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The modulational instabilityMI) of plane waves in nonlocal Kerr media is studied for a general response
function. Several generic properties are proven mathematically, with emphasis on how new gain bands are
formed through a bifurcation process when the degree of nonlocalitgasses certain bifurcation values and
how the bandwidth and maximum of each individual gain band depends ©he generic properties of the Ml
gain spectrum, including the bifurcation phenomena, are then demonstrated for the exponential and rectangular
response functions. For a focusing nonlinearity the nonlocality tends to suppress MI, but can never remove it
completely, irrespectively of the shape of the response function. For a defocusing nonlinearity the stability
properties depend sensitively on the profile of the response function. For response functions with a positive-
definite spectrum, such as Gaussians and exponentials, plane waves are always stable, whereas response
functions with spectra that are not positive defiriseich as the rectangujawill lead to Ml if o exceeds a
certain threshold. For the square response function, in both the focusing and defocusing case, we show
analytically and numerically how new gain bands that form at higher wave numbers avireareases will
eventually dominate the existing gain bands at lower wave numbers and abruptly change the length scale of the
periodic pattern that may be observed in experiments.

DOI: 10.1103/PhysReVvE.66.066615 PACS nuniderd2.65—k

. INTRODUCTION =/ R(X —X)|#(x",2)]?dx’, Here x is the transverse spatial

) ) ) coordinate anég=1 (s=—1) corresponds to a focusiride-

The phenomena of modulational instabilityll) of plane  focysing nonlinearity. The evolution coordinazecan be the
waves has been identified and studied in various physicg|me coordinates, as for Bose-Einstein condensates, or the
systems, such as fluidi$], plasmd 2], nonlinear optic$3,4],  yropagation coordinate, as for optical beams. We consider

discrete nonlinear systemsuch as molecular chaini$], o)y symmetric spatial response functions that are positive
Fermi-resonant interfaces, and waveguide arf@ys disper-  efinite andwithout loss of generalityobey the normaliza-
sive nonlinear directional couplers with the change of refracijon condition

tive index following a exponential relaxation lay], etc. It

has been shown that Ml is strongly affected by various o
mechanisms present in nonlinear systems, such as higher- j R(x)dx=1. 2
order dispersive terms in the case of optical pu[$dssatu-

ration of the nonlinearity9], and coherence properties of Thys we exclude asymmetric effects, such as those generated
optical beam¢10]. by asymmetric temporal response functiomgth x being
~In thIS- work we study the M of plane waves propagatingtime), as in the case of the Raman effect on optical pulses
in a nonlinear Kerr-type medium with a nonlineariyf| ¢|?) [11].
(the refractive_ index ch_an_ge, in nonlir_1ear optitsat is a In nonlinear optics, Eq(1) represents a general phenom-
nonlocal function of the incident wave fiel(x,z). We con-  englogical model for media in which the nonlinear refractive
sider a phenomenological model index changeor polarization induced by an optical beam is
1 determined by some kind of a transport process. It may in-
; T2 2y, clude, e.g., heat conduction in materials with a thermal non-
Vo2t 2 axd+ sN(Y%) =0, @ linearity [12—15 or diffusion of molecules or atoms accom-
panying nonlinear light propagation in atomic vapft$].
where the nonlinear respondé 4|2 =R*|4|? has the ge- Nonlocality also accompanies the propagation of waves in
neric form of a spatial convolution between the wave intenplasma[15,17—-21, and a nonlocal response in forth) ap-
sity |¢|2 and a response functioR(x), where R*|4|?>  pears naturally as a result of many-body interaction pro-

— o0
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cesses in the description of Bose-Einstein conden$a@ds TABLE I. Existence criteria for Ml in nonlocal media.
The orientational nonlinearity of liquid crystals is also non-
local and may be described by Hd) [23,24]. It is worth to s=+1 s=-1

mention that an important aspect of the nonlocality in all.
these systems is that it completely prevents collapse of finite- R
size beam$25]. R(k) not sign definite Mi depends orR(k)
The width of the response functidR(x) relative to the
width of the intensity profilé(x,z)|? determines the degree
of nonlocality. In the limit of a singular response we get the.
well-known nonlinear Schinger (NLS) equation that ap-
pears in all areas of physics. Here the focusing casel()
produces Ml of the finite bandwidth type, while the defocus- 1
ing case §=—1) predicts modulational stability3]. When J,u+ Eﬁgv =0, (8)
the width of the response function is finite but small com-
pared to that of the intensity distribution, mod@) is ap-

(k)>0 Ml Stability

whereu andv are real functions. Inserting this expression
into the nonlocal NLS equatiofil) and linearizing around
the solution(5)-(6) gives the equations

proximated by the weakly nonlocal NLS equatii®6—30 90— %&éu— 25po(R*U) =0, 9)
1 « ! ! I H H
i 9,4+ Eﬁ)’fw sl |2+ yd2| y|?1y=0. (3) WwhereR*u=[Z_R(&'-§u(¢’,n)d§’ is again the spatial

convolution integral. Introducing the spatial Fourier trans-
form of a function as f (k)= /" f(&)expikdds, and ex-

ploiting the convolution theorem for Fourier transforms, the
linearized system is converted to a set of ordinary differential

= Efm X2R(x)dx, 4) equations irk space,

Here y<1 is defined as the second virial B{x),

2
9. X=AX, (10
In contrast to the local NLS limit¢=0), the Ml now de-
pends not only on the sign afbut also on the intensity o
the plane wavegl8]. Finally, in the case of strong nonlocal-
ity it has been shown that Ed1l) simplifies to a linear
model, and hence there is no Ml in this lifh&1].

MI has thus been studied in different limits. The general
case(l) has recently been investigated with respect to Ml
and compared with the weakly nonlocal linh6]. Here we
present an analytical study of the full nonlocal case withtpe gigenvaluea of the matrle are given by
arbitrary profileR(x) whose spectrum obeys a sufficient de-
gree of smoothness, with particular emphasis on generic fea-
tures of the MI. The present paper complements and extends A2=Kk%p,
the results obtained in Rgf26].

f where the vectoX and matrixA are defined as

1
0 T2
Sk

., A= 1 . (1)
- 25p0’R‘(k)—§k2 0

g 1
s R (k)— —Kk>2|. (12
4po

The general expressiafi2) was also derived in Ref26].

