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Most of the studies on mathematical models of DNA are limited to next neighbor interaction. However, the
coupling between base pairs is thought to be caused by dipole interaction, and, when the DNA strand is bent,
the distances between base pairs become shorter, therefore the interactions with distant base pairs have to be
taken into account. In this paper we analyze the existence and stability of breathers, i.e., localized oscillations
in a simple model of bent DNA with long-range dipole interaction. Breathers have been suggested as precur-
sors of the denaturation bubble.
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I. INTRODUCTION

During the last years a great deal of attention has been
paid to localized oscillations in nonlinear discrete systems,
which are usually known as discrete breathers, to differenti-
ate them from the entity with the same name in continuous
systems. In a basic mathematical paper by Mackay and
Aubry @1#, their existence and stability were established un-
der rather general conditions. This mathematical proof, based
on the limit with no coupling, has become one of the starting
points to obtain breathers, as ‘‘exact’’ numerical solutions, up
to machine precision@2–5#. A thorough review can be found
in Ref. @6#.

Many researchers have worked in the extension of the
proofs to more general conditions, applications to specific
fields and different systems, and to obtain experimental evi-
dence of their existence in real systems@7–12#.

A particularly interesting real system is DNA, where lo-
calization of the energy@13,14# has been suggested as a pre-
cursor of the transcription bubble@15#, and where moving
localized oscillations can be the way for transporting infor-
mation @16# or for explaining secondary breaks, when DNA
is irradiated with ionizing radiation@17#. A great number of
different linear and nonlinear models has been proposed for
DNA, according to the phenomena that are intended to ex-
plain Ref.@18#. An initially simple model, that has been pro-
gressively complicated, is the Peyrard-Bishop model@19#,
where the dynamics of DNA is reduced to a Klein-Gordon
system, the variables being the distances between nucle-
otides within each base pair. This is a natural field for dis-
crete breathers, as the disorder or inhomogeneity of the
double strand is not an obstacle either to the mathematical
proof or to the numerical methods, and where fundamental
questions arise on the interplay of nonlinearity and inhomo-
geneity@20–22#.

The important and related point we address here is the
influence of geometry, i.e., of the shape of the double strand,
on the existence and stability of breathers, and therefore on
localization of energy. Geometry is not relevant, in the
framework of the Peyrard-Bishop model, as long as only
nearest neighbor interaction is taken into account. However,
one of the two hydrogen bonds that is responsible for the
interbase coupling, the hydrogen bond in theN2H¯0
group, is characterized by a finite dipole moment. Therefore
a stretching of the base pair will produce a change of the
dipole moment and an interaction between dipoles, with a
dependence on the distancer between base pairs as 1/r 3,
takes place. With the long-range interaction the shape of the
molecule becomes critical and cannot be neglected any
longer.

Bending of DNA has been studied in several papers. In
Ref. @13# the bending is introduced as an inhomogeneity.
Perturbative methods and numerical simulation is used. In
Ref. @23#, the bending is introduced as a change of the cou-
pling constant due to the fact that the bases become closer
inside the bend. Numerical simulation is also used. Long-
range interaction has been taken in account in bent DNA
models using the nonlinear Schro¨dinger ~NLS! equation
@24,25#. However, the effect of curvature and long-range in-
teraction in a DNA model has not yet been addressed for
exact breathers.

We choose a model as simple as possible to isolate the
effect of the bending and the long-range interaction. There-
fore we restrict the shape to a parabola in a plane, the dipole
moments being perpendicular to it and parallel among them,
not taking into account the angles between them, the helicity
of the molecule, and the stretching. The sketch of the model
is shown in Fig. 1. An adequate choice of units of time and
distance in the different directions allow us to eliminate all
parameters except for the coupling and the curvature.
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II. MODEL

Our model is described by the Hamiltonian
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The variablesun5un(t) represent the separation of the
nucleotides in a base pair with respect to their equilibrium
distance. The on-site potential corresponds thus to the
hydrogen-bridge bond between nucleotides. It is composed
of a linear term 1/2v0

2un
2 , and a nonlinear term1

4 sun
4 , where

s is a parameter that tunes the nonlinearity. Ifs is positive the
on-site potential is hard, and soft otherwise.

The last term is the long-range dipole interaction,Jnm
being the coupling constants between base pairs, with values,
for nÞm, Jnm51/urWn2rWmu3, and 0 otherwise. We suppose
that the dipole moments are parallel among them and or-
thogonal to the plane where the bending takes place.

