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Four-Atom Period in the Conductance of Monatomic Al Wires
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We present first-principles calculations based on density functional theory for the conductance of
monatomic Al wires between Al(111) electrodes. In contrast to the even-odd oscillations observed in
other metallic wires, the conductance of the Al wires is found to oscillate with a period of four atoms as
the length of the wire is varied. Although local charge neutrality can account for the observed period, it
leads to an incorrect phase. We explain the conductance behavior using a resonant transport model
based on the electronic structure of the infinite wire.
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Metallic chains of single atoms represent the ultimate
limit of the miniaturization of electrical conductors.
Apart from possible technological applications such as
interconnects in molecular electronics, the simple struc-
ture of these monatomic wires makes them an ideal test
ground for developing and validating our understanding
of electron transport on the nanometer length scale. The
conductance of monatomic wires has been investigated
theoretically by several authors using a number of differ-
ent techniques [1–6]. Lang was the first to study the
dependence of the conductance on the number of atoms
in the wire. In 1997 he found that the conductance of a
chain of Na atoms between jellium electrodes oscillates
with a period of two atoms as the length of the chain is
varied [1], and the following year Lang and Avouris
observed the same behavior for chains of C atoms [2].
This even-odd effect was also found in Na wires by
Tsukamoto and Hirose [3] using a method similar to
that of Lang, and by Sim et al. [4] who combined cluster
density functional theory (DFT) calculations with the
Friedel sum rule to obtain the conductance. Recently,
the even-odd oscillations have been confirmed experi-
mentally for Au, Pt, and Ir by means of the mechanically
controlled break junction [7].

The fact that a large number of metals of rather distinct
character exhibit the even-odd effect has led to the sug-
gestion that this is a universal feature of atomic wires [7].
In this Letter we present calculations based on DFT
showing that the conductance of monatomic Al wires
varies in an oscillatory manner as the number of atoms
in the wire is changed. In contrast to the even-odd effect,
however, the oscillation has a period of four atoms. Based
on a resonant transport picture we show that local charge
neutrality can account for the observed 4-atom period.
For long wires, however, we find that the occupancy of
molecular resonant states and thus the net charge located
on the wire is determined by the position of the discrete
energy spectrum of the free wire relative to the Fermi
level of the neutral, infinite wire. In general, these two
effects compete in determining the phase of the conduc-

tance oscillation. In the case of Al we find that the latter
effect dominates for wires containing more than three
atoms, whereas charge neutrality is important for shorter
wires. By relating the electronic structure of the free wire
to that of the infinite wire, we arrive at a simple picture
for the position of the free wire valence resonances which
accounts for the conductance both qualitatively and quan-
titatively. In this picture the filling factor of the infinite
wire determines the period of the conductance oscilla-
tion: a half-filled band implies the even-odd effect while
a filling factor of 0.25 leads to a 4-atom period.

We represent the combined electrode-wire system in a
supercell containing the wire itself together with seven
3� 3 sections of the (111) planes in bulk aluminum. An
example of such a supercell is shown in Fig. 1. Periodic
boundary conditions are imposed on the supercell in the
directions perpendicular to the wire axis, and for the
DFT calculations also in the parallel direction. The cal-
culational procedure consists of two main steps. (i) A
realistic wire configuration is found by relaxing the ion
positions as well as the electrode-electrode distance as
determined by the length of the supercell. During the
relaxation the wire is constrained to be linear and ions
below the surface layer are fixed in the bulk crystal
structure. These simulations were performed within
DFT using a plane-wave based pseudopotential code [8]
with an energy cutoff of 15 Ry for the plane-wave ex-
pansion. The ion cores are replaced by ultrasoft pseudo-
potentials [9] and to treat exchange and correlation we use

