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Solitons in quadratic nonlinear photonic crystals
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We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the
linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities,
which can bedefocusing, and we numerically find previously unknown soliton families. Because of these
induced cubic terms, solitons still exist even when theeffective quadratic nonlinearity vanishesand conven-
tional theory predicts that there can be no soliton. We demonstrate that both bright and dark forms of these
solitons can propagate stably.
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The physics and applications of photonic band-gap~PBG!
materials, orphotonic crystals, have been active topics of
research for more than a decade. The theory of linear photo-
nic crystals is now well understood, and many of their fun-
damental properties and technical applications have been
characterized@1#. The next important step in the application
of photonic crystals is to create tunable PBGs. Tunability is
possible in linear photonic crystals through, e.g., the tem-
perature dependence of the refractive index@2# or the
electro-optic effect@3#. Ultrafast dynamical tunability of the
PBG can be accomplished using nonlinearity, as was first
demonstrated with a constant Kerr nonlinearity@4#.

Here we considerquadratic nonlinear photonic crystals
~QNPCs! that have a linear grating~periodic dielectric con-
stant! and/or a nonlinear grating~periodic second-order or
x (2) susceptibility!. QNPCs are of interest for all-optical
components due to the fast and strong nonlinearity they can
provide through the parametric cascading effect@5#. The ef-
ficiency of the cascading process depends critically on the
phase mismatch between the fundamental and second-
harmonic~SH! waves, but two powerful methods exist that
use exactly a periodic photonic crystal structure to control
the mismatch@6–9#. In one method, a QNPC with a linear
Bragg grating is used to bend the dispersion curve near the
PBG @7,10#. However, the short period, which is of the order
of the optical wavelength, can be inconvenient. The second
scheme, quasi-phase-matching~QPM!, controls the phase
mismatch using a nonlinear grating with a period equal to the
comparatively long beat length~typically of the order of mi-
crons! @6,9#. QPM is also possible with linear gratings, but
this is much less effective@7,8#.

One of the spectacular manifestations of nonlinearity is
the soliton, a self-localized entity that can propagate un-
changed over long distances. Homogeneousx (2) materials
support solitons in all dimensions@11#, and gap solitons exist
in QNPCs with a linear Bragg grating@12#. In this paper we
focus on the open fundamental problem of whether solitons
exist in one-dimensional~1D! QNPCs withboth a linear and
a nonlinear QPM grating. Such a simultaneous linear grating
is difficult to avoid when, for example, creating nonlinear
QPM gratings in GaAs/AlAs semiconductors through
quantum-well disordering@13#.

Solitons exist in 1D QNPCs with only a nonlinear QPM
grating@14#, but a simultaneous linear grating can reduce the

effective x (2) nonlinearity@7–9#. Thus the global existence
of solitons in such QNPCs is nontrivial. We find soliton so-
lutions that are stable under propagation because of cubic
nonlinearities induced by the dual QPM gratings. The QNPC
even supports stable bright and dark solitons when there is
no effectivex (2) nonlinearity. This is analogous to the exis-
tence of solitons in dispersion-managed fibers with no aver-
age dispersion@15#.

We consider the interaction of a cw beam~carrier fre-
quencyv) with its SH, propagating in a lossless 1D QNPC
under conditions for type I second-harmonic generation
~SHG!. We assume that the modulation of the refractive in-
dex is weak@Dnj (z)/n̄ j!1, wherenj (z)5n̄ j1Dnj (z) and j
refers to the frequencyj v#, such that reflective~and radia-
tive! losses can be neglected. Additionally, we consider only
gratings for forward-wave QPM, in which case the grating
period is much longer than the optical period, far from the
Bragg-reflection regime. The evolution of the slowly varying
beam envelopes is then described by@6,16#

i
]w

]z
1

1

2

]2w

]x2
1a1~z!w1x~z!w* veibz50,

i
]v
]z

1
1

4

]2v

]x2
12a2~z!v1x~z!w2e2 ibz50, ~1!

wherew5w(x,z) andv5v(x,z) are the envelope functions
of the fundamental and SH, respectively. The transverse and
propagation coordinatesx and z are in units of the input
beam widthx0 and the diffraction lengthLd5k1x0

2, respec-
tively. The parameterb5DkLd is proportional to the mis-
match Dk5k222k1 , kj5 j vn̄ j /c being the average wave
number. Thusb is positive for normal dispersion and nega-
tive for anomalous dispersion. The normalized refractive in-
dex grating is given bya j (z)5LdvDnj (z)/c and the nor-
malized nonlinear grating byx(z)5Ldvdeff(z)/(n̄1c),
where deff5x (2)/2 is in SI units. The model~1! describes
both temporal and spatial solitons@16#.

