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We calculate the subgap density of states of a disordered single-channel normal metal connected to a
superconductor at one end~normal-metal–superconductor junction! or at both ends@superconductor–normal-
metal–superconductor~SNS! junction#. The probability distribution of the energy of a bound state~Andreev
level! is broadened by disorder. In the SNS case the twofold degeneracy of the Andreev levels is removed by
disorder leading to a splitting in addition to the broadening. The distribution of the splitting is given precisely
by Wigner’s surmise from random-matrix theory. For strong disorder the mean density of states is largely
unaffected by the proximity to the superconductor, because of localization, except in a narrow energy region
near the Fermi level, where the density of states is suppressed with a log-normal tail.

DOI: 10.1103/PhysRevB.64.134206 PACS number~s!: 74.80.Fp, 72.15.Rn, 73.63.Rt

I. INTRODUCTION

Several recent works have identified and studied devia-
tions from mean-field theory in the subgap density of states
of a normal metal in contact with a superconductor.1–4 The
excitation spectrum below the gap of the bulk supercon-
ductor consists of a coherent superposition of electron and
hole excitations, coupled by Andreev reflection5 at the
normal-metal–superconductor~NS! interface. The energy of
these Andreev levels fluctuates from sample to sample, but
such mesoscopic fluctuations are ignored in mean-field
theory. Because of these fluctuations, the ensemble averaged
density of stateŝn(«)& acquires a tail that extends below the
mean-field gap, vanishing only at the Fermi level~zero ex-
citation energy«). The fluctuations become particularly large
if the size of the normal metal is greater than the localization
length.

The purpose of this paper is to analyze an extreme case of
complete breakdown of mean-field theory, which is still suf-
ficiently simple that it can be solved exactly. This is the case
of single-mode conduction through a disordered normal-
metal wire attached to a superconductor. The localization
length in this geometry is equal to the elastic mean-free path
l, so that the wire crosses over with increasing lengthL from
the ballistic regime directly into the localized regime—
without an intermediate diffusive regime. Perturbation theory
is possible in the quasiballistic regimel @L, but for l ,L an
essentially nonperturbative approach is required. We will use
an approach based on a scaling equation~also known as in-
variant embedding! that has proved its use before in different
contexts.6–9

We will contrast the quasiballistic and localized regimes,
as well as the two geometries with a single superconducting
contact~NS junction! or with two superconducting contacts
at both ends of the normal metal wire@superconductor–
normal-metal–superconductor~SNS! junction#. If we assume
that the two superconductors have the same phase, so that
there is no supercurrent flowing through the normal metal,
then the Andreev levels of the SNS junction are doubly de-
generate in the absence of disorder. This degeneracy is bro-
ken by disorder. We find that for weak disorder the probabil-

ity distribution of the splitting is given precisely by Wigner’s
surmise from random-matrix theory.10 ~The spectra of cha-
otic systems have spacings described by Gaudin’s distribu-
tion, which is close to, but not identical with Wigner’s
surmise.10!

In the localized regime the fluctuations of the Andreev
levels become greater than their spacing, and they can no
longer be distinguished in the mean density of states, which
decreases smoothly to zero on approaching the Fermi level.
The energy scale for this soft gap is exponentially small be-
cause of localization, given by«g5(\vF / l )e2L/ l . The decay
of ^n(«)& for «!«g has a log-normal form}exp@
2(l/4L)ln2(«/«g)#. Such log-normal tails are characteristic of
rare fluctuations in the localized regime11 and have appeared
recently in the context of the superconductor proximity
effect.4

II. QUASIBALLISTIC REGIME

A. NS junction

The NS junction consists of a piece of normal metal of
length L connected at one end to a superconductor and
closed at the other end@see Fig. 1~a!#. The width of the
normal metal is of the order of the Fermi wavelengthlF ,
such that there is a single propagating mode at the Fermi
energyEF . We assume an ideal junction, without any tunnel
barrier and withEF much greater than the superconducting

FIG. 1. Geometry of the NS and SNS junctions.
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gap D0. An electron incident on the superconductor with
energy «,D0 above the Fermi level is then Andreev re-
flected as a hole at energy« below the Fermi level, with the
phase shift

fA52arccos~«/D0!, 2p/2,fA,0. ~1!

