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We investigate the spatial quantum noise properties of the one-dimensional transverse pattern formation
instability in intracavity second-harmonic generation. TheQ representation of a quasi-probability distribution
is implemented in terms of nonlinear stochastic Langevin equations. We study these equations through exten-
sive numerical simulations and analytically in the linearized limit. Our study, made below and above the
threshold of pattern formation, is guided by a microscopic scheme of photon interaction underlying pattern
formation in second-harmonic generation. Close to the threshold for pattern formation, beams with opposite
direction of the off-axis critical wave numbers are shown to be highly correlated. This is observed for the
fundamental field, for the second-harmonic field, and also for the cross-correlation between the two fields.
Nonlinear correlations involving the homogeneous transverse wave number, which are not identified in a
linearized analysis, are also described. The intensity differences between opposite points of the far fields are
shown to exhibit sub-Poissonian statistics, revealing the quantum nature of the correlations. We observe twin
beam correlations in both the fundamental and second-harmonic fields, and also nonclassical correlations
between them.

DOI: 10.1103/PhysRevA.66.013809 PACS number~s!: 42.50.Dv, 42.50.Lc, 42.65.Sf

I. INTRODUCTION

Pattern formation has been an active area of research in
many diverse systems@1#. Numerous similarities to pattern
formation in other systems have been reported in recent stud-
ies in nonlinear optics@2–6#. However similar, nonlinear op-
tics also displays properties that are wholly unique due to the
relevance of quantum aspects in optical systems, one mani-
festation of this is the inevitable quantum fluctuations of
light. In the last decade an effort has been made to study the
interplay in the spatial domain between optical pattern for-
mation, known from classical nonlinear optics, and the quan-
tum fluctuations of light@7,8#. New nonclassical effects such
as quantum entanglement and squeezing in patterns were
predicted@8,9#. Another interesting example is the phenom-
enon of quantum images: below the instability threshold, in-
formation about the pattern is encoded in the way the quan-
tum fluctuations of the fields are spatially correlated@10#.

Nonlinearx (2) materials immersed in a cavity have shown
most promising quantum effects. A paradigm of spatiotem-
poral quantum behavior has been the optical parametric os-
cillator ~OPO!, which despite its striking simplicity is able to
display highly complex behavior@11–13#. In the degenerate
OPO, pump photons are down-converted to signal photons at
half the frequency and with a high degree of quantum corre-
lation. This might be attributed to the fact that the signal
photons are created simultaneously conserving energy and
momentum, leading to the notion of twin photons. In the
opposite process of second-harmonic generation~SHG! fun-
damental photons are up-converted to second-harmonic pho-
tons at the double frequency. On a classical level, both the
OPO and intracavity SHG display similar spatiotemporal be-
havior. The essential difference between them is that in the

OPO an oscillation threshold for the process exists, which
simultaneously acts as the threshold for pattern formation.
On the contrary, SHG always takes place no matter the
strength of the pump field, but there is a threshold that marks
the onset of pattern formation. This gives pronounced differ-
ences with the OPO in the linearized behavior below the
threshold for pattern formation. In the OPO the pump and the
signal fields effectively decouple and only the latter becomes
unstable at threshold. At a microscopic level, the behavior of
the OPO close to the threshold can be understood in terms of
a unique process in which a pump photon decays into two
signal photons with opposite wave numbers. In SHG the fun-
damental and second-harmonic fields are coupled and both
become unstable at threshold. This complicates the picture
mainly by the number of microscopic mechanisms that are
relevant to describe the pattern formation process. But this
complexity, on the other hand, is likely to generate interest-
ing correlations between the fundamental and the second-
harmonic field. Recently, transverse quantum properties in
the singly resonant SHG setup were investigated@14#. There,
squeezing in the fundamental output was observed close to
the critical wave number, but since the second-harmonic is
not resonated the question of possible correlations between
the two fields was not addressed. However, since the second
harmonic in the singly resonant case is given directly as a
function of the fundamental, correlations similar to the ones
observed in the fundamental should be expected. In this pa-
per we will consider the case of doubly resonant SHG with
the aim of investigating the spatial correlations not only
within each field ~fundamental field and second-harmonic
field!, but also between the two fields.

For this purpose we use the formalism of quasi-
probability distributions@15#. Choosing the use of theQ rep-
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resentation we are able to derive a set of nonlinear Langevin
equations that describes the time evolution of the quantum
fields in the SHG setup~Sec. II!. In Sec. III, the linear sta-
bility analysis of this system will be discussed and a proper
regime of parameters specified, for which the formalism
adopted here is applicable. Section IV will be devoted to an
analysis, on a microscopic level, of the implications of the
three-wave interactions in the nonlinear crystal. These con-
siderations allow one to identify the most important spatial
correlations expected in this two-field system and to define
suitable quantities to be calculated. In particular, we will
focus on equal time correlation functions of intensity fluc-
tuations and we will study photon number variances when
looking for nonclassical features of the intracavity fields. A
systematic study of the spatial correlations is presented first
through analytical results in the framework of a linearized
theory below the threshold for pattern formation~Sec. V!,
and also through extensive numerical simulations of the non-
linear Langevin equations reported below~Sec. VI! and
above~Sec. VII! the threshold for pattern formation. We con-
clude in Sec. VIII.

II. NONLINEAR QUANTUM MODEL
FOR INTRACAVITY SHG

We consider a nonlinearx (2) material with type I phase
matching immersed in a cavity with a high reflection input
mirror M1 and a fully reflecting mirrorM2 at the other end,
cf. Fig. 1. The cavity is pumped at the frequencyv1 and
through the nonlinear interaction in the crystal photons of
frequencyv252v1 are generated. This is the process of
SHG. The cavity supports a discrete number of longitudinal
modes, and we will consider the case where only two of
these modes are relevant, namely the modev1,cav closest to
the fundamental frequency andv2,cav closest to the second-
harmonic frequency. In the setup shown in Fig. 1v2,cav
52v1,cav, but we will allow the cavity resonances to be
independent in order to control the detunings individually.
The pump beam propagates along thez direction and using
the mean field approximation, variations in thez direction
are averaged out. This approach is justified as long as the
losses and detunings are small. Due to diffraction the trans-
verse section perpendicular to thez direction spanned by the
xy plane also comes into play. We consider the simple one-
dimensional~1D! case where only one of the transverse di-
rections is relevant, so variations along they direction are
neglected and only thex direction is taken into account. This
could be achieved experimentally by, e.g., using a slit aper-
ture between pump and crystal, as done in Ref.@16#, or use a
waveguide crystal confining the field in one direction. Let
Â1(x,t) andÂ2(x,t) denote the 1D intracavity boson opera-
tors @17# of the fundamental field~FH! and second-harmonic

field ~SH!, respectively. They obey the following equal time
commutation relation:

@Âi~x,t !,Âj
†~x8,t !#5d i j d~x2x8!, i , j 51,2. ~1!

The Hamiltonian operator describing SHG including diffrac-
tion can be written as done in Ref.@13# for the OPO,

Ĥ5Ĥ free1Ĥ int1Ĥext, ~2!

where the free Hamiltonian is given by

Ĥ free5\E dxÂ1
†~x,t !S 2d12

c2

2v1

]2

]x2D Â1~x,t !

1\E dxÂ2
†~x,t !S 2d22

c2

4v1

]2

]x2D Â2~x,t !. ~3!

Hered j5v j2v j ,cav are the detunings from the nearest cav-
ity resonances,]2/]x2 describes the diffraction, andc is the
speed of light. The interaction Hamiltonian describes the
nonlinear interaction in the material

Ĥ int5
i\g

2 E dx~Â2~x,t !@Â1
†~x,t !#22H.c.!, ~4!

whereg is the nonlinear coupling parameter proportional to
thex (2) nonlinearity of the crystal. The external Hamiltonian
describes the effects of the pump injected into the cavity at
the fundamental frequency, which is taken to be a classical
quantityEin , so we have

Ĥext5 i\E dx~EinÂ1
†~x,t !2Ein* Â1~x,t !!. ~5!

Then the master equation for the density matrixr̂ in the
interaction picture is given by

]r̂

]t
52

i

\
@Ĥ,r̂ #1~ L̂11L̂2!r̂. ~6!

The cavity losses are assumed to occur only through the
input coupling mirror to the external continuum of modes,
and are here included through the Liouvillian terms

L̂ j r̂5E dxg j~2Âj~x,t !r̂Âj
†~x,t !2 r̂Âj

†~x,t !Âj

2Âj
†~x,t !Âj~x,t !r̂ !, ~7!

whereg j are the cavity loss rates. Here we have assumed
that thermal fluctuations in the system can be neglected.

