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The electronic structure of substitutional Al and P impurities in silica is investigated using supercell calcu-
lations within the framework of density functional theory~DFT!. Evaluation of hyperfine matrices for the
magnetic nuclei facilitates comparison to experimental data. It is found that the unpaired spin state of substi-
tutional P is well described by the theory, while the unpaired spin state found for substitutional Al is severely
at variance with the experimental data. Cluster calculations using both the DFT and the Hartree-Fock approxi-
mation indicate that the problem is not caused by the supercell approach but rather by the residual self-
interactions present in the DFT energy functionals. A simple model discussion serves to illustrate why DFT
succeeds for P but fails for Al: First, it is argued that DFT self-interactions are larger for holes than for
electrons. Second, there is an ‘‘asymmetry’’ between electrons and holes in the electronic states of the silica
network: The hole present at the Al impurity goes into a nonbonding O orbital while the extra electron present
at the P impurity goes into a P-O antibonding state.

DOI: 10.1103/PhysRevB.65.075208 PACS number~s!: 61.72.Hh, 71.20.Ps, 76.30.Lh

I. INTRODUCTION

Doped silica glass is a key material for optical communi-
cation technology, and there is currently great interest in im-
proving the fundamental understanding of impurity chemis-
try in silica. Two of the technologically most important
dopants are the horizontal neighbors of Si in the periodic
table, Al and P. P doping has been used extensively to modify
the elastic properties and refractive index of silica glasses,
and it has been shown that implantation of P ions can sig-
nificantly enhance the nonlinear parts of the optical
susceptibility.1 Both Al and P doping have been found to
enhance the solubility of rare-earth-metal ions in silica
~which is essentially zero in the absence of such codoping!,
and this effect is of great practical importance in the fabrica-
tion of, e.g., light-amplifying optical devices.

A number of experimental investigations have been per-
formed in order to clarify the properties of Al and P impuri-
ties in both crystalline and amorphous silica,1–11 but the ex-
perimental techniques employed usually only yield indirect
information about the geometry and electronic structure of
the impurities and their local environments. Thus there is a
need to complement the experimental investigations by the-
oretical studies that may provide a link between the ‘‘funda-
mental’’ impurity properties and the experimentally acces-
sible quantities ~e.g., results from optical or magnetic
resonance spectroscopies!. Two theoretical techniques have
in recent years proven succesful for investigations of defects
and impurities in silica. One approach12–17 is based on tradi-
tional quantum-chemical methods using cluster models and a
basis set consisting of local orbitals~usually Gaussians!, and
a variety of energy functionals such as Hartree-Fock, second-
order Moller-Plesset~MP2!, and various approximations to
density functional theory~DFT!.18–20The other21–29is based
on repeated supercell models and DFT energy functionals,
which are in most cases evaluated using a plane-wave repre-
sentation of the Kohn-Sham wave functions and non- or
semilocal pseudopotentials to describe the electronic states

close to the nuclei in an efficient manner. We have recently
presented a study of implanted and substitutional Al and P
impurities in silica using a DFT-based supercell method.29

The purpose of the present work is to extend the study of the
substitutional impurities through a calculation of the hyper-
fine matrices for the magnetic nuclei27Al, 29Si, 31P, and
17O.

Several theoretical studies of substitutional Al impurities
have been reported earlier,12,13,27–29 but the results from
Hartree-Fock cluster calculations12,13 have not been consis-
tent with those of DFT-based supercell approaches.27–29 Re-
cently, two independent works have compared results of
cluster calculations using a DFT-like functional to those ob-
tained with the Hartree-Fock method30,31and in one case also
the MP2 functional.30 The DFT geometries were similar to
those obtained in supercells, and the hyperfine parameters
were in clear disagreement with experimental results, indi-
cating that the choice of an energy functional free of self-
interaction is decisive for describing the physics of this sys-
tem correctly. In the present paper we show that, while the
supercell DFT calculations for the substitutional Al impurity
as expected yields hyperfine parameters in strong disagree-
ment with experiment, the method accounts well for the hy-
perfine parameters of substitutional P. Thus, the DFT is ap-
propriate for describing the behavior of a single electron in
the silica conduction bands, but fails in the description of a
single hole in the valence band. It is argued that this is partly
due to the different nature of the silica valence and conduc-
tion bands and partly to the DFT self-interaction error being
larger for holes than for electrons.

The remainder of the paper is organized as follows: In
Sec. II we briefly review the calculation of hyperfine matri-
ces within the framework of ultrasoft pseudopotential~US-
PP! theory. In Sec. III our numerical results are presented
and discussed, while Sec. IV summarizes our conclusions.

II. THEORETICAL APPROACH

When evaluating hyperfine matrices it is important to de-
scribe the wave function correctly close to the nuclei, which
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is difficult within traditional norm-conserving pseudopoten-
tial approaches. It has recently been shown,32 however, that
the ultrasoft pseudopotential~US-PP! scheme originally in-
troduced by Vanderbilt33 can be viewed as an approximation
to the projector-augmented-wave~PAW! all-electron method
developed by Blo¨chl.34 In this method the wave function is
expanded in a basis of plane waves augmented by atomic
orbitals inside spheres centered around the ions on the lat-
tice:

Cnks5C̃nks1(
i

^C̃nksub i&~f i2f̃ i !. ~1!