The vectorsrWn5(xn ,yn) describe the positions of the
base pairs in a two-dimensional space where the system is
embedded. They do not depend on time as we suppose that
the shape of the system is constant in time. This shape is
supposed to be a parabola, which can be an approximation in
the neighborhood of the bending point, i.e.,yn51/2kxn

2 ,
wherek is the curvature of the parabola.

The time is scaled, so, asv051, the distance between
adjacent base pairs is scaled to be the unity, i.e.,urWn2rWn11u
51. The distance between nucleotides, being perpendicular
to rWn , can be scaled independently, so that the nonlinear term
can be written61/4 un

4 .
Therefore there are only two parameters in the system, the

curvaturek and«, which represents the strength of the cou-
pling, or, in other words, the relation between the coupling
energy and the on-site energy.

The dynamical equations become
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III. METHOD

We look for breathers, that is, localized, time-reversible,
periodic solutions of Eq.~2!. The procedure consists of ex-
pressing the functionsun as truncated cosine Fourier series
of specified frequency vb , that is, un5z0,n

1(k51
km 2zk,n cos(kvbt), and collecting together the coeffi-

cients corresponding to differentk. Then, we obtain a system
of algebraic equations onzk,n . Starting from the anticontinu-
ous limit, i.e.,«50, where we have solutions for the isolated
variables, we can continue them using the Newton method
up to some unspecified value of«. The time reversibility
condition allows us to eliminate the trivial time shift degen-
eracy. The theorem of existence can be found in the so called
basic mathematical paper, Ref.@1#, and a thorough descrip-
tion of the numerical methods can be found in Refs.@2,3,5#.
The linear stability is checked by studying the eigenvalues of

the monodromy@4,26#, i.e., the matrixM0, given by

@$jn~T!%,$j̇n~T!%#5M0@$jn~0!%,$j̇n~0!%#, ~3!

where T52p/vb , is the period of the breather, and

@$jn(t)%,$j̇n(t)%# is the column matrix of positions and ve-
locities of the solutions of the linearization of Eq.~2!, that is,
the result of the numerical integration1 of the following equa-
tions:

~N„u~ t !,«…•j!n[j̈n1v0
2jn1sun

3jn1« (
m51

N

Jnmjm50,

~4!

n51•••N.

Here j5$jn(t)% represent the perturbations of the breather
solution, and are not restricted to time reversible functions.
The operatorN„u(t),«…[$Nn„u(t),«…% is called the Newton
operator. Therefore the solutions of Eq.~4! can be described
as the eigenvectors ofN corresponding to the zero eigen-
value.

As the linearized system is real and Hamiltonian, the
monodromy is also a real and symplectic operator. This im-
plies that ifl is an eigenvalue ofM0, so arel* , 1/l, 1/l* .
Stability means that all the eigenvalues have modulus 1. The
fact that the derivative of the breather$u̇n(t)% is a solution of
Eq. ~4! brings about that there is always a double eigenvalue
at 110i .

IV. LINEAR MODES

To start with, we study the linear modes of the system. In
Fig. 2 are represented the frequencies of the linear modes for

1A symplectic integrator is highly recommended to get accurate
results@27#.

FIG. 1. Sketch of the model. The circles represent the nucle-
otides.
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a system of 101 particles as a function of the coupling pa-
rameter«, for two different values ofk.

The degree of localization can be measured with the func-
tion

f~u!5

(
n51

N

un
4

S (
n51

N

un
2D 2 , ~5!

or its inverse which gives a measure of the number or vari-
ables involved in the mode. Thereforef51/N, when all the
variables have the same amplitude,f51/n, whenn variables
have the same amplitudes, and the rest are zero.

Several features emerge from the analysis of the linear
modes, their degree of localization, and by plotting them.

~i! For the straight line,k50, all the modes are delocal-
ized, except for one at the bottom, localized at both ends of
the chain, due to the finite size of the system. This mode,
unless stated otherwise, will not be taken in account hereaf-
ter.

~ii ! For kÞ0, a localized symmetric mode separates from
the top of the band.

~iii ! Above a threshold value ofk'8, another localized
asymmetric mode separates from the bottom of the band. The
origin of this mode is clear as this value ofk is slightly
above the value when the distance between the two closest
particles to the bending point becomes smaller than unity.
Therefore their interaction is stronger that the one with their
neighbors.

Figure 3 shows the splitting of these two eigenvalues
whenk is changed at constant«.

