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PHYSICAL REVIEW B, VOLUME 65, 054106

Twisted topological solitons and dislocations in a polymer crystal

A. V. Savin}? J. M. Khalack!*® P. L. Christiansef,and A. V. Zolotaryuk?
Section for Mathematical Physics, IMM, Technical University of Denmark, DK-2800 Lyngby, Denmark
2State Institute of Physics and Technology, 119034 Moscow, The Russian Federation
3Bogolyubov Institute for Theoretical Physics, 03143 Kyiv, Ukraine
(Received 13 July 2001; published 9 January 2002

Topological defects and dislocations in strongly anisotropic crystals consisting of parallel molecular chains
are investigated. Our study is focused on the defects in crystalline polyethelyne, which are formed by trans-
verse displacements of chain moleculesitual substitutions and interlacings of adjacent molecular chains in
the polymer crystal It is shown that some of these defects called “twisted topological solitons” can propagate
with a stationary profile and velocity. To describe the dynamics of these solitons, a model that accounts for the
three components of the molecular displacements is suggested. Linear topological defects—dislocations—that
incorporate the bending of molecular chains in the crystal are also studied.

DOI: 10.1103/PhysRevB.65.054106 PACS nuni§er63.20.Pw, 61.72.Lk, 63.20.Ry, 63.96.

[. INTRODUCTION neighboring chains must be involved in the model, not only
the four nearest-neighbor chains as befSr&herefore, this
The well-known one-dimensional (1D) Frenkel- problem appears to be much more complicated compared
Kontorova(FK) model~2 originally introduced for descrip- With the case of defects formed only bipngitudinal
tion of dislocation dynamics in 3D crystdl€,has been used displacements?
extensively for modeling nonlinear dynamical processes in a For the lattice model of a strongly anisotropic crystal, we
variety of condensed matfet and biologicdl systems. As choose a 3D polymer crystal that consists of interacting par-
for possib|e extensions of this model to h|gher dimensionS,a”el molecular chains. The molecules within each chain are
so far little work has been done. In this context, investiga-coupled among themselves by strong valence bonds. The in-
tions of the 2D scaldr*! and vectot? *lattice models, in- terchain interactions are realized through considerably more
cluding different quasi-one-dimensional laddéré®that ap- ~ feeble nonvalence bonds. The molecular chains in such a
pear also to be complicated systems, should be mentionedStrongly anisotropic crystal cannot be torn. This property
In the theory of dislocation$® the 1D FK model de- leads to the existence of specific topological defects and to
scribes the simplest physical situation when a part of a crysspecific features of dislocations.
tal is displaced with respect to another part along a sliding It is commonly used to regard the polymer crystal as a
plane. Both these parts, which are separated by a S|idinguasi-one-dimensional structure, for which one can restrict
plane, are modeled by 1D discrete chains. The lower chain igneself to consider only longitudinal deformations of the
considered as a perfect 1D periodic substrate lattice, whered8ks in molecular chains. This approach allows us to exam-
the upper one is assumed to contain a defect: a localizele the existence of “longitudinal” topological solitons in the
rarefaction (kmk) or a localized Compressionantikink)_ CryStaI and edge dislocations with a Burgers vector parallel
However, in realistic crystals, any disturbance in the uppef© the direction of molecular chaift8 but it does not allow
chain obviously has an influence on the lower lattice, so tha¥S to consider topological defects and dislocations, the exis-
the periodicity of the substrate potential in general will betence of wh|ch is due to transverse deformations of the mo-
broken. Both chains should be considered as equivalent ofiecular chains.
jects, and the influence of any local stress deformation on the n the present paper, a more general 3D model that takes
substrate potential should be properly considered. To thigto account for all three components of molecule displace-
end, recentl}® we suggested a model for an anisotropic crys-ments is elaborated. This model allows a consideration of
tal consisting of coupled chains which are considered idensome new kinds of point topological defe¢tsrmed because
tical objects. In this model, any influence of one of the chaingf interlacings of chains or mutual substitutions of chains
on its surrounding chains is taken into account. As in all the2long with a wider class of linear topological defects.
2D lattice models studied previousf;*2%?Lonly inter-
atomic forces were included in this anisotropic crystal Il. MODEL
model. As a consequence, on-site potentials were not consid-
ered at all. Instead, all long-range interactions between atoms We consider a three-dimensional anisotropic crystal con-
in adjacent chains have been considered. In this anisotrop&isting of interacting molecular chains as shown in Fig. 1.
model, only topological defects and dislocations formed dugsach of these chains is directed along thaxis. The dis-
to displacements along the anisotropy axis were studied. tances between the molecules in the perpendicylgrandz
This paper aims at studying topological defects and dislodirections are given by parameteasb, andc, respectively.
cations formed bytransversedisplacements resulting in a The crystal sites are numbered along ¥g, andz axes by
twist of adjacent chains of the crystal. However, in order toindicesm, n, andp, respectively. Then the siten(m,p) of
describe defects of this type properly, interactions with allthe 3D lattice has the coordinates
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Fmnp= V[ (M+ 8,— 1/2)%+3n%/4]a’+ (p+ 8, — 1/2)*c?.