Heres is a spin index, which we, for convenience, shall take
to assume the values61. The functionsf i and f̃ i are
atomic orbitals~i.e., a radial function times a spherical har-
monic! centered on a particular site in the crystal, and are
chosen to be identical outside the augmentation spheres, im-
plying thatCnks andC̃nks are also identical in this region.i
is to be understood as a combined orbital, spin, and site
index. The f i functions are solutions of the all-electron
Kohn-Sham equations19 in the free atom, at chosen energies
~usually the atomic eigenvalues are included!, while the f̃ i
are soft pseudo-orbitals. The functionsb i are a set of duals to
the pseudo-orbitals, i.e.,

^b j uf̃ i&5d i j . ~2!

Under the assumption of ‘‘pseudocompleteness,’’ by
which we shall understand fulfillment of the requirement

C̃nks5(
i

^C̃nksub i&f̃ i ~3!

and thereby

Cnks5(
i

^C̃nksub i&f i ~4!

within the augmentation spheres, the charge density may be
written as34

n~r ,s!5(
nks

f ~«nks2mc!$uC̃nks~r !u21(
i j

^C̃nksub i&

3^b j uC̃nks&Qi j ~r2t i !%, ~5!

Qi j ~r !5f i* ~r !f j~r !2f̃ i* ~r !f̃ j~r !. ~6!

ti is the position vector of the augmentation sphere contain-
ing orbital i ~we assume nonoverlapping spheres so that the
i j sum can be restricted to orbital pairs belonging to the
same sphere!. f is the Fermi function andmc the chemical
potential. Usually onlyspdorbitals are included in thef i ,f̃ i
basis set.

In both the PAW and US-PP methods it is convenient to
introduce smooth pseudodensities,ñ and ñaug, given by

ñ~r ,s!5(
nks

f ~«nks2mc!uC̃nks~r !u2, ~7!

ñaug~r ,s!5ñ~r ,s!1(
nks

f ~«nks2mc!(
i j

^C̃nksub i&

3^b j uC̃nks&Q̃i j ~r2t i !. ~8!

Q̃i j is a set of pseudoaugmentation charges, determined so as
to preserve the lowest moments of theQi j ’s. In this way, the
long-range electrostatic interactions are correctly described
by the pseudo-charge-density, and the pseudo-Hartree and
exchange-correlation~xc! energy terms need only be cor-
rected inside the atomic spheres. This is conveniently done
by a nonlocal potential term.34,33 In the PAW method the
correction is exact, so in this approach the DFT energy func-
tional corresponding to the density in Eq.~5! is minimized
with the pseudo-wave-functionsC̃nks as variational param-
eters. In the US-PP method the correction is approximate,
based on a linearization around the free-atom occupancies.32

In practice, the two methods yield results in good agreement
with each other. Assuming that the US-PPC̃nks is not too
different from the corresponding PAW quantity, it follows
that a good approximation to the all-electron wave function
may be constructed on the basis of a US-PP calculation by
use of Eq.~1!. In the context of calculating hyperfine param-
eters this approach was originally introduced by Van de
Walle and Blöchl,35 and we shall proceed along similar lines.

The interaction between an unpaired electron spin and a
magnetic nucleus can formally be written as

Î• Ā̄•Ŝ. ~9!

Here Î andŜ are the quantum-mechanical~vector! operators

for the nuclear and electronic spins, respectively, whileĀ̄ is
the hyperfine matrix. This may in turn be evaluated from the
electronic spin density as

Ā̄5AisoĪ̄ 1 Ā̄an, ~10!

Aiso5
2

3
m0beb Inspin~0!, ~11!

Aan
mn5

m0

4p
beb IE dr nspin~r !

3xmxn2dmnr 2

r 5
, ~12!

taking the nucleus to be at the origin of coordinates. Herem0
is the vacuum permeability, whilebe and b I are the mag-
netic moments of the electron and nucleus, respectively.nspin

is the electronic spin density andĪ̄ the unit matrix. Using the
augmented pseudodensity,ñaug(r ,s) given by Eq.~8!, and its
Fourier transformñaug(G,s), it is a straightforward exercise
to show that

nspin~0!5(
s

sñ~0,s!1(
nks

f ~«nks2mc!(
i j

s^C̃nksub i&

3^b j uC̃nks&Qi j ~0!, ~13!
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E dr nspin~r !
3xmxn2dmnr 2

r 5

5(
s

sH (
GÞ0

4p

3
ñaug~G,s!

3GmGn2dmnG2

G2

1(
nk

f ~«nks2mc!(
i j

^C̃nksub i&^b j uC̃nks&

3E
0

r c
dr @Qi j ~r !2Q̃i j ~r !#

3xmxn2dmnr 2

r 5 J . ~14!

A similar result was recently reported by Blo¨chl.36 Notice
that sinceñaug correctly reproduces the multipole moments
of n in the neighboring spheres we only need to include
augmentation corrections in the sphere containing the mag-
netically active nucleus.

