and the maximum gainGm

(n) are difficult to
predict.

The results for the first and second bifurcation are sum-
marized in Table IV, whereas all bifurcation values of the
nonlocality are plotted in Fig. 2. We see that Eq.~52! gives a
quite accurate prediction of the bifurcations. The accuracy
becomes better with increasingn.

The full structure of the gain spectrum is depicted as a
contour plot in Fig. 3. For small and moderate values of the
degree of nonlocality (s,21.2), we only have one funda-
mental MI gain band. For higher values ofs new gain bands
appear as predicted. These results are consistent with the
findings in Ref.@26#.

The dependence ofkm
(n) andB(n) on s are depicted in Fig.

4, which confirms the predicted generic properties and fur-
ther shows that the bandwidth of the different bands ap-
proach each other whens increases.

TABLE IV. Nonlocal focusing medium with a rectangular re-
sponse function. Lowest-order bifurcations for 4sr051.

Nonlocality Eq.~52! Wave number Eq.~52!

sb
(1)521.203 sb

(1).22.011 kb
(1)50.352 kb

(1).0.357
sb

(2)552.555 sb
(2).53.155 kb

(2)50.263 kb
(2).0.266

FIG. 4. Focusing nonlocal medium with 4sr051 and rectangu-
lar response function. Wave number at maximum gainkm

(n) ~left!
and bandwidthB(n) ~right! of bandsn50 ~solid!, n51 ~dotted!,
andn52 ~dashed!.

FIG. 5. Focusing nonlocal medium with 4sr051 and rectangu-
lar response function. Gain versus modulation wave numberk for
s510 ~solid!, s530 ~dotted!, ands560 ~dashed!.

FIG. 6. Focusing nonlocal medium with 4sr051 and rectangu-
lar response function. Maximum gainGm

(n) versuss for bandsn
50 ~solid!, n51 ~dotted!, andn52 ~dashed!.
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In Fig. 5 we have shown cuts of the MI gain spectrum at
s510, 30, and 60. We note a surprising feature fors530,
which is not predicted by our analysis of the generic features:
the maximum gain of the second band is higher than that of
the fundamental band. To show this in more detail, we have
plotted the maximum gain in Fig. 6. Here we clearly see that
at s525 (s556) the maximum gain of then51 (n52)
band becomes larger than the maximum gain of the funda-
mentaln50 band. This crossing should be detectable in a
numerical experiment, since the system will always eventu-
ally select the wave number at maximum gain when starting
from random white noise.

B. Defocusing case„sÄÀ1…

In the defocusing case, there is no fundamental (n50)
gain band, and thus all plane waves are modulationally stable
until the nonlocality becomes sufficiently strong to reach the
first bifurcation. Table V summarizes the results for the first
and second bifurcation, whereas all bifurcation values of the
nonlocality are plotted in Fig. 7. We see that Eq.~52! gives a
quite accurate prediction of the bifurcations also in the defo-
cusing case. The accuracy again becomes better for increas-
ing n.

The full structure of the gain spectrum is depicted as a
contour plot in Fig. 8. The fundamentaln50 MI gain band
is absent, so for small and moderate values of the degree of
nonlocality,s,9.2, there is no MI. For higher values ofs
.9.2 gain bands appear as predicted. These results are con-
sistent with the preliminary findings in Ref.@26#.

The dependence ofkm
(n) andB(n) on s are depicted in Fig.

9, which again confirms the predicted generic properties and

shows that the bandwidths of the different bands approach
each other whens increases.

In Fig. 10 we have shown cuts of the gain spectrum at
s520, 50, and 80. Again, for boths550 and 80, we ob-
serve that the maximum gain of then52 band is higher than
that of the lowestn51 band. To show this in more detail, we
have plotted the maximum gain in Fig. 11.

From Fig. 11 we clearly see that ats'47 (s'84) the
maximum gain of then52 (n53) band becomes larger than
the maximum gain of the lowestn51 band. We even see
that ats'109, the thirdn53 band becomes dominant, i.e.,
its maximum gain exceeds also that of the secondn52 band.
Again these crossings should be detectable in a numerical
experiment, since the system will always eventually select
the wave number at maximum gain when starting from ran-
dom white noise.

