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We consider impulsive excitation of a linear polar molecule by a plane polarized electromagnetic
“half-cycle” pulse in the terahertz range. A rotational wave packet is created with angular momentum
states of different parity. The time evolution of the wave packet corresponds to alternating molecular
orientations with respect to the polarization axis of the field. This field-free time-dependent orientation of
the molecule is computationally demonstrated, also at finite temperatures, with LiH and Nal as examples.
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Alignment and orientation of molecules can play an
important role in the outcome of molecular collisions as
well as in the interaction between molecules and elec-
tromagnetic fields (Refs. [1-3], and references therein).
Several schemes for the alignment or orientation of
molecules have been suggested (Refs. [4—10], and refer-
ences therein). These schemes are based on the interaction
with static or time-dependent electromagnetic fields.
Molecules in intense laser fields can align, e.g., using a
laser frequency on resonance with an electronic transition
[10] or an off-resonant infrared field keeping the molecule
in the electronic ground state [8].

Ultrashort laser pulses can generate a superposition of
molecular eigenstates, i.e., a nonstationary wave packet.
We consider here the excitation of angular motion, that is,
the creation of a wave packet in the angular degrees of free-
dom via short-pulse, off-resonant excitation with respect to
rotational transitions. Recently, field-free alignment, after
turn-off of a laser pulse, was proposed [11,12]. Wave-
packet revivals were found corresponding to strong en-
hancement of the alignment subsequent to the laser pulse.

Time-dependent orientation of diatomic molecules
has been considered within the rigid-rotor approximation
[13,14]. Field-free orientation was, in particular, discussed
in Ref. [13]. Impulsive (“sudden”) excitation generated
by an ultrashort pulse was described analytically by the
first term in the Magnus expansion of the propagator.
Oscillatory motion (libration) in 6, the angle between
the polarization axis of the field and the molecular axis,
was created: The wave packet corresponds to the motion
of the molecule which alternates between orientations in
the forward and backward hemisphere, respectively, with
respect to the polarization axis of the field. The initial
state was assumed to be one of the rotational eigenstates.

The key result presented in this Letter is that field-free
time-dependent orientation for a molecule like LiH can be
generated after the turn-off of a state-of-the-art electro-
magnetic half-cycle pulse [15]. This proposition is based
on theoretical results for diatomic molecules where rota-
tion and vibration are included. The coupling to the field
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is described within the electric-dipole approximation, and
the time-dependent Schrodinger equation is solved numeri-
cally without any additional approximations.

We consider a diatomic molecule, in the electronic
ground state, described by the Hamiltonian
h? [ 9* 2 9 } L?

—— |+ S|+ +VR 1
o TR T TVR D

where m is the reduced mass of the nuclei, I = mR? is the
moment of inertia at the internuclear distance R, L2 is the
angular momentum operator, and V(R) is the internuclear
potential.

The molecule which is assumed to have a permanent
dipole moment is subject to a flash of coherent electro-
magnetic radiation. The field-molecule coupling H;(¢) is
an electric-dipole coupling with a plane polarized electro-
magnetic field,

H;(t) = —u(R)Eycosfal(t) cos(wt), (2)

w(R) is the electric-dipole moment at the internuclear dis-
tance R, and the envelope function a(z) is centered at the
time t = ¢, and chosen as a Gaussian pulse shape,

a(r) = e =1, 3)

The impulsive nature of the excitation implies that the
pulse duration, o, is much shorter than a rotational period
7 and the excitation is, consequently, off resonant.

The total Hamiltonian is Hy + H;(¢), and, with a lin-
early polarized pulse, the quantum number associated with
the projection of the angular momentum along the polar-
ization axis, M, is conserved. The wave function can be
represented by the expansion

(R0, .0 =D xr(R.OYpu(0.6). ()
J/

where the spherical harmonics satisfy

L*Yym(0,$) = J'U" + DE*Ypm(0.6). (5
The initial state is an eigenfunction of Hy, Wy (R,0,
#,0) = x/(R)Y; (60, @), where x;(R) is a rovibrational
eigenfunction corresponding to the quantum numbers
(v,J). When this expansion in spherical harmonics is

Hy =
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substituted into the time-dependent Schrodinger equation,
a set of coupled equations in the radial coordinate, R,
is obtained. The unknown wave functions y,/(R,t) are
obtained via a grid representation [16].

The orientation can, e.g., be monitored by

On(t) = fREU Wy (R, 0,1)]*dR

— f ¥y, (R,6,1)|>dR, (6)
ReL

where n = (v,J,M) denotes the dependence on the
initial state, dR = R2dR sinddfd ¢, “U” is the upper
hemisphere (0 < 6 < 7/2), and “L” is the lower hemi-
sphere (7w/2 < 6 < 7). Note that max[O,(r)] = 1
when the “head” of the molecule is in the upper hemi-
sphere, and min[Oy(r)] = —1, when the head is in the
lower hemisphere. Alternatively, the expectation value
of cos, {(cosO)(t) = (¥ (R,0,1)|cosd|Vy(R,H,t)),
can be used as a measure of the orientation [14].
(cost)y(t) € [—1,1]. Note that the limiting values of
(cos@)y(r) are attained only when the orientation as well
as the alignment is perfect.