These formulas summarize the contribution to the hyper-
fine matrix from the valence electrons. The presence of a
nonzero valence electron spin density will modify the shape
of the core wave functions and create an additional contribu-
tion to the spin density at the nucleus, which in some cases
can be important. To account for this effect, we solve the
radial Schro¨dinger equation for the core states, treating the
spherically averaged spin-dependent contribution to the
Kohn-Sham potential from the valence electron density as a
fixed external potential. Nonspherical perturbations of the
core states are neglected, and the spin polarization of the
core states therefore only affects the isotropic part of the
hyperfine matrix.

III. NUMERICAL RESULTS AND DISCUSSION

We have previously calculated the electronic and geomet-
ric structure of substitutional Al and P impurities in silica,29

and the present investigation is based on these results. The

FIG. 1. Simplified level schemes for substitutional impurities in
silica. In ~a!, a level diagram for pure silica is shown: The Si 3sp
levels hybridize to the O 2p levels to form occupied bonding, and
unoccupied antibonding states, separated by a set of occupied non-
bonding orbitals derived from O 2p states. In~b! the levels at an Al
impurity site are depicted: The Al level leads to new bonding states
~B2!, and antibonding states buried in the conduction bands. An
unpaired hole is present in the top of the valence bands. In~c! we
show the corresponding levels at a P impurity. Here, the lower
position of the P 3sp levels compared to those of Si gives rise to a
gap level holding an unpaired electron. The P-O bonding states are
situated at the bottom of the Si-O bonding-state bands.
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essence of the electronic structures found is summarized in
Fig. 1. In pure silica, the top of the valence band is formed
by a set of nonbonding O states, lying above the Si-O bond-
ing states. The conduction band is formed by antibonding
Si-O states. As the Al 3sp levels lie slightly above the Si
ones, the Al-O bonding states of a substitutional Al impurity
will appear in the gap between bonding Si-O and nonbond-
ing O states, whereas the Al-O antibonding states will be
buried in the Si-O conduction bands. Al has one electron less
than Si, so a hole will be present in the top of the valence
band, that is, in the nonbonding O bands. In the case of
substitutional P, on the other hand, the impurity 3sp levels
lie below those of Si, so the bonding P-O states appears at
the lower edge of the Si-O ones, while the antibonding states
falls below the conduction band and forms a gap state. One
spin channel of this gap state is occupied, since P has one
electron more than Si. Thus, the hole introduced by Al sub-
stitution moves in an orbital space that is quite different from
that which is accessible to the electron introduced by P sub-
stitution, a fact that will be shown to have important conse-
quences for the reliability of the DFT approach.

A. 31P hyperfine parameters

To investigate the accuracy of the pseudopotential ap-
proach to calculation of hyperfine parameters described
above, 31P hyperfine matrices were calculated using P
pseudopotentials with a different number of augmentation
orbitals in the various angular-momentum shells. The results
are shown in Table I. It can be seen that the uncertainties
associated with the atomic orbital basis set are on the order
of 1%, which is less than the errors commonly encountered

when comparing theoretical values of hyperfine matrices to
experiment. The present calculation gives a good reproduc-
tion of the anisotropic part of the hyperfine matrix, whereas
the isotropic part is;25% off. It is well known from other
studies that the isotropic term is the most difficult to
reproduce,35 presumably because of the approximate descrip-
tion of relativistic and exchange-correlation effects close to
the nucleus. Core polarization effects were found to add
about 1% to the total isotropic shift in this case. The high
accuracy of the calculated anisotropic terms suggests that it
is only the wave function very close to the nucleus that is
inadequately described by the present theory. The principal
directions of the hyperfine matrix~calculated with the
pseudopotential labeled PP1 in Table I! are compared to the
experimentally determined ones in Table II. The variation of
these directions between the different pseudopotentials was
found to be on the order of 1%. Again, the agreement be-
tween theory and experiment is quite good, apart from an
interchange of two eigenvectors. Uchida and co-workers3

found the eigenvector of the lowest eigenvalue to lie ap-
proximately along the line connecting the two oxygen atoms,
which would be short-bonded to the substitutional P if no
structural relaxations occurred compared to pure silica. How-
ever, in our calculation we find that the order of long and
short bonds is interchanged around P, i.e., the short-bonded
O atoms around an Si atom become the long-bonded O at-
oms around the substitutional P impurity. Thus, while the
conclusion of Uchidaet al. that the lowest eigenvalue is in
the direction of the short bonds is upheld, this direction is
changed relative to the crystal axes by the structural relax-
ations. As the difference between long and short bonds in
a-quartz is very small (;0.004 Å ), the most likely expla-
nation of the discrepancy, compared to experiment, in the
eigenvector ordering then seems to be that the calculation for
some reason~perhaps the finite size of the supercell! errone-
ously interchanges the order of long and short bonds.

