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Lippmann-Schwinger integral equation approach to the emission of radiation by sources located
inside finite-sized dielectric structures
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B. Tromborg
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A full-vectorial integral equation method is presented for calculating near fields and far fields generated by
a given distribution of sources located inside finite-sized dielectric structures. Special attention is given to the
treatment of the singularity of the dipole source field. A method is presented for removing the dipole source
field singularity from the integral equations to be solved. It is also shown how the numerical task can be
reduced in the case of structures with cylindrical symmetry. The methods are applied to calculate the near
fields, far fields, and the emission rate of light from a dipole source located in the center of a cylindrically
symmetric dielectric disk. The emission for certain disk diameters, where a resonance condition is fulfilled, is
enhanced by 13 times as compared to the emission from the same dipole source located in free space. The
methods have prospective uses for analyzing the emission of light by sources in some antennas and optical
components such as vertical cavity surface emitting lasers, microdisk lasers, and light emitting diodes. The
methods also have prospective uses in quantum electrodynamics for studies of spontaneous emission from,
e.g., an excited atom located inside a dieletric structure.

DOI: 10.1103/PhysRevB.66.155309 PACS nunt®er03.50.De, 02.30.Rz

[. INTRODUCTION sources that should not be considered a part of the usual
source region terminology. In this paper we will consider the

A Lippmann-Schwinger type integral equation has beercase of a given distribution of sources located inside a finite-
used in astrophysics to model the scattering of light incidensized dielectric structure. The polarization of a given dipole
on dielectric grains and particles of various shapes in thresource is fixed in the same way that the incident beam of
dimensions:™ This type of integral equation has also beenlight and associated sources are fixed in previous Work.
used to calculate the near fields in a situation where a pland/ith a given distribution of sources located inside a dielec-
wave or a laser beam is incident on a microstructured dieledric structure, the structure is not illuminated from the out-
tric surface® ' By measuring the near fields in such a side, but is illuminated by sources located inside the struc-
situation images can be created of the microstructure itselture itself. The dielectric structure can also in this case be
and images can also be made of the fields in theahought of as a collection of sources that are driven by both
microstructurg>-1° the given sources and all other driven sources. The usual

In near field optics a typical situation is to illuminate a numerical procedure for solving the Lippmann-Schwinger
dielectric structure from the outside and investigate the scaintegral equation relies on the assumption that the electric
tered field in a plane above the structfir this case the field within small volume elements is constant. This assump-
light source generating the incident beam of light is locatedion becomes problematic in the case of a given source, such
outside the dielectric structure of interest. The incident beanas the dipole, with an associated singular field. Singular elec-
of light is given, or equivalently, the distribution of sources tromagnetic fields and sources have previously been consid-
generating the incident beam of light is given. ered by van Bladel? Further development of existing inte-

It is also possible to calculate the electric field inside thegral equation methods is necessary to enable the treatment
dielectric structure, and the dielectric structure is often re-of, in particular, the singularity of the field of a given dipole
ferred to as the source regigsee, e.g., Refs. 12 and 6 and source, when the dipole is located inside a finite-sized dielec-
references thereinThe terminology of source region arises tric structure. This is the scope of the present paper. The
from a procedure where the dielectric structure is discretizethethod will be exemplified for the case of a given dipole
into a number of small polarizable volume elements. EacHocated in the center of a dielectric disk with finite radius.
element can be thought of as being equivalent to a dipole The motivation for developing a method, which is capable
source with a polarization proportional to the field at theof the treatment of given sources located inside a dielectric
dipole position generated by all other sources. These dipolstructure, is that this will be useful for modeling of antennas
sources being driven by an external field are basically acand a variety of light-emitting devices, such as light-emitting
counting for the response of a dielectric structure when theliodes and vertical cavity surface emitting lasers. In these
dielectric structure is illuminated by an electromagnetic field.devices the emission of radiation is related to a distribution
Calculating the polarization of these driven dipole sources i®f sources located inside the structure. Note that the dielec-
equivalent to calculating the electric field inside the struc-tric disk we will consider is a basic building block in, e.g.,
ture. In this paper we will also consider the field inside athe vertical cavity surface emitting laser and the microdisk
dielectric structure, but this field is in part related to a type oflaser*®!’
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The method may also have prospective uses for modelinger are placed in a reference medium with known properties
of the quantum electrodynamic properties of dielectric me-described by a Green’s tensor. The finite-sized dielectric
dia. It was suggested already in 1946 by Pufédtiat the  structure can be thought of as a scattering object in the ref-
rate of spontaneous emission can be modified indirectly vi@rence medium. Scattering of light by dielectric structures
the electromagnetic properties of the structure in which thevith general geometries may be calculated using a
emitter is placed. An explanation is that a dielectric environ-Lippmann-Schwinger type integral equation of the form
ment can modify the strength and distribution of electromag-
netic modes with which the emitter can interact. The study of — . 2 , I\ 43,
the emission of radiation from a given electric dipole source B(r=E (r)+J Gr.r'1)-ko(e(r') =1)- B(r)d™”,
has been widely used to model enhancement and reduction in (1)
the rate of spontaneos emission from, e.g., an excited tw
level atom'-301831Fgr an electric dipole emitter located in
a passive dielectric environment the total rate of emission i
revealed both from the near field at the dipole position an
from the integrated Poynting vector flux in the far fiéfd.
The Lippmann-Schwinger integral equation can be used t
calculate the total emission associated with the given dipol
using both near fields and far fields. The method presented
this paper therefore provides an additional method for ap-

! . - ; a
proaching the calculation ¢spontaneoysemission of radia-

Q¥herel is the unit tensorr andr’ are position coordinates,

andEC is a field solution in the case without the scattering
bject. The scattering object is introduced via the dielectric
ensore(r), and since we consider free space as the refer-

ence mediumg(r)—1 represents the change introduced in
e reference medium by the presence of the scattering ob-