Il. MI IN THE NONLOCAL NLS EQUATION Here we have briefly reviewed the derivation for the sake of
) completenes and because it constitutes the basis of our study
Model (1) has plane wave solutions of the form of MI. From Eq. (12) one can deduct the general existence

. _ properties of Ml in nonlocal media listed in Tablg¢26].
W(x,2) = Vpoexplikox—iwoz), po>0, (5
lll. GENERIC PROPERTIES OF THE MI GAIN
wherepg, Ko, andwq are linked through the nonlinear dis- SPECTRUM

persion relation . S
The local case witho=0 (the NLS equationis well

1 known. There is always MI in focusing medig=1) and

w0=§kg—5p0, (6) always stability in def_ocusing mediasf—l)._ Here we
therefore focus on the interesting case with a finite degree of

nonlocality (¢#0). The spectrunR(k) has the following

Following Ref.[26], we perturb the plane wave solutions as : S
generic properties:

follows:
(1) SinceR(x) is real valued and symmetric, then so is
P(x,2)=[Vpot+u(&,7) +iv (& 7)]explify), R(k), i.e., R(k)=R(—k)=R* (k).
(2) Normalization(2) implies thatl32(0)= 1, which means
E=X—koz, 7=z, 6yg=kox— wgz, (7)  thatR(x) tacitly is assumed to be absolutely integrable, and
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henceR(K) is continuoug32]. _ sb(k)—-K?

(3) Symmetry condition 1. imposeR’(0)=0, i.e., the dks)=—=—. (16)
spectrumR(k) has a critical point ak=0, providedR(k) is
a differentiable function ok. Here and in the following, This is the most convenient form for the mathematical treat-
prime denotes differentiation with respect to the argument. ment. Due to the symmetry propertg), we consider only

(4) Normalization(2) for R(x) means thaR(x) is abso-  positive wave numbers in the following, i.&=0.
lute integrable, and hence by Riemann-Lebesque lemma we The parametes contains both the nonlinearity and the
have |ln]k|ﬁxR(k)—0 [32]. degree of nonlocality, and plays the role oé@ntrol param-
eter. The crucial point in the Ml analysis is the properties of
the function¢ in the (k-s) space. Using propertigd)—(6)

(5) The functionsxR(x) andx?R(x) are also absolutely we can characterize the $tof (unstable wave numberk
integrable, which means th& (k) and R”(k) are continu- fulfilling the inequality ¢(k,s)=0 for a given value of as

We further assume the following properties:

ous for allk [32]. follows:
(6) The response function is characterized by a typical _ _
width or scaling lengths (the degree of nonlocalityand (I) Modulational stabilityIf ¢(k,s)=<0 for allk then() is
assume the generic forR(x)=oc '®(x/c), where the €mpty. In this case there can be no MI.
scaling function® is nondimensional, i.e., independentoaf (I1) Finite bandwidth MI.

(@) If ¢(k,s)=0 for anyk then MI occurs. For suck
The spectrunR(k) can be expressed in terms of the Fou-yajues we define the normalized MI growth rage

rier transform® of the scaling functionb as \
=2—m’=|?|w(@. (17

The propertieg1)—(6) of the spectrunR carry over tod. (b) Any MI gain spectrum will be ofiinite bandwidth
Note that due to the normalizatigproperty(2)] and the  becaused is localized[property (4)] and thus¢— —k?/s?
Riemann-Lebesque lemnjaroperty (4)], the scaling func-  for [k]—s .

R(k)=d(ok). (13

tion has the property that (c) The number of MI gain bands is generically finite.
1 k=0 This follows if one can show that the transversality condition
lim d(ok)={ dp#0 is satisfigad at all the zeros df for a givens. This
o 0, k#0. result is proved in the Appendi@heorem J.

_ _ _ (d) The breakdown of the transversality condition for
Thus eigenvalue equatiofil2) approaches uniformly thg certain values of the control parame@ri.e., Geb= =0,

N ich i i . . . . L -
form A*=—k"/4 for o—ce, which is recognized as the ei- gegcribes bifurcation phenomena likgcitation, vanishing,
genvalue equation for Ml in the linear potential free Sehro coalescence, and separatiofi Ml bands.

dinger equation

This list represents the overall picture of the Ml for the non-

local NLS equation1). In the following we detail different

aspects of this picture. We first formulate the theory of exci-

tation, vanishing, coalescence, and separation of Ml bands as

Hence the well-known result of modulational stability is re- pifurcation phenomena. Then we study the general properties

produced in the limit of strong nonlocality. _ of the focusing cases(>0) and the defocusing cases (
For O<o<= we proceed as follows: Using the nondi- ) “separately. Finally, the discussion is illuminated with

mensional scaling functio®, the degree of nonlocality can examples.

be explicitly put into eigenvalue equati@th?), even though

the specific response function is not known. We thus rewntqv BIFURCATION ANALYSIS: EXCITATION, VANISHING,

. 1,
19+ 5 3=0.

Eq. (12) in the form MERGING, AND SEPARATION OF MI GAIN BANDS
2 R
(L) =P¢(k—s) (14) Let (kp,Sp) # (0,0) denote points where the transversality
2p o condition breaks down, i.e., where the structural funciion

_ and its derivatived,¢ both are zero,
where the scaled wave numbeand the scaled nonlinearity

s are defined as b(Kp ,Sp) = dkp(Kp ,Sp) = 0. (18
k=ok, s=4pyo’s. (15)  The number of zeros o®, and thus the number of gain

_ _ _ bands, will change as passes the bifurcation valsg. The
The MI gain band structure is then determined by streic-  second derivative of the structural function evaluated at the
tural function ¢(k,s), given by bifurcation point determines what type of phenomenon takes
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place. If the second derivative is positive, then two MI gain

bands merge, or one band separates into two,

9=p(Ky ,8,)>0=>merging or separation,  (19)

while a negative second derivative represents excitation ¢

vanishing of an Ml gain band,

&ggé( Ky, sb)<O= excitation or vanishing.

k (20

In fact, in a similar way as in the proof of Theorem I, it can

be shown that the bifurcation pointky(,s,) are distinct and
isolated if the condition

92Ky ,Sp) #0 (21)

PHYSICAL REVIEW E66, 066615 (2002

TABLE II. Generic conditions for excitation, vanishing, merg-
ing, and separation of Ml gain bands in the nonlocal NLS equation
Q).

