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Twisted topological solitons and dislocations in a polymer crystal
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Topological defects and dislocations in strongly anisotropic crystals consisting of parallel molecular chains
are investigated. Our study is focused on the defects in crystalline polyethelyne, which are formed by trans-
verse displacements of chain molecules~mutual substitutions and interlacings of adjacent molecular chains in
the polymer crystal!. It is shown that some of these defects called ‘‘twisted topological solitons’’ can propagate
with a stationary profile and velocity. To describe the dynamics of these solitons, a model that accounts for the
three components of the molecular displacements is suggested. Linear topological defects—dislocations—that
incorporate the bending of molecular chains in the crystal are also studied.

DOI: 10.1103/PhysRevB.65.054106 PACS number~s!: 63.20.Pw, 61.72.Lk, 63.20.Ry, 63.90.1t

I. INTRODUCTION

The well-known one-dimensional ~1D! Frenkel-
Kontorova~FK! model,1–3 originally introduced for descrip-
tion of dislocation dynamics in 3D crystals,4,5 has been used
extensively for modeling nonlinear dynamical processes in a
variety of condensed matter6,7 and biological8 systems. As
for possible extensions of this model to higher dimensions,
so far little work has been done. In this context, investiga-
tions of the 2D scalar9–11 and vector12–14 lattice models, in-
cluding different quasi-one-dimensional ladders15–18 that ap-
pear also to be complicated systems, should be mentioned.

In the theory of dislocations,4,5 the 1D FK model de-
scribes the simplest physical situation when a part of a crys-
tal is displaced with respect to another part along a sliding
plane. Both these parts, which are separated by a sliding
plane, are modeled by 1D discrete chains. The lower chain is
considered as a perfect 1D periodic substrate lattice, whereas
the upper one is assumed to contain a defect: a localized
rarefaction ~kink! or a localized compression~antikink!.
However, in realistic crystals, any disturbance in the upper
chain obviously has an influence on the lower lattice, so that
the periodicity of the substrate potential in general will be
broken. Both chains should be considered as equivalent ob-
jects, and the influence of any local stress deformation on the
substrate potential should be properly considered. To this
end, recently19 we suggested a model for an anisotropic crys-
tal consisting of coupled chains which are considered iden-
tical objects. In this model, any influence of one of the chains
on its surrounding chains is taken into account. As in all the
2D lattice models studied previously,10–14,20,21 only inter-
atomic forces were included in this anisotropic crystal
model. As a consequence, on-site potentials were not consid-
ered at all. Instead, all long-range interactions between atoms
in adjacent chains have been considered. In this anisotropic
model, only topological defects and dislocations formed due
to displacements along the anisotropy axis were studied.

This paper aims at studying topological defects and dislo-
cations formed bytransversedisplacements resulting in a
twist of adjacent chains of the crystal. However, in order to
describe defects of this type properly, interactions with all

neighboring chains must be involved in the model, not only
the four nearest-neighbor chains as before.19 Therefore, this
problem appears to be much more complicated compared
with the case of defects formed only bylongitudinal
displacements.19

For the lattice model of a strongly anisotropic crystal, we
choose a 3D polymer crystal that consists of interacting par-
allel molecular chains. The molecules within each chain are
coupled among themselves by strong valence bonds. The in-
terchain interactions are realized through considerably more
feeble nonvalence bonds. The molecular chains in such a
strongly anisotropic crystal cannot be torn. This property
leads to the existence of specific topological defects and to
specific features of dislocations.

It is commonly used to regard the polymer crystal as a
quasi-one-dimensional structure, for which one can restrict
oneself to consider only longitudinal deformations of the
links in molecular chains. This approach allows us to exam-
ine the existence of ‘‘longitudinal’’ topological solitons in the
crystal and edge dislocations with a Burgers vector parallel
to the direction of molecular chains,19 but it does not allow
us to consider topological defects and dislocations, the exis-
tence of which is due to transverse deformations of the mo-
lecular chains.