Ject. The retarded dyadic Green’s ten&{r,r';1) describes

e scattering properties of the reference medium free space,

ndk, is the free space wave number. The fiElds a field

. . L o X . solution for the case where the scattering object is present in

tion for emitters located inside general finite-sized dlelectncthe reference medium. The Green's tensor for a homoge-

structures. . L - o .
. neous dielectric with refractive indaxwill in this paper be
The approach that will be presented for the treatment of ritten asG(r,r":n). The reason for using a noFt)atFi)on with

given distribution of sources can generally be applied to aIkhe refractice index as an argument in the homogeneous me-

Eg‘:; d%fr flgItgi-esllezzggi(;jIlse!c(reucct:rtll(jr:tr\/lxj/i%ur((:asl.iancr)i\(/:vaelvir,r%Nrﬁe\m" dium Green’s tensor is that we will need homogeneous me-
y y Y dium Green’s tensors both for the case of free spate (

namely, the (_1||e|ectr_|<_:_d|sk, Wh".:h can be moo_leled WIthOU =1) and for another medium, e.g., GaAs, where the refrac-
supercomputing facilities. The Lippmann-Schwinger integral

) . . . N tive indexn#1. The homogeneous medium Green’s tensor
equation will be rewritten in a form where cylindrical sym- . " .
metry is taken advantage ®f.Essentially, the numerical Is given by(see, e.g., Refs. 34 and )12
problem, where the fields and the structure are discretized in 1
three dimensions, will be reduced to several problems, one G(r,r’;n)=(—VV+I
for each angular momentum component of the field, where kén2
the fields and the structure are discretized in only two dimen:-
sions. A number of tests of the method for taking advantag
of cylindrical symmetry will be presented so that the method®Y
can be compared to previous methotsthat do not take Sa—
advantage of cylindrical symmetry. g(r,r';n)= e _ 3)

The paper is organized in the following way. In Sec. Il the 4arr—r’]

method is presented for calculating near fields and far fields ) o
generated by given sources located inside finite-sized dieleé[‘opre‘_’IOUS work(see, e.g., Refs. 1,2,35,Be incident wave
tric structures. In Sec. IIl it is shown how the numerical taskE (1) IS @ plane wave or another beam of light incident upon
can be reduced in the case of structures with cylindrical symthoe scattering object from the outside. The incident wave
metry. The method for cylindrically symmetric structures is E (r) is typically a solution to the homogeneous wave equa-
tested against analytic and numerical results. The method¥n Without sources involved. However, it is also possible to

are applied to the case of a given dipole source located insio"EPnSidf_r scattering of fields generated by sources, and in that
a cylindrically symmetric dielectric disk in Sec. IV. The con- C&SeE" is the field that these sources would have generated

clusion is given in Sec. V. if the scattering object was not present, i.e.,

g(r,r’;n). (2

he scalar homogeneous medium Green'’s function is defined

0 —i 11y, "Nd3r !
IIl. METHOD FOR CALCULATING NEAR FIELDS EXT) "”’“J G(r,r’;1)-J(r)dr’, “)
AND FAR FIELDS GENERATED BY SOURCES

LOCATED INSIDE DIELECTRIC STRUCTURES whereJ(r) is the distribution of currents generating the field,

w is the angular frequency, andis the vacuum permittivity.

In this section a full-vectorial integral equation method isThe use of fields generated by a given distribution of cur-
presented for calculating near fields and far fields generategénts is interesting for modeling of antennas and various
by a given distribution of current sources located insidetypes of light-emitting optical components.
finite-sized dielectric structures. Special attention is givento In the numerical procedure used for solving the
the treatment of the dipole source field singularity. Lippmann-Schwinger type integral equatidn it is common

The finite-sized dielectric structures considered in this pato discretize the structure in a number of volume elements

155309-2
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and assume constant fields within each volumeThe electric field generated by a dipole source can similarly
element®>23The necessary assumption of constant fieldsbe written in the form
within discretization elements was the main reason for plac-
ing a dipole source outside the dielectric structure in our
previous work® as this assumption is problematic for highly
singular fields. In this paper we will show how the integral
equation(1) can be rewritten in a form where the singularity and the corresponding integral equation for the scattered
of the dipole field is removed. By removing the singularity electric field becomes
from the integral equation it becomes feasible to calculate
near and far fields generated by highly localized current dis-
tributions, such as dipole currents, when the currents are [0-—sc, .\ _ b ' 2 , SC/p 1\ 43y !
cated inside the scat'?ering object. EX(r)=E “HJ Glr.r's1)-ko(e(r’)=h)-B=(r")d™r”,

The electric fieldE(r), generated by a given dipole (11
source located at positiory, in a dielectric structure with
dielectric tensok(r), is given in terms of the dyadic Green’s \where
tensorG(r,rp) of the structure, i.e.,

E(r)=w?uG(r,ry:n)-d+ESYr), (10

E(r)=w?uG(r,ro)-d, (5) E°(r)=w?uG"(r,ro)-d. (12)

where d is the dipole moment of the dipole source. The
Green'’s tensofG(r,ry) contains all scattering properties of
the combined system of scattering object and the referen
medium. The Green’s tensor is a solution to the following
integral equation:

The advantage of the integral equatidi) for the scattering

dgrm ES® as compared to Ed1) is thatES® is not singular,

and consequently the assumption of constant scattered fields

ESC within small discretization elements is not problematic.

Before the new integral equation approach can be used it

G(r,rg)=G(r,rg:1) is necessary to first calculate the driving ter@® and EP
which involve a volume overlap integral between two
Green'’s tensors. The volume integral may involve integrating
over a Green’s tensor singularity at both positioresndr .