We wish to know at which« a bound state~Andreev level!
will form in the normal metal.

The electron and hole components of the wave function
c(x)5@u(x),v(x)# satisfy the Bogoliubov-de Gennes
~BdG! equation12

S H0 D

D* 2H0*
Dc5«c, ~2!

where H052(\2/2m)]2/]x21V(x) is the Hamiltonian of
the normal metal~with disorder potentialV) and D(x)
5D0u(2x) is the superconducting gap~which vanishes in
the normal-metal regionx.0). For narrow junctions~width
much less than the superconducting coherence lengthj0
5\vF /D0) the depletion ofD(x) on the superconducting
side may be neglected, hence the step functionu(2x). At
the closed endx5L of the normal metal we impose the
boundary conditionc(L)50.

In this section we address the quasiballistic regime of
mean-free pathl @L. We can then treatV as a small pertur-
bation on the ballistic bound states

c~x!5
1

AZ
S sin@~kF1k!~x2L !#

sin@~kF2k!~x2L !2pn#
D , 0,x,L,

~3a!

c~x!5
1

AZ
S sin@kFx2~kF1k!L#

sin@kFx2~kF2k!L2pn#
D

3expS 2
x

j0
sinfAD , x,0. ~3b!

The normalization constant isZ5L2 1
2 j0 /sinfA for kFL

@1. ~We denotekF5mvF /\52p/lF .) The wave number
k5«/\vF should satisfy the quantization condition

2kL1fA5pn, n50,1,2, . . . . ~4!

The total number of Andreev levels within the gap is 2L/pj0
for L@j0. ~There remains one level ifL!j0.!

To first order inV the energy level is shifted by the matrix
element

d«5E
0

L

dx V~x!@u~x!22v~x!2#. ~5!

We assume a potential with a short-range correlation, ex-
pressed by

^V~x!&50, ^V~x!V~x8!&5
\2vF

2

l
d~x2x8!, ~6!

where^•••& stands for the disorder average. It follows that
the distribution of an Andreev level around its ballistic value
is a Gaussian with zero mean,^d«&50, and variance

^d«2&5
\2vF

2~2L1j0 sinfA!

2l ~2L2j0 /sinfA!2
. ~7!

By way of illustration, we show in Fig. 2 the mean density of
states of an NS junction containing three Andreev levels
(j0 /L50.24) with mean-free pathl 512L. The Gaussian
given by Eq.~7! agrees very well with the numerical solution
of the BdG equation~data points!.

We briefly explain the numerical method. The BdG equa-
tion is solved numerically on a one-dimensional grid~lattice
constanta) by replacing the Laplacian by finite differences
and truncating the Hamiltonian matrix in the superconduct-
ing region, where the wave function is evanescent for ener-
gies in the superconducting gap. The resulting tight-binding
model has nearest-neighbor couplingg5\2/2ma2 ~band-
width 4g). We setEF5g and D050.1g, corresponding to
lF56a andj0510A3a. The disorder is modeled by a ran-
dom on-site potential which is uniformly distributed in the
interval (2W,W). The mean-free path from the Born ap-
proximation,l 53EF(4g2EF)a/W2, was found to fit well to
the prediction of one-dimensional scaling theory for the
mean inverse transmission probability,̂ T21&5 1

2 @1
1exp(2L/l)#, in the complete range from the quasiballistic to
the localized regime.~The localization lengthj is related to
the mean-free path byj52l , cf. Ref. 6.! This allows for a
parameter-free comparison of the analytical and numerical
results for the ensemble-averaged density of states.

B. SNS junction

The quasiballistic regime in an SNS junction@Fig. 1~b!# is
qualitatively different from the NS case of the preceding sec-
tion. The reason is the double degeneracy of the unperturbed
Andreev levels. This degeneracy exists if the phase of the
order parameter in the two superconductors is the same,
which is what we assume in this paper. Let us examine the
splitting of the Andreev levels by the disorder potential.