Using the standard approach of expanding the density ma-
trix into coherent states weighted by a quasi-probability dis-
tribution function, the master equation~6! is mapped onto a
functional equation, depending on the order for creation and
destruction operators@18,19#. For a Hamiltonian that is qua-
dratic in the field operators this results in a Fokker-Planck
equation, implying that the dynamical evolution of the dis-
tribution function may be modeled by an equivalent set of

FIG. 1. The model setup in a top view.
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classical stochastic Langevin equations. However, due to the
contributions of higher order to the Hamiltonian~4! prob-
lems may arise. When using the Wigner representation the
evolution equation of the quasi-probability functional con-
tains third order derivatives so it is no longer on a Fokker-
Planck form, and this means that no equivalent Langevin
equations can be found. These third order terms, which have
been shown to model quantum jump processes@20#, are gen-
erally neglected and the resulting Fokker-Planck equation
turns out to be a good approximation to the original problem.
When using theP or Q representations problems of negative
diffusion in the Fokker-Planck equation come into play@15#.
To avoid negative diffusion in theP representation, some
techniques have been developed where the phase space is
doubled@21#, but then numerical problems due to divergent
stochastic trajectories generally appear@22,23#. We choose
here to use theQ representation which in a restricted domain
of parameters has a non-negative diffusion matrix and has
been shown to be a useful alternative in the similar problem
of calculating nonlinear quantum correlations in the OPO
@24#. The Q representation has no singularity problems, is
bounded, and always non-negative.

Introducinga i anda i* as thec-number equivalents of the

intracavity boson operatorsÂi and Âi
† , the evolution equa-

tion for the quasi-probability distribution functionQ(a) is

]Q~a!

]t
5S ]

]a1
F ~g12 id1!a12ga1* a22 i

c2

2v1

]2

]x2
2EinG

1
]

]a2
F ~g22 id2!a21

g

2
a1

22 i
c2

4v1

]2

]x2G
2

g

2
a2

]2

]a1
2

1g1

]2

]a1]a1*
1g2

]2

]a2]a2*

1c.c.D Q~a!, ~8!

with a5$a1 ,a1* ,a2 ,a2* %. This is just an extension to the
diffractive case of the result obtained by Savage@25#. Equa-
tion ~8! has the form of a Fokker-Planck equation, and it has
positive diffusion if

ua2u,2
g1

g
. ~9!

As shown below, it is possible to fix the parameters of the
system in such a way that the stable solution for the SH field
is well below the value 2g1 /g. Fluctuations around this
stable solution are small, so that the probability violating the
condition ~9! is almost zero. Neglecting then stochastic tra-
jectories violating this condition, we may write a set of
equivalent Langevin stochastic equations by applying the Ito
formalism for the stochastic integration@26#. We then obtain
the following nonlinear Langevin equations

] ta1~x,t !5~2g11 id1!a1~x,t !1ga1* ~x,t !a2~x,t !

1 i
c2

2v1

]2

]x2
a1~x,t !1Ein1A2g1j1~x,t !,

~10a!

] ta2~x,t !5~2g21 id2!a2~x,t !2
g

2
a1

2~x,t !

1 i
c2

4v1

]2

]x2
a2~x,t !1A2g2j2~x,t !,

~10b!

with multiplicative Gaussian white noise sources correlated
as follows

^j i* ~x,t !j j~x8,t8!&5d i j d~x2x8!d~ t2t8!, ~11a!

^j2~x,t !j2~x8,t8!&50, ~11b!

^j1~x,t !j1~x8,t8!&52
ga2~x,t !

2g1
d~x2x8!d~ t2t8!.

~11c!

We rescale space and time according to

t̃ 5tg1 , x̃5x/ l d , ~12!

wherel d is the characteristic length scale given by

l d
25

c2

2g1v1
. ~13!

We also normalize the fields and noise according to

Aj~x,t !5a j~x,t !
g

g1
, j̃ j~x,t !5j j~x,t !A l d

g1
,

E5Ein

g

g1
2

. ~14!

This allows us to rewrite the Langevin equations in dimen-
sionless form:

] t̃A1~ x̃, t̃ !5~211 iD1!A1~ x̃, t̃ !1A1* ~ x̃, t̃ !A2~ x̃, t̃ !

1 i
]2

] x̃2
A1~ x̃, t̃ !1E1A 2

nth
j̃1~ x̃, t̃ !, ~15a!

] t̃A2~ x̃, t̃ !5~2g1 iD2!A2~ x̃, t̃ !2
1

2
A1

2~ x̃, t̃ !

1
i

2

]2

] x̃2
A2~ x̃, t̃ !1A2g

nth
j̃2~ x̃, t̃ !, ~15b!

whereg5g2 /g1 and D j5d j /g1, andE may be taken real.
Moreover we have introduced
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nth5
g1

2l d

g2
, ~16!

which in the OPO coincides with the number of photons in
the characteristic ‘‘area’’l d required to trigger the oscillation.
The noise strength is seen to scale likenth

21/2. The normal-
ized noise sources are correlated by

^j̃ i* ~ x̃, t̃ !j̃ j~ x̃8, t̃ 8!&5d i j d~ x̃2 x̃8!d~ t̃ 2 t̃ 8!, ~17a!

^j̃2~ x̃, t̃ !j̃2~ x̃8, t̃ 8!&50, ~17b!

^j̃1~ x̃, t̃ !j̃1~ x̃8, t̃ 8!&52
A2~ x̃, t̃ !

2
d~ x̃2 x̃8!d~ t̃ 2 t̃ 8!.

~17c!

These noise sources turn out only to be defined for

uA2~ x̃, t̃ !u,2, ~18!

which coincides with the condition~9! for a positive diffu-
sion expressed in terms of the rescaled fields.

In the following the tildes are dropped, and only normal-
ized dimensionless equations are considered. We will also
use the terminologyv[v1 and 2v[v2.

III. LINEARIZED EQUATIONS
AND BIFURCATION DIAGRAM

In this section we consider the linearization of the nonlin-
ear Langevin equations in theQ representation around the
homogeneous steady state solutions below the threshold for
pattern formation. This approach relies on the assumption
that the fluctuations are small with respect to the field mean
values, and therefore we expect this approach to break down
close to the instability threshold. We will come back later
~Sec. VI B! to the question of the validity of the linear ap-
proximation. We write the fields asAj (x,t)5Aj1b j (x,t),
where b j (x,t) represent the fluctuations aroundAj . The
classical homogeneous valuesAj of the fields are given by
the homogeneous steady state solutions of the deterministic
limit ( nth→`) of Eqs.~15!, as found in Ref.@6#. Using this
in Eqs.~15! we find the following set of linearized equations

] tb1~x,t !5~211 iD1!b1~x,t !1A2b1* ~x,t !1A1* b2~x,t !

1 i
]2

]x2
b1~x,t !1A 2

nth
j1~x,t !, ~19a!

] tb2~x,t !5~2g1 iD2!b2~x,t !2A1b1~x,t !

1
i

2

]2

]x2
b2~x,t !1A2g

nth
j2~x,t !. ~19b!

The correlations of the stochastic sourcesj i(x,t) in the lin-
earized limit become

^j i* ~x,t !j j~x8,t8!&5d i j d~x2x8!d~ t2t8!, ~20a!

^j1~x,t !j1~x8,t8!&52
A2

2
d~x2x8!d~ t2t8!, ~20b!

^j2~x,t !j2~x8,t8!&50. ~20c!

With A2 being merely a constant, the noise in the linear
approximation is not multiplicative any more. However, as in
the nonlinear equations we have the restriction

uA2u,2. ~21!

We would like to mention that the Wigner representation, in
the linear regime, would lead to equivalent results without
suffering from any limitation since it satisfies a Fokker-
Planck equation for any value ofuA2u. However, for the sake
of a consistent presentation of our results we have chosen to
consider theQ representation also in the linear case.

It is instructive to introduce the spatial Fourier transform
of the fluctuations

b j~k,t !5E
2`

` dx

A2p
b j~x,t !eikx. ~22!

In the following we use the term far field for these intracav-
ity Fourier modes, a term normally referring to the Fourier
modes of the fields outside the cavity. Considering Eqs.~19!
and their complex conjugates, it is readily shown that these
amplitudesb j (k,t) fulfill a set of equations which can be
written in the following matrix form:

] tS b1~k,t !

b1* ~2k,t !

b2~k,t !

b2* ~2k,t !

D 5M ~k!S b1~k,t !

b1* ~2k,t !

b2~k,t !

b2* ~2k,t !

D
1A 2

nthS h1~k,t !

h1* ~2k,t !

Agh2~k,t !

Agh2* ~2k,t !

D , ~23a!

