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We study conductance and spin-polarization fluctuations in one-dimensional wires with spin-5/2 magnetic
impurities (Mn). Our tight-binding Green function approach goes beyond the mean field thus inckding
exchange-induced spin-flip scattering. In a certain parameter range, we find that spin-flip suppresses conduc-
tance fluctuations while enhancing spin-polarization fluctuations. More importantly, spin-polarization fluctua-
tions attain auniversal valuel/3 for large enough spin-flip strengths. This intrinsic spin-polarization fluctuation
may pose a severe limiting factor to the realization of steady spin-polarized currents in Mn-based one-
dimensional wires.
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. INTRODUCTION coupling?® UCF in Mn-based submicron wires was first ex-

perimentally studied in Ref. 8. We describe transport within

Spin-related effects in solid state heterostructures give risthe Landauer formalishh and calculate the relevant trans-

to a rich variety of fascinating physical phenomena. Thesénission coefficients via noninteracting tight-binding Green
spin-dependent properties also underlie a potential techndunctions. . . _

logical revolution in conventional electronitsThis para- We treat thes-d interaction beyond the usual mean-field

digm is termed “Spintronics.” A particularly interesting theory thus accounting for spin flip scattering. In a certain

theme within this emerging field is spin-polarized transportP@rameter range we find that spin-flip scattering suppresses

in semiconductor heterostructures. This topic has attractegPnductance fluctuatiofiS(below the UCF value for strictly

much attention after the fundamental discovery of exceedgne-dmensmnal wirgswhile enhancing the corresponding

: L e : ; spin-polarization fluctuations. More importantly, we show
ingly long spin dn‘fus_lon Ien_gths_ In .dOPEd se_m|c0nd_ucgtors that the spin-polarization fluctuations attainriversal value
followed by the seminal spin injection experiments in Mn-

based heterojunctioris ((8)%)=1/3 for strong spin-flip scattering. This large spin-

; . olarization fluctuation may pose a fundamental obstacle to
Theoretically, a number of works have addressed issu R yp

€3ttaining steady spin-polarized currents in Mn-based wires.
connected with spin-polarized transport. These include, for g y spin-p

instance: spin filtering, spin waves, and quantum shot 1. HAMILTONIAN MODEL

noise®—all in ballistic semimagnetic tunnel junctions—and

mesoscopic conductance fluctuations in Rashba igsn- We consider a one-dimensional tight-binding chésee

dependent phenomena in connection with localization effect§ig. 1), of N spins=5/2 magnetic impurities coupled to ideal

should bring about exciting interesting physics. leads(sitesn<1 andn>N). We separate the electronic and
Here we investigate conductanead spin-polarization  impurity-spin degrees of freedom and treat the latter classi-

fluctuations for transport through one-dimensional wirescally (static scatterejs The two-component electron wave

with spin-5/2 magnetic impurities, e.g., Mn-based 1I-VI al- function, = (¢, ,#,) is then governed by the Sclinger

loys such as ZnSe/ZnMnSe/ZnSe. The experimental feasibipguation with a Hamiltonian

ity of these wires has already been demonstréfed. these H. 0 H.. H

systems, the conduction electrons interact with the localized :< 0 ( 1 ”)_ (1)
d electrons of the Manganese via thed exchange 0 Ho/ \Hj; Hy

n=—1 n=0 n=1 n=2 n=N-2 n=N-1 n=N n=N+1 n=N+2

FIG. 1. One-dimensional tight-binding chain with magnetics=5/2 impurities(mutually uncorrelated, each spin equally distributed
among the six spin statesoupled to ideal impurity-free leadsitesn<<1 andn>N).
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HereH, is spin independent, with elemettts N=1 case.A chain with a single impurity is a simple
illustrative example where analytical progress is possible.
{Hothm=2¥8nm= ¥Onm+1— ¥YOnm-1tVndam,  (2)  After performing the straightforward matrix inversion in Eq.