In the present paper, a more general 3D model that takes
into account for all three components of molecule displace-
ments is elaborated. This model allows a consideration of
some new kinds of point topological defects~formed because
of interlacings of chains or mutual substitutions of chains!
along with a wider class of linear topological defects.

II. MODEL

We consider a three-dimensional anisotropic crystal con-
sisting of interacting molecular chains as shown in Fig. 1.
Each of these chains is directed along thez axis. The dis-
tances between the molecules in the perpendicularx, y, andz
directions are given by parametersa, b, andc, respectively.
The crystal sites are numbered along thex, y, andz axes by
indicesm, n, andp, respectively. Then the site (n,m,p) of
the 3D lattice has the coordinates
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xnmp5~m1dn!a, ymnp5nb/2,

znmp5~p1dn!c, where dn5@11~21!n#/4. ~1!

In the xy plane, we have hexagonal close-packed lattices
~each chain is equidistant from its six nearest chains!. Param-
etera specifies the distance between adjacent chains, andb
5aA3.

Within each chain, the interaction of adjacent molecules is
given by the harmonic potential

U~r!5
1

2
Kr~r2r0!2, ~2!

whereKr is longitudinal stiffness of a chain,r is an instan-
taneous bond length, andr0 is an equilibrium bond length in
the isolated chain. We describe the energy of bending defor-
mations of each chain in the crystal by the potential

W~u!5Ku~11cosu!, ~3!

whereu is a bending angle of the chain (u5p for equilib-
rium!, andKu is a chain bending stiffness constant. The in-
terchain interaction of molecules is given by the Morse po-
tential

V~r !5«$exp@2b~r 2r 0!#21%2, ~4!

where« is the binding energy,b describes the curvature of
the potential minimum, andr is an instantaneous length of
intermolecular distance, withr 0 being its equilibrium.

The values of parametersr0 and r 0 are uniquely deter-
mined by the lattice periodsa and c. In equilibrium, the
energy per each lattice site reads

E05
1

2
Kr~c2r0!21

1

2 (
(m,n,p)PZ3

V~r mnp!, ~5!

where distancer mnp is given by

r mnp5A@~m1dn21/2!213n2/4#a21~p1dn21/2!2c2.
~6!

The set of equations of equilibrium is as follows

]E0

]a
5 (

(m,n,p)PZ3
V8~r mnp!@~m1dn21/2!213n2/4#a/2r mnp

50, ~7!

]E0

]c
5Kr~c2r0!

1 (
(m,n,p)PZ3

V8~r mnp!~p1dn21/2!2c/2r mnp50. ~8!

The values of the parametersr 0 and r0 are uniquely deter-
mined from nonlinear equations~7! and ~8!, respectively.

Let umnp, vmnp, andwmnp be the displacements from the
equilibrium position for a lattice site (m,n,p). Then the
Hamiltonian of the polymer crystal takes the form

H5
1

2 (
(m,n,p)PZ3

M ~ u̇mnp
2 1 v̇mnp

2 1ẇmnp
2 !1E, ~9!

whereM is mass, and the potential energy is given by

E5 (
(m,n,p)PZ3 FU~rmnp!1W~umnp!

1
1

2 (
( i , j ,k)PZ3

V~r mnp; i jk !G . ~10!

Here the distances between adjacent molecules within one
chain are

rmnp5Aamnp
2 1bmnp

2 1cmnp
2 , ~11!

where

amnp5um,n,p112umnp,

bmnp5vm,n,p112vmnp, ~12!

cmnp5c1wm,n,p112wmnp.

The angleumnp is given by

umnp5arccos@2~amnpam,n,p111bmnpbm,n,p11

1cmnpcm,n,p11!/rmnprm,n,p11#. ~13!

The distance between the sites (m,n,p) and (m1 i ,n1 j ,p
1k) can be written as

r mnp; i jk5$@~ i 1dn1 j2dn!a1um1 i ,n1 j ,p1k2umnp#
2

1@vm1 i ,n1 j ,p1k2vmnp1 jb/2#2

1@~k1dn1 j2dn!c1wm1 i ,n1 j ,p1k2wmnp#
2%1/2.