M ~k!5S s1~k! A2 A1* 0

A2* s1* ~k! 0 A1

2A1 0 s2~k! 0

0 2A1* 0 s2* ~k!
D , ~23b!

where s1(k)5211 i (D12k2) and s2(k)52g1 i (D2
2k2/2) have been introduced and each noise termh j (k,t) is
the Fourier transform of the noise term appearing in the real
space linearized Langevin equations~19!. Their correlations
are given by

^h i* ~k,t !h j~k8,t8!&5d i j d~k2k8!d~ t2t8!, ~24a!

^h1~k,t !h1~k8,t8!&52
A2

2
d~k1k8!d~ t2t8!, ~24b!
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^h2~k,t !h2~k8,t8!&50. ~24c!

The linear stability of the classical equations obtained as
the nth→` limit of Eqs. ~19! was investigated by Etrich
et al. @6#. A rich variety of instabilities was shown to exist: A
self-pulsing instability, that leads to oscillations of the homo-
geneous steady states without any transverse structure, was
present for all parameters. The oscillatory transverse instabil-
ity leading to patterns traveling in space and time was only
present for certain parameters and branched out from the
self-pulsing instability. Bistability was demonstrated for
large detunings of same sign and forg small. Most impor-
tantly, for all parameters also stationary transverse instabili-
ties were found to exist, i.e., instabilities at a critical trans-
verse wave numberk5kc and with zero imaginary
eigenvalue. It was shown that stripe-type solutions exist but
are always unstable, and numerical simulations showed that
instead hexagons are the dominating stationary transverse
instability. The 1D configuration we have chosen to consider
here has the advantage that the pattern will always be a stripe
and therefore leads to simpler interpretation of the correla-
tions. We will choose a range of parameters in which the
stationary transverse instability is accessible as the primary
bifurcation. This bifurcation is supercritical in the 1D model.

The choice of parameters must take into account the re-
quirement of applicability of theQ representation. One finds
that Eq.~21! can only be satisfied forD1.0 @27#. Using the
expressions presented in Ref.@6# and fixing D152.0 andg
50.5 we obtain the bifurcation diagram shown in Fig. 2@28#.
We observe that forD2,0 it is possible to obtain stationary
patterns~solid line! as the primary bifurcation at a critical
value of the pump,Et ; increasing the pump beyondEt even-
tually the system will also become self-pulsing unstable~dot-
ted line!. For D2.0 the transverse oscillatory bifurcation
~dashed line! is the primary one, and therefore traveling
waves are observed in this region. The bistable area is lo-
cated forD2.8.3 and hence beyond the range shown here.

Expressing the onset of transverse instability, seen in Fig.
2, in terms of the intracavity value of the SH we have the
bifurcation diagram for the transverse instability shown in
Fig. 3. We see that forD2,0 we are well below the limit for

positive diffusion@Eq. ~21!#. Therefore the probability of tra-
jectories violating the condition~18! of the nonlinear equa-
tions is almost zero@29#. For D2.0, increasingg or de-
creasingD1 towards zero, this threshold gets closer touA2u
52.

We will therefore use the parametersD152.0, D25
22.0, andg50.5 in the rest of this paper, which gives a
pattern formation threshold ofEt57.481 757 and a critical
wave numberkc51.833. The noise strength is set tonth
5108 which is a typical value for the cavity setup discussed
here@30#.

The main task of the following section is to identify the
most important correlations we expect to find in the system.
For this purpose it is useful to have a good knowledge of the
spatial structures that emerge in the system.

Numerical simulations@31# of the nonlinear Eqs.~15!
confirmed the instability at a finite transverse wave number
k5kc predicted by the linear stability analysis. Above the
threshold for pattern formation modulations were observed
around the steady state with wavelengths corresponding to
kc . This is shown in Fig. 4 where the far field intensity
shows distinct peaks atk50, corresponding to the homoge-
neous background, and atk56kc corresponding to the
modulations observed in the near field, as well as higher
harmonics.

FIG. 2. Stability diagram forD152.0 and g50.5, showing
transverse stationary instability~solid line!, transverse oscillatory
instability ~dashed line!, and self-pulsing instability~dotted line!.

FIG. 3. Transverse instability forD152.0 andg50.5 shown for
the intracavity second-harmonic field, along with the limit for theQ
representation,uA2u,2.

FIG. 4. Numerical simulation of the Langevin equations above
threshold withE/Et51.01 andL5102.84. Left: The absolute value
of the near field of the FH~above! and SH~below!. Right: Far field
average intensity of FH,̂uA1(k)u2&. The far field of the SH shows
a similar structure.
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Below threshold the quantum noise will excite the least
damped modes and precursors of the spatial pattern are ob-
served. This is shown in Fig. 5 where a space-time plot is
presented for the FH near and far field. Clearly a stripe-type
pattern is formed, but as time progresses the noise diffuses
the pattern@10,32# so that averaging over time will wash out
this emerging structure and a spatially homogeneous near
field will remain. On the contrary, as we will show, the spa-
tial correlation functions do encode precise information
about the emerging pattern, even after this time averaging
has been carried out, as illustrated through the concept of
quantum images@10#.

IV. CORRELATIONS, PHOTON INTERACTION, AND
PATTERN FORMATION

Our general objective is the investigation of the spatial
intracavity field correlations emerging in this system as a
result of the coupling of FH and SH fields through the non-
linearity of the crystal, and the implications of the spatial
instability on these correlations. This study has a two-fold
purpose: First, to obtain a precise picture on how pattern
formation occurs in cavity SHG. In particular, we will aim at
identifying the relevant mechanisms, in terms of elementary
three-wave processes that are important for the understand-
ing of the intracavity field dynamics. Second, it will be in-
teresting to investigate whether these correlations are the
manifestation of nonclassical states of the fields. Such states
are identified by investigating the statistics of the intracavity
intensities, looking in particular for possible sub-Poissonian
features@33#.

A. Photon interaction

We will start by investigating the equal time correlations
between intensity fluctuations at different points in the far
field. The intensity of each field being directly proportional
to the number of photons in the corresponding mode, we can
relate the intensity fluctuations to the creation or destruction
of photons. The idea is that the way these fluctuations are
correlated gives information about the microscopic mecha-
nisms that take place in the cavity and, ultimately, that are
involved in the pattern formation process. Generally speak-
ing, a positive correlation tells us that there should exist a

coherent mechanism that creates simultaneously the corre-
sponding photons. The following normalized correlations are
considered:

Ci j
n ~k,k8!5

^dN̂i~k,t !dN̂j~k8,t !&

A^dN̂i~k,t !2&^dN̂j~k8,t !2&
, ~25!

where the superscriptn denotes normalization. The intensity
fluctuations are given bydN̂j (k,t)5N̂j (k,t)2^N̂j (k,t)&,
which involves the photon number operatorN̂j (k,t)
5Âj

†(k,t)Âj (k,t). The normalization of the correlations im-
plies thatCi j

n (k,k8)51 for perfectly correlated fluctuations,
whereasCi j

n (k,k8)521 will be the signature of perfect an-
ticorrelation between the intensity fluctuations. As usual, the
absence of any correlation will translate into a vanishing cor-
relation functionCi j

n (k,k8)50. In the following we will refer
to C11

n (k,k8) andC22
n (k,k8) as self-correlations~between dif-

ferent modes of a given field! and to C12
n (k,k8) as cross-

correlations~between modes in different fields!.
As a guideline for the investigation of the properties of

these correlation functions, the first step consists of identify-
ing the basic photon processes when the system is taken
close to a transverse instability. These photon processes must
obey the standard energy and momentum conservation laws.
Whereas the former merely implies that each elementary pro-
cess must connect one SH photon with two FH photons, the
latter will translate into a condition on the transverse wave
numbers. Keeping in mind that the cavity is pumped with a
homogeneous field at the frequencyv, the first process to
consider consists of two homogeneous FH photons,@v#(k
50)[@v#(0), combining to give one homogeneous SH
photon, @2v#(0), which will be written as@v#(0)1@v#
3(0)→@2v#(0). This is encoded in the Hamiltonian term
Â1

2Â2
† in Eq. ~4!. The inverse process, which corresponds to

the degenerate OPO process, also takes place in the system,
as shown by the presence of the term (Â1

†)2Â2 in Eq. ~4!.
Elaborating on these considerations we propose the scheme
in Fig. 6 as the simplest way of obtaining a pattern in both
fields.

~1! The first step is the basic SHG channel where two
homogeneous FH photons give a SH photon and vice versa,
i.e., the channel@v#(0)1@v#(0)↔@2v#(0). It is important
to realize that fluctuations around the steady state are consid-
ered, hence it is not considered how the FH photons combine
to give the steady state SH photons via the channel above,
but rather how the fluctuations invoke the channel beyond
this.