6 If these positions are far apart directly performing the vol-

©) ume integral is not problematic, but whewr-rq performing

Also in this case, if we discretize the structure we cannogirectly the volume integral numerically requires a very high

assume that(r,ro) is constant within each discretization sampling density near the two singularities. Note that al-

element due to the singularity of the Green's tensor at though there are several singular terms in the above expres-

—r,. However, if the positiorr, corresponds to a position Sion(9) for G® atr=r, the driving termG” is not singular.

with dielectric constant =n?, and the dielectric constantis  An appropriate method of handling the singularities in the

constant in the immediate vicinity af;, then the Green's driving terms is to transform the volume overlap integral Eq.

tensor can conveniently be written as the sum of two terms(9) into a surface integral away from the singularity points

where the first term is the Green’s tensor for a homogeneoudnd ro. A further advantage is that the calculation of the
medium with refractive index, and the second ter@s¢is  surface integral is much faster than the calculation of the

a Scattering term that does not contain singu|arities' ie., volume integral. Consider a dielectric structure of the form

+f G(r,r';1)-Ka(e(r')—1)-G(r',ro)d%".

G(r,r)=G(r,ro;n)+G(r,ry). @) e(r)=n? reV (13

By inserting the expressiof¥7) into Eq. (6) we obtain an
integral equation for the scattering term, i.e.,
e(r)=1, réV. (14
GSY(r,ro)=G"(r,ro)
We will also consider the case of a dipole placed at a position
+f G(r,r’;1)~kg(s(r’)—I)~Gsc(r’,r0)d3r’, ro inside the volumeV, where the refractive index is. All
structures considered in this paper are of the f¢t3) and
(8)  (14). In this case, the ter@” can be written in the form

where
GP(r,rg)=G™(r,ry), reV, (15)
G°(r,rg)=G(r,rg;1) = G(r,rq;n)

b _ _ :
+fG(r,r’;l)‘kg(e(r’)—I)-G(r’,ro;n)d3r’. Go(r.ro)=G™(r.ro)=G(r.roin), rév, (19

(99  where
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momentum componemh is needed for calculating the com-

(nV'gy)-(V'V'g,) ponent of the total field&E with the same angular momentum.
For a given angular momentum it is sufficient to dis-
cretize the field component&]', E7, EJ' and the dielectric

structure inp and z. Thereby the structure is actually dis-

GW_nz—lf
a kan? Jov

—(n-V'g)(V'V'g,)

n2 cretized into ring volume elements. The numerical task of
- —=—(n-V'g)(V'V'gy) calculating the field at all points inside the three-dimensional
n“-1 object can be replaced by a series of tasks where the field is
5 essentially calculated in two-dimensional planes. One calcu-
+ g (V'V'V'gy) lation must be performed for each angular momentum com-
n“—1 ponent of the field. The field at all other points than those of

) the planes is obtained using symmetry considerations. For
n ~ ~ the case of a fielE® generated by a given distribution of
— kR —— .V'g.— vl / . LI o
ko n2_1(91” V'9,—0nn-V'gy) |dS. sources placed near the axis of cylindrical symmetry it is
sufficient to consider a very small number of angular mo-
(170 mentum components.

Here gV refers to the surface of the volumé& n is the The Lippmann-Schwinger type integral equatidn for
surface outward normal vector, the prime denotes differencylindrically symmetric structures may be written
tiation or integration with respect to the primed coordinates,

and g,, g, are shorthand notation for the scalar homoge-

neous medium Green's functiong;=g(r,r’;1) and g, B’,i—E 2 G[anq,ijkg(aqs_ 5qs)E271:Ep,i0'm’
=g(r’,ro;n). A derivation of the expression&l5—(17), boasTede

which is also valid for gain materials, is rather lengthy and

involves converting a number of volume integrals into sur-,here the indices,j refer to ring elements, the indicesq, s

face integrals by use of the Green theorems. A derivation igafer (6 the field components in a cylindrical coordinate sys-
given in the Appendix. tem. and

(19

. METHOD FOR TAKING ADVANTAGE
OF CYLINDRICAL SYMMETRY G?q,i,:f_ G, ) e A (20)
ringj
In the numerical procedure for solving the Lippmann-

Schwinger integral equation the structure of interest is disyhere the coordinaté, , which also affects; andp, can be

cretized into a number of volume elements in which the elecy oy A similar integral equation for the scattering term
tric field can be assumed constant. Scattering of light b

SC H H H i i -
general three-dimensional objects has previouslgl been inve)isz— for cylindrically symmetric structures is obtained by re

. m sc,m H om b,m :
tigated by, e.g., Purcell and Pennypack&raine? Martin placngEﬁi by Epi™ and replacind=, " by E" in Eq. (19),
et al,%® and Hoekstraet al® by discretizing the dielectric whereE ;" represents the angular momentum components of

structure of interest into cubic volume elements. For generdE’, andE;;™ is the angular momentum componentss5f.
three-dimensional scattering objects a large number of dis- In this paper we will consider a given dipole source lo-
cretization elements is typically required in the numericalcated at the axis of cylindrical symmetry, thexis, and the
procedure. orientation of the dipole will be along the axis, i.e.,d

_ For scattering objects with cylindrical symmetry it is pos- — gx (x=p when $=0). In this case there are only two
sible to use another discretization scheme where the structuggyn,erq angular momentum components=(+1) of the
is discretized into ring volume e!emt_ar?‘?SAll structures in- g 14s The componen&™ 1, E2-*1 are in this case directly
vestigated in this paper have cylindrical symmetry. For com- lated toE? h Pl th o | Th "
pleteness we will briefly present the method for taking ad—rebi(f OE>(r) w Enr 1S In thex-z plane. 1he components
vantage of cylindrical symmetry. Furthermore, the methodE#i  aré correspondingly related &(r) whenr is in the
will be tested against results obtained by discretizing into/-Z Plane.
cubic volume elements. The integrand in Eq(20) is for i=] integrated over the

For cylindrically symmetric structures it is convenient to Green’s tensor singularity. A convenient method of handling

expand the field€ and E® in angular momentum compo- the singularity is again to convert the volume integral into a
nents in the form surface integral away from the singularifii.e.,