T p+l (6)
/ . P .
T —i p The set of equations of equilibrium is as follows
H.
B p_l (?Eo_

S > V' (rmnpl(m+ 8,—1/2)%+3n2/4]a/2r 1,

- (m,n,p) e z8
III/I/ l =0, (7)

f9E0_K
/Ill/l.."::;'-‘. e »(C=po)

= D V' (Fmap (P 8y 1/2)%C/20 10 =0.  (8)
3 (m,n,p)e23

The values of the parameterg and py are uniquely deter-
mined from nonlinear equatiorig) and (8), respectively.
Let Unnps Umnp, @andwy,,, be the displacements from the

. . equilibrium position for a lattice siteng,n,p). Then the
FIG. 1. Schematic representation of a 3D polymer crystal strucyamiltonian of the polymer crystal takes the form
ture. Only intrachain bonds are representgldown by bold lines

m+1

1

H=> M(UZ ot 2t W) +E, (9
Xnmp:(m+5n)aa ymnp:nblzy 2(m,n,§p;ez3 ( mnp vmnp mnp) ()

Zomp=(P+8,)C,  where 8,=[1+(—-1)"J/4. (1) whereM is mass, and the potential energy is given by

In the xy plane, we have hexagonal close-packed lattices E= 2 U(pmnp) +W(Omnp)

(each chain is equidistant from its six nearest chaimaram- (m,n,p)ez®

etera specifies the distance between adjacent chainspand 1

=ay3. +20 S Vi |- (10)
Within each chain, the interaction of adjacent molecules is 2 e mnpilk

given by the harmonic potential Here the distances between adjacent molecules within one

chain are

1
U(p)= 5K, (p—po)? 2
(P) 2 P(p po) @ Pmnp™ \/aﬁmp"_ bzmnp+ Crznnp= (11
whereK, is longitudinal stiffness of a chaim, is an instan- where
taneous bond length, ang is an equilibrium bond length in

amnp=Uu —Umnos
the isolated chain. We describe the energy of bending defor- mnp-TmnpeL s Tmne

mations of each chain in the crystal by the potential Bmnp=Vm,n,p+1~ Vmnps (12
W(6)=K ,4(1+ cosb), €)) Crnp= €+ Wmn,p+1~ Wrmnp-

where @ is a bending angle of the chai€ = for equilib- The angledmny is given by

rium), andK, is a chain bending stiffness constant. The in- Omnp=arcco$— (amn@m,n,p+ 1+ PmnPmn,p+1

terchain interaction of molecules is given by the Morse po-

tential +Cmanm,n,p+1)/Pmnppm,n,p+l]- (13
The distance between the sita®,0,p) and (m+i,n+j,p

V(r)=e{exd —B(r—rqy)]—1}2, (4) +k) can be written as

wheree is the binding energy3 describes the curvature of Tmngijk={[(i + Sn+j = Sn)a+Umsintjprk— Umnpl®
the potential minimum, and is an instantaneous length of [0t s i os ko [0/2]2
intermolecular distance, with, being its equilibrium. m+intjprk “mnp