~2! The second step is the down-conversion of a SH pho-
ton into two FH photons. Momentum conservation in the
process implies that the two FH photons have the same value
of the transverse wave number but with opposite signs.
These are called twin photons since an emission of a@v#
(1k8) photon must be accompanied by an emission of a
@v#(2k8) photon, and they therefore show a high degree of
correlation. This channel written as@2v#(0)↔@v#(2k8)
1@v#(1k8) generates off-axis FH photons.

FIG. 5. Numerical simulation withE/Et50.9999 and L
5103.057, showing the space-time evolution ofuA1u in the near
field ~left! and far field~right!. A similar behavior is seen for the
SH.
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~3! Off-axis SH photons are obtained by combining the
created off-axis FH photon from step~2! with a photon from
the homogeneous background to give a SH photon, which by
momentum conservation must have the same wave number
as the off-axis FH photon. This channel can be written as
@v#(0)1@v#(1k8)↔@2v#(1k8).

Of course, these are not the only three-wave processes
which are kinematically allowed in the nonlinear crystal,
since the interaction Hamiltonian~4! induces any process of
the form @v#(k8)1@v#(k9)↔@2v#(k81k9), with arbitrary
wave numbersk8 andk9. In fact, the basic scheme we pro-
pose in Fig. 6 only takes into account those three-wave pro-
cesses which involve at least one photon of the homogeneous
background fields. Empirically, this choice is motivated by
the observation that below the threshold these are the only
field modes that are macroscopically populated, so that any
process involving them should be stimulated in analogy to
what occurs in standard stimulated emission. Formally, the
selection of these particular elementary processes corre-
sponds precisely to the approximation made by linearizing
the field equations around the steady state solution. As can
easily be checked, the full equations for the far field fluctua-
tions contain additional terms quadratic in the fluctuation
amplitudes, which indeed account for other three-wave pro-
cesses. Linearizing we are left with Eq.~23a!, which only
takes into account the processes represented by steps~2! and
~3!. These processes translate into nondiagonal elements of
the matrixM (k) of the linear system, and as a consequence,
for any value ofk, the time evolution of the four amplitudes
b1(k,t), b1(2k,t), b2(k,t), andb2(2k,t) will be coupled.
This coupling is expected to translate into correlations be-
tween the intensity fluctuationsdI 1(k), dI 1(2k), dI 2(k)
anddI 2(2k).

This preliminary observation already allows us to give a
more explicit interpretation of the basic scheme of Fig. 6.
Splitting the dynamics of the intracavity fields into indepen-
dent elementary steps, as suggested in the discussion of

Fig. 6, would not explain any correlations either between
@v#(k8) and @2v#(2k8) nor between@2v#(k8) and @2v#
3(2k8). Hence the inspection of the linearized equations
shows that the interpretation of Fig. 6 in terms of a cascade is
too naive. Instead, we have to understand steps~2! and~3! as
two coherent, joint processes, which generate simultaneously
correlations between the four modes@v#(k8), @v#(2k8),
@2v#(k8), and@2v#(2k8). Finally, it is important to stress
that the linearized analysis does not predict any correlation
between intensity fluctuations in field modes with wave
numbers of different modulus. Mathematically, this is due to
the fact that in the linear approximation all correlation func-
tions ~25! have the structure

Ci j ~k,k8!5Ci j
(2)~k!d2~k2k8!1Ci j

(1)~k!d2~k1k8!,
~26!

as will be shown in the next section. Close enough to thresh-
old, however, this will not be true any more because of the
emergence of additional correlations of nonlinear nature.

Let us finally briefly address the fundamental difference
between OPO and SHG: Whereas in SHG, the two fieldsA1
andA2 are always nonzero regardless of the pump level, in
the OPO case below the oscillation thresholdA2 is fixed by
the pump andA150. Considering the scheme presented in
Fig. 6, the vanishing ofA1 implies that there is no macro-
scopic population of the mode@v#(0) and therefore step~3!
of Fig. 6 is not present. The route to pattern formation simply
consists of step~2! in Fig. 6, generating correlations between
dN̂1(k,t) anddN̂1(2k,t). Mathematically, the consequence
for the stability of the homogeneous solution is that the two
equations~19! effectively decouple and that only the FH be-
comes unstable at the threshold.

B. Correlations below shot noise

Once correlations between intensity fluctuations are iden-
tified, it is interesting to investigate if they are connected to
nonclassical states of the intracavity fields. A coherent field
obeys Poissonian photon statistics, which implies that the
variance and the mean of the photon number operatorN̂ are
equal. Let us consider the photon number operators associ-
ated with the sum and difference of the intensities at different
far-field points N̂i(k)6N̂j (k8), where N̂i(k)5âi

†(k)âi(k)

and N̂j (k)5â j
†(k)â j (k) are the number operators of two

statesâi(k,t) andâ j (k,t). Since we will consider equal time
correlation functions in the steady state of the system, from
now on we will drop the time argument of the field operators.
Taking out the special casei 5 j and k85k which will be
treated separately, the variance expressed in normal order
~indicated by dots! reads

Var@N̂i~k!6N̂j~k8!#5:Var@N̂i~k!6N̂j~k8!#:

1^:N̂i~k!:&@ âi~k!,âi
†~k!#

1^:N̂j~k8!:&@ â j~k8!,â j
†~k8!#,

~27!

FIG. 6. The basic picture of pattern formation on a microscopic
level through SHG. The single arrows (→) symbolize FH photons,
while double arrows (⇒) symbolize SH photons. The dashed ar-
rows are photons from the homogeneous background.
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where Var(X)[^X2&2^X&2. For a coherent state, the normal
ordered variance vanishes, and the mean, given by the last
two terms in Eq.~27!, represents the shot noise level for the
considered quantity

CSN5^:N̂i~k!:&@ âi~k!,âi
†~k!#1^:N̂j~k8!:&@ â j~k8!,â j

†~k8!#.
~28!

If the normal ordered variance becomes negative

:Var~N̂i6N̂j !:,0, ~29!

the variance becomes less than the mean, indicating sub-
Poissonian behavior. Such a nonclassical state is identified
when the correlation normalized to the shot-noise level, de-
fined as

Ci j
(6)~k,k8![

:Var@N̂i~k!6N̂j~k8!#:

^:N̂i~k!:&@ âi~k!,âi
†~k!#1^:N̂j~k8!:&@ â j~k8!,â j

†~k8!#
11, ~30!

is such thatCi j
(6)(k,k8),1. The computation of this quantity requires one to write the normal ordered quantities appearing in

Eq. ~30! in terms of antinormal ordered quantities, since these are the quantities that are computed as averages in our Langevin
equations associated with theQ representation. Using the identities

AN̂i~k!A5âi~k!âi
†~k!5:N̂i~k!:1@ âi~k!,âi

†~k!#, ~31a!

AN̂i
2~k!A5âi~k!âi~k!âi

†~k!âi
†~k!

5:N̂i~k!2:14:N̂i~k!:@ âi~k!,âi
†~k!#

12@ âi~k!,âi
†~k!#2, ~31b!

with three dots indicating antinormal ordering, Eq.~30! reads, when expressed in terms of antinormal ordered quantities,

Ci j
(6)~k,k8!5

AVar@N̂i~k!6N̂j~k8!#A2^AN̂i~k!A&@ âi~k!,âi
†~k!#2^AN̂j~k8!A&@ â j~k8!,â j

†~k8!#

^AN̂i~k!A&@ âi~k!,âi
†~k!#1^AN̂j~k8!A&@ â j~k8!,â j

†~k8!#2@ âi~k!,âi
†~k!#22@ â j~k8!,â j

†~k8!#2
. ~32!

Then, e.g., the normalized correlation Var@N̂1(k)6N̂1
(2k)#/CSN may be found by settingi 5 j 51 andk852k.
Equation~32! is valid for k,k8Þ0, while the special casek
50 will be addressed in the specific cases.

V. LINEARIZED CALCULATIONS BELOW THRESHOLD

Below threshold, the linear approximation scheme allows
one to derive semianalytical expressions for the correlation
functions defined in the previous section. These may be ex-
pressed in terms of the auxiliary correlation function

Ci j
Q~k,k8!5^AdN̂i~k,t !dN̂j~k8,t !A&, i , j 51,2

5^uAi~k,t !u2uAj~k8,t !u2&

2^uAi~k,t !u2&^uAj~k8,t !u2&, ~33!

where the superscriptQ indicates that the average is done
with the Q representation, corresponding to antinormal or-
dered quantities, as indicated in the first line of Eq.~33!.

The starting point of our analysis is the set of linearized
Langevin equations~23a! which have the exact solutions

S b1~k,t !

b1* ~2k,t !

b2~k,t !

b2* ~2k,t !

D 5eM (k)tS b1~k,0!

b1* ~2k,0!

b2~k,0!

b2* ~2k,0!

D 1A 2

nth
eM (k)t

3E
0

t

dt8e2M (k)t8S h1~k,t8!

h1* ~2k,t8!