In Table III the predicted hyperfine parameters for the Si
and O atoms closest to P are listed. It can be seen that a
substantial part of the unpaired spin is found on the O atoms
that have the longer bonds to P, while the spin density is
much reduced on the short-bonded O atoms in accordance
with the analysis of the density of states~DOS! presented in
Ref. 29. Core polarization effects were found to increase the
isotropic coupling constant by;1% for Si and decrease it
by ;4% for O. No experimental values for the17O hyper-
fine matrices have, to our knowledge, been reported. The

TABLE II. Principal directions for the eigenvectors of the31P
hyperfine tensor in spherical polar coordinates.u measures the
angle between the vectorPi and thec direction, whilef measures
the rotation with respect to one of theC2 symmetry axes of the
crystal. The vectors are ordered according to decreasing principal
values.

Theory Experiment~Ref. 3!
u ~deg! f ~deg! u ~deg! f ~deg!

P1 90.0 0.0 90.0 0.0
P2 30.0 270 64.8 90.0
P3 60.0 90 25.2 270

TABLE III. Principal values of the17O and 29Si hyperfine ten-
sors~in mT! for the nearest O and Si neighbors of a substitutional P
impurity. O~1! are the long-bonded~to P! O neighbors, and O~2! the
short-bonded ones. Si~1! and Si~2! are neighbors of O~1! and O~2!,
respectively.

Aiso Aan principal values

O~1! -8.47 1.28 1.19 -2.36
O~2! -1.73 0.28 0.26 -0.54
Si~1! -1.80 0.14 0.14 -0.28
Si~2! -0.37 0.03 0.01 -0.04

TABLE I. Principal values of the31P hyperfine tensor~in mT!
for different P pseudopotentials. PP1 has two atomic orbitals in
each of thesp channels and one in thed channel; PP2, PP3, and
PP4 have an extra orbital in thes, p, andd channels, respectively.

Aiso Aan principal values

PP1 140.8 9.77 -4.55 -5.23
PP2 140.8 9.77 -4.55 -5.23
PP3 142.8 9.66 -4.52 -5.13
PP4 141.8 9.76 -4.54 -5.22
Expt. ~Ref. 3! 112.9 9.91 -4.36 -5.54
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spin density on the neighboring Si atoms is very small, as
can be inferred from the smallness of the hyperfine param-
eters. In fact, even for the Si atoms neighboring the long-
bonded~to P! O atoms, the integrated spin density within the
Si augmentation spheres, as estimated using Eq.~4!, corre-
sponds to only 0.015 electrons. Experimentally, a hyperfine
doublet with a splitting of 0.16 mT with the magnetic field in
the z direction was assigned to interactions with29Si nuclei,
suggesting that the present calculation does not provide an
accurate description of very small spin concentrations. Simi-
lar problems have been reported by Van de Walle and
Blöchl.35 In conclusion, the supercell DFT calculation seems
to provide a fairly accurate description of the electronic
structure around a substitutional P impurity.

B. Hyperfine parameters around an Al impurity

The unpaired spin state around the substitutional Al im-
purity is situated at the top of the valence band, that is, in the
O nonbonding states. Put in another way, the hole introduced
on Al is transferred to one or more neighboring O atoms.
There is abundant evidence from EPR experiments on irra-
diateda-quartz crystals that the spin is in fact localized on
one of the long-bonded O neighbors: Signals from six differ-
ent g-tensor orientations can be discerned in EPR spectra,
corresponding to holes sitting at each of the two long-bonded
O neighbors to the three symmetry-equivalent Al positions
available.37,38 Cross-relaxation experiments and dielectric
loss measurements have indicated that the hole may hop
back and forth between the two long-bonded O atoms.39 The
apparent confinement of the unpaired spin on one of two
symmetry-related O atoms indicates a dynamical localization
effect: The presence of the hole on one of the equivalent O
neighbors creates a polarization ‘‘cloud’’ in the surrounding
lattice, and this cloud impedes hole hopping between O
atoms.40 Thus, in the theoretical calculations we should ex-
pect to see either a preference for structural distortions cre-
ating a localized hole state, or at least a tendency for the hole
to localize quickly if a distortion is enforced. However, we
have not observed any of these effects in the supercell cal-
culations. On the contrary, if the structure is allowed to fully
relax, the Al-O bonds end up being pairwise equivalent, and
with very small differences in bond length between pairs.29

This structure is stable towards distortions. A similar result
was found by Magagniniet al. using the local spin density
approximation~LSDA!.28 The spin densities on the short-
and long-bonded O atoms differ by less than 10%. If a struc-
tural distortion is enforced, only a slow variation in the spin
densities is seen, and the energy penalty quickly rises. That
the spin distribution associated with the theoretical optimum
geometry is not consistent with the experimental results for
17O hyperfine matrices41 can be seen at a glance from Table
IV. Given the accuracy of the theoretical31P hyperfine pa-
rameters reported above and the large spin population on the
O atoms, it is unlikely that the large deviations from experi-
ment are merely caused by basis set inaccuracies. It must be
concluded that the spin density distribution found by the su-
percell method in conjunction with DFT is incorrect, and that
the picture of this impurity state put forward in Refs. 28 and
29 is thereby invalidated.