‘The values of parameteys, andr, are uniquely deter- +[(K+ 804 )= 80 CH Wit i ns j prk— Winnpl 12
mined by the lattice perioda and c. In equilibrium, the (14)

energy per each lattice site reads
For numerical calculations we use the lattice parameters
appropriate for crystalline polyethyletfBE). The PE crystal

— _ 2, —
Eo=5Ku(C=po)™+ 3 . nZ)Ez3 V(Tmnp), ®) s formed by zigzag molecular chains (§H with a longi-
e tudinal stepc=1.276 A. The mass of one chain link i
where distance,n, is given by = 14m,, wherem, is the proton mass. The distance between

054106-2
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adjacent chains is=4 A, and periodb=a/3=6.928 A.
The longitudinal stiffness of PE can be estimated by the
speed of long-wavelength acoustic phonons of trans-zigzag
K,= M (vo/c)?2. According to Refs. 22 and 23, the speed is
vo= 7819 m/s; hence&K ,=87 N/m=523.9 kJ/mol K. The
bending stiffnesK, of a chain corresponds in our model to -
the stiffness of the torsion angle of trans-zigzag PE. Accord- 6~ |
ing to Refs. 24 and 25K ,=61.93 kJ/mol. Let us take

=2 kJ/mol, and choose the parameter of the Morse potential
[Eq.(4)]to be=5 A~1. Then from the set of equatiolig)

and (8), we obtain the valuesp,=4.072 A and r,
=1.298 A.

€
c
[Il. POINT DEFECTS AND TWISTED .
TOPOLOGICAL SOLITONS PR

In fact, only a finite number of molecular chains partici-
pates in the formation of point defects of the crystalline
structure given by Eq$9)—(14). Thus, for the formation of a
vacancy(or an interstitid), it is sufficient to stretchor to 0l
contrac} only one chain of the crystal for one chain period.
These defects can be described as topological sotitams!,
in the particular case of polyethylene crystal, their dynamics
has been studied in the approximation of fixed neigHors
and using molecular-dynamics simulatidfig’ These soli-
tons have the width of some tens of a chain link, and an FIG. 2. Shape of the twisted topological defect formed by two
energy of about 40-50 kJ/mol. adjacent chainsN.=2). For spatial visualization, projections of

Here we consider defects related to transvébmnding  chains onto thexy plane are included.
deformations of the crystal chains, with one chain displaced
to the place of another one or with the interlaced chainsshould restrict oneself to a consideration of a finite fragment
Defects of this type are associated with the broken order off the crystal. Therefore we take a 3D rectangle
adjacent chains. A few chains must necessarily participate in
théir formation. Therefore, bending deform:;/tti))ns oIEI3 the A={lsms<M, 1<n<N, 1<p<P}, (15
chains are localized in space. Their existence is stipulated bynd take into account only the interaction of particles at a
a local violation of the topology of a polymer crystal, which distancer<7a.
is implemented through bending deformations of the chains. To obtain a stationary state of a twisted topological defect,
Therefore, in what follows we call these “twisted topological it is necessary to solve the minimization problem
defects.” Each of these defects is characterized by the num-
berN.=2 of chains involved in the defect formation. E— min |, (16)

It should be noted that the “twisted topological defect” is (mn.p)eA

not a new concept. Thus, for isotropic systems, such %thaxivith periodic boundary conditions for transverse components
tions have been studied in the context of a vortex lattice, 1, andn, and the conditions of fixed ends for the longitudinal
where the two-chain defect is normally unstable while thecomponen'p. Then problem(16) can be solved numerically
three-chain defect is metastable. The instability here is due tgy the conjugate-gradient method. The type of defect is de-

the relatively low activation energy of breaking intersite ormined by the assigned initial configuration of the crystal
bonds in the localization region of the defect. As a result, dragment[Eq. (15)].

reconnection of the twisted lines into a straight line occurs. First |et us consider the twisted topological defect with

