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Solitons in quadratic nonlinear photonic crystals
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(Received 12 January 2001; published 21 September)2001

We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the
linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities,
which can bedefocusing and we numerically find previously unknown soliton families. Because of these
induced cubic terms, solitons still exist even when ¢fifective quadratic nonlinearity vanishaad conven-
tional theory predicts that there can be no soliton. We demonstrate that both bright and dark forms of these
solitons can propagate stably.
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The physics and applications of photonic band-(RPG) effective x(?) nonlinearity[7—9]. Thus the global existence
materials, orphotonic crystals have been active topics of of solitons in such QNPCs is nontrivial. We find soliton so-
research for more than a decade. The theory of linear photdutions that are stable under propagation because of cubic
nic crystals is now well understood, and many of their fun-nonlinearities induced by the dual QPM gratings. The QNPC
damental properties and technical applications have beegven supports stable bright and dark solitons when there is
characterized1]. The next important step in the application no effectivex() nonlinearity. This is analogous to the exis-
of photonic crystals is to create tunable PBGs. Tunability istence of solitons in dispersion-managed fibers with no aver-
possible in linear photonic crystals through, e.g., the temage dispersiofl5].
perature dependence of the refractive ind@{ or the We consider the interaction of a cw bedgarrier fre-
electro-optic effecf3]. Ultrafast dynamical tunability of the quencyw) with its SH, propagating in a lossless 1D QNPC
PBG can be accomplished using nonlinearity, as was firsgnder conditions for type | second-harmonic generation
demonstrated with a constant Kerr nonlineafiy. (SHG). We assume that the modulation of the refractive in-

Here we considequadratic nonlinear photonic crystals dex is weal An;(z)/n;<1, wheren;(z)=n;+An;(z) and]
(QNPCsg that have a linear gratingperiodic dielectric con- refers to the frequencjw], such that reflectivéand radia-
stany and/or a nonlinear gratingperiodic second-order or tive) losses can be neglected. Additionally, we consider only
x'?) susceptibility. QNPCs are of interest for all-optical gratings for forward-wave QPM, in which case the grating
components due to the fast and strong nonlinearity they caperiod is much longer than the optical period, far from the
provide through the parametric cascading effédt The ef-  Bragg-reflection regime. The evolution of the slowly varying
ficiency of the cascading process depends critically on th@eam envelopes is then described[By16]
phase mismatch between the fundamental and second-
harmonic(SH) waves, but two powerful methods exist that
use exactly a periodic photonic crystal structure to control w1 5w . iz
the mismatcH6-9]. In one method, a QNPC with a linear l 7 T §§+al(z)w+x(z)w ve™=0,

Bragg grating is used to bend the dispersion curve near the

PBG|[7,10]. However, the short period, which is of the order

of the optical wavelength, can be inconvenient. The second o 1% .

scheme, quasi-phase-matchit@PM), controls the phase i—+ — —+2a,(2)v+ x(2)W?e 'F?=0, @
mismatch using a nonlinear grating with a period equal to the gz 4 ox?

comparatively long beat lengtltypically of the order of mi-
crong [6,9]. QPM is also possible with linear gratings, but

this is much less effectivgr 8] . of the fundamental and SH, respectively. The transverse and

One of the spectacular manifestations of nonlinearity i ; : : : :
. . . ropagation coordinates and z are in units of the input
the soliton, a self-localized entity that can propagate unS—p pag P

: : beam widthx, and the diffraction lengtt. 4= k,x3, respec-

changed over long distances. Homogeneg(? materials . v, Th teB= AKL. i tional to th .
support solitons in all dimensiof&1], and gap solitons exist tively. The paramete= ~d IS pr?’por lonal to the mis-
in QNPCs with a linear Bragg gratirig2]. In this paper we Match Ak=k;—2k,, kj=jwn;/c being the average wave
focus on the open fundamental problem of whether solitongumber. Thuss is positive for normal dispersion and nega-
exist in one-dimensiondlLD) QNPCs withboth a linear and  tive for a_nomalo_us dispersion. The normalized refractive in-
a nonlinear QPM gratingSuch a simultaneous linear grating dex grating is given byr;(z)=L4wAn;(z)/c and the nor-
is difficult to avoid when, for example, creating nonlinear malized nonlinear grating byyx(z)=Lgwdex(2)/(n1C),
QPM gratings in GaAs/AlAs semiconductors throughwhere deg=x?)/2 is in Sl units. The mode{1) describes
guantum-well disorderin§13]. both temporal and spatial solitofis6].