To clarify the reason for these inaccuracies a new inves-
tigation of the substitutional Al impurity within the cluster
approximation was performed. The calculations were per-
formed using either the Hartree-Fock energy functional or
the hybrid Hartree-Fock–DFT functional B3LYP proposed
by Becke,42 which has proven highly accurate for a variety
of chemical systems. The calculational procedures and some
of the results were presented in Ref. 31, and similar work has
independently been reported by Pacchioniet al.30 It was
found that there is a qualitative difference between the re-
sults of the two energy functionals considered: While the
Hartree-Fock approximation favors a structural distortion
with one Al-O bond becoming;14% longer than the other
three, the B3LYP energy functional does not lead to such a
distortion but rather to a restoration of theC2 symmetry of
the cluster, which was explicitly broken in the initial con-
figuration. The bond lengths obtained in this calculation are
close to the supercell Perdew-Wang 1991~PW91! result.43

The differences in structure are reflected in the Mulliken
populations: Using the B3LYP functional, spin densities re-
sembling those arising in the supercell calculations are ob-
tained, while in the Hartree-Fock case, the unpaired spin is
almost completely localized on the long-bonded O atom.
These results indicate that the removal of the periodic Al
images has no significant effect on the electronic structure of
the impurity, whereas the choice of an energy functional
~Hartree-Fock! with exact self-interaction cancellation is de-
cisive in obtaining agreement with the experimental picture.

The calculated hyperfine parameters are reported in Table
V. The results obtained within the Hartree-Fock approxima-
tion are in good agreement with the experimental values,
especially for the anisotropic tensor, while the B3LYP results
are closer to those obtained in the supercell PW91 calcula-
tion, and in clear disagreement with experiment. In the
Hartree-Fock equilibrium geometry both energy functionals
have been applied, and it can be seen that the Hartree-Fock
approximation still provides the best description of the an-
isotropic couplings, although the B3LYP results are not too
far from the experimental values in this case. For the isotro-
pic 17O coupling constant the situation is reversed: Here, the
B3LYP approximation provides the better description. In our
view, this improvement is most likely to be accidential:
While the anisotropic hyperfine tensor is roughly propor-
tional to the O 2p weight of the hole wave function on the O
atom in question, the isotropic coupling is only dependent on
the s component, which is very small. Furthermore, the iso-

TABLE IV. Isotropic and anisotropic contributions to the hyper-
fine coupling tensors around a neutral substitutional Al impurity~in
mT!, as calculated using the PW91 energy functional in a 54-atom
repeated-cell geometry.

Aiso Aan principal values

27Al theory -1.018 0.010 -0.001 -0.010
27Al expt. ~Ref. 41! -0.578 0.074 -0.034 -0.034
17O(1) theory -1.372 1.145 1.117 -2.262
17O(2) theory -1.601 1.271 1.242 -2.513
17O expt.~Ref. 41! -2.594 4.382 4.121 -8.504
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tropic coupling is only determined by the wave function very
close to the nucleus, which is difficult to describe using a
Gaussian basis set, and where relativistic effects not ac-
counted for in the calculation may lead to further inaccura-
cies. Therefore, the calculation of the isotropic coupling con-
stant is more prone to technical errors than the anisotropic
tensor, as was also evident in the supercell results for substi-
tutional P.

To investigate the implications of the spurious self-
interaction on the total energy some additional calculations
have been performed, the results of which are summarized in
Table VI. First, we have calculated the energy difference
between the HF and B3LYP equilibrium geometries within
each of the two approximations. To focus attention on the
effect of relaxations around the Al ion, we have subtracted
the energy difference between HF and B3LYP equilibrium
geometries for a pure neutral SiO2 cluster. With this correc-
tion, the penalty within B3LYP for going from the B3LYP to
the HF equlibrium geometry is 0.15 eV, whereas the penalty
within HF for going the other way is 2.23 eV. Since the
results for the hyperfine matrices show that the true equilib-
rium geometry must be close to the HF geometry, this indi-
cates that the magnitude of the B3LYP error is at least on the
order of 0.2 eV. However, the large energy difference within
the HF approximation suggests that the error could be much
more severe.

To shed more light on this question we have also calcu-
lated the charging energy of the impurity cluster within the
two approximations. In contrast to the neutral cluster, only

small differences between unrestricted HF and B3LYP equi-
librium geometries are found in this case. In both approxi-
mations, the cluster goes into aC2 symmetric configuration,
as would be expected with all valence bands filled up. The
Al-O equilibrium bond lengths are 1.727 Å and 1.741 Å in
the HF versus 1.742 Å and 1.756 Å in the B3LYP geom-
etries. We find the negatively charged cluster to be stable in
both approximations, with a trapping energy~i.e., the differ-
ence between total energies in the charged and neutral re-
laxed configurations! of 5.29 eV in HF and 6.33 eV in the
B3LYP approximation. Note that these energies represent
trapping from the vacuum into a small cluster, and may be
substantially different from the trapping energies for elec-
trons trapped from the conduction band of an extended solid.
Assuming that the B3LYP method describes the charged con-
figuration correctly, we should expect the B3LYP trapping
energy to be too high, as the method fails to capture the
energy gain from the structural relaxation in the neutral clus-
ter. On the other hand, the HF trapping energy is probably
too low, as electron correlations, which are left out of the HF
approximation, are usually more important in negatively
charged systems. For instance, Pacchioni and Mazzeo44

found a difference in trapping potential of;1.5 eV between
the HF and B3LYP approximations for a substitutional Ge
impurity in silica using computational methods similar to
ours. Also in this case, the B3LYP approximation provided
the deeper potential, although there was no qualitative differ-
ence in the atomic geometries between the different approxi-
mations. Thus, the result for the charging energy place a
more stringent upper bound of around 1 eV on the total-
energy error arising from the wrong B3LYP geometry, and it
seems likely that the error is, in fact, somewhat smaller than
this.