In the polymer crystal studied in the present paper, a recony —»  |n the region of localization of this defect, two crystal

nection of this type is practically impossible because it répains interchange their locations. To find a stationary profile
quires a total breaking of the strong longitudinal valenceys inig defect, it is necessary to solve probléh6) with the

bonds. Therefore, in a strongly anisotropic lattice, all thejyitia| configuration, with two interchanging chains given by
defects of twisting chains with strong bonds will be stable

x (nm) T2

because the energy of longitudinal bonds exceeds that of Umpnizp=ail+tan u(p—P/2—1/2)]}/2,
transverse bonds by two orders. This circumstance allows us

to consider the strong bonds as stable links. Thus, in the UmizNizp=Dl4 cosliu(p—P/12—1/2)], (17)
polymer crystal, only weak interchaitnonvalencg bonds

can be broken rather than strong intrach@ialence bonds. UmaNzt1p= ~UMNRp s  UMRNRY1Lp= ~UMIRN2p

The complexity of the model does not allow an analytical
description of these defects. To find these numerically, oneup,,,=0, vpEE=0, Wp,,=0 for other (m,n,p) e A.
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FIG. 4. Shape of a defect in the interlacing of two adjacent
p chains. For spatial visualization, the projections of chains onto the
o . Xy plane are given.
FIG. 3. Distribution of energ¥, (&), and displacementsy,,,

'E\t/\)/)is?g: tvo“;”()ﬁég)iczoggfﬁewﬂ&he:%‘amm(: M/2n=N/2) of a 5 this is clearly not enough to break the cHaire energy

¢ : of the valence bond -GC is 529 kJ/mol(Ref. 26]. There-
) ) ] fore, here the chain reconnection is impossible resulting in

In the numerical simulations we usé=20, N=20, andP  the defect stability.

=50, and a dimensionless parameter characterizing the lon- | et ys consider the defect associated with the interlacing
gitudinal width of the defectu=1/2. of two adjacent chains. To find a stationary profile of the

The form of the defect wittN;=2 is shown in Fig. 2. defect, it is necessary to solve probléi®) with the initial
Two molecular chains of the crystal interchange their placegonfigurations

without intersecting. This replacement causes a bending of

adjacent chains. The projections of the chains ontoxthe Umiznizp=alcosl w(p—P12—1/2)1}12,
plane are also shown in Fig. 2, to give visual representations
of the amplitudes of the chain deformations. If we consider a Umranizp=0/4 costiu(p—P/2—1/2)], (18)

two-dimensional strip with the edges formed by these two
chains, then in the region of the defect localization it is over-
wound by 180°. Distributions of energy and displacements of
sites, along a molecular chain participating in the formation,, _g , —g \w =0 for other (m,n,p)eA.

of defects, are given in Fig. 3. The corresponding chain in "~ ' ~™P = me Y

Fig. 2 is shown by a bold line. In thecomponent, the defect The form of the defect is represented in Fig. 4. Here the
has the form of a step that describes the transition of a chaitwo-dimensional strip with the edges formed by interlaced
from one equilibrium position into the other equivalent adja-chains is overwinded by 360°. Since intrachain rigid inter-
cent equilibrium position. In the component, the displace- molecular bonds cannot be torn, the molecular chains cannot
ment profile has the form of an isolated peak, describing thepass through each other. Therefore, this defect also has a
bypass of the other chain participating in the defect formatopological nature. The topological defect of this type can be
tion. As can be seen from Fig. 3, the defect is localized overonsidered as a bound state of the two twisted topological
ten chain bonds, where practically all the energy of the dedefects withN.=2, each of them twisting the strip by 180°.
formation is concentrated. The form of the defect does noDistributions of energy and displacements of the sites along
depend smoothly on the number of chain bopd§he defect one molecular chain participating in the defect formation are
is pinned, and it cannot move. The energy of the defect igiven in Fig. 5. The appropriate chain is shown in Fig. 4 by
E,=5220 kJ/mol. The pinning energy forms a barrier of 20the bold line. The energy distribution along the chain has a
kJ/mol. In the localization region of the defect, the maximaldistinctive two-hump profile. It is clearly seen from Fig. 4
energy per longitudinal bond does not exceed 150 kJ/molkhat in the projection onto thry plane, this chain forms a