~14!

For numerical calculations we use the lattice parameters
appropriate for crystalline polyethylene~PE!. The PE crystal
is formed by zigzag molecular chains (CH2)` with a longi-
tudinal stepc51.276 Å. The mass of one chain link isM
514mp , wheremp is the proton mass. The distance between

FIG. 1. Schematic representation of a 3D polymer crystal struc-
ture. Only intrachain bonds are represented~shown by bold lines!.
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adjacent chains isa.4 Å, and periodb5aA356.928 Å.
The longitudinal stiffness of PE can be estimated by the
speed of long-wavelength acoustic phonons of trans-zigzag:
Kr5M (v0 /c)2. According to Refs. 22 and 23, the speed is
v057819 m/s; henceKr587 N/m5523.9 kJ/mol Å2. The
bending stiffnessKu of a chain corresponds in our model to
the stiffness of the torsion angle of trans-zigzag PE. Accord-
ing to Refs. 24 and 25,Ku561.93 kJ/mol. Let us take«
52 kJ/mol, and choose the parameter of the Morse potential
@Eq. ~4!# to beb55 Å21. Then from the set of equations~7!
and ~8!, we obtain the valuesr054.072 Å and r 0
51.298 Å.

III. POINT DEFECTS AND TWISTED
TOPOLOGICAL SOLITONS

In fact, only a finite number of molecular chains partici-
pates in the formation of point defects of the crystalline
structure given by Eqs.~9!–~14!. Thus, for the formation of a
vacancy~or an interstitial!, it is sufficient to stretch~or to
contract! only one chain of the crystal for one chain period.
These defects can be described as topological solitons19 and,
in the particular case of polyethylene crystal, their dynamics
has been studied in the approximation of fixed neighbors23

and using molecular-dynamics simulations.26,27 These soli-
tons have the width of some tens of a chain link, and an
energy of about 40–50 kJ/mol.

Here we consider defects related to transverse~bending!
deformations of the crystal chains, with one chain displaced
to the place of another one or with the interlaced chains.
Defects of this type are associated with the broken order of
adjacent chains. A few chains must necessarily participate in
their formation. Therefore, bending deformations of the
chains are localized in space. Their existence is stipulated by
a local violation of the topology of a polymer crystal, which
is implemented through bending deformations of the chains.
Therefore, in what follows we call these ‘‘twisted topological
defects.’’ Each of these defects is characterized by the num-
ber Nc>2 of chains involved in the defect formation.

It should be noted that the ‘‘twisted topological defect’’ is
not a new concept. Thus, for isotropic systems, such excita-
tions have been studied in the context of a vortex lattice,28

where the two-chain defect is normally unstable while the
three-chain defect is metastable. The instability here is due to
the relatively low activation energy of breaking intersite
bonds in the localization region of the defect. As a result, a
reconnection of the twisted lines into a straight line occurs.
In the polymer crystal studied in the present paper, a recon-
nection of this type is practically impossible because it re-
quires a total breaking of the strong longitudinal valence
bonds. Therefore, in a strongly anisotropic lattice, all the
defects of twisting chains with strong bonds will be stable
because the energy of longitudinal bonds exceeds that of
transverse bonds by two orders. This circumstance allows us
to consider the strong bonds as stable links. Thus, in the
polymer crystal, only weak interchain~nonvalence! bonds
can be broken rather than strong intrachain~valence! bonds.

The complexity of the model does not allow an analytical
description of these defects. To find these numerically, one

should restrict oneself to a consideration of a finite fragment
of the crystal. Therefore we take a 3D rectangle

L5$1<m<M , 1<n<N, 1<p<P%, ~15!

and take into account only the interaction of particles at a
distancer<7a.

To obtain a stationary state of a twisted topological defect,
it is necessary to solve the minimization problem

E→ min
(m,n,p)PL

, ~16!

with periodic boundary conditions for transverse components
m andn, and the conditions of fixed ends for the longitudinal
componentp. Then problem~16! can be solved numerically
by the conjugate-gradient method. The type of defect is de-
termined by the assigned initial configuration of the crystal
fragment@Eq. ~15!#.