EM(r)=[2E](p.2)+ pE(p.2) + PEG(p.2) Jlexpimap), T iy
(18 koqu,ii:kof Pp-G(ri,r';1)-(q'e™¢ 9 —q)d3r’
A ringi

wherep, ¢, z are the coordinate unit vectors, and¢, zare

the coordinates in a cylindrical coordinate system. For struc- _ +f Sl P N

tures with cylindrical symmetry there can be no coupling %pq (;(ringi)p [=1(V7g(r,r"1)-n)
between field components with different angular momentum, R R

and therefore only the componentE? with a given angular +nV'g(ri,r';1)]-qdS, (21
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where the gradient is taken with respect to the primed coor-
dinates,d(ring i) refers to the surface of ring discretization

elementi, andn is the outward surface normal vector. Again
the angleg; can be chosen arbitrarily when it is kept in mind

that ¢; also affects;, p, andq. o
In the limit of ring elements with very small height and 10
width the Green’s tensor elements Egl) can be approxi- C
mated by analytic results of Yaghjidh.Using heights and
widths that are so small that Yaghjian's results can be used | [/ / [... 30 ring elements
directly is not practical. However, these analytic results are --- 66 ring elements
very useful for testing the calculation & ;i - — 112ring elements
A strength of the Lippmann-Schwinger type integral
equation methods is that the unknowns that have to be cal- »
culated to begin with can be restricted to the domain of the 10 ] 5 3 4 5
scattering object. After the field inside the scattering object is om alh
calculated, the field outside the scattering object is directly
glven from the fleld |ns|de by use Of the Llppmann_ FIG. 1. Extinction and abSOrptiOn efficiencies fOI’ap|ane wave
Schwinger type integral equation. incidgnt on a dielectric sphere with radiasand refractive index
In the remaining part of Sec. Il the integral equation 1.7+i0.1.
method for structures with cylindrical symmetry will be
tested against numerical results for scattering of a plandhe numerical task is further simplified by the fact that the
wave from a dielectric ring calculated by discretizing thesolution for them=—1 field component can be obtained
ring in cubic volume elements. The method will also bedirectly from the solution for then=1 component by sym-
tested against analytic results from Mie scattering theory. Anetry considerations. Therefore a numerical calculation is
similar comparison with Mie theory was presented byhere only necessary for a single angular momentum compo-
Drain€ for cubic volume elements. We make a rough esti-nent. Similarly, in the case of a dipole placed on thexis
mate of the reduction in the required number of discretiza@nd polarized along the axis the field can be calculated by
tion elements by comparing a calculation based on ring volfirst solving form=1 and then obtaining the corresponding
ume elements to the work of Draine based on cubic volumgolution form=—1 by use of symmetry considerations.
elements. Figure 1 shows the calculated extinction and absorption
For the case of a plane wave incident on a dielectricefficiencies for a plane wave incident on an absorbing dielec-
sphere Mie scattering theory allows the calculation of, e.g.ric sphere with refractive index 14710.1 obtained using 30,
extinction and absorption efficiency factofBey;, Qaps- 66, and 112 ring discretization elements. Effective medium
These factors are defined by theory has been applied to the boundary of the sphere to
improve the representation of the dielectric sphere when the
K sphere is discretized.
Qext:_OJ Imag(E®* (r)-[&(r)—1]-E(r))d®r/7a?, This figure can be directly compared to a similar figure in
|E?|? Draine’s work where the sphere is discretized into cubic
(22)  volume elements. By comparison, we obtain similar conver-
gence using typically 20 times less discretization elements. It
Ko can be checked that the solid curves in Fig. 1 are very close
Qabs:Tf Imag(E* (r)-[e(r)—1]-E(r))d%r/ wa?, to analytically calculated extinction and absorption effi-
|E”| ciency factors obtained from Mie scattering theory. A ring
(23 element with a large radius will naturally replace more cubic
volume elements than a ring element with a small radius.
ecause the volume elements are relatively close tozthe
is the difference in required discretization elementniy
on the order of a factor 20. We will now consider another
{example, namely, a dielectric ring, where the reduction in the
number of discretization elements is significantly larger.
Y Consider a dielectric ring with height 15 nm, outer diam-
eter 100 nm, and inner diameter 70 nm. The refractive index
8 the ring placed in free space is 3.6. This refractive index is
representative of semiconductor materials such as GaAs at
optical frequencies. The structure is cylindrically symmetric
about thez axis. The ring is illuminated by a plane wave
E0() = XEOeiko7— 1 1605 110+ 1 605 _i %) | E0aikoz propagating along the axis with the electric field polarized
(N=xE'e™’=7e%prig)tze p-ig)Eer" along thex axis. The wavelength of the incident field is 1000
(24 nm. In Fig. 2 we show curves with constant field amplitude

where the incident plane wave is given BJ(r), * repre-
sents the complex conjugate operation, and the resulting tot
electric field is given byE(r). The dielectric sphere, which
is the scattering object, is introduced via the dielectric tenso
g(r). The radius of the sphere is given hyThe extinction
and absorption efficiencies are measures of how efficientl
light is lost from the incident beam of light due to scattering
and absorption. For the case of a plane wave propagati
along thez axis onlym=+1 andm=—1 needs to be con-
sidered for the angular momentum because

155309-5
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From symmetry considerations, the field in the entie
plane 20 nm below the dielectric ring can in fact be con-
structed from the field along the positixeaxis and positive
y axis in this plane. When the field is known along these two
lines the field can be constructed at all other points in the
plane by symmetry considerations. The amplitude of the field
along thex axis and they axis calculated using nine ring
resolution elements is shown as the solid curve in Fig. 3. The
boundaries of the dielectric ring in they plane are indi-
cated with vertical dotted lines. The dashed curve in Fig. 3
shows a similar calculation obtained by use of cubic volume
elements with a corresponding resolution of 5XBnm
X5 nm. In this case 672 volume elements were required for
resolving the dielectric ring. This corresponds to more than
70 times the number of used ring resolution elements. For
the ring elements, increasing the resolution to 36 points re-
. \ sulted in a difference of less than 0.001 for all positions in