C. Discussion: Validity of the PW91 and related approaches

The results presented above show that the PW91 approxi-
mation adequately describes the electronic structure of a neu-
tral substitutional P impurity ina-quartz but fails dramati-
cally for the corresponding Al impurity. In the present case,
both impurities have been reliably identified and their EPR
properties have been characterized in great detail. This is not,
however, generally the case for impurity states in silica, or
other materials for that matter, and an important role of an
impurity theory is to provide reliable information that may
aid the identification of various impurities from the available
experimental information~usually from optical or magnetic
resonance spectroscopies!. As the DFT in most cases consti-
tutes an improvement over Hartree-Fock theory, it is impor-

TABLE V. Isotropic and anisotropic contributions to the hyper-
fine coupling tensors around a neutral substitutional Al impurity~in
mT!, as calculated using the Hartree-Fock and B3LYP energy func-
tionals in an AlSi16O16H36 cluster geometry. The results denoted
HF-B3LYP were calculated in the Hartree-Fock equilibrium geom-
etry using the B3LYP energy functional. In all cases, O~1! denotes
the O neighbor with the longest bond to Al.

Aiso Aan principal values

27Al Hartree-Fock -0.587 0.066 -0.032 -0.034
27Al HF-B3LYP -0.498 0.062 -0.024 -0.038
27Al B3LYP -0.791 0.028 -0.002 -0.025
27Al expt. ~Ref. 41! -0.578 0.075 -0.034 -0.035
17O(1) Hartree-Fock -4.247 4.475 4.461 -8.935
17O(1) HF-B3LYP -2.231 3.617 3.605 -7.221
17O(1) B3LYP -0.548 0.924 0.910 -1.834
17O expt.~Ref. 41! -2.594 4.382 4.121 -8.504

TABLE VI. Total energies~in hartree units! of the cluster configurations investigated. B3LYP/HF denotes
a B3LYP calculation in a Hartree-Fock equilibrium geometry, etc.

Neutral SiO2 Neutral SiO2:Al Charged SiO2:Al

B3LYP/B3LYP -6147.8842 -6100.7166 -6100.9493
B3LYP/HF -6147.8690 -6100.6962 -
HF/B3LYP -6131.7217 -6084.5123 -
HF/HF -6131.7227 -6084.5954 -6084.7897
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tant to clarify the reasons for its failure in the present case, in
order to determine when this theoretical approach can and
cannot be applied.

1. Localization barriers for holes and electrons

The main chemical difference between the substitutional
Al and P impurities is that Al donates a hole to the top of the
SiO2 valence band, while P donates an electron to the bottom
of the conduction band. These two bands are, however, of a
quite different nature, as seen from Fig. 1. The top of the
valence bands consists of O 2p nonbonding states, while the
bottom of the conduction bands is made up of Si-O antibond-
ing orbitals. Thus, the injected hole will move in a space of
weakly coupled~as they do not point towards each other!,
nearly degenerate O 2p orbitals surrounding the Al impurity
~to which the hole is bound for electrostatic reasons!, while
the injected electron will move in a space consisting of the P
3sp hybrid orbitals and the O 2p orbitals pointing towards
the P atom. These orbitals have strong overlaps, meaning that
the effective Hamiltonian for the electron is not sensitive to a
small residual self-interaction in the DFT energy functional.
For the hole moving in the nonbonding O 2p orbitals, on the
other hand, even a small residual self-interaction may out-
weigh the O 2p level differences caused by structural distor-
tions, thus preventing the hole from localizing on the orbital
of highest energy, which in turn makes the distortion less
favorable.

To formalize the argument, we set up a minimal model for
the hole energy functional in the different approximations.
Focusing attention on the electrons in the minority spin chan-
nel that need to be accommodated in the nonbonding O 2p
orbitals surrounding the Al impurity, we assume that the in-
teraction with the other electrons in the system may be well
represented by suitably chosen orbital energies, and that the
coupling to other orbitals is sufficiently weak that these do
not need to be incorporated in the basis. Furthermore, we
neglect the overlap between the different O 2p orbitals to
keep the effective Hamiltonian simple, although it should be
kept in mind that a small overlap does in fact exist. The
total-energy functional may then be written as31

E5C1(
i

« ir i i 1
1

2 (
i j

Ui j r i i r j j 1Exc@r#, ~15!

wherer is the density matrix of the minority spin electrons,
and i , j indexes the nonbonding O 2p states on different
sites.« i collects all terms linear inr except those arising
from the xc energy, andC denotes ther-independent terms.
The Ui j parameters are the Coulomb integrals between 2p
charge distributions on sitesi and j. The different total-
energy approximations are distinguished by different choices
of Exc . In the HF approach the exact exchange energy is the
only contribution retained, while in DFT the xc energy is
usually a complicated local functional of the total electron
density and possibly its gradient. Thus, we may write

Exc
UHF@r#52

1

2 (
i j

r i j r j i Ui j , Exc
DFT@r#5(

i
Eloc~r i i !,

~16!

assuming that there is no difference between the form of the
basis orbitals on the different O sites in question.