First let us consider the twisted topological defect with
Nc52. In the region of localization of this defect, two crystal
chains interchange their locations. To find a stationary profile
of this defect, it is necessary to solve problem~16! with the
initial configuration, with two interchanging chains given by

uM /2,N/2,p5a$11tanh@m~p2P/221/2!#%/2,

vM /2,N/2,p5b/4 cosh@m~p2P/221/2!#, ~17!

uM /2,N/211,p52uM /2,N/2,p , vM /2,N/211,p52vM /2,N/2,p ,

umnp50, vmnp50, wmnp50 for other ~m,n,p!PL.

FIG. 2. Shape of the twisted topological defect formed by two
adjacent chains (Nc52). For spatial visualization, projections of
chains onto thexy plane are included.
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In the numerical simulations we useM520, N520, andP
550, and a dimensionless parameter characterizing the lon-
gitudinal width of the defect,m51/2.

The form of the defect withNc52 is shown in Fig. 2.
Two molecular chains of the crystal interchange their places
without intersecting. This replacement causes a bending of
adjacent chains. The projections of the chains onto thexy
plane are also shown in Fig. 2, to give visual representations
of the amplitudes of the chain deformations. If we consider a
two-dimensional strip with the edges formed by these two
chains, then in the region of the defect localization it is over-
wound by 180°. Distributions of energy and displacements of
sites, along a molecular chain participating in the formation
of defects, are given in Fig. 3. The corresponding chain in
Fig. 2 is shown by a bold line. In theu component, the defect
has the form of a step that describes the transition of a chain
from one equilibrium position into the other equivalent adja-
cent equilibrium position. In thev component, the displace-
ment profile has the form of an isolated peak, describing the
bypass of the other chain participating in the defect forma-
tion. As can be seen from Fig. 3, the defect is localized over
ten chain bonds, where practically all the energy of the de-
formation is concentrated. The form of the defect does not
depend smoothly on the number of chain bondsp. The defect
is pinned, and it cannot move. The energy of the defect is
E255220 kJ/mol. The pinning energy forms a barrier of 20
kJ/mol. In the localization region of the defect, the maximal
energy per longitudinal bond does not exceed 150 kJ/mol,

and this is clearly not enough to break the chain@the energy
of the valence bond C—C is 529 kJ/mol~Ref. 26!#. There-
fore, here the chain reconnection is impossible resulting in
the defect stability.

Let us consider the defect associated with the interlacing
of two adjacent chains. To find a stationary profile of the
defect, it is necessary to solve problem~16! with the initial
configurations

uM /2,N/2,p5a/cosh@m~p2P/221/2!#%/2,

vM /2,N/2,p5b/4 cosh@m~p2P/221/2!#, ~18!

uM /2,N/211,p52uM /2,N/2,p , vM /2,N/211,p52vM /2,N/2,p ,

umnp50, vmnp50, wmnp50 for other ~m,n,p!PL.

The form of the defect is represented in Fig. 4. Here the
two-dimensional strip with the edges formed by interlaced
chains is overwinded by 360°. Since intrachain rigid inter-
molecular bonds cannot be torn, the molecular chains cannot
pass through each other. Therefore, this defect also has a
topological nature. The topological defect of this type can be
considered as a bound state of the two twisted topological
defects withNc52, each of them twisting the strip by 180°.
Distributions of energy and displacements of the sites along
one molecular chain participating in the defect formation are
given in Fig. 5. The appropriate chain is shown in Fig. 4 by
the bold line. The energy distribution along the chain has a
distinctive two-hump profile. It is clearly seen from Fig. 4
that in the projection onto thexy plane, this chain forms a

FIG. 3. Distribution of energyEmnp ~a!, and displacementsumnp

~b! and vmnp ~c! along one of the chains (m5M /2,n5N/2) of a
twisted topological defect with (Nc52).