whereV,, is the potential at site and y=%2/2ma?, with a (7) we find

being the “lattice constant.” In the leads, itself gives rise
to the usual dispersion relatiar(k) =2y(1— coska). -V4J,S,
In the following, c=1=1/2 ando=| =—1/2. We re- {(e)=— > (10
strict ourselves to zero magnetic field so that the block ma- Vite(dy—2)+(9
tricesH,, have elements given by

where J=(J,,Jy ,J,)T. In zero magnetic fieldS,)=0 and
{Hootnm= 6nmIz0S, 2 (3) (S2)=35/12. Th|s implies tha¢?)=0 both with and without
spin-flip, whereas the fluctuations are finite. The analytical
averaging is of course complicated by the presenc8, af
the denominator, but for isotropic couplidg=J,=J,=Jo,
we have (9)%=J2 os(s+1) so thatS, only shows up in the
numerator, i.e.,

which is a Heisenberg-like interaction of the spin of the elec-
tron (o) with the z-component spin of the impuritys
=(S«,S),S,). The off-diagonal block matrik; | = HIT con-
tains the interaction of the electron spin with thkeandy
components of the impurity spins which leads to spin-flip:

{HTL}nm: 5nm[\]xsn,x_i~]ysn,y]/2- (4) <( §)2>_ ViJS

We consider a sufficiently weak coupling between the impu- 12 [V1 +a(4y—s)+JSs(s+ 1)]2'
rity spins so that they can be considered mutually uncorre-

lated, i.e., no magnetic ordering. Tlze&eomponent of each
spin is equally distributed among the six spin states and the
andy components are uniformly distributed with the con
straint thatS?=S;+ S} + S;=s(s+1); see Fig. 1.

11)

In the absence of spin-flipJ(=J,=0) the fluctuations are
~enhanced due to the replacemenls()zH 1)—S2<s(s+1)

in the denominatofthe final expression for the fluctuations
is much more complicatg¢dnd this means that spin-flip will
lower the fluctuations of,. Of course this trend is strictly
lIl. TRANSPORT PROPERTIES valid for N=1, but in a limited parameter range this trend is
gtnl true for IargerN values.

Finite N caseFor a finite number of impurities the prob-
lem is not analytically tractable and we study the problem
numerically by generating a large ensemkigpically 10
=— > T,.(ep). (55  membergof spin configurations. For each spin configuration

’ we calculate Eq9.7) and(8) numerically. In our simulations
we use the following parametersg=1y, J,=y/2, V,=0
(i.e., we neglecspatial disorde), and varying spin-flip cou-
pling strengths &J,=J, <.

We study transport in the low-temperature linear respons
limit within the Landauer formalisi:

HereT is a 2x2 matrix with the element3 ., being the
transmission probability of an electron from a state with spin
o' in one lead to a state with spin in the other lead. From
Eq. (5) we now define the degree of spin polarization

8
el Tt T Ty =Ty ®) 6
Lty Tyt Ty + T+ Ty 4
2
which we will focus on in this paper. 0
Green function methodhe transmission matriX is re- “ls
lated to the retarded Green function 4
~ 2
G(e)=[e-1-H-3(e)]* (7) 3
? 0.6
via the Fisher-Lee relatidh 6 o
4 x5 El:r:n::Q =]ctars]
T,or(8)=[Av(8)1P{Gyor (&) bnil?, (8 Zf‘?”amwa """" e “ﬂa';
wherev =%~ 1de/ 9k is the group velocity in the leads. In Eq. 91 oT 0 T 1

(7) the 2N X 2N matrix H is the Hamiltonian truncated to the
N lattice sites with magnetic impurities. The effect of cou-  FiG. 2. DistributionsP(¢), P(T,,), andP(T,,) for different
pling to the leads is contained in theVX 2N retarded self-  spin-flip scattering strengthlz=J, in the case oN=10. The dash-
energy matrix with element$ dotted line in the lowest panel indicates the uniform lirRi¢Z)
_ =1/2[note the magnification d?({) by of factor of § attained for
{200/ (&)am=—v€*®38_ 6m(S1nt Snn).  (9)  strong enough spin-flip scattering.
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FIG. 3. Average fluctuation§ 6¢)2)*2? as a function of spin-flip
strength folN= 10, 20, and 30. The dashed horizontal line indicates Jo/v=dy/v

the universal value 1/3 obtained from the uniform limitP . .