Generic condition Characteristic feature
o (f)”(kb) Separation or merging
ky
cI3(/<b)
CB”( kb) Excitation or vanishing
E
CI3(/<b)

V. Ml GAIN SPECTRUM IN FOCUSING MEDIA

To obtain specific resultgbandwidth, maximum, etg.
about the individual gain bands constituting the normalized

is satlsfled This is a key result in our theory. The nongenerid! 9ain spectrum(17), we now consider the focusing case

case&;qﬁ(kb,sb)—o will not be considered here. Finally, an

overall requirement for a bifurcation to actually take place is

that the velocity condition
Isp(Kp,Sp) %0 (22

is satisfied at the bifurcation point. This assures th@¢, ,s)

s>0. We apply symmetry propertyl) [CD(k) d(—K)]
and consider only positive wave numbé&rs 0. In this case
the following features are apparent:

(i) Existence of a fundamental gain barnkhere exists a
closed bounded intervalo, kl] in which ¢(k s)>0 for O

<k< kl and ¢(k1,s) 0. This follows from the properties
(2)—(4) and the intermediate value theorem for continuous

does not remain on the zero axis, but crosses it when thginctions. Hence there will always be MI, independent of the

control parametes passes through the bifurcation valske
Conditions(18), (21), and(22) are referred to as thgeneric
conditions for bifurcations

Using the definition16) of the structural functionp, we
can find more specific results. Thus Ef8) becomes

kp®' (kp)=2®(kp), k,>0, (23
So=kp/D (k). (24)

By assumptiorgbaﬁo, and thus Eq(24) impliesEﬂ&O. To
determine the bifurcation valuég ands, of the scaled wave
number and the control parameter, one first solves(Eg).
for ki, under the conditiors®(k,)>0. Thens, is given by
Eqg. (24). The second derivative is given by

)= 5P (k) —2

Sb

zhﬁ(kb : (25)

and thus the generic conditig21) may be written as

”( b)
S (I)” k k =
( b) b 0

(26)

(kb)

Importantly, we find that at the bifurcation point,

I5p(Ko ,Sp) = K/ 5% 0.

The velocity condition(22) is therefore always satisfied in
our general nonlocal systefd). In Table Il we have sum-
marized the features of the bifurcation process.

shape of the spectrud. The band[O,kl] originates from
the underlying local NLS equation, and is thus denoted as the
fundamental gain band

(i) Possible existence of higher-order gain bandigl
gain bands may also exist for wave numbktskl This
property depends sensitively on the shape of the spectrum
and on the control parameter

(iii) Number of gain bandsdf the transversality condition
dp#0 is satisfied at all theN zeros of¢ for a givens
>0, then the number of gain bands, is given byN=2m
-1 (m=1,2,...).This follows from Theorem | in the Ap-

pendix, and the fact that(0,s) = 1/s>0 and¢— —k?/s? for

K— o0,

A. The fundamental gain band

The fundamental gain band exists for all values of the
degree of nonlocalityg (i.e., of the control parametes),
also in the local limit described by the focusing NLS equa-
tion. This gain band has the following features:

(fl_) _Gain profile._lf thE iransversality condition
dd(ky,s)<0 [i.e., (i)’(k1)<_2k1/s]_is satisfied, theith_ere
is at least one critical point.e[0k;] at which g,g(k.,S)
=0. This follows from the fact thata;g(o,s)=1/\/g—,

a@g(k,s)— —» ask—k; and the intermediate value theo-
rem for continuous functionglt is possible to extend this

argument to cases where the spectdindloes not possess a
well-defined tangent atk=0. If we require that
Iim;_>0+<i>’(k) exists (but is different from zerp then we

also have existence of at least one critical pdint [0k, ].
This occurs, for example, for the spectrum of the Lorentzian

066615-4
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response functioh At least one of these critical poinﬁ Thus the bandwidtl; always increases with increasing am-

gives a maximum growth ratg, (5. The curvature of the Plitude of the plane wavep, (i.e., the more nonlinear the
gain spectrum is given by system i, no matter what the degree of nonlocality is.

(f3_) L_ocal minima and maximarhe criticality condition
_ F(?C ?) 79(k:,s)=0 is equivalent to the equation
(kC !S) (27)

2V p(K::9) H[k.,s]=0, (35)

where we have defined the functions . . . —
which determines the critical wave numbels) as a func-

F(k,s)=sD(k)— 8k, (2g)  tion of the control parametes. The function
D(k)=3®" (k) +kd" (k). (29 H(k,s)=s[2d (k) +kd’ (k)] - 4k? (36)

Thus the gain curve has a local minimumiatif F(k.,s)  satisfies the relationiH/ds=F dk/ds. Thus, for F(k.,s)
>0 and a local maximum iF(k.,s)<0. A special case #0 (nonzero gain curvatuyewe obtain the velocity
occurs if the curvature is negative for al., i.e., if

b 2
F(k.,s)<0 is always satisfied. Then_the maximum is dkc _ 4_kc_ 37)
unique, i.e., only one critical wave number exists. Restor- ds sF(k¢,s) '
ing to original variables, the normalized gain is given by
k For fixed amplitudep, this expression becomes
g= 4po<1>(k) k2. (30)
‘9_kc:_ KepoD( c) (38)
For fixed amplitudep, the velocity therefore becomes do apoD (Ke) — 2K,
a_g_ k3 &' 31 From Eq.(38), we see that if the degEe of nonlocality
do | 8peg () (3 increases, then a local minimuparpoD (k¢) > 2k.] will al-

ways decrease, whereas the properties of a local maximum

and thus the variation of the gain with the degree of ”OnIOIapOD(kC)<2kC] will depend on the sign of the function
cality o depends on the sign of the functiah’ (k,), D(ko). If 0<D(k;)<8k/s then k; will increase, and if
sgr{dgldo}=sgr{®’ (k)}. - D(k.) <0 thenk. will decrease.

(f2) Bandwidth.The condition¢g[k4(s),s]=0 defines the At inflection points, F(kc,s) 0 [UPoD(kc) 2k.], and

bandwidthk,(s) as a function of the control parameter, from thus Eq.(38) does not apply. An inflection point actually
which we find the velocity corresponds to a bifurcation, at which two critical poi(es-
o - trema of the gain curyei.e., one local minimum and one
akl__ ki 32) local maximum, will be formed or vanish. The bifurcation
gs S[sd’(ky)—2k,]" points (kC ,s) (ke,se) are solutions of the system of equa-

t|onsF(ke,se) H(ke,se) 0, which gives

Since the transversality conditiof’ (k,)<2k,/s is satis-
fied, there is no problem with division by zero, and this G(ke) =k2D" (ko) +ked' (ko) — 4D (ko) =0, (39
velocity is always positive. For fixed amplitugg , this ex-

pression becomes ands,=8k./D (ko). The bifurcation points are isolated and

dky 2ok, ®’ (?1 ) distinct if the transversality conditiothG/dk.# O is satisfied.

b 200D (ky) — Ky (33 For typical response functions with a positive, monotoni-

cally decaying spectrunisuch as the Lorentzian spectrum
in real variables. The transversality condition implies thattommonly appearing in physical problemsi.e., with

2pe0d’ (k) <ki, and thus the variation of the bandwidth ®'(k)<0 for allk, both the gairg(k) and the bandwidtk,
with the degree of nonlocalitysf) depends on the sign of will always be a decreasing function of the degree of nonlo-

lity. If each gain band further has a unique maximum, then
d'(ky), ie., sgidk,/da}=sg{d’(ky)}. For a fixed de- 2
gree of nonlocality &), we obtain bifurcations will not be an issue. Table Il summarizes the

generic features of the fundamental gain band in nonlocal

ok K2/(2ps) focusing media¥>0). Note that the fundamental gain band
A P S ) (39 always has the classical Lighthill shape of the MI gain spec-
IPo 2pa0®’(ky) —ky trum in the local focusing NLS equation.