The aim is now to average Eqs.~1! and derive accurate
equations for the average field. To do so we focus on first-
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order QPM using the conventional square gratings with 50%
duty cycle, shown in Fig. 1. We expand the grating functions
in a Fourier series,

a j~z!5aj(
n

gneinkz, x~z!5d01d(
n

gneinkz, ~2!

wheregn52s/( ipn) for n odd andgn50 for n even, with
s5sgn(k). The gratings drive the system and thus we may
expand the envelope functions in a Fourier series also,

w5(
n

wn~z,x!einkz, v5(
n

vn~z,x!ei (nk2b̃)z, ~3!

assuming that the coefficientswn(z,x) and vn(z,x) vary
slowly in z compared to exp(ikz). The residual mismatchb̃
5b2k is ideally zero.

Three physical length scales are in play: the diffraction
lengthLd , the coherence lengthLc , and the grating domain
length L0. In normalized unitsLd51, Lc5p/ubu, and L0
5p/uku. We assume a typical QPM grating with a domain
length that is much shorter than the diffraction length,L0
!1. Furthermore, the grating is of good quality, with the
domain length being close to the coherence length,L0

.Lc , so the residual mismatch is small,ub̃u!uku. In this
case uku@1 and we can use perturbation theory with the
small parametere51/uku!1.

Following the approach of Ref.@14#, we insert the Fourier
expansions~2! and ~3! into the dynamical equations and as-
sume the harmonicswnÞ0 and vnÞ0 to be of ordere. To
lowest order (e1), this gives the harmonics

wnÞ05@a1gnw01~dgn211d0dn,1!w0* v0#/~nk!,

vnÞ05@2a2gnv01~dgn111d0dn,21!w0
2#/~nk!. ~4!

Using these solutions, we obtain to first ordere the averaged
equations for the dc componentsw0 andv0,
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These equations also describemth order QPM ~where b̃
5b2mk is ideally zero! and any other type of periodic
grating, the parametersr andg being simply given as sums
over the Fourier coefficients of the grating@14#. Incorporat-
ing time or the spatialy coordinate is also straightforward.
For the square grating~2!, r andg can be explicitly calcu-
lated as

r5 i
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4d0~a12a2!

spk
, g5

d0
21d2~128/p2!

k
. ~6!

From Eqs.~5! follows the important result thatcubic non-
linearities are induced in QNPCsby nonlinear QPM grat-
ings. This cubic nonlinearity has the form of self-phase
modulation~SPM! and cross-phase modulation, and is a re-
sult of non-phase-matched coupling between the wave at the
main spatial frequencyk and its higher harmonics. It is thus
of a fundamentally different nature than the material Kerr
nonlinearity, which is reflected in the fact that the SPM term
is absent for the SH.

Apart from sign changes arising from differing definitions
of Dk andr, the averaged model~5! is similar in form to the
known model for nonlinear QPM gratings with no dc com-
ponent (aj5d050), in which bright solitons have properties
not predicted by the conventional model with only quadratic
terms @14#. The induced cubic nonlinearity also affects the
phase modulation of cws, enabling efficient switching@17#,
and its strength can be increased by modulation of the grat-
ing @18#.