Agh2~k,t8!

Agh2* ~2k,t8!

D .

~34!

The first term in Eq.~34! describes how the intracavity fields
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with arbitrary initial conditions relax to the steady state so-
lution and it does not contribute to the steady state correla-
tions. The second term in Eq.~34! gives the response of the
intracavity fields to the vacuum fluctuations entering the cav-
ity through the partially transparent input mirror. Starting
from Eq. ~34!, it is possible to derive semianalytical expres-
sions for the correlations~33!

Ci j
Q~k,k8!5^ub i~k,t !u2ub j~k8,t !u2&

2^ub i~k,t !u2&^ub j~k8,t !u2&

12Re$Ai* Aj^b i~k,t !b j* ~k8,t !&

1Ai* Aj* ^b i~k,t !b j~k8,t !&%d~k!d~k8!, ~35!

where Re$•% denotes the real part. Whereas the first two
terms in the right-hand side~rhs! of Eq. ~35! measure the
correlations in the intensities of the fluctuations, the last two
terms can be traced back to interferences between the fluc-
tuations and the homogeneous component of each field.
Since these interferences only contribute to the equal time
correlations whenk5k850, we will first concentrate on
k,k8Þ0 and come back later to this special case. Henceforth,
unless otherwise specified we consider the casek,k8Þ0.

The Gaussian character of the fluctuations in this linear-
ized Langevin model allows us to factorize Eq.~35! in terms
of second order moments of the field fluctuations

Ci j
Q~k,k8!5u^b i~k,t !b j* ~k8,t !&u21u^b i~k,t !b j~k8,t !&u2.

~36!

The field correlations ^b i(k,t)b j* (k8,t)& and
^b i(k,t)b j (k8,t)& can be best evaluated for the solution Eq.
~34! if we introduce the set of eigenvectors$v( l )(k)% l 51, . . . ,4
of the matrixM (k), defined through

M ~k!v( l )~k!5l ( l )~k!v( l )~k!. ~37!

An arbitrary four-component vectorw can be decomposed
on this basis

w~k!5S w1~k!

w2~k!

w3~k!

w4~k!

D 5(
l 51

4

w( l )~k!v( l )~k!, ~38!

and its componentsw( l ) in the new basis are calculated via
the linear transformation

w( l )~k!5 (
m51

4

Tlm~k!wm~k!. ~39!

This involves a 434 matrix Tlm(k) calculated asT(k)
5V(k)21 with Vlm(k)5v l

(m)(k). Decomposing now the
noise vector appearing on the rhs of Eq.~34! on this basis

S h1~k,t8!

h1* ~2k,t8!

Agh2~k,t8!

Agh2* ~2k,t8!

D 5(
l 51

4

h ( l )~k,t8!v( l )~k!, ~40!

allows us to rewrite Eq.~34! in the large time limit as

S b1~k,t !

b1* ~2k,t !

b2~k,t !

b2* ~2k,t !

D 5A 2

nth
E

0

t

dt8

3(
l 51

4

el( l )(k)(t2t8)h ( l )~k,t8!v( l )~k!.

~41!

The needed field correlations are given as

^b i~k,t !b j* ~k8,t !&

5
2

nth
E

0

t

dt8E
0

t

dt9 (
l ,m51

4

v2i 21
( l ) ~k!v2 j 21

(m) * ~k8!

3el( l )(k)(t2t8)el(m)* (k8)(t2t9)^h ( l )~k,t8!h (m)* ~k8,t9!&,

~42a!

^b i~k,t !b j~k8,t !&

5
2

nth
E

0

t

dt8E
0

t

dt9 (
l ,m51

4

v2i 21
( l ) ~k!v2 j 21

(m) ~k8!

3el( l )(k)(t2t8)el(m)(k8)(t2t9)^h ( l )~k,t8!h (m)~k8,t9!&.

~42b!

The noise correlations in the new basis
^h ( l )(k,t8)h (m)* (k8,t9)& and ^h ( l )(k,t8)h (m)(k8,t9)& are

^h ( l )~k,t8!h (m)* ~k8,t9!&5Alm~k!d~k2k8!d~ t82t9!,
~43a!

^h ( l )~k,t8!h (m)~k8,t9!&5Blm~k!d~k1k8!d~ t82t9!,
~43b!

where the matrix elements of the 434 matricesA(k) and
B(k) can easily be evaluated in terms of the matrix elements
Tlm[Tlm(k) as

Alm~k!5Tl1Tm1* 2
A2

2
Tl1Tm2* 1Tl2Tm2* 2

A2*

2
Tl2Tm1*

1gTl3Tm3* 1gTl4Tm4* , ~44a!

Blm~k!5Tl1Tm22
A2

2
Tl1Tm11Tl2Tm12

A2*

2
Tl2Tm2

1gTl3Tm41gTl4Tm3 . ~44b!
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Inserting Eqs.~43! in Eqs. ~42! we can easily carry out the
time integration, and neglecting transient contributions, we
end up with the following expressions

lim
t→`

^b i~k,t !b j* ~k8,t !&5
2

nth
Gi j

(2)~k!d~k2k8!, ~45a!

lim
t→`

^b i~k,t !b j~k8,t !&5
2

nth
Gi j

(1)~k!d~k1k8!, ~45b!

with

Gi j
(2)~k!5(

l 51

4

(
m51

4

Alm~k!
v2i 21

( l ) ~k!v2 j 21
(m) * ~k!

2@l ( l )~k!1l (m)* ~k!#
,

~46a!

Gi j
(1)~k!5(

l 51

4

(
m51

4

Blm~k!
v2i 21

( l ) ~k!v2 j 21
(m) ~k!

2@l ( l )~k!1l (m)~k!#
.

~46b!

In terms ofGi j
(2)(k) andGi j

(1)(k), Eq. ~36! is given by

Ci j
Q~k,k8!5

4

nth
2 @ uGi j

(2)~k!u2d2~k2k8!

1uGi j
(1)~k!u2d2~k1k8!#. ~47!

A. Intensity fluctuation correlations

It is now easy to compute the normalized correlation
function Eq.~25!. This involves taking into account the com-
mutation relation Eq.~1! which reads

@Âi~k,t !,Âj
†~k8,t !#5d i j

1

nth
d~k2k8!, ~48!

after rescaling space and time according to Eq.~12! and the
operators similar to thec-number fields in Eq.~14!. We fi-
nally find

Ci j
n ~k,k8!5

uGi j
(2)~k!u2

Ah i~k!Ah j~k!

d~k2k8!2

d~0!2

1
uGi j

(1)~k!u2

Ah i~k!Ah j~k!

d~k1k8!2

d~0!2
, ~49!

with h j (k)5Gj j
(2)(k)@Gj j

(2)(k)21/2#, the21/2 in the paren-
thesis reflecting the conversion from antinormal to direct or-
dering. Unlike the mathematical expression~49! derived for
an ideally infinite system, the correlation functions deter-
mined from the simulations will have peaks of a finite width,
which will be determined by the discretization ink space
used in the numerical codes, i.e., the inverse of the total
length of the system. This difference, however, will not alter

the only relevant information, which is the height of each of
these peaks. In fact, the quantities

Cj j
n ~k,2k!5

uGj j
(1)~k!u2

h j~k!
, ~50a!

C12
n ~k,6k!5

uG12
(7)~k!u2

Ah1~k!Ah2~k!
, ~50b!

characterize the strength of the correlations between the
modes @v#(k) and @v#(2k), @2v#(k) and @2v#(2k),
@v#(k) and @2v#(k), and @v#(k) and @2v#(2k), respec-
tively. One easily checks thatCii

n (k,k)51, as a result of an
autocorrelation.

All the expressions derived so far are only valid for non-
vanishing transverse wave numbers. Atk5k850, we al-
ready observed that there are extra contributions to the equal
time correlation function, as expressed by Eq.~35!. Further-
more, in the framework of an expansion in the small param-
eterA2/nth, it is obvious that these extra terms even domi-
nate, since they scale withub i(k,t)u2;2/nth , whereas the
contributions on the first line of Eq.~35! scale with
ub i(k,t)u4;(2/nth)2. Hence, in the leading order, the corre-
lation function atk5k850 is given by

C12
Q ~k,k8!uk5k8505

2d~0!

nth
2Re~A1* A2G12

(2)~0!

1A1* A2* G12
(1)~0!!d~k!d~k8!uk5k850 .

~51!

Similar calculations as before allow us to derive the follow-
ing expression for the value of the normalized cross-
correlation atk5k850,

C12
n ~0,0!5

Re~A1* A2G12
(2)~0!1A1* A2* G12

(1)~0!!

Az1Az2

, ~52!

wherez j5uA j u2@Gj j
(2)(0)21/4#1Re$Aj*

2Gj j
(1)(0)%.