066615-5
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TABLE lIl. Generic features of the fundamental gain band of _g(kl S) 0, ﬁ_g(ko S)_)oo for k_>ko , and &‘g(kl,s)

the MI galn spectrung in nonlocal focusing medlak( ok=0,s

=4p,0°>0) with the degree of nonlocalityo().

Generic condition

Characteristic feature

None

Finite bandwidth &k, where

sB(k)=Fk1.

d'(k)H<o (>0

The bandwidth decreases

(increases) with o.

g=k/\4dpo as k—0,

&' (kp<2k, /5 dg——% as k—k, ,
A maximum gain exists.
D(k)>8k./s Local minimum at &, , dzg(k,)=0,

D(k)=3d" (B +kd"(k)

which decreases with o.

D(k)=8k. /s,

Inflection point at k.. When 5

passes 5, two local extrema (a

minimum and a maximum) will
form or vanish.

0<D(k,)<8k./s Local maximum at k., which
increases with o
D(k)<0 Local maximum at k.., which
decreases with o
D(k)<8k/s One unique maximum. No local
for all k minima or inflection points.

— —oo for k*)kl . Hence, by the intermediate value theo-
rem, there is at least one critical wave numkgre [Kq,k;]

at which the gain has a local extremumg(k.,s)=0.
Equations(27)—(31) and the propertie$fl) derived there-
from all apply to the higher-order gain bands also, e.g., local
minima, maxima, and inflection points are distinguished by

the sign of the functiorr (k).

(hf2) Bandwidth.The bandwidth of the higher order gain
bands is defined @=k; —k,. The transversality conditions
(c) and(d) mean that Eq9.32)—(34) for the velocities apply
to both the boundariek, and k;, i.e., to dkj/do and
dkildpg. Thus the left boundark, will always decrease

with the degree of nonlocality ), since @’(E))
>Kko/(2pg0). The variation of the right boundatyl with o

will depend on the sign of the functio®’ (kl) as for the

fundamental gain band. However, everbif (k;) <0 andk;
therefore decreases with, the bandwidthB may still in-
crease witho if ky decreases faster th&n, i.e., if oky/do
<dkqldo.

In terms of the plane-wave amplitugg, the right bound-
ary k; will always increase witlp, as for the fundamental
gain band ¢k, /dpy>0), whereas the left boundaky will
always decrease withy (dky/dpo>0) due to the conditions
(c) and (d). Thus the bandwidttB will increase rapidly the
stronger the focusing nonlocal nonlinearity.

(hf3) Local minima and maximd&quationg35)—(38) and
the propertiegf3) of local minima and maxima in the fun-
damental gain band also apply to the higher-order gain

bands.
d' (k<0 for 0<k<k, The gain and bandwidth

decreases with o VI. Ml GAIN SPECTRUM IN DEFOCUSING MEDIA

We now consider the defocusing case_\As_'tﬁO a_nd ap-
ply again the symmetry propertgl) [®(k)=p(—k)] to

. : . ._consider only positive wave numbeks=0. The following
Here we detail the properties of the higher-order 9aiN_ i features are apparent:

bands that do not exist in the local limit=0, but may be
formed through a bifurcation process when the system be- (i) Nonexistence of the fundamental gain baNd.closed

comes sufficiently nonlocal. Leg, denote the bifurcational bounded interva[0k,] exists, for which¢(k,s)>0 when
value of the control parameter and assume thatsfes, ~0=<k<k; and ¢(k175) 0. This follows from the fact

following properties (=0,1): i ﬂ) Modulauolal St&blhtﬂ)l’ positive definite spectri.
®(k)>0 for all k, then ¢(k,s)<0, and hence we always
have modulational stability in this case.

(iii) Possible existence of MMI may occur for nonzero
wave numbers in higher-order gain bands. This property de-
pends sensitively on the shape of the spectrum and the con-
trol parametess.

(iv) Number of gain banddf the transversality condition
dd#0 is satisfied at all théN zeros of¢ for a givens
>0, then the number of gain bandm) is given by N
=2m (m=0,1,...). This follows from Theorem | in the
Appendix and the fact thatp(0,5)=1/s<0 and ¢—

—k?/s? for k—c. Note that the stable case with no zeros,
and hence no gain bands, is included=0).

B. Higher-order gain bands

(@ ¢(k|,s) 0= d(k)=k?/s.

(b) p(k,s)>0 for ko<k<k,od(k)>k¥s for ko<
k<ky.

(© deb(ko,5)>0=d’ (ko)>2kos.

(d) Ged(ky.8)<0=d’ (k) <2k, /s.

Note that assumption&) and (d) imply that we have im-

posed transversality conditions ke andk;. The following
results are apparent:

(hf1) Gain profile. The gaing is positive and continuous
differentiable for ko<k<<k;. At the boundariesg(kg,S)
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A. Higher-order gain bands which replaces Eq(38). Furthermore, in real variableg,

Here we detail the properties of the higher-order MI gainnow corresponds to a local minimum wherpoD (kc) <
bands that do not exist in the local limit=0, but may be — 2k, and a local maximum wheapyD(k.) > — 2k.. Nev-
formed through a bifurcation process when the system beertheless, a minimum still always decreases witlnd the

comes sufficiently nonlocal. Les,<0 denote the bifurca- properties of a maximum still depends on the siggk.).
tional value of the control parameter and assume thasfor If —2k.<opyD(k.) <0, thenk, will increase withe, and if
<sy, there are wave numbekg andk; (ko<k;) satisfying  op,D(k.)>0 thenk, will decrease withs-. The properties

the following propertiesi(=0,1). of inflection points are the same as listed ind@lf, except
@ d)(? g)=0c><i)(f)= _—2/|§| that now the inflection point occurs afpgD (k.) = — 2k, .
i i i .
A S L _
<?(z)?¢(k,s)>o for ko<k<ky&=®(k)<—k|s| for ko VII. EXPONENTIAL RESPONSE FUNCTION
l.
© Wfﬁ(?o ;)>0@(i),(?0)<_2?0/|;|_ As a generic example of a response function with a

positive-definite spectrum, we consider the typical exponen-

(d) dp(k1,9) <0= D' (ky) > — 2k, /]3], tial response function

Again (c) and(d) are the transversality conditions at the ze- X 1

ros ko, and k;. All Egs. (27)—(39) are formerly the same, RX)=—@(—]. @)= Eexp(—|§|), (45)
except for sign changes in the equations that are in terms of

real variable¥, o, po, andg. We have the following results: whose Fourier transform is a Lorentzian,