N atoms

Contact atoms

FIG. 1. The N � 3 wire connecting Al(111) electrodes via a
3-atom basis. This structure constitutes the supercell in the
DFT calculations and forms the scattering region in the con-
ductance calculations.
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the PW91 functional by Perdew and Wang [10]. The bond
lengths in the wires lie in the range 2.36–2.50 Å with the
shorter bond lengths achieved closer to the center of the
wire. For the longer wires the bond lengths vary less and
approach a value of 2.39 Å, which is also found for the
infinite wire. No dimerization is found in accordance
with previous results for infinite linear Al chains [11].
Concerning the magnetic properties, Ayuela et al. have
found that an infinite linear Al chain has a nonmagnetic
ground state for interatomic distances smaller than 2.7 Å
[12]. Finally, it should be mentioned that the formation of
zigzag structures and Peierls distortions in infinite Al
wires was recently investigated by Ono and Hirose [13].
(ii) The self-consistent effective potential generated by
the DFT code is used as input to the Green function
transport code described in detail in Ref. [14]. The effec-
tive potential of the supercell forms the scattering region
in the transport problem while the potential in the semi-
infinite leads is obtained from a DFT bulk calculation. In
this way the scattering region and the leads are treated on
an equal footing taking their full atomic and electronic
structure into account. The conductance is calculated
from the Green function of the scattering region, which
is represented in terms of a system-independent basis set
containing wavelets of compact support. All conductance
calculations have been converged with respect to the size
of the basis set. Because of the limited size of the super-
cell in the directions perpendicular to the wire, the two-
dimensional Brillouin zone is sampled by eight special k
points, both in the transport and the DFT calculations.

In Fig. 2 we have plotted the calculated conductance of
Al wires containing 1–9 atoms and attached to the (111)
surface either directly or via a 3-atom basis. We regard
an atom as part of the wire if it has a coordination number
of 2; see Fig. 1. With this convention the wire couples to
the electrodes via a single atom which we refer to as the
contact atom. The conductance oscillates with a period
of four atoms taking values in the range 0:5G0 to 1:7G0.
The oscillation amplitude increases approximately 10%

when the 3-atom basis is used as contact to the electrodes,
but otherwise no difference is found between the two
geometries.

We can gain some information about the current carry-
ing states by studying the eigenchannel resolved conduc-
tance [15], as shown in Fig. 3 for N � 3. The valence
configuration of atomic Al is 3s23p, which for the infinite
wire leads to a fully occupied � band and a degenerate �
band with filling factor f � 0:25. Three channels con-
tribute to the total conductance: two similar � channels
and a single � channel. The two � channels constitute the
main part of the conductance, while the � channel is a
tunneling channel whose contribution decays exponen-
tially with the wire length from �0:2G0 at N � 1 to
�10�4G0 at N � 9.

To understand the origin of the conductance oscilla-
tions we first relate the conductance to the electronic
structure of the wire. When a free N-atom wire is con-
nected to bulk electrodes, the molecular orbitals on the
wire hybridize with extended states in the electrode. As a
result of this mixing, the nth energy level of the free wire
is broadened into a resonance described by the projected
density of states [16]

�n�"� �
��1	n�"�

�"� "n �
n�"��2 	 	2
n�"�

: (1)

For each molecular level, the coupling to the electrodes
defines a unique orbital, the group orbital, which is lo-
cated on the contact atoms. In terms of the group orbi-
tal we can write 	n�"� � �jVnj

2�c;n�"�, where Vn is the
matrix element coupling the nth molecular level with
its corresponding group orbital and �c;n is the projected
density of states for the group orbital in the absence of
the wire. For simplicity we shall not distinguish be-
tween the group orbitals and thus we set �c;n � �c. If
we furthermore neglect interference between the different
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FIG. 2. Calculated conductance as a function of wire length
with and without a 3-atom basis as contact to the electrodes.
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FIG. 3. Eigenchannel resolved conductance for the N � 3
wire shown in Fig. 1. The two similar � channels together
with the � channel are indicated by the dashed lines, while the
solid line shows the total conductance.
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molecular levels, we obtain a simple expression for the
conductance

G �
2e2

h

X
n

�2jVnj
2�c�"F��n�"F�; (2)

where the sum extends over all molecular levels. From
this expression we expect the position of the resonances
relative to the Fermi level of the electrodes to be a crucial
parameter for the conductance.

Thus far, local charge neutrality has been considered
the main cause of the even-odd oscillations in monovalent
wires [4,5,7]. In the case of Al, the degeneracy of the �
orbitals and the fact that each Al atom provides one
electron to the � system implies that local charge neutral-
ity would cause oscillations in the conductance with a
period of four atoms [17]. The resulting phase of the
oscillation would, however, be incorrect. The maxima
(minima) occur for half-filled (filled) resonances which
should correspond to N � 2; 6; . . . (N � 4; 8; . . . ). These
numbers are off by one atom as compared to Fig. 2.
Consequently, charge neutrality alone cannot account
for the conductance of the Al wires. At this point it is
interesting to notice that different results have been ob-
tained for the phase of the conductance oscillation in
Na wires. As opposed to Tsukamoto and Hirose and
Sim et al., Lang [1] has found a higher conductance for
even-numbered than for odd-numbered Na chains.
Calculations by Havu et al. [5] for Na wires between
jellium cones show that it is possible to change the phase
of the conductance oscillation from even-odd to odd-even
by varying the lead opening angle.