B. Nonclassical photon number variances

The photon number variances considered in Sec. IV B can
be calculated in terms of the auxiliary functionsGi j

(2)(k) and
Gi j

(1)(k) as well. The antinormal ordered quantities in Eq.
~32! can be directly calculated by averages in the Langevin
equation, so below threshold the antinormal ordered variance
is for kÞ0,

AVar@N̂i~k!6N̂j~2k!#A5Var@ ub i~k,t !u26ub j~2k,t !u2#.
~53!

Using the commutation relations~48!, the commutators in
Eq. ~32! are @aj (k),aj

†(k)#5d(0)/nth , and the normalized
self-correlations take the form
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Cj j
(6)~k,2k!5

2~ uGj j
(2)~k!u26uGj j

(1)~k!u2!2Gj j
(2)~k!

Gj j
(2)~k!21/2

. ~54!

Similarly, the cross-correlations are

C12
(6)~k,nk!5

2S (
j

uGj j
(2)~k!u262uG12

(2n)~k!u2D 2(
j

Gj j
(2)~k!

(
j

Gj j
(2)~k!21

, n511,21. ~55!

Whenk5k850 Eq. ~53! is no longer valid. Instead, following the procedure outlined for the normalized correlations we
have to the leading orderO(nth

21),

C12
(6)~0,0!54

ReF(
j

Aj*
2Gj j

(1)~0!62A1* ~A2* G12
(1)~0!1A2G12

(2)~0!!G1(
j

uA j u2Gj j
(2)~0!

(
j

uA j u2
21. ~56!

The self-correlations become

Cj j
(2)~0,0!50, ~57a!

Cj j
(1)~0,0!54 Re@e2 i2fAjGj j

(1)~0!#14Gj j
(2)~0!21,

~57b!

wherefAj
is the phase ofAj . Note thatCj j

(1)(0,0) is actually

Var@N̂j (0)# normalized to shot noise. The result of Eq.~57a!
is simply because the correlationCj j

(2)(k,k8) amounts to cal-
culating the variance of zero fork5k850.

VI. CORRELATIONS BELOW THRESHOLD

The linearized results of Sec. V give an analytical insight
to the behavior below threshold for pattern formation. How-
ever, very close to the threshold this linear approximation
breaks down because of critical nonlinear fluctuations, and
additional contributions may emerge as, for example, shown
in a vector Kerr model by Hoyueloset al. @34#. Such nonlin-
ear correlations can be calculated through numerical simula-
tions of the full nonlinear evolution equations.

In this section we present numerical results obtained from
simulations of the nonlinear equations~15! below threshold,
with the parameters discussed in Sec. III. Our numerical re-
sults are compared with the analytical results of the previous
section, and therefore also serve as a cross-check of our ana-
lytical and numerical methods.

A. Linear correlations: Analytical and numerical results

We first consider the strength of the correlations between
symmetric points in the far fields below the threshold for
pattern formation. In Fig. 7 the four quantities defined by Eq.
~25! are plotted. The data are obtained from numerical simu-

lations and from the analytical results of Eqs.~50! and~52!.
Very good agreement is found between numerics and analyti-
cal results.

There are three main features to be considered in the re-
sults of Fig. 7. First, all curves present a distinctly peaked
behavior around the critical wave numberkc for pattern for-
mation, which means that the corresponding modes are more
strongly correlated than the modes at any other wave num-
ber. Manifestly, this behavior is connected with the pattern
formation mechanism and is closely related to the phenom-
enon of quantum images@10#. Second, we also note that in
all four plots the correlations show a jump atk50. In Figs.

FIG. 7. The linear self-correlations~a! C11
n (k,2k), and ~b!

C22
n (k,2k), and linear cross-correlations~c! C12

n (k,k), and ~d!
C12

n (k,2k) as functions of the transverse wave number forE/Et

50.99. The points are numerical results while the lines are analyti-
cal results.
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7~a! and 7~b! it is the trivial manifestation of an autocorrela-
tion, since fork50, k and 2k coincide, while in 7~c! and
7~d! the jump is due to the extra interferences with the ho-
mogeneous background fields as predicted from Eq.~52!.
Finally, we observe that the peaks localized aroundkc are
superimposed onto smooth correlation profiles.

The strong correlations appearing between the modes as-
sociated with wave numbers aroundkc indicate a strongly
synchronized emission of photons in the modes@v#(1k),
@v#(2k) and@2v#(1k), @2v#(2k). This behavior reflects
the direction of instability of the system. As a matter-of-fact,
regardless that all transverse modes of both fields are equally
excited by the vacuum fluctuations entering the cavity, the
fluctuations of the intracavity field modes around the critical
wave vector will be less damped than the fluctuations in the
other modes. The closer to the threshold, the more the be-
havior of the intracavity fields will be dominated by the
mode that becomes unstable at the threshold and gives rise to
the pattern. In the four-dimensional phase space spanned by
the fluctuation amplitudes$b1(k,t),b1* (2k,t),b2(k,t),b2*
(2k,t)%, this mode is characterized by a vector with a given
direction. What we learn from the correlation functions is
that the emerging instability results in an almost perfectly
synchronized emission of photons in the modes@v#(1k),
@v#(2k) and @2v#(1k), @2v#(2k).

The dominance of this particular mode when the threshold
is approached is confirmed by the study of the strength of
these correlations as a function of the pump. In Fig. 8 we
follow the height of the peaks atk5kc of the four linear
correlations displayed in Fig. 7, as a function of the pump
level E/Et . The most immediate observation is that all the
correlations become perfect in the limitE→Et . This
asymptotic behavior can be understood from the linearized
fluctuation analysis presented in Sec. V. It is enough to ob-
serve that Eqs.~46! involve the inverse of the real part of the
eigenvalues of the linear system~23a!. The dominance at the
threshold of the undamped eigenmode of the linear system
~23a! emerges from the fact that here the real part of the

associated eigenvalue precisely goes to zero. Thus the de-
crease in the correlations as we move away from threshold
can be seen as the result of the coexistence of different
eigenmodes. Physically the emergence of these correlations
is much less intuitive than the ones in an OPO. As a matter-
of-fact, in the OPO below the threshold momentum conser-
vation is enough to predict the existence of correlations be-
tween the fluctuations in the modes@v#(1k) and @v#
(2k). In the presence of the four-mode interaction of SHG,
the momentum conservation gives a global condition involv-
ing all four beams@at @v#(1k), @v#(2k) and @2v#(1k),
@2v#(2k)#. These correlations in fact arise in connection
with the emergence of an instability.

Turning now to the cross-correlation between the homo-
geneous components of the fields, we observe thatC12

n (k
50,k850) in Fig. 7 is negative, reflecting an anticorrelation
of the photons associated with the FH and SH homogeneous
waves. In other words, the creation of a photon@2v#(0)
implies the destruction of~two! photons@v#(0) and vice
versa. The origin of this correlation is much simpler to un-
derstand than the previous one: The two modes@v#(0) and
@2v#(0) being macroscopically populated, the vacuum fluc-
tuations simply induce transitions between these two modes,
according to step~1! in the scheme in Fig. 6. In Fig. 9 we
plot this correlation as a function of the pump. Comparing
the value of the correlations below and above threshold, we
observe that very close to, but below, the threshold, the ten-
dency of the curve is reversed and it anticipates the behavior
of the correlation above threshold. These are nonlinear cor-
relation effects that will be discussed in Sec. VI B.

Finally, we would like to discuss the smooth contributions
to the correlations displayed in Fig. 7. We first note that these
are not connected with the pattern instability. This was
checked by considering very low pump values for which the
peaks aroundkc completely vanish, while the smooth struc-
tures of the curves remain. Considering the central region of
the curves, roughly foruku,kc , the most striking observa-
tion is the absence of correlations between the fluctuations in
the modes@v#(k) and @2v#(k), whereas@v#(k) and @2v#
3(2k) are correlated, as well as@2v#(k) with @2v#(2k).
This behavior seems to indicate the existence of a symmetry

FIG. 8. The self-correlationsC11
n (kc ,2kc) ~full line, squares!

and C22
n (kc ,2kc) ~dashed line, circles! and the cross-correlations

C12
n (kc ,2kc) ~dotted line, triangles! and C12

n (kc ,kc) ~dash-dotted
line, diamonds! as functions of the pump normalized to the thresh-
old. The points are numerical results while the lines are analytical
results.