(hdl) Gain profile.Equationg27)—(29) and the properties

(f1) derived therefrom hold also for the defocusing case. ﬁ(k)=<i)(ak)= _ (46)
However, the normalized gain is now 1+ o%k?
k — This response function appears, e.g., in materials with a non-
p— 2 1 1
9= 4p, —4po® (k) — k%, (40 jinear response determined by a transport mechafuiiol-
sion, heat conduction, ejcand described by the generic dif-

and the velocity therefore becomes fusionlike equatiorj20]

9_ (K g5 41 i 24 Any=

g0~ | 8pyg (k). (41) i 9+ Eax+ ny=0,
Thu§ the variation of thg gain with the degree of nonlocality An—o252An=s|y[?,
o still depends on the sign ab’(k), but now sgfidg/do}
= —sgr{(ib’(?)}. whereo is the diffusion parameter. The Lorentzian spectrum

(hd2 Bandwidth.The bandwidthB is again defined as (46) is a monotonically decreasing positive definite function.
B=k,— ko and Eq.(32) is still valid for bothk, andk, due ~ Thus Ml is always present if the_medlum is fo_cusmg (
to the conditiongc) and (d). However, in real variables the =1), whereas there can be no Ml if the medium is defocus-

velocities now become Ing (S:_l), according to Ref[26] and Table I. In the
- following we therefore consider only the focusing case (
ok; 2poki®’ (k; =1, s>0):
. poci;'?( I)k’ 42 |
2poo®’ (ki) +k 0.28 — 1.0
ok kil(2po) 43 021t o1 0.8
apO 2p00-(i),(ki)+ki ' E 014} | 087 B
. _ 0.4} ™. kg
which replaces Eq433) and (34). From Eqgs.(42) and (43) 007 o=4 | L R
we see that both boundarikg andk,; have exactly the same ' 02> G,
dependences oo and pg as in the focusing case, given by 0.00 . | 0.0 L Tme---
the propertieghf2). 00 04 08 12 0 2 4 6 8
(hd3) Local minima and maximaEquations(35)—(37) Wave number k Nonlocality, o
still apply, since they are in scaled variables. However, in
real variables the velocity is now given by FIG. 1. Focusing nonlocal medium withpd=1 and exponen-
tial response function. Left: MI gain versus wave numkédor o
K, chOD(?c) =0, 1, 4. Right: bandwidttB (solid), maximum gainG, (dashedq,
—_— (44) and wave numbek,, at maximum gain(dotted versus degree of
do apoD(ke) + 2K, nonlocality (o).
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- 40 ' ' ; ' ' ' T the eigenvalue equatidi2), we find the specific expressions
% 360 - for the bandwidthB (o) and maximum gairG,(o):
- L J -
% 300 B2 Vi+16pgoi—1 G2 pokﬁ1 B k_%
§ 240 . ] a 202 roome 1+o0%k2 4
g 180 R ._ ] m
f . where k., is the positive real solution of the equation
g 120 o 7 202K3 + 2k = /8po.
ﬁé 60F o - We have numerically investigated the eigenvalue equation
SN . . . . . . . (12) and depicted the results in Fig. 1. The numerical results

and the expressions f@&(o), G (o), andky(o) confirm
the generic properties listed in Tables Il and I, i.e., only one
fundamental Ml gain band exists with a bandwidth, unique
FIG. 2. Focusing nonlocal medium witlsd,=1 and rectangu- maximum, and wave number at maximum gain that all de-
lar response function. Bifurcation values of the nonlocality param-crease with the degree of nonlocality. Thus the nonlocality
etera{" (dots versus bifurcation number. The dashed line shows tends to suppress MI, but can never remove it entirely. Using
approximation(52). the qualitatively similar Gaussian response function, these
results were confirmed by direct numerical simulation in Ref.
Let us summarize the generic properties predicted by oui26]. There the exponential response was also considered,

theory, given spectrur@6), for whichd®(k)>0 for allk and  but without finding the analytical expressions for the maxi-

ﬁD’(k)<O for k>0 with <i>’(0)=0 First we see that bi- Mum gain and bandwidth, and without any theory for the
’ ' ’ generic properties of the gain spectrum.

1 2 3 4 5 6 7 8 9
Bifurcation number, n

furcations cannot occur, sinée and®’ have opposite sign,
and thus the bifurcation Eq$23) and (24) do not have a
solution, i.e., for all degrees of nonlocalityr), only the
fundamental(long-wave gain band exists. Equation81) Now, let us consider the situation where the spectrum is
and(33) with &' (k) <0 then predict that the maximum gain not sign definite and not strictly decreasing forlallThen it
Gn(o) and the gain bandwidtk;=B(o) always decrease is possible to have additional gain bands in both the focusing
with o. and defocusing cases. As an example, we consider the rect-
For more information on the gain profile, we must calcu-angular response function
late the function® andF, i.e., we must calculate the specific

VIIl. RECTANGULAR RESPONSE FUNCTION

curvature(i)”(?) from Eq. (46). Inserting the curvature into 1 [x 1 1Z|<1
Eqgs.(28) and(29) gives thatD (k) <0 andF(k)<O for allk, R(x)= ;<I>(;), D(y)=1 2 (47)
and thus the maximur®,, of the fundamental gain band is 0, [¢|>1,
always unique and occurs at the wave numkegeK,, _ o
which always decreases with according to Eq(38). From  whose Fourier transform is given by
R . sin(ko)
100 ! ' — -
L R() = (k)= = . 49
o)
5 80 b The bifurcation equatioi23) then reads
£
0] J— — J— —
5 60 3tanky)=k,, k,>0, ssin(k,)>0, (49
o i
8, b from which one finds the bifurcation valueg andk,, of the
2 0 degree of nonlocality and the wave number,
% J—
3 2 Ig Ko
- op=————=—-, kp=—. (50)
5 20 0 . 4spesin(ky) Op
Z,
i The bifurcation relation(49) gives the approximate value

k(" for the nth bifurcation,
0.0 0.2 0.4 0.6 0.8 1.0
Transverse wave number k

K= m, n=123..., (51

S
2n+ =
FIG. 3. Focusing nonlocal medium wittsd,=1 and rectangu- 2

lar response function. The first foun€0, 1, 2, 3 MI gain bands . .
(shaded areasversus wave numbek and degree of nonlocality corresponding to the degree of nonlocality and the transverse
(o). Bifurcation points are indicated. wave number
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TABLE IV. Nonlocal focusing medium with a rectangular re- 0.07 ' ' ' ' '

sponse function. Lowest-order bifurcations fapgd=1. 0.06 - _
Nonlocality Eq.(52 Wave number Eq(52) 0.05 7
o{M=21203 oM=22011 k{P=0352 k{N=0.357 g 0041 7
oP=52555  oP=53.155 k{?=0.263 k{¥=0.266 T 0.03F EEANE
0.02 - Z N AN 3 -