In fact, our numerical simulations clearly confirm this
prediction. We numerically integrated nonlocal NLS equa-
tion ~1! with the defocusing nonlinearity and the rectangular
response function in the form of Eq.~47!. As the initial con-
ditions, we used a planar wave front superimposed with a

TABLE V. Nonlocal defocusing material with a rectangular re-
sponse function. Lowest-order bifurcations for 4sr0521.

Nonlocality Eq.~52! Wave number Eq.~52!

sb
(1)59.176 sb

(1).10.230 kb
(1)50.444 kb

(1).0.461
sb

(2)535.780 sb
(2).36.461 kb

(2)50.300 kb
(2).0.302

FIG. 7. Defocusing nonlocal medium with 4sr0521 and rect-
angular response function. Bifurcation values of the nonlocality pa-
rametersb

(n) ~dots! versus bifurcation numbern. The dashed line
shows approximation~52!.

FIG. 8. Defocusing nonlocal medium with 4sr0521 and rect-
angular response function. The first three (n51, 2, 3! MI gain
bands~shaded areas! versus wave numberk and degree of nonlo-
cality s. Bifurcation points are indicated.

FIG. 9. Defocusing nonlocal medium with 4sr0521 and rect-
angular response function. Wave number at maximum gainkm

(n)

~left! and bandwidthB(n) ~right! of bandsn51 ~solid!, n52 ~dot-
ted!, andn53 ~dashed!.
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weak ~less than 1025) random perturbation. Then the equa-
tion was numerically integrated using the split-step fast Fou-
rier method with a transverse resolution ofDx51022 and a
step length ofDz51023.

Figure 12 summarizes the results of this numerical experi-
ment forsr0521. It shows the wave number at maximum
gain in propagation as a function of the nonlocality param-
eters. Lines correspond to solutions obtained from disper-
sion relation~12!. Squares indicate the results of full numeri-
cal simulations of Eq.~1!. The agreement between the small
signal analysis and numerical simulation is excellent. The
inset shows examples of the development of the instability
for three values of the nonlocality parameters. It is evident

that as the degree of nonlocality increases, the period of the
MI signal first increases until the growth rate of the funda-
mental and second MI bands equalize (s'24 in Fig. 12!.
Subsequent increase ofs leads to instability with shorter
period, which indicates that the system follows the path de-
termined by the second MI band.

IX. CONCLUSION

The linear stage of the MI for the nonlocal NLS equation
has been studied in terms of the spectrum of the response

FIG. 10. Defocusing nonlocal medium with 4sr0521 and
rectangular response function. Gain versus wave numberk for s
520 ~solid!, s550 ~dotted!, ands580 ~dashed!.

FIG. 11. Defocusing nonlocal medium with 4sr0521 and rect-
angular response function. Maximum gainGm

(n) versus degree of
nonlocality for bandsn51 ~solid!, n52 ~dotted!, and n53
~dashed!.

FIG. 12. Wave number at maximum gain versus the degree of nonlocality (s). Defocusing nonlocal medium withsr0521 and
rectangular response function. Lines, solutions to dispersion relation~12!; squares, results of direct numerical integration.
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function. From dispersion relation~12!, it follows that the
crucial point in this discussion is the location of the spectrum
of the response function relative to the parabolak2 in k
space. The following features complement and extend the
results obtained in Ref.@26#:

~i! The MI is of the finite bandwidth type. It consists of a
finite number of well-separated gain bands. Moreover, it is
possible to predict the occurrence of excitation, vanishing,
coalescence, and separation of MI bands.

~ii ! For a large class of response functions~exponential,
square, Gaussian, etc.!, each MI band has a unique maximum
growth rate. In isolation, each band resembles the MI band
found in the focusing local NLS equation.

~iii ! In the focusing case we always find at least one MI
gain band centered at aboutk50. It is verified analytically
that the width of this MI band, as well as the corresponding
growth rate, decreases when increasing the width of the re-
sponse function, provided the spectrum of the response func-
tion is decreasing in this MI band. Furthermore, additional
MI bands are excited at higher wave numbers when the
width parameter exceeds a certain threshold, i.e., when the
nonlinearity becomes sufficiently nonlocal. The latter phe-
nomenon is a unique feature of the nonlocal nonlinearity and
has no equivalent in the local case and the weakly nonlocal
limit.