FIG. 4. Shape of a defect in the interlacing of two adjacent
chains. For spatial visualization, the projections of chains onto the
xy plane are given.

SAVIN, KHALACK, CHRISTIANSEN, AND ZOLOTARYUK PHYSICAL REVIEW B 65 054106

054106-4



closed loop, surrounding the equilibrium position of the ad-
jacent chain. The energy of an interlacing defect (E1

58977 kJ/mol) is less than the energy of two twisted topo-
logical defects (2E2510440 kJ/mol). The binding energy of
these two defects can be estimated asDE52E22E1

5473 kJ/mol.
The twisted topological defect can be formed by more

than two chains. The only important point is that they must
sequentially occupy each others positions~their projection
onto thexy plane must form a continuous closed loop pass-
ing through the sites of a 2D hexagonal lattice, correspond-
ing to equilibria of the chains!. The dependence of the defect
energyE on the number of chainsNc is represented in Table
I. The defect with the least energyE53790 kJ/mol hasNc
56, for which the molecular chains form an exact hexagon
in the projection onto thexy plane~Fig. 6!. The distribution
of the energy and the displacements along one chain of this
defect are presented in Fig. 7~this chain is shown with bold
line in Fig. 6!. Here all the displacement components have
smooth profiles typical of a soliton.

IV. DEFECT DYNAMICS

The twisted topological defect withNc52 has no smooth
profile, as demonstrated in Fig. 3. It is pinned, and cannot
propagate as a solitary wave. However, atNc56, the defect
has a broad and smooth profile, and therefore it can move.
For convenience of numerical simulations of the defect mo-
tion, we introduce the dimensionless timet5t/t0, wheret0

5c/v05AM /Kr is the time required for the sound to pass
one chain bond. To obtain the profile of a moving soliton, we
use the method of minimization of a discrete Lagrangian.18

The soliton profile$umnp,vmnp,wmnp% can be found as a
minimum of the discrete Lagrangian

L5E2
1

2
s2Kr (

(m,n,p)PZ3
@~umn,p112umnp!

2

1~vmn,p112vmnp!
21~wmn,p112wmnp!

2#, ~19!

where the potential energyE of the system is defined by
expression~10!, and the dimensionless speed of a soliton is
s5v/v0.

Upon using the dimensionless timet, the set of equations
of motion takes the forms

Krumnp9 52]H/]umnp,

Krvmnp9 52]H/]vmnp, ~20!

Krwmnp9 52]H/]wmnp,

~m,n,p!PL,

FIG. 5. Distribution of energyEmnp ~a!, and displacementsumnp

~b! and vmnp ~c! along one of the chains (m5M /2,n5N/2) of an
interlacing defect.

TABLE I. Dependence of the energyE of a twisted topological
defect on the number of chainsNc forming a defect.

Nc 2 3 4 5 6

E ~kJ/mol! 5220 4264 4512 5094 3790

FIG. 6. Shape of a twisted topological defect formed by six
chains (Nc56). For spatial visualization, the projections of chains
onto thexy plane are given.
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where the HamiltonianH of the system is given by Eq.~9!.
Then we solve the problem

L→ min
(m,n,p)PL

~21!

at s50.5, using an initial configuration corresponding to the
twisted topological soliton with Nc56. The solution
$umnp,vmnp,wmnp% of this problem can be used as an initial
approximation for the system of equations of motion~20!:

umnp8 ~0!52s~umn,p112umnp!,

vmnp8 ~0!52s~vmn,p112vmnp!,

wmnp8 ~0!52s~wmn,p112wmnp!, ~22!

umnp~0!5umnp, vmnp~0!5vmnp,

wmnp~0!5wmnp, ~m,n,p!PL.

The defect dynamics is presented in Fig. 8. It is clearly
seen that the defect moves along molecular chains of the
crystal as a solitary wave with a stationary speeds50.276,
retaining its form. Thus, in the polymer crystal, in addition to
well-defined longitudinal topological solitons, transverse to-
pological solitons do exist.