In the rigid-rotor approximation, it is possible to obtain
insight concerning the time evolution. The wave packet
can be expressed as the time evolution of the initial state
|/, M) during the electromagnetic pulse followed by the
time evolution associated with the field-free rigid-rotor dy-
namics Uy(t, to) = exp[—iL*(t — t9)/(2h1,)], where tq is
the effective interaction time:

laa (0, )17 = K0, plUo(t, 1)U (10, 0) |J, MI*. ()

The wave packet, after the field-molecule interaction, is
expressed by an expansion in spherical harmonics,

(0, U (15,0)1J, M) = Zcﬂm(a $),  ®

where ¢, depend on the initial state |7, M). Thus,

MCR Z|CJ'| Y510, 6)I?
+ZZ Z les e Ym0, $)Y iy (6, &)
J/ JN<J/
X COS[AEJ/JN(I — to)/h — QDJ/J//], (9)
where

Qg = arg(CJ’) - arg(CJ”)

AEp = (Ejp — Epn) = BE[J/(J/ +1) — J/I(JH + 1)]

(10

= n(2B,),

All the frequencies are equal to an integer times 2B, /#,

where B, = h%/(21,), which implies that revivals in the

wave packet will show up at time intervals given by the

fundamental period 7 = 7//B,. This is also the time
dependence of Oy(¢) and (cosf)y, (7).

In order to avoid numerical time propagation over peri-

ods of several hundred picoseconds, we use an approach

where n € 7.
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similar to that in Eq. (7). We project the wave packet onto
the eigenstates of Hy, after the interaction with the elec-
tromagnetic pulse, and continue the propagation using the
known time evolution of the eigenstates.

Figure 1 illustrates the principle of field-free time-
dependent orientation. Within the rigid-rotor ap-
proximation, a superposition of the states J' = 0 and
(J',M) = (1,0) (with equal weights) is assumed at
t = 0. The orientation parameters are given by O(t) =
(v/3/2) cos(AE1ot/F) and {cos8) (1) = /1/3 cos(AE ot/
fi). Thus, at t = 0 and ¢t = 7 the molecule is essen-
tially found only in the forward hemisphere (0 < 7/2),
whereas at ¢+ = 7/2 the molecule is almost exclusively
positioned in the backward hemisphere. The physical
basis for this effect is the interference between the two
angular momentum states [see Eq. (9)], which have
different parity with respect to inversion at the origin.

A rotational wave packet with rotational states of differ-
ent parity can be created by the interactions with an ultra-
short pulse of electromagnetic radiation, where the pulse
duration is shorter than the optical period of the radiation.
Such “half-cycle” pulses (HCP) can be generated experi-
mentally [15]. The important feature of the pulse is a
large asymmetry in the magnitude of the positive and the
negative peak value of the electric field, e.g., 5:1 as in
Ref. [15]. We model a HCP using the envelope func-
tion a(r) in Eq. (3) with o = 7/(w2+/In2). For a peak
frequency around 1 THz (hw = 36 cm™!) the temporal
width is 450 fs (o = 279 fs). Experimentally a focused
field with a peak field of Eg > Excp = 1.5 X 107 V/m
can be generated [15]. We use peak fields of Ey = 1, 2,
or 4 Egcp in our numerical simulations.

We consider LiH and Nal in the electronic ground state,
that is, two polar molecules with very different rotational
constants, B, = 7.51 cm~! and 0.12 cm ™!, respectively,

Orientation

tlt

FIG. 1. The principle of field-free orientation—orientation
parameters as a function of time. A superposition of the states
J' =0 and (J',M) = (1,0) (with equal weights) is assumed
at t = 0, in the rigid-rotor approximation. 7 = 7/ /B, is the
fundamental rotational period. The insets show polar plots
of the rotational wave function, at the times indicated by the
arrows. The complete wave function is obtained by a rotation
of the curves about the z axis.
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FIG. 2. The orientation parameter {cos@),(t) for Nal for the
initial states J = 0, 1, and 2. For J = 1 and 2, the curve is the
sum over (cos8)y m)(¢) for all initial M states. The peak field
strength of the HCP is Ey = 3 X 107 V/m.

and the corresponding rotational periods are 7 = 2.2 ps
and 138 ps. The fundamental vibrational frequency is
1406 cm™! and 258 cm™!, respectively. The calculations
are based on the potentials V (R) and dipole moments u(R)
given in Refs. [17,18]. The permanent dipole moments are
#(R,) = 5.88 D and 9.2 D for LiH and Nal, respectively.