UmiNr+1p™ —UMmeN2ps  UMRNR+1p™ ~UMI2ZN2p:

054106-4
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p FIG. 6. Shape of a twisted topological defect formed by six

chains (N;=6). For spatial visualization, the projections of chains

FIG. 5. Distribution of energ¥,,, (a), and displacements,,,, ~ onto thexy plane are given.
(b) andv mpp (¢) along one of the chaingt(=M/2n=N/2) of an
interlacing defect. IV. DEFECT DYNAMICS
The twisted topological defect with,=2 has no smooth

closed loop, surrounding the equilibrium position of the ad-profile, as demonstrated in Fig. 3. It is pinned, and cannot
jacent chain. The energy of an interlacing defe®, ( Ppropagate as a solitary wave. HoweverNat=6, the defect
=8977 kJ/mol) is less than the energy of two twisted topo-has a broad and smooth profile, and therefore it can move.

logical defects (E,= 10440 kJ/mol). The binding energy of For convenience of numerical simulations of the defect mo-

=473 kJ/mol. =clvo=+M/K, is the time required for the sound to pass
The twisted topological defect can be formed by more®n€ chain bond. To obtain the profile of a moving soliton, we

than two chains. The only important point is that they mustUS€ the method of minimization of a discrete Lagrangdfan.
sequentially occupy each others positiditiseir projection 1he soliton profile{umnp,vmnp,Wmnpt can be found as a
onto thexy plane must form a continuous closed loop passMinimum of the discrete Lagrangian

ing through the sites of a 2D hexagonal lattice, correspond-

ing to equilibria of the chains The dependence of the defect L=E— ESZKP > [(Unnp+1— Umnp?

energyE on the number of chain, is represented in Table - (mn,p)ez®

I. The defect with the least enerdy= 3790 kJ/mol hasN, +(v — p)2+(w —w p)z] (19)
mn,p+ mn mn,p+ mn ’

=6, for which the molecular chains form an exact hexagon

in the projection onto they plane(Fig. 6). The distribution ~ where the potential energl of the system is defined by
of the energy and the displacements along one chain of thiexpression(10), and the dimensionless speed of a soliton is
defect are presented in Fig.(fhis chain is shown with bold s=uv/vy.

line in Fig. 6. Here all the displacement components have Upon using the dimensionless timethe set of equations

smooth profiles typical of a soliton. of motion takes the forms
K ur == 3dH/dUmno,
TABLE |. Dependence of the enerdy of a twisted topological prmnp mnp
defect on the number of chailg forming a defect. vagmp: — 9H1 30, (20)
Ne 2 3 4 5 6 prﬁmp:—aHléwmnp,
E (kJ/mo) 5220 4264 4512 5094 3790
(m,n,p) e A,
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twisted topological defectN.=6). g 0 ~— ‘
|

where the Hamiltoniaid of the system is given by Eq9). %

100
Then we solve the problem

L— min (21) 0
(mn,p)e A . . .
FIG. 8. Dynamics of a twisted topological defect with=6.

ats=0.5, using an initial configuration corresponding to theDistribution of energyE,,, (@), and displacements,,, (b) and
twisted topological soliton withN,=6. The solution vma, (c) along the chaim=M/2 andn=N/2 of the defect.
{Umnp:Umnp:Wmnpr Of this problem can be used as an initial

approximation for the system of equations of moti{@0): mobilities. Therefore, they can be thermally activated as
pairs of opposite polarity. These defects can be separated
Unnp(0) = —=S(Umnp+ 1~ Umnp), each from each other by large distances caused by lattice
dislocation loops, which are important for meltifgThus
vr’nnp(O): —S(Umnp+1~ Vmnp)s twisted topological solitons should play an important role in
premelting mechanisms for strongly anisotropic polymer
Win(0) == S(Wmppt 1~ Winnp), (22)  crystals.
Unnp(0)=Umnps  Umnp(0) =Vmnp, V. DISLOCATIONS IN POLYMER CRYSTAL
Winnp(0)=Wmnnp, (M,n,p)eA. The model used in the previous sections also allows a