Solitons exist in 1D QNPCs with only a nonlinear QPM  The aim is now to average Eg€l) and derive accurate
grating[14], but a simultaneous linear grating can reduce theequations for the average field. To do so we focus on first-

wherew=w(x,z) andv=uv(X,z) are the envelope functions
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NP These equations also describeth order QPM (where B
o Oj_\ N O Y =B—m« is ideally zerg and any other type of periodic
J_aj L L) L] L) L grating, the parametegs and y being simply given as sums

over the Fourier coefficients of the gratiftg]. Incorporat-
ing time or the spatial coordinate is also straightforward.
For the square gratin(®?), p and y can be explicitly calcu-
lated as

. . . . . . 2d  4dg(a;—ay)
FIG. 1. Normalized linear and quadratic nonlinear gratings, p=l—+—
«;(2) and x(2), with period 2 =21/ «|. ST

d3+d?(1—8/m?)
L] '}’: - .

STK K

order QPM using the conventional square gratings with 50% From Egs.(5) follows the important result thatubic non-

S . -~ “linearities are induced in QNPCby nonlinear QPM grat-
idnugllg())/ﬁlr?érszg\r,ivgsm Fig. 1. We expand the grating funct|onsmgS. This cubic nonlinearity has the form of self-phase

modulation(SPM) and cross-phase modulation, and is a re-
sult of non-phase-matched coupling between the wave at the
aj(Z)=ajz gne"%  x(z)=do+ dE g.€™% (2 main spatial frequenc_y and its higher harmonics. It i_s thus
n n of a fundamentally different nature than the material Kerr
nonlinearity, which is reflected in the fact that the SPM term
whereg,,=2s/(iwn) for n odd andg,=0 for n even, with s absent for the SH.
s=sgn(x). The gratings drive the system and thus we may Apart from sign changes arising from differing definitions
expand the envelope functions in a Fourier series also,  of Ak andp, the averaged modé5) is similarin formto the
known model for nonlinear QPM gratings with no dc com-
ponent @;=dy=0), in which bright solitons have properties
not predicted by the conventional model with only quadratic
terms[14]. The induced cubic nonlinearity also affects the
assuming that the coefficients,(z,x) and v,(z,x) vary Phase modulation of cws, enabling efficient switch[ag],
and its strength can be increased by modulation of the grat-
ing [18].

For the more general QNPCs considered here, the induced
cubic nonlinearity depends on both the dc part and the modu-
lation part of the nonlinear grating. It gives either a focusing
or a defocusing effect, depending on the relative intensity of
the fields and the sign of the phase mismajgh since
sgn(x) =sgn(B). The defocusing case was not considered in

W= wy(zx)eM?,  v= v, (z,x)e Bz (3)
n

n

slowly in z compared to expkz). The residual mismatcpp
= B—k is ideally zero.

Three physical length scales are in play: the diffraction
lengthLy, the coherence length., and the grating domain
length L. In normalized unitsLy=1, L.==/|8|, and L,
=7l|k|. We assume a typical QPM grating with a domain
length that is much shorter than the diffraction lendth,

<1. Furthermore, the grafing is of good quality, with the previous studie§l4]. The strength of the effective® non-
domain- length t?e'”g cI'ose o t.he cohNerence Ien@b, linearity depends on the difference in the linear grating
=L, so the residual mismatch is smalj|<|«|. In this  gyrengths at the fundamental and SH frequencies and on the
case|«|>1 and we can use perturbation theory with thegc component of the nonlinear grating. We thus recover the
small parametee= U k|<1. ] ~well-known effect that the interplay between the linear and
Following the approach of Ref14], we insert the Fourier  nonlinear gratings can increase or decrease the effegtile
expansiong?) and(3) into the dynamical equations and as- nonlinearity, depending on the physical situat[@;8].
sume the harmonicw/,.o andv,.o to be of ordere. To The averaged modéb) has stationary, localized soliton