FIG. 2. Mean density of states~in units of n052L/p\vF) of a
quasiballistic NS junction. The Gaussian with variance given by Eq.
~7! ~solid curves! is compared to the numerical solution of the BdG
equation~data points!.
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The SNS junction has energy gap

D~x!5D0u~2x!1D0u~x2L !. ~8!

The quantization condition reads

kL1fA5np, n50,1,2, . . . . ~9!

There areL/pj0 Andreev levels~for L@j0), each level be-
ing doubly degenerate. We choose the two independent
eigenfunctionsc6(x) such that they carry zero current. They
are given by

c1~x!5
1

AZ8
S cos~kFx!

cos~kFx2fA!
D expS 2

x

j0
sinfAD , x,0,

~10a!

c1~x!5
1

AZ8
S cos@~kF1k!x#

cos@~kF2k!x2fA#
D , 0,x,L,

~10b!

c1~x!5
1

AZ8
S cos~kFx1kL!

cos~kFx1pn!
D expS x2L

j0
sinfAD , x.L,

~10c!

andc2(x) is obtained by replacing cosine by sine. The nor-
malization constant is nowZ85L2j0 /sinfA .

To first order inV the levels are splitted symmetrically
around the ballistic value, by an amount6 1

2 s. The basis~10!
is chosen in such a way that the off-diagonal elements of the
perturbation vanish. The shift of each level can then be cal-
culated from Eq.~5! using the corresponding eigenfunction.
We again calculate the probability distributionP(s) of the
level splitting using Eq.~6!. The result is

P~s!5
ps

2^s&2 expS 2
ps2

4^s&2D , ~11!

with average splitting

^s&5DAp

2l

j0AL1j0sinfA

L2j0 /sinfA
. ~12!

We recognize Eq.~11! as Wigner’s surmise of random-
matrix theory.10

In Fig. 3 we compare Eq.~11! with numerical data. The
agreement is excellent for a range of mean-free paths in the
quasiballistic regime. The mean position of the splitted levels
fluctuates only to higher orders inL/ l . This makes it possible
to resolve the splitting in the mean density of states~see inset
in Fig. 3!.

III. LOCALIZED REGIME

A. NS junction

In order to go beyond the quasiballistic regime into the
localized regimeL@ l we write the quantization condition
for the Andreev levels in an NS junction in the form

r ~«!r ~2«!* e2ifA51, ~13!

where r («)5eif(«) is the reflection amplitude of the disor-
dered normal metal.@The hole has reflection amplitude
r * (2«).# In terms of the phase shifts we have

F~«![
f~«!2f~2«!

2
1fA~«!5pn, n50,1, . . . .

~14!

The density of statesn(«)5(nd(«2«n) is related to the
scattering phase shifts by13

n~«!52
1

p

d

d«
Im ln sinF~«1 i01!, ~15!

where 01 denotes a positive infinitesimal. The imaginary
part of the logarithm jumps byp whenever sinF(«) changes
sign, hence it counts the number of levels below«. The
derivative with respect to« then gives the density of states. It
is convenient to write Eq.~15! as a Taylor series,

n~«!5
1

p

d

d« S F1 Im (
m51

`
1

m
e2imFD , ~16!

which converges becauseF(«1 i01) is equivalent to
F(«)1 i01.

We seek the disorder-averaged density of states^n(«)&.
One way to proceed is by means of the Berezinskii
technique.14,15 An alternative way, that we will follow here,
is to start from the scaling equation7,8 for the probability
distribution P(fN) of the phase shift fN5 1

2 @f(«)
2f(2«)#. This equation has the form

]P

]L
5

]

]fN
S 2

2«

\vF
1

1

l

]

]fN
sin2fND P. ~17!

The initial condition is limL→0P(fN)5d(fN).
The first moment satisfies]^fN&/]L52«/\vF , hence

^fN&5
2«L

\vF
. ~18!