In the HF approximation, as is well known, the present
case of a single hole moving in a filled band is formally
equivalent to that of a single electron moving in an empty
band, and both cases are free of self-interaction, as one can
easily verify from Eqs.~15! and ~16!. In DFT, both the ex-
plicit self-interaction cancellation and the electron-hole sym-
metry is lost. For the approximate xc functionals commonly
employed, it has been found that the Hartree part of the
self-interaction dominates the xc part such that an unphysical
localization barrier is present. Considering the energy func-
tional in Eq. ~15! with N equivalent orbitals, we can define
the localization barrier as the energy difference between the
case of a particle~electron or hole! localized on a single
orbital and one that is evenly distributed over all orbitals:

Eloc
e 2Edeloc

e [dN
e . ~17!

For largeN, the result is well known:45

d`
e 5

U

2
1Eloc~1!. ~18!

SinceEdeloc goes to zero for an extended state,d`
e represents

an upper limit on the localization barrier. Note thatd`
e is

entirely specified by the shape of the local orbital and the xc
functional used. Typical values for real atomic orbitals are on
the order of 0.1–1 eV.45,46For a hole, one derives the general
result @for a local xc functional as in Eq.~16!#:

dN
h 2dN

e 5~N22!Eloc~1!1NFElocS 1

ND2ElocS 12
1

ND G .
~19!

The individual values ofdN
e and dN

h cannot be estimated
without making assumptions about the atomic geometry due
to the long-range part of the Hartree interaction. The above
formula reflects the fact that the Hartree energy functional
preserves electron-hole symmetry so that the difference be-
tween hole and electron localization energies is entirely de-
termined by the xc terms. In the large-N limit one derives31

d`
h 5^V̂H1V̂xc&2d`

e , ~20!

V̂H andV̂xc being the Hartree and xc potential operators, and
the expectation value being over a single orbital. The expec-
tation value of the potentials can be an order of magnitude
larger thand`

e .45–47However, in a typical impurity problem,
the hole is restricted to move in a finite number of orbitals,
and it is therefore important to investigate the behavior of
Eq. ~19! for this situation. To this end, we have performed a
local spin density~LSD! calculation for a neutral isolated O
atom. The functionalEloc appearing in Eq.~19! is then ob-
tained by evaluating the LSD energy functional on the result-
ing self-consistent O 2p orbital ~assuming a fully spin-
polarized density!. The result fordN

h 2dN
e is shown in Fig. 2.

Of course, this should only be considered a rough estimate of
the actual localization barrier, as interactions with other or-
bitals and relaxation effects upon changes
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in occupancy have been neglected. Still, it is interesting to
notice, that whereasd`

e comes out as;0.27 eV, the differ-
ence between the hole and electron barriers is on the order of
an eV, even for smallN. On the other hand, the asymptotic
limit ~indicated by a dashed line in the inset! is approached
very slowly. This means that Eq.~20! does not necessarily
constitute a good starting point for deriving realistic self-
interaction corrected hole energy functionals within the
framework of DFT.

2. Validity of models with self-interaction

To shed more light on the importance of residual self-
interactions in various physical problems we shall investigate
their consequences for different level separations and hop-
ping integrals in a very simplified model: Consider a single
particle ~in this case an electron! moving in a space of two
orbitals, with an energy separation ofD and a hopping pa-
rametert. Introducing the density matrix of the electronr i j
~for i , j P$1,2%) we write the energy functional as

E5Dr1112tr121U~r11
2 1r22

2 !. ~21!

U thus represents the residual self-interaction present in the
model. The density matrix may be expressed in terms of a
single parameter,

r115y, r22512y, r1252sgn~ t !Ay~12y!, ~22!

and the energy functional can thus be written

E5Dy22utuAy~12y!1U~2y222y11!. ~23!

In Fig. 3 we show the values ofy minimizing the energy
for U51 and U50 ~no self-interaction!. The results are
plotted as a function oft for various values ofD. It can be
seen that the self-interaction term is of limited consequence
as long as it is a few times or more smaller thanD or t,
whereas serious discrepancies develop ifU dominates the