-50 0 50 thex-y plane. This difference would hardly be visible in Fig.
position [nm] 3. The agreement between using cubic volume elements and
ring elements is very good along tlkeaxis, and reasonable

FIG. 2. Contour plot(linear scaling of the amplitude of the along they axis. In the present case the convergence ob-
electric field 20 nm below a dielectric ring normalized to the am-tained using ring volume elements is far better compared to
plitude of the incident plane wave. The dielectric ring has outercubic volume elements because the circular boundary of the
diameter 100 nm, inner diameter 70 nm, and height 15 nm. Theing is treated exactly with ring elements. When cubic vol-
refractive index of the ring placed in free space is 3.6. ume elements are used it is more difficult to obtain a good
representation of the cylindrical boundaries. However, as the

for the total field, being the sum of incident and scatteredumber of cubic volume element's is incre'aseq, the result will
field, in a plane 20 nm below the dielectric ring. The differ- cONVerge to the result of the solid curve in Fig. 3.

ence in field amplitude between neighboring curves is kept

constant(linear scaling. The minimum and maximum field IV. RESULTS FOR A DIPOLE SOURCE LOCATED
amplitudes 0.89 and 1.09 have been indicated at two points INSIDE THE DIELECTRIC DISK

marked with _blac_k filled circles. Thg shaded region in Fig. 2 |, this section the Lippmann-Schwinger integral equation
shows the ring in thecy plane. Figure 2 was calculated method will be applied to the case of a given dipole source
using nine ring resolution elements. The resolution indhe  |ocated in the center of a cylindrically symmetric dielectric
z plane is therefore 5 nm5 nm. disk. The results of this section have been obtained by using
both the method for treating sources located inside dielectric
structureg(Sec. I, and the method for taking advantage of
cylindrical symmetry(Sec. Ill). The dielectric disk is placed

in free space. The axis of symmetry is thaxis. The dipole
source is polarized along theaxis. The refractive index of
the disk is 3.6. The height of the dielectric disk [s
=150 nm, and the emission wavelength is 1000 nm. The
emission of radiation from the dipole will be investigated for
various choices of the disk radius.

For a passive dielectric structure there are two methods
for calculating the total emission of radiation from the dipole
source. The first method is to integrate the Poynting vector
. | flux through a closed surface surrounding the emitter. This is
: i achieved by, e.g., integrating the emission per unit solid
_100 _5;0 - 0 - E:O 100 angle in _the far field over a_II directions._ The power qu_x of

Position [nm] emitted lightdP per unit solid angled(} in the far field is
given by

FIG. 3. Amplitude of the electric field 20 nm below a dielectric
ring along thex axis andy axis. The ring is illuminated by a plane _P =T(6,¢)=1
wave with unity electric field amplitude propagating along the dQ ! )
axis. The ring has outer diameter 100 nm, inner diameter 70 nm,
and height 15 nm. The refractive index of the ring placed in freewhere 6 and ¢ are angles that define the direction of the
space is 3.6. The ring boundaries along thaxis andy axis are  radius vector, andS is the Poynting vector, which for large
indicated with vertical dotted lines. distances =|r| reduces to

(8]
o

position [nm]
o

|
(o)
o

1.1 x-axis — 9 rings

---- 872 cubes

Ampligde of electric field
©
191}

o
©

imr?|S(r)], (25

—
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14 : - : ‘ ‘ : 7A

§50 700 750 800 850 900 950 1000
Disk radius [nm]

FIG. 4. Emission rate from a dipole source located in the center

of a dielectric disk. The disk is placed in free space. The refractive y
index of the disk is 3.6, and the height is 150 nm. The emission
wavelength is 1000 nm. ot

FIG. 5. Amplitude of electric field in the-y plane generated by
an electric dipole in the center of a cylindrically symmetric dielec-
tric disk with height 150 nm, radius 894 nm, and refractive index
. . L 3.6. The boundary of the dielectric disk in tht plane is indicated
Herec is the v_acuun_1 s_peed of I'g_ht' _The total em'SS'(_)n Ofwith a dashed line. The axis of cylindrical symmetry is thaxis.
electromagnetic radiation per unit time from the dipolethe emission wavelength is 1000 nm, and the dipole indicated with
source can be obtained by integrating the emission per unj pjack filled circle is oriented along theaxis. Linear scaling has
SO“d angle over a“ dlreCtlonS, |e, been used for the contour p|0t

r
S= 2Fsoc|E(r)|2. (26)

2m T
Ftot:f f I'(6,¢)sin(6)dod¢. (27)
$»=0J 6=0

Another method for obtaining the total emission of radiation
from the dipole source in a passive dielectric structure is
given by(see, e.g., Ref. 29

T'oi= 2w Imag(d- E(0)), (29)

i.e., the total emission is proportional to the imaginary com-
ponent of the electric field along the dipole orientation at the
position of the dipole. Note that the expressi@8) is not
valid for active structure®’ Notice that the real part of the
electric field along the direction of the dipole is highly sin-
gular at the dipole position. The expressi@8) can be
evaluated by calculating the near field inside the dielectric
structure at the position of the dipole. The methods presented
in this paper can be used for calculating the total emission by
use of both Eqs(27) and(28). The total emission from the
dipole source calculated by use of E87) as a function of

the radius of the disk is shown as the solid curve in Fig. 4.
The corresponding result obtained by using EB8) is
shown as the dashed curve. In both cases the total emission >

is normalized relative to the emissidiy from the same di- FIG. 6. Amplitude of electric field in the-y plane generated by
pole source located in free space. In the calculations presy electric dipole in the center of a cylindrically symmetric dielec-
sented in this section the dielectric disk has been discretizegc gisk with height 150 nm, radius 800 nm, and refractive index
into ring volume elements with a height of approximately 173 6. The boundary of the dielectric disk in tite plane is indicated
nm and a width of 12.5 nm or smaller. with a dashed line. The axis of cylindrical symmetry is thaxis.