For the more general QNPCs considered here, the induced
cubic nonlinearity depends on both the dc part and the modu-
lation part of the nonlinear grating. It gives either a focusing
or a defocusing effect, depending on the relative intensity of
the fields and the sign of the phase mismatchb, since
sgn(k)5sgn(b). The defocusing case was not considered in
previous studies@14#. The strength of the effectivex (2) non-
linearity depends on the difference in the linear grating
strengths at the fundamental and SH frequencies and on the
dc component of the nonlinear grating. We thus recover the
well-known effect that the interplay between the linear and
nonlinear gratings can increase or decrease the effectivex (2)

nonlinearity, depending on the physical situation@7,8#.
The averaged model~5! has stationary, localized soliton

solutions of the formw0(x,z)5eilzw̃(x)/uru and v0(x,z)
5e2ilzṽ(x)/r, which obey the equations

1

2

]2w̃

]x2
2lw̃1w̃ṽ1g̃~ ṽ22w̃2!w̃50,

1

4

]2ṽ

]x2
1~ b̃22l!ṽ1w̃212g̃w̃2ṽ50, ~7!

whereg̃5g/uru2 depends only onk, a12a2, andd0 /d. The
slowly varying approximation gives valid solutions when the
soliton period is longer than the grating period, i.e., when the
soliton parameterl is small,ulu!uku. Equations~7! cover a
much more general situation than in@14#, which only con-

FIG. 1. Normalized linear and quadratic nonlinear gratings,
a j (z) andx(z), with period 2L052p/uku.
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sidered a nonlinear grating. A given value of the parameterg̃
representsa range of physical situations with different com-
binations of linear and nonlinear gratings. In Fig. 2 we il-
lustrate representative combinations for exact phase match-
ing (b̃50) all of which give the same value ofg̃.

The first, simple case~i! is typical for domain inversion in
ferroelectric materials, such as LiNbO3. It has only a nonlin-
ear grating with no dc component,d050. Case~ii ! has a dc
componentd0 /d53 but no linear grating, corresponding to
the nonlinear part of the LiNbO3 /H:LiNbO3 structure re-
ported in@19#. Case~iii ! is the GaAs/Ga0.8Al0.2As structure
reported in@19#, which has a nonlinear grating withd0 /d
55/3 and a linear grating with (a12a2)/b520.07. So that
cases~ii ! and~iii ! give the sameg̃ as in~i!, the grating wave
numberk is a factorf 548.5 andf 526.6 larger, respectively
@by definition f 51 for case~i!#. Physically this corresponds
to changing the input beam widthx0, for a constantb̃50.

We have numerically found the bright soliton solutions of
Eqs. ~7! using a standard relaxation technique. Figure 3
shows soliton properties for normal (g̃50.02) and anoma-
lous (g̃520.02) dispersion, together with the zeroth-order
solution (g̃50). The ratioR5 ṽ2(0)/w̃2(0) of peak intensi-
ties, shown in Fig. 3~a!, confirms that the zeroth-order ap-
proximation becomes increasingly inaccurate for largel.
Also, for a giveng̃, R approaches the same limiting value as
l increases, regardless of the value ofb̃. In this limit the SH
is stronger than the fundamental forg̃.0 (R.1) and much
weaker for g̃,0 (R.0). The total powerP5*2`

` ( ṽ2

1w̃2)dx is shown in Fig. 3~b!. Forb.0 this reveals that the

power threshold for existence decreases forg̃.0 and in-
creases forg̃,0 compared to the zeroth-order value.

We tested the bright soliton solutions of the average
model ~5! for the three QNPCs of Fig. 2 by mapping them
back to the variablesw and v, and using them as initial
conditions in simulations of the field Eqs.~1!. The evolution
consists of small, regular oscillations superimposed on the
slow average beam. Properties of the propagating solitons
were calculated by averaging over an integer number of grat-
ing periods and were then compared with the predictions of
the average model. Figure 4 displays the ratio of peak inten-
sities versusl for exact phase matching,b̃50, and reveals
that, for both anomalous and normal dispersion, the solutions
of the average model are accurate for smalll and largeuku,
as expected. Even whenuku54 the first-order solutions pro-
vide a much better fit than the zeroth-order solutions. Our
analysis thus shows that bright solitons exist and propagate
stably in QNPCs with many types and combinations of linear
and nonlinear QPM gratings.