’ \‘ :,"\
OO]. [ ’\\ .". II 1 ’, A 4

\ : ' 3o 3

0.00 2 A J A A ]

oV= 000 005 010 015 020 025 030
Wave number k
(52) FIG. 5. Focusing nonlocal medium wittsdy=1 and rectangu-

lar response function. Gain versus modulation wave nurkifer
Strictly speaking, Eq49) has also the zero solutidg=0, ¢ =10(solid), o=30 (dotted, ando =60 (dashedl
corresponding ter,=0, but we do not count this as a bifur- - _ _
cation. Moreover, one finds that the curvature of the strucbandwidthk of the fundamental gain band is always less
tural function¢ is always negative at the bifurcation points, than 7, and thus bothb’, D, andF are negative for all O

— <k<k;. The fundamental gain band therefore has a unique
¢,,(?)_ B 6+ki -0 (53 maximum gain; and according to Eq81), (33), and(39) its
b/ gg ’ maximum gain, its bandwidth, and its wave number at maxi-

mum gain all decrease with the degree of nonlocaliy.(
Thus new MI bands are always excited at the bifurcation0r the higher-order gain bands the generic properties of the
both when the nonlinearity is focusing and defocusing. ~ bandwidthB(™ and the maximum gai{ are difficult to
; . = i : dict.
In a gain bandg>0; and thuss sin)>0. From the defi- P'® _ , _
nition 745 (ke ,5) =0 of the critical wave numbé, , we fur- The results for the first and second bifurcation are sum-

_ — _ marized in Table IV, whereas all bifurcation values of the
ther have thas[ sin(k;) +k.cosk)]=4k2>0. Using these re- nonlocality are plotted in Fig. 2. We see that E8p) gives a

lations in the definition29) of the functionD, we find that  quite accurate prediction of the bifurcations. The accuracy
sD(k.)<0. ThusF is always negative on the critical points becomes better with increasimg

(or extrema of the gain profileand all gain bands therefore ~ The full structure of the gain spectrum is depicted as a
have a unique maximum. From Eq88) and (44) we then  contour plot in Fig. 3. For small and moderate values of the
have that the wave numbk‘g=k§ﬁ) at maximum gain of the degree of nonlocality £<21.2), we only have one funda-
nth gain band will always decrease with the degree of nonmental Ml gain band. For higher values @new gain bands
locality (o), both in focusing and defocusing media. Let usappear as predicted. These results are consistent with the

look at these cases separately in more detail. findings in Ref.[26].
The dependence & andB(™ on ¢ are depicted in Fig.
A. Focusing case(s=+1) 4, which confirms the predicted generic properties and fur-

ther shows that the bandwidth of the different bands ap-

In the focusing case the fundamental gain bame Q) is rProach each other when increases.
i

always present, and thus Ml is always present as well,
accordance with Table I. For the response functi48), the

025 T T T T T
R 10 — " 1.0 EUE 020k _
<fost z 08{ o
o )l ® 0.15F —
L o6 5 06f 80
£ T E
2 04t E 04f E 0.10 7]
o =] =
5 02} & 02t %
B ' = 0051 SN ]
ool L T ool L T— S
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0.00 : o : : s
Nonlocality, ¢ Nonlocality, o 0 10 20 30 40 50 60
Nonlocality, o
FIG. 4. Focusing nonlocal medium wittsdy=1 and rectangu-
lar response function. Wave number at maximum g«ﬂl’\ (left) FIG. 6. Focusing nonlocal medium wittsdy,=1 and rectangu-
and bandwidthB™ (right) of bandsn=0 (solid), n=1 (dotted, lar response function. Maximum gafﬁ) versuso for bandsn
andn=2 (dashed =0 (solid), n=1 (dotted, andn=2 (dashed
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TABLE V. Nonlocal defocusing material with a rectangular re- 100 \ ' ' '
sponse function. Lowest-order bifurcations f@pg=—1. X
b
Nonlocality Eq.(52) Wave number Eq(52) 5 80 1
—-—
oM=0176  o{P=10230 kM=0.444 KkM=0.461 g
oP=35780 o{P=36.461 k{P=0.300 k{?=0.302 S 60 .
g o
=
In Fig. 5 we have shown cuts of the MI gain spectrum at = 40 i
o=10, 30, and 60. We note a surprising feature der 30, 2
which is not predicted by our analysis of the generic features: = 20 " ]
the maximum gain of the second band is higher than that of p 7
the fundamental band. To show this in more detail, we have
plotted the maximum gain in Fig. 6. Here we clearly see that 0
at =25 (0=>56) the maximum gain of the=1 (n=2) 0.0 0.2 04 06 08 1.0
band becomes larger than the maximum gain of the funda- Transverse wave number k

mentaln=0 band. This crossing should be detectable in a _ ) _
numerical experiment, since the system will always eventu- F!G. 8. Defocusing nonlocal medium witts4o=—1 and rect-

ally select the wave number at maximum gain when startin%ngular response function. The first three<(1, 2, 3 MI gain
from random white noise. ands(shaded areasversus wave numbes and degree of nonlo-

cality o. Bifurcation points are indicated.
B. Defocusing casds=—1)

shows that the bandwidths of the different bands approach
In the defocusing case, there is no fundamentss Q) each other whelwr increases.

gain band, and thus all plane waves are modulationally stable |n Fig. 10 we have shown cuts of the gain spectrum at
until the nonlocality becomes sufficiently strong to reach they=20, 50, and 80. Again, for botbr=50 and 80, we ob-
first bifurcation. Table V summarizes the results for the firstserve that the maximum gain of the=2 band is higher than
and second bifurcation, whereas all bifurcation values of thenat of the lowesh=1 band. To show this in more detail, we
nonlocality are plotted in Fig. 7. We see that E8Q) givesa  have plotted the maximum gain in Fig. 11.
quite accurate prediction of the bifurcations also in the defo- From Fig. 11 we clearly see that at~47 (c~84) the
cusing case. The accuracy again becomes better for increasmximum gain of thev=2 (n=3) band becomes larger than
ng n. the maximum gain of the lowest=1 band. We even see
The full structure of the gain spectrum is depicted as ahat ato~109, the thirdn=3 band becomes dominant, i.e.,
contour plot in Fig. 8. The fundamentak=0 MI gain band  jts maximum gain exceeds also that of the seaqor@ band.
is absent, so for small and moderate values of the degree @fyain these crossings should be detectable in a numerical
nonlocality, 0<9.2, there is no MI. For higher values of  experiment, since the system will always eventually select
>9.2 gain bands appear as predicted. These results are cQfie wave number at maximum gain when starting from ran-
sistent with the preliminary findings in RR26]. dom white noise.
The dependence &f}) andB(™ on o are depicted in Fig. In fact, our numerical simulations clearly confirm this
9, which again confirms the predicted generic properties angrediction. We numerically integrated nonlocal NLS equa-
tion (1) with the defocusing nonlinearity and the rectangular