From Fig. 4 it is clear that the emission rate peaks forThe emission wavelength is 1000 nm, and the dipole indicated with
certain choices of the disk radius. The figure shows peaks ia black filled circle is oriented along theaxis. Linear scaling has
the emission rate around disk radii of 720 nm and 894 nmbeen used for the contour plot.
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Off-resonance
r=650nm r=800nm

x18

Z e 7 4 9 x18
y %% y

On-resonance
r=720nm r=894nm >

FIG. 8. Amplitude of electric field in the-y plane generated by
7 A 7 an electric dipole in the center of a cylindrically symmetric dielec-
e e tric disk with height 150 nm, radius 800 nm, and refractive index

3.6. The axis of cylindrical symmetry for the disk is thexis. The

\ emission wavelength is 1000 nm, and the dipole is oriented along
the x axis. Linear scaling has been used for the contour plot.
position, emission wavelength, and orientation of the dipole

| X emitter in the dielectric structure. The difference in emission

- as the disk radius is varied also leads us to conclude that the
emission can be very different for disks with a finite radius
as compared to the disks with infinite radius investigated by

other authorg®?21-25:30,40
Near fields on and off resonance are illustrated by con-
stant field intensity curves in Figs. 5 and 6, respectively. The
difference in field amplitude between neighboring contour
FIG. 7. Far-field angular emission patterns from a dipole sourcecurves is the same between all neighboring contour curves
in the center of a cylindrically symmetric dielectric disk with height (linear scaling. The boundary of the dielectric disk is indi-
150 nm, and refractive index 3.6. The axis of cylindrical symmetrycated with a dashed line. In Fig. 5 the amplitude of the elec-
for the structure is the axis. The dipole is oriented along tRewxis. tric field is shown for the disk radius 894 nm, where a reso-
The emission pattern is shown for the disk rad# 650 nm, 720 npance is seen in the total emission. The near field contour
nm, 800 nm, and 894 nm. plot shows that there are standing wave type resonances both
along thez axis and along thg axis in the disk. Along the
The difference in disk radius for the two neighboring peaksaxis the height of the disk corresponds roughly to half a
corresponds roughly to half a wavelength in the media fowavelength in the medium resulting in a half-wavelength
the fundamental mode propagating in a slab waveguide withype standing wave along thzeaxis. The diameter of the disk
same height and refractive index as the dielectric disk. Thigs several wavelengths in the medium, and standing waves
indicates that the peaks are related to the excitation of standjive rise to nodes and antinodes in the total field amplitude
ing wave resonance fields in the disk. The emission may bealong they axis. The dipole is positioned exactly at the po-
enhanced by a factor 13 as compared to the correspondirgition of an antinode in the standing wave field pattern re-
emission from the same dipole located in free space. Theulting in the large emission rate. When making the contour
factor 13 is not large compared to, e.g., factors of around 30@lot a small region was excluded around the dipole, indicated
found for dielectric microspherdsee, e.g., Refs. 26 and)27  with a black filled circle, because the dipole field amplitude
An increase by a factor 5 has been measured for spontaneobscomes singular at the dipole position. From the near field
emission from quantum dots in GaAs-based pillar microcaviimage at resonancgig. 5 we can from the periodicity of
ties, and an increase by a factor 15 has been measured fotl& standing wave pattern along thexis estimate that half
microdisk?837-29 a wavelength in the media corresponds roughly to 175 nm,
In general, whether or not a resonance condition is fulwhich is roughly equivalent to the distance between the two
filled resulting in a large rate of emission depends on botlpeaks in Fig. 4.
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The similar situation is shown in Fig. 6 for the disk radius quired number of discretization elements when taking advan-
800 nm. For this choice of disk radius we again observe aage of cylindrical symmetry. For a dielectric sphere the
standing wave pattern in the near field both alongzlagis  reduction was on the order of a factor 20, and for a dielectric
and along thg axis. In this case the dipole is positioned at aring the reduction was on the order of a factor 70.
node for the standing wave field pattern along thexis. The methods were exemplified for the case of a given
This iS, hOWeVer, not seen at first because the intensity St|w|p0|e source |0cated in the center Of a Cy"ndrica”y Symmet-
peaks in the center of the disk at the position of the dipolgic dielectric disk. The total emission from the dipole source
due to the dipole field singularity. Notice that compared 10,55 investigated for various choices of the disk radius. Cer-
Fig. 5 the radius of the disk has been reduced by roughly ong,iy gisk radii resulted in a high total emission of light from

quarter wavelength in the _medla. . the dipole. In the case of high total emission of light a cal-
Somg e>_<amples of far?ﬁeld rad|at!on patteﬁ(sﬂ "75) aré  culation of the near field revealed that the dipole was located
shown in Fig. 7 for foqr cﬁfferent ch_0|ce§ of disk radius. Thg at an antinode of a standing wave field pattern. The standing
patterns show the emission per unit solid angle as a functiof,e field pattern corresponds to a resonance field of the
of the off-axis anglef for a fixed azimuthal angle. Inthis  gigjaciric disk. At resonance, the total emission was en-
case we consider tfey plane (=/2) as this is the plane  p5nceq by a factor 13 as compared to the emission from the
in which the shape of the radiation patterns is most strongly, 1\« dipole located in free space. Near fields were also pre-
affected by the presence of the dielectric disk. The similaggnie for the case of low total emission from the dipole. In
radiation patterns for the-x plane all resemble a figure 8, {hat case the dipole was located at a node in a standing wave
which would also be the shape of the radiation pattern for thg;g |4 pattern. Far fields were presented for choices of disk

dipole in free space for thex plane. The free space radia- 44jys resulting in high and low emission of radiation.
tion pattern for thez-y plane is a circle, and it is therefore

clear that the shapes of the radiation patterns in Fig. 7 are
very different compared to the free space radiation pattern.
The four far-field patterns can be compared in magnitude
when it is taken into account that the amplitude of the far- D. Lenstra and his group at Vrije Universiteit, Amster-
field plots for the radius 650 nm and 800 nm have beerdam, The Netherlands, are acknowledged for their hospitality
multiplied with a factor 18 as compared to the results forduring part of this work. The work was carried out while TS
radii 720 nm and 894 nm. Consider, for example, the farwas with Research center COM, Technical University of
field emission pattern for the radius 800 nm. In this emissiorDenmark.

pattern there are certain preferred directions for emission of

radiation. These preferred directions of emission are not eas-

I|y recognized from a near field image such as Flg 6. Aclear APPENDIX: DERIVATION OF DRIVING TERM
correspondence between the near field image and the far-

field emission pattern becomes apparent when the near field In this appendix the following volume integral expression
image is extended to show the fields in distances of severdpr G":

free space wavelengths away from the dielectric disk. In Fig.