Multiplication of Eq. ~17! by exp(2imfN) and integration
over fN from 0 to p yields a set of recursive differential
equations14 for the momentsRm5^e2imfN&,

FIG. 3. Distribution of the splittings of the first pair of Andreev
levels in an SNS junction withj0 /L50.24. The solid curves are our
theoretical expectation from Eq.~11!, the data points result from the
numerical solution of the BdG equation. The inset shows the nu-
merical data for the mean density of states.
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]Rm

]L
5

m2

l
~Rm111Rm2122Rm!1

4i«

\vF
mRm , ~19!

with the initial condition Rm(0)51. We solve this set of
equations by truncating the vector (R1 ,R2 , . . .RM) at a suf-
ficiently large value ofM'400 and diagonalizing the corre-
sponding tridiagonal matrix. From Eq.~16! we then find the
mean density of states.

The result is shown in Fig. 4 forj0 /L50.24 and ratios
l /L ranging from the quasiballistic regime to the localized
regime. Agreement with the numerical solution of the BdG
equation is excellent over the whole range.

In the localized regimeL@ l the individual Andreev levels
can no longer be distinguished in the mean density of states,
because the broadening of the levels becomes greater than
the spacing. In this regime we distinguish two energy ranges,
«@«g and«!«g , where«g5(\vF / l )e2L/ l .

For energies higher than«g we may use theL→` limit of
the distributionP(fN), obtained by setting the left-hand side
of Eq. ~17! equal to zero. The resulting moments are

lim
L→`

Rm5E
0

`

ds e2sS s

s2 iv D m

, v5
4« l

\vF
. ~20!

We then calculate the mean density of states from Eq.~16!,
with the result

^n~«!&5
2L

p\vF
1

1

pAD0
22«2

1 f ~«!, «@«g , ~21!

f ~«!5
]

]«
Im E

0

`ds

p F e2s

s2 iv
2

e2s~12e2ifA!

s~12e2ifA!2 iv
G .

~22!

The first term on the right-hand side of Eq.~21! is the energy
independent density of statesn0 in an isolated normal metal.
The main effect of the superconductor for«@«g is an en-
hancement of the density of states close to the gapD0 of the
bulk superconductor~second term!. The third term is nega-
tive for sufficiently small« and is a precursor of the soft gap
near the Fermi level. Forj0! l and«!\vF / l the reduction
term f («) can be simplified as

f ~«!52
2l

p\vF
S ln

\vF

8« l
2g D , «g!«!

\vF

l
, ~23!

whereg'0.58 is Euler’s constant.
Near the Fermi level, for«!«g , the mean density of

states vanishes as a result of the proximity to the supercon-
ductor. This ‘‘soft gap’’ appears no matter how strongly lo-
calized the normal metal is. The coefficientsRm may now be
treated as analytical functions of the parameter

z52
4i« lm

\vF
, Rm5R~z!. ~24!

Taking the limit«→0 we deduce from Eq.~17! the partial-
differential equation

l
]R

]L
5z2

]2R

]z2 2zR, ~25!

with initial condition limL→0R(z)51. This differential equa-
tion has been studied before in the theory of one-dimensional
localization,16,17 but not in connection with the proximity
effect. The result for the mean density of states, derived in
the Appendix, is given by

^n~«!&5
2l

p3/2\vF

expF2
l

4L
ln2

p«g

«
2

ul

2L S ln
ul

2L
21D G ,

~26!

where u5 ln p\vF /«l5ln p«g /«1L/l. The leading logarith-
mic asymptotic of this expression in the limit«!«g has the
log-normal tail

^n~«!&}expF2
l

4L
ln2

p«g

« G , «!«g . ~27!

The same log-normal tail was found in Ref. 4 for a many-
channel diffusive conductor. In that case the factorl /L is
replaced by the Drude conductance of the normal metal and
the energy scale«g is replaced by the Thouless energy
\D/L2 ~with D the diffusion constant!. In our single-channel
localized conductor neither the Drude conductance nor the
Thouless energy play a role.