As it can be observed in this figure, the spreading of the
linear band with curvature at constant coupling is minimal
except for the localized modes that segregate from it.

V. ONE-SITE BREATHER WITH HARD POTENTIAL

The frequency of the one-site breather with hard potential,
i.e., with s51, in Eq. ~1!, has to be greater than the linear
frequencyv051, thus we have chosenvb51.1, so that the
nonlinear effects are significant but, on the other hand, not
too strong, as the nonlinearities in DNA are thought to be
weak.

The term one-site breather refers to the situation at the
start of the path continuation, i.e., at zero coupling, because,
as soon as this is switched on, other sites are involved and
even the main amplitude can change position in the chain.

We have studied what we call the central breather, the
lateral breather, and the second breather, i.e., located at zero
coupling at the bending point, at the nearest neighbor, and at
the next nearest neighbor.

A. Central breather evolution

We denote the dynamical equations Eq.~2! as f (u)50,
emphasizing when it is convenient the dependence on a pa-
rameter as, for example,f (u,«)50. Equally, we use the
same notation for the equivalent function in the Fourier
space, i.e.,f (z)50, or f (z,«)50, and so on. The continua-
tion is done in the Fourier space, so that, iff (z0 ,«0)50, and
«15«01d« is a value close to«0, and z15z01dz is its
corresponding solution, then

f ~z01dz,«1!' f ~z0 ,«1!1]z f ~z0 ,«0!dz50. ~6!

Therefore, from this equation, the value ofdz can be ob-
tained, provided that the Jacobian]z f (z0 ,«0) is invertible.
The procedure can be repeated untilf (z1 ,«1)50 up to ma-
chine precision. If the Jacobian is not invertible, that is, if
one of its eigenvalues is zero, the conditions for the implicit
function theorem are not satisfied, therefore a bifurcation can
take place. Of course, the numerical methods do not allow us

FIG. 2. Frequencies of the linear modes with respect to the
coupling parameter« for curvaturesk50 andk56.

FIG. 3. Top: frequencies of the linear modes with respect to the
curvature.k, for fixed coupling «50.05. The maximum corre-
sponds to wave numberq50 and the minimum toq5p. Bottom
left and right: profiles of the localized modes at the top and the
bottom of the band, respectively. The calculations have been done
with 101 oscillators.
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to find an exact zero eigenvalue, but this point can be de-
tected by the slowness or lack of convergence of the Newton
method, and by observation of the evolution of the Jacobian
eigenvalues as the parameter is changed.

Care has to be taken, as the Newton method, in the vicin-
ity of a bifurcation, may jump often to another branch of
solutions in the neighborhood of the continued one. We can
sometimes continue a path across a bifurcation by adding to
the breather a fraction of the eigenvector corresponding to
the nearly zero eigenvalue, scaling, and starting the Newton
method again.

Figure 4 shows a zoom of the evolution of the Jacobian
eigenvalues. The first zero crossing corresponds to a bifurca-
tion where the breather ceases to exist and jumps to a close
branch. The second zero crossing is related with the change
of stability of the breather as it can be understood by Aubry’s
band theory@4# but it will be too long to explain here.

The band of eigenvalues below zero corresponds to the
first harmonic phonon band. An eigenvalue can be seen sepa-
rating from it and approaching to zero bringing about the
bifurcation. This mode is the double humped mode~DHM!,
similar to the one found at the top of the linear band.

The first positive branch of eigenvalues corresponds to
what will be called the breather mode~BM!, as it has no
related linear mode and has often the same profile as the
breather. In systems with hard potential the breather mode
appears above zero as the frequency of the breather increases
with its growth. The opposite happens with soft potentials.
This mode produces eventually a third bifurcation, where the
breather disappears.

These two modes are going to be present for almost any
value of the parameters, but different patterns of bifurcation
are going to happen depending on the value of the coupling
parameter. We better describe the evolution in the parameter
space (k,«), keeping« fixed and varyingk as it has more
physical meaning, corresponding to the process of bending
the chain. We also limit, in general, the values of curvature to

something overkc54A3'7, as this is the value above
which the two neighbors of the bending point become closer
than the interparticle distance, and we believe this is not
expected to happen in real systems. Therefore expressions
like low or intermediate curvature have to be understood
compared tokc .

There are three basic scenarios:
~i! For low coupling («&0.03), no bifurcation happens

when increasing the curvature~it will happen for values of
curvature around 15 with the DHM!. That is, the centered
breather~CB! exists. We are in the nonlinear range and the
breather feels very weakly the shape of the molecule.