consideration of dislocations in a polymer crystal. The edge
The defect dynamics is presented in Fig. 8. It is clearlydislocation associated with longitudinal deformations of mo-
seen that the defect moves along molecular chains of thiecular chains of the crystal was already investigafeahd
crystal as a solitary wave with a stationary spsed).276, therefore here we will focus only on a study of the disloca-
retaining its form. Thus, in the polymer crystal, in addition to tions associated with bending deformations of the molecular
well-defined longitudinal topological solitons, transverse to-chains.
pological solitons do exist. To find the stationary profile of a dislocation, we choose
Topological defects wittN.=6 have relatively low en- the finite rectangular fragment of the crystgh. (15)], with
ergy densities in their localization region, as well as highperiodic boundary conditions in all three indiamsn, andp.

054106-6
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FIG. 9. Shape of molecular chain deformations within the core
of the screw dislocation with the Burgers vechtor (a,0,0). Chains
nearest to the slip plane are shown by bold lines. s

The periodic boundary conditions do not allow us to obtain

one isolated dislocation, but we can find a dislocation quad-

rupole: four dislocations with the sum of the Burgers vectors

equal to 0. At sufficiently large distances between the dislo- o o

cation centers, they can be considered as separate disloca-FG- 10. Distribution of energf,, (a), relative displacements

tions. Unt+1p— Unp (b), and transverse displacements, (c) in the lattice
Let us first consider the screw dislocation with the Bur-With the screw dislocation. The Burgers vectoibis (a,0,0).

gers vectob=(a,0,0). In a crystal with such a dislocation,

all the chains with an identical index form identical defor- Unp=—atanfu(p—P/4=1/2)]/12, Unpipp==Unp,

mations(see Fig. 9. The dislocation line is parallel to the o

axis. Therefore, one can omit the indexeverywhere, hav-

ing put 1=n=N/4, 3N/4+1=n=<N, 1=sp=<P/2,

_ and
Umnnp=Uinp= Unp:
Unp=0, Wp,=0, for 1snsN, 1spsP.

oy —b 23
Umnp=01np™ Unp 3 In the rectangular fragment<ln<N/2,1<p</2P, we ob-

tain one screw dislocation.
Deformations of molecular chains in the dislocation core
are shown in Fig. 9. Distributions of the energy and the dis-
placements in the rectangular regiossfi<100,1<p=<100
are presented in Fig. 10. In this rectangular region of a crys-
tal of width a, the dislocation has the energ§
=76.3 kd/mol(all dislocations in a quadrupole have identi-
cal energy. It is evident from Fig. 1(a) that most of the
(24) dislocation energy is concentrated in the two layers where
the relative displacement of chains by one period alongthe

for axis takes place. The chains in these layers are shown by
bold lines in Fig. 9. Figure 1®) shows that in other layers

N/4A<n=3N/4, 1<sp=<P/2, the chains are practically not displaced with regard to each

Winnp=Winp=Wnp-

The stationary profile of a dislocation quadrupole was
found to be a solution of the minimization problef&q.
(16)] with M =1, N=200, andP =200, and with the initial
configurations

Unp=atant u(p—P/4—1/2)1/2, Uy pipp=—Unp,

054106-7



SAVIN, KHALACK, CHRISTIANSEN, AND ZOLOTARYUK PHYSICAL REVIEW B 65 054106

S
£
S~
2
2
12+ 3
3
8 e
R P 0.1 { -
N = / // Lo
44 5 0.05 %
0 :
§ -0.05 / //
= -0.1 ] o
100
0~ 50 p
0.8 00
x (nm) R € (€)
FIG. 11. Shape of molecular chain deformations within the core 064
of the screw dislocation with the Burgers vechsr (0,b,0). Chains & o4
nearest to the slip plane are shown by bold lines. B