8 the near field for the radius 800 nm is shown for a large

spatial region. In this case we obtain a clear correspondence GP(r,ro)=G(r,ro;1)—G(r,ro:n)

between the preferred directions of propagation in both near

field and far-field images. +f G(r,r';1)k3(n?=1)-G(r',ro;n)d%r’
\%

ACKNOWLEDGMENTS

V. CONCLUSION (A1)

In conclusion, a Lippmann-Schwinger type integral equa-
tion method has been presented for the treatment of sourc#éll be converted into a surface integral expression. Thereby
located inside finite-sized dielectric structures. Special attena derivation will be presented for the expressi¢hs)—(17).
tion was given to the treatment of the dipole source field We will consider the case where both positianandr,
singularity. A method was presented for removing the dipoleare inside the volum¥ and convert the volume integral into
source field singularity from the Lippmann-Schwinger inte-a surface integral by use of the Green theorems. The Green
gral equation to be solved. theorems cannot be applied directly to a volume integral with
A Lippmann-Schwinger type integral equation methodsingularities in the integrand. The integral directly over the
was, furthermore, presented for taking advantage of the synsingularities atr andr, can be calculated by enclosing the
metry in cylindrically symmetric structures. In this method singularities by infinitesimally small spherical volumé¥,
the dielectric structure is discretized into ring volume ele-andéV,,. HereéV, is a sphere around andéV, is a sphere
ments. The method based on ring volume elements waaroundr,. When integrating over the spheré¥, and 6V,
tested and compared with a previous method that does noine of the two Green'’s tensors can be treated as constant for
take advantage of cylindrical symmetry based on discretizing #r,. The integral of the other Green’s tensor over the
into cubic volume elements. Depending on the choice of disphere has been tabulated by Yaghjfiaithe contribution to
electric structure we observed large reductions in the reEq. (A1) from these small spheres is then given by
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J G(r,r';1)k3(n?—1)-G(r',ro;n)dr’
oV

1 2
=—3(n*=1)G(r.ro;n), (A2)

f G(r,r';1)k3(n?—1)-G(r',ro;n)dr’
5Vn

~1n*-1 _
-3 " G(r,rp;1). (A3)

Before the Green theorems are applied the remaining integral
is rewritten in a convenient form by use of the following
Green’s tensor relation:

1
G(r,r':n)=——(VV—=IVdqg(r,r';n), r#r’,
( ) kgnz( )9( )
(A4)

where the scalar homogeneous medium Green’s fungtisn
defined in Eq(3). The expressioA4) is obtained from Eq.
(2) by use of the following property of the scalar homoge-
neous medium Green’s function:
(V2+k3n?)g(r,r';n)=—68(r—r"). (A5)

In Eq. (A4) the differentiations could also be with respect to
the primed coordinates. We will ugg as shorthand notation
for g(r,r’;1) andg, as shorthand notation fay(r’,rqo;n).
The remaining volume integral may then be written

J G(r,r';1)k3(n?—1)-G(r’ ,ro;n)d°r’
V{8V, U 5V}

n2_1 ! ! ! !
:2—2f [(V'V'gy)-(V'V'gy,)
kon= Jwv\sviuev,}
—(V'V'g)V'?9,—(V'V'g,)V'?g,
+1(V'?g,)(V'?gy)]d 7, (A6)
where the integral is over the voluméminus the volume

PHYSICAL REVIEW B66, 155309 (2002
[AZBRRAZR S
=f (nV'gy)-(V'V'gy)dS
vV
—f gin-(V'V'V'g,)dS
V'

+n2fV,(V’V’gn)V’2gld3r’, (A7)

n>-1

n2

f (V'V'91) V' 2gqd’r’

V/

- (vienvvienas
Vv

_J&v’gn(ﬁ'vl)(vlvlgl)dsry (A8)

(1—n2)f (V'V'gy) V' g, d®’
V/
- [ -venvvigas
Vv

—Lv,g1<ﬁ-\7'><\7'\7'gn>dsz (A9)

n-—1
= LV,(V’Zgl)(V’Zgn)dgr’

=—kéfw,(glﬁV’gn—gnﬁV’gl)dS’,

(A10)

regionssV, anddV,, . The integral can be transformed into a wheren is the outward surface normal vector, avi refers
surface integral by use of the following formulas that weto a general volume where the integrands are nonsingular.

have derived using the Green theorems: Thereby
f G(r,r';1)k3(n?—1)-G(r',ro;n)dr’
W8V,U 8V}
n?—1 . - 2
=2—2f (nV'gy)-(V'V'gn)—(n-V'g)(V'V'gy)— ——(n-V'gy)(V'V'gy)
kgn< J aew{aviuevah) n“—1
2 . 2 . .
+ nz_1gn(n-V’)(V’V’gl)—Ikén2_1(gln-V’gn—gnn-V’gl) ds’. (A11)
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Note that the surface integral here includes an integration R
over both the surface of the volume V but also an integrationJ (nV'g1)-(V'V'g,)dS
over the surface of the infinitesimally small volumé¥, oV
and 8V,,. The integrands in the surface integrals are highly R’
singular near the surfaces 6¥, and4V,,. The contribution = f ——[Vg(r,ro;1)+ R'-VVg(r,ro;1)]-
from the surfaces around these singularities result in terms n R
containing both Green’s functions and second derivatives
(VV) of Green’s functions.