Topological defects withNc>6 have relatively low en-
ergy densities in their localization region, as well as high

mobilities. Therefore, they can be thermally activated as
pairs of opposite polarity. These defects can be separated
each from each other by large distances caused by lattice
dislocation loops, which are important for melting.29 Thus
twisted topological solitons should play an important role in
premelting mechanisms for strongly anisotropic polymer
crystals.

V. DISLOCATIONS IN POLYMER CRYSTAL

The model used in the previous sections also allows a
consideration of dislocations in a polymer crystal. The edge
dislocation associated with longitudinal deformations of mo-
lecular chains of the crystal was already investigated,19 and
therefore here we will focus only on a study of the disloca-
tions associated with bending deformations of the molecular
chains.

To find the stationary profile of a dislocation, we choose
the finite rectangular fragment of the crystal@Eq. ~15!#, with
periodic boundary conditions in all three indicesm, n, andp.

FIG. 7. Distribution of energyEmnp ~a!, and displacementsumnp

~b! and vmnp ~c! along one of the chains (m5M /2,n5N/2) of a
twisted topological defect (Nc56).

FIG. 8. Dynamics of a twisted topological defect withNc56.
Distribution of energyEmnp ~a!, and displacementsumnp ~b! and
vmnp ~c! along the chainm5M /2 andn5N/2 of the defect.
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The periodic boundary conditions do not allow us to obtain
one isolated dislocation, but we can find a dislocation quad-
rupole: four dislocations with the sum of the Burgers vectors
equal to 0. At sufficiently large distances between the dislo-
cation centers, they can be considered as separate disloca-
tions.

Let us first consider the screw dislocation with the Bur-
gers vectorb5(a,0,0). In a crystal with such a dislocation,
all the chains with an identical indexm form identical defor-
mations~see Fig. 9!. The dislocation line is parallel to thex
axis. Therefore, one can omit the indexm everywhere, hav-
ing put

umnp[u1np5unp ,

vmnp[v1np5vnp , ~23!

wmnp[w1np5wnp .

The stationary profile of a dislocation quadrupole was
found to be a solution of the minimization problem@Eq.
~16!# with M51, N5200, andP5200, and with the initial
configurations

un,p5a tanh@m~p2P/421/2!#/2, un,p1P/252un,p ,
~24!

for

N/4,n<3N/4, 1<p<P/2,

un,p52a tanh@m~p2P/421/2!#/2, un,p1P/252un,p ,

for

1<n<N/4, 3N/411<n<N, 1<p<P/2,

and

vn,p50, wnp50, for 1<n<N, 1<p<P.

In the rectangular fragment 1<n<N/2,1<p</2P, we ob-
tain one screw dislocation.

Deformations of molecular chains in the dislocation core
are shown in Fig. 9. Distributions of the energy and the dis-
placements in the rectangular region 1<n<100,1<p<100
are presented in Fig. 10. In this rectangular region of a crys-
tal of width a, the dislocation has the energyE
576.3 kJ/mol~all dislocations in a quadrupole have identi-
cal energy!. It is evident from Fig. 10~a! that most of the
dislocation energy is concentrated in the two layers where
the relative displacement of chains by one period along thex
axis takes place. The chains in these layers are shown by
bold lines in Fig. 9. Figure 10~b! shows that in other layers
the chains are practically not displaced with regard to each

FIG. 9. Shape of molecular chain deformations within the core
of the screw dislocation with the Burgers vectorb5(a,0,0). Chains
nearest to the slip plane are shown by bold lines.

FIG. 10. Distribution of energyEnp ~a!, relative displacements
un11,p2unp ~b!, and transverse displacementsvnp ~c! in the lattice
with the screw dislocation. The Burgers vector isb5(a,0,0).
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other. The width of the dislocation core is about 15 periods
of a chain. The interchain interaction leads to slight displace-
ments along they axis in the dislocation core region, as
illustrated by Fig. 10~c!. As a result, the projections of chains
onto thexy plane have characteristic arc forms, as seen in
Fig. 9.