=1/2. The vertical d;i;ed line indicates where the spin-fliéé?ate is FIG. 4._Average condu_ctang‘g} a_nd its fluctuationg(g)*)™"

comparable t4J,c|/%. as a function of the spin-flip s_catterlng strength for 10, 20 and _
30. The conductance fluctuations are much more sensitive to spin-

IV RESULTS AND DISCUSSIONS flip Fhan thg avergge.conductance: the former is strongly suppressed

for increasing spin-flip rates.

Figure 2 shows the distribution®(¢), P(T,,), and o

P(T,,.) for N=10 and increasing strengths of the spin-flip a"g€ spin-flip strengthsy(=J,~7). .

couplingJ,=J, . The distributionP(¢) is symmetric around Suppression of conductance fluctuatioWhereas the

=0, which implies that on average there is no spin filtering,fluctuations in the spin polarizatios remain finite in the

(£)=0. The distributionP(¢) first gets narrower for spin- Stong spin-flip scattering regim@ig. 3), we find that the

flip in the [0,0.15y] range(not shown and then broadens as flu'ctgat.lons .Of .th‘? conducta}n@are strongly suppressed in

spin-flip further increases. For sufficiently strong spin-ﬂipth's limit. This is illustrated in Fig. 4 which shows the aver-

scattering the distribution approaches that of the unifornf?9€ conductance and its fluctuations as a function of spin-flip
limit in which P(¢)=1/2. In this limitP(T,,) andP(T,,.)  Scattering forN=10, 20, and 30. Note thaf(5g)*)"* is
coincide, and so do all average transmission probabilitie§Uch more sensitive to spin-flip th4g). In addition, for all

H 2\1/2 _
(T,.). As we discuss below, the initial narrowing and sub-N We essentially have(sg)®)™*>(g) for J,=J,—0 and

2,172 _ :
sequent broadening d?(¢) with spin flip gives rise to a ((99)%)""=(g) for J,=J,—y. Figure 4 clearly shows the
minimum in the fluctuation of (Fig. 3. conductance fluctuations get suppressed for increalsing

Universal spin-polarization fluctuation$n the limit of a 'Ehe horizontal dashed line shows _the U.CF val_ue .(0'73/2
short spin-flip length/’,<L we in general find a uniform =0.365, see, e.g,, Ref. )L.ﬁ)r a one-dimensional wire n the
distribution P(¢)=1/2 (Fig. 2. This uniform distribution metallic regime. The spin-relateconductancefluctuations

yields the universal value((57)2)=1/3 for the spin- do not approach a finite value for increasing spin-flip scat-

polarization fluctuations. Figure 3 clearly shows that this uni-{€1ng. It actually seems to go to zero. This is in contrast to
e spin-polarizationfluctuations(Fig. 3), which attain a uni-

versal value is attained for increasing spin flip strengths an n 12 L )
is indeed independent . Interestingly, Fig. 3 also shows a Versal valug(5¢)®) = 1//3 for strong spin-flip scattering.