1 i qi i o~
lowest order €7), this gives the harmonics solutions of the formw(x,2)=ew(x)/|p| and vq(x,2)

_ A2INT H :
Wis0=[210nWo+ (dgn_ 1+ dodn )WE o]/ (NK), =e“'"*p(x)/p, which obey the equations

LW o o e o
Un¢o:[2329nvo+(d9n+1+do5n,71)Wg]/(nK)- (4) EF—)\W-I-WU-F’y(UZ—WZ)W:O,
X
Using these solutions, we obtain to first ordethe averaged
equations for the dc componemg anduv,, 10 . ~ ey e
——+(B—2N)v+w+2ywDv =0, @)
4 ox?
w1 d?wg
i——+ 5 —5 +pWivo+ 2—wo|?)wo=0, ~
gz | 2 g2 PWovo Y(lool*=wol*)wo wherey= v/|p|? depends only or, a,— a,, andd,/d. The
slowly varying approximation gives valid solutions when the
J 142 soliton period is longer than the grating period, i.e., when the
1204 = 200 Bt p* Wi+ 29|wo|20e=0.  (5)  soliton parametek is small,[\|<|«|. Equations(7) cover a
iz 4 ox? much more general situation than [ib4], which only con-
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FIG. 2. QNPCs with the same value ®f The linear(nonlineay
grating is shown with a dashddolid) curve.
0.6
sidered a nonlinear grating. A given value of the parameter =

0.2 0.4 0.6 0.8 1

represent® range of physical situations with different com- Soliton Parameter. A

binations of linear and nonlinear grating$n Fig. 2 we il-
lustrate representative combinations for exact phase match- fiG. 4. Ratio of peak intensitieR=02(0)/w2(0) versus\ for
ing (8=0) all of which give the same value of. x=10f (continuous, x=4f (dot-dashelj and k= —10f (dashed
The first, simple cas@) is typical for domain inversion in and for the zeroth-order solutiofdotted. The averages of the
ferroelectric materials, such as LiNgQt has only a nonlin-  propagating solitons are shown for cafg by crossesii) by
ear grating with no dc componenty=0. Case(ii) has a dc  circles, andiii) by pluses3=0.
componentd,/d=3 but no linear grating, corresponding to
the nonlinear part of the LiINbQOH:LINbO5 structure re-
ported in[19]. Case(iii) is the GaAs/GggAl, »AS structure
reported in[19], which has a nonlinear grating witt, /d
=5/3 and a linear grating witha( —a,)/B8= —0.07. So that
casedii) and(iii) give the samé} as in(i), the grating wave
numberx is a factorf =48.5 andf =26.6 larger, respectively  conditions in simulations of the field Eq&l). The evolution
[by definitionf=1 for case(i)]. Physically this corresponds ¢qnsists of small, regular oscillations superimposed on the
to changing the input beam widtty, for a constan3=0. slow average beam. Properties of the propagating solitons
We have numerically found the bright soliton solutions of were calculated by averaging over an integer number of grat-
Egs. (7) using a standard relaxation technique. Figure 3ing periods and were then compared with the predictions of
shows soliton properties for normal€0.02) and anoma- the average model. Figure 4 displays the ratio of peak inten-
lous (y=—0.02) dispersion, together with the zeroth-ordersities versus\ for exact phase matchingi=0, and reveals
solution 6’2 0). The ratioRzT;z(O)/sz(O) of peak intensi- that, for both anomalous and normal dispersion, the solutions
ties, shown in Fig. @), confirms that the zeroth-order ap- ©Of the average model are accurate for smatind large| «,
proximation becomes increasingly inaccurate for lage @S expected. Even whér| =4 the first-order solutions pro-

Also. for a divens. R anproaches the same limitina value asvide a much better fit than the zeroth-order solutions. Our
' 9 4 PP 9 analysis thus shows that bright solitons exist and propagate

A increases, regardless of the valugofin this limit the SH  staply in QNPCs with many types and combinations of linear
is stronger than the fundamental fpr-0 (R>1) and much  and nonlinear QPM gratings.
weaker for y<0 (R=0). The total powerP=["_(v? The competition between linear and nonlinear gratings

+W?)dx is shown in Fig. &). For 8>0 this reveals that the can drastically alter the relative strength of th&) nonlin-
earity. For the LiNbQ and GaP/AIP structures given [jh9]

at phase matching«= ), the presence of the linear grating

power threshold for existence decreases $0f0 and in-

creases fory<0 compared to the zeroth-order value.