~iv! In the defocusing case we can either have stability or
MI of the finite bandwidth type. The latter situation can only
occur in the high wave number regime, and only if the width
of the response function exceeds a certain threshold, i.e.,
when the nonlinearity becomes sufficiently nonlocal.

~v! In both the focusing and defocusing case, the higher-
order MI bands move towards lower wave numbers as the
width of the response function increases. In the limit of
strong nonlocality, the MI bands vanish completely. This re-
sult agrees with the fact that the strongly nonlocal limit of
the NLS model~1! is a linear model.

~vi! Finally, it should be emphasized that the results of
small signal analysis are in complete agreement with those
obtained by direct numerical integration of the nonlocal NLS
equation describing the general type of nonlocal nonlinear
media that we have studied.
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APPENDIX: SUFFICIENT CONDITION FOR THE
EXISTENCE OF A FINITE NUMBER OF GAIN BANDS

Let us assume that the functionf defined by Eq.~16!,
i.e.,

f~ k̄,s̄![
s̄F̂~ k̄!2 k̄2

s̄2
,

changes sign. Then we have the following important result:
Theorem 1.Let s̄ be a given finite, real number. If the

transversality condition] k̄fÞ0 is satisfied for all the zeros
of f, then these points are distinct and isolated. Moreover,
the number of such zeros is finite.

Proof. First, let us prove that the zeros off are distinct
and isolated. We proceed by means of a contradiction argu-
ment. Let$k̄n%n51

` be a convergent sequence of zeros off,

i.e., f( k̄n ,s̄)50 for all n and lim
n→`

k̄n5 k̄* . Then, by con-

tinuity of f, we have

05 lim
n→`

f~ k̄n ,s̄!5f~ k̄* ,s̄!.

which means that the accumulation pointk̄* is a zero off.
Hence any interval aboutk̄* contains at least one zerok̄n .
But the transversality condition implies that] k̄f( k̄* ,s̄)
Þ0, from which it follows that there is an open intervalI

5^k̄* 2D k̄,k̄* 1D k̄&, such thatf( k̄; s̄)Þ0 for all k̄PI , k̄

Þ k̄* , from which it follows that no zero off can be an
accumulation point of some sequence of zeros off. There-
fore, all the zeros must be distinct and isolated. Next, let us
prove that the set of zeros is finite. From the Riemann-
Lebesques lemma we have that lim

n→`
F̂( k̄)50, and hence

due to the definition off we have thatf( k̄; s̄);2( k̄2/ s̄2) as
k̄→`. Therefore there must be ak̄B such thatf( k̄B ,s̄)50
andf( k̄,s̄),0 for all k̄. k̄B . Hence all the zeros off be-
long to the bounded, half-open interval^0,k̄B#. Hence we
can only have a finite sequence$k̄n%n51

N , k̄N[ k̄B for which

f( k̄n ,s̄)50, n51,2, . . . ,N. j

We immediately obtain the following result: Lets̄ be a
given finite real number and assume that the transversality
condition] k̄fÞ0 for all the zeros ofk̄n (n51,2, . . . ,N) of
f. Then the number of zeros~N! is odd ~even! for the case
s̄.0 (s̄,0). This follows from the fact that we have
f(0;s̄).0 @f(0;s̄),0# for s̄.0 (s̄,0) and f( k̄; s̄);
2( k̄2/ s̄2) as k̄→`. In the situation described by Theorem 1
we have also a counting rule for the number of gain bands as
a function of the number of transversal cuttings. In the fo-
cusing case (s̄.0), we haveN52m21 (m51,2, . . . ),
while in the defocusing caseN52m (m50,1,2, . . . ). In
both cases the numberm is equal to the number of finite,
well-separated gain bands. Notice that we allow for the case
m50 in the defocusing case, which accounts for the case
where there are no gain bands, i.e., the modulational stable
situation.
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