The competition between linear and nonlinear gratings
can drastically alter the relative strength of thex (2) nonlin-
earity. For the LiNbO3 and GaP/AlP structures given in@19#
at phase matching (k5b), the presence of the linear grating
changes the effectivex (2) nonlinearity by a factor ofF51
12d0(a12a2)/(dk)51.4 and 0.3, respectively. The linear
grating thus adds constructively in the LiNbO3 structure and
destructively in GaP/AlP. In fact, modifying the nonlinear
grating in the GaP/AlP structure slightly toxa

(2)540 pm/V
~max! and xb

(2)519 pm/V ~min! eliminates the effective
x (2) nonlinearity entirely. This could happen in realistic
QNPCs without a violation of the assumptionuku@1.

Conventional average models@7–9# would predict that no
soliton could exist with no nonlinearity,r50. However, in
the model~5! the induced cubic nonlinearity predicts that
solitons should still exist as solutions of nonlinear Schro¨-
dinger equations. In the case when the SH is strong

FIG. 2. QNPCs with the same value ofg̃. The linear~nonlinear!
grating is shown with a dashed~solid! curve.

FIG. 3. Soliton properties versus the internal parameterl for

g̃50.02 ~solid!, g̃520.02 ~dashed!, and g̃50 ~dotted!, and three

values of the residual mismatchb̃. ~a! Ratio of peak intensitiesR

5 ṽ2(0)/w̃2(0). ~b! Total powerP.

FIG. 4. Ratio of peak intensitiesR5 ṽ2(0)/w̃2(0) versusl for
k510f ~continuous!, k54 f ~dot-dashed!, andk5210f ~dashed!,
and for the zeroth-order solution~dotted!. The averages of the
propagating solitons are shown for case~i! by crosses,~ii ! by

circles, and~iii ! by pluses.b̃50.
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@v0 /w05A5exp„i (b̃2l/2)z…#, a family of bright solitons,
w05Al/(2g) sech(A2lx)eilz, exists for normal dispersion
(g,l.0), and a family of dark solitons, w0

5Al/(4g)tanh(Aulux)eilz, exists for anomalous dispersion
(g,l,0). With no SH, bright solitons, w0

5A2l/ugusech(A2lx)eilz, exist for anomalous dispersion
(g,0,l.0), whereas dark solitons, w0

5Aulu/g tanh(Aulux)eilz, exist for normal dispersion (g
.0,l,0). We test these solutions also in simulations of the
field Eqs.~1!.

Figure 5 shows the evolution of a bright and dark soliton
with no SH over a distance of 25 grating periods. Reflective
losses, if included, would cause a decrease in amplitude of
approximately 5% because of the relatively large index

change for this case. The SH displays small, regular oscilla-
tions around the mean value zero, corresponding to the os-
cillations of the fundamental seen in Fig. 5. The simulations
thus confirm that bright and dark solitons can indeed propa-
gate in a stable manner in QNPCs with no effectivex (2)

nonlinearity.
In summary, we have shown that bright solitons exist and

propagate in a stable manner in 1D QNPCs with many types
and combinations of linear and nonlinear QPM gratings. By
deriving first-order averaged equations, we have shown that
such QNPCs have an induced cubic nonlinearity, and we
have numerically found previously unknown families of
bright solitons. Even with no effective quadratic nonlinear-
ity, the QNPCs support both bright and dark solitons due to
the induced cubic nonlinearity. We have found analytical
expressions for these solitons and shown that they also
propagate in a stable manner. Dark solitons are always un-
stable in homogeneousx (2) media in settings for type I SHG,
due to modulational instability of the background plane
waves @20#. Because we have allowed for defocusing in-
duced cubic nonlinearity, our results show a dark soliton that
appears to be stable under propagation, with the stabilizing
mechanism necessarily originating from the photonic crystal
structure of the QNPC. Such stabilizing mechanisms are of
considerable experimental interest@21#. A study of dark soli-
tons in the general case is in progress@22#.

The project is supported by the Danish Technical Re-
search Council through Grant No. 26-00-0355.
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FIG. 5. ~a! Bright and~b! dark solitons propagating in QNPCs
with no effectivex (2) nonlinearity. Shown is the scaled intensity of

the fundamental foruku5100, b̃50, and~a! g,0, l51 and~b!
g.0, l521. The SH is zero.
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