FIG. 9. The linear cross-correlationC12
n (k50,k850) as a func-

tion of the pump normalized to the threshold, comparing numerical
results~points! with the analytical result~line!. Open~closed! sym-
bols are numerics below~above! Et .
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restoring principle in the dynamics of the intracavity fields.
As a matter-of-fact, the absence of correlations between
@v#(k) and @2v#(k) implies that the fluctuations of the
numbers of pair productions through step~2! and the fluc-
tuations of the number of conversions@v#(k)→@2v#(k)
through step~3! occur independently of each other. However,
while step~2! of Fig. 6 conserves thek→2k symmetry of
the system, step~3! does not. As a consequence, a positive
fluctuation in the number of times step~3! occurs@@v#(k)
1@v#(0)→@2v#(k)#, automatically implies that there will
be less @v#(k) than @v#(2k) in the system, and more
@2v#(k) than@2v#(2k). The correlations observed may in-
dicate that the system will try to restore thek→2k symme-
try by down-converting@2v#(0)→@v#(k)1@v#(2k), pro-
ducing a surplus of@v#(2k) which again will produce more
@2v#(2k). These mechanisms seem to fit well with the rela-
tive strengths of the correlations observed in the central re-
gion of Fig. 7. The strongest is alwaysC11

n (k,2k), in agree-
ment with the fact that the twin photon emission is the
principal source of correlations in the system. Weaker is the
correlation C12

n (k,2k) and even weakerC22
n (k,2k). This

interpretation is consistent with the way the correlations at
k5kc depart from the value 1 at threshold, when the pump is
lowered, as displayed in Fig. 8.

We now turn our attention to the study of the fluctuations
in the sum and difference of the photon numbers at sym-
metrical points of the far field. We first consider the twin
beam photon variances for the FH,C11

(6)(k,2k) defined in
Eq. ~30! and shown in Fig. 10. The results are symmetric
with respect to the substitutionk→2k, wherefore we plotted
this quantity for positivek, shifting the origin for better view
of the specific behavior atk50. The linearized calculation
predicts sub-shot-noise statistics in the differenceN̂1(k)
2N̂1(2k) for all wave numbers. For large wave numbers
the analytical result for the correlation approaches the value
1/2. It is interesting to keep in mind that for the OPO, the
same quantity is equal to 1/2 independently of the wave
number@35,36#. In the SHG case additional processes taking
place in the cavity result in a smoothk-dependence of
C11

(2)(k,2k). These characteristics do not depend much on
the value of pump, and are not changed significantly even

when the pump level is taken beyond threshold, cf. Sec. VII.
Therefore the statistics of the intensity difference are not
directly affected by the pattern formation mechanism. A radi-
cally different situation occurs for the sum-correlation
C11

(1)(k,2k), which shows a strong peak aroundk5kc . For
the pump value used in Fig. 10 the peaks correspond to a
maximum valueC11

(1)(kc ,2kc).35. This behavior is con-
nected with the increase of the fluctuations in the modes
associated with the pattern instability when the threshold is
approached, leading to a large excess noise in the statistics of
the intensity of the individual modes@v#(k) and @v#(2k).
This excess noise in each intensity cancels when the differ-
ence N̂1(k)2N̂1(2k) is considered leading to sub-
Poissonian statistics, while it is still present in the sum
N̂1(k)1N̂1(2k). For largek the correlation approaches 1.5,
coinciding again with the corresponding value for the OPO.
Finally, as before, the jumps atk50 are due to contributions
from the homogeneous steady states, cf. Eqs.~56! and ~57!.
The corresponding photon number variancesC22

(6)(k,2k)
for the SH field are shown in Fig. 11. In contrast to the FH
correlations there is almost no sub-shot-noise behavior in the
difference correlationC22

(2)(k,2k). In other words, the SH
beams only display very weak nonclassical correlations. As
for the FH field, the emerging instability does not influence
the noise level inC22

(2)(k,2k), but C22
(1)(k,2k) displays a

large amount of excess noise in the vicinity ofkc . The
asymptotic largek behavior for both correlationsC22

(2)(k,
2k) andC22

(1)(k,2k) is analytically found to correspond to
the shot-noise limit 1.0.

The cross-correlationsC12
(2)(k,k) and C12

(1)(k,k) are
shown in Fig. 12. The linearization approach predicts that
these correlations are always above the shot-noise limit. Fur-
thermore, at small wave numbers we note that the variances
of the sum and difference coincide. This can only occur
when the fluctuations in the individual modes@v#(k) and
@2v#(k) are uncorrelated, what was indeed observed in Fig.
7. Moreover, both the sum and difference correlations show a
large excess noise atk5kc , which is slightly weaker for the
difference, as the result of a partial noise cancellation.

The cross-correlationsC12
(2)(k,2k) and C12

(1)(k,2k) are
shown in Fig. 13, and here the difference correlations inter-
estingly go below the shot-noise limit as long ask is not too
close to the critical wave number. It is worth pointing out

FIG. 10. Photon number variances forE/Et50.99 showing
C11

(2)(k,2k) ~full line, diamonds! and C11
(1)(k,2k) ~dashed line,

squares!. The lines are analytical results while the points are nu-
merical simulations. The shot-noise levelC51 is indicated by a
thin dotted line.

FIG. 11. Photon number variances forE/Et50.99 showing
C22

(2)(k,2k) ~full line, diamonds! and C22
(1)(k,2k) ~dashed line,

squares!.
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that the differenceN̂1(k)2N̂2(2k) shows nonclassical be-
havior while the differenceN̂1(k)2N̂2(k) ~shown in Fig. 12!
does not. This somehow paradoxical situation is related to
what was observed in the normalized correlations where the
cross-correlation betweenN̂1(k) and N̂2(2k) was stronger
than the almost vanishing cross-correlation betweenN̂1(k)
and N̂2(k). At k5kc a large amount of excess noise domi-
nates the behavior of both the sum and the difference corre-
lation and the two correlations show a pronounced peak. For
largek the correlations approach the shot noise limit, as seen
for the other cross-correlations in Fig. 12.

Olsen et al. @37# have investigated the system without
spatial coupling corresponding to our results atk50, and
they find that, for certain detunings, the variance of the sum
of the FH and SH intensities are more strongly quantum
correlated than the variance of the individual intensities, due
to the anticorrelation between them. Var@N̂1(0)#/CSN and
Var@N̂2(0)#/CSN can be seen from Figs. 10 and 11, respec-
tively, at k50. Both are larger than the Var@N̂1(0)
1N̂2(0)#/CSN observed in Figs. 12 and 13, so that our re-
sults confirm the ones of@37#.

B. Nonlinear correlations: Numerical results

So far we have only considered the correlations predicted
by the linearized equations. In order to go beyond this re-
gime, we use our numerical simulations to search for nonlin-

ear fingerprints in the correlations and in particular for the
emergence of new correlations, i.e.,Ci j

n (k,k8) with kÞ6k8.
Of particular interest is to look for correlations between the
homogeneous steady states (k50) and the states withk5
6kc , Ci j

n (0,6kc). From a technical point of view this task
turned out to be difficult because nonlinear contributions to
the correlation functions were only observable for pump val-
ues extremely close to threshold, in a region where the char-
acteristic time of the dynamics diverges because of critical
slowing down. This translates into very long transients and
the need of equally long simulations.

We have observed some indication of nonlinear correla-
tions for a pumpE/Et50.999 99, which became very clear
when usingE/Et50.999 999. For this value of the pump, we
show in Fig. 14 our results forC12

n (k,k850) and C12
n (k8

50,k): these curves put into evidence an anticorrelation be-
tween the modes@v#(6kc) and @2v#(0), and between
@2v#(6kc) and @v#(0). They present a very sharp peak
structure, with a width determined by the distance between
two adjacent points of the discretizedk space used for the
simulations. This is due to the fact that we now consider the
correlation functions at fixedk8 and letk vary. These corre-
lations are a result of nonlinear amplification of the diverging
fluctuations as the threshold is approached. The negative na-
ture of the correlation is connected with the fact that the
fields with nonzero average values~here the homogeneous
components! act as a ‘‘reservoir’’ of photons for all processes
occurring in the cavity. As we will show later, they are a
precursor of the behavior of the correlations above the
threshold. The correlations atk50 correspond to the linear
correlation shown in Fig. 9. The bottom plot in Fig. 14 shows

FIG. 12. Photon number variances forE/Et50.99 showing
C12

(2)(k,k) ~full line, diamonds! and C12
(1)(k,k) ~dashed line,

squares!.

FIG. 13. Photon number variances forE/Et50.99 showing
C12

(2)(k,2k) ~full line, diamonds! and C12
(1)(k,2k) ~dashed line,

squares!.