420 . . . . . . —3 response function in the form of E7). As the initial con-
B 360 L o ditions, we used a planar wave front superimposed with a
> -
= 300 = o5 0.15
= . =
o . C¥: | - I
8 240t . . 0.4 g 0.12
g . 1 5 .
g 180 . E 0.3 g 0.09}
© 120 . . 7 oz} £ 006}
3 s 2 g
g or . P 8 0.1t @ 0.03 ;
O I | | | | I | 0.0 ) ) ) ) 0.00 . L )
1 2 3 4 5 6 7 8 9 0 30 60 90 120150 0 30 60 90 120150
Bifurcation number, n Nonlocality, ¢ Nonlocality, o
FIG. 7. Defocusing nonlocal medium withsdo=—1 and rect- FIG. 9. Defocusing nonlocal medium witrsdo=—1 and rect-

angular response function. Bifurcation values of the nonlocality paangular response function. Wave number at maximum g&h
rameterog‘) (dot9 versus bifurcation numbar. The dashed line (left) and bandwidttB(™ (right) of bandsn=1 (solid), n=2 (dot-
shows approximatiofi52). ted), andn=3 (dashed
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005 T T T T T 006 T T T T
0.04 4 %E 0.05F
g 004
E 0.031r b A
o g 0.03 -
G
0.02| . - S
: 7N g 0.02r
o~y [P I
- ? B — ©
0.01 S 0o s = 0.01f :
[ it ! I :
0.00 P S S T n i H 0.00 L L . )
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0 30 60 90 120 150
Wave number k Nonlocality, o
FIG. 10. Defocusing nonlocal medium withsdp=—1 and FIG. 11. Defocusing nonlocal medium witlsdy= — 1 and rect-
rectangular response function. Gain versus wave nurkider o angular response function. Maximum ga(Bfr',‘) versus degree of
=20 (solid), =50 (dotted, and o=80 (dashedl nonlocality for bandsn=1 (solid), n=2 (dotted, and n=3
(dashed

weak (less than 10°%) random perturbation. Then the equa-

tion was numerically integrated using the split-step fast Fou;[h t as the d f locality i h iod of th
rier method with a transverse resolution®%=10"2 and a M? as IE:" izgree ot non Of'latlhy mcree;zes,t efptirlof Od €
step length of\z=10"2. signal first increases until the growth rate of the funda-

Figure 12 summarizes the results of this numerical experi[nental and s_econd MI bands equ_ahz:ea(_2_4 in Fig. 13.
ment forspo=—1. It shows the wave number at maximum Subsequent increase of leads to instability with shorter

gain in propagation as a function of the nonlocality param_perlqd, which indicates that the system follows the path de-
etero. Lines correspond to solutions obtained from disper-termme(j by the second MI band.

sion relation(12). Squares indicate the results of full numeri-

cal simulations of Eq(1). The agreement between the small IX. CONCLUSION

signal analysis and numerical simulation is excellent. The

inset shows examples of the development of the instability The linear stage of the Ml for the nonlocal NLS equation
for three values of the nonlocality parameterlt is evident  has been studied in terms of the spectrum of the response

1.0

Wave number k

0.0 : : : ; : : .
0 5 10 15 20 25 30 35

Nonlocality parameter 6

FIG. 12. Wave number at maximum gain versus the degree of nonlocaljty Defocusing nonlocal medium witep,=—1 and
rectangular response function. Lines, solutions to dispersion rel@t®)nsquares, results of direct numerical integration.
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function. From dispersion relatiofl2), it follows that the _ sh(k)-K?

crucial point in this discussion is the location of the spectrum d(k,5)=—= ,

of the response function relative to the parabkfain k S

space. The following features complement and extend the ) o

results obtained in Ref26]: changes sign. Then we have the following important result:

(i) The Ml is of the finite bandwidth type. It consists of a  Theorem 1.Let s be a given finite, real number. If the
finite number of well-separated gain bands. Moreover, it igransversality conditior,¢# 0 is satisfied for all the zeros
possible to predict the occurrence of excitation, vanishingpf ¢, then these points are distinct and isolated. Moreover,
coalescence, and separation of MI bands. the number of such zeros is finite.

(ii) For a large class of response functidesponential, Proof. First, let us prove that the zeros ¢f are distinct
square, Gaussian, etceach Ml band has a unique maximum and isolated. We proceed by means of a contradiction argu-
fgrowc:h ra:]e. fIn isqlati?n, elaNclr_lsband resembles the MI banghent. Let{k,}”_, be a convergent sequence of zerosfof
ound in the focusing loca equation. . TP . T

(i) In the focusir?g case we alavays find at least one Mi“€ #(kn,$)=0 forallnandlim, __k,=k, . Then, by con-
gain band centered at abdkt0. It is verified analytically ~tinuity of ¢, we have
that the width of this MI band, as well as the corresponding
growth rate, decreases when increasing the width of the re-
sponse function, provided the spectrum of the response func-
tion is decreasing in this Ml band. Furthermore, additional
MI bands are excited at higher wave numbers when the , . . = .
width parameter exceeds a certain threshold, i.e., when th‘ghICh mean.s that the ac_cumulatpn pokytis a zero ofe.
nonlinearity becomes sufficiently nonlocal. The latter phe-Hence any interval abok, contains at least one zekg .
nomenon is a unigue feature of the nonlocal nonlinearity andBut the transversality condition implies that¢(k, ,S)
has no equivalent in the local case and the weakly nonloca# 0, from which it follows that there is an open interval
limit. . _ ~ =(k, —Ak,k, +AKk), such thatp(k;s)#0 for all kel, k

(iv) In the_ defocu3|_ng case we can elthe.r ha\_/e stability Ok, , from which it follows that no zero ofp can be an
MI of the finite bandwidth type. The latter situation can only ac

" the high b . d onlv if the width cumulation point of some sequence of zerog ofThere-
occur in the hig wave number regime, and only 11 tn€ width¢, o o)1 the zeros must be distinct and isolated. Next, let us
of the response function exceeds a certain threshold, i.e

; ) = prove that the set of zeros is finite. From the Riemann-
when the nonlinearity becomes sufficiently nonlocal.