To explain the behavior of the conductance, we need to
examine more closely the position of the resonances
relative to the Fermi level of the electrode-wire-electrode
system. As a first step in this direction we consider a
linear chain of N sites coupled by nearest neighbor hop-
ping. The Hamiltonian is

H �
XN
i�1

"0c
y
i ci 	

XN�1

i�1

t�cyi	1ci 	 cyi ci	1�; (3)

where ci annihilates an electron at site i. The eigenvalues,
"Nn , of H can be expressed in terms of the band structure
of the infinite chain of coupled sites, "�k�, as follows:

"Nn � "
�

n�
N 	 1

�
; n � 1; . . . ; N; (4)

where we have set the intersite distance to 1. Although the
above relation is only strictly valid for the model
Hamiltonian (3), we can still use it to estimate the
spectrum of a free N-atom wire in terms of the band
structure of the infinite wire. Assuming �c�"� to be con-
stant, the nth resonance of the N-atom wire becomes a
Lorentzian of width 	N;n � �jVN;nj

2�c. Since we are
only interested in resonances close to the Fermi energy,

it is reasonable to assume an energy independent cou-
pling, VN;n � VN . Furthermore, the extended nature of
the eigenstates of the free wire causes jVNj

2 / 1=N,
which implies a corresponding decrease in the resonance
width as the wire length increases, 	N / 1=N. In Fig. 4
we have illustrated in k space the evolution of the discrete
spectrum of a free wire as a function of the wire length.
For each eigenvalue we have indicated the width of the
corresponding resonance. The eigenvalues are converted
to energy via the valence band of the infinite wire and
relation (4).

To determine the position of the Fermi level in the
electrode-wire-electrode system we note that in the limit
of a long wire the net charge per wire atom must vanish
and consequently the band filling f must approach that of
the infinite wire. Since the Fermi level is fixed by the
macroscopic electrodes this argument fixes the Fermi
level for wires of any length. We emphasize the difference
between this picture and that based on charge neutrality.
Whereas the former inherits the molecular levels and the
Fermi level from the neutral infinite wire, the latter
assumes that the molecular levels somehow adjust to the
Fermi level in order to ensure charge neutrality of the
coupled finite wire. In Fig. 4 we have indicated the Fermi
level for the Al wire by a vertical line at k � �=4 corre-
sponding to f � 0:25. As N increases the resonances
move down through the Fermi level in a systematic fash-
ion. The coincidence of the Fermi level with the center of
a resonance is a periodic event of period four starting at
N � 3. Like the local charge neutrality, this picture ex-
plains the observed period of the conductance oscillation
but in addition it provides information about the actual
position of the resonances. The first maximum (mini-
mum) is predicted to occur at N � 3 (N � 5), which
indeed gives the correct phase as compared to Fig. 2.
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FIG. 4. Evolution in k space of the discrete spectrum of a free
N-atom wire. The interatomic distance in the wire is set to 1.
The horizontal lines symbolize the width of the corresponding
resonance formed when the free wire is coupled to electrodes.
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The vertical line at k � �=2 indicates the position of the
Fermi level for metals with a half-filled valence band
such as Na, Au, and C. Clearly, our model accounts for the
even-odd behavior observed in these wires.

According to the filling of � resonances as predicted
by Fig. 4, the N-atom Al wire should hold approxi-
mately N � 1 valence electrons. For short wires the elec-
trostatic potential from the missing electron drags the
resonances down in energy thereby increasing the occu-
pancy. The resulting position of the resonances must be
determined self-consistently and will in general lead to
an occupation somewhere between N � 1 and N. For
short wires the simple picture is therefore modified by a
charge-neutralization process which tends to shift down
the phase of the conductance oscillation by one atom. This
effect explains the relatively high conductances found for
N � 1; 2 as compared to N � 5; 6.