other parameters. Thus, to assess the validity of DFT meth-
ods in a single-particle-like problem one must estimate the
magnitude of the DFT self-interaction and compare it to the
level differences and hopping matrix elements of the relevant
orbitals. In the present cases, the hole bound to the substitu-
tional Al impurity is moving in a space of nonbonding O 2p
orbitals. The hopping matrix element between these states
was estimated to be;0.06 eV in Ref. 31. In comparison,
the hole localization barrier resulting from unphysical self-
interactions was estimated above to be on the order of 1 eV,
an order of magnitude larger than the hopping matrix ele-
ment. In this regime, serious discrepancies due to self-
interaction errors can be expected, as is clearly seen from
Fig. 3. For the electron bound to the substitutional P impurity
the situation is very different: This electron primarily moves
in the space of antibonding P-O orbitals and is found to
localize in one pair of these through a lattice distortion. The
self-interaction for anelectron in these states must be ex-
pected to be much lower than the 0.27 eV estimated for an O
2p state since the antibonding P-O states are more extended.
The hopping matrix elements between the states can be esti-
mated from the matrix element between the phosporoussp3

hybrids, which is given by' 1
4 («s2«p);22 eV.48 The

P-O antibonding states have most of their weight on the P
atom, and thus a hopping matrix element of magnitude 1–2
eV. This estimate is in good agreement with the splitting of
;3 eV between occupied and unoccupied antibonding
states seen in Fig. 1~b! of Ref. 29. Therefore, in the case of
substitutional P, the hopping terms of the effective Hamil-
tonian for the unpaired spin are at least 4 times larger than
the unphysical localization barrier. It is evident from Fig. 3
that this will not cause major inaccuracies in the resulting
electron distribution.

3. The eigenvalue spectrum

The remarkable agreement between the experimental hy-
perfine matrices and the Hartree-Fock values reported in
Table V is an indication that our assumption of a hole mov-

FIG. 2. The difference between hole and electron localization
barriers as a function of the orbital degeneracy evaluated using an
LSD energy functional on a self-consistent O 2p orbital from an
atomic calculation. The inset shows the behavior for a large number
of orbitals. Note that the asymptotic result~dashed line in inset! is
approached very slowly.

FIG. 3. Optimumy parameters atU50 ~solid lines! andU51
~dashed lines! as a function oft for different values ofD. The
parameters are defined in the text.
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ing in a restricted space of O 2p nonbonding orbitals is well
justified, since the Hartree-Fock approximation is exact for a
single hole in a finite orbital space. A further test of the
model can be done by considering the effective single-
particle Hamiltonian in the different approximations. In the
restricted orbital space, this is given by

Hi j 5
dE@r#

dr i j
. ~24!

We consider an energy functional that is a linear combination
of DFT and Hartree-Fock energies,

E5C1(
i

« ir i i 1
1

2 (
i j

Ui j ~r i i r j j 2xr i j r j i !

1~12x!(
i

Eloc~r i i !, ~25!

which leads to the Hamiltonian

Hi j 5F « i1~12x!
dEloc~r!

dr U
r5r i i

1(
k

UikrkkGd i j

2xUi j r j i . ~26!

The important point to notice is, that the magnitude of the
off-diagonal matrix elements is controlled by the parameterx
as long as the hopping integrals can be neglected. Therefore,
with a purely local xc energy functional, the Hamiltonian
will be strictly diagonal, and if the hole is to be distributed
over the available sites this must imply that the one-particle
levels are degenerate at self-consistency. This is not neces-
sarily the case when off-diagonal matrix elements are intro-
duced, as will be the case for the Hartree-Fock and B3LYP
energy functionals, but we would expect the energy differ-
ences of the eigenstates to follow the magnitude of the off-
diagonal couplings. Therefore, our model Hamiltonian pre-
dicts that the difference in energy between the highest
occupied and lowest unoccupied state should vanish when
using a purely local/semilocal xc energy functional, and that
the Hartree-Fock gap should be larger than that found using
B3LYP. In Ref. 29 this prediction was found to be fulfilled in
the PW91 supercell calculation: The lowest unoccupied band

states are just the top of the uppermost valence band. In the
cluster calculations, we find that the Hartree-Fock gap in the
minority spin channel is 10.9 eV while the B3LYP calcula-
tion in the same atomic geometry yields a gap of 1.02 eV.
This is a further indication that the assumptions behind our
approximative hole energy functional, in particular, the ne-
glect of hopping matrix elements, are sound, and also that
the examination of HF and DFT eigenvalue spectra may re-
veal the presence of a self-interaction problem. It is interest-
ing to notice that a difference between Hartree-Fock and
DFT eigenvalues similar to the one described here was re-
cently found by Kotominet al. for a K vacancy in KNbO3.49

Also in this case, a large difference in the magnitude of
structural relaxations was found between HF and DFT ap-
proaches.

IV. CONCLUSION

In conclusion, we have undertaken a theoretical investiga-
tion of the electronic and atomistic structure and hyperfine
parameters of neutral substitutional Al and P impurities in
a-quartz. For the P impurity, we find that DFT in a repeated-
supercell geometry using the PW91 approximation yields re-
sults in good agreement with available experimental data. In
the case of Al, the DFT approach is shown to fail qualita-
tively in describing the geometric and electronic structure of
the impurity, both when using PW91 in a supercell, or when
using the B3LYP functional in a cluster geometry. We have
shown, that the Hartree-Fock approximation applied to the
model cluster gives hyperfine parameters in excellent agree-
ment with experiment, and argue that the failure of the DFT
methods for this problem is a consequence of the incomplete
self-interaction cancellation usually present in density func-
tional theories.
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