minimum at around),=J,=0.15y. This minimum can be Incidentally, we observe th4(5g)?>1/2 and((67)%)"* also
attributed to two competing energy scales: the longitudinaPrésent contrasting behavior for increasMdandsg>J,):
(~J,) and the transverse~(J,,J,) parts of thes-d ex- the former is suppressed while the latter is enhan@éd
change interactiofEgs. (3) and (4), respectively. A simple ~ Figs- 3 and 4 o
“back-of-the-envelope” calculation shows that these two _SPin disorder as spatial disordefo some extent, the-d
competing scales are equal fag=2J,=J,/\2s(s+ 1)/3y site interaction considered here plays the role of spatial dis-
e : ; #
=0.208y. The vertical dashed line in Fig. 3 indicates this o_rder in the system \_N'th a mean _free pa_rﬂj. _Let us con-
value. Observe thd( 5¢)2) becomes larger for increasig ~ Sider first the case with no spin-flipe., J,=J,=0). In this
This happens becaus¥¢) broadens for largeN's (the tra-  ¢@S€ the temd,aS, , acts as a ‘random” spin-dependent
versing electrons see a wider region with random gpifisis potentlal along the chan(her_e th_e site potential has some
is similar to the broadening due to increasing spin ﬂiplnternal structurg As shown in Fig. 4 the conductance fluc-
strength. tuations for zero spin-flip scattering are larger than, slightly
We should mention that the distributié(¢), and conse- 2P0ve, and slightly below, the UCF value f8r- 10, 20, and
quently((8¢)?), change dramatically fas=<J, . In this re- 30,.respectlvely. F‘or |nqrea5|ng we go from the metallic
gime, P() becomes U shapeghot shown because of the regime Q_=Na</Jz) with vanishing fluctuations and a
dominant filtering due to the “end states” wit§, ,= +5/2. ~ GaussianP(g) strongly peaked neag~2e’/h to the
This qualitatively different P(£) yields a monotonically de- strongly localized regimel(>/; ) where it is well known
creasing/(8¢)?) as a function of spin-flip strength. Here the that P(g) is strongly peaked neag~0 with a log-normal
universal{(8¢)?)=1/3 value is approached from above for distribution so that fluctuations can be comparable to the

153306-3



BRIEF REPORTS

PHYSICAL REVIEW B56, 153306 (2002

mean valué® This is in accordance with numerical studies picture is slightly different: here we divide our system into
with different continuous distributions of the “on-site” po- N_ =L/I, segments. To each of these we can associate an

tential (e.g., Gaussian or uniform distribution€ In Fig. 4

the “small” mean value<g), for N=10, 20, and 30, indi- i ation(
cate the onset of localization with fluctuations comparable td(5¢;)?) are additive quantities likég) and ((45g)

average spin polarizatioff;)=0(i:1..N) and a correspond-
ing spin-polarization fluctuatioi(5Z;)?). Neitherggi) nor
) (“ex-

the mean value. A® becomes larger conductance fluctua-tensive versus intensive” propertjesSensibleglobal aver-

tions are as expected suppres&etf.

Role of spin-flip scatteringSpin-flip clearly suppresses
conductance fluctuationg=ig. 4). This can be understood
from Eq. (4) being acomplexnumber with a random phase

which makes spin-flip act as a source of “decoherentié
total wave function is, of course, fully cohergnEurther-

more, spin-flip mixes all theS, , components on each site
thus smoothing the potential seen by the traversing electron
and hence reducing conductance fluctuations. This is true fo[r

both e>J, [except for the window (0,0.19 in which
P(¢) narrowd andeg<J,.
“Truly” universal fluctuations.Why is ((8¢)?)Y? univer-

sal even for short spin-flip lengths,<L (strong spin-flip

scattering while ((8g)2)¥? is clearly suppressed below the
usual UCF value in this limit? It is well known that conduc-
tance fluctuations are suppressed in the incoherent ifmit.

More specifically, in one-dimensional wires Wm<L, /
is some “dephasing length,” the suppression factoylis/,

ages for the whole system are thes (1/N)=(Z;)=0 and
(80)°=(1IN)=((8)%). We should expect (6¢)°
=((84)?)={((6¢)?) if the system isergodic Hence univer-

sal spin-polarization fluctuations are not suppressed for large
spin-flip scattering in contrast to conductance fluctuations.

IV. CONCLUDING REMARKS

Spin-flip scattering in Mn-based wires reduces conduc-
ance fluctuations while enhancing spin-polarization fluctua-
tions in a limited parameter range. Remarkably, spin-
polarization fluctuations reach a universal value 1/3 for large
spin-flip scattering in which the conductance fluctuations
vanish. This universal value should manifest itself in time-
and polarization-resolved photoluminescence measurements.
More important, these sizable spin fluctuations may limit the
possibilities for steady spin injection in these systems.
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