- 02"

other. The width of the dislocation core is about 15 periods '

of a chain. The interchain interaction leads to slight displace- ;

ments along they axis in the dislocation core region, as g

illustrated by Fig. 1(c). As a result, the projections of chains

onto thexy plane have characteristic arc forms, as seen in

Fig. 9. FIG. 12. Distribution of energ¥Eny, (a), transverse displace-
Upon formation of the screw dislocation with the Burgers mentsu,,, (b), and relative displacements, ;1 15~ vmip (©) in the

vectorb=(0,b,0), all chains with odd and even indicesre  lattice with the screw dislocation. The Burgers vector ks

equally deformedFig. 11). Here the dislocation line is par- =(0b,0).

allel to they axis. Therefore, for finding a dislocation of this

type, it is sufficient to take the rectangular fragment of thelocation to be unstable concerning the dissociation into two

crystal A with N=2. Let us takeM =100 andP=200, and mixed dislocations with the Burgers vectors of the type

solve the minimization problerfiEq. (16)] with the initial ~ (a,0,0).

configuration of the fragment, appropriate to a dislocation ~ Let us now consider an edge dislocation with the Burgers

quadrupole. vector b=(0,0c) and with a line parallel to thex axis.
The shape of chain deformations in the core of one disloAgain, we exploit symmetry conditiof23), and solve mini

cation is shown in Fig. 11. Distributions of the energy andmization problem(16) with M=1, N=100, andP=400

the displacements in the rectangular regiosri<50 and  With the initial configuration

1=p=100, are presented in Fig. 12. As can be seen from

Fig. 12a), the energy is no longer localized near the slip Wn p=C{l+tantu(p—P/4-1/2)]}/2,
plane(the chains in these layers are shown with bold lines in w —w
Fig. 11). The width of the dislocation core is about Peig. n.pPl2ztp— TnPl2+1-p»

12(c)] periods of the chain. Along the axis, the distances for
between chains in the dislocation core are much laigey.

12(b)], and consequently the projections of chains onto the N/4<n<3N/4, 1sp<P/2,
xy plane have more pronounced arc shaffgg. 11). In the
rectangular region of the crystal,<In<50,1<n<2, and Wpp=0, (25

1=p=<100, the dislocation with the Burgers vectdr for
=(0b,0) has a considerably higher energyE
=775.3 kd/mol. This stipulates the possibility for such a dis- 1=n=<N/4, 3N/4+1<n<N, 1<p=<P/2,
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FIG. 13. Distribution of energ¥,, (a), displacements,, (b),
and relative displacements,, ,,—W,, (¢) in the lattice with the
edge dislocation. The Burgers vectomis (0,0¢), and the disloca-
tion line is parallel to the axis.

Upp=0, v,,=0, for Isn<N, 1sps<P.
For the rectangular fragmentin<N/2,1<p=<P/2, we ob-
tain one edge dislocation.
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The shape of the solution is shown in Fig. 13. For the
rectangular region of the crystal with=1, 1<n=<50, and
1=p=<100, the edge dislocation has the enerdy
=22.6 kd/mol. The energy distribution in a crystal is repre-
sented in Fig. 1&). The main energy of a dislocation is
concentrated in the layer with=N/4 that contains the dis-
location core. The width of the dislocation core appears to be
more than 50 chain bondg$-ig. 13c)]. The shape of dis-
placements in the transverse componens shown in Fig.
13(b).

The formation of edge dislocations with the Burgers vec-
tor parallel to thexy plane takes place without deformations
of the molecular chains. The chains are displaced as a whole,
and therefore, in the projection onto tkg plane, these dis-
locations correspond to dislocations of a 2D hexagonal
crystal.

VI. CONCLUSIONS

We have shown in the present paper that the polymer
crystal can contain local topological defects possessing soli-
ton dynamics. Along with the well-known longitudinal topo-
logical solitons, there exist twisted topological solitons, ex-
hibiting local violations of crystal topology associated with
bending deformations of molecular chains of the cryétal
terlacing of chains, substitution of chains, gt&ending de-
formations of the chains are also responsible for the exis-
tence of screw dislocations, with the Burgers vector
perpendicular to the direction of molecular chains of the
crystal. It is shown that screw dislocations have higher ener-
gies than edge dislocations, the existence of which is associ-
ated with longitudinal deformations of molecular chains in
the polymer crystal.
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