B. SNS junction

In contrast with the quasiballistic regime, the NS and SNS
junctions are similar in the localized regime.~At least for the
case of zero current through the SNS junction considered
here.! Unfortunately, there exists no simple scaling equation
as Eq.~17! that can describe the density of states of the SNS
junction. We therefore rely on the numerical solution of the
BdG equation. In Fig. 5 we show that the mean density of
states of an NS junction of lengthL is close to that of an SNS
junction of length 2L. This factor of 2 has an obvious expla-
nation in the ballistic regime@compare Eqs.~4! and~9!#, but
it is remarkable that it still applies to the localized regime.

IV. CONCLUSION

In summary, we have calculated the effect of disorder on
the spectrum of Andreev levels in single-channel NS and
SNS junctions. The nonperturbative effects of localization in

FIG. 4. Mean density of states of an NS junction from the qua-
siballistic into the localized regime. The solid curves have been
computed from Eqs.~16! and~19!. The dashed curves are a numeri-
cal simulation of random disorder in the BdG equation.
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the one-dimensional case can be studied exactly, at least in
the NS geometry. Our research is of theoretical interest in
view of recent studies of the subgap density of states beyond
mean-field theory,1–4 but may also be of experimental inter-
est in view of recent progress made in superconductor–
carbon-nanotube devices.18,19

The results derived in the quasiballistic regime are not
restricted to a one-dimensional geometry. Andreev levels of
an SNS junction remain doubly degenerate in higher dimen-
sions without disorder, and weak disorder will still induce a
splitting distributed according to the Wigner surmise. The
subgap density of states in the localized regime has been
studied in higher dimensions without disorder in Ref. 4. The
log-normal tail is a generic feature of the lowest energies.
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APPENDIX: DERIVATION OF THE LOG-NORMAL TAIL

The differential operator on the right-hand side of Eq.
~25! has eigenfunctions

f p~z!52AzKp~2Az!, ~A1!

whereKp(z) is the modified Bessel function, such that

S z2
]2

]z2 2zD f p~z!5
p221

4
f p~z!. ~A2!

The solution to Eq. ~25! with the initial condition
limL→0R(z)51 is

R~z!5 f 1~z!1E
2`

`

dn
n sinh~pn/2!

p~n211!
f in~z!

3exp@2~n211!L/4l #. ~A3!
To obtain the density of states of the NS junction it is con-
venient to define the inverse Laplace transform

F~l!5
1

2p i E2 i`101

i`101 dz

~4l!2 R~z!expS z

4l D . ~A4!

From Eq.~16! we find for «!«g the mean density of states
in terms of the functionF,

^n~«!&5
4l

p\vF
FS « l

p\vF
D . ~A5!

Our aim is to find the asymptotic form ofF(l) in the limit
l→0. The inverse Laplace transform of the modified Bessel
functions in Eq.~A3! can be found in Ref. 20. We obtain

F~l!5F0~l!2E
2`

`

dn l2( in11)/2exp@2~n211!L/4l #

3

1F1S 3

2
1

in

2
,11 in,24l D

2Ap~12 in!G~ in/2!
, ~A6!

where F0(l)5exp(24l). The integrand has a single pole
n52 i in the lower half of the complex plane and the residue
from this pole cancels the termF0. Let us shift the contour
by the transformationn→n2( i l /L)ln(1/l) and consider the
limit l!e2L/ l . In this limit the contour is shifted through the
pole so that the termF0 is canceled. Moreover, the hyper-
geometric function1F1 can be replaced by unit in this limit.
Thus, we end up with the integral

F~l!5
1

2Ap
expF2

l

4L S ln
1

l
2

L

l D
2G E

2`

`

dn e2n2L/4l

3F S in212
l

L
ln l DGS in

2
2

l

2L
ln l D G21

. ~A7!

The asymptotic form of this integral in the limitl!e2L/ l

can be found by evaluation of the expression in square
brackets in the pointn50 and calculation of the Gaussian
integral. Using the asymptotic formula for the Euler gamma
function one obtains the mean density of states given in Eq.
~26!.
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