Upon formation of the screw dislocation with the Burgers
vectorb5(0,b,0), all chains with odd and even indicesn are
equally deformed~Fig. 11!. Here the dislocation line is par-
allel to they axis. Therefore, for finding a dislocation of this
type, it is sufficient to take the rectangular fragment of the
crystalL with N52. Let us takeM5100 andP5200, and
solve the minimization problem@Eq. ~16!# with the initial
configuration of the fragmentL, appropriate to a dislocation
quadrupole.

The shape of chain deformations in the core of one dislo-
cation is shown in Fig. 11. Distributions of the energy and
the displacements in the rectangular region, 1<m<50 and
1<p<100, are presented in Fig. 12. As can be seen from
Fig. 12~a!, the energy is no longer localized near the slip
plane~the chains in these layers are shown with bold lines in
Fig. 11!. The width of the dislocation core is about 20@Fig.
12~c!# periods of the chain. Along thex axis, the distances
between chains in the dislocation core are much larger@Fig.
12~b!#, and consequently the projections of chains onto the
xy plane have more pronounced arc shapes~Fig. 11!. In the
rectangular region of the crystal, 1<m<50,1<n<2, and
1<p<100, the dislocation with the Burgers vectorb
5(0,b,0) has a considerably higher energyE
5775.3 kJ/mol. This stipulates the possibility for such a dis-

location to be unstable concerning the dissociation into two
mixed dislocations with the Burgers vectors of the type
(a,0,0).

Let us now consider an edge dislocation with the Burgers
vector b5(0,0,c) and with a line parallel to thex axis.
Again, we exploit symmetry condition~23!, and solve mini
mization problem~16! with M51, N5100, andP5400
with the initial configuration

wn,p5c$11tanh@m~p2P/421/2!#%/2,

wn,P/21p5wn,P/2112p ,

for

N/4,n<3N/4, 1<p<P/2,

wn,p50, ~25!

for

1<n<N/4, 3N/411<n<N, 1<p<P/2,

FIG. 11. Shape of molecular chain deformations within the core
of the screw dislocation with the Burgers vectorb5(0,b,0). Chains
nearest to the slip plane are shown by bold lines.

FIG. 12. Distribution of energyEm1p ~a!, transverse displace-
mentsum1p ~b!, and relative displacementsvm11,1,p2vm1p ~c! in the
lattice with the screw dislocation. The Burgers vector isb
5(0,b,0).
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un,p50, vn,p50, for 1<n<N, 1<p<P.

For the rectangular fragment 1<n<N/2,1<p<P/2, we ob-
tain one edge dislocation.

The shape of the solution is shown in Fig. 13. For the
rectangular region of the crystal withm51, 1<n<50, and
1<p<100, the edge dislocation has the energyE
522.6 kJ/mol. The energy distribution in a crystal is repre-
sented in Fig. 13~a!. The main energy of a dislocation is
concentrated in the layer withn5N/4 that contains the dis-
location core. The width of the dislocation core appears to be
more than 50 chain bonds@Fig. 13~c!#. The shape of dis-
placements in the transverse componentv is shown in Fig.
13~b!.

The formation of edge dislocations with the Burgers vec-
tor parallel to thexy plane takes place without deformations
of the molecular chains. The chains are displaced as a whole,
and therefore, in the projection onto thexy plane, these dis-
locations correspond to dislocations of a 2D hexagonal
crystal.

VI. CONCLUSIONS

We have shown in the present paper that the polymer
crystal can contain local topological defects possessing soli-
ton dynamics. Along with the well-known longitudinal topo-
logical solitons, there exist twisted topological solitons, ex-
hibiting local violations of crystal topology associated with
bending deformations of molecular chains of the crystal~in-
terlacing of chains, substitution of chains, etc.!. Bending de-
formations of the chains are also responsible for the exis-
tence of screw dislocations, with the Burgers vector
perpendicular to the direction of molecular chains of the
crystal. It is shown that screw dislocations have higher ener-
gies than edge dislocations, the existence of which is associ-
ated with longitudinal deformations of molecular chains in
the polymer crystal.
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