We tested the bright soliton solutions of the average
model (5) for the three QNPCs of Fig. 2 by mapping them
back to the variablesv and v, and using them as initial

01“3 01_00 changes the effectivg(®) nonlinearity by a factor ofF=1

o] - +2dg(a;—a,)/(dk)=1.4 and 0.3, respectively. The linear

©2 G;’ grating thus adds constructively in the LiNpGtructure and

2 8_50 destructively in GaP/AIP. In fact, modifying the nonlinear

%1 = grating in the GaP/AIP structure slightly p?=40 pm/V

£ | E (maX and x{?’=19 pm/V (min) eliminates the effective
00 5 10 00 1 x® nonlinearity entirely. This could happen in realistic

A A QNPCs without a violation of the assumptifw>1.

Conventional average modélg—9] would predict that no
_ FIG. 3. Soliton properties versus the internal paramatdor  gqjiton could exist with no nonlinearityy=0. However, in
y=0.02 (solid), y=—0.02 (dashed, andy=0 (dotted, and three  the model(5) the induced cubic nonlinearity predicts that
values of the residual mismatgh (a) Ratio of peak intensitie®  solitons should still exist as solutions of nonlinear Sehro
=12(0)/w?(0). (b) Total powerP. dinger equations. In the case when the SH is strong

047601-3
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FIG. 5. (a) Bright and(b) dark solitons propagating in QNPCs
with no effectivex® nonlinearity. Shown is the scaled intensity of
the fundamental fotx| =100, 3=0, and(a) y<0, A=1 and(b)
vy>0, A=—1. The SH is zero.

[vo/Wo=Eexdi(B—\/2)z)], a family of bright solitons,
Wo=\/(27) sech(/2\x)e'*?, exists for normal dispersion
(y,A>0), and a family of dark solitons, wg
=\ (4vy)tanh(/|x[x)e*?, exists for anomalous dispersion
(y,A<0). With no SH, bright solitons, wy
= J2\/[y|sech(/2\x)e'*?, exist for anomalous dispersion
(y<0OA>0), whereas dark solitons,  wg
= J|\|/ytanh/[x[x)e?, exist for normal dispersion «

PHYSICAL REVIEW E 64 047601

change for this case. The SH displays small, regular oscilla-
tions around the mean value zero, corresponding to the os-
cillations of the fundamental seen in Fig. 5. The simulations
thus confirm that bright and dark solitons can indeed propa-
gate in a stable manner in QNPCs with no effectjy/é
nonlinearity.

In summary, we have shown that bright solitons exist and
propagate in a stable manner in 1D QNPCs with many types
and combinations of linear and nonlinear QPM gratings. By
deriving first-order averaged equations, we have shown that
such QNPCs have an induced cubic nonlinearity, and we
have numerically found previously unknown families of
bright solitons. Even with no effective quadratic nonlinear-
ity, the QNPCs support both bright and dark solitons due to
the induced cubic nonlinearity. We have found analytical
expressions for these solitons and shown that they also
propagate in a stable manner. Dark solitons are always un-
stable in homogeneoug? media in settings for type | SHG,
due to modulational instability of the background plane
waves[20]. Because we have allowed for defocusing in-
duced cubic nonlinearity, our results show a dark soliton that
appears to be stable under propagation, with the stabilizing
mechanism necessarily originating from the photonic crystal

>0\ <0). We test these solutions also in simulations of theggycyre of the QNPC. Such stabilizing mechanisms are of

field Eqgs.(1).

considerable experimental inter¢21i]. A study of dark soli-

Figure 5 shows the evolution of a bright and dark soliton;yns in the general case is in progré2g].
with no SH over a distance of 25 grating periods. Reflective
losses, if included, would cause a decrease in amplitude of The project is supported by the Danish Technical Re-
approximately 5% because of the relatively large indexsearch Council through Grant No. 26-00-0355.
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