To test our simple model quantitatively we have used it
to reproduce the first-principles results. We use Eq. (2) for
the conductance and assume a Lorentzian shape of the
projected density of states. The molecular levels given in
Eq. (4) are obtained via the � band of the infinite Al wire
calculated within DFT. From the first resonance in Fig. 3
we read off 	N�3 � 0:15 eV as the half width at half
maximum. Because of the 1=N scaling, all resonance
widths then follow from 	N�3. The result of the model
is seen in Fig. 5 together with the first-principles calcu-
lation, repeated here for convenience. Except for the
shortest wires (N � 1; 2), where charge transfer as well
as conduction through the � channel is important, the
model gives a good description of the conductance with
an average deviation of less than 15%. The fact that the
model gives values above 2G0 is a consequence of the
neglected interference between different molecular levels.
Finally, we note that the 1=N dependence of the resonance
width together with the 1=N dependence of the resonance
spacing implies the existence of conductance oscillations

also for longer wires. This is in agreement with previous
results in Ref. [18].

In summary, our calculations show that in contrast to
the even-odd effect the conductance of monatomic Al
wires oscillates with a 4-atom period as the number of
atoms in the wire is varied. This behavior is explained
by combining a resonant transport picture with the
electronic structure of the free Al wire. By relating
the electronic structure of a free wire to the valence
band of the infinite wire, we find that the period of os-
cillation is determined by the filling factor of the valence
band of the infinite wire. For long wires (> 4 atoms) a
simple model based on these ideas was shown to repro-
duce the first-principles conductances, while for short
wires the simple picture is modified by charge transfer
and tunneling effects.

The Center for Atomic-scale Materials Physics is spon-
sored by the Danish National Research Foundation. We
acknowledge support from the Danish Center for
Scientific Computing through Grant No. HDW-1101-05.
We thank Mikkel Bollinger for many fruitful discussions
concerning transport in atomic wires.

[1] N. D. Lang, Phys. Rev. Lett. 79, 1357 (1997).
[2] N. D. Lang and Ph. Avouris, Phys. Rev. Lett. 81, 3515

(1998).
[3] S. Tsukamoto and K. Hirose, Phys. Rev. B 66, 161402

(2002).
[4] H. S. Sim, H.W. Lee, and K. J. Chang, Phys. Rev. Lett. 87,

096803 (2001).
[5] P. Havu, T. Torsti, M. J. Puska, and R. M. Nieminen, Phys.

Rev. B 66, 075401 (2002).
[6] N. Kobayashi, M. Brandbyge, and M. Tsukada, Phys.

Rev. B 62, 8430 (2000).
[7] R. H. M. Smit, C. Untiedt, G. Rubio-Bollinger, R. C.

Segers, and J. M. van Ruitenbeek, Phys. Rev. Lett. 91,
076805 (2003).

[8] DACAPO code. See http://www.fysik.dtu.dk/campos.
[9] D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

[10] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson,
M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B
46, 6671 (1992).

[11] A. Rubio, Y. Miyamoto, X. Blase, M. L. Cohen, and S. G.
Louie, Phys. Rev. B 53, 4023 (1996).

[12] A. Ayuela, H. Raebiger, M. J. Puska, and R. M. Nieminen,
Phys. Rev. B 66, 035417 (2002).

[13] T. Ono and K. Hirose, Phys. Rev. B 68, 045409 (2003).
[14] K. S. Thygesen, M.V. Bollinger, and K.W. Jacobsen, Phys.

Rev. B 67, 115404 (2003).
[15] M. Brandbyge, M. R. Sørensen, and K.W. Jacobsen, Phys.

Rev. B 56, 14 956 (1997).
[16] D. M. Newns, Phys. Rev. 178, 1123 (1969).
[17] Note that transverse relaxations, such as the formation

of a zigzag structure, would lead to a mixing of s and
p states thereby destroying the degeneracy of the �
orbitals.

[18] Z.Y. Zeng and F. Claro, Phys. Rev. B 65, 193405 (2002).

1 2 3 4 5 6 7 8 9
Number of atoms (N)

0.5

1

1.5

2

2.5
C

on
du

ct
an

ce
 (

2e
2 /h

) First principles
Model

FIG. 5. The conductance of Al wires as calculated from first
principles (solid line) and a simple model (dashed line).
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