~ii ! For intermediate coupling (0.03&«&0.07), a bifurca-
tion occurs when the DHM collides with the CB atk'6.2
~3.5 for «50.06), after a small gap~smaller with increasing
«), the double humped breather~DHB! appears and it will
collide with the BM for values of curvature around 11. The
centered breather exists for low to intermediate curvature,
and then the DHB takes command.

~iii ! For large coupling («*0.07), there is an evolution
where the CB evolves continuously to the DHB without bi-
furcation, passing through a state where the profile of the
breather is flat at the top, with three oscillators with the same
amplitude.

Figure 5 shows the profiles of the central breather before
and after the first bifurcation.

B. Central breather stability

The breather becomes unstable slightly before this first
bifurcation~at «50.057), i.e., at«50.054, and continues to
be unstable until the second zero crossing takes place. This is
shown in Fig. 6.

This is a general picture with the appearance of the bubble
of stability shown in the top figure, slightly before the bifur-
cation. Afterwards the breather becomes stable again before
its definitive destruction.

FIG. 4. Evolution of the Jacobian eigenvaluesf i for the central
breather. An eigenvalue approaches zero and another branch of so-
lutions is taken.

FIG. 5. Profiles of the central breather just before and after the
bifurcation fork54; the bending point is at the particle 0.
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C. Lateral breather and symmetry breaking

We refer in this way to the breather located at«50 at the
nearest neighbor of the bending point~hereafter named as the
first neighbor!. Continuation of this breather with the cou-
pling « leads to an asymmetric breather with its main ampli-
tude located at this point. Eventually, it experiences a bifur-
cation bringing about the same symmetric double humped
breather as in the previous case. The same three different
regimes of low, intermediate, and large coupling are also
found.

Figure 7 shows the profiles at two points just before the
bifurcation and after this has taken place, where the breather
is again a symmetric one.

It should be noted that the asymmetric lateral breather
~ALB ! ceases to exist exactly when the central breather be-

comes stable again. Observation of the instability eigenvec-
tor of the central breather and simulations with a slight per-
turbation in that direction confirm that it tends to evolve to
the ALB.

Therefore we obtain that in a intermediate region of the
parameters the nonlinearity is able to maintain an asymmet-
ric state, which disappears with strong enough coupling. The
lateral breather acts as an attractor for the central one at
intermediate coupling/curvature. Due to the reflection sym-
metry of the system both lateral breathers have the same
properties. The consequence is that we are in the presence of
an inverse pitchfork bifurcation with symmetry breaking.

D. Second neighbor

Similar results are obtained when the continuation is done
with the breather initially located at the second neighbor of
the bending point. Again, a bifurcation occurs bringing about
the symmetric, double humped breather. The profiles of the
breathers before and after the bifurcation are shown in Fig. 8.

VI. CONCLUSIONS

We address the problem of existence and stability of
breathers, i.e., periodic localized solutions, on a model for
DNA with dipole long-range interaction~LRI!. The LRI
brings about that the properties of the system are sensitive to
the shape of the system. We limit the shape to a parabola and
constrain the orientation of the dipoles to a direction normal
to the plane of the parabola, in order to isolate the effect of
the curvature. We study the path of the breathers to their
annihilation.

We find that there is a symmetric, double humped mode
as the dominant one for strong enough coupling. At interme-
diate coupling, there exist stable asymmetric breathers which
become unstable and stable again through inverse pitchfork
bifurcations with symmetry breaking.

There are two competing sources of localization, the in-
homogeneity due to the bending and the LRI, and the non-

FIG. 6. Evolution of the monodromy eigenvalues with the cou-
pling «, for the central breather. Top: modulus; bottom: arguments.
The points are the calculated eigenvalues, the lines are guides to the
eye.

FIG. 7. Lateral breathers fork54. Left and center: before the
bifurcation; right: afterwards.

FIG. 8. Second neighbor breathers fork54. Left: before the
bifurcation; right: afterwards.
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linearity. The relationship between the nonlinear energy of
the hydrogen bonds and the dipole interaction in DNA is not
well known. If it is high enough a much larger variety of
breathers will exist and be stable in the neighborhood of a
bending, while, in the opposite case, only an almost linear
breather, symmetric and double humped, will exist. In this
case, the breathers at bending points could play a decisive
role as a precursor of the denaturation bubble. It is interest-
ing that a model with attractive long-range interaction shows

also localization at the bending points through a different
mechanism@28#.
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