Figure 2 shows (cosf),;(r) for Nal for the initial
states J = 0, 1, and 2. A pronounced field-free time-
dependent orientation is observed, with full revivals
spaced by 7 = 138 ps. The peak value of (cos@),(r)
decreases with increasing J. Note that the three curves
are not phase shifted; therefore, revivals are also present
in the sum of the curves.

The population in the angular momentum eigenstates
of Nal and LiH after the impulsive excitation, for vari-
ous initial states, is shown in Fig. 3. Several higher angu-
lar momentum states are populated. Selection rules, like
AJ = *1and AJ = =2, apply only for long pulses with

01 2 3 4 5 6 1 2 3 4 5 6
0'6 T T T T T T T T T T T 0'6
05 dos
04 {04
g 03 03
-
02 J=0, M=0 J=LM=0 |,
0.1 Nal E E Nal 0.1
W E-1510
05L i EO 1.5-10" V/im {os
L) E=3-10" vim
o e 06
g E,=610" V/m
A
J=0,M=0 04
L 192
1 1 @I 0
2 3 4

FIG. 3.

The population in angular momentum eigenstates of

Nal and LiH after impulsive excitation using a HCP.
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low or moderate intensities. When we compare these re-
sults to the results obtained within the rigid-rotor approxi-
mation, P(J') differs by 0.01%-0.5% and 0.2%-8% for
Nal and LiH, respectively. The HCP used in this work
induces, essentially, no vibrational excitation.

The results presented above were based on the assump-
tion that the molecule initially was in an eigenstate of the
Hamiltonian Hy. The thermally averaged orientation takes
the form

0 M=J
(cost)r(t) = > P() D (cosbyan(n).,  (11)
J=0 M=—J
where a summation over vibrational quantum numbers is
omitted, since we consider only low temperatures, and
P(J) is the Boltzmann distribution associated with the
rotational states. Within the rigid-rotor approximation

P(J) = exp{=J(J + DB./(kgT)}/Qror,  (12)

where Qox = 872l kT /h>. The energy level with the
highest weight in the Boltzmann average is at Jp,x =
VIkpT /B — 1/2 (rounded off to the closest integer). For
Nal at T = 10 K, Jmax = 5 and the distribution is, in ad-
dition, fairly broad. The thermal average is a weighted
sum of time-dependent terms with different oscillation fre-
quencies and phases. Within the rigid-rotor approxima-
tion, the angular wave packet created by the pulse contains
the frequencies v, = n[B./(7wh)], where n = 1,2,3,...,

{cosB)

{cosB)

{cos )

E =610’ V/m
0 I

1
0 1 2 3 4 5 6 7
t [ps]

FIG. 4. The orientation parameter (cosf)r(¢) for LiH at the
temperatures and field strengths specified in the figure. E(t)/Eg
is the normalized electric field of the HCP.
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FIG. 5. The orientation parameter (cosf)r(¢) for Nal at the
temperatures and field strength specified in the figure.

irrespective of the initial state. Thus, we expect revivals
also in the Boltzmann average, provided the phases are in-
dependent of the initial state.

Figure 4 shows the orientation parameter {cosf)7(t) for
LiH at the temperatures and field strengths specified in the
figure. A strong orientation effect is observed after turn-off
of the pulse, with full revivals spaced by 7 = 2.2 ps. The
coupling between vibration and rotation is included in the
calculation, but the observed revival time is in good agree-
ment with Eq. (9), i.e., the dynamics within the rigid-
rotor approximation. At the studied temperatures only
initial states corresponding to J = 2 make a significant
contribution.

The time-dependent orientation effect is less robust to
thermal averaging for Nal than for LiH due to the larger
number of initial J states contributing; see Fig. 5. For Nal
all initial states corresponding to J = 16 were included
in the calculation. Again, an orientation effect is observed
after turn-off of the pulse, with full revivals spaced by 7 =
138 ps. When compared to the results for LiH, it is clear
that a higher field strength is required in order to induce
a noticeable time-dependent orientation. The oscillations
in the orientation parameter for Nal are “wiped out” at
higher temperatures due to the less efficient orientation of
the higher initial J states. In addition, small deviations
from rigid-rotor dynamics can play a role.

With the low field strengths investigated in this Letter,
the orientation effect disappears when the pulse contains
one or more full optical oscillations. In practice, in order to
avoid pulses with very high intensities a pulse containing
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a single optical oscillation or half-cycle electromagnetic
pulses are required.

The key result presented in this Letter is the prediction
of field-free time-dependent orientation for a molecule like
LiH, using the current state-of-the-art HCP. Slightly higher
field strengths will induce a very pronounced field-free
time-dependent orientation which, in addition, is very ro-
bust towards thermal averaging.

This work was supported by the Danish Natural Science
Research Council and The Carlsberg Foundation.
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