FIG. 14. Above: Nonlinear cross-correlationsC12
n (k,k850)

~left! and C12
n (k850,k) ~right! as functions of k for E/Et

50.999 999. Below: Semilog plot of the nonlinear correlations
Ci j

n (k51kc ,k850) as a function ofE/Et .
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the nonlinear correlationsCi j
n (k51kc ,k850) as the thresh-

old is approached. The correlations are nonzero only for
E/Et.0.9999, as the nonlinear correlations set in the non-
linear channels in steps~2! and~3! of Fig. 6 become stronger
and this weakens the correlations induced by the channel of
step ~1!, which is exactly what we observed in Fig. 9;
C12

n (0,0) becomes less correlated very close to the threshold.
Moreover, we see that the correlationsC11

n (0,1kc) and
C12

n (0,1kc) have almost identical values, and the same holds
for C22

n (1kc,0) andC12
n (1kc,0). This interesting behavior

can be traced back to the fact that close to the threshold the
fluctuationsdI 1(kc) anddI 2(kc) are perfectly correlated, as
displayed by Fig. 8, whereas the slight anticorrelation be-
tweendI 1(0) anddI 2(0) is responsible for the lower values
of C22

n (1kc,0) andC12
n (1kc,0) with respect toC11

n (0,1kc)
andC12

n (0,1kc).

VII. CORRELATIONS ABOVE THRESHOLD

Above the threshold for pattern formation the linearized
equations~19! are no longer valid. As displayed in Fig. 4,
above the threshold not only the homogeneous modes, but
also all modes with wave numbersk56kc ,62kc ,
63kc , . . . , will present a macroscopic photon number. Lin-
earizing around the steady state pattern solution above the
threshold under the assumption of small fluctuations, one
obtains new linear equations for the far field fluctuation am-
plitudes, which take into account three-wave processes such
as @2v#(kc)↔@v#(k)1@v#(kc2k) or @2v#(k)↔@v#(kc)
1@v#(k2kc). In analogy to the situation below the thresh-
old a linear fluctuation analysis above the threshold predicts,
in addition to the correlations already present below the
threshold, the existence of additional correlations between
the fluctuationsdI 1(k) anddI 1(kc2k), and betweendI 2(k)
and dI 1(k2kc). We will not report here the explicit results
of this cumbersome linear analysis and refer directly to the
numerical analysis of the full nonlinear Langevin equations.

To investigate the implications of the new field configu-
ration above the threshold on the intensity correlations, we
first consider the correlationsCi j

n (k,k8). The same normal-
ized correlations discussed in Fig. 7 below the threshold are
plotted in Fig. 15 for a pump value above the threshold. We
observe that the correlations atk56kc decrease from their
threshold value and are no longer perfect as they were at the
threshold. A closer look actually reveals a dip in the correla-
tions exactly at the pixels corresponding tok56kc . A ten-
tative explanation for this is based on the fact that now the
modes at the critical wave number have a finite average
value, connected with macroscopic photon numbers in these
modes, whereas the neighboring pixels are significantly less
populated, cf. the far field of Fig. 4. In comparison the nor-
malized correlationsCi j

n (k,k8) show a much smoother be-
havior aroundkc . Hence the observed reductions in the cor-
relations above threshold atk56kc are connected with
spontaneous population exchanges between these macro-
scopically populated modes.

In Fig. 8 the peaks atk56kc of Fig. 15 are followed as
functions of the pump. The behavior is very similar to what

is seen below the threshold. Close to the threshold the cor-
relations are perfect, and as the pump is taken further away
from Et the correlations become weaker. Below the threshold
this was explained through an eigenvalue competition, while
above the threshold the explanation is that the competitions
between the states become stronger.

Thek50 cross-correlation is plotted in Fig. 9, and above
the threshold there is a loss of anticorrelation or there is even
a small positive correlation. This might be attributed to the
macroscopic and independent occurrences of the processes
of steps~2! and ~3! in Fig. 6.

We saw in Sec. VI B nonlinear correlations just below the
threshold, and in Fig. 16 the peaks corresponding to these
correlations are plotted in order to follow the progress above
the threshold. The strongest anticorrelation is observed just
above the threshold,E/Et51.0001 and as the pump is in-
creased the correlations become weaker due to increasing
competition of processes involving higher harmonics. More-
over, the connection between the self-correlations and cross-
correlations seen belowEt only remains very close to the

FIG. 15. The self-correlations~a! C11
n (k,2k) and ~b! C22

n (k,
2k) and cross-correlations~c! C12

n (k,k) and ~d! C12
n (k,2k) as

functions of the transverse wave number forE/Et51.05.

FIG. 16. The correlationsCi j
n (k51kc ,k850) as functions of

the pump relative to the threshold. The gray symbols are the corre-
lations below the threshold from Fig. 14.
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threshold, so as the pump is increasedC11
n (0,1kc)ÞC12

n (0,
1kc) and C22

n (1kc,0)ÞC12
n (1kc,0). This is related to the

loss of perfect correlations away from the threshold.
In Fig. 17 the photon number variancesC11

(6)(k,2k)
above the threshold are presented. Comparing these results
with the corresponding ones below the threshold from Fig.
10 we observe that they are very similar. Generally, the cor-
relation C11

(2)(k,2k) does not change much with the pump
level, and this fact has also been observed in the OPO@38#.
The sum correlationC11

(1)(k,2k), however, contains peaks
that are very sensitive to the pump level, both below and
above the threshold. The behavior discussed here for the FH
is also valid for the SH and the cross-correlations.

VIII. CONCLUSION AND DISCUSSION

We have used the master equation approach to describe
the spatiotemporal dynamics of the boson intracavity opera-
tors in second-harmonic generation, and we included in the
model quantum noise as well as diffraction. Our study is
based on theQ representation to describe the dynamics of
the quantum fields in terms of a set of nonlinear stochastic
Langevin equations for equivalentc-number fields. The
choice of theQ representations gives some restraints on the
parameter space in order to maintain negative diffusion. We
have checked that similar results are obtained by using the
approximated Wigner representation, both in the regions dis-
cussed here and also the regions unaccessible by theQ rep-
resentation. This indicates that the results presented in this
paper are quite general.

A simple scheme describing the microscopic photon inter-
action that underlies the process of pattern formation has
guided us in our analytical and numerical studies of the spa-
tial correlations. Equal time correlations between intensity
fluctuations were used to investigate the strength of the cor-
relations between different modes. Also, possible nonclassi-
cal effects, such as twin beam correlations, were considered
by calculating the photon number variances of the intensity
sums and differences between spatial modes of the FH and
SH fields.

We have found that at the threshold for pattern formation
the Fourier modes with the critical wave number are per-
fectly correlated for the FH field, the SH field, and also be-
tween the FH and the SH field. As the distance to the thresh-

old is increased these correlations become weaker, which
was shown analytically to be due to the competition of the
eigenvalues of the linear system describing the system below
the threshold. At large wave numbers, only the correlation
between opposite points of the FH far field survives. This
correlation is always found to be stronger than the others,
which is consistent with the fact that the twin photon emis-
sion at the fundamental frequency is the primary source for
correlations in the system. For far field modes around the
critical wave number the self-correlations as well as the
cross-correlations between FH and SH photons are linked to
the pattern forming instability.

Very close to the threshold the linear analysis breaks
down. The numerical simulations below the threshold
showed the existence of nonlinear correlations which involve
the k50 mode and these are also seen above the threshold.
The other correlations described above are also found above
the threshold, but their strength decreases when moving
away from the threshold. This can be understood from the
fact that additional processes come into play, mainly consist-
ing in population exchanges between the macroscopic fields
at the critical wave number and its harmonics.

The intensity differences between opposite points of both
the FH and SH far fields, as well as the cross-correlation
between the two have been shown to exhibit nonclassical
sub-shot-noise behavior. These properties for the intensity
difference turn out not to be sensitive to the process of pat-
tern formation, since the corresponding correlations depend
very weakly on the distance to the threshold and show no
particular structure close to the critical wave number. The
emerging pattern is connected with increased fluctuations in
the modes with wave numbers around the critical wave num-
ber, leading to an excess noise in the corresponding indi-
vidual intensities. Therefore the sub-Poissonian statistics of
the intensity differences reveal a partial noise cancellation.
On the contrary, the sum of intensities clearly exhibit peaks
around the critical wave number, originating from excess
noise connected with the formation of a pattern.

In this work we considered equal time correlations calcu-
lated for the intracavity fields. This approach turned out to be
very useful to understand the intracavity field dynamics. For
the output fields we expect that the nonclassical correlations
of the intracavity fields will remain below shot noise. The
quantitative assessment of the amount of noise reduction or
excess noise with respect to the shot-noise level requires a
specific additional calculation. For future work it would also
be interesting to calculate the output fluctuation spectra at 0
frequency for the difference and sum of intensities, which
reflect the full amount of quantum correlations induced by
the microscopic processes taking place inside the cavity, as,
for example, considered for a vectorial Kerr model in@32#.
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FIG. 17. Photon number variances forE/Et51.05 showing
C11

(2)(k,2k) ~diamonds! andC11
(1)(k,2k) ~squares! from a numeri-

cal simulation.
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