(v) In both the focusing and defocusing case, the higherl_ebesques lemma we have thatr!mdD(k)zo, and hence
order MI bands move towards lower wave numbers as thglue to the definition o we have thatp(k;s) ~ — (k2/s?) as
width of the response function increases. In the limit of," . tnharefore there must beka, such thaté(kg,s) =0

strong nonlocality, the MI bands vanish completely. This re- — — —
sult agrees with the fact that the strongly nonlocal limit of and ¢(k,s) <0 for all k>kg . Hence all the zeros ap be-

0= lim ¢(ky,5)= d(k, ,S).

n—oo

the NLS model(1) is a linear model. long to the bounded, half-open interva])@]. Hence we
(vi) Finally, it should be emphasized that the results ofcan only have a finite sequen{:len},ﬁ‘:l, kny=kg for which
small signal analysis are in complete agreement with thosg,(k  sy=0,n=1,2,... N. u

obtained by direct numerical integration of the nonlocal NLS
equation describing the general type of nonlocal nonlineal
media that we have studied.

We immediately obtain the following result: Latbe a
biven finite real number and assume that the transversality
conditiond,¢# 0 for all the zeros o?n (n=1,2,...N) of
¢. Then the number of zerdd) is odd (even for the case
ACKNOWLEDGMENTS s>0 (s<0). This follows from the fact that we have
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Natural Sciences FoundatigSNF Grant No. 9903273and  we have also a counting rule for the number of gain bands as
the Graduate School in Nonlinear Scier{d&e Danish Re- a function of the number of transversal cuttings. In the fo-

search Academy cusing case £>0), we haveN=2m—1 (m=1,2,...),
while in the defocusing casBl=2m (m=0,1,2...). In
APPENDIX: SUFFICIENT CONDITION EOR THE both cases the ngmbem is equal to the number of finite,
EXISTENCE OF A FINITE NUMBER OF GAIN BANDS well-separated gain bands. Notice that we allow for the case

m=0 in the defocusing case, which accounts for the case
Let us assume that the functiah defined by Eq.16),  where there are no gain bands, i.e., the modulational stable
ie., situation.

066615-12



GENERIC FEATURES OF MODULATIONA . .. PHYSICAL REVIEW E 66, 066615 (2002

[1] T.B. Benjamin and J.E. Feir, J. Fluid Mec®7, 417 (1967). [18] A.G. Litvak and A.M. Sergeev, Pis’'ma Zh. Eksp. Teor. Big
[2] A. Hasegawa,Plasma Instabilities and Nonlinear Effects 549 (1978 [JETP Lett.27, 517 (1978].

(Springer-Verlag, Heidelberg, 1975 [19] T.A. Davydova and A.l. Fishchuk, Ukr. J. Phyd0, 487
[3] L.A. Ostrovskii, Zh. Eksp. Teor. Fiz51, 1189 (1966 [Sov. (1995.

Phys. JETR4, 797 (1967)]. [20] A.G. Litvak, V.A. Mironov, G.M. Fraiman, and A.D. Yunak-
[4] V.I. Bespalov and V.I. Talanov, Pis'ma Zh. Eksp. Teor. Fz. ovskii, Fiz. Plazmyl, 60 (1979 [Sov. J. Plasma Phy4, 31

471 (1966 [JETP Lett.3, 307 (1966]; V.I. Karpman,ibid. 6, (1973].

829 (1967 [6, 277 (1967)]. [21] H.L. Pecseli and J.J. Rasmussen, Plasma PR{®s.421
[5] Yu.S. Kivshar and M. Peyrard, Phys. Rev44, 3198(1992. (1980.

[22] F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S. Stringari, Rev.
Mod. Phys.71, 463 (1999; K. Goral, K. Rzazewski, and T.
Pfau, Phys. Rev. A1, 051601R) (2000; V.M. Perez-Garcia,
V. V. Konotop, and J.J. Garcia-Ripoll, Phys. Rev6E, 4300
(2000.

[23] D.W. McLaughlin, D.J. Muraki, and M.J. Shelley, Physica D

[6] P.D. Miller and O. Bang, Phys. Rev. %7, 6038(1998.

[7] S. Trillo, S. Wabnitz, G.I. Stegeman, and E.M. Wright, J. Opt.
Soc. Am. B6, 889(1989.

[8] M.J. Potasek, Opt. Letfl2, 921(1987)

[9] Yu.S. Kivshar, D. Anderson, and M. Lisak, Phys. St8, 679

(1993. _ _ 97, 471(1996.
[10] M. Soljacic, M. Segev, T. Coskun, D. Christodoulides, and A.[24] M. peccianti, K.A. Brzdakiewicz, and G. Assanto, Opt. Lett.
Vishwanath, Phys. Rev. Let84, 467 (2000. 27, 1460(2002; M. Peccianti, A. De Rossi, G. Assanto, A. De
[11] J. Wyller, Physica D157, 90 (2002). Luca, C. Umeton, and I.C. Khoo, Appl. Phys. Le®7, 7
[12] J.P. Gordon, R.C. Leite, R.S. Moore, S.P. Porto, and J.R.  (2000.
Whinnery, J. Appl. Phys36, 3 (1969. [25] O. Bang, W. Krolikowski, J. Wyller, and J.J. Rasmussen, Phys.
[13] S. Akhmanov, D.P. Krindach, A.V. Migulin, A.P. Sukhorukov, Rev. E66, 046619(2002.
and R.V. Khokhlov, IEEE J. Quantum ElectroQE-4, 568 [26] W. Krolikowski, O. Bang, J.J. Rasmussen, and J. Wyller, Phys.
(1968. Rev. E64, 016612(2001).
[14] M. Horovitz, R. Daisy, O. Werner, and B. Fischer, Opt. Lett. [27] A. Parola, L. Salanich, and L. Reatto, Phys. Re&AR3180
17, 475(1992. (1998.
[15] ILA. Kolchugina, V.A. Mironov, and A.M. Sergeev, Pis'ma Zh. [28] X. Wang, D.W. Brown, K. Lindenberg, and B.J. West, Phys.
Eksp. Teor. Fiz31, 333(1980 [JETP Lett.31, 304 (1980]; Rev. A37, 3557(1988.

V.A. Mironov, A.M. Sergeev, and E.M. Sher, Dokl Akad. [29] A. Nakamura, J. Phys. Soc. Jpt2, 1824(1977.
Nauk. USSR260, 325 (1981 [Sov. Phys. Dokl.26, 861 [30] W. Krolikowski and O. Bang, Phys. Rev. B3, 016610

(1981)]. (2002.

[16] D. Suter and T. Blasberg, Phys. Rev48 4583(1993. [31] A. Snyder and J. Mitchell, Scienc76, 1538(1997).

[17] M.V. Porkolab and M.V. Goldman, Phys. Fluids9, 872 [32] G.B. Folland,Real Analysis. Modern Techniques and Their
(1976. Applications(Wiley, New York, 1984, p. 241.

066615-13