A relatively simple integral over the surface of one of the k2n2< |

. 0

small spheres is

i 1

konR' k3n’R’?

f (AV'gy)-(V'V'gy)dS RORT) 8 3 ds
a8V ' " R’ R'|konR'  k3n?R'2 nc=
C O 1 A20
wJ udS“VVg(r,ro;n) (A20)
(96\/1 4'7T|l',—r|4

where R'=r'—ry and R'=|r'—ry|. Some terms in Eq.
(A20) can be immediately discarded because for the spheri-

1
= §VVg(r,r0;n). (A12) cal exclusion volumes chosen here

Here it was sulfficient to include only the most singular terms

in Vg;. R_' _
In a similar way we obtain J(,g\,nRr ds=0, (A21)

| ven vV gds ~vgron),
doVy

J RR R,dS—O (A22)
(Alg) 35\/an R' R =
J (n-V'g,)(V'V'g))dS ~VVg(r,ry:1), This leaves us with the following:
IV,
(A14)
) L, (MV'g) - (V'V'gy)dS
LW (n-V'gng,)dS'~g(r,ro;1), (A15) 7on
" R'R' 2.2
=f —EE'[VVQ(f,fo;l)]kon
R PEVA
f (n-V’'g;9,)dS ~g(r,rqo;n). (A16)
o L RR| 3|11
In order to evaluate the other surface integrals it becomes 1 ken?| RR| Kn?|)4mR2

necessary to make the following Taylor expansions:
1
9n~g(r,ro:N)+ (1" =1)-Vg(r,ro;n) =3V Ve(rroil) =3VVg(rro )M, (A23)

1
+§(r’—r)~(VVg(r,r0;n))~(r’—r), r'~r, where

(A17)

1
—— —— - dS  (A24)

_f RRR R 1
wv,R' R'" R’ R R'24m

V'g,=Vg(r,ro;n)+(r'—=r)-VVg(r,rg;n),

r'=r, (A18)
is a compound of four vectors grouped together or two dy-
V'g~V'g(r,r’;1)], -, adics grouped together. The symbol : is a double dot product
0 such that for vectorsy, v,, Vi, Vg4,
+(r'=rg)-VVg(r,rg;1), r’=ry. (A19)
These expansions allow us to deal with singularities of (V1V2):(VaVa) = (V2 V3) (V1 Va). (A25)
higher order as compared to Eq#12)—(A16). As an ex-
ample we consider the term In a similar way we obtain
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| @vienvvigds
a8V,

1
=3V29(r.1o;)1=3VVg(r,ro;1):M,

(A26)
f (7-V'g)(V'V'gdS
IV,

1
=3 V%0(1.ro;m1=3VVg(r.roin):M,
(A27)
where we have used

(VVg):ll =VZ3gl.
The last term to consider in detail is

(A28)

f 9,n-(V'V'V'g,)dS
a6V
%J [g(r,ro;n)+(r’—r)~V9(r,ro;n)
a6Vq
1
+E(r’—r)-(VVg(r,ro;n))~(r’—r)
xn-(V'V'V’g,)dS. (A29)

In this case only those terms in EGA29) that are propor-
tional to g(r,rq;n) and VVvg(r,rqo;n) are nonzero for the

fG(r,r ;1)k3(n?—1)-G(r',ro;n)d%’
v

n°—
=G(r,ro;n)—G(r,rg;1)+ ——
kan?
2 2
(n Vg (V'V’ 91)+

Thereby we see that the volume integral expressionGdr

n
gn(n V') (V'V'gy)—Ikg——— n2_

PHYSICAL REVIEW B66, 155309 (2002

integration over the surface of the spherical exclusion vol-
ume 8V,,. These nonzero terms are

1
g(r.ro; n)f (V'V'V'g,)dS = —§kglg(r,r0;n),
(A30)
vvg(r,ro;n): J ——n (V'V'V'g,)ds
=—V2g(r,ro;n)1+9VVg(r,ro:n):M, (A31)

whereR=r’—r. The above expressions can now be evalu-
ated by use of the following property of the four vector com-
poundM:

A:M= %S[Tr(A)I +A+AT], (A32)

where the dyadidA can be arbitrary. Herd refers to the
transpose, and Tr refers to the trace or sum of diagonal ele-
ments. However, for the cases of interest hiereill be the
symmetric dyadicvVvg(r,rq;n) or VVg(r,rq;1), andcon-
sequently the transpose operation will have no effect, i.e.,

1
(VVg):le—S[Vng—ZVVg]. (A33)

After inserting the expression#12)—(A16), (A23), (A26),
(A27), and (A29)—(A31) into Eqg. (Al1l), adding the terms

(A2), (A3) then finally by use of Eq(A4) we obtain the
main result of this appendix, namely,

f(ngMVV%>mV©MVV%>

2

(gln V'g,—g.n-V'gy) |dS.

(A34)

Note that for the case of absorbing media, or passive me-

has now been transformed into a surface integral, where thdia when the retarded Green’s function is considered, the
integral can be a surface far away from the Green’s tensoGreen’s functions decay exponentially with distance for large
singularities. Clear\G° andEP are nonsingular. The expres- distances. Therefore, if we consider a volume with refractive

sion (A34) refers to the case where both positianandr
are inside the volum&. In the case where is outside the
volumeV the only difference will be that the ter@(r,rq;n)
in Eq. (A34) should be omitted. The results Eq$5)—(17)
are now directly obtained from E@gA1) and Eq.(A34).

indexn taking up the whole three-dimensional space, and the
surface ofV is therefore placed at infinity, the surface inte-
gral in Eq.(A34) vanishes. In that case we are left with the
following simple integral equation relation between two
Green'’s tensors for different homogeneous media:
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G(r,ro;n)=G(r,r0;1)+f G(r,r";1)k3(n®—1)-G(r’,ro;n)dr . (A35)
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